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Abstract

Conceptual learning in maths and science involves learning
to coordinate multiple representation systems into smoothly
functioning heterogeneous reasoning systems composed of
sub-languages, graphics, mathematical representations, etc..
In these heterogeneous systems information can be trans-
formed from one representation to another by inference rules,
and learning coordination is learning how and when to apply
these rules. Heterogeneous reasoning has a particularly impor-
tant role to play in teaching students how to apply formalisms
to real world problems, rather than merely teaching formalism-
internal calculation.

This paper analyses three learning incidents which happened
in groups of students engaged in learning the mathematics and
biology involved in modelling biological populations, from the
perspective of the heterogeneous reasoning involved. Greeno,
Sommerfeld & Weibe (2000) and Hall (2000) analyse inci-
dents from the same curriculum intervention from other points
of view, in this volume.

We observe both learning successes and failures that cannot be
understood without understanding the seams joining the repre-
sentation systems involved, and the inference rules and oper-
ations required to get from one to another. One conclusion is
that even apparently homogeneous natural language has to be
seen as heterogeneous in its fully contextualised application.

Introduction
The coordination of multiple representation systems is fre-
quently instrumental in conceptual learning (see e.g. van
Someren et al. 1999; Barwise & Etchemendy 1994; Stenning,
Cox & Oberlander 1995). In particular, learning mathematics
and science concepts involves learning to coordinate multiple
formalisms (numerical, graphical, algebraic, terminological),
but it also involves learning how to apply formalisms in con-
texts. It is all too possible for students to succeed at the first
and to fail at the second—to learn the internal operation of
some formalism without learning how to apply it to new prob-
lems. Barwise and Etchemendy have used the term ‘hetero-
geneous reasoning’ for reasoning using multiple coordinated
representations, and have applied heterogeneity of represen-
tation in order to improve students’ grasp of the application
of formalisms in computer environments such as Hyperproof.
Another related curriculum response to this problem of teach-
ing the application of formalisms to real world problems has
been a move toward project-based approaches which teach
formalisms in close relation to their context of application—
in particular teaching scientific concepts along with the math-
ematics that goes with them.

The purpose of this paper is to use some example episodes
from project-based group learning to illustrate how the con-
cepts of heterogeneous reasoning present themselves in the
classroom setting in less formal contexts than Hyperproof.
This investigation underscores how local the semantic in-
terpretation of representations is in context. Words change
meaning frequently and systematically, and the information
they carry is moved into and out of other representations.
The investigation also provokes examination of the relation
between heterogeneity and localness of interpretation (e.g.
Moravscik 1998). With diagrams, it is usually quite evident
to users that the diagram has a local interpretation and that
the naive user needs to learn this local interpretation, even
though there are regular features of such diagrammatic sys-
tems from use to use. With natural language, we are often so
practiced at making the contextual interpretation of its local
semantics that it is easy to fail to realise that this is what we
do. Examining learning discourse in context raises the ques-
tion whether heterogeneity should also be extended to cases
where the linguistic part of the discourse has to be treated as
multiply interpreted.

Our longer term aim is to coordinate this approach with
others which focus on discourse practices and students’ re-
cruitment of material from their diverse experiential worlds.
Greeno, Sommerfeld & Weibe (2000) and Hall (2000) take
these respective perspectives on material from the same group
learning curriculum intervention. The advantage of pursuing
several parallel analyses of the same data for cognitive theory
may share something with the advantages of the project-based
approach for the students. Applying several kinds of the the-
ory to the same episodes turns up new questions about how
the theories relate to each other, and thus may induce con-
ceptual learning and improved ability to apply the theories in
novel circumstances.

