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The utility of PET for monitoring responses to radiation therapy have been compli-
cated by metabolically active processes in surrounding normal tissues. We examined
the time-course of [18F]FDG uptake in normal tissues using small animal-dedicated
PET during the 2 month period following external beam radiation. Four mice re-
ceived 12 Gy of external beam radiation, in a single fraction to the left half of the body.
Small animal [18F]FDG-PET scans were acquired for each mouse at 0 (pre-radiation), 1,
2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various
tissues was compared between irradiated and non-irradiated body halves before, and
at each time point after irradiation. Radiation had a significant impact on [18F]FDG
uptake in previously healthy tissues, and time-course of effects differed in different
types of tissues. For example, liver tissue demonstrated increased uptake, particularly
over days 3-12, with the mean left to right uptake ratio increasing 52% over mean
baseline values (p < 0.0001). In contrast, femoral bone marrow uptake demonstrated
decreased uptake, particularly over days 2-8, with the mean left to right uptake ratio
decreasing 26% below mean baseline values (p = 0.0005). Significant effects were also
seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in
previously healthy tissues. These kinds of data may help lay groundwork for a sys-
tematically acquired database of the time-course of effects of radiation on healthy
tissues, useful for animal models of cancer therapy imminently, as well as interspecies
extrapolations pertinent to clinical application eventually.
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I. INTRODUCTION

Positron-emission tomography (PET) is an expanding, non-invasive imaging technique frequently
used for evaluating oncologic disease.(1) It complements more conventional radiologic imaging
techniques (i.e., CT and MRI), by looking at the functional or metabolic properties of suspected or
confirmed tumor sites. More recently, evidence has also shown that fusion imaging with PET/CT
significantly improves staging accuracy when compared to PET or CT alone.(2, 3) Of the various
radiotracers used for clinical indications, 18F-fluorodeoxyglucose ([18F]FDG) is the most widely
employed. [18F]FDG uptake, often quantified as a standardized uptake value (SUV), has been
shown to be elevated in many types of cancers relative to normal tissues .(4)
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In a recent review of the literature, Juweid et al. summarized how monitoring cancer treatment
with PET contributed to tailoring an appropriate therapy regimen.(1) In many studies, early meta-
bolic changes measurable by [18F]FDG-PET were highly predictive of clinical responses observed
weeks to months later. Such findings have been reported for a variety of cancers, including lym-
phoma, as well as breast, esophageal, gastric, colorectal, head and neck, and non-small-cell lung
cancers.(5-16) Early declines in [18F]FDG uptake generally correlate with longer progression-free
and overall survival. The available data suggest that [18F]FDG may be utilized for predicting
treatment responses as early as one to three weeks after the first cycle of chemotherapy in a variety
of cancer types.(8, 9, 15, 16) This can prevent the exposure of patients to prolonged, ineffective
treatments with undesirable side effects.

Metabolic activity in tumors also often decreases after successful radiation therapy.(17, 18)

However, the ability of [18F]FDG-PET in monitoring the effects of radiation treatment has not been
firmly established. This is in part due to the problem that, although [18F]FDG is an effective tumor-
localizing tracer, it is not tumor-specific: benign processes (e.g., surrounding inflammatory changes,
bone marrow suppression and hyperplasia) associated with irradiation can also alter [18F]FDG
uptake levels. Hautzel et al. provided preliminary evidence of radiation-related inflammatory changes
contributing to initial enhancement of [18F]FDG uptake by assessing the metabolism of cervical
lymph node metastases in a cancer patient during radiotherapy.(17) They reported that low-dose
irradiation enhanced tumor glucose uptake, while higher doses were associated with subsequent
metabolic decline. More recently, Metser et al., in a systematic review of PET/CT studies performed
on oncologic patients during a 6-month period, discovered benign non-physiological uptake of
[18F]FDG in more than 25% of the studies. In half of these, [18F]FDG uptake was comparable to that
of malignant sites, and most of the benign lesions were inflammatory in nature.(19)

