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Preface

The Public Interest Energy Research (PIER) Program supports public interest energy research
and development that will help improve the quality of life in California by bringing
environmentally safe, affordable, and reliable energy services and products to the marketplace.
The PIER Program, managed by the California Energy Commission (Energy Commission),
conducts public interest research, development, and demonstration (RD&D) projects to benefit
California.

The PIER Program strives to conduct the most promising public interest energy research by
partnering with RD&D entities, including individuals, businesses, utilities, and public or
private research institutions.

PIER funding efforts are focused on the following RD&D program areas:
Buildings End-Use Energy Efficiency

Energy Innovations Small Grants

Energy-Related Environmental Research

Energy Systems Integration

Environmentally Preferred Advanced Generation
Industrial/Agricultural/Water End-Use Energy Efficiency

Renewable Energy Technologies

Transportation

Assessment of Household Carbon Footprint Reduction Potentials is the final report for the
Assessment of Household Carbon Footprint Reduction Potential project (contract number UC
500-02-004, work authorization number MR-069) conducted by Lawrence Berkeley National
Laboratory. The information from this project contributes to PIER’s Energy-Related
Environmental Research Program.

For more information about the PIER Program, please visit the Energy Commission’s website at
www.energy.ca.gov/pier or contact the Energy Commission at 916-654-5164

Masanet, Eric, Klaas Jan Kramer, Gregory Homan, Rich Brown (Lawrence Berkeley National
Laboratory) and Ernst Worrell (Ecofys). 2008. Assessment of Household Carbon Footprint Reduction
Potentials. California Energy Commission, PIER-Energy-Related Environmental Research
Program. CEC-500-2008-xxx
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Abstract and Keywords

The term “household carbon footprint” refers to the total annual carbon emissions associated
with household consumption of energy, goods, and services. In this project, Lawrence Berkeley
National Laboratory developed a carbon footprint modeling framework that characterizes the
key underlying technologies and processes that contribute to household carbon footprints in
California and the United States. The approach breaks down the carbon footprint by 35 different
household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail
allows energy and policy analysts to better understand the underlying technologies and
processes contributing to the carbon footprint of California households. The modeling
framework was applied to estimate the annual home energy and supply chain carbon footprints
of a prototypical California household. A preliminary assessment of parameter uncertainty
associated with key model input data was also conducted. To illustrate the policy-relevance of
this modeling framework, a case study was conducted that analyzed the achievable carbon
footprint reductions associated with the adoption of energy efficient household and supply
chain technologies.

Keywords: life-cycle assessment, climate change, embodied energy, embodied carbon, input-
output analysis, supply chain management, energy efficiency



1.0 Executive Summary

Introduction

There is growing interest in the development of tools and methods for calculating the “carbon
footprint” associated with household consumption. In this project, Lawrence Berkeley National
Laboratory developed a carbon footprint modeling framework that characterizes the key
underlying technologies and processes that contribute to household carbon footprints in
California and the United States.

Purpose

The main goal of this project was to develop and demonstrate a carbon footprint modeling
framework that is more useful for policy analysis than existing carbon footprint calculator tools.
Specifically, the research team aimed to develop a modeling framework with greater bottom-up
detail than existing tools, which would allow energy and policy analysts to better understand
the underlying technologies and processes contributing to the carbon footprint of California
households. This detail also facilitates the analysis of specific technology improvement options
for reducing the household carbon footprints in California.

Project Objectives

In support of this goal, the project had three primary objectives: (1) to compile information
sufficient to characterize the annual household consumption of energy, goods, and services by
California residents; (2) to develop a modeling framework to estimate the carbon footprint
associated with these consumption activities; and (3) to analyze some policy-relevant options
for reducing the carbon footprints of California residents.

Project Outcomes

The carbon footprint modeling framework developed in this project has two primary
components: a direct household emissions modeling component and a supply chain emissions
modeling component. The direct household emissions model estimates the annual carbon
emissions associated with household energy use in California, which is attributable to various
end uses for electricity and natural gas (e.g., space heating, appliances, lighting, and
entertainment equipment). The supply chain emissions modeling component estimates the
annual carbon emissions associated with the purchase of household goods and services.

The direct household emissions model was developed using California residential energy end
use data from the California Residential Appliance Saturation Survey. The resulting modeling
framework disaggregates California household energy use into 28 electricity end use
technologies and 7 natural gas end use technologies. Annual carbon emissions arising from
household electricity use were calculated using a California-specific emission factor, which
takes into account the carbon intensity of electricity imports. A preliminary parameter
uncertainty analysis was conducted for key variables in the modeling framework to aid in
results interpretation.



The supply chain emissions model characterizes the annual greenhouse gas (GHG) emissions
associated with 32 underlying fuel end uses in key supply chain sectors (e.g., manufacturing,
commercial, agricultural, and water treatment). A preliminary parameter uncertainty
assessment was conducted for key supply chain modeling data to aid in results interpretation.

The supply chain modeling framework was coupled with data representative of annual U.S.
household expenditures to approximate the total supply chain GHG emissions associated with
the purchase of goods and services of California households.

The results for the estimated average direct home energy and supply chain carbon footprints of
a prototypical California household are summarized in Figure ES-1. The error bars in this
Figure represent the 95% confidence intervals associated with the estimated average emissions.

N Total
Indirect- supply chain
M Direct- natural gas

B Direct- electricity

0 5000 10000 15000 20000 25000

Annual GHG Emissions (kg CO2e/year)

Figure ES-1: Estimated annual direct and supply chain GHG emissions per
household

The direct and supply chain emissions estimates were also disaggregated by key residential and
supply chain fuel end uses to provide insight into the underlying processes and technologies
contributing the carbon footprint of California households. These disaggregated results were
further assessed in a case study aimed at quantifying the carbon footprint reductions achievable
through the adoption of more energy efficient residential and supply chain technologies. A
suite of best practice technology measures applicable to many of the direct and supply chain
fuel end uses were characterized and assessed in the modeling framework. The resulting
estimates for achievable carbon footprint reduction potentials by measure type are summarized
in Figure ES-2 (in this Figure residential measures apply to the GHG emissions resulting from
direct home energy use in Figure ES-1, while commercial, industrial, and agricultural measures
apply to supply chain GHG emissions in Figure ES-1). The error bars in Figure ES-2 represent
the 95% confidence intervals associated with the estimated average emissions.
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Figure ES-2: Estimated GHG emission reductions per household by measure type
Conclusions

The results of the case study suggest that significant reductions in the average carbon footprint
of California households might be realized through the adoption of energy efficient
technologies in California dwellings and in the supply chains that produce goods and services
purchased by Californians. For the technology measures considered, the GHG emissions
reduction potential was estimated at roughly 13% of the case study direct and supply chain
carbon footprint.

The preliminary parameter uncertainty assessment conducted in this project revealed
significant uncertainties surrounding the average carbon footprint estimates generated by the
model. Large confidence intervals in the non-energy supply chain GHG emission factors are
particularly important to acknowledge when interpreting the results of this project.

Benefits to California

The results of this project provide two important contributions toward improved California-
specific household carbon footprint analysis. First, the direct and supply chain GHG emissions
modeling frameworks developed in this project provide greater bottom-up end use detail than
existing carbon calculators. This bottom-up detail allows California energy and policy analysts
to better understand the underlying technologies and processes contributing to the carbon
footprint of California households, and to better assess specific technology improvement
options for reducing the household carbon footprints in California.



Second, the preliminary parameter uncertainty assessments conducted in this project provide
much needed information on the minimum uncertainty surrounding the model’s carbon
footprint estimates, which will help California energy and policy analysts better assess the
usefulness (and limitations) of these carbon footprint estimates toward policy decisions. The
contributions of this project should therefore improve the state of the art in carbon footprint
analyses for California, which can help researchers and policy analysts identify strategies for
reducing the carbon footprints of California residents with greater confidence.



2.0 Introduction

2.1. Background and Overview

There is growing interest in the development of tools and methods for calculating the “carbon
footprint” associated with personal consumption. A carbon footprint is defined as the annual
carbon emissions attributable to a given consumption activity, such as personal transportation
or the purchase and use of goods and services.

For activities related to physical products such as food items, automobiles, or electronics, a
carbon footprint typically includes the carbon emissions arising from raw materials acquisition,
product manufacture, product distribution, product use, and product disposal/recycling. For
services such as banking, health care, and hair salons, the carbon footprint typically includes the
emissions associated with constructing and maintaining the infrastructure necessary to provide
that service to the consumer (for example, office buildings, data centers, communications
systems, furniture, paper, and supplies).

Carbon footprint estimation leverages an analytical method known as life-cycle assessment
(LCA), which is a structured framework for identifying, modeling, and holistically comparing
the environmental impacts of complex systems. Ideally, an LCA should include all important
environmental impacts. However, LCA-based studies and tools with a singular focus on carbon
emissions are becoming increasingly common as society seeks to mitigate the impacts of climate
change.

In particular, there has been much recent emphasis on tools and studies related to estimating
household carbon footprints. The focus on household consumption is warranted, given that
household consumption activities are expected to generate a significant share of global
greenhouse gas (GHG) emissions. For example, Weber and Matthews (2008) estimated that the
global carbon footprint of U.S. households—including personal transportation, operation of
dwellings, and consumption of goods and services—amounted to roughly 5700 megatons (Mt)
in 2004.1

One outcome of this widespread focus on household carbon footprints has been the
introduction of a few dozen carbon footprint calculators over the last two to three years (for a
recent review of some available tools, see United Nations (2008)). Most of these tools target the
consumer, and are designed to raise awareness of the linkage between personal consumption
and global climate change.

In this project, Lawrence Berkeley National Laboratory (LBNL) developed a household carbon
footprint modeling framework that should prove more useful to state policy analysis than
existing consumer-focused carbon footprint calculators. Specifically, this project utilized a
bottom-up modeling approach to estimate the carbon footprints associated with dwelling
operation and supply chains for producing goods and services. This bottom-up detail allows
energy and policy analysts to better understand the underlying technologies and processes

!'In comparison, the U.S. national GHG inventory totaled around 7100 Mt in 2004 (U.S. EPA 2008a).



contributing to the carbon footprint of California households. This detail also facilitates the
analysis of specific technology improvement options for reducing household carbon footprints
in California.

2.2. Project Objectives

The main goal of this project was to develop and demonstrate a household carbon footprint
modeling framework that would provide California energy and climate researchers with a more
useful tool for analyzing policies aimed at reducing the carbon footprints of state residents.

In support of this goal, the project had three primary objectives: (1) to compile information
sufficient to characterize the annual household consumption of energy, goods, and services by
California residents; (2) to develop a modeling framework to estimate the carbon footprint
associated with these consumption activities; and (3) to analyze some policy-relevant options
for reducing the carbon footprints of California residents.

While the research team met each of these project objectives, some key aspects of the analysis
differed from the original research plan due to external developments. In 2006 when the
original research plan was written, no California-specific carbon footprint tools existed. Thus,
the original research plan was designed largely to fill existing voids in data compilation and
modeling techniques relevant to state-level carbon footprint analysis.

Since 2006, however, several tools and studies have emerged that provide greater state-specific
carbon footprint estimation capabilities. For example, the Cool California carbon footprint
calculator (Cool California 2008) —which was released under the auspices of several state
agencies —provides estimates based on local utility emission factors.? The Cool California
calculator also estimates supply chain carbon footprints based on different consumption
patterns for energy, goods, and services in California, which can be varied by in-state region of
residence and income level. These consumption pattern data are similar to what the research
team originally planned to compile to meet objective (1).

Additionally, work sponsored by the California Air Resources Board (CARB) is currently
adding California-specific capabilities to the national Economic Input-Output Life-Cycle
Assessment (EIO-LCA) model (Hendrickson et al. 2006; CMU 2008). The EIO-LCA model
estimates the average supply chain emissions associated with purchases of a wide variety of
goods and services. Originally, the research team planned to take a similar, but more
preliminary, approach to tailoring national EIO-LCA data to California as part of the research
related to objective (2). However, the recent CARB-sponsored work provides state-specific
supply chain analysis capabilities that exceed the limited reach of the research team’s original
approach.

2 The Low Impact Living carbon footprint calculator (Low Impact Living 2008) also allows one to tailor
results based on regional environmental impact data. However, the research team could not verify the
underlying regional data assumptions, and hence the tool’s capabilities for providing California-specific
analyses.



