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Benefits and Pitfalls of Secondary Antibodies: Why
Choosing the Right Secondary Is of Primary Importance
Colleen F. Manning1, Angeliki M. Bundros1, James S. Trimmer1,2*

1 Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America, 2 Department of Physiology and

Membrane Biology, University of California Davis, Davis, California, United States of America

Abstract

Simultaneous labeling of multiple targets in a single sample, or multiplexing, is a powerful approach to directly compare the
amount, localization and/or molecular properties of different targets in the same sample. Here we highlight the robust
reliability of the simultaneous use of multiple mouse monoclonal antibodies (mAbs) of different immunoglobulin G (IgG)
subclasses in a wide variety of multiplexing applications employing anti-mouse IgG subclass-specific secondary antibodies
(2uAbs). We also describe the unexpected finding that IgG subclass-specific 2uAbs are superior to general anti-mouse IgG
2uAbs in every tested application in which mouse mAbs were used. This was due to a detection bias of general anti-mouse
IgG-specific 2uAbs against mAbs of the most common mouse IgG subclass, IgG1, and to a lesser extent IgG2b mAbs. Thus,
when using any of numerous mouse mAbs available through commercial and non-profit sources, for cleaner and more
robust results each mAb should be detected with its respective IgG subclass-specific 2uAb and not a general anti-mouse
IgG-specific 2uAb.
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Introduction

Immunolabeling of target antigens on immunoblots, in tissue

sections, in cultured cells, and in preparations bound to multiwell

plates, is critical to many areas of basic and clinical research, as

well as clinical laboratory science. The utility, quality, and

reliability of these diagnostic techniques depend on optimizing

every aspect of the procedure, including the characteristics of the

sample, the effective application of rigorous techniques of sample

preparation, and the labeling procedure itself [1,2]. It is generally

recognized that adhering to the highest standards in the choice of

primary antibody (1uAb) employed in these procedures has a

major impact on the quality of immunolabeling, and on the

reliability of the information obtained [3–6]. In most cases the

1uAb itself is not labeled, such that detection of the bound 1uAb

requires a labeled secondary Ab (2uAb). As such, the quality and

reliability of the wide variety of commercially available 2uAbs is

also important for Ab-based labeling applications. However, for

the most part the impact of a 2uAb choice on an experimental

outcome is rarely considered or evaluated to the same extent as the

choice of 1uAb.

Mammalian immune systems make a wide variety of immuno-

globulin (Ig) molecules that differ not only in their target

specificity, as defined by the hypervariable regions of their heavy

and light (H+L) chains, but also by their in vivo functionalities as

defined by their heavy chain constant regions. Many but not all

mammals generate different subclasses of IgG, the predominant Ig

class in the adaptive immune response. Humans, mice, and rats

have multiple IgG subclasses, whereas rabbits have only a single

class of IgG [7]. Broad specificity 2uAbs (e.g., recognizing all IgG

H+L chains), as well as those that have been purified to have

specificity for a single IgG subclass (e.g., anti-mouse IgG1, IgG2a,

or IgG2b) are readily available for the standard host species used

for generating 1uAbs. Most laboratories prefer to use general anti-

IgG 2uAbs, given their broad utility for detecting any IgG 1uAb

raised in that species.

Simultaneous detection of multiple targets in a single sample

reduces many problems associated with sample heterogeneity.

This is particularly relevant in immunohistochemistry, where

labeling in adjacent sections is an imprecise way to demonstrate

antigen colocalization. Valid colocalization of multiple targets in a

single sample by light microscopy typically requires simultaneous

multiplex immunofluorescence labeling with 1uAbs specific for the

individual targets. The most common application of this technique

is to apply 1uAbs raised in different species, followed by species-

specific anti-IgG 2uAbs labeled with different fluorescent dyes.

This approach, however, requires the availability of validated

1uAbs raised in distinct species. As the most commonly available

1uAbs are raised in rabbits (for polyclonal Abs or pAbs) and mice

(for mAbs), simultaneous multiplex labeling using an approach

employing Abs raised in different species is often restricted to two

targets. While there exist more complicated serial and/or

amplification labeling steps that allow for the sequential use of

two or more 1uAbs from the same species [8,9], the application of

these approaches has been limited by their complexity and length,

and the extreme care that must be taken to avoid cross-labeling of

different 1uAbs with the same 2uAb. All mouse IgG mAbs exist as

a single IgG subclass (typically IgG1, IgG2a or IgG2b). The ability

to reliably detect mouse mAbs of different IgG subclasses adds
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great utility to multiplexing applications, given the enhanced

flexibility of combining mouse mAbs of different IgG subclasses

from the large catalog of mouse mAbs in current use in basic and

clinical diagnostic applications.

Here we demonstrate the advantages of using anti-mouse IgG

subclass-specific (SCS) 2uAbs for robust and reliable multiplex

labeling of target proteins in a variety of applications, including

immunoblots, immunohisto- and immunocyto-chemistry, and

microplate binding assays. We also present unexpected results

demonstrating that general anti-mouse IgG H+L (HL) 2uAbs

display a prominent detection bias against mAbs of the IgG1

subclass and that this bias compromises mouse mAb labeling in

multiple procedures. That this bias exists, and can be simply

overcome by using SCS 2uAbs, is an important finding that should

have a broad impact in enhancing the usefulness of the large

catalog of available mouse mAbs, and those being generated in

large-scale government-funded efforts that have recently been

initiated in the US (e.g., Protein Capture Resource, NeuroMab),

Europe (e.g., Affinomics) and elsewhere (e.g., Renewable Protein

Binder Working Group [10]). Note that for simplicity we will

hereafter use the term ‘‘mAb’’ to refer to those made in mouse,

unless specifically stated otherwise.

Results

SCS 2uAbs allow for robust and reliable multiplex
immunofluorescence labeling of immunoblots

Visualization of multiple targets on a single immunoblot is

important for comparing the expression levels and molecular

characteristics of target proteins, while avoiding problems

associated with the heterogeneity inherent in comparing separate

immunoblots, and the damage to the sample that can result from

serially stripping and reprobing single immunoblots. Simultaneous

multiplex labeling of immunoblots is generally performed using

1uAbs generated in different species and species-specific 2uAbs.