Heterogeneous reasoning

Theories of human reasoning have begun to pay more att-
tention to how representational systems are selected or con-
structed, and the variety of systems that may be used in solv-
ing a single problem, rather than conceiving of reasoning as a
system internal activity. Barwise & Etchemendy have called
this use of multiple coupled systems of representationhet-
erogeneousreasoning, and have developed several computer
environments for teaching heterogeneous reasoning. For ex-
ample, Hyperproof presents a graphical window containing
diagrams of a blocks-world inhabited by regular solids on a
chequerboard, and a sentential window containing first order



logic sentences. The proof rules of the heterogeneous sys-
tem incorporate the inference rules of the conventional sen-
tential calculus, augmented by rules for moving information
between diagram and sentences, in both directions. For ex-
ample, the user canobservea feature of the diagram as the
basis for inferring a sentence; or mayapplyinformation from
a sentence by inferring (and constructing) a new feature of
the diagram. Observeand apply are two (of about a half
dozen) of the heterogeneous inference rules which coordinate
the diagrammatic and sentential representations into a hetero-
geneous system.

Fundamental semantic distinctions between how diagram-
matic and sentential representation systems express abstrac-
tion have been shown to play an essential part in analysing
the learning that occurs as students master the construction of
proofs in Hyperproof’s heterogeneous environment, allowing
the learning to be characterised as learning strategies of repre-
sentation selection and use (Stenning, et al. 1999). Whether
students benefit from the diagrammatic facilities of Hyper-
proof is determined to a great extent by their facility at grasp-
ing useful strategies for using Hyperproof’s expressions of
graphical abstraction.

Hyperproof reveals an important property of representa-
tional systems in use. Its semantics, both of its sentences
and its diagrams arepartially interpreted. That is, the sys-
tem has some of its meaning fixed while other parts are de-
fined in episodes of reasoning. This constrasts with the usual
presentation of first order logic as an entirely uninterpreted
language. In Hyperproof, even the sentences of the first order
calculus have to be given a partial local interpretation because
the predicates and relations have to coincide with those of the
diagrams.

Partly diagrammatic systems of representation like Hyper-
proof reveal the need for coordinating diagrammatic and sen-
tential representation systems, but lead to the further reali-
sation that in situations of real language use, the apparently
homogeneous languages in play are in fact often heteroge-
neous in the fundamental sense that many schemes of inter-
pretation are in play at once. Even when natural language is
the only modality, the reasoning systems in operation must
be thought of as heterogeneous because the apparently single
language can only be understood in terms of overlapping lan-
guage fragments, each constituting a distinct system of repre-
sentation.

To illustrate this point, this paper takes some classroom in-
teractions of a group of students learning to model biological
populations in terms of mathematical functions, and analy-
ses the multiple partially interpreted representation systems
which are in play. The students’ representational resources
and activities include at least the following: worksheet fill-
ing, graph drawing, computer operation, calculator use, group
speech and gesture, reference material, and teacher interven-
tions.

The educational issue in focus is the learning about mod-
elling, and particularly learning about the process of formal-
isation and interpretation. A recurring theme is the strug-
gle to coordinate formalism internal operations (calculation)
and formalism external correspondences (semantics). We will
analyse both successes and failures of coordination.

The educational setting
The data we analyzed comes from an 8th grade Middle-
school Mathematics through Applications (MMAP) class-
room in the San Francisco Bay Area. The purpose of MMAP
is to have students use math to address real-world problems,
often with the assistance of computer applications. In the ap-
proximately 30 day unit we will discuss, called Guppies, stu-
dents created mathematical models of biological population
growth. As part of this unit students were to learn both about
how to construct mathematical models of population growth
and about the exponential functions that underlie them. Our
analyses focus on a group of students, Manuel, Lisa, Kera
& Nick whose improvement on pre/post assessments placed
them about midway in learning of the half a dozen focus
groups videotaped by Rogers Hall and his colleagues (Hall,
1999) during this unit in a variety of classrooms. These stu-
dents are chosen to reflect roughly average performance for
the class. For more information about the design of the study,
please see Hall (2000, this volume).

