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Abstract

Nuclear Effective Theory of µ→ e Conversion

by

Evan Johnson Rule

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Wick Haxton, Chair

The coming decade promises exceptional experimental progress in searches for charged lepton
flavor-violating (CLFV) µ→ e conversion due to efforts at Fermilab (Mu2e) and J-PARC
(COMET). Branching ratio sensitivities for this process are expected to advance by four
orders of magnitude, potentially extending the reach of these probes up to energies of 104

TeV. A pressing challenge for theorists is to extract the maximum amount of information
about possible sources of CLFV from these measurements, whether or not a signal of new
physics is detected.

Efforts to observe µ → e conversion share many similarities with other experimental
programs where the nucleus is treated as a laboratory in which to search for beyond-standard-
model (BSM) physics. These approaches are utilized because they present certain practical
advantages: In searches for CLFV, the act of trapping a muon into the Coulomb field of a
nucleus allows one to control the energy of the final state electron, ensuring that it is maximal
compared to the energy of background electrons originating in standard-model free muon
decays. The downside of employing the nucleus as part of the apparatus is that a host of
complex nuclear physics consequently intervenes between the experimentalist and the desired
observable. To extract meaningful constraints, one must have a method for disentangling the
nuclear physics from the underlying BSM physics.

Another experimental setting in which the nucleus is treated as a laboratory is in direct
detection searches for weakly-interacting massive particle (WIMP) dark matter, where one
aims to discern the mass, spin, and fundamental interactions of WIMP dark matter through
scattering off of atomic nuclei. Again, to access the sought-after information about BSM
physics, one must be able to separate it cleanly from the nuclear physics. In the case of
dark matter direct detection, this separation has been achieved through the development
of an effective theory formulated at the nuclear scale, which factorizes the nuclear physics
from the BSM dark matter physics, sequestering the latter quantity into unknown low-energy
constants (LECs) that are probed directly by experiment. As the effective theory describes
the most general coupling between the WIMPs and the nucleus, the LECs that specify the
effective theory represent the maximum information about the nature of dark matter that
can be obtained from scattering off of nuclei.

In this thesis, we introduce an analogous effective theory for the problem of µ → e
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conversion. In order to adapt the existing framework to the problem at hand, several
significant modifications are required, primarily stemming from the differing nature of the
particles that couple to the nucleus in each scenario: non-relativistic plane-wave dark matter
must be replaced by a bound muon in the initial state and an ultra-relativistic electron in
the final state. We focus primarily on the case of elastic µ → e conversion, wherein the
nucleus remains in its ground state (as this ensures that the energy of the outgoing electron
is maximal).

The three-momentum transferred from the leptons to the nucleus q ≈ mµ is comparable to
the inverse nuclear size, allowing significant angular momentum to be transferred between the
leptons and the nucleus. As a result, the nuclear multipole expansion cannot be truncated at
any order. This decomposition is complicated by the fact that the outgoing electron interacts
with the nuclear charge through the Coulomb potential. Nonetheless, the nuclear multipole
expansion can be performed in a straightforward manner by replacing the Coulomb-distorted
electron wave function with a plane-wave form parameterized by a suitable local momentum.

The effective theory is then specified by a controlled expansion in terms of the relevant
velocity operators for the nucleons ~vN and the bound muon ~vµ. (The electron velocity is, in
essence, “integrated out” of the theory by the assumption that it is ultra-relativistic.) The
construction of the nucleon-scale effective theory proceeds in two steps: First, we specify a
complete set (through a given order in power-counting) of CLFV operators that couple the
leptons to single-nucleon charges and currents. Next, after performing the nuclear multipole
decomposition, the resulting nucleon-level theory is embedded into the target nucleus, where
the approximate parity and time-reversal symmetries of the nuclear ground state restrict the
operators that can contribute to elastic µ→ e conversion.

A valid effective theory can be constructed at three distinct degrees of complexity: The
most basic theory is generated by including neither ~vN nor ~vµ. Relativistic corrections to the
muon wave function and effects stemming from nuclear compositeness are completed ignored,
and the CLFV amplitude depends on just three nuclear response functions, those of a point-
like nucleus. Next, we extend the theory by considering ~vN to first order, and consequently
the set of nuclear responses is enlarged by the addition of three velocity-dependent response
functions. Finally, we formulate the most complete effective theory, including both velocity
operators, ~vN and ~vµ, to first order. This corresponds to the inclusion of relativistic muon
effects, in the form of the muon’s lower Dirac component, and introduces six additional
nuclear responses. The muon’s lower component always appears as a correction to the
upper-component contribution, and therefore we consider the second of these constructions—
containing ~vN but not ~vµ—to be the prototypical effective theory, complete through leading
order in the nuclear response.

The various nuclear responses can be understood as the “nuclear dials” that an exper-
imentalist can tune through nuclear target selection in order to access different regions of
CLFV parameter space. The nucleus 27Al, the target of the Mu2e and COMET experiments,
has ground-state angular momentum J = 5/2 and provides good sensitivity across a range of
responses that are spin- and velocity-dependent/independent. On the other hand, a target
such as Ca, whose natural abundance consists (almost) entirely of isotopes with ground-state
angular momentum J = 0, will not couple to non-scalar operators. A detailed understanding
of the interplay between the various nuclear responses is prerequisite to carrying out an
experimental program—across a multitude of targets—in order to fully constrain the unknown
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CLFV parameters of the nuclear-scale effective theory.
Much of the previous literature has focused on a narrow special case in which the leading

operator that mediates µ→ e conversion couples equally to protons and neutrons and is spin-
and velocity-independent. Such an operator sums coherently in the conversion amplitude
and receives an enhancement by the atomic mass number A relative to incoherent operators,
thereby dominating the CLFV response in cases where it is present. The primary advantage
of working in this limited case is that the nuclear physics, which is a source of significant
complication in general, becomes exceedingly simple. In fact, the coherent nuclear response
is governed entirely by the scalar nucleon density, a quantity that is accurately determined
by experiments. When considering specific extensions of the standard model that yield a
leading coherent response, the µ→ e branching ratio can be predicted with a well-understood
uncertainty. However, in the initial discovery phase of CLFV searches, one should not assume
anything about the underlying nature of flavor-violating operators. The proper approach,
which we pursue in this thesis, is to constrain the most general interaction as specified by the
effective theory.
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Chapter 1

Introduction

Throughout the modern history of particle physics, tests of lepton flavor violation have played
a crucial role in advancing theoretical understanding. When it was first hypothesized that the
weak interaction is mediated by charged bosons, only a single neutrino flavor was known to
exist. Based on this assumption, Feinberg [1] in 1958 noted that the proposed charged bosons
of the weak force would induce µ+ → e+ + γ at the level of 10−4, a branching ratio already
excluded by the upper limit of 2×10−5 on this process set in 1955 by the Columbia University
Nevis cyclotron [2]. The work of Feinberg immediately led to the two-neutrino hypothesis [3],
where separate neutrinos couple to the muon and electron, respectively, thereby forbidding
(in the absence of neutrino flavor violation) the µ+ → e+ + γ decay. When the two-neutrino
hypothesis was confirmed at Brookhaven National Laboratory [4] in 1965, it was the first
indication of a conserved quantum number associated with lepton flavor, extending to both
the charged and neutral leptons1. To this day, lepton flavor is enshrined in the Lagrangian of
the standard model of particle physics as a conserved quantity.

On the other hand, the modern philosophy of particle physics advocates that global
symmetries that are not the consequence of an underlying gauge symmetry are “accidental”
and ultimately violated, though perhaps to a highly suppressed degree. This is commonly the
expectation for the apparently accidental standard-model symmetries of baryon and lepton
number conservation: many extensions of the standard model, including supersymmetry
(SUSY) and other Grand Unified Theories (GUTs), lead to the violation of baryon and lepton
number at high energies, permitting, for example, a free proton to decay on an extremely
long timescale.

From the observation of neutrino oscillations [5, 6], it is presently known that lepton flavor
is not exactly conserved in nature, and some modification of the standard model is required
to account for this phenomenon. Given that neutrinos oscillate between flavor eigenstates as
they propagate and that charged leptons interact with neutrinos through the electroweak
force, one can immediately envision processes, for example that shown in Fig. 1.1, by which
charged lepton flavor is violated at one-loop level. The rate for such reactions, however, is
suppressed by (mν/mW )4, leading to an overall branching ratio that is roughly 40 orders
of magnitude below current experimental sensitivities. This implies that any observation
of charged lepton flavor violation (CLFV) is an unambiguous sign of physics beyond the

1This progress also contributed to the eventual recognition that the “µ meson”, as it was known at the
time of Feinberg’s seminal work, is not associated with the strong nuclear force and is, in fact, a lepton.
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Figure 1.1: Example of CLFV induced by neutrino flavor oscillations. The CLFV rate that
results from this source alone is unobservably small.

standard model (BSM).
In fact, observable rates of CLFV are a consequence of many proposed BSM theories

including, among others, extensions that generate neutrino masses [7, 8], account for the
muon g − 2 anomaly [9, 10], exploit supersymmetry [11–14] or other mechanisms [15–17] for
unification, and explain the observed matter/antimatter asymmetry [18, 19]. Since Feinberg
first considered the µ→ eγ reaction, an immense variety of CLFV processes—many involving
the tau lepton as well—have been identified as probes of new physics, and in recent years
a number of important constraints on flavor-violating operators have been obtained from
colliders, especially the Large Hadron Collider (LHC). In particular, searches at A Toroidal
LHC Apparatus (ATLAS), Compact Muon Solenoid (CMS) and Large Hadron Collider
beauty (LHCb) have constrained the branching ratios of CLFV processes including the Z
boson decays Z → eτ and Z → µτ [20, 21], the Higgs boson decays h → eµ, h → µτ , and
h→ eτ [22–24], the B meson decays B+ → K+µ−τ+ [25], B+ → K+µ±e∓ [26], B0

s → τ±µ∓,
and B0 → τ±µ∓ [27], and the purely leptonic decay τ → 3µ [28–30].

In the next few years, the Belle II experiment [31] at the High Energy Accelerator Research
Organization (KEK) in Japan is expected to produce competitive limits on a range of CLFV
processes including τ → eγ, τ → e`+`−, and B0 → K∗0`+`−, and the future Electron-
Ion Collider (EIC) [32] at Brookhaven National Laboratory (BNL) is expected to further
strengthen constraints on CLFV τ decays [33]. The existing limits on τ → e transitions are
typically much weaker than those on µ→ e decays. On the other hand, specific UV models,
including the SUSY seesaw model [34], may lead to an enhanced rate for CLFV processes
involving the tau lepton.

Such enhancements notwithstanding, the muonic sector provides a particularly favorable
landscape in which to search for CLFV. Apparent violations of lepton flavor universality in
B meson decays [35] and the muon g − 2 anomaly [36] may each be interpreted as hints of
new muonic physics, potentially with a flavor-violating component. Independent of these
considerations, the CLFV processes of µ → e conversion in nuclei and µ → 3e are among
the most sensitive tests of new physics beyond the standard model, yielding, in particular, a
more general constraint on supersymmetric grand unification than either proton decay or
neutrino masses [37]. In contrast to the collider constraints summarized above, these muon
decays represent relatively low-energy probes of CLFV, accessible at dedicated experiments.