We tested whether simultaneous multiplex labeling of different

targets on immunoblots could be reliably obtained by employing

multiple mAbs and SCS 2uAbs. We tested the specificity and

reliability of labeling of three different mAbs of different IgG

subclasses, recognizing three different brain proteins against a

single immunoblot containing samples of a crude rat brain

membrane preparation (RBM), and samples prepared from

heterologous cells singly expressing each recombinant cognate

antigen, or cells transfected with empty plasmid. As shown in

Figure 1A, robust specific labeling for each of the individual target

proteins was obtained, with little or no detectable crosstalk

between signals. The leftmost immunoblot panel shows the single

immunoblot imaged to reveal simultaneous labeling of all three

mAbs as specifically detected with the three corresponding

fluorescently labeled SCS 2uAbs. The subsequent panels to the

right show images corresponding to the individual fluorescence

channels. In each case the mAbs label the distinct bands in RBM,

and a band in heterologous cells expressing the cognate

recombinant target, but do not exhibit a detectable signal in

heterologous cells expressing alternate targets or transfected with

empty expression plasmid. The anti-PSD-95 mouse mAb (IgG2a

mAb K28/43 in blue) labels the distinct bands of PSD-95 in RBM,

and a band in heterologous cells expressing recombinant PSD-95,

but does not exhibit a detectable signal in heterologous cells

expressing the Kv1.2 or Kv2.1 voltage-gated potassium channels.

Similarly, a mouse mAb against Kv1.2 (IgG2b mAb K14/16 in

red) shows robust labeling of Kv1.2 in RBM, and in the sample

from heterologous cells expressing Kv1.2, but exhibits no signal in

samples from heterologous cells expressing the PSD-95 or Kv2.1.

Note that the Kv1.2 pool in brain has a distinct electrophoretic

mobility on SDS gels due to N-linked glycosylation [11] and

phosphorylation [12]. Similarly, an anti-Kv2.1 mouse mAb (IgG1

mAb K89/34 in green) only labels the Kv2.1 pool in RBM, and

the sample from heterologous cells expressing recombinant Kv2.1.

Note that Kv2.1 has a microheterogeneous electrophoretic

mobility on SDS gels due to extensive multisite phosphorylation

[13], the pattern of which is distinct from that on Kv2.1 in the

heterologous cell sample [14]. No signal was detected for any of

the mouse mAb 1uAbs or 2uAbs in the sample prepared from cells

transfected with empty expression plasmid. These results demon-

strate the effectiveness and specificity of multiplex labeling of

immunoblots using simultaneous application of three different

mAbs and their subsequent detection using SCS 2uAbs.

Figure 1. SCS 26Abs yield robust and reliable simultaneous
triple labeling with three mAbs on immunoblots and in rat
brain sections. (A) A single immunoblot containing samples of crude
rat brain membranes (RBM, 50 mg protein) and extracts of transfected
COS-1 cells expressing individual target proteins, or from control cells
transfected with an empty plasmid, probed with anti-PSD-95 (IgG2a,
blue), anti-Kv1.2 (IgG2b, red) and anti-Kv2.1 (IgG1, green), and SCS
2uAbs. Multicolor panel is original immunoblot; single color panels are
images of separated colors. Lane to left shows molecular weight
standards in kDa. Note differential post-translational modification of
target proteins in brain versus heterologous cells alters their relative
electrophoretic mobility. B–E. Images show specific and non-overlap-
ping labeling for (B) Kv4.2 (green), (C) QKI (red), (D) and BK channels
(blue), and (E) merge of all three, in a rat brain section, showing the
region containing the entire cerebellum. Inset in E shows boxed area of
cerebellar cortex. Labels mark the molecular layer (ML), Purkinje cell
layer (PCL), and granule cell layer (GCL). Scale bar on Panel E = 500 mm.
doi:10.1371/journal.pone.0038313.g001
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SCS 2uAbs enable robust and reliable multiplex
immunofluorescence labeling of rat and mouse tissue
sections using multiple mAbs

We next tested the utility and reliability of mAbs for

simultaneous multiplex immunofluorescence labeling of rat brain

tissue. As shown in Figure 1B–E, distinct non-overlapping patterns

of labeling were obtained when we performed simultaneous triple

labeling with three mAbs and SCS 2uAbs in rat cerebellum, in this

case for the Kv4.2 voltage-gated potassium channel (IgG1, panel

B, green in panel E) in the granule cell layer (GCL), the Quaking

RNA binding protein QKI (IgG2b, panel C, red in panel E) in

oligodendrocytes throughout the Purkinje cell layer (PCL) and

cerebellar white matter, and the large-conductance calcium and

voltage-sensitive potassium or BK channel (IgG2a, panel D, blue

in panel E) in basket cell terminals and in Purkinje cells located in

the PCL, as well as diffuse labeling in the molecular layer (ML).

These patterns are consistent with previously published reports of

the localization of these proteins in cerebellum [15–18].

We next determined whether such reliable simultaneous

multiplex labeling using multiple mAbs could be generalized to

a variety of mAbs against different targets, and across different rat

brain regions, cell types and subcellular domains. In Figure 2A,

distinct and non-overlapping labeling of three axonal proteins

associated with distinct domains at the node of Ranvier in

hindbrain white matter was obtained: Ankyrin-G (green) in the

node of Ranvier itself, Caspr/Paranodin (red) in the paranodal

domain, and Kv1.2 (blue) in the juxtaparanode. In cerebellum

(Figure 2B) specific labeling of the BK channel (green) in the

somata, dendrites and axons of Purkinje neurons, and in basket

cell terminal pinceau, the glial fibrillary acidic protein or GFAP

(red) in glial cell processes throughout the granule cell layer, and

Kv1.2 (blue) in basket cell terminal pinceau was observed. In the

hippocampal dentate gyrus (Figure 2C), labeling for Kv2.1 (red)

localizes in the cell bodies and proximal dendrites of dentate

granule cells and interneurons scattered throughout the molecular

layer and hilus, for Ankyrin-G (green) to the axon initial segments

of these cells, and scattered nodes of Ranvier, and for Kv1.2 (blue)

to medial perforant path axons and nerve terminals in the middle

molecular layer (MML) of the dentate gyrus, and in scattered

juxtaparanodes. Similarly, reliable and specific labeling of

Ankyrin-G (red) in axon initial segments of dentate granule cells

and nodes of Ranvier, Caspr/Paranodin (green) in paranodal

domains of nodes of Ranvier, and Kv1.2 (blue) in medial perforant

path axons and nerve terminals in the MML was observed in

dentate gyrus (Figure 2D).

We also performed similar experiments on mouse brain

sections. Figure 2E demonstrates the reliable reproduction of the

labeling seen in rat brain in Figure 2A. Labeling of mouse

cerebellum (Figure 2F) yielded specific non-overlapping labeling of

Kv1.2 (green) in basket cell terminal pinceau, Ankyrin-G (red) in

axon initial segments of Purkinje cells and cerebellar granule cells

throughout the GCL, and GFAP (blue) in glial cell processes.

Specific non-overlapping labeling in mouse cerebral cortex

(Figure 2G) was observed for the KChIP1 Kv channel auxiliary

subunit (red) in the cell bodies and dendrites of cortical

interneurons, Ankyrin-G (green) in the axon initial segments of

cortical neurons, and scattered nodes of Ranvier, and Kv1.2 (blue)

in nerve terminals diffusely labeled throughout the cortex, and in

scattered juxtaparanodes. Reliable and specific labeling was also

obtained in mouse dentate gyrus (Figure 2H) using mAbs against

Kv2.1 (green) in the cell bodies and proximal dendrites of dentate

granule cells and interneurons scattered throughout the molecular

layer and hilus, Kv1.2 (red) in medial perforant path axons and

nerve terminals in the MML of the dentate gyrus, and in scattered

juxtaparanodes, and PSD95 (blue), with labeling in dendrites in

the inner molecular layer of the dentate gyrus and in the hilus.

