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Abstract

This paper presents ongoing work that demonstrates how a
discrete rule-based model may appropriately manifest graded
performance and investigates the source contributing to graded
performance of a particular rule-based model called SCA. Pre-
vious results have demonstrated that SCA produces appropri-
ate graded performance as a function of learning experience,
instance typicality, and other similarity-dependent properties.
However, the source of its graded behavior has been somewhat
obscured by the presence of continuous components in some
aspects of the model. Fully symbolic alternates are presented
here and the qualitative predictions from previous work is repli-
cated, thereby suggesting that explicit gradient representations
are not necessary for producing graded behavior. In addition
to replicating previous results, the results presented here clar-
ify a peculiar character of the model, namely, that the model’s
typicality differences disappear after extended leaming.

Introduction

Over the last several decades, it has become increasingly evi-
dent that category membership is not a strict binary function.
In particular, a preponderance of empirical evidence suggests
that membership lies on a continuum as manifested by such
metrics as human response times and accuracy rates. What is
the source (or set of sources) of this graded performance? And
what are appropriate methodologies for investigating these
sources?

One approach to identifying a possible source is through
the design and analysis of computational cognitive models.
To the extent that a computational model manifests corre-
sponding graded performance, we can offer the model as an
approximate analog of the categorization process, and thus
identify a candidate source for the human process. At this
time, the leading candidates for modeling graded performance
are those built upon gradient, probabilistic representations,
such as neural nets (Rumelhart et al., 1986; Gluck & Bower,
1988; Kruschke, 1992) and probabilistic declarative struc-
tures (Fisher, 1988; Anderson, 1991). With the appropriate
interpretation, the gradient levels implied by the representa-
tion can derive graded predictions along the dimensions of
accuracy and response times.

In conjunction with previous work (Miller & Laird, 1996),
this paper suggests an alternate source for graded perfor-
mance, where graded performance is not so much a func-
tion of gradient representations but rather of the process that
acquires and accesses representations. For locating and ex-
plaining a possible source of graded performance, a symbolic
rule-based model called SCA (symbolic concept acquisition)

will be reviewed. SCA is a process model that performs a su-
pervised category learning task. Already it has been demon-
strated that SCA produces appropriate graded performance
as a function of learning experience, instance typicality, and
other similarity-dependent properties. However, these previ-
ous results depended on gradient metrics for feature attention
and selection and thus raised the concern as to whether any
of the graded performance should be attributed to the gradi-
ent components. Here, I present and evaluate two alternate
approaches to feature selection that have no continuous ele-
ments. The first approach uses a simple random selection.
The second approach uses a simple strategy for identifying
a possibly relevant feature. While neither approach is in-
tended as a computationally intensive method for optimizing
performance, they will serve in ruling out continuous repre-
sentations as being necessary for SCA’s graded performance.
In addition, the results presented here clarify an interesting
property of the model, which predicts that some performance
differences disappear with sufficient learning.

Description of model

SCA performs a supervised learning task. The system is pre-
sented with training examples, described in terms of symbolic
features, and a category label. The task is then to predict the
category for future examples that do not have the label. For
example, the following series of training examples may be
presented to the system:

{spherical, blue, smooth, small; cat:ball}
{oblong, red, smooth, medium; cat:ball)
{spherical, blue, smooth, large; cat:glcbe}

As training examples, they include both the description
and the category. With these examples, the system learns to
predict categories when given only a description, such as

{spherical, green, smooth, medium}

Here the system might respond with the category ‘ball’.

In general terms, SCA is a symbolic rule-based system that
incrementally acquires prediction rules as it is trained. By
a symbolic rule-based system, we mean that rule activation
is a discrete “all or none™” match. That is, a rule matches
if and only if the rule’s conditions are fully consistent with
the internal representation of the example's description. As a
consequence, the source of SCA's graded performance does
not occur at the level of rule match but with the sequence of
iterations that ultimately lead to matching a rule.