Three learning incidents
The three following incidents were chosen from videotapes
because they illustrate both successful and problematic learn-
ing episodes. The initial incident from the pre-test phase sees
the students make at least part of one of the fundamental con-
ceptual discoveries of this field—that population models have
a recursive characteristic that leads to exponential growth if
unchecked—Malthus’ equation.

The second incident, from the body of the course, is of
interest because it contains an attempt to creatively diverge
from the structure of the assigned worksheet by taking a short
cut in the calculation. On the one hand this divergence reveals
the germ of another important insight—that functions can be
composed. But in the circumstances, the insight is not fully
worked out and leads to error and confusion.

The third incident is chosen to illustrate that the confusion
that is not resolved in the previous incident appears to persist
into the much later post-test phase of the course. It consists of
another attempt to calculate a birthrate for a new modelling
problem.

In all of these incidents, the students struggle to coordinate
multiple representations. We examine some of the coordina-
tions in detail seeking to reveal how some episodes are suc-
cessful and others not. For this short paper, the transcriptions
are compressed by leaving out material which does not relate
to our analysis.

Pre-test insight—‘babies have babies’
When the group discovers the recursive nature of population
growth, they are engaged in constructing a model of a mouse
population. They have obtained an initial number of 20 adults
from the worksheet, and estimated a birthrate of four per cou-
ple. They are now calculating what the population will be
after eight breeding seasons. The group initially adopt a lin-
ear model implicit in multiplication of a fixed birthrate. Only
when they turn to the graphing activity dictated by the work-
sheet do they begin to think of the process which the calcula-
tion is intended to reflect.

60: M. so there’s ... equals 40 babies each season
65: M. it’s three hundered and twenty



66: K. (inaudible) is that including adults?
67: M. no, three hundered and twenty plus twenty
69: M. by the end of the winter
70: M. three hundered and forty mouse ...mice ... mices.
OK.
73: M. Now we need to make a graph of it
. . .
182: M. so let’s see ... the first season is over here
(making a mark on the graph)
183: L. xxxxxx wait a minute
186: M. and then sixty plus is going to be a hundered
189: L. wait a minute its forty (gestures a triangular
shape) OK its forty right?
190: L. and then you have to pair those up (brings hands
together) and then they have kids (spreads hands apart,
while K and M look at her confused)
192: M. oh yeaaah (embarrassed, laughing at himself)
we were doing it ...
194: L. That’s a lot of mice
195: K. gosh that’s a lot of nasty mice

The interchange on lines 65/66 is an example of the fre-
quent need to coordinate numbers with their semantics—
adults still have to be included in the population, and “three
hundered and twenty” is the number of babies in eight sea-
sons just calculated. Similarly line 69 is a further reiteration
of the semantics of the number “three hundered and twenty
plus twenty”—the number represents a population at a time.
Line 73 is an appeal to the authority of the worksheet for what
has to be done next. What is interesting about this introduc-
tion of a new representation (the graph) is that it appears to be
what triggers the new thinking that reveals the error (adopting
the linear model) that they have all made. M. makes a mark
of sixty on the Y axis at the origin representing the starting
population. But L has realised that something is wrong (line
183). M continues calculating the next graph point. But L
persists. She starts by reiterating the number and asking for
acknowledgement of it (line 189). The number is the number
of first season babies. She then states that these have to be
paired up, and themselves reproduce (line 190). The gesture
is intuitively an important part of her communication that she
has a new insight, both for herself and for the group. M fairly
rapidly sees their mistake too. They all realise that this is go-
ing to make the growth of the population much more rapid
though they don’t have any number for it. They immediately
refer back to the experiential world of ‘nasty mice’. Perhaps
the reality of reproduction lies behind the affective tone of the
incident. It wasn’t just a mathematical mistake, but a failure
to apply the ‘facts of life’?

The original adoption of the linear model arises within the
‘mathematical world’. It is, in some sense, the obvious calcu-
lation to do—forty babies a season for eight seasons is going
to give 320 babies. After all, multiplication is something we
learn so as to avoid having to do multiple additions. It is not
until the graphing acitivity makes them break this calculation
down into a series of calculations that L sees the error. She
thinks about what happens in the world of mice—about the
semantics. Her insight is adopted rather rapidly.