These results provide compelling examples of the reliability and

specificity obtained when using mAbs of distinct IgG subclasses in

conjunction with SCS 2uAbs for simultaneous multiplex labeling of

different target proteins expressed in different cell types, subcel-

lular domains, and regions of rat and mouse brain tissue.

Figure 2. Simultaneous triple labeling with different combina-
tions of three mAbs in rat and mouse brain. Sections from rat (A–
D) and mouse (E–H) were simultaneously labeled with three different
mAbs, and SCS 2uAbs. (A) Ankyrin-G (green), Caspr/Paranodin (red), and
Kv1.2 (blue), in a region of rat hindbrain white matter with myelinated
axons containing nodes of Ranvier. (B) BK channel (green), GFAP (red),
and Kv1.2 (blue), in a region of rat cerebellar cortex. Labels mark the
molecular layer (ML), Purkinje cell layer (PCL), and granule cell layer
(GCL). (C) Ankyrin-G (green), Kv2.1 (red), and Kv1.2 (blue), in rat
hippocampal dentate gyrus. Labels mark the middle molecular layer
(MML), inner molecular layer (IML), granule cell layer (GCL), and hilus
(HI). (D) Caspr/Paranodin (green), Ankyrin-G (red), and Kv1.2 (blue), in
rat hippocampal dentate gyrus, labels are as in Panel C. (E) mAbs and
2uAbs as in A, but in mouse hindbrain white matter with myelinated
axons containing nodes of Ranvier. (F) Kv1.2 (green), Ankyrin-G (red),
and GFAP (blue), in a region of rat cerebellar cortex. Labels as in B. (G)
Ankyrin-G (green), KChIP1 (red), and Kv1.2 (blue), in mouse cerebral
cortex. (H) Kv2.1 (green), Kv1.2 (red), and PSD-95 (blue), in mouse
hippocampal dentate gyrus. Labels as in D. Scale bars: A, E, F = 10 mm;
B = 20 mm; C, D, G, H = 50 mm.
doi:10.1371/journal.pone.0038313.g002
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HL 2uAbs exhibit subclass-specific detection bias across
multiple 1u and 2uAb concentrations in a variety of
applications

Single label immunofluorescence detection of target proteins

with mouse IgG mAbs is typically performed using 2uAbs specific

for constant regions of HL chains, for example fluorescently-

labeled HL. To compare SCS 2uAbs to anti-HL 2uAbs for

immunodetection, we labeled rat brain sections with a single mAb

(in red), representing one of the predominant IgG subclasses:

IgG1, IgG2a, or IgG2b, together with a rabbit polyclonal Ab (in

green) as a control for section quality, Ab penetration, and

imaging consistency. As shown in Figure 3, the sections labeled

with the mAbs and the SCS 2uAbs (left column) yielded more

robust, reliable and specific labeling for the IgG1 and IgG2b mAbs

than those labeled with the HL 2uAbs at the same concentration

(right column). Similar results, with the HL 2uAb exhibiting a

strong detection bias against IgG1 mAbs, and to a lesser extent

IgG2b mAbs, were observed for numerous mAbs on rat brain

sections (data not shown).

We next tested whether the subclass-specific detection bias

observed for HL 2uAbs in immunofluorescence labeling of brain

sections was also apparent on immunoblots. Using the same 1uAbs

and samples used in Figure 1A, we simultaneously tested HL

(green) and a cocktail (1:1:1) of SCS (red) 2uAbs for relative

immunoreactivity against IgG1, IgG2a and IgG2b mAbs. As

shown in Figure 4A, the general HL 2uAb (in green) shows higher

reactivity against the IgG2a anti-PSD95 mAb, as shown by its

overall green tint, than for the IgG2b anti-Kv1.2 mAb (yellow tint)

and especially for the IgG1 anti-Kv2.1 mAb (red tint). Note that

single labeling experiments verified that the presence of the

different 2uAbs did not interfere with one another’s binding (data

not shown). Overall, these immunoblot results reveal a similar

profile of detection bias of the HL 2uAb for IgG2a.IgG2b.IgG1

mAbs as seen with the immunohistochemistry above.

To better quantify these differences and determine their

dependence on 1u Ab concentration, we next performed

fluorescence-linked immunosorbent assays (FLISAs) using mAbs

of different subclasses raised against the same target protein. As

shown in Figure 4B (left panel), these mAbs yield similar levels of

Figure 3. HL 26Abs show a bias for immunohistochemistry
labeling with mAbs of different IgG subclasses. Rat brain sections
were labeled with the same concentrations of a single mAb, and a
rabbit anti-Kv2.1 pAb, followed by detection with SCS (left column) or
HL (right column) 2uAbs, (red), and anti-rabbit IgG (green), each at 1 mg/
ml. Top row: anti-Kv4.2 IgG1; middle row: anti-BK channel IgG2a; and
bottom row: anti-Kv1.2 IgG2b. Each row was imaged at the same
exposure times. Scale bar = 50 mm for panels in top two rows, and
25 mm for panels in bottom row.
doi:10.1371/journal.pone.0038313.g003

Figure 4. HL 26Abs show a bias for mAbs of different IgG
subclasses in a variety of applications. (A) A single immunoblot
containing samples of crude rat brain membranes (RBM, 50 mg protein)
and extracts of transfected COS-1 cells expressing individual target
proteins, or from control cells transfected with an empty plasmid as
labeled, probed with anti-PSD-95 (IgG2a), anti-Kv1.2 (IgG2b) and anti-
Kv2.1 (IgG1) mAbs, and HL 2uAb (green), and a cocktail (1:1:1) of SCS
anti-IgG1, -IgG2a and -IgG2b 2uAbs (red). Multicolor panel is original
immunoblot; single color panels are images of separated colors.
Changes in tint reflect bias of HL for (more green) IgG2a.IgG2b.IgG1
(more red). Lane to left shows molecular weight standards in kDa. (B)
FLISAs show that IgG subclass bias of HL is present at all concentrations
of 1uAbs. Left panel: SCS 2uAbs (each at 1 mg/ml). Right panel: HL 2uAb.
Circles: L76/36 IgG2a; triangles; K14/16 IgG2b; squares: K14/39 IgG1. (C)
IgG subclass bias is also present in immunofluorescence labeling of
Kv1.2-expressing COS-1 cells. Cells were labeled with mAb as noted,
and HL 2uAb (red), and SCS 2uAbs (green) as detailed in Methods.
Changes in red:green tint reflect bias of HL for (more red)
IgG2a.IgG2b.IgG1 (more green). Scale bar = 100 mm. Panel to right
is quantitation of immunocytochemistry results from three fields each
of three independent samples.
doi:10.1371/journal.pone.0038313.g004

Secondary Antibody Choice and Its Impact

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e38313



dose-dependent binding, as detected with their respective SCS

2uAbs. However, when their binding was detected using HL 2uAb

(Figure 4B right panel), we observed the same subclass-specific

detection bias with the HL 2uAb for IgG2a (circles) over IgG2b

(triangles) and especially over IgG1 (squares) across all 1u Ab

concentrations tested.