Differentiation of inflammatory processes from residual or recurrent disease is complicated,
leading to imaging pitfalls such as false-positive readings and consequently, administration of
unnecessary therapy. Data from several recent studies suggest that PET can remain relatively non-
specific for up to 6 months following radiation therapy, due to inflammatory changes which may
occur in the first few months after treatment.(20)

In a field where treatment regimens often have success rates falling below fifty percent, im-
proved methods for accurate, early prediction of treatment failure would be of substantial clinical
value. The purpose of this study was to longitudinally characterize and quantify the time-course
of [18F]FDG uptake in a variety of healthy tissues, occurring subsequent to irradiation, under
experimentally controlled conditions, through the use of non-invasive imaging with small ani-
mal-dedicated PET.

II. MATERIALS AND METHODS

A. Irradiation
All animal studies were performed under a protocol approved by the Chancellor’s Animal Research
Committee of UCLA. Four male mice (strain C57BL/6) underwent microPET/CT imaging. PET im-
ages were acquired on a microPET Focus 220 (Siemens Medical Solutions, Malvern, PA) and CT
images were acquired on a MicroCAT II (Imtek Inc., Knoxville, TN). Small animal PET and CT scans
were acquired one hour after intravenous administration of 7.5 MBq (0.2 mCi) [18F]FDG on days 0
(pre-radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38. Each mouse was irradiated with 12 Gy of external
beam radiation (max. dose), in a single fraction to the left half of the body.

Since the mice used in this experiment were small (approximately 2 cm in width across the
thorax), great care was taken to deliver a dose distribution to provide a sharp dose falloff from the
left side of the mouse to the right. A dedicated 6MV Novalis radiosurgery LINAC (BrainLAB,
Gmbh, Germany) was used to deliver a posterior/anterior beam with a half-beam block. Addition-
ally, a lead jig was created and placed directly above the mouse to further reduce the beam’s
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penumbra and subsequent dose received by the right half of the body.  Film dosimetry of the
resulting field and the treatment planning system’s calculations were used to assess the dose
falloff and determine required monitor units for a maximum point dose of 12 Gy.  Additionally, a
Monte Carlo simulation, using a model of the Novalis LINAC and a micro CT of one of the mice,
was used to assess and quantify the resulting relative dose distribution in the irradiated mice.
Resultant dosimetry from the Monte Carlo simulation is depicted in Fig. 1, for an axial slice of a
mouse CT scan. Metabolic activity, assessed with [18F]FDG small animal PET, in various tissues
(i.e., lungs, femoral bone marrow, brain, and liver), was compared with the irradiated left and non-
irradiated right body halves before, and at each time point after, external beam radiation.

B. PET Acquisition
In this study, a total of 44 small animal PET and CT scans were acquired from four different mice.
MicroPET/CT images were reconstructed using a filtered back projection algorithm (ramp filter,
voxel size 0.04 × 0.04 × 0.0796 cm3), and the biodistribution of [18F] FDG was assessed in regions of
interest (ROIs) with use of the Amide software package (freeware available at  http://
amide.sourceforge.net). Uptake in irradiated tissue was compared with uptake in non-irradiated
tissues. ROIs were obtained for left and right portions of each tissue assessed: lungs, femur, brain,
and liver (Fig. 2). Ratios of left to right uptake in ROIs were calculated for each mouse, for all trial
days within the two-month study period, by a single rater, to eliminate inter-observer variability.

C. Statistical Analysis
Time activity curves were examined for four organs, using the 11 scans acquired for each animal.
Time windows used for statistical analysis were chosen by qualitatively selecting periods where a
relatively consistent separation in the left-to-right ratios, relative to baseline data, were apparent
on visual interpretation of time-course data (as reflected in Figs. 3–6 and in the fifth column of
Table 1).