An attempt at creative construction—‘discovering
function composition’

When the group brushes up against function composition,
they are constructing one of their early models of a popu-
lation. They have a worksheet entitledBuilding the Birthrate
which gives them a procedure for calculating, or recording
from reference sources, the various parameters of the situa-
tion (brood size for different ages, birthrate, survival rate).
Parts of this worksheet and the computer interface are con-
densed into Figure 1.

The worksheet has its own sequence of activities, though
it should be noted that this is not the sequence in which this
group performs them. The worksheet’s (see Figure 1) first ta-
ble implements the calculation of the total population births in
a season from data from reference sources. At Step 2 the per-
centagesurvival rateis entered from a reference source and,
at Step 3, applied to the total from the table to give a number
surviving. The lines represent page breaks in the work book-
let. Step 4 then converts the total surviving fry into a percent
birthrate for the computer. The relevant part of the interface
appears next. The bottom table of the figure (over the page on
the worksheet) keeps track of the model, and will hold several
trial models later on.

The group’s sequence of work is actually to start by fulfill-
ing steps 1, 2 and 3, followed by entering the result into the
computer and recording the model. Step 4 is circumvented
initially and is only filled in retrospectively the next day.

The incident opens with M proposing to take a shortcut in
the calculation. This is at first taken by L to be a mistake.
She requests an explanation and receives one that she finds
satisfying. However, she appears to appreciate that there is
consequent bookkeeping which needs to be taken care of, but
fails to deflect the group from continuing to the entry of data
into the computer model.

444: M. hey wait wait wait ... no but listen. If 4% of
the frys survive why don’t we just forget about the fry
survival and just put that amount for the, for how much
are born ...
445: L. because the number born are not how much
survived
446: M. yes. yes, the ones who survive are the ones
we count, not the ones who are dead because we don’t
make room for the ones that are dead
453: M. OK you know how 4% the whoooole fry who
were born survive so why don’t we just put 4% on the
guppies birth because that’s how many are going to
survive
454: L. I get what you’re saying because why put
however many more guppies in when they’re just going
to die anyway?
455: K. so why not just put 4% because that’s how
many are surviving/ that’s how many we’re going to
count
497: L. but what’s that 4% ?
498: K. the ones that survive
499: M. The ones that actually survive fryhood
501: L. Yeah, I know, but how many of the guppies are
4% ?
502: M. we don’t know, we’ll let that mechanical thing



Building the Birthrate

Step 1

age # males # females # fry total
young 2 1 4 4
mature 4 2 50 100
old 0 1 0 0
total 6 4 104

Step 2What percent of fry born survive? What happens to
the ones who don’t make it?
5% of fry survive. They are eaten

Step 3Use this survival percent and the total number born to
calculate the number that survive.
5.16

Step 4So what’s the birthrate? Now that you have calculated
an assumed number of fry that survive past birth, you need to
convert this into something that Habitech can use as a birth
rate. As you know, Habitech works with percents or constant
numbers. You will be using a percent birth rate.

complete the equivalent
fration to get the per 
cent birth rate

put the total number
of males and females
from the 1st two columns

this is 100 because we 
are converting to per cent

5.16
=

10 100

X

Put the total number of 

birth here
fry that survive after

BASED ON YOUR ASSUMPTIONS YOUR BIRTHRATE
IS 4%
Congratulations! Now take this birth rate and the death rate
you will use and head to Habitech to make your model.
Remember this birth rate is based on certain assumptions. If
you change an assumption, it will affect your model.

Step 5Entering numbers into the Habitech interface:

YearlySeasonal
Guppy Deaths
How often?

Guppy Births

How often? 