To determine whether this IgG subclass bias was also present in

immunocytochemistry experiments, we expressed Kv1.2 in

transiently transfected COS-1 cells and labeled with the same set

of anti-Kv1.2 mAbs, switching the 2uAb preparations such that

now the HL was conjugated to Alexa 594 (red), while the SCS

2uAbs were conjugated to Alexa 488 (green). As shown in

Figure 4C, the same detection bias was observed, in that

representative images of the Kv1.2-transfected cells labeled with

the IgG1 mAb exhibit a green tint, the IgG2b mAb a yellow tint,

and the IgG2a mAb a red tint. The graph of the ratio of the anti-

HL 2uAb signal relative to the SCS 2uAb signal is shown in the

right hand panel of Figure 4C, which shows that anti-HL 2uAb

exhibits an <3-fold detection bias towards IgG2a relative to IgG1,

with IgG2b intermediate (<2-fold versus IgG1).

We next determined in more detail the dependence of the

immunoreactivity on both 1u and 2uAb concentrations. To better

quantify these differences in 2uAb binding to mouse mAbs of

different IgG subclasses, quantitative FLISAs were performed. We

analyzed binding to plates coated with a Kv1.2 GST fusion

protein (GST-RAK) that contains the binding sites for the three

anti-Kv1.2 mAbs detailed above. In Figure 5A, each individual

graph represents average fluorescence intensity values for a single

2uAb concentration, as noted above, and four different 1uAb

concentrations, as given on X-axes. As shown in the top row of

Figure 5A, the IgG2a (circles).IgG2b (triangles).IgG1 (squares)

detection bias exhibited by the anti-mouse IgG H+L 2uAb is

observed across all 1uAb concentrations tested, and at every

concentration of 2uAb tested. Again, while the HL 2uAb displayed

a bias towards IgG2a and away from IgG1 at all 1u and 2uAb

concentrations tested, the SCS 2uAbs were reliable and equal in

reactivity at all 1u and 2uAb concentrations (Figure 5A middle

row). The bottom row of Figure 5A shows the data from the top

row normalized to the IgG1 values, to highlight the bias present

across all fluorescence intensities.

We next tested whether an increase in 2uAb concentration

could negate the subclass bias seen in immunocytochemistry

experiments as in Figure 4C. Cells transiently transfected with

Kv1.2 were stained with three anti-Kv1.2 mAb 1u Abs of different

IgG subclasses. Each 1uAb was used at the same saturating

concentration, with a cocktail of both SCS and HL 2uAbs applied

at four different concentrations. The graph in Figure 5B shows

that as we increase the concentration of 2uAb, the HL subclass bias

increases, with the same overall trend as shown in Figure 4B above

for the FLISAs.

To establish that the specificity of SCS 2uAbs in multiplexing

procedures was present even when the target antigens were

present at drastically different expression levels, we analyzed their

specificity at detecting three different purified GST fusion protein

antigens present on the same immunoblot at a variety of different

protein concentrations, up to and including a 243-fold difference

in concentration. We used three 1uAbs representing the three

major mouse IgG subclasses, anti-Kv1.2 (K14/16 IgG2b in red),

anti-PSD95 (K28/43 IgG2a in blue) and anti-GST (N100/13

IgG1 in green). Detection of the anti-Kv1.2 with the red SCS anti-

IgG2b 2uAb is specific to the IgG2b mAb bound to the 32 kDa

GST-Kv1.2 protein, with no detectable signal against the IgG2a

and IgG1 mAbs bound to GST-PSD95 and GST alone,

respectively, even when they are present at a 243-fold excess.

Similarly, the blue SCS anti-IgG2a 2uAb detects the IgG2a mAb

bound to 50 kDa GST-PSD95 protein, and does not bind

detectably to 1uAbs of other subclasses bound to excess levels of

GST-Kv1.2 or GST. The green SCS anti-IgG1 2uAb detects the

anti-GST IgG1 Ab bound to all three GST proteins. Note that the

GST-PSD95 sample has additional bands, ranging from 40–

55 kDa, representing proteolytic fragments that presumably retain

the K28/43 epitope. The GST-Kv1.2 sample has an additional

29 kDa fragment that contains the anti-GST but not the anti-

Kv1.2 epitope. Despite the large differences in protein expression

levels, as is seen in the various concentrations of GST fusion

proteins, and the endogenous proteins in rat brain, the SCS 2uAbs

remain specific to their target subclass. Taken together, these

experiments show that the differences between the HL and SCS

2uAbs are present at all 1u or 2uAb concentrations tested in

immunohistochemistry, immunoblotting, immunocytochemistry

and FLISAs.

Subclass-specific detection bias is seen in multiple
commercial 2uAb preparations

To determine whether the results obtained with this initial set of

2uAbs could be generalized across different lots, preparations,

fluorophores/conjugates and suppliers, we performed side-by-side

comparisons using the immunocytochemistry assays as used in

Figure 4B. As shown in the left panel of Figure 6A, two different

lots of HL obtained from the same supplier two years apart exhibit

comparable subclass bias, as do two different 2uAb preparations

from the same supplier, one highly adsorbed to eliminate species

cross-reactivity, and the other a F(ab9)2 preparation. We also found

that the nature of the fluorophore did not impact the results

(middle panel). Finally, we found that HL 2uAbs obtained from

different suppliers exhibited the same detection bias (right panel).

In Figure 6B, we show that the subclass-specific detection bias of

the Life Technologies HL relative to SCS 2uAbs is seen at all 2uAb

concentrations tested (upper panels), and is also seen in two

different preparations from yet a third supplier, one a standard HL

(lower left panel), the other a highly adsorbed preparation (lower

right panel).

We also tested whether this subclass-specific detection bias was

observed in horseradish peroxidase (HRP)-conjugated 2uAbs. As

shown in Fig. 6C, a comparison of purified mAb IgGs by SDS-

PAGE and coomassie blue (CB) staining, and by immunoblotting

with HL 2uAbs from two different suppliers, reveals a detection

bias against the heavy IgG chains (IgG2a.IgG2b.IgG1)

remarkably similar to that seen for the fluorescent 2uAbs. Note

that unlike that of the heavy chains, immunoreactivity against the

kappa light chains is consistent. In total we used 5 different assays

to analyze 27 different 2uAb preparations, encompassing 12

different SCS and 15 different HL 2uAb preparations obtained

from 5 different companies, and found each of the HL 2uAb

preparations exhibited subclass-specific bias across all concentra-

tions and assays.