Thus, the team adjusted its research plan to ensure that the results of this project would still be
novel and important contributions to state-specific carbon footprint analysis methods.
Specifically, the research team developed a bottom-up supply chain modeling framework that
disaggregates the carbon footprint of purchased goods and services by major energy end use
(e.g., lighting and motor systems) across the supply chain. These capabilities allow for detailed
assessment of supply chain emissions sources and technology-based emissions mitigation
potentials, and represent a significant enhancement to existing supply chain carbon footprint
methods.

Additionally, the team conducted a preliminary parameter uncertainty assessment of the new
modeling framework to aid in interpreting results. Although it is widely accepted that
uncertainties are pervasive in carbon footprint assessments, little work has been published to
date that attempts to address these uncertainties in a quantitative manner.

Both of these research plan adjustments addressed important knowledge gaps while allowing
the research team to meet the original project objectives.

2.3. Report Organization

The report begins with a description of the project approach in Section 3, including the key
analytical methods and data sources used to construct bottom-up carbon footprint models
related to household energy use and purchased goods and services. Section 4 discusses project
outcomes and presents the results of the baseline analysis and preliminary uncertainty
assessment. Also presented in Section 4 are the results of a case study to assess the potential for
reducing the carbon footprint of a prototypical California household through the deployment of
key best practice technologies. Lastly, Section 5 provides conclusions and recommendations.



3.0 Project Approach

3.1. Overview

The carbon footprint modeling framework developed in this project has two primary
components: a direct household emissions modeling component and a supply chain emissions
modeling component. The direct household emissions model estimates the annual carbon
emissions associated with household energy use in California, which is attributable to various
end uses for electricity and natural gas (e.g., space heating, appliances, lighting, and
entertainment equipment). The supply chain emissions modeling component estimates the
annual carbon emissions associated with the purchase of household goods and services.?

The modeling framework developed in this project was designed for aggregate-level analyses of
household carbon footprints and policy strategies for reducing these footprints. Thus, data
compilation efforts focused on information related to the energy use and consumption patterns
at the level of the household. However, the modeling framework developed in this study could
be used to estimate the carbon footprints of individuals if the appropriate data are available.

The research team also conducted a preliminary analysis of parameter uncertainty associated
with the data used to construct and populate the direct and supply chain carbon emissions
models. Both modeling components relied extensively on publicly-available data sources and
estimates that contained inherent uncertainties. For example, the supply chain modeling
framework relied on data from national-level economic and energy use surveys, which are
subject to both sampling and non-sampling errors. Where available, the research team compiled
information on survey standard errors or other estimation uncertainties associated with the
data used to develop the models.

There are two important caveats to the uncertainty assessment conducted in this project. First,
the research team only considered parameter uncertainty associated with key data assumptions
in the modeling framework. An assessment of modeling uncertainty was beyond the scope of
this project.* Second, because parameter uncertainty information was not available for all data
used to construct the models, only a partial parameter uncertainty assessment was possible.
Thus, the uncertainty assessment could only estimate the minimum confidence intervals
associated with key modeling results. However, the establishment of minimum confidence

3 This project did not address the carbon emissions associated with personal transportation, given that
such analyses are already possible with reasonable accuracy using available carbon calculator tools such
as Cool California. However, the carbon emissions associated with household energy use and the
purchase of goods and services are estimated to account for around two-thirds of the average household
carbon footprint in the United States (Weber and Matthews 2008).

4 Parameter uncertainty refers to the uncertainty associated with model input data. Modeling uncertainty
refers to uncertainties introduced by the underlying mathematical structure of a model. Proper
assessment of modeling uncertainty typically involves comparing the results of different models to
expose how structural differences between models affect results.



intervals is still a valuable contribution given the dearth of information on parameter
uncertainty in previous carbon footprint studies and available carbon calculators.

Section 3.1 provides an overview of the key assumptions and data sources used to develop the
direct household carbon emissions model. The assumptions and data sources associated with
the supply chain emissions model are discussed in Section 3.2. Both sections also provide a
summary of the research team’s approach for estimating parameter uncertainties in the
modeling framework. The limitations of the supply chain modeling approach are discussed
briefly in Section 3.3.

3.2. Direct Household Emissions Modeling Framework

Most household carbon footprint models estimate direct emissions based on household-level
energy use data, which individuals can obtain from utility bills or household electricity and
natural gas utility meters. Such an approach is appropriate for individuals who wish to estimate
their total carbon footprint, and to better understand the relative contribution of household
energy use to that footprint.

In order to assess state-level policy options for reducing household carbon footprints, however,
a more detailed representation of household energy end use technologies is required.
Specifically, state energy and policy analysts require bottom-up details that reflect current
saturations and efficiencies of key household appliances and dwelling characteristics. Such
detail is required to more accurately estimate the household carbon emission reduction
potentials associated with behavior- and technology-based mitigation policies.

The basic form of the bottom-up modeling framework that was used to estimate the average
direct emissions of California households in this project is expressed in Equation 1.

(1) Gop = Z(UECij*sij*gi)
i-1 j-1
Where: Go- average annual direct household GHG emissions (kg COze/year)

UEC ;= average unit energy consumption of end use technology j for
fuel i (units = kWh/year for electricity and therms®/year for natural
gas)

S;; = saturation of end use technology j for fuel i (%)

g, =average residential GHG emission factor for fuel i (units = kg

CO2e/kWh for electricity end uses and kgCOze/therm for natural gas
end uses)

> A therm is equivalent to 100,000 British thermal units, or 105.5 megajoules, of energy.



Given California’s historical focus on research and standards for residential energy efficiency,
sufficient data exist to populate the model described by Equation 1. To do so, the research team
used technology unit energy consumption (UEC)® and saturation data from the California
Residential Appliance Saturation Survey (RASS) database (KEMA 2008).

The RASS database includes estimates of residential technology saturations (as of 2004) based
on surveys data from 21, 920 customers of California’s main electricity and natural gas utility
companies. Saturation data are provided for 28 electricity end use technologies and 7 natural
gas end use technologies. The RASS study also provides average UEC values for end use
technologies in each survey sample, based on regression analysis of utility billing data using a
conditional demand model (KEMA-Xenergy et al. 2004).

Furthermore, the RASS database allows for analysis of technology saturation and UEC data
based on household region, utility company, dwelling type, income level, and other household
characteristics. In this project, the research team focused on compiling average UEC and
technology saturation data across all California households (i.e., a composite of all household
types) in the RASS database.

Next, the research team estimated confidence intervals for the RASS technology saturation and
average end use UEC data. Ninety-five percent confidence intervals were estimated for each
technology saturation assumption, based on survey sampling error estimates provided by
KEMA-Xenergy et al. (2004) for the different sample populations in the RASS study. (These
sample populations were based on California utility territories and metered versus non-metered
households).

The RASS study did not explicitly estimate standard errors for its average end use UEC
estimates. However, the regression analysis approach used by the RASS study team to estimate
average end use UECs is analytically similar to the regression approach used by the U.S.
Department of Energy to estimate end use UECs in its quadrennial U.S. Residential Energy
Consumption Survey (RECS) (U.S. DOE 1983). Thus, the research team used published standard
errors for average end use UECs from the 2001 RECS (U.S. DOE 2003) as proxies for RASS end
use UEC standard errors in this project.

Table 1 and Table 2 summarize the 95% confidence intervals that were estimated for weighted
average UECs by end use and fuel for California households.” An important caveat is that the
confidence intervals in Table 1 and Table 2 refer only to the statistical confidence in the
estimates of weighted average UECs in these Tables (i.e., within what range the “true” —i.e.,
population—weighted average UEC would lie if one could take an infinite number of survey
samples from the population). These confidence intervals should not be interpreted as

® Unit energy consumption refers to the annual energy use of a given appliance.

7 Weighted average UECs were calculated by multiplying the average end use UEC by its saturation across all
California households (i.e., the product of the first two variables in the right side of Equation 1). The 95%
confidence intervals in Tables 1 and 2 were generated via Monte Carlo analysis (1000 runs) using Crystal Ball
software.
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capturing 95% of the population distribution of individual household UECs for a particular end
use.®

Furthermore, the data presented in Table 1 and Table 2 represent the average of all California
households; however, the methods described in this section could be employed to generate
similar data to estimate direct household carbon emissions for particular segments of the
California household population (e.g., by income class, dwelling type, or region of residence).

Table 1: Estimated average electrical end use UECs and 95% confidence

intervals
UEC 95% Confidence Interval
End Use (kWh/year) | Lower Upper
Space heating (conventional) 78 64 94
Space heating (heat pump) 12 6 18
Auxiliary space heating 59 49 68
Furnace fan 76 66 88
Central air conditioning 507 387 630
Room air conditioning 31 18 44
Evaporative cooling 25 17 35
Water heating 167 126 214
Dryer 192 175 211
Clothes washer 80 74 86
Dish washer 47 43 51
First refrigerator 789 736 842
Additional refrigerator 212 189 237
Freezer 168 150 188
Pool pump 240 208 274
Spa 37 32 43
Outdoor lighting 143 131 154
Range/oven 110 100 120
Television 466 433 499
Spa electric heat 68 51 86
Microwave 126 117 135
Home office equipment 27 24 30
Personal computer 390 360 420
Water bed 16 9 24
Well pump 34 26 43
Interior lighting and misc. 1832 1703 1960
Total electricity use 5932 5697 6172

8 Streiner (1996) provides a helpful review of the use of standard errors for constructing confidence intervals from
survey data, and their difference from the standard deviation.
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Table 2: Estimated natural gas end use UECs and 95% confidence

intervals
UEC 95% Confidence
(thermsl/year) Interval
End Use Lower Upper
Space heating 188 165 211
Water heating 189 163 215
Dryer 13 11 14
Range/oven 31 28 34
Pool heating 7 4 9
Spa heating 4 3 5
Total natural gas use 431 391 471

The research team also estimated average GHG emission factors, and the 95% confidence
intervals associated with these estimated average GHG emission factors, for residential
electricity and natural gas use in California. These estimates are summarized in Table 3

The GHG emission factor for electricity was based on information from Marnay et al. (2002),
which presented fuel data for electricity generation and estimates for average carbon intensity
of California electricity (including imported electricity) from three different models. The fuel
data from Marnay et al. (2002) were coupled with average GHG emission factors by fuel from
the California GHG emissions inventory (CARB 2008).

However, no uncertainty data for the California GHG emissions inventory estimates for
electricity generation could be found in the public domain. Thus, the research team estimated
95% uncertainty ranges for electricity generated from different fuel types based on data from
the Intergovernmental Panel on Climate Change’s (IPPC’s) GHG emission factor database
(IPCC 2008) and the U.S. national GHG emissions inventory (U.S. EPA 2008a).

The GHG emission factor for residential natural gas combustion in California was based on
emission factors obtained from the California GHG emissions inventory (CARB 2008). As for
the GHG emission factors for electricity generation, no uncertainty data for the California GHG
emissions inventory estimates for natural gas combustion could be found in the public domain.
Thus, the research team estimated 95% uncertainty ranges for residential natural gas
combustion based on data from the IPPC’s GHG emission factor database (IPCC 2008) and the
U.S. national GHG emissions inventory (U.S. EPA 2008a).
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Table 3: Estimated average GHG emission factors for California household

energy use
95% Confidence Interval
Emission factor Unit Value Lower Upper
Electricity kg CO2e/kWh 0.40 0.38 0.44
Natural gas kg CO2e/therm 5.92 5.71 6.34

3.3. Supply Chain Emissions Modeling Framework

To estimate the life-cycle emissions generated by the purchase of various household goods and
services, the research team relied on an established modeling approach that couples input-
output (IO) economic data with sector-level data on energy use and GHG emissions.

Simply described, such models have two primary structural components. The first component is
an IO total requirements matrix that quantifies the economic interdependencies of all key
sectors in an economy. For a unit of economic output from one sector, the total requirements
matrix allows one to estimate the corresponding economic inputs to that sector that are required
from all other sectors in the economy. The second component is a set of coefficients that
quantify the average fuel use and GHG emissions per unit of economic output for each sector in
the economy. By coupling these coefficients with the data in the total requirements matrix, it is
possible to estimate the economy-wide energy use and GHG emissions associated with a unit of
economic output from any sector in the economy.