Relative uptake values in the analyzed time windows, reported as left to right uptake ratios for
each area evaluated, were statistically assessed for significance by use of two-tailed Student’s t-
tests. Response patterns of [18F]FDG uptake in the liver, lungs, bone marrow of the femur, and

FIG. 1. (A) Monte-carlo estimate of dose distribution for a mouse receiving radiation to the left half of the body
from a 6 mV linear accelerator. The distribution represents an axial slice of the mouse, just inferior to the lungs.
(B) Illustration portraying the location of the dose calculation shown in figure.
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TABLE 1. Summary of mean [18F]FDG uptake ratios observed in four different types of tissue. Irradiation had
varying effects on [18F]FDG uptake in previously healthy tissues.

Tissue Direction of Time to Magnitude of Period of most Average magnitude p-value
peak change peak change peak change apparent effect of change during (two-tailed)

of irradiation noted period

Liver ↑ 8 days 100% Days 3-12 52% <0.0001
Lungs ↑ 12 days 15% Days 1-24 7% 0.0127
Femur ↓ 8 days 40% Days 2-8 26% 0.0005
Brain ↓ 8 days 10% Days 1-24 5% <0.0001

FIG. 2. Display of hand-drawn ROIs (displayed in orange) for lungs (A), femur (B), brain (C), and liver (D). For each
area assessed, ROI’s were drawn using the Amide software package, and the uptake in the irradiated left tissue was
compared with uptake in non-irradiated contralateral tissue.

brain were assessed. At baseline, no significant differences in uptake were found between left and
right-sided tissues prior to irradiation (left:right ratios were 1.00 ± 0.10, 1.08 ± 0.05, 1.00 ± 0.10, and
0.99 ± 0.02, mean ± SE for liver, lungs, bone marrow, and brain, respectively). Significance of
changes in left to right ratio from 1 was assessed for times subsequent to administration of 12 Gy
external beam radiation.
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FIG. 3. Time-course of mean [18F]FDG uptake ratio in liver. Each data point represents the mean left:right ratio
of uptake values calculated for four mice. The ± standard error is indicated with dashed bars.  A thick grey line
corresponds to the mean for the range of dates indicated in Table 1 (days 3-12 for liver).

FIG. 4. Time-course of mean [18F]FDG uptake ratio in lungs. Each data point represents the mean left:right ratio
of uptake values calculated for four mice. The ± standard error is indicated with dashed bars. A thick grey line
corresponds to the mean for the range of dates indicated in Table 1 (days 1-24 for lungs).
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FIG. 6. Time-course of mean [18F]FDG uptake ratio in brain. Each data point represents the mean left:right ratio
of uptake values calculated for four mice. The ± standard error is indicated with dashed bars. A thick grey line
corresponds to the mean for the range of dates indicated in Table 1 (days 1-24 for brain).

FIG. 5. Time-course of mean [18F]FDG uptake ratio in femur.  Each data point represents the mean left:right ratio
of uptake values calculated for four mice. The ± standard error is indicated with dashed bars. A thick grey line
corresponds to the mean for the range of dates indicated in Table 1 (days 2-8 for femur).

III. RESULTS

Observed as early as the first day, irradiation had a significant impact on [18F]FDG uptake in
previously healthy tissues (Table 1). The time-course of these effects differed dramatically, de-
pending on the type of tissue examined (Figs. 3-6), with the percentage differences of left to right
ratios relative to baseline increasing or decreasing from 5% to over 50%.
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A. Liver
Irradiation of the left liver resulted in higher [18F]FDG uptake than in the non-irradiated right side.
This effect peaked on day 8, when the left to right ratio was 100% greater than at baseline (p<0.0001),
and was most apparent on days 3-12, over which time the left to right ratio averaged 52% higher
than at baseline (p<0.0001). Fig. 3 illustrates the time-course of these effects, with each data point
representing the mean [18F]FDG uptake in four mice on each scan day.