In this work, our primary focus is the process of µ → e conversion where a muon is
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captured into the Coulomb field of an atomic nucleus. Once bound, the muon quickly
de-excites to the 1s ground state of the nuclear Coulomb field. The timescale for transition
to the ground state (within 10−9 to 10−12 seconds) is much faster than standard-model muon
decay processes (≈ 10−6 seconds), and therefore one may describe the muon as residing in
the 1s state. There are two primary standard-model processes through which the muons then
decay: decay in orbit

µ− → e− + ν̄e + νµ, (1.1)
and standard muon capture

µ− + A(Z,N)→ νµ + A(Z − 1, N + 1), (1.2)

where Z is the nuclear charge and N the number of neutrons. Both of these processes conserve
total lepton number as well as lepton flavor; the former produces a continuous spectrum of
electrons that constitutes the primary experimental background in searches for CLFV µ→ e
conversion. We are interested in the process

µ− + A(Z,N)→ e− + A(Z,N), (1.3)

which conserves total lepton number but violates lepton flavor by converting a muon into
an electron with no neutrino byproducts. The relevant quantity that is constrained by
experiments is the branching ratio

B(µ− + (A,Z)→ e− + (A,Z)) ≡ Γ(µ− + (A,Z)→ e− + (A,Z))
Γ(µ− + (A,Z)→ νµ + A(Z − 1, N + 1)) , (1.4)

where the numerator is the rate for the CLFV conversion process, and the denominator is
the rate of standard muon capture.

The earliest limit on the neutrinoless conversion of captured muons was obtained in
1952 from the cosmic-ray experiments of Lagarrigue & Peyrou [38], who constrained the
conversion process by counting the number of electron tracks produced by cosmic-ray muons
stopped in copper and tin plates of a cloud chamber. Accounting for electrons produced
in free muon decays, they were able to determine a CLFV branching ratio consistent with
zero, B(µ → e) = 0.04 ± 0.05. In 1955, the same year that Lokanathan & Steinberger
obtained a pioneering limit on µ → eγ, the Nevis cyclotron was also the setting for the
first µ→ e conversion collider experiment. Employing a copper target to trap roughly 400
muons—produced from the decay of cyclotron pions—in 20 hours of running time, Steinberger
& Wolfe were able to obtain an upper limit of B(µ→ e) . 2× 10−4 (90% confidence level)
[39].

In the decades since the first constraints were obtained, improving detector technology
and increasingly intense muon beams have allowed experimentalists to extend the reach of
conversion searches by nearly ten orders of magnitude: The current best limit on the µ→ e
conversion branching ratio is B(µ → e) < 7 × 10−13 (90% CL), set by the SINDRUM II
collaboration [40] using Au as the target nucleus. The next generation of experiments, Mu2e
at Fermilab [41] and the COherent Muon to Electron Transition (COMET) experiment [42]
at Japan Proton Accelerator Research Complex (J-PARC), are expected to improve this limit
by four orders of magnitude, potentially probing new physics scales up to 104 TeV. Both of
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these experiments have chosen 27Al as the target nucleus, and in this work we will frequently
specialize to this case. Beyond the initial run, it is a high priority for both experiments to
explore different target nuclei.

Among a number of experimental advances contributing to the anticipated exceptional
improvement in CLFV sensitivity, one primary source is the shear number of muons that can
be captured onto the nuclear target [43, 44]. Mu2e in particular will benefit from a pulsed
muon beam that is ≈ 10, 000 times more intense than the previous generation of conversion
experiments. Over their respective primary lifetimes, Mu2e and COMET are each expected
to stop ≈ 1018 muons. An evolution of the Mu2e experiment has recently been proposed that
aims to leverage future beamline upgrades at Fermilab in order to progress the sensitivity by
a further order of magnitude [45].

Significant advances in the sensitivity of searches for µ → eγ and µ → 3e are also
soon expected with the advent, respectively, of the Mu to E Gamma (MEG) II and Mu3e
experiments, both located at the Paul Scherrer Institute (PSI). The branching ratios for these
two processes are measured relative to the dominant free-muon decay mode; that is

B(µ→ eγ) ≡ Γ (µ→ e+ γ)
Γ (µ→ e+ 2ν) , B(µ→ 3e) ≡ Γ (µ→ 3e)

Γ (µ→ e+ 2ν) . (1.5)

The existing branching ratio limits for µ→ e conversion, µ→ eγ, and µ→ 3e are shown in
Table 1.1. The corresponding limits expected at the next-generation experiments are shown
in Table 1.2.

The expected limits from µ→ e conversion experiments are considerably more stringent
than those obtained from either of the free CLFV muon decays. This advantage is largely
due to the favorable kinematics of the decay of a captured muon: if the nucleus remains in its
ground state throughout the conversion process then the outgoing electron will have an energy
at the very endpoint of the spectrum of background electrons emitted in standard-model
µ→ e+ 2ν decays. Restricting to the case without nuclear excitation—which we refer to as
elastic µ→ e conversion—limits the operators that can contribute due to the approximate
parity and time-reversal symmetries of the nuclear ground state.

Depending on the underlying CLFV physics, these three processes may be strongly
interconnected. For example, an operator that mediates µ → eγ can be embedded in a
nucleus—the photon is virtual and exchanged with the nuclear charge—and thereby induce
µ→ e conversion. Particular UV models of CLFV should provide unambiguous predictions
for the branching ratios B(µ→ eγ), B(µ→ 3e), and B(µ→ e) in various target nuclei. If
these quantities can be computed with well-understood uncertainties, then measurements of
CLFV processes can be used to exclude candidate BSM theories. Relating the low-energy
µ → e conversion process to an underlying UV theory of CLFV, however, is a formidable
theoretical challenge, due in part to the considerable range of energy scales that the problem
spans.

The modern paradigm for treating problems with large scale separations is effective
theory. In these scenarios, one typically encounters a small dimensionless quantity, such
as the ratio of two energy scales: one large, associated perhaps with the mass of a heavy
degree of freedom, and one small, say the energy at which one intends to probe the system.
Effective theory permits one to remove, or “integrate out”, the heavy particle from the
description while retaining its effect on the low-energy physics. A complete basis, consistent
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Process Limit Experiment/Lab Year Reference

µ−+Cu → e−+Cu < 1.6× 10−8 SREL 1972 [46]

µ−+32S → e−+32S < 7× 10−11 SIN 1981 [47]

µ−+Pb → e−+Pb < 4.6× 10−11 SINDRUM II 1996 [48]

µ−+Ti → e−+Ti < 6.1× 10−13 SINDRUM II 1998 [49]

µ−+Au → e−+Au < 7.0× 10−13 SINDRUM II 2006 [50]

µ+ → e+γ < 4.2× 10−13 MEG at PSI 2016 [51]

µ+ → e+e−e+ < 1.0× 10−12 SINDRUM 1988 [52]

Table 1.1: Existing branching ratio limits on the CLFV processes µ → e, µ → eγ, and
µ→ 3e. All limits correspond to 90% confidence level.

Process Limit Experiment/Lab Reference

µ−+27Al → e−+27Al < 8× 10−17 Mu2e at Fermilab [53]

µ−+27Al → e−+27Al < 7× 10−15 COMET (Phase I) at J-PARC [42]

µ−+27Al → e−+27Al < 7× 10−17 COMET (Phase II) at J-PARC [42]

µ+ → e+γ < 6× 10−14 MEG II at PSI [54]

µ+ → e+e−e+ < 6× 10−15 Mu3e at PSI (Phase I) [55]

µ+ → e+e−e+ < 4× 10−16 Mu3e at PSI (Phase II) [55]

Table 1.2: Expected limits on CLFV branching ratios at next-generation experiments. All
limits correspond to 90% confidence level.

with the prescribed symmetries, is constructed from the remaining degrees of freedom. Each
term appears at a particular order in the small dimensionless quantity, which acts as a
power-counting parameter. The full effective theory basis contains an infinite number of
operators with unknown coefficients that encode the relevant physics, including the impact of
the integrated-out heavy particle. In order to restore predictive power, one truncates the basis
at finite order in the power-counting, at the cost of incurring some error in the calculation of
observables. A proper effective theory improves systematically at each higher order.

The landscape of effective theories relevant to µ → e conversion is illustrated in Fig.
1.2. The CLFV physics is associated with an energy scale ΛCLFV—typically well above the
electroweak scale—at which the dimensionless CLFV couplings (potentially to new degrees
of freedom) are order one. In the spirit of effective theory, at energies below ΛCLFV we may
integrate out any heavy BSM particles, generating a set of effective operators in terms of
standard-model degrees of freedom.

Two major theoretical hurdles arise as one attempts to extract from the standard-model
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Figure 1.2: Sketch of the various energy scales that are relevant to µ→ e conversion and the
effective theories that can be employed in each regime.
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effective theory a prediction for the µ → e conversion branching ratio: At energies & 1
GeV, the strong-force physics is well described by a perturbative treatment of the theory
of quantum chromodynamics (QCD) in terms of quark and gluon degrees of freedom. The
conversion experiments, on the other hand, are performed at sufficiently low energies that
the quarks hadronize into nucleons. Although QCD remains the correct fundamental theory
in this regime, it is strongly coupled and essentially intractable. Instead, one must undertake
a non-perturbative matching between quark and hadron degrees of freedom that requires
input from either experiment or lattice QCD calculations. Fortunately, we are entering an era
where precision lattice QCD calculations make it possible to quantify the errors associated
with this matching procedure.

The nucleon-level operators thus obtained must ultimately be embedded in a nucleus,
where the form of the response is constrained by the angular momentum, isospin, parity, and
time-reversal symmetries of the nuclear ground state. This is the second major theoretical
hurdle in connecting the UV theory to experiment, due to the complex nuclear many-
body physics required to evaluate the relevant response functions. In order to construct
a many-body wave function for a nucleus like 27Al in the nuclear shell-model, one relies
upon phenomenological interactions that have been tuned to reproduce low-energy nuclear
observables, such as charge radii and low-lying spectra. At present, the errors associated
with these treatments are not rigorously quantified and can certainly be significant.

These difficulties can be circumvented if one restricts focus to the case of coherent µ→ e
conversion, in which the only nuclear operator under consideration is the isoscalar monopole
charge operator. The term “coherent” refers to the fact that this operator sums constructively
over every nucleon in the nucleus, and therefore the amplitude is enhanced by roughly a
factor of A = N + Z relative to the incoherent process. Specializing to the coherent case
results in a dramatic simplification of the nuclear physics: rather than relying on difficult
and imprecise modeling of the nuclear many-body wave function, the coherent amplitude
can be computed from an experimentally determined quantity, the scalar nucleon density.
Thus, if one connects the coherent nucleon operator to its quark-level counterparts—relying
on lattice QCD to quantify the associated matching errors—it is possible to complete the
chain of effective theories from the scale of µ→ e conversion up to the high-energy realm of
candidate UV CLFV theories, yielding a prediction for the coherent conversion branching
ratio with well-understood uncertainties. This construction was recently completed though
next-to-leading order in the quark/hadron matching [56, 57], providing a valuable tool for
discriminating among BSM theories.

On the other hand, this “top-down” approach is not general and can only be used to
exclude those particular UV models that yield a leading coherent operator. At present, there is
no reason to expect that nature has been so kind as to concentrate sources of CLFV into such
a narrow response. Indeed, one should consider the problem in general, including all operators
allowed by the relevant symmetries through a given order in some small parameter(s). Of
course, each of the various effective theories represented in Fig. 1.2 provides a complete
description of the physics within its domain of applicability, and if one were to, say, begin
from the most general effective theory of CLFV at the level of standard-model degrees of
freedom and proceed downward to the nuclear scale, then one must recover the most general
nuclear-level effective theory. In doing so, however, it is highly likely that one has horribly
obscured the underlying CLFV physics, convoluting it with the nuclear physics.
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The µ → e conversion experiments have the advantage that the nuclear target can be
varied, potentially providing additional complementary measurements. As such, a formalism
that factorizes the part of the response that depends on the choice of nuclear target from
the CLFV physics is highly desirable. Furthermore, being the scale at which the relevant
measurements are conducted, the nuclear scale is the most natural setting for an effective
theory of µ→ e conversion, allowing one to identify those quantities that are directly probed
by experiment. In this sense, the nuclear-scale effective theory represents the most general
constraint that elastic µ→ e conversion can place on underlying CLFV operators.