This general approach gained traction in the United States in the 1970s in the field of net energy
analysis (Herendeen and Bullard 1975). More recent work has extended this approach to
include other environmental impact categories (e.g., criteria air pollutants and toxic emissions),
most notably by Carnegie Mellon University (CMU) in the development of its widely-used
Economic Input-Output Life-Cycle Assessment (EIO-LCA) tool (Hendrickson et al. 2006; CMU
2008).2

Additionally, a number of researchers have used the general approach to derive population-
level estimates of the carbon footprints associated with a variety of consumer spending
activities in different geographic regions. Recent examples of such work include supply chain
carbon footprint analyses for the United States by Weber and Matthews (2008), for the state of
Washington by Morris et al. (2007), for the Netherlands by Vringer and Blok (1995), for
Australia, Brazil, Denmark, India, and Japan by Lenzen et al. (2006), and for Korea by Park and
Heo (2007).

The IO-based supply chain modeling framework developed in this project expanded previous
work in two important ways. First, the research team developed fuel end use coefficients for
many of the economic sectors in its model. An end use is defined as an energy-consuming
technology or process within a given sector, such as lighting and heating, ventilation, and air
conditioning (HVAC) in the commercial sector or motors and steam systems in the industrial
sector. The fuel end use coefficients developed by the research team provide greater detail on

® For more information on the 10-based LCA approach, the reader is referred to the references cited in this
paragraph.
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the nature of energy use and energy-related GHG emissions across the supply chain than
previous work provides. Such end use detail also facilitates the assessment of technology-
specific supply chain GHG mitigation strategies (see Section 3), which is valuable for policy
analysis.

Second, the research team included parameter uncertainty estimates when constructing the
supply chain model, whenever such estimates were available. This uncertainty analysis helps
shed light on how precisely the modeling framework can estimate average supply chain GHG
emissions using available data sources.

The research team used the 2002 U.S. benchmark total requirements matrix to model 10
transactions across the supply chain for 426 economic sectors. This matrix was developed by the
U.S. Bureau of Economic Analysis (U.S. BEA 2008) and is the most recent benchmark matrix
available.!® Details specific to the estimation of energy coefficients are described in Section 3.3.1.
The process for estimating GHG emission coefficients is described in Section 3.3.2.

3.3.1. Supply Chain Fuel Use

The fuel use coefficients developed in this project were based largely on fuel use data that were
compiled by CMU in the development of its 2002 U.S. benchmark EIO-LCA model (Weber and
Matthews 2009). The research team used the CMU data to construct fuel use coefficients for all
426 sectors in the 2002 benchmark total requirements matrix across five different fuel categories:
(1) purchased electricity; (2) natural gas; (3) coal; (4) petroleum; and (5) biomass/wastes/other.

Next, the research team compiled available information to characterize the average fuel end use
breakdown for each IO sector for which such data existed.

For the manufacturing IO sectors, which represent 279 of the 426 sectors contained in the total
requirements matrix, the research team derived average end use breakdown data for purchased
electricity, natural gas, coal, and petroleum using information from the U.S. Department of
Energy’s 2002 and 1997Manufacturing Energy Consumption Surveys (MECS) (U.S. DOE 2001,
2005). The MECS data were used to disaggregate total IO sector fuel use into 10 distinct end
uses, which are summarized in the first section in Table 4.1

The MECS provides average U.S. fuel end use breakdown data for 69 different North American
Industry Classification System (NAICS) codes (data are available for all 3-digit NAICS codes,
and many 4-digit and 6-digit NAICS codes). Where an exact match existed between a
manufacturing IO sector and a NAICS code for which MECS end use breakdown data existed,
the research team applied the corresponding MECS end use breakdown data. For most IO

10 The U.S. BEA develops detailed benchmark IO Tables roughly every five years. The previous
benchmark IO Table, which contained nearly 500 sectors, was developed for 1997.

I MECS end use data are provided for 14 different end use categories in total; the research team
combined four of these categories (other process use, other facility support, other nonprocess use, and
end use not reported) into one generic “other” category.
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sectors, however, the research team had to apply the nearest match, which was at worst the
MECS breakdown at the 3-digit NAICS level.

For the commercial IO sectors, the research team developed average fuel end use breakdown
data for purchased electricity and natural gas, which are the dominant fuels used in commercial
buildings in the United States. These end use breakdown data were derived using information
from the U.S. Department of Energy’s 2003 Commercial Building Energy Consumption Survey
(CBECS) (U.S. DOE 2008a). The CBECS provides average breakdown data for nine separate
commercial end uses of electricity, and three separate commercial end uses of natural gas. The
commercial end use categories are summarized in the second and third sections in Table 4.

Table 4: Fuel coefficient end use disaggregation for various IO sectors

Manufacturing (electricity, natural gas, coal, and petroleum)

Conventional Boiler Use Facility HVYAC
CHP and/or Cogeneration Process Facility Lighting
Process Heating Onsite Transportation
Process Cooling and Refrigeration Conventional Electricity Generation
Machine Drive Other

Electro-Chemical Processes
Commercial (electricity)

Space Heating Cooking
Cooling Refrigeration
Ventilation Office Equipment
Water Heating Computers
Lighting Other
Commercial (natural gas)
Space Heating Cooking
Water Heating Other
Agriculture (electricity, natural gas, petroleum)
Motors Machinery
Lighting Other

Onsite transport
Water treatment (electricity)
Pumping systems Other

Unlike the MECS, the CBECS does not report fuel end use breakdown data by NAICS code.
Rather, all data are reported by building type.'? However, the U.S. Department of Energy

12 There are 16 different building types for which data are available in CBECS: education, food sales, food
service, inpatient health care, outpatient health care, lodging, retail (other than malls), enclosed and strip
malls, office, public assembly, public order and safety, religious worship, service, warehouse and storage,
other, and vacant.
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provides a rough Table of correspondence between CBECS building types and 3-digit NAICS
code (U.S. DOE 2008a). The research team used this Table to first map the CBECS data to
NAICS codes, which were then mapped to the appropriate 1O sector. This process allowed the
research team to estimate electricity and natural gas end use breakdown data for 103 IO sectors.

Lastly, electricity use for water and sewage treatment was disaggregated into pumping versus
non-pumping electricity use based on information from Brown et al. (2007).

In total, the above approach allowed the research team to estimate important fuel end uses in
397 of the 426 10 sectors in the 2002 benchmark total requirements matrix.

Equation 2 summarizes the general approach for estimating the total economy-wide energy use,
and energy use of key supply chain end uses, associated with a unit of economic output from a
given IO sector.

2) Eiji = ZEzl(Eik *?ijk *0y )

Where: Eiji = average use of fuel i for end use j per unit of output from sector 1

MJ/$)

n = number of sectors in the IO matrix

€ik = average use of fuel i per unit output from sector k (MJ/$)

f ijk = average fraction of total energy from fuel i that is needed for end

use j in sector k (%)

0,, = total dollar output required from sector k to produce a dollar of

output from sector |

The research team also compiled parameter uncertainty information for data used to construct
the fuel and fuel end use coefficients, when such uncertainty information existed. For the fuel

coefficients (i.e., the variable ei in Equation 2), the team constructed 95% confidence intervals
for the following fuels and IO sectors:

e all fuels for the manufacturing IO sectors, based on survey standard error data from the
2002 MECS (U.S. DOE 2005)

e electricity and petroleum use for the construction IO sectors, based on survey standard
error data from the 2002 U.S. Economic Census (U.S. Census Bureau 2005).

For the fuel end use breakdown fractions (i.e., variable f ix in Equation 2), the research team

constructed 95% confidence intervals for the following fuel end uses and IO sectors:
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e all fuel end uses in the manufacturing IO sectors, based on survey standard error data
from the 2002 MECS (U.S. DOE 2005)

e all fuel end uses in the commercial IO sectors, based on survey standard error data from
the 2003 CBECS (U.S. DOE 2008a).

As in the previous section, the 95% confidence intervals referred to the statistical confidence in
the estimates of average fuel use by 1O sector (i.e., within what range the “true” —i.e.,
population—average fuel use per sector would lie if one could take an infinite number of
survey samples from the population). The confidence intervals were not meant to capture 95%
of the population distribution of fuel use at individual establishments within an IO sector.

3.3.2. Supply Chain GHG Emissions

Equation 3 summarizes the general approach for estimating the total economy-wide GHG
emissions associated with a unit of economic output from a given IO sector. The research team
estimated supply chain GHG emissions arising from fossil fuel use (i.e., the first term on the
right side of Equation 3) as well as supply chain GHG emissions arising from non-energy
sources in (i.e., the second term on the right side of Equation 3).

G) =YY [Ena )+ 2 lou*r)

i=1 j=1

Where: Gi- average economy-wide GHG emissions generated per unit
output from sector 1 (kg COze/$)

Eiji = average use of fuel i for end use j per unit of output from sector 1

(MJ/$)
—F
0; =average GHG emission factor for fuel i (kg COz2e/M])

0,, = total dollar output required from sector k to produce a dollar of

output from sector |

—P
g, = average process (i.e., non-energy) GHG emissions per unit

output from sector k (kg COze/$)

Supply chain GHG emissions arising from fossil fuel use were estimated using an average GHG
emission factor for each fuel. These emission factors were multiplied by average supply chain
fuel use (as estimated by the process described in Section 2.3.1) to arrive at an estimate of
average supply chain fuel-related GHG emissions. The research team estimated average GHG
emission factors for each fuel type based on data from the IPPC’s GHG emission factor database
(IPCC 2008) and the U.S. national GHG emissions inventory (U.S. EPA 2008a).
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Table 5 summarizes the assumed average value and 95% confidence interval for each fossil fuel
emission factor. The large parameter uncertainty surrounding the average emission factor for
waste and other fuels reflects the diversity of possible fuels that fall into this category; however,
with improved data on waste and other fuels used by IO sector this parameter uncertainty can
be reduced.

Table 5: Estimated average GHG emission factors for supply chain fuel

use
kg 95% Confidence Interval

Fuel CO2e/MJ Lower Upper
Natural gas 0.056 0.054 0.058
Coal 0.098 0.095 0.101
Liguefied petroleum gas 0.069 0.068 0.073
Motor Gasoline 0.074 0.073 0.075
Distillate Fuel 0.072 0.071 0.074
Residual Oil 0.077 0.076 0.079
Waste and other fuels 0.116 0.048 0.183

Non-energy sources of GHG emissions in the supply chain include such sources as landfill
methane emissions, agricultural soil and manure management, enteric fermentation (i.e.,
methane from animals), fugitive emissions from fossil fuel production and distribution, and
process-related emissions from steel, cement, and semiconductor manufacture. To estimate
these emissions, the research team relied on IO sector level non-energy GHG emission data
compiled by CMU in the development of its 2002 U.S. benchmark EIO-LCA model (Weber and
Matthews 2009). The primary source for the CMU data was the 2002 U.S. national GHG
emissions inventory from the U.S. Environmental Protection Agency (U.S. EPA 2004).

The U.S. EPA (2004) national inventory contains estimates of non-energy related GHG
emissions from over forty different sources, along with 95% confidence intervals for each
estimate. The estimated confidence intervals for many of these data are significant; for example,
the range for methane emissions from landfills is +/-30%, the range for methane emissions from
natural gas systems is +/-40%, and the range for process-related CO2 emissions from iron and
steel production is +78%/-58%. Such uncertainties are currently unavoidable given the state of
measurement and estimation techniques for these GHG inventory data; however, they also
represent important parameter uncertainties in the modeling framework of this study.

To construct 95% confidence intervals for non-energy GHG emissions in the supply chain
model, the research team first compiled 95% confidence interval estimates from U.S. EPA (2004)
for each important emissions source. Next, the research team mapped these uncertainties to IO
sector-level non-energy GHG emission coefficients using the CMU 2002 EIO-LCA data.

3.3.3. Limitations

The general IO-based approach used for supply chain modeling in this project has several
benefits, including the ability to model complex life-cycle systems in simple and efficient
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manner and the ability to estimate average life-cycle impacts for a wide variety of different
product groups and types of services.

However, there are a number of key limitations to this method, which have been discussed
extensively in the literature (see for example Hendrickson et al. 2006). In particular, there are
several limitations that are important caveats to the modeling approach described in Section
3.3.2.