Analysis of knockout mouse brains reveals striking
differences in 2uAb performance

Labeling of samples from knockout mice has become a standard

for validating antibody specificity in native tissue [4]. As shown in

Figure 7, we labeled brain sections prepared from wild-type (WT)

mice, and from mice lacking expression of the Kv2.1 potassium

channel (KO), with an IgG1 anti-Kv2.1 mAb, and found robust

and specific labeling in WT mice when detected by the SCS 2uAb

(red), and weaker signal and higher background when detected by

the HL 2uAb (green), as shown in the KO sample with 1uAb, and
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the WT and KO samples lacking 1uAb. Diluting these 2uAbs led to

a loss of signal, as well as the background labeling observed for the

anti-HL 2uAb. These data reveal that not only do SCS 2uAbs

exhibit more robust and reliable detection of bound mAbs in a

variety of applications, they also facilitate specific labeling of

mouse tissues by mAbs in immunohistochemistry procedures.

Figure 5. HL 26Abs exhibit background and detection bias independent of 16 and 26Ab concentrations. (A) FLISAs showing detection
of different concentrations of IgG1 (K14/39, squares), IgG2a (L76/36, circles), and IgG2b (K14/16, triangles) mAbs as indicated by the values on the X-
axes, with HL 2uAb (top row), and respective SCS 2uAbs (middle row), at the concentrations indicated above the columns. Bottom row shows data
from the graphs in the top row normalized to values for the IgG1 mAb. (B) HL bias is seen at all 2uAb concentrations tested in transiently transfected
COS-1 cells. Immunofluorescence labeling of Kv1.2-expressing COS-1 cells, probed with 5 mg/mL of IgG1 (K14/39, squares), IgG2a (L76/36, circles), and
IgG2b (K14/16, triangles) mAbs and different amounts of HL 2uAb (red), and the respective SCS 2uAbs (green), as indicated on the X-axis. The Y-axis is
the red:green (HL:SCS) fluorescence ratio (in arbitrary units). (C) Immunoblots showing lack of crossreactivity in SCS 2uAb detection of antigens
loaded at great excess. Recombinant GST fusion proteins containing different amounts of Kv1.2 and PSD95 antigens, and GST alone, were size
fractionated on a single SDS gel and transferred to an immunoblot. Amounts loaded of GST-PSD95 ranged from 4–972 ng, as indicated below lower
left panel, and for GST-Kv1.2 and GST alone from 972–4 ng, as indicated below lower right panel. The immunoblot was simultaneously probed with
anti-Kv1.2 K14/16 (IgG2b, red), anti-PSD95 K28/43 (IgG2a, blue) and anti-GST N100/13 (IgG1, green), and corresponding SCS 2uAbs. Lane to left of top
left panel shows molecular weight standards in kDa. Image reveals a lack of crossreactivity between SCS 2uAbs and bound 1uAbs even under
conditions of excess antigen.
doi:10.1371/journal.pone.0038313.g005
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Discussion

One advantage of immunofluorescence-based techniques is the

potential for the simultaneous labeling of multiple target proteins

in the same sample. This multiplex labeling reduces effort and

provides more efficient use of valuable samples. Moreover, it

eliminates many of the scientific caveats associated with single

probe labeling of replicate samples, or with serial multiplex

labeling by stripping and reprobing the same sample. The

availability of fluorescent dyes with different excitation and

emission characteristics, and high quality filters that allow for

acquisition of non-overlapping fluorescent signals from such dyes,

allows for simultaneous detection of multiple fluorescent probes in

the same sample. The most common Ab-based multiplex labeling

procedure involves simultaneously applying multiple 1uAbs, and

then using 2uAbs conjugated to different fluorescent dyes to

distinguish the sites of 1uAb labeling. Employing 1uAbs generated

in different species has long been recognized as a reliable and

effective approach for multiplex immunofluorescence labeling, the

availability of a wide variety of mouse IgG mAbs, each of which

has a single and defined IgG subclass, offers a similar yet largely

untapped potential for multiplex labeling. Here we demonstrated

the effectiveness of coupling mAbs with SCS 2uAbs for simulta-

neous multiplex labeling, and found that this approach yielded

robust, specific and reliable signals in a variety of commonly used

applications. These studies highlight the utility of employing

multiple mAbs of different IgG subclasses in multiplexing

experiments, either in combinations with one another, or in

conjunction with antibodies raised in other species (e.g., rabbits,

guinea pigs, etc.), and further highlight the advantages of using

SCS 2uAbs as detection reagents. Since a wide variety of mAbs are

available, each with their own singular IgG subclass, it is possible

to mix and match various combinations of mAbs in simultaneous

multiplexing experiments. While there still remain practical

limitations to this approach, as reliable and specific mAbs to

every target protein are not yet available in every IgG subclass, the

continued pursuit of large-scale projects aimed at generating high

quality mAbs, for example the NIH-funded Common Fund

Protein Capture Resource (http://commonfund.nih.gov/

proteincapture), the UC Davis/NIH NeuroMab Facility (http://

neuromab.ucdavis.edu), and the European Union-funded Affi-

nomics initiative (http://www.affinomics.org) will likely yield

multiple specific mAbs, each of a distinct IgG subclass, against

each target, facilitating their application in multiplexing experi-

Figure 6. HL detection bias is seen in 26Ab preparations from different suppliers, with different fluorophores, and with enzyme
conjugates. (A) Kv1.2-transfected COS-1 cells were labeled with 1uAb as in Figure 4C, and HL 2uAb and the respective SCS 2uAbs, and the ratios of
fluorescence intensities from three fields each of three independent samples normalized to the HL/IgG1 ratio. Letters are supplier (L = Life
Technologies, R = Rockland), numbers are Alex or DyLight fluorophore conjugates; high: highly adsorbed; fab: F(ab9)2 fragment of HL (e.g., L488 SCS is
Life Technologies Alexa 488 conjugated SCS). 4/09 and 7/11 refer to two lots of Life Technologies HL. (B) FLISAs showing detection bias of 2uAbs is
present at all 2uAb concentrations. Upper left: Life Technologies HL. Upper right: Life Technologies SCS. Lower left: Jackson ImmunoResearch HL.
Lower right: Jackson ImmunoResearch HL (highly cross-adsorbed). (C) HRP conjugated HL secondaries show detection bias by immunoblot. Purified
mAb IgG preparations were analyzed by reducing SDS-PAGE and coomassie blue staining (CB), or immunoblotting and detection with two different
HRP-conjugated H+L 2uAbs and ECL. HL: Kirkegaard & Perry Laboratories. HL*: Antibodies Incorporated. Note subclass-specific differences in
detection of heavy chain (HC) but not light chain (LC) bands in IgG preparations.
doi:10.1371/journal.pone.0038313.g006
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ments. Moreover, as recombinant mAbs begin to gain wider

application, it becomes realistic to consider generating IgG

subclass variants of any individual mAb by swapping the

recombinant heavy chain constant regions that define the IgG

subclass. Note that in this regard mouse mAbs offer a huge

advantage for multiplex labeling over rabbit mAbs, which have

only one form of IgG [7], greatly limiting their utility in multiplex

labeling.