The bulk of this thesis is dedicated to the development and application of a nuclear
effective theory for the elastic µ→ e conversion process. This formalism was first introduced
in Refs. [58, 59]. The development of the effective theory is mirrored in the structure of this
thesis, which we now outline:

Chapter 2 describes the treatment of the leptonic fields. We demonstrate how accurate
wave functions for both the bound muon and outgoing electron can be obtained by numerical
solution of the Dirac equation with potential given by the nuclear Coulomb field. Although
these solutions can be fruitfully employed in the case of coherent conversion—as has been
done extensively in the existing literature—they are very tedious to extend to the general
case, obscuring what is actually rather simple physics. In contrast, by introducing an
approximate form for the electron wave function, we are able to achieve a dramatically
simplified expression for the most general CLFV amplitude without compromising the
accuracy. Previous investigators who have attempted to extend beyond the coherent case
have employed a naïve plane-wave form for the electron and, as a result, incurred significant
errors. Our treatment retains both the simplicity of the plane wave solution and the accuracy
of the numerical solution.

We further abridge the effective theory by introducing several approximations for the
bound muon. Particularly in light nuclei, one can neglect altogether the lower component
of the muon’s Dirac wave function, which arises only as a relativistic correction. (Later,
in Chapter 7, we demonstrate that, even in heavy nuclei where relativistic effects become
significant, the muon’s lower component provides little new physics information, amounting
in essence to a shift in the nuclear form factors and, correspondingly, a renormalization of the
associated operator coefficients. The basic structure of the nuclear-scale effective theory is
unchanged.) In addition, we argue that the slowly varying radial wave function of the muon’s
upper component can be well-approximated by a constant value, eliminating the need to
compute cumbersome numerical integrals and, to a large extent, decoupling the muon from
the nucleus. Significant attention is dedicated to understanding the errors associated with
these simplifications when applied to a range of nuclear targets.

In Chapter 3, we identify the six basic Hermitian operators from which the effective theory
is constructed. When combined through first order in the relevant power-counting parameters,
these building-block operators yield the 16 independent CLFV operators that constitute
the basis of the nucleon-level effective theory. Performing a multipole decomposition of
the resulting nuclear charges and currents, we identify 11 independent nuclear responses
that govern the conversion amplitude. However, the approximate parity and time-reversal
symmetries of the nuclear ground state limit the operators that can contribute to the elastic
µ→ e conversion process to just 6 allowed responses.

The rate for µ → e conversion is then expressed in terms of the six allowed responses
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and two interference terms. Each term is factorized into a product of leptonic and nuclear
response functions. The leptonic responses represent the most general constraint on CLFV
operators that can be obtained from elastic µ→ e conversion—only 8 independent quantities
are probed. (Accounting for operators that couple distinctly to protons and neutrons, the
number of independent responses is doubled to 16.)

Chapter 4 explores the properties of each of the six allowed nuclear response functions,
which correspond to “nuclear dials” that can be tuned through target selection in order to
probe different combinations of CLFV parameters. In some cases, the essential behavior of
the nuclear responses depends only on macroscopic nuclear quantities like charge, spin, and
isospin. In other situations, the results are sensitive to subtle details of nuclear structure,
including correlations that are properly described by nuclear shell-model calculations. We
compare the strength of various spin- and velocity-dependent/independent responses across a
range of nuclei in order to assess the sensitivity of different targets to CLFV operators.

In Chapter 5, we obtain constraints on the low-energy constants of the nuclear effective
theory from existing and future µ→ e conversion experiments. To simplify the analysis, we
consider the case in which a single nucleon-level CLFV operator is active. We obtain an
upper limit on the magnitude of the associated coupling constant and translate this limit
into an approximate scale of new physics that the operator probes.

Chapter 6 discusses the relationship between µ→ e conversion, µ→ eγ, and µ→ 3e. We
highlight a few potential mechanisms by which these processes may be interrelated and explore
possible detection scenarios across all three probes at the next generation of experiments.

In Chapter 7, we restore the muon’s lower component to the effective theory, representing
its impact in terms of the action of the muon velocity operator. Six novel nuclear responses
are required in order to fully describe the coupling to the muon’s p-wave lower component.
We derive an expression for the decay rate including the relativistic muon effects and discuss
the impact of these corrections on the interpretation of µ→ e conversion experiments.

In Chapter 8, we explicitly perform the matching required to connect experimental
CLFV constraints directly to BSM parameters for the particular scenario of coherent µ→ e
conversion mediated by a heavy scalar particle. We demonstrate how—within this special
case—CLFV branching ratios can be computed with controlled uncertainties, allowing one
to rigorously exclude candidate UV models that fall within this category. The matching
between quark and nucleon degrees of freedom is performed through next-to-leading order in
chiral power-counting, including the effect of two-nucleon operators. We apply this formalism
to the case in which µ→ e conversion is induced by flavor-violating Yukawa couplings to the
standard-model Higgs boson.

Chapter 9 describes in greater detail the treatment of the two-nucleon operator that
contributes to scalar-mediated coherent conversion at next-to-leading order. After transform-
ing to position-space, we evaluate the two-nucleon operator using nuclear shell-model wave
functions. We discuss the limitations of this approach and comment on the broader impact
of two-nucleon contributions upon efforts to interpret µ→ e conversion limits.

In Chapter 10, we conclude with a summary of the progress reported in this thesis and
introduce two directions for future work. First, we describe an extension of the effective
theory formalism to include the inelastic conversion process in which the nucleus transitions to
an excited state. The inelastic process circumvents the constraints imposed by nuclear parity
and time-reversal symmetries and allows one to probe operators that are otherwise forbidden
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by the elastic process. Significant collaboration with experimentalists will be required in
order to more fully understand the feasibility of such a measurement.

Finally, we outline the work that remains in matching the nuclear-scale effective theory to
higher-scale effective theories. Once complete, this program will allow us to connect general
constraints obtained from conversion experiments to candidate BSM theories. We note a few
related works in the literature that will aid in these efforts.

Striving to maintain a clear and concise narrative, we have relegated the details of many
calculations to a series of appendices:

Appendix A introduces some of the basic conventions for spinors that we adopt in this
work and provides details related to the expansion of the nucleon and lepton Dirac currents
in terms of Pauli spinors.

Appendix B provides an introduction to spherical tensor operators. Particular attention
is devoted to the vector spherical harmonics, which arise frequently in the nuclear multipole
decomposition.

Appendix C introduces the one- and two-body density matrices that are used to efficiently
compute many-body nuclear matrix elements of few-body operators.

Appendix D contains detailed expressions required in the evaluation of harmonic oscillator
matrix elements of the single-nucleon response functions.

Appendix E provides the details of the Fermi gas averaging procedure that we employ in
order to reduce the two-nucleon operator to an effective single-nucleon operator. Results are
reported for both the spin-dependent and spin-independent effective operators.

Appendix F contains the details of the Fourier transform of the two-nucleon operator,
including the full momentum-transfer-dependent result in position space.
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Chapter 2

Treatment of the Leptonic Fields

In comparison to the nuclear physics, the leptonic physics of µ→ e conversion is relatively
straightforward and can be computed to high accuracy. In particular, it is known that the
muon occupies the 1s state of the nuclear Coulomb field. Nuclear charge distributions have
been determined from electron scattering experiments, and so one may (numerically) solve
the Dirac equation for the captured muon in the field of a realistic nuclear Coulomb potential.
This procedure yields the wave function and determines the binding energy of the muon.
Conservation of energy then dictates the energy of the outgoing electron, and again one may
solve the Dirac equation for the electron in the Coulomb field of the nucleus. The resulting
wave functions account for relativistic effects and the finite extent of the nuclear charge. The
downside of this approach is that one is now burdened with numerical solutions for the lepton
wave functions, which can make subsequent calculations exceedingly complicated.

In this chapter, we describe in detail how to obtain the Dirac solutions for the muon
and electron. We highlight the special cases where the precise numerical solutions can be
employed with minimal overhead and then demonstrate the difficulties that one encounters
when attempting to incorporate these solutions into a fully general approach. Finally, based
on careful study of the Dirac solutions, we introduce approximate lepton wave functions that
dramatically simply the formalism and illuminate the underlying physics.

2.1 Solutions of the Dirac Equation for a Spherically
Symmetric Potential

The Dirac equation for a particle of mass m in a spherically symmetric potential V (r) may
be written as

Eψ =
[
−iγ5σr

(
∂r + 1

r
− γ0

r
K
)

+ V (r) + m̄γ0

]
ψ, (2.1)

with

γ5 =

 0 I2

I2 0

 , γ0 =

 I2 0

0 −I2

 , (2.2)
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and

σr =

 ~σ · r̂ 0

0 ~σ · r̂

 , K =

 ~σ · ~L+ I2 0

0 −
(
~σ · ~L+ I2

)
 . (2.3)

In the above, E is the energy of the lepton, ~L = −i~r × ~∇ is the orbital angular momentum
operator, and I2 is the two-dimensional identity matrix. The mass m̄ is the reduced mass of
the lepton

m̄ = mMT

m+MT

, (2.4)

where m is the lepton mass and MT is the nuclear target mass.
The solutions can be expressed as eigenfunctions of the operators J2, Jz, and K. Letting

the corresponding eigenvalues be represented by j, m, and κ, respectively, the Dirac wave
functions have the generic form

ψκm(~r ) =

 Gκ(r)
r

Ω`
jm(r̂)

iFκ(r)
r

Ω`′
jm(r̂)

 , (2.5)

where Ω`
jm is a spinor spherical harmonic

Ω`
jm(r̂) =

∑
m`ms

〈` m`
1
2 ms|j m〉Y`m`(r̂) ξms , (2.6)

and ξms is a Pauli spinor. The spinor spherical harmonics satisfy the following properties:

L2Ω`
jm = `(`+ 1)Ω`

jm,

J2Ω`
jm = j(j + 1)Ω`

jm,

JzΩ`
jm = mΩ`

jm,(
~σ · ~L+ I2

)
Ω`
jm = −κΩ`

jm.

(2.7)

The Dirac solutions are indexed by κ = ...,−3,−2,−1, 1, 2, 3, ... where j = |κ| − 1
2 and

κ =

 −(`+ 1), κ < 0

`, κ > 0
. (2.8)

In the case of µ→ e conversion, the muon is known to be in the κ = −1 state. In principle,
the electron can be produced in any partial wave, limited by the fact that it must couple
together with the j = 1/2 muon to the nucleus. The radial wave functions are obtained by
solving the coupled differential equations

dG

dr
= −κ

r
G+ (E − V (r) + m̄)F,

dF

dr
= κ

r
F − (E − V (r)− m̄)G.