First, the IO benchmark total requirements data used to estimate economy-wide transactions
reflect U.S. economic infrastructures and supply chain technologies as of 2002. These are the
most recent such IO data available, however, and were first issued by the U.S. Bureau of
Economic Analysis in late 2008. The implication is that the supply chain modeling framework
developed in this project reflects static transactions that may lose relevance to current supply
chains over time.

Second, the method is only capable of estimating average fuel use and GHG emissions for a
given IO sector as a whole. For IO sectors with heterogeneous product outputs (e.g., the frozen
food IO sector), the method provides fuel use and GHG emissions estimates that are averaged
across all goods or services produced by that IO sector. However, the method cannot estimate
fuel use and GHG emissions specific to any product within that IO sector (e.g., frozen
blueberries).

Third, the method relies on many different data from a diversity of different sources. Thus, the
uncertainties associated with the method are significant. However, the preliminary parameter
uncertainty estimates compiled in this project provide at least some idea of the minimum
parameter uncertainty associated with the estimated averages for each IO sector. This project
could not identify parameter uncertainty data for many of the model inputs, though, so the
results should not be interpreted as comprehensive of all parameter uncertainties. Additionally,
this project did not address modeling uncertainty, which is another key source of uncertainty
inherent in the I0-based method.

Moreover, it was not possible to perform a parameter uncertainty assessment of the 10
benchmark total requirement matrix, which is the primary structural component of the supply
chain modeling framework. Several researchers have explored error propagation in IO Tables in
a theoretical fashion (see for example Hendrickson et al 2006, Nijkamp et al. 1992, or Bullard
and Sebald 1977). However, given the dozens of data sources used to construct the IO matrices
and the lack of publicly available information on data and modeling assumptions, a parameter
uncertainty assessment of U.S. IO matrices is not possible. Thus, the parameter uncertainty
estimates in this project were limited to available data on fuel use, fuel end uses, and GHG
emission factors.

Lastly, the fuel use, fuel end use, and GHG emissions coefficients employed in this study are
based on average U.S. conditions for each IO sector. In reality, the supply chains for goods and
services consumed in California extend across the globe. There is a growing research effort
aimed at developing multi-regional input-output (MRIO) models to disaggregate U.S. supply
chain transactions by country of origin (see for example Weber and Matthews 2008). The
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development of such MRIO models is a complicated process that was beyond the scope of this
project. Thus, a limiting feature of the modeling framework discussed in Section 3.3.2 is that all
estimates reflect “made in the U.S.A” conditions when in fact global supply chains are
required.’

As a result, the modeling framework will only provide an average U.S. supply chain footprint
when in fact the supply chains for certain goods and services purchased by Californians may
differ significantly from national average supply chains. Further implications of this limitation
are that the model may overestimate the supply chain GHG emissions—and GHG emission
reduction potentials (see Section 4)—for California supply chains, given that California’s
commercial and industrial buildings are typically more energy efficient than the national
average. However, without an MRIO model that disaggregates supply chain fuel use and GHG
emissions by activities occurring inside and outside the state, it is difficult to quantify the extent
of such overestimation.

13 \Weber and Matthews (2008) estimated that roughly 30% of the supply chain GHG emissions associated with the
purchase of goods and services by U.S. households occurs outside U.S. borders. In the future, the modeling
framework developed in this project could be coupled with MRIO models (such as those discussed in Weber and
Matthews 2008) to estimate supply chain GHG emissions, and GHG emissions reduction potentials (see Section 4)
in a more accurate, country-specific fashion.
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4.0 Project Results

The main goal of this project was to develop and demonstrate a household carbon footprint
modeling framework that would provide California energy and climate researchers with a more
useful tool for analyzing policies aimed at reducing the carbon footprints of state residents.

In support of this goal, the research team developed the modeling framework described in
Section 3, which can be used to estimate the direct and supply chain carbon footprints of
California households in a bottom-up fashion. Furthermore, the research team compiled data to
analyze the parameter uncertainty associated with this modeling approach, to the extent
feasible.

This section describes how the modeling framework was applied to meet the specific objectives
of this project: (1) to estimate the carbon footprint of California households based on

representative annual consumption of energy, goods, and services by California residents, and
(2) to analyze policy-relevant options for reducing the carbon footprints of California residents.

4.1. Estimation of Home Energy and Supply Chain Carbon Footprints

As discussed in Sections 2 and 3, the research team focused on compiling input data and
uncertainty information sufficient to estimate the direct (home energy) of California households
as well as the supply chain carbon footprints associated with household purchases. The direct
carbon footprint for the average California household was estimated using the analytical
approach, data sources, and uncertainty ranges discussed in Section 3.2.

To estimate an average annual supply chain carbon footprint, the research team coupled the
modeling framework discussed in Section 3.3 with a prototypical annual portfolio of purchased
goods and services based on the U.S. Bureau of Labor Statistics” Consumer Expenditure Survey
(CES) (U.S. BLS 2008). The CES compiles data on average U.S. consumer spending for hundreds
of different goods and services based on a combination of weekly diaries and quarterly
telephone interviews. The CES is a national survey, but also reports spending data at a less
detailed level for specific regions and metropolitan areas in the United States.

The research team used 2002 average annual spending data for U.S. households as a proxy for
the annual purchases of goods and services in California. These data are summarized in
Appendix A. These 2002 national average data were selected for several important reasons.

First, the CES only provides standard survey error estimates for spending data that are reported
at the national level. This is because the statistical methods of the survey are designed to
characterize national, rather than local, spending habits with reasonable certainty. Thus the
research team used national data as a proxy for California in order to estimate the minimum
parameter uncertainties of the modeling framework (which was a key goal of this project). The
use of regional or metropolitan area CES data are expected to result in greater parameter
uncertainties given the survey design.

Second, the 10-based supply chain model reflects national average producer prices. Thus,
regional and metropolitan area spending data from the CES (which are reported in local prices)
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first have to be adjusted for regional differences in the price of goods and services to be fully
compatible with the national IO model. The research team could not find sufficient information
to convert the regional or California metropolitan area CES data into national average prices for
all goods and services.

Third, spending data on goods and services are available in greater detail at the national level
then they are at the regional or metropolitan level.

Fourth, although more recent (i.e., 2007) national average data are available from the CES, these
data would first have to be converted into 2002 producer prices to be compatible with the 2002
IO model. As a matter of efficiency, the research team chose to use the 2002 CES spending data
since they are temporally compatible with the supply chain modeling framework in their
current form.

Lastly, the primary goal of this project was to develop improved analytical methodologies for
analyzing household carbon footprints, as opposed to developing incrementally better input
data for generating California household footprint estimates. Thus, the research team chose the
U.S. national CES data as the most appropriate data for illustrating the capabilities of the
modeling framework via the case study presented in this section (based on the points made in
the preceding paragraphs). However, in the future improved consumer spending data could be
developed for California to generate more representative supply chain carbon footprint
estimates.

The research team converted the 2002 national average CES data into 2002 national average
producer prices using information from the U.S. Bureau of Economic Analysis that estimates
post-producer transportation costs and wholesale and retail margins (U.S. BEA 2008). Next, the
CES data for each purchased good and service were mapped to the appropriate IO sector (i.e.,
the economic sector that produces that good or service).

The research team also estimated a 95% confidence intervals corresponding to the average
spending data for each purchased good and service using standard error estimates provided by
the CES for annual and weekly expenditures (U.S. BLS 2008). The aggregate expenditures
associated with each IO sector were then calculated, and each IO sector was lumped into a
broader consumption category (e.g., food and beverages consumed at home) to aid in results
interpretation using categories proposed by Weber and Matthews (2008) as a guide.

The final assumptions for annual average expenditures (in 2002 producer prices), 95%
confidence intervals associated with the average expenditure data, IO sectors, and broad
consumption categories are summarized in Appendix A.™

14 As mentioned in Section 3, this project did not consider the carbon footprint associated with personal
transportation. Thus, the annual expenditure assumptions summarized in Appendix A do not include
purchases of vehicles (new or used), vehicle-related expenditures (e.g., auto insurance, gasoline, or
repair/maintenance), or other transportation-related spending (e.g., airfares).
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The good and services spending data in Appendix A were then coupled with the total supply
chain GHG emissions estimates for each sector (i.e., kg COze/$) as calculated by the methods
summarized by Equations 2 and 3.

Figure 1 summarizes the resulting estimates of the average annual household direct (home
energy) and supply chain carbon footprints. Total combined GHG emissions are estimated at
roughly 20,000 kg of carbon dioxide equivalent (COze) per year. Of this amount, over three-
quarters 15,500 kg of GHG emissions are estimated to be attributable to the consumption of
goods and services.

B Total

Indirect- supply chain

B Direct- natural gas

B Direct- electricity

0 5000 10000 15000 20000 25000

Annual GHG Emissions (kg CO2e/year)

Figure 1: Estimated average annual direct and supply chain GHG emissions per
household

The results in Figure 1 suggest that, on average, the carbon footprint associated with household
consumption of goods and services is around three times the carbon footprint associated with
its home energy use. These results differ significantly from the most recent U.S. average carbon
footprint study by Weber and Matthews (2008), which estimated that GHG emissions associated
with home utility use were of roughly similar magnitude to supply chain GHG emissions. The
disproportionately low contribution of home energy use to California’s average household
carbon footprint is likely attributable to California’s longtime efficiency standards for
appliances and residential dwellings, the low carbon intensity of its electricity supply, long
running utility and local government programs on energy efficiency, and mild climate.

Also included in Figure 1 are estimated 95% confidence intervals surrounding the reported
average values for each results category. These confidence intervals (and all others reported in
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this section) were estimated via Monte Carlo analysis (1000 runs) using the uncertainty data
summarized in Section 3.2 and Equation 1. Crystal Ball software was used for the Monte Carlo
analysis.

As mentioned in Section 3, the research team was able to estimate parameter uncertainty
information for several key sources of modeling input data, but only for a fraction of the total
data inputs. Figure 1 shows that even a partial parameter uncertainty assessment reveals
appreciable uncertainty in the estimated average value for total supply chain GHG emissions
(+14%/-5%). The uncertainty ranges surrounding the average emissions from home natural gas
and electricity use are somewhat smaller, due to relatively lower parameter uncertainties on the
appliance energy use, saturations, and residential GHG emission factor input data.

Figure 2 summarizes the estimated average end use breakdown of GHG emissions arising from
home natural gas use in California. The majority of GHG emissions associated with household
natural gas use is attributable to two primary end uses: water heating and space heating. The
estimated 95% confidence intervals surrounding the reported average values for both of these
end uses was around +/-15%, which underscores the appreciable uncertainties associated with
estimating end use GHG emissions of discrete end uses. Still, this end use resolution provides
important capabilities for modeling and assessing carbon footprint reduction strategies, as
illustrated in the case study in Section 4.2. Furthermore, the estimated confidence intervals
allow the analyst to interpret the results of any further analyses that employ these average end
use estimates with the proper level of caution.

B Water heating
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Figure 2: Estimated annual direct natural gas GHG emissions per household by
end use
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Figure 3 summarizes the estimated average end use breakdown of GHG emissions arising from
home electricity use in California. The largest sources of electricity-based GHG emissions in the
average California household are seen to be indoor lighting, refrigeration, central air
conditioning, televisions, and personal computers. The estimated 95% confidence intervals
surrounding the reported averages range from +/-25% for central air conditioning to +/-10% for
televisions, lighting, and personal computers.

The results in Figure 2 and Figure 3 are in general agreement with the findings of other recent
household energy use studies in California (see for example Itron and KEMA 2008). However,
the research contributions of the direct home energy analysis in this project are: (1) the
incorporation of available bottom-up end use modeling details into an integrated carbon
footprint estimation framework as described in Section 3, and (2) the inclusion of parameter
uncertainty analysis to aid in results interpretation. These two contributions can allow state
energy and policy analysts to leverage the results of recent household energy use studies in
state-specific carbon footprint analyses moving forward.
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Figure 3: Estimated annual direct electricity GHG emissions by end use
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Estimated annual supply chain GHG emissions attributable to the purchase of household goods
and services are summarized in Figure 4. The results are presented by key consumption
category. The two largest contributors to the supply chain carbon footprint of households are
seen to be food and beverages consumed at home, and the broad category of miscellaneous
goods and services. This latter category summarizes purchases not related to the other
consumption categories and includes a diversity of items such as property taxes, luggage,
clocks, lawn and garden supplies, and pet food. Household services (which include water,
sewage, and waste collection), restaurants and hotels, household furniture and appliances, and
education are also seen to be significant contributors to the supply chain carbon footprint.