Birth rate as %

+ -

Guppies
= 10 4Death rate as %4

Recording of Models
Initial # Birth rate % Death rate % Years Descr.
10 4% 4% 2 year < 13

Figure 1: Parts of the worksheet and computer interface. The
numbers in the tables, equation and the italicised answers
were entered by the students

work and tell us

At 444, M opens with a proposal to collapse two stages of
calculation into one. In fact, this proposal is perhaps some-
thing akin to what is embodied implicitly in the worksheet,
and is potentially a creative proposal embodying a concept
rather close to one of the core aims of this curriculum—the
understanding of mathematical functions. M is proposing to
compose two functions into a single function taking the argu-
ment of the first and the value of the last. L objects to this
proposal and justifies her objection by pointing out that ‘the
number born are not how much survived’. In fact we will
see that in the terminology of the worksheet, the number of
fry surviving expressed as a percentage of the whole popu-
lation is the birthrate, which plays its part in this confusion.
M appears to understand the objection and explains his pro-
posal’s departure from the worksheet with some success. L
accepts the sense of the innovation even though she expresses
reservations about its coordination with the worksheet. The
activity is turned over to the superior calculating powers of
‘that mechanical thing’—the computer program Habitech.

Unfortunately, the ”mechanical thing” does not understand
the creative proposal—L’s reservations are well motivated,
but, lacking a clear understanding herself, her intervention
does not deflect the group (see Greeno, Sommerfeld & Weibe
(2000) for further analysis). There are numerous problems
of coordination between the representations in Figure 1. The
survival rate of 5% at Step 2 gets copied into the model table
as 4% (possibly a memory error, or a correction later). But
the serious error is in shortcutting the calculation at Step 4
and entering the 4% rate directly into the birthrate box at the
end. The algebraic ratio part at Step 4 is returned to only later
next day when trying to comply with having the whole thing
filled in.

What has gone wrong as the group struggles with the wel-
ter of representations and numbers? It is hard to give a crisp
interpretation of a murky confusion, but we can suggest some
of the contributing factors. An important source may be a
divergence of the ordering of biological events and the cal-
culation events that refer to them; another is the terminology.
In the fish world, fry are born, and then the vast majority are
eaten, and then at the end of the season they are counted. In
the calculation world, first the number of births are calcu-
lated; then a survival rate is applied; and a census number of
surviving fry results. So far so good. But turning the page
after Step 3, and after recording model parameters on the
next page, the students arrive at a further calculation of the
‘birthrate’, where ‘birthrate’ now means ‘birth-and-survival-
to-year’s-end rate’.

So, at Step 1, the birthrate is a set of numbers representing
the brood size of the average guppy at different ages (namely
the numerals 4, 50, 0); at Step 2, the birthrate is the number
(namely the numeral 104) of fry born to the whole popula-
tion. In steps 3 and 4birthrate is the birth and survival to end
of season rate expressed as a percentage of the whole popula-
tion (namely the numeral 4). The same idea, a very tangible
idea, is represented each time by a number, but each time the
number counts different kinds of thing, and complex calcula-
tions constitute the inference rules which ‘move the number
from box to box’.



Unfortunately, M’s insight that two functions can be com-
posed requires attendant housekeeping to keep the ontology
straight. Perhaps a contributing factor is that because the pre-
survival birthrate in Step 1 is never put into the form of a
percentage (1040%), M does not appreciate that, after Step
3, it already has been implicitly composed with the survival
rate, and the calculation at Step 4 is intended only to get back
to a percentage form. The terminology unfortunately exacer-
bates this problem of ‘backward causality’—first calculating
a survival rate (using births) and then calculating a birthrate
from that figure.

Post-test—the persistence of a confusion
We now present an incident from the post-test in which the
group displays evidence that the episode of confusion just de-
scribed has not been fully resolved. Although in the interven-
ing couple of weeks the group has made good progress in un-
derstanding population models, as is illustrated in Hall (sub-
mitted to this volume), it is of some concern that the partic-
ular confusions surrounding the derivation of birthrate from
raw data appear to persist.