B. Lungs
Irradiation also resulted in higher [18F]FDG uptake in the irradiated left lung compared to the non-
irradiated right lung. This rise in the mean left to right uptake ratio was observed as early as day 1,
and peaked on day 12, before returning to baseline levels. Fig. 4 illustrates the time-course of these
effects within a 2 month period. The change in mean left to right uptake ratio post-irradiation was
found to be statistically significant, resulting in a rise of 16% relative to baseline, averaged over
days 1-24 (p<0.0001). It is noteworthy that at baseline, the lungs demonstrated slightly higher
uptake in the left lung relative to the right, most likely due to cardiac spillover. Thus, each mouse
was also statistically analyzed after being normalized to its own baseline, and results remained
significant, resulting in an increase in ratio of 7% (p=0.01).

C. Femur
Irradiation decreased the mean left to right uptake ratio in the femur, which was most prominent on
trial days 2-8. The most significant decrease was observed on day 8, when uptake was 40% below
baseline values (p<0.05). Fig. 5 illustrates the time-course of these effects over a 2 month period.
Over days 2-8, the left to right ratio averaged 26% lower than at baseline (p=0.0005).

D. Brain
As observed in the femur, irradiation decreased the mean left to right uptake ratio in the brain,
which was observed on all trial days post-irradiation, again most significant on day 8. Fig. 6
illustrates the change in [18F]FDG uptake in the irradiated left brain compared to that of the non-
irradiated right brain, resulting in a 5% decrease relative to baseline, averaged over post-radiation
days 1-24 (p<0.0001).

IV. DISCUSSION

In the present study, we systematically documented the direction, magnitude, and time-course of
radiation-induced changes occurring in a variety of tissue types. While the irradiated liver and
lungs demonstrated increases in [18F]FDG uptake in the days following irradiation, irradiated
femoral bone marrow and brain demonstrated decreases in [18F]FDG uptake during that period.
Effects ranged from 5% to over 50% changes in uptake relative to the pre-irradiated baseline, and
each tissue type exhibited a distinct time-course of uptake over a two month trial period.

In the femur and brain, we observed decreases in the irradiated/non-irradiated tissue uptake
ratios following radiation. The declining uptake in the femur is understandable in the context of
previously documented responses (21-23) that bone marrow is highly sensitive to radiation, and
decreased [18F]FDG uptake may be a result of functional suppression following radiation. In the
brain, decreased [18F]FDG uptake is also not surprising, given that the immune system has less
access to brain tissue than to the lung and liver and other tissues, due to the blood-brain
barrier,(24-26) coupled with a normally high rate of glucose metabolism which occurs in the brain
at baseline,(27, 28) and which can be disrupted by the synaptic dysfunction occurring subse-
quent to irradiation.

In the lungs and the liver we observed an increase in the irradiated/non-irradiated uptake ratios
following radiation. This increase most likely results from an inflammatory response in these
tissues.(29, 30)  Specifically, early inflammation in the lung may stem from the immediate expression
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of the pro-inflammatory cytokines TNF-alpha, IL-1alpha, and IL-6 in the bronchiolar epithelium in
the first hours after lung irradiation.(31) In the liver, the high levels of  inflammation may result from
high levels of oxidative stress, as reflected in some studies by elevated levels of peroxidative
damage, DNA fragmentation, LDH activity, and nitric oxide levels.(32)