B Miscellaneous goods and services

B Food and non-alcoholic beverages at home
B Household services

B Restaurants and hotels

B Household furnishings, equipment, and

maintenance
1, B Education

. Clothing and footwear
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Health Care
' B Communications
H Alcoholic beveragesand tobacco
! ! !
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Figure 4: Estimated annual supply chain GHG emissions per household by major
consumption category

Figure 4 also suggests that the identified parameter uncertainty surrounding the average results
generated for the food and beverages at home (+30%/-10%) and household services (+/-30%)
categories are fairly substantial. The major source of identified parameter uncertainty for both
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of these consumption categories were found to be the non-energy GHG emission factor
assumptions in Equation 3, specifically the U.S. EPA (2004) GHG estimates for agricultural soil
management and enteric fermentation (important for food items) and for landfills and water
treatment (important for household services).

The net effects of parameter uncertainty for non-energy GHG emission factors in the supply
chain model are underscored in Figure 5, which summarizes the average supply chain GHG
emissions estimates by emissions source. Of the total annual household supply chain GHG
emissions (15,500 kg), roughly two-thirds (9,900 kg) are estimated to come from fossil fuel
sources and one-third (5,600 kg) are estimated to come from non-energy related GHG emission
sources. However, the majority of the identified parameter uncertainty in the supply chain
GHG emissions estimate is attributable to the non-energy GHG emission factor data. This
parameter uncertainty is currently unavoidable given the state of measurement and estimation
techniques related to the U.S. national GHG emissions inventory. However, the results in Figure
4 and Figure 5 suggest that, nevertheless, these parameter uncertainties must be acknowledged
when interpreting the results of the IO-based supply chain modeling framework developed in
this project.
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Figure 5: Estimated annual supply chain GHG emissions per household by source
category

The results in Figure 4 and Figure 5 agree favorably with the results of similar studies and tools,
such as the U.S. national carbon footprint study (Weber and Matthews 2008) and the Cool
California calculator (Cool California 2008) (which relies on the EIO-LCA model (CMU 2008) for
its supply chain GHG emissions estimates). However, the partial parameter uncertainty
estimates facilitated by the supply chain modeling framework developed in this project provide
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new insights into the nature and significance of the parameter uncertainties that can be
quantified by available data. These insights can lead to more informed decision making by state
energy and policy analysts.

The most novel feature of the supply chain modeling framework developed in this project,
however, is its ability to disaggregate, in a preliminary fashion, energy related supply chain
GHG emissions by fuel end use as described in Section 3.3.

Table 6 through Table 9 summarize estimated average supply chain GHG emissions attributable
to electricity, natural gas, coal, and petroleum for key fuel end uses in the manufacturing,
commercial, agricultural, water treatment, transportation, and power sectors.

As discussed in Section 3.2.3, an important caveat associated with all of these end use GHG
emissions estimates is that they are based on average U.S. end use breakdown data, whereas the
supply chains for many goods and services included in the model are global in nature.
However, these end use data can serve as an important first approximation toward more
regionally-accurate MRIO-based models in the future.

Also provided in Table 6 through Table 9 are estimated 95% confidence intervals, which apply
to the average annual supply chain GHG emissions estimate for each end use. Based on the
parameter uncertainty ranges that could be estimated for key data inputs to the model, the
research team estimated 95% confidence intervals that averaged around +/-15% for most fuel
end uses. Thus, there are appreciable uncertainties associated with estimating the supply chain
GHG emissions at the level of discrete fuel end uses. These uncertainties must be taken into
account when interpreting the results of the supply chain modeling framework.

The results in suggest that supply chain electricity use accounts for around one-quarter of the
average supply chain GHG emissions footprint of California residents. The end use summary
suggests that the vast majority of these electricity related emissions (87%) are attributable to end
uses in the manufacturing and commercial sectors.

Moreover, roughly two-thirds of electricity related emissions are estimated to be attributable to
three broad end uses: motor systems, lighting, and HVAC systems. Thus, it is likely that these
end uses represent important efficiency opportunities for reducing the supply chain GHG
emissions footprint of California households. Furthermore, analysis of suggests that around
80% of all supply chain electricity related GHG emissions could be characterized into
meaningful end uses (i.e., not generic “other” categories).
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Table 6: Estimated annual supply chain electricity related GHG emissions per household

by end use
kg % of 95% C.I.
Sector End Use CO2elyear Total Lower | Upper
Manufacturing Machine Drives 751 20% 651 850
Process Heating 147 4% 1 168
Process Cooling and Refrigeration 130 3% 108 151
Facility HVAC 127 3% 108 145
Electro-Chemical Processes 114 3% 101 127
Facility Lighting 99 3% 88 110
End Use Not Reported 52 1% 39 65
Other Facility Support/Uses 41 1% 35 48
Commercial Lighting 606 16% 533 685
Cooling 268 7% 231 304
Ventilation 251 7% 216 289
Refrigeration 206 5% 161 256
Other 200 5% 174 226
Computers 111 3% 97 125
Space Heating 80 2% 68 91
Office Equipment 42 1% 37 47
Water Heating 40 1% 35 45
Cooking 28 1% 25 31
Agricultural Other 259 7% 228 287
Motors 33 1% 29 36
Lighting 15 0% 13 16
Machinery 7 0%
Water treatment Motor systems (pumps) 8 0% 7 9
Other 1 0% 1 1
Unclassified Unclassified 165 4% 146 184
Total for all sectors 3782 100% 3348 4192
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Table 7 summarizes the end use estimates for average natural gas related GHG emissions by
supply chain end use. It was estimated that process heating, HVAC, and steam system end uses
account around one-half of natural gas related emissions. Combined, the manufacturing,
commercial, and power sectors account for around 90% of natural gas related GHG emissions.

Table 7: Estimated annual supply chain natural gas related GHG emissions per household

by end use
kg % of 95% C.I.
Sector End Use CO2elyear | Total Lower | Upper

Manufacturing Process Heating 411 16% 387 441
Conventional Boiler Use 253 10% 230 284
CHP and/or Cogeneration Process 134 5% 128 142

Facility HVAC 59 2% 54 63

End Use Not Reported 22 1% 18 26

Machine Drive-Total 21 1% 20 23

Conventional Electricity Generation 10 0% 10 11

Other Process Use 9 0% 8 10

Process Cooling and Refrigeration 8 0% 7 9

Other Facility Support 7 0% 6 8
Commercial Space Heating 637 25% 567 717
Water Heating 83 3% 75 94

Other 61 2% 59 65

Cooking 43 2% 36 51
Power Electricity generation 526 21% 507 549
Unclassified Unclassified 251 10% 242 261

Total for all sectors 2537 100% 2420 | 2675

Table 8 summarizes the end use breakdown of coal related supply chain GHG emissions
estimated by the modeling framework. Electrical power generation accounts for the greatest
share of coal related emissions, followed by process heating, cogeneration, and steam systems
in the manufacturing sectors.

Table 8: Estimated annual supply chain coal related GHG emissions per household by end use

kg % of 95% C.I.
Sector End Use CO2el/year | Total | Lower | Upper
Manufacturing Process Heating 184 5% 159 208
CHP and/or Cogeneration Process 181 5% 159 202
Conventional Boiler Use 86 2% 76 95
Other 55 1% 47 62
Power Electricity generation 3150 85% 3020 3254
Unclassified Unclassified 38 1% 34 41
Total for all sectors 3696 100% 3534 3819
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Lastly, the end use breakdown of petroleum related supply chain GHG emissions is
summarized in Table 9. Due to lack of comprehensive end use data on supply chain petroleum
use, a large percentage of the results (around 60%) fell into the generic “other” or unclassified
end use categories. Still, the remaining 40% of petroleum related emissions was associated with
known end uses, which sheds partial light on the nature of supply chain petroleum emissions
and aids in assessing how those emissions could be reduced by supply chain technology
improvements.

Table 9: Estimated annual supply chain petroleum related GHG emissions per household

by end use
kg % of 95% C.1.
Sector End Use CO2elyear | Total Lower | Upper
Manufacturing Process Heating 132 5% 118 149
Conventional Boiler Use 102 1% 86 120
Other 85 3% 64 107
CHP and/or Cogeneration Process 55 2% 49 63
Onsite Transportation 51 2% 46 57
Agricultural Other 188 7% 184 195
Motors 73 3% 71 76
Machinery 40 1% 39 41
Onsite transport 7 0% 7 8
Lighting 1 0% 1 1
Transportation Truck 325 12% 318 336
Air 164 6% 160 170
Other 109 1% 106 113
Rail 65 2% 63 67
Water 54 2% 53 57
Mining and
Construction Unclassified 256 9% 246 270
Power Central electrical power generation 106 4% 104 110
Unclassified Unclassified 1000 36% 973 1037
Total for all sectors 2815 100% 2745 2926

In total, the bottom-up modeling results summarized in Table 6 through Table 9 attributed
roughly two-thirds of the estimated fossil fuel related supply chain GHG emissions to known
end uses (i.e., one-third of emissions fell into the generic “other” or unclassified end uses).

4.2. Analysis of Energy Efficient Technology Potentials

Section 4.1 demonstrated the capabilities of the bottom-up GHG emissions modeling
framework developed in this project by summarizing estimates of the annual average direct
(home energy) and supply chain carbon footprints per household. This section illustrates the
policy relevance of this bottom-up approach via a case study that explores how the average
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household carbon footprint could be reduced through the deployment of best practice energy
efficient technologies.

The promotion and deployment of such energy efficient technologies has long been a policy
focus in California. Policy mechanisms for increasing the adoption of residential technologies
include appliance efficiency standards, equipment rebates and tax incentives, and initiatives
aimed at raising awareness. Policy measures for increasing the adoption of efficient supply
chain technologies include government green purchasing programs that give preferential
treatment to suppliers who demonstrate best practice energy efficiency (for example,
demonstrated by ENERGY STAR certification of commercial and industrial buildings) and
product carbon footprint labels and standards. The latter policy measure has received much
attention in recent years as a market based mechanism to drive superior supply chain
performance, with a notable example being the Carbon Trust’s Carbon Reduction Label (Carbon
Trust 2008).

The end use details included in bottom-up GHG emissions modeling framework developed in
this project can allow state energy and policy researchers to model technology deployment
scenarios in a direct fashion that is not possible in existing carbon footprint calculator tools.

In this case study, the research team treated the results summarized in Section 4.1 as the current
average baseline household GHG emissions. Next, the research team compiled data on energy
efficient technology measures applicable to many of the direct and supply chain fuel end uses
that were characterized by the bottom-up modeling approach. In particular, this data
compilation effort focused on estimating the end use fuel savings achievable in a technical sense
through the adoption of a particular efficiency measure, regardless of the cost of that measure.
Finally, the team applied the energy savings estimates to each fuel end use in the modeling
framework and compared the results to the carbon footprint baseline to calculate GHG emission
reduction potentials.

The case study considered key fuel end use efficiency measures applicable to home energy,
commercial sector electricity and natural gas, industrial sector electricity, natural gas, coal, and
petroleum, agricultural electricity and petroleum, and water treatment electricity. As such, the
research team’s analysis addressed fuel end uses responsible for a large fraction of the average
California household carbon footprint. However, there are undoubtedly many more energy
efficient technology measures applicable to these and other IO sectors that were not addressed
in this case study (e.g., transportation, mining, construction, and the energy industries). These
measures could be included in future work.