As SCA starts learning, it first learns very general rules
that test only a few features of an example, but as learning
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progresses, more specific rules are acquired that test more
features. Thus, there may be many rules at different levels
of specificity (and correctness) that predict the same category.
In trying to predict the category of an example, SCA's scarch
process favors specific rules.

SCA’s rules test for features and predict categories. Some
rules are very general:

[spherical]
[spherical)

--> predict category:ball
--> predict category:globe

Others are more specific:

[spherical, red) --> predict category:ball
[spherical, blue] --> predict category:globe
[spherical, red, smooth]

--> predict category:ball

As would be expected, the more specific prediction rules
are more likely to make correct predictions, and thus, the
SCA search process favors more specific rules for matching
the example description. In particular, the process takes the
example description and then checks if there are any rules
that match all of its features. If none exist, it then removes a
feature from the example description and checks if there are
any matches on all of the remaining features. As we will see,
it is this varying sequence of feature removals that accounts
for SCA’s graded performance.

In the example, the description might be modified by re-
moving smooth:

(spherical, blue, small]

This process of removing a feature and then checking for
a match continues until either at least one prediction rule
matches or until there are no features left. If no rules match,
then no prediction can be made until more prediction rules
are learned. If a single rule matches, then its prediction is
made. Given the previous set of rules and our example, the
system would predict category: globe, after removing
small. If several competing rules match at the same time, the
system arbitrarily chooses from among one of the competing
predictions.

When learning rules, SCA accepts an example description
that includes the correct category label. Its goal is to integrate
the knowledge implicit in the training example with its exist-
ing rule-based knowledge. During learning SCA searches not
for the first-matched rule, but for a matching prediction rule
that makes the correct prediction. With a match and a correct
prediction, the system has thus discovered prior experience
that supports the current training example. The training ex-
ample now serves as new knowledge for adding an additional
rule.

SCA follows a simple strategy for learning a new rule that
is a compromise between previously acquired knowledge and
the knowledge implicit in the training example. In particular,
it acquires a new rule whose conditions include all of the fea-
tures that matched (or no features if no match occurred) plus
the feature that was last removed before the search stopped.
The prediction of the new rule is the correct category given by
the training example, which also had been confirmed by the
maltching rule. As new rules are constructed from features in
old rules, the most specific rules will ultimately consist of the
most frequent combinations of features. In the next section,
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we will see that this bias towards frequent feature combina-
tions produces superior performance for examples with these
combinations.

Initially, SCA will frequently fail to match pre-existing
rules that produce the correct prediction. For each of these
cases, SCA must create a new rule at the most general level.
This can be accomplished by creating a new rule whose con-
dition consists of the feature that was last removed from the
description.

Let us use the training example ball: {spherical,
blue, fuzzy, small} asanexample of how a new rule
is acquired. First, the description [spherical, blue,
fuzzy, small] is processed in search of a category pre-
diction. Since no match occurs for all four features, let us as-
sume that ‘small’ is removed. Again no match occurs. Then,
with the removal of ‘fuzzy’, the description [spherical,
blue] matches a prediction rule. However, this rule pre-
dicts ‘globe’—the wrong category. Search continues by
removing ‘blue’. Finally, the description [spherical)
matches a correct rule and search stops. A new rule is con-
structed and added to memory:

[spherical, blue] --> predict category:ball

With the acquisition of this new rule, there are now two
competing rules with these features at this level of specificity.
Should both of these rules match during performance, a guess
is required in order to make a prediction. The acquisition
of this new rule may be merely an intermediate step towards
the acquisition of still more specific ones. Subsequent train-
ing examples will result in still more specific rules, thereby
reducing the number of conflicts.

Simulations of the model

SCA produces graded performance, both in terms of accuracy
and response time. With each classification, SCA probes
for a matching prediction rule, starting with an attempt to
match a maximally specific rule followed by incrementally
less specific attempts. The time for achieving a match thus
depends on the availability of specific rules. Likewise, since
more specific rules are more likely to contain relevant features
in their conditions, the accuracy of the resulting prediction
depends on the availability of specific rules.