We have characterized the time-course of effects of radiation in various healthy tissues from
which cancer may arise. Although [18F]FDG-PET is commonly employed for monitoring responses
to chemotherapy,(8, 9, 15, 16) it has been less utilized in monitoring effects following irradiation. While
the exact mechanisms and extent of metabolic responses in healthy tissues have not yet been well
defined, interpretation of [18F]FDG uptake can be substantially complicated by radiation-induced
inflammation and other effects occurring in surrounding tissues. As discussed by Engenhart et al.,
it is often difficult to distinguish the difference in [18F]FDG uptake before and after irradiation, as
it does not reliably differentiate among proliferation, repair, inflammation, and residual viable tumor
cells in patients with inoperable recurrent rectal carcinoma.(33) Data established in the present
study may be placed in the context of other published studies that have investigated irradiation
effects. Ohtsuka et al. investigated non-small-cell lung cancer after neoadjuvant chemoradiotherapy,
and found positive [18F]FDG uptake in PET scans despite absence of tumor cells found pathologi-
cally.(34) Such false positives are thought to be due to either inflammatory lesions with invasion of
macrophages and lymphocytes resulting in increased uptake of [18F]FDG,(35-37) or metaplastic and
proliferative epithelial elements caused by chemoradiotherapy leading to [18F]FDG accumula-
tion.(38)  Similarly, in our study, [18F]FDG PET demonstrated increased metabolic activity in the liver
and lungs. However, not all research has found significance in the post irradiation changes in PET
in the organs we looked at. Castellucci et al. investigated the rate of postactinic inflammatory
alterations leading to potential false-positive PET images in lymphoma patients with the hope of
determining an optimal time window between radiation therapy and [18F]FDG-PET. They found
that the incidence of inflammation shortly after radiation therapy was not as prevalent as they had
expected, and they were unable to establish a strong link to the elapsed time since the end of
radiation therapy treatment.(39) More research is clearly needed in this area.

In summary, results from our present study indicated effects of tissue irradiation ranging from
5% to over 50% changes in uptake relative to the pre-irradiated baseline, with different tissue types
exhibiting distinct time-courses of uptake over a two-month observation period. Limitations to our
study include the difficulty of administering a uniform radiation dose across mice, as dose depends
on size, shape, and composition of the irradiated subject as well as technical parameters of the
linear accelerator. To account for this, we classified dose distribution by using a Monte Carlo
simulation, which utilizes a computer model to make iterative predictions about how the radiation
was able to be delivered, especially for the left to right comparison. We used mice of the same body
weight and age for our study, to obtain as homogenous an effect of irradiation as possible.

It is also important to recognize that different doses and forms of irradiation may yield different
time-courses of post-radiation effects.  What our results may provide is initial insight into the
relative magnitudes of biological effects following irradiation. These preliminary findings of the
diverse effects of irradiation in healthy tissues could be useful for animal models of cancer therapy
(e.g., xenograft models) and provide a point of reference for further studies aimed at trying to
delineate and quantify uptake in tumors and their associated tumor to background ratios. Actual
rates of metabolism will also need to be established in humans, as it is common for physiological
and pathological processes to be accelerated in mice relative to normal reactions in people.(40)

Translating these processes to the clinic can potentially aid in the differentiation of inflammatory
processes from that of residual or recurrent disease. In PET, lesion characterization is often heavily
dependant on lesion background uptake ratio. Recent literature (18, 41, 42) has suggested that a 20%
change in this ratio is clinically significant. However, lesion detection can depend on differences
ranging within a few percent. Thus the extent to which radiation impacts this ratio can have direct
implications on clinical diagnosis. Both PET and radiation are largely utilized clinically, and further
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study may expand the role of PET for radiation treatment monitoring, as it is currently starting to be
explored in the clinic.(43-45) Examining other radiotracers with this experimental design is also of
interest, as different radiotracers may behave differently, during radiotherapy.(27, 46)

V.    CONCLUSIONS

Different tissues have different metabolic profiles with respect to the direction, magnitude, and
time-course of changes occurring after irradiation. We saw increased FDG uptake following
radiation in the lungs and liver, while we noticed the opposite effect in the brain and femur. Time
courses and rates of reactions varied among these tissues, likely reflecting the variety of biologi-
cal processes encountered when combining radiation treatment with FDG PET imaging. Data
from studies such as this one may help in designing animal models of monitoring tumor responses
to irradiation imminently, as well as, ultimately, in translating the findings to optimizing clinical
therapeutic monitoring.
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