Furthermore, the research team did not consider changes to behavior (e.g., turning off lights or
purchasing fewer goods), changes to energy supply (e.g., installation of solar photovoltaic
panels), non-energy GHG emission mitigation measures (e.g., reductions in landfill gas flaring),
or changes to purchased products (e.g., buying recycled paper) in its case study. These are all
clearly very important options for reducing one’s carbon footprint, which could be explored in
the modeling framework in future work. Table 10 summarizes the measures applicable to
residential energy efficiency in California dwellings that were considered in this case study.
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Many of the savings estimates for each measure reflect best available information on the
remaining efficiency potential in California, based on recent efficiency potential studies and

analyses of the California residential sector (North 2008; Itron and KEMA 2008). In particular,
the Itron and KEMA (2008) study based its estimates in part on RASS data, which helped ensure

the consistency of those estimates with the direct GHG emissions baseline in this study. For

other measures, savings estimates at the U.S. national were used as they reflected best available

information for a given residential end use. In total, the research team considered 12 energy

efficient technology measures for household electricity use, and 3 energy efficient technology

measures for household natural gas use.

Table 10: Residential technology measure assumptions

End Use Technology Measure Savings Source(s)
Electricity
Central A/IC Upgrade to SEER=15 split system 13% North (2008); Itron and KEMA (2008)
Clothes Horizontal axis with improved
50% Brown et al. (2008)
washer motor
) Upgrade to ENERGY STAR (EF )
Dishwasher ~0.58) 15% RLW Analytics (2008); North (2008)
First North (2008); Itron and KEMA (2008); U.S.
. Upgrade to ENERGY STAR 15%
refrigerator EPA (2008b)
North (2008); Itron and KEMA (2008); U.S.
Freezer Upgrade to ENERGY STAR 15%
EPA (2008b)
Furnace fan High efficiency motor 25% Brown et al. (2008)
Interior North (2008); Itron and KEMA (2008); Brown
o Compact fluorescent bulbs 50%
lighting et al. (2008)
Personal Energy Star PCs and power
50% Brown et al. (2008)
computer management
Pool pump Two-speed pool pump 49% North (2008)
Second Use first refrigerator to replace
. 33% KEMA (2008)
refrigerator second
Television Reduced standby power losses 25% Brown et al. (2008)
. Upgrade to high efficiency
Water heating 5% Itron and KEMA (2008)
(EF=0.63)
Natural Gas
. Upgrade to ENERGY STAR (EF
Water heating ~0.67) 12% North (2008); U.S. EPA (2008b)
) Upgrade to ENERGY STAR ]
Space heating 11% RLW Analytics (2008); U.S. EPA (2008b)
(AFUE=90%)
Dryer Moisture sensing dryer 10% North (2008)

The energy efficient technology measures identified for the commercial IO sectors are

summarized in Table 11. These measures in Table 11 address all key fuel end uses included in

the supply chain modeling framework. Furthermore, these data represent best available
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measure savings estimates for the United States from two recent comprehensive studies of U.S.
commercial building appliance energy efficiency potentials (Brown et al. 2008; Rosenquist et al.
2006).

Table 11: Commercial technology measure assumptions

End Use Technology Measure Savings
Electricity
Computers ENERGY STAR PCs and monitors, power management enabled 60%
Cooking ENERGY STAR dishwashers, fryers, hot food holding cabinets 32%
Cooling Improved HVAC systems and controls 48%

o T-8 lamps with electronic ballasts, occupancy controls, daylight dimming,
Lighting 25%
improved lighting design

Office Equipment ENERGY STAR copiers and printers 25%

Other More efficient motors in ceiling fans, pool pumps, other applications 35%

. . High efficiency upgrades to walk-in and reach-in coolers and freezers, ice
Refrigeration ) 38%
machines, etc.

Space Heating Improved HVAC systems and controls 39%

Ventilation Improved HVAC systems and controls 45%
Natural Gas

Space Heating Improved shell, HVAC systems, and controls 47%

Water Heating Higher efficiency storage and instantaneous units 10%

Other 10% reduction in miscellaneous gas use 12%

Cooking ENERGY STAR fryer and steamer; more efficient broilers, griddles and ovens 31%

Sources: Brown et al. (2008); Rosenquist et al. (2006)

For the industrial fuel end uses in the supply chain model, the research team developed
aggregate energy saving estimates for bundles of energy efficient technologies at the 3-digit IO
sector level. The resulting savings estimates for thermal processes (i.e., processes based on
natural gas, coal, and petroleum) for each IO sector are summarized in Table 12.

The estimates for achievable steam system fuel savings in the petroleum, chemicals, and pulp
and paper industries were derived from a recent U.S. Department of Energy steam system
assessment for those industries (U.S. DOE 2002). For the remaining industries, steam system
savings estimates from a national-level industrial steam efficiency analysis were applied
(Einstein et al. 2001). The estimates for fuel savings in process heating systems for a number of
industries were derived from recent sector-specific studies by LBNL and the U.S. Department of
Energy. For all other industries, and for all HVAC measures, the research team used sector-
specific data from the U.S. Department of Energy’s Industrial Assessment Center (IAC)
database (IAC 2008). The IAC database contains energy and cost savings estimates for hundreds
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of different industrial technology measures, which were compiled during thousands of energy
audits conducted at small and medium sized manufacturing plants in the United States since
the 1980s.

Table 12: Industrial technology measure assumptions for thermal processes

Natural gas, coal, and petroleum
2002 10 sector(s) Steam systems Process heat HVAC
311, 312: Food and beverage 18% 18% 25%
313, 314: Textile mills and products 18% 18% 19%
315: Apparel 18% 12% 19%
316: Leather products 18% 24% 10%
321: Lumber and wood products 18% 12% 33%
322: Paper 13% 40% 33%
323: Printing 18% 10% 14%
324: Petroleum and coal (fuel) 12% 23% 21%
325: Chemicals 12% 18% 9%
326: Plastics & rubber 18% 11% 18%
327: Nonmetallic mineral 18% 16% 20%
331: Primary metals 18% 10% 22%
332: Fabricated metals 18% 10% 22%
333: Machinery 18% 10% 10%
334: Computer & electronics 18% 10% 13%
335: Electrical equipment 18% 10% 18%
336: Transportation equip 18% 11% 17%
337: Furniture 18% 10% 14%
339: Miscellaneous 18% 10% 18%
Sources for savings estimates 10 322, 324, and 325: 10 322: All:
U.S. DOE (2002) Jacobs & IPST (2006) IAC (2008) and
All others: 10 324: KEMA (2006)
Einstein et al. (2001) Energetics (2006)
10 325:
U.S. DOE (2004)
10 327:
Rue et al. (2007)
Martin et al. (1999)
10 331:
Choate et al. (2003)
Stubbles (2000)
Worrell et al. (1999)
All others:
IAC (2008) and KEMA
(2006)
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Table 13 summarizes the energy savings estimates derived in this case study for energy efficient
technology bundles related to industrial electricity use. The estimates for savings from motor
systems are based on a comprehensive national industrial motor system inventory conducted
by Xenergy (2002), which included site visits within various industrial IO sectors (including
water treatment; see). The energy savings estimates for industrial HVAGC, refrigeration, and
lighting systems were derived using technology measure data from the IAC database.

Table 13: Industrial technology measure assumptions for electricity

Electricity
Motor
2002 10 sector(s) systems HVAC Refrigeration | Lighting
311, 312: Food and beverage 12% 14% 15% 16%
313, 314: Textile mills and
products 14% 13% 10% 16%
315: Apparel 14% 14% 14% 16%
316: Leather products 12% 10% 10% 16%
321: Lumber and wood products 9% 8% 27% 16%
322: Paper 14% 25% 15% 16%
323: Printing 12% 9% 14% 16%
324: Petroleum and coal (fuel) 20% 15% 15% 16%
325: Chemicals 16% 14% 15% 16%
326: Plastics & rubber 15% 10% 21% 16%
327: Nonmetallic mineral 15% 7% 25% 16%
331: Primary metals 12% 13% 14% 16%
332: Fabricated metals 16% 11% 17% 16%
333: Machinery 15% 10% 6% 16%
334: Computer & electronics 23% 7% 11% 16%
335: Electrical equipment 13% 9% 21% 16%
336: Transportation equip 15% 9% 20% 16%
337: Furniture 13% 10% 9% 16%
339: Miscellaneous 15% 7% 5% 16%
Sources for savings estimates All: All:
Xenergy (2002) IAC (2008) and KEMA (2006)

Lastly, energy savings estimates associated with energy efficiency measures for motors in the
agricultural and water treatment sectors are summarized in Table 14. The agricultural savings
assumptions are based on recent studies of on-farm energy use and efficiency potentials in the
United States by Brown and Elliott (2005a, 2005b).
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Table 14: Agricultural and water treatment motor technology measure
assumptions

IO sectors Fuel Savings Source(s)

Agricultural Electricity 18% Brown and Elliott (2005a, 2005h)

Agricultural Petroleum 23% Brown and Elliott (2005a, 2005hb)
Water treatment Electricity 22% Xenergy (2002)

All average savings estimates in Table 10 through Table 14 were treated as point estimates
without parameter uncertainty assumptions in the modeling framework. This simplification
was due primarily to lack of sufficient data to estimate credible parameter uncertainty ranges
for the considered measures. However, the parameter uncertainties associated with the baseline
scenario were maintained to provide some indication of the minimum uncertainty associated
with the difference between the baseline and energy efficient technology scenario results for
each fuel end use.

The average savings estimates in Table 10 through Table 14 are representative of best practice,
currently available, and cost-effective technologies. More aggressive savings may be realized
through advanced and emerging technologies; such technologies could also be evaluated in the
modeling framework in future studies.

The total GHG emission reduction potential associated with the adoption of the residential and
supply chain energy efficient technologies summarized in Table 10 through Table 14was
estimated at around 2500 kg CO:e per year.

37



Figure 6 summarizes the results by the applicable sector and fuel type. The energy efficient
technologies considered for reducing home energy use accounted for roughly one-third (800 kg
CO:ze) of the total estimated GHG emission reduction potential. Supply chain commercial
building measures accounted for roughly 40% (1000 kg CO:ze) of the estimated GHG emission
reduction potential.

M Total for all measures
B Commercial electricity measures

B Residential electricity measures

M Industrial NG, coal, and petroleum measures
B Commercial NG measures

M Residential natural gas measures

M Industrial electricity measures

W Agriculture and water measures

0 500 1000 1500 2000 2500 3000

Annual GHG Emissions (kg CO2e/year)

Figure 6: Estimated total GHG emissions reduction potential per household by measure type
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Table 7 summarizes the estimated GHG emissions reduction potential for home energy use by
fuel end use measure. These results (and those of ) underscore the modeling framework’s ability
to provide detailed end use breakdowns, which adds useful technology improvement
evaluation capabilities to California carbon footprint analyses. The results in Table 7 show that
direct home energy GHG emissions from the average California household could be reduced
significantly through the adoption of more energy efficient technologies. Specifically, energy
efficiency upgrades to interior lighting, natural gas fired water heating and space heating
technologies, personal computers, pool pumps, and refrigerators are estimated to offer the
greatest GHG emission reduction potential. These seven technology measures account for
roughly 90% of estimated GHG reductions in Table 7. These results suggest that in particular,
these technologies should be central features of policy efforts aimed at reducing the carbon
footprints of California households.

Elec: Interior lighting
NG: Water heating

NG: Space heating

— Elec: Personal computer
Elec: First refrigerator

M Elec: Pool pump

M Elec: Television
Elec: Additional refrigerator

M Elec: Central A/C

B Elec: Clothes washer

M Elec: Freezer

B NG: Dryer

B Elec: Furnace fan

B Elec: Water heating

M Elec: Dish washer

0 50 100 150 200 250 300

Annual GHG Emissions (kg CO2e/year)

Figure 7: Estimated home energy GHG emissions reduction potential per household by measure
type
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A similar breakdown of supply chain GHG emissions reduction potential by end use measure

type is offered in Figure 8. Results are categorized by major supply chain IO sector category

(industrial, commercial, agricultural, and water treatment) and end use measure category. Over
one-half of the estimated supply chain GHG emissions reduction potential is associated with
the top eight measure categories, which include efficiency upgrades to commercial electrical
and natural gas end uses and industrial coal end uses.