The group is working on the post-test problem of construct-
ing a model for a mouse population preyed on by cats. This
episode is from fairly early on when they are settling on a
birth rate for mice and have not yet considered predation:

76: M. four, five or six? per adult?
77: K. If we’re going to go four, five or six, let’s go four.
78: L. actually lets use five. Its four through six. Let’s
use five.
82: M. OK how do we find out the birthrate? (grabs a
piece of paper) We do the ... five is what we decided on.
How many did we start out with (looks at the computer)
83: L. Twenty
86: M. I’m not sure that this is right (as he writes
5=20 = X=10
87: M. What’s 500 divided by twenty?
88: L. What are you doing?
89: M. Finding out the birth rate
90: L. Oh yeah.
91: M. What’s 500 divided by 20? (K hands him the
calculator and M starts punching in numbers)
92: M. 25% I could have figured that out myself (K
laughs; M goes back to the computer) 25% right? (enters
it into the birthrate) and how many die?

Segment 82 illustrates the pervasive struggle with the se-
mantics of numbers. M accepts that they will use 5 (babies
per litter per season) which one might thinkis a birthrate, but
in this context, ‘birthrate’ is a specific number that can be en-
tered into certain boxes on worksheet and computer screen.
The birthrate, in this sense, they correctly appreciate they do
not have, and this is precisely where they had problems be-
fore. The number they seek is a percentage. At 87, M has
implicitly multiplied the 5 by 100 and is now explicitly going
about dividing by twenty (the number in the initial popula-
tion). L not surprisingly doesn’t understand where the 500
came from and asks for clarification, but receives only the de-
scription at the completely unhelpful level “finding out the
birthrate”. The problem is then accepted as a calculation
problem, and the semantics is left unaccessed. Why should

the number of babies in one litter divided by the total number
adults in the population multiplied by 100 yield a percentage
birthrate? The answer would appear to be that the based on
some dim memory of a ratio formula (Step 4, Figure 1).

The group is content to continue to the next stage of the
problem and does not question the reasonableness of the fig-
ure of 25%. This is testimony to the insulation of the num-
bers from what they mean. If each couple has 5 babies, the
actual number is 250%. But the group do not discuss find-
ing this number or acknowledge that adults have to be paired
up. The group does not even apply the qualitative reason-
ing that since the parents are outnumbered by their babies,
the birthrate must be more than 100%. Such qualitative infer-
ences are only available if the numbers are treated as standing
for something other than themselves—numbers. Even when
the model actually turns out to extinguish the mice in short
order, the problem is not traced to the low birthrate. It is
all too easy for a problem to hide in a complex model. The
whole point of models is that many parameters contribute to
their outcome. But this means that there are many possible
culprits when the outcome is unacceptable.

Discussion
Nothing by way of inferences about the causalities or even
correlations between the kinds of events observed here can
emerge from an analysis of these few isolated examples. Nor
is redesign of a curriculum usefully based on analyses of sin-
gle incidents. It is clear from other studies of this curriculum
that it is highly effective. Indeed, this very group of students
shows a considerable mastery of modelling at the post-test
phase. The group repeatedly alters parameters of complex
models (including not just birth and survival rates but also
predation) in the qualitatively correct direction in response to
over- or under-shooting of the desired population outcome.

But we believe that these analyses do make clear just what
a sea of semantic complexities the group swims in. They are
awash with numbers, and those numbers have to travel from
one representational system to another to achieve the prob-
lem solving task at hand. As they travel, they change their
meanings and their names, and their values. Birthrate is rarely
the same thing on two occurrences. The whole system can-
not be understood as anything other than heterogeneous, and
the interpretations as anything other than highly local. If we
were to go through the transcript spelling out after each occur-
rence of a numeral, the type of the entities it enumerates, we
would wind up with some splendid and totally incomprehen-
sible sentences. Nor are numerals the only problem. Simply
spelling everything out isnot to be recommended other than
as a way of exposing complexity. But we cannot understand
the students’ problems until this complexity is exposed.