The availability of specific rules depends on the learning
process. Since new, more specific rules are derived from the
successful match of less specific rules, the availability of spe-
cific rules depends on the frequency of training examples that
share common combinations of features within the same cat-
egory. As a consequence, performance will vary as a function
of two factors:

¢ The amount of experience.

o The extent to which examples within the same category
share frequent combinations of features.

The degree to which an example shares frequent combina-
tions of features with other examples of the same category is
often referred to as the example’s typicality. Rosch, Simpson
and Miller (1976) show in several experiments how response
times and errors vary in accordance to this metric. In particu-
lar they report that humans categorize more typical examples
with faster response times and fewer errors.



Table 1: Training and testing data for typicality effects

Attnibutes Similarity Typicality

Category D1 D2 D3 D4 D5  Score Group
A 1 0 0 1 1 12 Low
A 1 1 0 0 0 12 Low
A 0 1 0 0 1 14 Mid
A 0 0 0 1 0 14 Mid
A 0o 0 0 0 1 16 High
A 0 0 0 0 0 16 High
B 0 1 1 0 0 12 Low
B 0 0 1 1 1 12 Low
B 1 0 1 1 0 14 Mid
B 1 1 1 0 1 14 Mid
B 1 1 1 1 0 16 lligh
B 1 1 1 1 1 16 High

Our analysis of SCA likewise suggests that examples of
high typicality will have a performance advantage in terms of
response time as well as accuracy. Empirically, this has been
previously demonstrated (Miller & Laird, 1996), but with a
feature selection method that relied on continuous metrics. In
order to appropriately attribute the source of graded perfor-
mance to the retrieval and learning algorithm, I now present
empirical results with two purely symbolic feature selection
methods.

The first method uses a simple random method where at
each step in the search process a feature is randomly chosen
and removed from the feature description before probing for
a matching rule at the next level of generality. The second
method seeks to identify one relevant feature by noticing what
happens after each feature removal. If an incorrect prediction
(indicated by the given classification of a training example)
immediately follows the removal of a particular feature, then
that feature is identified as being relevant. This feature is
subsequently given a favored status by retaining it in the de-
scription. This status continues until another incorrect predic-
tion results, at which point the most recently removed feature
becomes favored.

The random selection strategy has little functional value
other than its simplicity, whereas the favored-feature strategy
aims to keep a relevant feature within the description and
thus acquire rules with it in their conditions. Performing
simulations using both strategies should help determine the
generality of the performance properties.

Table 1 shows a set of stimuli useful for testing performance
as a function of an example's typicality. For these data, there
are two categories: A and B. For each category there are six
examples, each with five attributes. Each of the attributes
can have only two values: 0 or 1. These values serve as
symbolic representations of features (e.g. color, shape, size,
etc.) that humans perceive when undergoing a categorization
experiment. A given example has a similarity score that is the
sum of how many features the example shares with the other
examples in the same category. This is the same definition of
typicality as in the Rosch et al. study. Based on this score, the
typicality is rated as low, middle, or high.

In testing the model, the examples were presented for ten
training cycles, where one cycle consists of each example
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Figure 1: Performance for random selection

presented once. The presentation order was separately ran-
domized for each cycle. Performance trials (predicting the
category name) followed each training cycle in order to assess
performance. Repeating this process 1000 times and taking
the resulting aggregate ensured tight confidence intervals for
each data point. This large number was able to compensate for
the two sources of variation between individual runs, namely
the randomization of the example presentation order and the
random feature selection.

Figures 1 and 2 show the performance results averaged over
the 1000 runs for the random strategy and the favored-feature
strategy, respectively. For all four graphs, independent data
points are given for each level of typicality after each training
cycle (indicated by the x-axis). Figures la and 2a show per-
formance in terms of accuracy, where the y-axis indicates the
fraction of correct responses. A response is considered correct
if it is consistent with the training example’s categorization.
Figures 1b and 2b show performance in terms of a response
time metric. In particular, the y-axis indicates the number of
feature-removal iterations. With 1000 runs, the largest of the
95% confidence intervals for accuracy was +.015. For re-
sponse time, the largest of the 95% confidence intervals was
+.065.