NG: Commercial Space Heating
Coal: Industrial process heating
Elec: Commercial Lighting
Coal: Industrial steam systems
Elec: Commercial Cooling
Elec: Commercial Ventilation
Elec: Industrial machine drive
Elec: Commercial Refrigeration
NG: Industrial process heating
Elec: Commercial Other

M Elec: Commercial Computers

B NG: Industrial steam systems
Elec: Commercial Space Heating

B Petr: Industrial process heating

M Elec: Industrial refrigeration

B Petr: Agricultural motors

B Elec: Industrial lighting

M Elec: Industrial HVAC

B Petr: Industrial steam systems

B NG: Commercial Cooking

B NG: Industrial HVAC

M Elec: Commercial Office Equipment

B Elec: Commercial Cooking

B NG: Commercial Water Heating

B NG: Commercial Other

M Elec: Agricultural motors

M Elec: Water treatment motors

o

50 100 150

200

250 300

Annual GHG Emissions (kg CO2e/year)

350

Figure 8: Estimated supply chain GHG emissions reduction potential per household by measure

type
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Roughly one-half (900 kg COze) of the estimated supply chain potential is attributable to the
commercial building measures considered in the case study; of these measures, technology
upgrades to commercial HVAC and lighting systems are expected to lead to the greatest
emissions reductions. The industrial measures considered in this case study account for around
40% (700 kg COze) of the estimated supply chain potential. The greatest reductions in the
industrial sector were expected to come from efficiency upgrades to facility process heating,
steam, and motor systems.

The results in Figure 8 shed light on some of the most important opportunities for reducing the
supply chain carbon footprints of California residents. Knowledge of the most significant end
use efficiency opportunities can help inform policy initiatives aimed at reducing such supply
chain carbon footprints. For example, green state purchasing programs could consider giving
preferential treatment to supply chain partners with efficient commercial and industrial
buildings, as approximated by the presence of high efficiency HVAC, lighting, process heating,
steam, and motor systems in those buildings. Such information could be quickly and easily
verified through facility audits or documentation of the installation of best practice equipment.
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5.0 Conclusions and Recommendations
Conclusions

This project developed bottom-up and input-output approaches to estimate the household
carbon footprints associated with California home energy use and the supply chains necessary
for producing goods and services. This approach provides greater insight into the underlying
technologies and processes contributing to the carbon footprint of California households.

The case study results suggest that over three-quarters (15,500 kg) of household GHG emissions
can be attributed to the consumption of goods and services. Thus, supply chain emissions are
likely to be a significant opportunity for reducing the carbon footprint of California residents.

The largest sources of electricity-based GHG emissions in the average California household
were estimated to be indoor lighting, refrigeration, central air conditioning, televisions, and
personal computers. The majority of GHG emissions associated with household natural gas use
were attributable to two primary end uses: water heating and space heating. The two largest
contributors to the supply chain carbon footprint of California residents were estimated to be
food and beverages consumed at home, and the broad category of miscellaneous goods and
services.

The results of the case study suggest that significant reductions in the average household
carbon footprint might be realized through the adoption of energy efficient technologies in
California dwellings and in the supply chains that produce goods and services purchased by
Californians. For the technology measures considered, the GHG emissions reduction potential
was estimated at roughly 2,500 kg COze/year, or 13% of the total estimated direct and supply
chain carbon footprint.

Lastly, the preliminary parameter uncertainty assessment conducted in this project revealed
significant uncertainties surrounding the average carbon footprint estimates generated by the
model. Large uncertainties in the non-energy supply chain GHG emission factors are
particularly important to acknowledge when interpreting the results of this project.

Recommendations

The research team identified a number of opportunities for future research that could improve
and expand upon the bottom-up, IO-based modeling framework developed in this project:

e Improved fuel end use models could be developed for supply chain petroleum uses—
particularly in the transportation sector—and uses of biomass, waste, and other fuels.
The research team was only able to offer a preliminary disaggregation of petroleum use
based on available data, which centered on a few key end uses. No end use breakdowns
were developed for biomass, waste, and other fuels due to lack of readily-available data
on the composition of and end uses for these fuels. However, end use breakdowns for
petroleum and biomass, waste, and other fuels could be developed based on more
detailed study of individual IO sectors.
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A more comprehensive parameter uncertainty could be conducted on fuel use, fuel end
use, and measure savings data in the model. The research team only included readily-
available parameter uncertainty information from the major survey data used in this
project; however, parameter uncertainty estimates for other key variables could be
developed based on a thorough search of available data sources.

A preliminary modeling uncertainty assessment could be performed by constructing
different plausible model structures for mapping fuel and GHG emissions data to 10
sectors, and further mapping those data to specific fuel end uses. These results of
different model structure options could be compared to arrive at preliminary estimates
of modeling uncertainty.

More measures could be included in future assessments of technologies for reducing the
direct and supply chain GHG emissions of California residents (most notably, supply
chain transportation measures). In the case study conducted in this project, the research
team focused on identifying only a core set of well-known measures for which credible
energy savings estimates could be derived. However, many other technology measures
could be evaluated using the modeling framework. Additionally, the economics of those
measures could be included in future analyses to arrive at estimates for the cost of
achieving various levels of direct and supply chain GHG emissions reductions.

The bottom-up supply chain modeling framework could be applied to MRIO models
that disaggregate supply chain transactions using trade statistics. Such an approach
could better reflect differences in fuel end uses, efficiencies, and available GHG
emissions reductions potentials across global supply chains. Moreover, such an
approach would better approximate the geographical characteristics of supply chains for
goods and services purchased by Californians, including in-state supply chains where
energy efficiencies and fuel sources may differ significantly from national averages.

The modeling framework could be applied to estimate the GHG emission potentials
associated with other important carbon footprint reduction opportunities, including
behavioral changes, changes to purchased products, technologies for reducing non-
energy GHG emissions, and changes to home and supply chain energy sources.

Benefits to California

The results of this project provide two important contributions toward improved California-

specific household carbon footprint analysis. First, the direct and supply chain GHG emissions
modeling frameworks developed in this project provide greater bottom-up end use detail than
existing carbon calculators. This bottom-up detail allows California energy and policy analysts

to better understand the underlying technologies and processes contributing to the carbon
footprint of California households, and to better assess specific technology improvement
options for reducing the personal carbon footprints of California residents.

Second, the preliminary parameter uncertainty assessments conducted in this project provide
much needed information on the minimum uncertainty surrounding carbon footprint estimates,
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which will help California energy and policy analysts better assess the usefulness (and
limitations) of carbon footprint estimates toward policy decisions. The contributions of this
project should therefore improve the state of the art in carbon footprint analyses for California,
which can help researchers and policy analysts identify strategies for reducing the carbon
footprints of California residents with greater confidence.
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Glossary

CARB California Air Resources Board

CBECS Commercial Building Energy Consumption Survey
CHa Methane

CMU Carnegie Mellon University

COs2 Carbon dioxide

COze Carbon dioxide equivalent

EIO-LCA Economic Input-Output Life-Cycle Assessment
GHG Greenhouse gas

GWP Global warming potential

HVAC Heating, ventilation, and air conditioning

IO Input-output

IPCC Intergovernmental Panel on Climate Change
kg Kilogram

kWh Kilowatt-hour

LCA Life-cycle assessment

MECS Manufacturing Energy Consumption Survey
MJ Megajoule

MRIO Multi-regional input-output

N0 Nitrous oxide

NAICS North American Industry Classification System
RASS Residential Appliance Saturation Survey

RECS Residential Energy Consumption Survey
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Appendix

Detailed assumptions for average U.S. household 2002 consumer expenditures

2002 Egoznditure Standard
10 10 Sector Description P L Consumption Category
($ Producer | Deviation
Sector .
Price)

111200 Vege.table and melon 81.58 1.42 Food and non-alcoholic beverages at home
farming

111400 Gre_enhouse, nurser_y, and 25.88 0.85 Miscellaneous goods and services
floriculture production

112300 Poultry .and €eg 23.12 0.57 Food and non-alcoholic beverages at home
production

221300 | Vater, sewageand other | .- )¢ 4.19 Household services
systems

230302 Re5|dent|.al maintenance 490.06 15.00 H0l.,|sehold furnishings, equipment, and
and repair maintenance
Dog and cat food . .

311111 . 81.97 1.90 Miscellaneous goods and services
manufacturing

311210 Flour m|II|ng and malt 24.17 0.50 Food and non-alcoholic beverages at home
manufacturing

311225 Fats a.nd oils refining and 25.16 0.58 Food and non-alcoholic beverages at home
blending
Breakfast cereal .

311230 . 56.02 1.16 Food and non-alcoholic beverages at home
manufacturing

311310 Sugar cane mills and 2.34 0.06 Food and non-alcoholic beverages at home
refining
Chocolate and

311320 confectlone.ry 14.12 0.34 Food and non-alcoholic beverages at home
manufacturing from
cacao beans
Nonchocolate

311340 | confectionery 48.27 1.17 Food and non-alcoholic beverages at home
manufacturing

311410 Frozen fOOd. 115.93 3.01 Food and non-alcoholic beverages at home
manufacturing
Fruit and vegetable

311420 | canning, pickling, and 160.56 3.14 Food and non-alcoholic beverages at home
drying

311513 | Cheese manufacturing 62.22 0.96 Food and non-alcoholic beverages at home

311520 Ice cream and frozep 42.27 0.66 Food and non-alcoholic beverages at home
dessert manufacturing

311615 | Poultry processing 99.29 2.48 Food and non-alcoholic beverages at home
Seafood product

311700 | preparation and 74.02 3.01 Food and non-alcoholic beverages at home
packaging

311810 Bread and bakery 138.40 1.98 Food and non-alcoholic beverages at home

product manufacturing
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2002

2002 Expenditure | Standard
10 10 Sector Description P L Consumption Category
($ Producer Deviation
Sector .
Price)
311820 Cookie, cracker, a.nd 60.63 0.98 Food and non-alcoholic beverages at home
pasta manufacturing
311910 Snack food . 71.16 1.27 Food and non-alcoholic beverages at home
manufacturing
Coffee and tea .
311920 . 30.50 0.51 Food and non-alcoholic beverages at home
manufacturing
311940 Seasoning a.nd dressing 77.82 1.43 Food and non-alcoholic beverages at home
manufacturing
311990 All other fogd 54.06 0.94 Food and non-alcoholic beverages at home
manufacturing
312110 Soft drink ar'1d e 101.25 1.67 Food and non-alcoholic beverages at home
manufacturing
312120 | Breweries 83.27 3.30 Food and non-alcoholic beverages at home
312130 | Wineries 55.68 2.17 Alcoholic beverages and tobacco
312140 | Distilleries 57.37 2.26 Alcoholic beverages and tobacco
313100 :fi’l‘la;’ yarn, and thread |, ) 0.23 Clothing and footwear
313210 | Broadwoven fabric mills 2.15 0.08 Clothing and footwear
314110 | Carpet and rug mills 19.22 1.88 Household furnishings, equipment, and
maintenance
314120 | Curtain and linen mills 59.67 2.77 H0l.,|sehold furnishings, equipment, and
maintenance
Textile bag and canvas .
314910 mills 16.02 0.53 Recreation and culture
314990 AI! other textile product 338 0.16 HOLljseh0|d furnishings, equipment, and
mills maintenance
315100 | Apparel knitting mills 15.49 0.69 Clothing and footwear
315210 Cut and sew apparel 27.25 1.00 Clothing and footwear
contractors
Men's and boys' cut and
315220 | sew apparel 186.28 8.46 Clothing and footwear
manufacturing
Women's and girls' cut
315230 | and sew apparel 263.39 11.22 Clothing and footwear
manufacturing
Apparel accessories and
315900 | other apparel 17.05 0.72 Clothing and footwear
manufacturing
316200 | Footwear manufacturing | 128.59 5.31 Clothing and footwear
316900 Other leather and al!led 2.50 0.08 Miscellaneous goods and services
product manufacturing
321910 Wood wmdo'ws and 13.86 0.40 H0l.,|sehold furnishings, equipment, and
doors and millwork maintenance
322291 Sanitary paper product 45.97 7.03 Miscellaneous goods and services