(2.9)
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The Coulomb potential that we employ is based on a two-parameter Fermi model of the
proton density

ρp(r) = ρ0

1 + e(r−c)/β , (2.10)

where the parameters c and β are fit to electron scattering data, and the normalization
constant ρ0 is determined by our convention∫ ∞

0
dr r2ρp(r) = Z. (2.11)

In fact, ρ0 can be determined analytically in terms of the polylogarithm function Lin(z),

ρ0 = − Z

2β3Li3 (− exp [c/β]) , (2.12)

as can the associated Coulomb potential

VC(r) = −αZ
r

{
1 + ρ0β

3

Z

[
r

β
Li2

(
−e(c−r)/β

)
+ 2Li3

(
−e(c−r)β

)]}
. (2.13)

The values of c and β that we employ for the nuclei of interest are given in Table 2.1, along
with the implied values of the root-mean-square (RMS) charge radius

√
〈r2〉, which can also

be expressed analytically for the two-parameter Fermi model
√
〈r2〉 ≡

( 1
Z

∫
dr r4ρp(r)

)1/2

=
√

12β
[

Li5 (− exp[c/β])
Li3 (− exp[c/β])

]1/2

.

(2.14)

The Dirac solutions obtained from these potentials for the nuclei 27Al and 48Ti are shown
for the muon in Fig. 2.4 and for the electron in Fig. 2.1 and Fig. 2.2, respectively. With
the prescription outlined here, one may obtain Dirac solutions for the κ = −1 bound muon,
determine the muon binding energy and hence the energy of the outgoing electron and then
solve for electron radial wave functions for any κ.

2.2 The Coherent Case and its Limitations
The downside of utilizing the Dirac solutions directly in calculations of the µ→ e branching
ratio lies in the fact that the lepton current must be integrated against the nuclear current,
which, given the numerical nature of the lepton solutions, precludes a simplified expression for
all but the most trivial operators. In general, the effective interaction Hamiltonian consists
of terms of the form

Hi = ci

∫
d3x ψ̄e(~x)OLψµ(~x)ψ̄N(~x)ONψN(~x), (2.15)

where ci is a low-energy constant (LEC), and the operators OL, ON may carry Lorentz
indices, in which case they couple to an overall scalar. To some extent, one may factorize
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the leptonic and nuclear currents by introducing an auxiliary coordinate ~y and inserting an
intermediate delta function

δ(~x− ~y) =
∫ d3q

(2π)3 e
i~q·(~x−~y), (2.16)

to obtain

Hi = ci

∫ d3q

(2π)3

∫
d3x ei~q·~x ψ̄e(~x)OLψµ(~x)

∫
d3y e−i~q·~y ψ̄N(~y)ONψN(~y). (2.17)

In this form, we may carry out separate multipole decompositions for the leptons and the
nucleons by expanding the respective plane wave factors in partial waves as

ei~q·~x = 4π
∞∑
L=0

L∑
M=−L

iLjL(qx)Y ∗LM(q̂)YLM(x̂). (2.18)

As a simple example, let us specialize to the case of a scalar-scalar coupling of the leptons to
the nucleons

OL = 1L, ON = 1N . (2.19)

Performing the integral dΩq identifies the angular momenta of the leptonic and nuclear partial
waves, yielding

H = 2
π
c
∫ ∞

0
dq q2

∞∑
L=0

L∑
M=−L

∫
d3x jL(qx)Y ∗LM(x̂) ψ̄e(~x)ψµ(~x)

×
∫
d3y jL(qy)YLM(ŷ) ψ̄N(~y)ψN(~y).

(2.20)

In practice, the summation over L is truncated by the requirement that L must couple to the
total angular momentum of the nuclear ground state. Focusing on the leptonic multipoles,
the muon is known to occupy the κ = −1 state, whereas the electron can be in any state
that couples together with the muon to total angular momentum L. Labeling the electron
state by κ, j, and me, we expand the lepton wave functions in Dirac partial waves as∫

d3x jL(qx)Y ∗LM(x̂)ψ̄e(~x)ψµ(~x) =
∫
d3x jL(qx)Y ∗LM(x̂) 1

x2

(
G(e)
κ (x)G(µ)

−1(x)Ω†`jme(x̂)Ω0
1
2mµ

(x̂)

−F (e)
κ (x)F (µ)

−1 (x)Ω†`
′

jme(x̂)Ω1
1
2mµ

(x̂)
)
.

(2.21)

In principle, the angular integral dΩx can be computed by recoupling the spinor spherical
harmonics in terms of a single ordinary spherical harmonic

Ω†`1j1m1(x̂)Ω`2
j2m2(x̂) =

∑
L

(−1)j1+m1+j2+L+ 1
2

 `1 `2 L

j2 j1
1
2


×

√√√√(2j1 + 1)(2j2 + 1)(2`1 + 1)(2`2 + 1)
4π(2L+ 1) CL0

`10`20C
LM
j1−m1j2m2YLM(x̂).

(2.22)
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We can already see that if one wants to retain generic L multipoles while considering all
relevant electron partial waves, the calculation becomes quite cumbersome. On the other
hand, the lowest multipole L = 0 is relatively simple to compute. In this case, the only
electron state that contributes is κ = −1, and the angular integration is trivial:∫

d3x j0(qx)Y ∗00(x̂) ψ̄e(~x)ψµ(~x)

= 1
2
√
π

∫ ∞
0

dx j0(qx)
(
G

(e)
−1(x)G(µ)

−1(x)− F (e)
−1 (x)F (µ)

−1 (x)
)
ξ†meξmµ .

(2.23)

The evaluation of the nuclear wave functions also simplifies dramatically for the L = 0
multipole ∫

d3y j0(qy)Y00(x̂) ψ̄N(~y)ψN(~y) = 1
2
√
π

∫ ∞
0

dy y2 j0(qy)ρN(y), (2.24)

where ρN(r) = ρp(r) + ρn(r) is the isoscalar nuclear density. Conveniently, ρp(r) and ρn(r)
have each been determined experimentally in a wide range of nuclei: the former is known from
measurements of elastic electron scattering off of nuclei [60] whereas the latter is constrained,
for example, by experiments on pionic atoms [61]. Recombining the leptonic and nuclear
expressions, we may perform the integral over q to recover a radial delta function δ(x− y),
allowing us to write

HL=0 = c

4π

∫ ∞
0

dx
(
G

(e)
−1(x)G(µ)

−1(x)− F (e)
−1 (x)F (µ)

−1 (x)
)
ρN(x). (2.25)

The remaining integration over the radial coordinate is straightforward to perform numerically.
Thus, by restricting to the L = 0 multipole of the scalar-scalar interaction, we arrive at a
very simple expression for the effective Hamiltonian, with all of the nuclear physics captured
by a measured quantity, ρN (x). In what circumstances is this simplification justified? In the
case considered above, the underlying nuclear operator is the isoscalar nucleon density

ψ̄N(~x)ψN(~x)→ ρ̂(~x) =
A∑
i=1

δ(~x− ~xi), (2.26)

which admits the multipole decomposition

MLM(q) =
∫
d3x jL(qx)YLM(x̂) ρ̂(~x)

=
A∑
i=1

jL(qxi)YLM(x̂i).
(2.27)

The µ → e conversion amplitude involves a summation over all multipoles allowed by the
restriction that they must be able to couple to the nuclear ground state. In 27Al, the ground
state carries angular momentum J = 5/2, permitting contributions from multipoles up to
L = 5. Odd charge multipoles are forbidden by parity, leavingM0, M2, andM4 as the allowed
operators that must be included in the conversion amplitude. When these operators are
evaluated between nuclear ground state wave functions, the L = 0 multipole is unique in that
it sums coherently over every nucleon in the nucleus; operators with L > 0 can only couple
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to certain subsets of nucleons. Therefore, one expects a relative enhancement of roughly a
factor of A in the amplitude for the coherent operator compared to incoherent operators.
This enhancement provides the justification for retaining only the L = 0 multipole in Eq.
(2.20): the error induced in the conversion rate should be below 1% for the nuclei of interest.

It is crucial that the only nuclear operator under consideration is the nucleon density
ρ̂(~x). This argument cannot be extended to other nuclear charges or currents, as they do not
give rise to coherent multipole operators and therefore provide no justification for truncating
the multipole expansion. In Section 3.7, we demonstrate—by explicit calculation—the need
to retain higher-order multipoles in the general case. To avoid these complications, many
studies in the literature restrict their attention to the coherent conversion process. The
fact that the nuclear physics then depends only on a measured quantity is a significant
advantage of this approach, completely avoiding the major theoretical hurdle of embedding
the single-nucleon operators into the nucleus. In Chapter 8, we consider coherent conversion
in detail, demonstrating how it can be used to rigorously exclude certain UV models of
CLFV.

On the contrary, the nature of CLFV physics is yet entirely unknown—depending on
the underlying BSM model, coherent conversion may not constitute the leading response.
Therefore one should construct the most general CLFV interaction between the leptons and
the nuclear target, relying on experiment to constrain the coefficients of the effective operators.
In order to consider these additional, incoherent nuclear operators while retaining a simple
form for the conversion amplitude, we now proceed to introduce approximate forms for the
muon and electron wave functions. Ultimately, we will replace the complicated numerical
solutions by, for the muon, the simplest possible wave function: a constant value in the upper
component, and for the electron, perhaps the second-simplest wave function: a free Dirac
plane wave.

2.3 Approximate Treatment of the Outgoing Electron
When the µ → e conversion process occurs without nuclear excitation, the energy of the
outgoing electron Ee is given by

Ee = mµ − Ebind
µ − ~q 2

2MT

, (2.28)

where ~q is the three-momentum transferred from the nucleus to the electron, mµ and MT are,
respectively, the muon and nuclear target masses, and Ebind

µ is the muon’s binding energy,
defined here as a positive quantity. The final term on the right-hand side of Eq. (2.28)
accounts for the recoil energy of the target nucleus. Working to first order in mµ/MT and
ignoring terms subleading in 1/MT , we find

~q 2 = MT

mµ +MT

[(
mµ − Ebind

µ

)2
−m2

e

]
. (2.29)

As shown in Table 2.1, the muon binding energy is small compared to its rest mass—even
for very heavy nuclei. Therefore, the outgoing electron receives nearly all of the muon’s rest
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Target c (fm) β (fm)
√
〈r2〉 (fm) Ebind

µ (MeV) Zeff R q (MeV) qeff (MeV)
12
6 C 2.215 0.491 2.505 0.1000 5.703 0.8587 105.07 108.40
16
8 O 2.534 0.514 2.739 0.1775 7.421 0.7982 105.11 109.16
19
9 F 2.580 0.567 2.904 0.2242 8.230 0.7646 105.12 109.44

23
11Na 2.760 0.543 2.940 0.3337 9.855 0.7190 105.07 110.25
27
13Al 3.070 0.519 3.062 0.4630 11.309 0.6583 104.98 110.81
28
14Si 3.140 0.537 3.146 0.5346 12.001 0.6299 104.91 111.03
32
16S 3.161 0.578 3.239 0.6924 13.184 0.5595 104.78 111.56

40
20Ca 3.621 0.563 3.499 1.0585 15.692 0.4830 104.45 112.28
48
22Ti 3.843 0.588 3.693 1.2615 16.656 0.4340 104.28 112.43
56
26Fe 4.111 0.558 3.800 1.7182 18.603 0.3363 103.84 113.16
63
29Cu 4.218 0.596 3.947 2.0885 19.856 0.3210 103.48 113.50
184
74 W 6.51 0.535 5.421 9.0812 33.629 0.0939 96.55 114.93

Table 2.1: Input parameters and output quantities for the muon and electron Dirac solutions:
c and β are the parameters of the Fermi function that describes the nuclear density profile,√
〈r2〉 is the nuclear root-mean-square charge radius, Ebind

µ is the muon binding energy,
Zeff is the effective charge that parameterizes the constant muon approximation, R is the
corresponding reduction factor, q is the physical momentum of the outgoing electron, and qeff
is the effective momentum that accounts for the interaction of the electron with the nuclear
charge.
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mass as kinetic energy and is ultra-relativistic. In this limit, the electron’s wave function
may be reasonably approximated as a free Dirac plane wave

ψe(~r ) =
√
me

Ee
u(q) ei~q·~r, (2.30)

where the basis spinor is defined in the convention of Bjorken & Drell [62]

u(q) =
√
E +m

2m

 ξ

~σ·~q
E+mξ

 . (2.31)

The plane-wave form admits a partial-wave expansion, from which we make the identifications
Gκ(r) = qrj`(qr),

Fκ(r) =
√
Ee −me

Ee +me

 qrj`−1(qr), κ > 0

−qrj`+1(qr), κ < 0,

(2.32)

where in the limit of an ultra-relativistic electron, we may take
√

(Ee −me)/(Ee +me) ≈ 1.
Although they capture the general qualitative behavior of the outgoing electron, the free
Dirac solutions differ significantly from the exact numerical Coulomb solutions, as shown in
Figures 2.1, 2.2, and 2.3. The outgoing electron is not free but interacts with the nuclear
charge through the Coulomb potential, leading to worsening disagreement between the two
solutions with increasing Z.