Qualitatively speaking, all graphs reveal an incremental im-
provement in performance, which is consistent with human
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Figure 2: Performance for favored selection

data—Estes (1994) generally notes that reaction time for cat-
egorization steadily decreases over a series of trials. Across
typicality levels, relative performance was consistent between
the two strategies, as well as with human behavior. For both
accuracy and response time, the model’s performance varied
as a function of typicality, responding faster and more accu-
rately to examples of higher typicality. The model’s behavior
also suggests that while the performance differences occur
during the course of learning, these differences gradually dis-
appear as learning approaches its asymptote. Interestingly,
the two selection strategies present different stories as to when
these differences disappear. The random strategy maintains
its performance differences throughout the ten learning cy-
cles whereas the favored-feature strategy, by more quickly
and consistently selecting features, approached its learning
asymptote by the tenth learning cycle. Nevertheless, despite
their differences, the qualitative similarities between the two
discrete selection strategies suggest that the graded perfor-
mance observed during the course of learning need not arise
from explicit gradient representations.

Discussion

SCA is not intended as a comprehensive model of category
learning, nor is its source of graded behavior necessarily the
same as evidenced with humans. Nevertheless, the work
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presented here does suggest that the source of graded perfor-
mance need not arise from explicit gradient representations.
SCA presents a process-oriented (i.e. algorithmic) interpre-
tation of typicality. That SCA manifests appropriate typical-
ity differences with fully symbolic representations rules out
the possibility that the source of its typicality effects origi-
nates from gradient representations. Rather, its performance
variation comes from iterative attempts to activate rules. De-
pending on the specificity of the rules, the amount of iteration
varies from example to example.

One consequence of emphasizing the process instead of the
representation is that the model, when evaluated as an ana-
log to the human process, delivers performance predictions
along two distinct dimensions: accuracy and response time.
While these two dimensions are strongly related (as revealed
by the model’s results as well as most experimental data),
they are separately measured in human experiments and thus
offer us two separate variables with which we can evaluate
a process-oriented model. For qualitative comparisons, little
interpretation of the SCA’s response time performance is re-
quired if we assume that each feature-removal iteration takes
an approximately constant amount of time. Focussing on
feature-removal iterations as a measure of process time helps
us then identify a possible source of response time variation,
which appears to depend on the learning and retrieval process.
This conclusion is further supported by the observation that
the qualitative performance relationships are identical across
three feature selection strategies, two of which use purely
symbolic methods.

If taken as a model of category learning, SCA makes a
novel prediction. As already noted, the model suggests that
typicality differences are ephemeral: with sufficient learning,
performance across different typicality levels becomes indis-
tinguishable. This behavior is particularly evident in Figure 2,
which shows almost no performance differences across typ-
icality levels by the tenth training cycle. At this point, SCA
has encoded maximally specific rules. Rules matching typi-
cal examples cannot become any more specific. Meanwhile,
the model continues to acquire rules matching less typical
examples to the point where these rules also reach maximal
specificity.

The rate at which performance differences disappear can
vary. Figure 1 illustrates performance differences that con-
tinue past the tenth learning cycle. We also see that the dif-
ferences increase before they start decreasing. Furthermore,
itis likely that more complex descriptions, noise, and varying
contextual features can also prolong the model’s performance
differences.

Whether the model’s ephemeral performance differences
are consistent with human behavior has yet to be determined.
Comparing results with data from psychological experiments
will ultimately determine the extent to which the model serves
as a useful analog to human strategies. Regardless of future
comparisons, the model is nevertheless useful for demonstrat-
ing some graded performance and thus indicates that gradient
representations are not necessary for producing graded per-
formance. This suggests particular relevance to fully sym-
bolic rule-based architectures such as Soar (Newell, 1990) in
which both the random selection and the relevant-feature se-



lection versions of SCA have been implemented.' Presenting
a symbolic model that appropriately produces some graded
behavior takes a step in demonstrating the viability of this
class of architectures towards handling graded phenomena.
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