We also described an unanticipated advantage to using SCS

2uAbs, in that they yield more reliable detection of mAbs than HL

preparations did in every application tested, regardless of supplier,

form, conjugate and method of detection. This may seem an

obvious result, in that every mAb is by definition a single IgG

subclass, and one would expect higher signal and lower

background when employing SCS 2uAb preparations in which

all of the 2uAb present recognizes 1uAbs of only that subclass. In

comparison to HL preparations that contain 2uAbs recognizing

subclasses other than the one in current use, and as such could not

contribute to specific signal and only to background.

We also found an unanticipated drawback to using HL 2uAbs,

in that they exhibited a robust and reliable detection bias towards

mAbs of specific IgG subclasses and against others, with a

detection sensitivity of IgG2a.IgG2b.IgG1, regardless of sup-

plier, form, level of adsorption, or conjugate. This is problematic

from a number of standpoints. First and foremost, immunolabeling

relies on the reliable detection of bound 1uAbs regardless of their

specific characteristics, such that a ‘‘general’’ HL 2uAb is not

expected by the end user to prefer mAbs of certain IgG subclasses

over others. Second, the detection bias is against the most

common IgG subclass (IgG1) of all mAbs. As representative

examples, the catalog of the UC Davis/NIH NeuroMab facility (as

of 12/17/11) contains 278 mAbs, and a representative part of the

commercial catalog of EMD Millipore (as of 9/2/11) includes

3631 mAbs (Ruben Flores-Saaib and Alejandra Solache, EMD

Millipore, personal communication), which in both cases comprise

<70% IgG1, <20% IgG2a and <10% IgG2b. For the most part,

this reflects the representation of these subclasses in the circulating

serum IgGs in immunized Balb/c mice [19], the strain most

commonly used for generating mouse hybridomas. As such, it is a

crucial consideration that the maximum utility of the vast majority

(<70%) of mAbs may remain unfulfilled, due to an inherent

inability of the most commonly used detection reagents (i.e., HL

2uAbs) to effectively detect their binding. Third, using general HL

2uAbs is especially problematic in mouse samples. Mouse samples

can contain trace amounts of endogenous IgG, or have other

characteristics that can lead to higher backgrounds when

performing ‘‘mouse on mouse’’ labeling. It is generally recognized

that this background is due to binding of IgG 2uAbs and not the

mAbs. As expected, using a 2uAb that sees only one IgG subclass

reduces this background, and enhances the detection of the 1uAb-

specific signal, resulting in robust, specific and reliable staining of

mouse samples with mAbs. Lastly, it raises the specter that

validation of novel mAbs during screening, which is typically

performed in the absence of any knowledge of IgG subclass, may

be confounded by such a detection bias in general anti-IgG 2uAbs.

Given this, it may be advantageous to use 2uAb cocktails generated

from balanced mixtures of the different SCS 2uAbs (such as

employed in Figure 4A) when the IgG subclass of the mAb is not

yet known. We suggest that secondary antibody suppliers make

available premade cocktails balanced for secondary antibodies

against each of the mouse IgG subclasses.

Most laboratories use a simple set of general HL 2uAbs to detect

labeling with any mouse IgG mAb. Our results suggest that a

threefold increase in their 2uAb inventory is warranted, to include

anti-IgG1, IgG2a and IgG2b SCS 2uAbs. The data shown here

reveal that, like in many other situations in life and lab, the

advantages of using a ‘‘one size fits all’’ approach, in this case using

general IgG 2uAbs to detect mAbs, each of which is a single IgG

Figure 7. Analysis of knockout mouse tissue reveals increased background of HL 26Abs. Sections of brains from WT and Kv2.1 knockout
(KO) mice were labeled with an anti-Kv2.1 IgG1 mAb, or in vehicle alone (bottom row, no 1uAb), followed by simultaneous detection with both HL
(green) and IgG1-specific (red) 2uAbs. Columns represent samples with different [2uAb] as in column header. All samples were imaged using identical
exposure times. Note that the panels in the top row are the same as those in the WT row but showing the green channel only. Scale bar = 25 mm.
doi:10.1371/journal.pone.0038313.g007
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subclass, are offset by the compromises often inherent in such an

approach. Readily available detection reagents specifically tailored

to the IgG subclass of the target mAbs offer not only greater

flexibility for combining multiple mAbs in simultaneous multiplex

labeling, but enhanced performance in any labeling application in

which mAbs are employed.

Materials and Methods

1uAbs
The generation and validation of anti-Kv1.2 mAb K14/16

(IgG2b) was described previously [20]. Mouse anti-Kv1.2 mAbs

K14/39 (IgG1) and L76/36 (IgG2a) were generated against the

same GST fusion protein (rat Kv1.2 amino acids 428–499) used to

generate K14/16, and found to bind within the same peptide (rat

Kv1.2 amino acids 463–480) as K14/16. The generation and

validation of anti-PSD-95 mAb K28/43 (IgG2a) [21], anti-

KChIP1 mAb K55/7 (IgG1) and anti-Kv4.2 mAb K57/1

(IgG1) [22], anti-Caspr/Paranodin mAb K65/35 (IgG1) [23],

anti-Kv2.1 mAb K89/34 (IgG1) [24], anti-BK channel mAb L6/

60 (IgG2a) [17] were described previously. mAbs against QKI

(N147/6, IgG2b), Ankyrin-G (N106/36, IgG2a) and GFAP

(N206A/8, IgG1) were obtained from the UC Davis/NIH

NeuroMab Facility, which also distributes K14/16, K28/43,

K55/7, K57/1, K65/35, K89/34 and L6/60. Control IgG1

(MOPC21, Cat #M9269), IgG2a (UPC10, Cat # M9144) and

IgG2b (MOPC-141, Cat# M8894) were obtained from Sigma.

Rabbit anti-Kv2.1 polyclonal antibody KC [25] was used as a

counterstain in Figure 3.