manufacturing
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2002

2002 Expenditure | Standard
10 10 Sector Description P L Consumption Category
($ Producer | Deviation
Sector .
Price)
322299 All other converted paper 18.82 0.65 Miscellaneous goods and services
product manufacturing
323110 | Printing 4.11 0.15 Clothing and footwear
Asphalt shingle and A .
324122 | coating materials 1.92 0.06 Household furnishings, equipment, and
) maintenance
manufacturing
Pesticide and other
325320 | agricultural chemical 61.36 9.37 Miscellaneous goods and services
manufacturing
325411 | Medicinal and botanical 1, 5y 0.00 Health Care
manufacturing
Pharmaceutical
325412 | preparation 279.54 6.44 Health care
manufacturing
325510 Paint and cc?atlng 776 0.23 H0l.,|sehold furnishings, equipment, and
manufacturing maintenance
Soap and cleaning
325610 | compound 69.87 1.90 Miscellaneous goods and services
manufacturing
325620 Toilet prepa.ratlon 211.76 12.31 Miscellaneous goods and services
manufacturing
Other pressed and blown A .
327212 | glass and glassware 3.00 0.20 HOL.JSGh0|d furnishings, equipment, and
. maintenance
manufacturing
327330 Concrete pipe, brl.ck, and 0.63 0.02 H0l.,|sehold furnishings, equipment, and
block manufacturing maintenance
Ground or treated Household furnishings, equipment, and
327992 | mineral and earth 6.84 0.21 ; &S, equipment,
. maintenance
manufacturing
327993 Mineral woc?l 14.24 0.42 HOL:|SEh0|d furnishings, equipment, and
manufacturing maintenance
Plate work and fabricated __ .
332310 | structural product 15.57 1.02 H0Lljsehold furnishings, equipment, and
. maintenance
manufacturing
332500 | Hardware manufacturing | 7.05 0.23 Miscellaneous goods and services
Lawn and garden
333112 | equipment 20.83 0.69 Miscellaneous goods and services
manufacturing
Photographic and
333315 | photocopying equipment | 11.38 0.96 Miscellaneous goods and services
manufacturing
Air conditioning,
333415 refrigeration, and warm 19.32 0.69 Household furnishings, equipment, and

air heating equipment
manufacturing

maintenance
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2002

2002 Expenditure | Standard
10 10 Sector Description P L Consumption Category
($ Producer Deviation
Sector .
Price)
333991 Power-drlvgn handtool 15.86 0.53 Miscellaneous goods and services
manufacturing
334111 Electronic c9mputer 87.07 2.89 Miscellaneous goods and services
manufacturing
334210 | 1elephone apparatus 0.40 0.01 Communications
manufacturing
Broadcast and wireless
334220 | communications 21.46 0.71 Miscellaneous goods and services
equipment
Other communications Household furnishings, equipment, and
334290 | equipment 0.92 0.03 ; &, equipment,
. maintenance
manufacturing
Audio and video
334300 | equipment 86.84 1.45 Miscellaneous goods and services
manufacturing
334412 Bare prmte(.j circuit board 12.93 0.22 Miscellaneous goods and services
manufacturing
Electromedical and
334510 | electrotherapeutic 6.55 0.23 Health care
apparatus manufacturing
Magnetic and optical
334613 | recording media 48.91 0.81 Miscellaneous goods and services
manufacturing
335210 small electr!cal appliance 46.64 2.04 Miscellaneous goods and services
manufacturing
335221 Hou§ehold cooking . 3114 113 HOL.Jseh0|d furnishings, equipment, and
appliance manufacturing maintenance
Household refrigerator A .
335222 | and home freezer 31.72 1.15 H0Lljsehold furnishings, equipment, and
. maintenance
manufacturing
Household laundry _ .
H hold f h t, and
335224 | equipment 34.75 1.24 OLISEnO1d Tunishings, eqtiipment, an
. maintenance
manufacturing
335278 Othgr major househol.d 330 0.30 Hon.JsehoId furnishings, equipment, and
appliance manufacturing maintenance
All other miscellaneous
335999 electrical equipment and .06 017 H0l.,|sehold furnishings, equipment, and
component maintenance
manufacturing
336214 Travel tralle'r and camper 22.43 1.88 Miscellaneous goods and services
manufacturing
336612 | Boat building 12.02 1.04 Miscellaneous goods and services
336991 Motorcycle, b|cyc'le, and 7.51 0.63 Recreation and culture
parts manufacturing
337121 Upholstered household 61.10 574 Household furnishings, equipment, and

furniture manufacturing

maintenance
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2002

2002 Expenditure | Standard
10 10 Sector Description P L Consumption Category
($ Producer | Deviation
Sector .
Price)
Nonupholstered wood . .
337122 | household furniture 66.19 2.98 Household furnishings, equipment, and
. maintenance
manufacturing
Office furniture and
337212 custom archltectu'ral 5.48 0.18 Miscellaneous goods and services
woodwork and millwork
manufacturing
337910 | Mattress manufacturing | 27.12 1.20 HOL.jSEhc’ld furnishings, equipment, and
maintenance
337920 Blind and shade 6.46 0.22 H0l.,|sehold furnishings, equipment, and
manufacturing maintenance
Surgical and medical
339112 | instrument 2.01 0.07 Health care
manufacturing
339115 | OPhthalmic goods 20.96 0.77 Health care
manufacturing
339910 Jewelry and'5|lverware 46.53 181 HOL.Jseh0|d furnishings, equipment, and
manufacturing maintenance
339920 sporting and athle'tlc 54.87 4.61 Recreation and culture
goods manufacturing
339930 Doll, toy, an.d game 50.72 1.18 Recreation and culture
manufacturing
339040 | Office supplies (except 1) o9 1.53 Education
paper) manufacturing
339992 Musical |nst.rument 10.12 0.17 Miscellaneous goods and services
manufacturing
339994 Broom, brus.h, and mop 112 0.04 HOL.Jseh0|d furnishings, equipment, and
manufacturing maintenance
484000 | Truck transportation 33.13 0.89 Miscellaneous goods and services
491000 | Postal service 71.24 2.50 Miscellaneous goods and services
493000 | Warehousing and storage | 0.55 0.02 Clothing and footwear
511110 | Newspaper publishers 46.27 0.90 Recreation and culture
511120 | Periodical publishers 21.29 0.41 Recreation and culture
511130 | Book publishers 67.38 3.03 Recreation and culture
511200 | Software publishers 12.85 0.43 Miscellaneous goods and services
Cable and other
515200 | subscription 382.28 6.46 Miscellaneous goods and services
programming
517000 | Telecommunications 956.75 10.14 Communications
519100 Othgr information 107.29 2.96 Miscellaneous goods and services
services
524100 | Insurance carriers 133491 21.25 Health care
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2002

2002 Expenditure | Standard
10 10 Sector Description P L Consumption Category
($ Producer Deviation
Sector .
Price)
Insurance agencies,
524200 | brokerages, and related 708.01 23.07 Miscellaneous goods and services
activities
532230 :/;:f; tape and disc 39.33 0.68 Miscellaneous goods and services
Commercial and
532400 mdLPStrlal machinery and 1.36 0.09 Miscellaneous goods and services
equipment rental and
leasing
541100 | Legal services 172.76 6.53 Miscellaneous goods and services
Accounting, tax
541200 preparatlc'm, 57.85 2.16 Miscellaneous goods and services
bookkeeping, and payroll
services
541920 | Photographic services 20.42 1.74 Recreation and culture
541940 | Veterinary services 71.44 1.70 Miscellaneous goods and services
561600 Inve.stlgatlon and security 2491 0.71 HOLljseh0|d furnishings, equipment, and
services maintenance
561700 Serwc_es to buildings and 276.24 336 Hogsehold furnishings, equipment, and
dwellings maintenance
561900 | Other support services 3.15 0.09 Miscellaneous goods and services
562000 Waste.m:':magem.ent and 91.14 1.64 Household services
remediation services
611100 | Flementary and 128.94 8.93 Education
secondary schools
622000 | Hospitals 88.08 2.98 Health care
623000 Nursmg'a'n.d residential 19.27 0.98 Miscellaneous goods and services
care facilities
624400 | Child day care services 274.13 22.06 Miscellaneous goods and services
711100 Perform'mg arts 143.87 4.00 Recreation and culture
companies
711200 | Spectator sports 51.37 1.44 Recreation and culture
712000 Museums, historical sites, 25.64 0.72 Recreation and culture
zoos, and parks
713940 Fitness and recreational 295.16 8.15 Recreation and culture
sports centers
722000 FO.Od .serV|ces and 2276.32 38.58 Restaurants and hotels
drinking places
Electronic and precision _ .
811200 | equipment repair and 6.64 0.16 HOL.jSEhc’ld furnishings, equipment, and
) maintenance
maintenance
Personal and household A .
811400 | goods repair and 94.14 2.93 Household furnishings, equipment, and
; maintenance
maintenance
812100 | Personal care services 298.88 9.42 Miscellaneous goods and services
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2002

2002 Expenditure | Standard
10 10 Sector Description P L Consumption Category
($ Producer | Deviation
Sector .
Price)
812200 | Death care services 93.96 3.55 Miscellaneous goods and services
812300 Dry-FIeanlng and laundry 113.12 4.17 Miscellaneous goods and services
services
812900 | Other personal services 48.55 2.74 Miscellaneous goods and services
1113A0 | Fruit farming 90.08 1.90 Food and non-alcoholic beverages at home
31131A Sug'a.r cane mills and 9.96 0.24 Food and non-alcoholic beverages at home
refining
31151A Fluid milk ar.1d butter 124.82 1.93 Food and non-alcoholic beverages at home
manufacturing
Animal (except poultry)
31161A | slaughtering, rendering, 337.10 8.19 Food and non-alcoholic beverages at home
and processing
Tob duct
3122A0 obaceo prc.' ue 198.36 7.00 Alcoholic beverages and tobacco
manufacturing
All other chemical
3259A0 | product and preparation | 8.79 0.75 Miscellaneous goods and services
manufacturing
39619A Other pIastl.cs product 16.48 0.85 HOL.JSGh0|d furnishings, equipment, and
manufacturing maintenance
Pottery, ceramics, and o .
32711A | plumbing fixture 6.68 0.45 Hogsehold furnishings, equipment, and
. maintenance
manufacturing
Brick, tile, and other A .
32712A | structural clay product 4.74 0.14 HOL.JSGh0|d furnishings, equipment, and
. maintenance
manufacturing
33221A Cutlery, utensil, .pot, and 157 0.10 H0l.,|sehold furnishings, equipment, and
pan manufacturing maintenance
33221B | Handtool manufacturing 4.02 0.13 Miscellaneous goods and services
33329A Other' industrial ' 265 0.10 HOL.Jseh0|d furnishings, equipment, and
machinery manufacturing maintenance
Vending, commercial,
33331A | industrial, and office 9.97 0.37 Miscellaneous goods and services
machinery manufacturing
Watch, clock, and other
33451A measurl.ng and. 8.58 0.31 Clothing and footwear
controlling device
manufacturing
Metal and other
33712A household furniture 33.52 153 H0l.,|sehold furnishings, equipment, and
(except wood) maintenance
manufacturing
Wood television, radio,
33721A | and sewing machine 13.61 0.57 Recreation and culture
cabinet manufacturing
33999A All other miscellaneous 77.76 2.52 Miscellaneous goods and services

manufacturing
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2002

2002 Expenditure | Standard
10 10 Sector Description L Consumption Category
Sector ($.Producer Deviation
Price)
Scenic and sightseeing
48A000 transportat!o.n.and 6.66 0.57 Recreation and culture
support activities for
transportation
Monetary authorities and
52A000 | depository credit 4163.38 87.33 Miscellaneous goods and services
intermediation
General and consumer
532A00 | goods rental except video | 10.52 0.34 Miscellaneous goods and services
tapes and discs
Junior colleges, colleges,
611A00 | universities, and 1001.74 62.16 Education
professional schools
611800 | Other educational 51.30 3.52 Education
services
Offices of physicians,
621A00 | dentists, and other health | 479.82 16.38 Health care
practitioners
Medical and diagnostic
621800 | 120 and outpatientand ), /o 0.32 Health care
other ambulatory care
services
Amusement parks,
713A00 | arcades, and gambling 57.99 2.62 Recreation and culture
industries
7211A0 | Hotels and motels, 252.87 13.23 Restaurants and hotels
including casino hotels
Grantmaking, giving, and
813A00 | social advocacy 675.48 36.87 Miscellaneous goods and services
organizations
813B00 CIVIC'.SO.CIaI' profgsspnal, 44.32 2.40 Miscellaneous goods and services
and similar organizations
S00203 Other state and Ioca! 1306.12 32.27 Miscellaneous goods and services
government enterprises
General Federal defense . .
S00500 2676.01 43.66 Miscellaneous goods and services

government services
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