We can improve the agreement with the numerical solutions by employing the effective
momentum approximation (EMA) [63, 64], which retains the plane-wave form but attempts
to account for the Coulomb distortion of the electron wave function by replacing the physical
three-momentum ~q with an effective momentum ~qeff . The attractive Coulomb potential
produces two physical effects on the electron wave function relative to the free plane wave:
First, the wavelength is shortened. Second, the probability near the origin (i.e., close to the
nuclear charge) is increased. Both of these effects can be captured by replacing the Coulomb
potential of Eq. (2.13), which is computed for a finite charge distribution and therefore rather
complicated in form, by a constant potential well whose depth is equated with the average of
the nuclear Coulomb potential over the nuclear charge density

V̄C ≡
∫
dr r2ρ(r)VC(r)∫
dr r2ρ(r) . (2.33)

Locally in this constant potential, the momentum of the electron is the effective momentum

~q 2
eff = MT

MT +mµ

[(
mµ − Ebind

µ − V̄C
)2
−m2

e

]
. (2.34)

The values of the physical momentum q and effective momentum qeff for various nuclear
targets are given in Table 2.1. The effective momentum approximation is implemented by
replacing the free Dirac plane wave by

u(q)ei~q·~r → qeff

q

√
Ee

2me

 ξ

~σ · q̂ ξ

 ei~qeff ·~r, (2.35)



CHAPTER 2. TREATMENT OF THE LEPTONIC FIELDS 19

 = �1 (` = 0 j = 1
2 )

<latexit sha1_base64="EUnfz3vb4xLjG+gAgVXUIJFIFoA=">AAACFHicbVDJSgNBEO1xjXGLevTSGISIGGaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IPXvwVLx4U8erBm39jZzlo4oOCx3tV3VXPi6TQaNvf1tLyyuraemojvbm1vbOb2duv6jBWHCo8lKGqe0yDFAFUUKCEeqSA+Z6Emte/Gvu1e1BahMEtDiJo+qwbiI7gDI3Uypy6fRZFrHjmjGjOBSmL9uiu6CI8oMaBhMShbmgeoIXhSSuTtfP2BHSRODOSJTOUW5kvtx3y2IcAuWRaNxw7wmbCFAouYZh2Yw0R433WhYahAfNBN5PJUUN6bJQ27YTKVIB0ov6eSJiv9cD3TKfPsKfnvbH4n9eIsXPZTEQQxQgBn37UiSXFkI4Tom2hgKMcGMK4EmZXyntMMY4mx7QJwZk/eZFUC3nHzjs359lSYRZHihySI5IjDrkgJXJNyqRCOHkkz+SVvFlP1ov1bn1MW5es2cwB+QPr8wfq851s</latexit><latexit sha1_base64="EUnfz3vb4xLjG+gAgVXUIJFIFoA=">AAACFHicbVDJSgNBEO1xjXGLevTSGISIGGaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IPXvwVLx4U8erBm39jZzlo4oOCx3tV3VXPi6TQaNvf1tLyyuraemojvbm1vbOb2duv6jBWHCo8lKGqe0yDFAFUUKCEeqSA+Z6Emte/Gvu1e1BahMEtDiJo+qwbiI7gDI3Uypy6fRZFrHjmjGjOBSmL9uiu6CI8oMaBhMShbmgeoIXhSSuTtfP2BHSRODOSJTOUW5kvtx3y2IcAuWRaNxw7wmbCFAouYZh2Yw0R433WhYahAfNBN5PJUUN6bJQ27YTKVIB0ov6eSJiv9cD3TKfPsKfnvbH4n9eIsXPZTEQQxQgBn37UiSXFkI4Tom2hgKMcGMK4EmZXyntMMY4mx7QJwZk/eZFUC3nHzjs359lSYRZHihySI5IjDrkgJXJNyqRCOHkkz+SVvFlP1ov1bn1MW5es2cwB+QPr8wfq851s</latexit><latexit sha1_base64="EUnfz3vb4xLjG+gAgVXUIJFIFoA=">AAACFHicbVDJSgNBEO1xjXGLevTSGISIGGaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IPXvwVLx4U8erBm39jZzlo4oOCx3tV3VXPi6TQaNvf1tLyyuraemojvbm1vbOb2duv6jBWHCo8lKGqe0yDFAFUUKCEeqSA+Z6Emte/Gvu1e1BahMEtDiJo+qwbiI7gDI3Uypy6fRZFrHjmjGjOBSmL9uiu6CI8oMaBhMShbmgeoIXhSSuTtfP2BHSRODOSJTOUW5kvtx3y2IcAuWRaNxw7wmbCFAouYZh2Yw0R433WhYahAfNBN5PJUUN6bJQ27YTKVIB0ov6eSJiv9cD3TKfPsKfnvbH4n9eIsXPZTEQQxQgBn37UiSXFkI4Tom2hgKMcGMK4EmZXyntMMY4mx7QJwZk/eZFUC3nHzjs359lSYRZHihySI5IjDrkgJXJNyqRCOHkkz+SVvFlP1ov1bn1MW5es2cwB+QPr8wfq851s</latexit><latexit sha1_base64="EUnfz3vb4xLjG+gAgVXUIJFIFoA=">AAACFHicbVDJSgNBEO1xjXGLevTSGISIGGaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IPXvwVLx4U8erBm39jZzlo4oOCx3tV3VXPi6TQaNvf1tLyyuraemojvbm1vbOb2duv6jBWHCo8lKGqe0yDFAFUUKCEeqSA+Z6Emte/Gvu1e1BahMEtDiJo+qwbiI7gDI3Uypy6fRZFrHjmjGjOBSmL9uiu6CI8oMaBhMShbmgeoIXhSSuTtfP2BHSRODOSJTOUW5kvtx3y2IcAuWRaNxw7wmbCFAouYZh2Yw0R433WhYahAfNBN5PJUUN6bJQ27YTKVIB0ov6eSJiv9cD3TKfPsKfnvbH4n9eIsXPZTEQQxQgBn37UiSXFkI4Tom2hgKMcGMK4EmZXyntMMY4mx7QJwZk/eZFUC3nHzjs359lSYRZHihySI5IjDrkgJXJNyqRCOHkkz+SVvFlP1ov1bn1MW5es2cwB+QPr8wfq851s</latexit>

 = 1 (` = 1 j = 1
2 )

<latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit><latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit><latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit><latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit>

 = �2 (` = 1 j = 3
2 )

<latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit><latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit><latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit><latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit>

0 1 2 3 4 5 6
<latexit sha1_base64="3Xzh2GvMH98uVUgzAcvQkli3yV4=">AAACUHicbZFLSwMxFIXv1FcdX6Mu3QSL4GqYsfWxLLhxWcE+oB1KJs20ocnMkGSEMvQnuunO3+HGhaLpQ9CpB0IO373hJidhypnSnvdqlTY2t7Z3yrv23v7B4ZFzfNJSSSYJbZKEJ7ITYkU5i2lTM81pJ5UUi5DTdji+n9fbz1QqlsRPepLSQOBhzCJGsDao7ww91BupFBOa+65XJWLqF8FVEVSLoFYE10Vw03cqnusthNaNvzIVWKnRd2a9QUIyQWNNOFaq63upDnIsNSOcTu1epqiZMMZD2jU2xoKqIF8EMkUXhgxQlEizYo0W9PeJHAulJiI0nQLrkSrW5vC/WjfT0V2QszjNNI3JclCUcaQTNE8XDZikRPOJMZhIZu6KyAhLTLT5A9uE4BefvG5aV67vuf5jrVKvruIowxmcwyX4cAt1eIAGNIHAC7zBB3xaM+vd+ipZy9afHU7hj0r2NyWQsOU=</latexit><latexit sha1_base64="3Xzh2GvMH98uVUgzAcvQkli3yV4=">AAACUHicbZFLSwMxFIXv1FcdX6Mu3QSL4GqYsfWxLLhxWcE+oB1KJs20ocnMkGSEMvQnuunO3+HGhaLpQ9CpB0IO373hJidhypnSnvdqlTY2t7Z3yrv23v7B4ZFzfNJSSSYJbZKEJ7ITYkU5i2lTM81pJ5UUi5DTdji+n9fbz1QqlsRPepLSQOBhzCJGsDao7ww91BupFBOa+65XJWLqF8FVEVSLoFYE10Vw03cqnusthNaNvzIVWKnRd2a9QUIyQWNNOFaq63upDnIsNSOcTu1epqiZMMZD2jU2xoKqIF8EMkUXhgxQlEizYo0W9PeJHAulJiI0nQLrkSrW5vC/WjfT0V2QszjNNI3JclCUcaQTNE8XDZikRPOJMZhIZu6KyAhLTLT5A9uE4BefvG5aV67vuf5jrVKvruIowxmcwyX4cAt1eIAGNIHAC7zBB3xaM+vd+ipZy9afHU7hj0r2NyWQsOU=</latexit><latexit sha1_base64="3Xzh2GvMH98uVUgzAcvQkli3yV4=">AAACUHicbZFLSwMxFIXv1FcdX6Mu3QSL4GqYsfWxLLhxWcE+oB1KJs20ocnMkGSEMvQnuunO3+HGhaLpQ9CpB0IO373hJidhypnSnvdqlTY2t7Z3yrv23v7B4ZFzfNJSSSYJbZKEJ7ITYkU5i2lTM81pJ5UUi5DTdji+n9fbz1QqlsRPepLSQOBhzCJGsDao7ww91BupFBOa+65XJWLqF8FVEVSLoFYE10Vw03cqnusthNaNvzIVWKnRd2a9QUIyQWNNOFaq63upDnIsNSOcTu1epqiZMMZD2jU2xoKqIF8EMkUXhgxQlEizYo0W9PeJHAulJiI0nQLrkSrW5vC/WjfT0V2QszjNNI3JclCUcaQTNE8XDZikRPOJMZhIZu6KyAhLTLT5A9uE4BefvG5aV67vuf5jrVKvruIowxmcwyX4cAt1eIAGNIHAC7zBB3xaM+vd+ipZy9afHU7hj0r2NyWQsOU=</latexit><latexit sha1_base64="3Xzh2GvMH98uVUgzAcvQkli3yV4=">AAACUHicbZFLSwMxFIXv1FcdX6Mu3QSL4GqYsfWxLLhxWcE+oB1KJs20ocnMkGSEMvQnuunO3+HGhaLpQ9CpB0IO373hJidhypnSnvdqlTY2t7Z3yrv23v7B4ZFzfNJSSSYJbZKEJ7ITYkU5i2lTM81pJ5UUi5DTdji+n9fbz1QqlsRPepLSQOBhzCJGsDao7ww91BupFBOa+65XJWLqF8FVEVSLoFYE10Vw03cqnusthNaNvzIVWKnRd2a9QUIyQWNNOFaq63upDnIsNSOcTu1epqiZMMZD2jU2xoKqIF8EMkUXhgxQlEizYo0W9PeJHAulJiI0nQLrkSrW5vC/WjfT0V2QszjNNI3JclCUcaQTNE8XDZikRPOJMZhIZu6KyAhLTLT5A9uE4BefvG5aV67vuf5jrVKvruIowxmcwyX4cAt1eIAGNIHAC7zBB3xaM+vd+ipZy9afHU7hj0r2NyWQsOU=</latexit>