2uAbs
Except where noted, all 2uAbs used in this study were obtained

from Life Technologies, were raised in goats, were affinity-purified

against the target immunoglobulins, and adsorbed/depleted

against non-target immunoglobulins. Certain preparations were

also adsorbed against target tissue. All anti-mouse 2uAbs were

conjugated to Alexa FluorsH, with the exception of those used in

Figure 6C which were conjugated to HRP. The Life Technologies

anti-mouse generic anti-IgG 2uAb preparations were (catalog

number stated, Alexa fluor dye conjugates in parentheses): anti-

mouse IgG H+L, reacting with IgG heavy chains and all

immunoglobulin light chains, adsorbed against human IgG and

serum: A-11001 (488), A-11005 (594); anti-mouse IgG H+L,

reacting with IgG heavy chains and all immunoglobulin light

chains, adsorbed against human IgG and serum, with additional

adsorption against bovine, goat, rabbit, and rat IgG: A-11032

(594); F(ab9)2 fragment of A-11005: A-11020 (594). The Life

Technologies anti-mouse IgG subclass-specific 2uAb preparations

were: anti-mouse IgG1, affinity-purified against the Fc portion of

mouse IgG1 heavy chain, and adsorbed against mouse IgM, IgA,

IgG2a, IgG2b and IgG3, and human sera and purified parapro-

teins: A-21121 (488), A-21127 (555), A-21125 (594), A-21240

(647); anti-mouse IgG2a, affinity-purified against the Fc portion of

mouse IgG2a heavy chain, and adsorbed against mouse IgM, IgA,

IgG1, IgG2b and IgG3, and human sera and purified parapro-

teins: A-21131 (488), A-21137 (555), A-21135 (594), A-21241

(647); anti-mouse IgG2b, affinity-purified against the Fc portion of

mouse IgG2b heavy chain, and adsorbed against mouse IgM, IgA,

IgG1, IgG2a and IgG3, and human sera and purified parapro-

teins: A-21140 (350), A-21141 (488), A-21147 (555), A-21145

(594), A-21242 (647).

The Rockland anti-mouse generic anti-IgG 2uAb preparations

were anti-mouse IgG H+L antibody pre-adsorbed, minimum

cross-reactivity against bovine, chicken, goat, guinea pig, hamster,

horse, human, rabbit, rat and sheep serum proteins, by catalog

number with DyLight fluors in parentheses: 610-141-121 (488),

610-142-121 (549), 610-143-121 (647). The Jackson Immunor-

esearch anti-mouse generic anti-IgG 2uAb preparations were

Alexa 488 anti-mouse IgG H+L Antibody (115-545-003); and goat

anti-mouse IgG H+L antibody with minimum cross-reactivity

against rat, human, bovine, horse, and rabbit serum proteins (115-

545-166).

For immunoblots, Kirkegaard & Perry Laboratories goat anti-

mouse IgG H+L antibody, human serum adsorbed and peroxidase

labeled (474–1806), and Antibodies Incorporated anti-mouse IgG

H+L antibody F(ab9)2, affinity purified but not adsorbed (48-146-

3H), were used.

The Life Technologies anti-rabbit 2uAb preparation used here

was Alexa FluorH 488-conjugated goat anti-rabbit IgG H+L,

reacting with IgG heavy chains and all immunoglobulin light

chains, and adsorbed against human IgG and serum, mouse IgG

and serum and bovine serum (A-11008).

Multiple-label immunofluorescence labeling of brain
sections

This study was approved by the UC Davis Institutional Animal

Care and Use Committee and conforms to guidelines established

by the NIH. Rats or mice were deeply anesthetized with sodium

pentobarbital (Nembutal, 60 mg/kg i.p.) and perfused transcar-

dially with phosphate buffered saline (PBS), pH 7.4, and 4%

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). The brains

were removed, cryoprotected for 18 hr in 10% sucrose, then 48 hr

in 30% sucrose, frozen in a bed of pulverized dry ice, and then cut

into 40 mm sections on a sliding freezing stage microtome. Sections

were collected in 0.1 M NaPO buffer (PB) and processed

immediately for immunohistochemistry. We blocked free-floating

sections with 10% v/v goat serum in PB containing 0.3% v/v

Triton X-100 (vehicle) and then incubated them overnight at 4uC
in vehicle containing different combinations of 1uAbs (either rabbit

pAb plus mAb, or mAbs of different IgG subclasses). We then

incubated sections in Alexa-conjugated 2uAbs as detailed below.

Images were obtained on a Zeiss Axiovert 200 microscope with

Apotome, with the exception of Figure 1, which is conventional

imaging. Imaging and post-imaging processing was performed in

Zeiss Axiovision and Adobe Photoshop software, taking care to

maintain any linear differences in signal intensities present in the

original samples. All 1u Abs are used at their optimal concentra-

tions specific to each 1u Ab preparation, determined empirically.

All 2uAbs were used at a concentration of 1 mg/mL unless

otherwise stated.

For Figure 1, Life Technologies 2uAbs were panel B: Alexa 647

anti-mouse IgG1 (A-21240, pseudocolored as green in panel E),

panel C: Alexa 555 anti-mouse IgG2b (A-21247), and panel D:

Alexa 488 anti-mouse IgG2a (A-21131, pseudocolored as blue in

panel E). For Figure 2, 2uAbs in panels A, C, D were Alexa 488

anti-mouse IgG1 (A-21121), Alexa 594 anti-mouse IgG2a (A-

21135), and Alexa 350 IgG2b (A-21140), and in panels B, E–H

were Alexa 488 anti-mouse IgG1 (A-21121), Alexa 594 anti-mouse

IgG2a (A-21137), and Alexa 647 IgG2b (A-21242). In some

panels, individual colors were pseudocolored as noted in the figure

legend. For Figure 3, Life Technologies 2uAbs in left panels were

Alexa 594 goat anti-mouse IgG H+L (A-11005), and right panels

Alexa 594 anti-mouse IgG1 (A-21125), anti-mouse IgG2b (A-

21135), or anti-mouse IgG2b (A-21145); all panels had Alexa 488

goat anti-rabbit IgG (A-11008). For Figures 5 and 6, in all panels

2uAbs were Alexa 488 goat anti-mouse IgG H+L (A-11001), and

Alexa 594 goat anti-mouse IgG1 (A-21125).
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Transient Transfection of COS-1 Cells
COS-1 cells (ATCC CRL-1650) were transfected with mam-

malian expression vectors for Kv1.2 [26], Kv2.1 [27] and PSD-95

[28], or empty expression plasmid using Lipofectamine 2000 (Life

Technologies). Cells were seeded at 30% confluence (for

immunoblot analysis) or 15% confluence (for immunofluorescence

labeling) and transfected at time of seeding, and left for 18–24 h.

The transfection medium was removed and, after the addition of

fresh medium, the cells were incubated an additional 24 h.

Immunoblot analyses
For Figures 1 and 4, transfected COS-1 cells were washed once

with ice-cold DPBS (138 mM NaCl, 2.67 mM KCl, 1.47 mM

KH2PO4, 8.1 mM Na2HPO4, 1 mM CaCl2 and 1 mM MgCl2)

and extracted with 300 mL of ice-cold lysis buffer containing 1%

v/v Triton X-100, 150 mM NaCl, 1 mM EDTA, 50 mM Tris-

HCl (pH 7.4), 5 mM iodoacetamide, 5 mM NaF, 1 mM PMSF

and a protease inhibitor cocktail for 10 min on ice [27]. The

lysates were centrifuged at 12,0006g at 4uC for 10 min. The

supernatants were mixed with 300 mL of 26 reducing sample

buffer (RSB) and size-fractionated by 7.5% SDS–PAGE, together

with crude RBM [27]. For Figure 5C, pure GST protein (GST-

RAK: [20]; GST-PSD95/KAP1.13, [29]) preparations were

boiled in RSB, and size-fractionated by 15% SDS–PAGE.