From a theoretical perspective, this may seem either banal
or outrageous. Once we are fluent at the skills of transforma-
tion required for coordinating the sub-systems of represen-
tation, the whole system appears to take on a transparency
and homogeneity which is completely illusory. We cease to
notice how the very same number means something quite dif-
ferent from occurrence to occurrence, as do many of the other
words. We therefore can either forget that the system is het-
erogeneous (and respond with outrage to the claim), or we
can, as theoreticians, claim that there is nothing deep in the



coordinations that are required (and respond with a yawn).
The students do not have the luxury of mastery. For ex-

ample, one of the banal consequences of the instability of
the meanings of the numerals is that there is a huge mem-
ory load as evidenced in the repeated mis-recalls of numbers
from sheet to sheet of their workings. We do not believe that
there is any way out of the heterogeneity. Learning mastery of
the coordination of representation systems is a requirement of
learning mathematics and science (and probably most other
things). But what we can strive to do is to educate both teach-
ers and students into the quirks of the representational furni-
ture they find themselves surrounded by.

Our research experience in classrooms indicates that teach-
ers are rather wary of taking an explicitly metalinguistic
stance. They do not often point out the dangers of shifts in
meaning of words during an argument. The critical thinking
lecturer warns students about equivocation—the same term
being used with different meanings in different ocurrences in
an argument—but only at college. Prevarication is treated as
a fallacy, usually assumed to be eradicable, and therefore is
perhaps thought to be eliminable from well-kept classrooms.
Our analysis in terms of heterogeneity and localness of in-
terpretation strongly suggests that prevarication is not elim-
inable. We cannot use unique terms for every meaning, and
should not if we could. The use of the same term is often es-
sential to anchor the term to the shared concept as the details
shift through its various guises. Perhaps signalling when this
is likely to be a problem would help? And perhaps teaching
teachers to detect the seams that have become transparent for
them between systems is an important aim?

But these observations from the classroom are just as im-
portant for theories of the semantics of representations. The
conventional response to the kind of observations of language
we have made here is that everyone knows that natural lan-
guage is ambiguous. It is easy to acknowledge heterogeneity
if a system contains language and diagrams—here the het-
erogeneity is on the surface. But the idea that natural lan-
guage consists of many heterogeneous sub-systems is gen-
erally resisted, and explained away as polysemy at the lex-
ical level. There are at least two problems with this expla-
nation. The number of polysemous readings required is es-
sentially infinite, and the meaning of one word is systemati-
cally related to that of others. Words in these discourses do
not function atomistically—they are part of subsystems. If
‘birthrate’ is construed one way, then its contrasting terms
such as ‘deathrate’ and ‘survivalrate’ will also be construed
in related ways—at least until there is a shift to a different
subsystem. Recently, (e.g., Moravscik, 1998) theories of lex-
ical meaning have paid more attention to the considerable dis-
tance between the generalities of the lexicon and the details
of contextualised language use. These stratified theories are
much more conducive to understanding real language use and
the heterogeneous nature of most reasoning.

In learning to get from a real world problem into a formal-
ism, and back out from the formal results of calculation to an
implication about the real world, students must cross many
experiential worlds and, when working in groups, negotiate
complex patterns of authority for knowledge which determine
what the group actually does. In these tapes, we again and
again see transitions between the world of numbers and the

world of fish and mice. At one point the discourse is entirely
numerical and insulated from the real world consequences, as
witnessed by the acceptance of completely implausible val-
ues. At others, there is a sudden jumping out of the mathe-
matical world to references to the death of a pet fish, or gee,
that’s a lot of nasty meeces! Although formalisms distance
proceedings from affective states, when we reason about the
world, our reasoning should still be animated by affect. We
will not understand conceptual learning until we can give an
account of how representations, the social arrangements for
authority in discourse, and our experiental worlds are all co-
ordinated.
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