0 1 2 3 4 5 6 7
<latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit><latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit><latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit><latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit>

�2
<latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit>

�1
<latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit>

0
<latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit>

1
<latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit>

2
<latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit>

�2
<latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit>

�1
<latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit>

0
<latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit>

1
<latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit>

2
<latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit>

 = 2 (` = 2 j = 3
2 )

<latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit><latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit><latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit><latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit>

27Al
<latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit><latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit><latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit><latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit>
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Figure 2.1: The Dirac Coulomb solutions G(r) and F (r) for the highly-relativistic outgoing
electron produced in µ→ e conversion in 27Al (green line) are compared to the free solution
(orange) and to the free solution evaluated with qeff (blue dashed), for low partial waves. The
nuclear charge distribution is indicated by the shaded region (arbitrary normalization). The
agreement between the Coulomb and free solutions evaluated with qeff is quite good.

which—noting that qeff > q for an attractive potential—achieves the desired shortening of
wavelength and increase in amplitude near the origin. As before, the partial waves can be
identified as

Gκ(r) = qeffrj`(qeffr),

Fκ(r) =

 qeffrj`−1(qeffr), κ > 0

−qeffrj`+1(qeffr), κ < 0.

(2.36)

Figures 2.1, 2.2, and 2.3 show the resulting effective momentum wave functions in various
partial waves in the target nuclei 27Al, 48Ti, and 184W, respectively. Visually, the EMA wave
functions match the numerical Coulomb solutions quite well, particularly over the scale of
the nuclear density. As the µ→ e transition amplitude generically depends on the integral
of the CLFV lepton current over a specific nuclear transition density, it is most important
that the EMA wave functions agree with the numerical reference solution in regions where
the nuclear density is highest. Even in the very heavy nucleus 184W, the agreement between
the EMA wave functions and the Coulomb solutions over the scale of the nucleus is visually
quite good, especially compared to the free Dirac plane wave.
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<latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit><latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit><latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit><latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit>

 = �2 (` = 1 j = 3
2 )

<latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit><latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit><latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit><latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit>

48Ti
<latexit sha1_base64="4hXgAF2jpMLwObsUAzlEWQ70Ov4=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRSaJcFNy4r9AVtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W6Wd3b39g/Jh5ej45PTMPr/oqSiRhHZJxCM58LGinAna1UxzOoglxaHPad+f3+d+f0GlYpHo6GVMvRBPBQsYwdpIY9t+SuvNbBRiPZNh2mHZ2K46NWcFtE3cglShQHtsf40mEUlCKjThWKmh68TaS7HUjHCaVUaJojEmczylQ0MFDqny0lXyDN0YZYKCSJonNFqpvzdSHCq1DH0zmUdUm14u/ucNEx00vZSJONFUkPWhIOFIRyivAU2YpETzpSGYSGayIjLDEhNtyqqYEtzNL2+T3l3NdWruY73aahR1lOEKruEWXGhACx6gDV0gsIBneIU3K7VerHfrYz1asoqdS/gD6/MHoJCTnA==</latexit><latexit sha1_base64="4hXgAF2jpMLwObsUAzlEWQ70Ov4=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRSaJcFNy4r9AVtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W6Wd3b39g/Jh5ej45PTMPr/oqSiRhHZJxCM58LGinAna1UxzOoglxaHPad+f3+d+f0GlYpHo6GVMvRBPBQsYwdpIY9t+SuvNbBRiPZNh2mHZ2K46NWcFtE3cglShQHtsf40mEUlCKjThWKmh68TaS7HUjHCaVUaJojEmczylQ0MFDqny0lXyDN0YZYKCSJonNFqpvzdSHCq1DH0zmUdUm14u/ucNEx00vZSJONFUkPWhIOFIRyivAU2YpETzpSGYSGayIjLDEhNtyqqYEtzNL2+T3l3NdWruY73aahR1lOEKruEWXGhACx6gDV0gsIBneIU3K7VerHfrYz1asoqdS/gD6/MHoJCTnA==</latexit><latexit sha1_base64="4hXgAF2jpMLwObsUAzlEWQ70Ov4=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRSaJcFNy4r9AVtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W6Wd3b39g/Jh5ej45PTMPr/oqSiRhHZJxCM58LGinAna1UxzOoglxaHPad+f3+d+f0GlYpHo6GVMvRBPBQsYwdpIY9t+SuvNbBRiPZNh2mHZ2K46NWcFtE3cglShQHtsf40mEUlCKjThWKmh68TaS7HUjHCaVUaJojEmczylQ0MFDqny0lXyDN0YZYKCSJonNFqpvzdSHCq1DH0zmUdUm14u/ucNEx00vZSJONFUkPWhIOFIRyivAU2YpETzpSGYSGayIjLDEhNtyqqYEtzNL2+T3l3NdWruY73aahR1lOEKruEWXGhACx6gDV0gsIBneIU3K7VerHfrYz1asoqdS/gD6/MHoJCTnA==</latexit><latexit sha1_base64="4hXgAF2jpMLwObsUAzlEWQ70Ov4=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRSaJcFNy4r9AVtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W6Wd3b39g/Jh5ej45PTMPr/oqSiRhHZJxCM58LGinAna1UxzOoglxaHPad+f3+d+f0GlYpHo6GVMvRBPBQsYwdpIY9t+SuvNbBRiPZNh2mHZ2K46NWcFtE3cglShQHtsf40mEUlCKjThWKmh68TaS7HUjHCaVUaJojEmczylQ0MFDqny0lXyDN0YZYKCSJonNFqpvzdSHCq1DH0zmUdUm14u/ucNEx00vZSJONFUkPWhIOFIRyivAU2YpETzpSGYSGayIjLDEhNtyqqYEtzNL2+T3l3NdWruY73aahR1lOEKruEWXGhACx6gDV0gsIBneIU3K7VerHfrYz1asoqdS/gD6/MHoJCTnA==</latexit>
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<latexit sha1_base64="3Xzh2GvMH98uVUgzAcvQkli3yV4=">AAACUHicbZFLSwMxFIXv1FcdX6Mu3QSL4GqYsfWxLLhxWcE+oB1KJs20ocnMkGSEMvQnuunO3+HGhaLpQ9CpB0IO373hJidhypnSnvdqlTY2t7Z3yrv23v7B4ZFzfNJSSSYJbZKEJ7ITYkU5i2lTM81pJ5UUi5DTdji+n9fbz1QqlsRPepLSQOBhzCJGsDao7ww91BupFBOa+65XJWLqF8FVEVSLoFYE10Vw03cqnusthNaNvzIVWKnRd2a9QUIyQWNNOFaq63upDnIsNSOcTu1epqiZMMZD2jU2xoKqIF8EMkUXhgxQlEizYo0W9PeJHAulJiI0nQLrkSrW5vC/WjfT0V2QszjNNI3JclCUcaQTNE8XDZikRPOJMZhIZu6KyAhLTLT5A9uE4BefvG5aV67vuf5jrVKvruIowxmcwyX4cAt1eIAGNIHAC7zBB3xaM+vd+ipZy9afHU7hj0r2NyWQsOU=</latexit><latexit sha1_base64="3Xzh2GvMH98uVUgzAcvQkli3yV4=">AAACUHicbZFLSwMxFIXv1FcdX6Mu3QSL4GqYsfWxLLhxWcE+oB1KJs20ocnMkGSEMvQnuunO3+HGhaLpQ9CpB0IO373hJidhypnSnvdqlTY2t7Z3yrv23v7B4ZFzfNJSSSYJbZKEJ7ITYkU5i2lTM81pJ5UUi5DTdji+n9fbz1QqlsRPepLSQOBhzCJGsDao7ww91BupFBOa+65XJWLqF8FVEVSLoFYE10Vw03cqnusthNaNvzIVWKnRd2a9QUIyQWNNOFaq63upDnIsNSOcTu1epqiZMMZD2jU2xoKqIF8EMkUXhgxQlEizYo0W9PeJHAulJiI0nQLrkSrW5vC/WjfT0V2QszjNNI3JclCUcaQTNE8XDZikRPOJMZhIZu6KyAhLTLT5A9uE4BefvG5aV67vuf5jrVKvruIowxmcwyX4cAt1eIAGNIHAC7zBB3xaM+vd+ipZy9afHU7hj0r2NyWQsOU=</latexit><latexit sha1_base64="3Xzh2GvMH98uVUgzAcvQkli3yV4=">AAACUHicbZFLSwMxFIXv1FcdX6Mu3QSL4GqYsfWxLLhxWcE+oB1KJs20ocnMkGSEMvQnuunO3+HGhaLpQ9CpB0IO373hJidhypnSnvdqlTY2t7Z3yrv23v7B4ZFzfNJSSSYJbZKEJ7ITYkU5i2lTM81pJ5UUi5DTdji+n9fbz1QqlsRPepLSQOBhzCJGsDao7ww91BupFBOa+65XJWLqF8FVEVSLoFYE10Vw03cqnusthNaNvzIVWKnRd2a9QUIyQWNNOFaq63upDnIsNSOcTu1epqiZMMZD2jU2xoKqIF8EMkUXhgxQlEizYo0W9PeJHAulJiI0nQLrkSrW5vC/WjfT0V2QszjNNI3JclCUcaQTNE8XDZikRPOJMZhIZu6KyAhLTLT5A9uE4BefvG5aV67vuf5jrVKvruIowxmcwyX4cAt1eIAGNIHAC7zBB3xaM+vd+ipZy9afHU7hj0r2NyWQsOU=</latexit><latexit sha1_base64="3Xzh2GvMH98uVUgzAcvQkli3yV4=">AAACUHicbZFLSwMxFIXv1FcdX6Mu3QSL4GqYsfWxLLhxWcE+oB1KJs20ocnMkGSEMvQnuunO3+HGhaLpQ9CpB0IO373hJidhypnSnvdqlTY2t7Z3yrv23v7B4ZFzfNJSSSYJbZKEJ7ITYkU5i2lTM81pJ5UUi5DTdji+n9fbz1QqlsRPepLSQOBhzCJGsDao7ww91BupFBOa+65XJWLqF8FVEVSLoFYE10Vw03cqnusthNaNvzIVWKnRd2a9QUIyQWNNOFaq63upDnIsNSOcTu1epqiZMMZD2jU2xoKqIF8EMkUXhgxQlEizYo0W9PeJHAulJiI0nQLrkSrW5vC/WjfT0V2QszjNNI3JclCUcaQTNE8XDZikRPOJMZhIZu6KyAhLTLT5A9uE4BefvG5aV67vuf5jrVKvruIowxmcwyX4cAt1eIAGNIHAC7zBB3xaM+vd+ipZy9afHU7hj0r2NyWQsOU=</latexit>

0 1 2 3 4 5 6 7
<latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit><latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit><latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit><latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit>

�2
<latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit>

�1
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<latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit>
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<latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit>

�1
<latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit>

0
<latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit>

1
<latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit>

2
<latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit>

 = 2 (` = 2 j = 3
2 )

<latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit><latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit><latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit><latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit>

r2⇢(r)
<latexit sha1_base64="Hk3eo9fCy/YPfNa1npEiBPbFV/c=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKoseCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw2GkGU=</latexit><latexit sha1_base64="Hk3eo9fCy/YPfNa1npEiBPbFV/c=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKoseCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw2GkGU=</latexit><latexit sha1_base64="Hk3eo9fCy/YPfNa1npEiBPbFV/c=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKoseCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw2GkGU=</latexit><latexit sha1_base64="Hk3eo9fCy/YPfNa1npEiBPbFV/c=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKoseCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw2GkGU=</latexit>
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/
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)

<latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit>
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)

<latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit>

Figure 2.2: Same as Fig. 2.1 but for 48Ti.