Following SDS-PAGE, proteins were transferred to nitrocellulose

membranes (Bio-Rad), which were blocked for 1 h with Blotto (4%

w/v nonfat milk in Tris-buffered saline (TBS: 50 mM Tris,

pH 7.5, 150 mM NaCl) plus 0.1% v/v Tween-20 followed by 1 h

incubation with 1uAbs. After 3610 min washes with Blotto, the

membranes were incubated with the appropriate 2uAbs for 1 h.

Fluorescent Life Technology/Molecular Probes 2uAbs were used

for immunoblots in Figures 1, 4 and 5. In Figure 1A 2uAbs were

anti-IgG1 Alexa 488 green (A-21121); anti-IgG2a Alexa 647 (A-

21241) pseudocolored as blue, and anti-IgG2b Alexa 555 red (A-

21241), each at 1.3 mg/mL. In Figure 4A were goat anti-mouse

IgG H+L Alexa 488 green (A-11001), and a 1:1:1 cocktail of Alexa

647 anti-mouse IgG1 (A-21240), IgG2a (A-21241) and IgG2b (A-

21242), each at 1.3 mg/mL. In Figure 5C 2uAbs were anti-IgG1

Alexa 555 green (A-21127), anti-IgG2a Alexa 488 (A-21131)

pseudocolored as blue, and anti-IgG2b Alexa 647 red (A-21242),

each at 1.3 mg/mL. HRP-conjugated 2uAbs for Figure 6C were

Kirkegaard & Perry Laboratories 474–1806, and Antibodies

Incorporated 48-146-3H (each at 100 ng/mL). After 3610 min

washes with TBS, the immunoblots were visualized directly (for

fluorescent 2uAbs) or after visualization with Pierce ECL Western

Blotting Substrate (Thermo Scientific; for HRP 2uAbs) in a

FluorChem Q imager (Cell Biosciences).

Pure mAb preparations were boiled in RSB, and size-

fractionated by 12% SDS–PAGE. Proteins were transferred to

nitrocellulose, blocked for 1 h with Blotto followed by incubation

with the appropriate 2uAbs for 1 h, and visualized as described

above. Replicate gels were stained with Coomassie Brilliant Blue

R-250.

Immunofluorescence Staining of Transfected COS-1 Cells
For the immunofluorescence labeling shown in Figures 4C, 5B

and 6A, COS-1 cells were used 48 h after transfection with

Kv1.2/RBG4 plasmid. Medium was removed, and cells fixed in

DPBS containing 4% formaldehyde plus 4% sucrose for 30 min at

4uC. After three washes with DPBS, nonspecific protein binding

sites were blocked with Blotto plus 0.1% Triton X-100 (TX-100)

for 1 h at room temperature, and then incubated with 1uAbs

(K14/39 = IgG1, L76/36 = IgG2a, K14/16 = IgG2b) for 1 h at

room temperature. After washing three times with Blotto+TX-

100, cells were incubated with 2uAbs for 1 h at room temperature,

washed three times with DPBS, and mounted in ProLong Gold

(Life Technologies). All cells in three randomly chosen fields in

three independent samples were imaged on a Zeiss M2

Axioimager microscope. Post-imaging processing was performed

in Zeiss Axiovision and/or Adobe Photoshop software, taking care

to maintain any linear differences in signal intensities present in

the original samples. Average fluorescence intensity for each field

was quantified with the Automeasure module in the Zeiss

Axiovision software package. All 1u Abs were used at 5 mg/mL

and 2uAbs were used at a concentration of 1 mg/mL unless

otherwise stated.

For Figure 4C, 2uAbs were Life Technologies 2uAbs Alexa 594

goat anti-mouse IgG H+L A-11005 plus either Alexa 488 anti-

mouse IgG1 (A-21121), anti-mouse IgG2a (A-21131), or anti-

mouse IgG2b (A-21141). For Figure 6A, Life Technologies 2uAbs

in left panel were Alexa 488 anti-mouse IgG1 (A-21121), anti-

mouse IgG2a (A-21131), or anti-mouse IgG2b (A-21141) with

either Alexa 594 goat anti-mouse IgG H+L A-11005, Alexa 594

goat anti-mouse IgG H+L highly adsorbed A-11032, or Alexa 594

goat anti-mouse IgG H+L F(ab9)2 A-11020. In middle panel, Life

Technologies 2uAbs were Alexa 488 goat anti-mouse IgG H+L A-

11001 with either Alexa 555 anti-mouse IgG1 (A-21127), anti-

mouse IgG2a (A-21137), or anti-mouse IgG2b (A-21147); Alexa

594 anti-mouse IgG1 (A-21125), anti-mouse IgG2a (A-21135), or

anti-mouse IgG2b (A-21145); or Alexa 647 anti-mouse IgG1 (A-

21240), anti-mouse IgG2a (A-21241), or anti-mouse IgG2b (A-

21242). In right panel, 2uAbs were Rockland DyLight 549 (610-

142-121) or DyLight 647 (610-143-121) goat anti-mouse IgG H+L

with Life Technologies Alexa 488 anti-mouse IgG1 (A-21121),

anti-mouse IgG2a (A-21131), or anti-mouse IgG2b (A-21141), or

Rockland DyLight 488 (610-141-121) goat anti-mouse IgG H+L

with Life Technologies Alexa 594 anti-mouse IgG1 (A-21125),

anti-mouse IgG2a (A-21135), or anti-mouse IgG2b (A-21145).

FLISAs
For FLISAs in Figures 4B, 5C and 6B, microplates were coated

with 50 mL of a 50 mg/mL solution of GST-RAK fusion protein

[20], washed with TBS, and blocked with Blotto with 0.1%

Tween-20 overnight at 4uC, and then incubated with 1uAbs (K14/

39 = IgG1, L76/36 = IgG2a, K14/16 = IgG2b) diluted in Blotto

with 0.1% Tween-20 for 1 h at room temperature. After washing

three times with Blotto with 0.1% Tween-20, plates were

incubated with Alexa 488-conjugated 2uAbs for 1 h at room

temperature, washed three times with PBS, and then scanned on a

Biotek FLx800 fluorescence microplate reader. For Figure 4C, Life

Technologies Alexa 488 goat anti-mouse 2uAbs were used, either

anti-IgG1 (A-21121), anti-IgG2a (A-21131) and anti-IgG2b (A-

21141), or anti-IgG H+L (A-11001). All 1u Abs were used at 5 mg/

mL and 2uAbs were used at a concentration of 1 mg/mL unless

otherwise stated.
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