 = �1 (` = 0 j = 1
2 )

<latexit sha1_base64="EUnfz3vb4xLjG+gAgVXUIJFIFoA=">AAACFHicbVDJSgNBEO1xjXGLevTSGISIGGaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IPXvwVLx4U8erBm39jZzlo4oOCx3tV3VXPi6TQaNvf1tLyyuraemojvbm1vbOb2duv6jBWHCo8lKGqe0yDFAFUUKCEeqSA+Z6Emte/Gvu1e1BahMEtDiJo+qwbiI7gDI3Uypy6fRZFrHjmjGjOBSmL9uiu6CI8oMaBhMShbmgeoIXhSSuTtfP2BHSRODOSJTOUW5kvtx3y2IcAuWRaNxw7wmbCFAouYZh2Yw0R433WhYahAfNBN5PJUUN6bJQ27YTKVIB0ov6eSJiv9cD3TKfPsKfnvbH4n9eIsXPZTEQQxQgBn37UiSXFkI4Tom2hgKMcGMK4EmZXyntMMY4mx7QJwZk/eZFUC3nHzjs359lSYRZHihySI5IjDrkgJXJNyqRCOHkkz+SVvFlP1ov1bn1MW5es2cwB+QPr8wfq851s</latexit><latexit sha1_base64="EUnfz3vb4xLjG+gAgVXUIJFIFoA=">AAACFHicbVDJSgNBEO1xjXGLevTSGISIGGaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IPXvwVLx4U8erBm39jZzlo4oOCx3tV3VXPi6TQaNvf1tLyyuraemojvbm1vbOb2duv6jBWHCo8lKGqe0yDFAFUUKCEeqSA+Z6Emte/Gvu1e1BahMEtDiJo+qwbiI7gDI3Uypy6fRZFrHjmjGjOBSmL9uiu6CI8oMaBhMShbmgeoIXhSSuTtfP2BHSRODOSJTOUW5kvtx3y2IcAuWRaNxw7wmbCFAouYZh2Yw0R433WhYahAfNBN5PJUUN6bJQ27YTKVIB0ov6eSJiv9cD3TKfPsKfnvbH4n9eIsXPZTEQQxQgBn37UiSXFkI4Tom2hgKMcGMK4EmZXyntMMY4mx7QJwZk/eZFUC3nHzjs359lSYRZHihySI5IjDrkgJXJNyqRCOHkkz+SVvFlP1ov1bn1MW5es2cwB+QPr8wfq851s</latexit><latexit sha1_base64="EUnfz3vb4xLjG+gAgVXUIJFIFoA=">AAACFHicbVDJSgNBEO1xjXGLevTSGISIGGaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IPXvwVLx4U8erBm39jZzlo4oOCx3tV3VXPi6TQaNvf1tLyyuraemojvbm1vbOb2duv6jBWHCo8lKGqe0yDFAFUUKCEeqSA+Z6Emte/Gvu1e1BahMEtDiJo+qwbiI7gDI3Uypy6fRZFrHjmjGjOBSmL9uiu6CI8oMaBhMShbmgeoIXhSSuTtfP2BHSRODOSJTOUW5kvtx3y2IcAuWRaNxw7wmbCFAouYZh2Yw0R433WhYahAfNBN5PJUUN6bJQ27YTKVIB0ov6eSJiv9cD3TKfPsKfnvbH4n9eIsXPZTEQQxQgBn37UiSXFkI4Tom2hgKMcGMK4EmZXyntMMY4mx7QJwZk/eZFUC3nHzjs359lSYRZHihySI5IjDrkgJXJNyqRCOHkkz+SVvFlP1ov1bn1MW5es2cwB+QPr8wfq851s</latexit><latexit sha1_base64="EUnfz3vb4xLjG+gAgVXUIJFIFoA=">AAACFHicbVDJSgNBEO1xjXGLevTSGISIGGaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IPXvwVLx4U8erBm39jZzlo4oOCx3tV3VXPi6TQaNvf1tLyyuraemojvbm1vbOb2duv6jBWHCo8lKGqe0yDFAFUUKCEeqSA+Z6Emte/Gvu1e1BahMEtDiJo+qwbiI7gDI3Uypy6fRZFrHjmjGjOBSmL9uiu6CI8oMaBhMShbmgeoIXhSSuTtfP2BHSRODOSJTOUW5kvtx3y2IcAuWRaNxw7wmbCFAouYZh2Yw0R433WhYahAfNBN5PJUUN6bJQ27YTKVIB0ov6eSJiv9cD3TKfPsKfnvbH4n9eIsXPZTEQQxQgBn37UiSXFkI4Tom2hgKMcGMK4EmZXyntMMY4mx7QJwZk/eZFUC3nHzjs359lSYRZHihySI5IjDrkgJXJNyqRCOHkkz+SVvFlP1ov1bn1MW5es2cwB+QPr8wfq851s</latexit>

 = 1 (` = 1 j = 1
2 )

<latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit><latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit><latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit><latexit sha1_base64="huD3NSDLTh/QQPSWVFsAc+jzMaM=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAjRIuwGQZtAwMYygnlANoTZyU0yZvbBzF0xLPEbbPwVGwtFbG3s/Bsnj0ITDwwczrmHO/f4sRQaHefbWlpeWV1bz2xkN7e2d3btvf2ajhLFocojGamGzzRIEUIVBUpoxApY4Euo+4PLsV+/A6VFFN7gMIZWwHqh6ArO0Eht+9QbsDhmJfeB5j2Q0pDbkodwjxqHElKXepHJ0+LopG3nnIIzAV0k7ozkyAyVtv3ldSKeBBAil0zrpuvE2EqZQsEljLJeoiFmfMB60DQ0ZAHoVjq5aUSPjdKh3UiZFyKdqL8TKQu0Hga+mQwY9vW8Nxb/85oJdi9aqQjjBCHk00XdRFKM6Lgg2hEKOMqhIYwrYf5KeZ8pxtHUmDUluPMnL5JaseA6Bff6LFcuzurIkENyRPLEJeekTK5IhVQJJ4/kmbySN+vJerHerY/p6JI1yxyQP7A+fwB6Op02</latexit>

 = �2 (` = 1 j = 3
2 )

<latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit><latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit><latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit><latexit sha1_base64="j/a0coSLJmXUFrSLhAeoHoNhXVs=">AAACFHicbVA9SwNBEN3zM8avU0ubxSAoYriLgjYBwcYygkmEXAh7m0lcs/fB7pwYjvgfbPwrNhaK2FrY+W/cJFdo4oOBx3szuzPPj6XQ6Djf1szs3PzCYm4pv7yyurZub2zWdJQoDlUeyUhd+0yDFCFUUaCE61gBC3wJdb93PvTrd6C0iMIr7MfQDFg3FB3BGRqpZR94PRbHrHxYeqB7HkhZdh9uyx7CPWrsS0iPqBeZB2hpsN+yC07RGYFOEzcjBZKh0rK/vHbEkwBC5JJp3XCdGJspUyi4hEHeSzTEjPdYFxqGhiwA3UxHRw3orlHatBMpUyHSkfp7ImWB1v3AN50Bwxs96Q3F/7xGgp3TZirCOEEI+fijTiIpRnSYEG0LBRxl3xDGlTC7Un7DFONocsybENzJk6dJrVR0naJ7eVw4K2Vx5Mg22SF7xCUn5IxckAqpEk4eyTN5JW/Wk/VivVsf49YZK5vZIn9gff4A8VKdcA==</latexit>
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<latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit><latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit><latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit><latexit sha1_base64="pnVFS8TpydCwRXYE3S5lfF+vzvk=">AAACYXicbZFLTwIxFIU7Iyqg6IhLNo3ExNWkBRSXJG5cYiKPBCakUzrQ0Hmk7RjJhD/pzo0b/4gFZqGDN2ly8p17c9tTPxFcaYQ+LfuodHxyWq5Uz85rF5fOVX2o4lRSNqCxiOXYJ4oJHrGB5lqwcSIZCX3BRv7qaeuP3phUPI5e9TphXkgWEQ84JdqgmfOO4HSpEkJZhl3UpuEGF0GrCNpF0CmC+yJ4KILuzGkiF+0KHgqciybIqz9zPqbzmKYhizQVRKkJRon2MiI1p4JtqtNUMbNhRRZsYmREQqa8bJfQBt4aModBLM2JNNzR3xMZCZVah77pDIleqqK3hf95k1QHj17GoyTVLKL7RUEqoI7hNm4455JRLdZGECq5uSukSyIJ1eZTqiYEXHzyoRi2XIxc/NJp9tp5HGXQADfgDmDQBT3wDPpgACj4skpWzbqwvu2K7dj1fatt5TPX4E/ZjR/2trJF</latexit>

�2
<latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit>
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<latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit>

0
<latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit>

1
<latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit>

2
<latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit>

�2
<latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit><latexit sha1_base64="YXZrhq/1HjzqPaRDXw+RElA95mQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh4LXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw0WtX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSatW9dyqd39VqV/mcRThBE7hHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD+DjjN4=</latexit>

�1
<latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit><latexit sha1_base64="W7CrEn9eQWWsRwoz8ldq0KZ/sUc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXjxWsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi68frniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVZ9dyqd39VqdfyOIpwAqdwDh5cQx3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB99fjN0=</latexit>

0
<latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit><latexit sha1_base64="cg49tZk6yNlkyGbTxTJr1vMcQRY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdJaMpQ==</latexit>

1
<latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit><latexit sha1_base64="gJEOqMK+oiZz/Lul3oyHKzC6hWY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1a5X6dR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AdhqMpg==</latexit>

2
<latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit><latexit sha1_base64="zl7RKFp/ITGtMHc01hpEimBvW+0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryv1qzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad56Mpw==</latexit>

 = 2 (` = 2 j = 3
2 )

<latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit><latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit><latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit><latexit sha1_base64="2qreWpmCmDAN36w4cvt2xHloF50=">AAACFXicbVDLSgNBEJz1bXytevQyGIQIEnZXQS8BwYvHCCYRsiHMTjrJmNkHM71iWJKP8OKvePGgiFfBm3/j5HHQaEFDUdU9011BIoVGx/my5uYXFpeWV1Zza+sbm1v29k5Vx6niUOGxjNVNwDRIEUEFBUq4SRSwMJBQC3oXI792B0qLOLrGfgKNkHUi0RacoZGa9pHfY0nCaIl6Q1rwQcqSN7wt+Qj3qLEvITumfmxeoN7gsGnnnaIzBv1L3CnJkynKTfvTb8U8DSFCLpnWdddJsJExhYJLGOT8VEPCeI91oG5oxELQjWx81YAeGKVF27EyFSEdqz8nMhZq3Q8D0xky7OpZbyT+59VTbJ81MhElKULEJx+1U0kxpqOIaEso4Cj7hjCuhNmV8i5TjKMJMmdCcGdP/kuqXtF1iu7VSf7cm8axQvbIPikQl5ySc3JJyqRCOHkgT+SFvFqP1rP1Zr1PWues6cwu+QXr4xs6Y52O</latexit>

r2⇢(r)
<latexit sha1_base64="Hk3eo9fCy/YPfNa1npEiBPbFV/c=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKoseCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw2GkGU=</latexit><latexit sha1_base64="Hk3eo9fCy/YPfNa1npEiBPbFV/c=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKoseCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw2GkGU=</latexit><latexit sha1_base64="Hk3eo9fCy/YPfNa1npEiBPbFV/c=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKoseCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw2GkGU=</latexit><latexit sha1_base64="Hk3eo9fCy/YPfNa1npEiBPbFV/c=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKoseCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw2GkGU=</latexit>
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)

<latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit>
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)

<latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit><latexit sha1_base64="3jpHD66I6ECGOZ11oz2llnGzbnc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6sI6UwVdFty4rGAf0I4lk2ba0CQzJBmhjLPwV9y4UMStv+HOvzHTzkJbDwQO59zLPTl+xKjSjvNtFZaWV1bXiuuljc2t7R17d6+lwlhi0sQhC2XHR4owKkhTU81IJ5IEcZ+Rtj++zvz2A5GKhuJOTyLicTQUNKAYaSP17YNKjyM9kjwJeHqfnCbuWS1NT/p22ak6U8BF4uakDHI0+vZXbxDimBOhMUNKdV0n0l6CpKaYkbTUixWJEB6jIekaKhAnykum+VN4bJQBDEJpntBwqv7eSBBXasJ9M5mFVfNeJv7ndWMdXHkJFVGsicCzQ0HMoA5hVgYcUEmwZhNDEJbUZIV4hCTC2lRWMiW4819eJK1a1XWq7u1FuX6e11EEh+AIVIALLkEd3IAGaAIMHsEzeAVv1pP1Yr1bH7PRgpXv7IM/sD5/ADq2lYY=</latexit>

<latexit sha1_base64="hOLINsFE2ZD4pzNrVEN40H+Nutw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48VbFNoY9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGW+zRCa6G1LDpVC8jQIl76aa0ziU3A8nt3Pff+LaiEQ94DTlQUxHSkSCUbSS/5h7jeuZP6jW3Lq7AFknXkFqUKA1qH71hwnLYq6QSWpMz3NTDHKqUTDJZ5V+ZnhK2YSOeM9SRWNugnxx7oxcWGVIokTbUkgW6u+JnMbGTOPQdsYUx2bVm4v/eb0Mo0aQC5VmyBVbLooySTAh89/JUGjOUE4toUwLeythY6opQ5tQxYbgrb68TjpXdc+te/fXtWajiKMMZ3AOl+DBDTThDlrQBgYTeIZXeHNS58V5dz6WrSWnmDmFP3A+fwCKHY8A</latexit><latexit sha1_base64="hOLINsFE2ZD4pzNrVEN40H+Nutw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48VbFNoY9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGW+zRCa6G1LDpVC8jQIl76aa0ziU3A8nt3Pff+LaiEQ94DTlQUxHSkSCUbSS/5h7jeuZP6jW3Lq7AFknXkFqUKA1qH71hwnLYq6QSWpMz3NTDHKqUTDJZ5V+ZnhK2YSOeM9SRWNugnxx7oxcWGVIokTbUkgW6u+JnMbGTOPQdsYUx2bVm4v/eb0Mo0aQC5VmyBVbLooySTAh89/JUGjOUE4toUwLeythY6opQ5tQxYbgrb68TjpXdc+te/fXtWajiKMMZ3AOl+DBDTThDlrQBgYTeIZXeHNS58V5dz6WrSWnmDmFP3A+fwCKHY8A</latexit><latexit sha1_base64="hOLINsFE2ZD4pzNrVEN40H+Nutw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48VbFNoY9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGW+zRCa6G1LDpVC8jQIl76aa0ziU3A8nt3Pff+LaiEQ94DTlQUxHSkSCUbSS/5h7jeuZP6jW3Lq7AFknXkFqUKA1qH71hwnLYq6QSWpMz3NTDHKqUTDJZ5V+ZnhK2YSOeM9SRWNugnxx7oxcWGVIokTbUkgW6u+JnMbGTOPQdsYUx2bVm4v/eb0Mo0aQC5VmyBVbLooySTAh89/JUGjOUE4toUwLeythY6opQ5tQxYbgrb68TjpXdc+te/fXtWajiKMMZ3AOl+DBDTThDlrQBgYTeIZXeHNS58V5dz6WrSWnmDmFP3A+fwCKHY8A</latexit><latexit sha1_base64="hOLINsFE2ZD4pzNrVEN40H+Nutw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48VbFNoY9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGW+zRCa6G1LDpVC8jQIl76aa0ziU3A8nt3Pff+LaiEQ94DTlQUxHSkSCUbSS/5h7jeuZP6jW3Lq7AFknXkFqUKA1qH71hwnLYq6QSWpMz3NTDHKqUTDJZ5V+ZnhK2YSOeM9SRWNugnxx7oxcWGVIokTbUkgW6u+JnMbGTOPQdsYUx2bVm4v/eb0Mo0aQC5VmyBVbLooySTAh89/JUGjOUE4toUwLeythY6opQ5tQxYbgrb68TjpXdc+te/fXtWajiKMMZ3AOl+DBDTThDlrQBgYTeIZXeHNS58V5dz6WrSWnmDmFP3A+fwCKHY8A</latexit>
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r2⇢(r)
<latexit sha1_base64="wIzDZkF87Kr8ugJZyynbktU0sb4=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKqMeCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw3TkGY=</latexit><latexit sha1_base64="wIzDZkF87Kr8ugJZyynbktU0sb4=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKqMeCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw3TkGY=</latexit><latexit sha1_base64="wIzDZkF87Kr8ugJZyynbktU0sb4=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKqMeCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw3TkGY=</latexit><latexit sha1_base64="wIzDZkF87Kr8ugJZyynbktU0sb4=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS0mKqMeCF48V7Ae0sWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMirVjDeZkkp3Amq4FDFvokDJO4nmNAokbwfj25nffuLaCBU/4CThfkSHsQgFo2ilrn6skZ4eqYq+6JfKbtWdg6wSLydlyNHol756A8XSiMfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGtpTCNu/Gx+8pScW2VAQqVtxUjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/E3GSIo/ZYlGYSoKKzP4nA6E5QzmxhDIt7K2EjaimDG1KRRuCt/zyKmnVqp5b9e4vy/WrPI4CnMIZVMCDa6jDHTSgCQwUPMMrvDnovDjvzseidc3JZ07gD5zPHw3TkGY=</latexit>

 = �1 (` = 0 j = 1
2 )

<latexit sha1_base64="lIlADH5HOzWx4o7OTPjhrk9VDKg=">AAACGHicbVDJSgNBEO1xjXGLevTSGIR4MM4EQS+BgBePEcwCmRB6OpWkTc9Cd40YhuQvvPgrXjwo4jU3/8bOctDEBwWP96q6q54XSaHRtr+tldW19Y3N1FZ6e2d3bz9zcFjVYaw4VHgoQ1X3mAYpAqigQAn1SAHzPQk1r38z8WuPoLQIg3scRND0WTcQHcEZGqmVuXD7LIoYLdJzh45yLkhZtEf0oegiPKHGgYTEoW5o3qCFIT1rZbJ23p6CLhNnTrJkjnIrM3bbIY99CJBLpnXDsSNsJkyh4BKGaTfWEDHeZ11oGBowH3QzmR42pKdGadNOqEwFSKfq74mE+VoPfM90+gx7etGbiP95jRg7181EBFGMEPDZR51YUgzpJCXaFgo4yoEhjCthdqW8xxTjaLJMmxCcxZOXSbWQd+y8c3eZLRXmcaTIMTkhOeKQK1Iit6RMKoSTZ/JK3smH9WK9WZ/W16x1xZrPHJE/sMY/aXKeFA==</latexit><latexit sha1_base64="lIlADH5HOzWx4o7OTPjhrk9VDKg=">AAACGHicbVDJSgNBEO1xjXGLevTSGIR4MM4EQS+BgBePEcwCmRB6OpWkTc9Cd40YhuQvvPgrXjwo4jU3/8bOctDEBwWP96q6q54XSaHRtr+tldW19Y3N1FZ6e2d3bz9zcFjVYaw4VHgoQ1X3mAYpAqigQAn1SAHzPQk1r38z8WuPoLQIg3scRND0WTcQHcEZGqmVuXD7LIoYLdJzh45yLkhZtEf0oegiPKHGgYTEoW5o3qCFIT1rZbJ23p6CLhNnTrJkjnIrM3bbIY99CJBLpnXDsSNsJkyh4BKGaTfWEDHeZ11oGBowH3QzmR42pKdGadNOqEwFSKfq74mE+VoPfM90+gx7etGbiP95jRg7181EBFGMEPDZR51YUgzpJCXaFgo4yoEhjCthdqW8xxTjaLJMmxCcxZOXSbWQd+y8c3eZLRXmcaTIMTkhOeKQK1Iit6RMKoSTZ/JK3smH9WK9WZ/W16x1xZrPHJE/sMY/aXKeFA==</latexit><latexit sha1_base64="lIlADH5HOzWx4o7OTPjhrk9VDKg=">AAACGHicbVDJSgNBEO1xjXGLevTSGIR4MM4EQS+BgBePEcwCmRB6OpWkTc9Cd40YhuQvvPgrXjwo4jU3/8bOctDEBwWP96q6q54XSaHRtr+tldW19Y3N1FZ6e2d3bz9zcFjVYaw4VHgoQ1X3mAYpAqigQAn1SAHzPQk1r38z8WuPoLQIg3scRND0WTcQHcEZGqmVuXD7LIoYLdJzh45yLkhZtEf0oegiPKHGgYTEoW5o3qCFIT1rZbJ23p6CLhNnTrJkjnIrM3bbIY99CJBLpnXDsSNsJkyh4BKGaTfWEDHeZ11oGBowH3QzmR42pKdGadNOqEwFSKfq74mE+VoPfM90+gx7etGbiP95jRg7181EBFGMEPDZR51YUgzpJCXaFgo4yoEhjCthdqW8xxTjaLJMmxCcxZOXSbWQd+y8c3eZLRXmcaTIMTkhOeKQK1Iit6RMKoSTZ/JK3smH9WK9WZ/W16x1xZrPHJE/sMY/aXKeFA==</latexit><latexit sha1_base64="lIlADH5HOzWx4o7OTPjhrk9VDKg=">AAACGHicbVDJSgNBEO1xjXGLevTSGIR4MM4EQS+BgBePEcwCmRB6OpWkTc9Cd40YhuQvvPgrXjwo4jU3/8bOctDEBwWP96q6q54XSaHRtr+tldW19Y3N1FZ6e2d3bz9zcFjVYaw4VHgoQ1X3mAYpAqigQAn1SAHzPQk1r38z8WuPoLQIg3scRND0WTcQHcEZGqmVuXD7LIoYLdJzh45yLkhZtEf0oegiPKHGgYTEoW5o3qCFIT1rZbJ23p6CLhNnTrJkjnIrM3bbIY99CJBLpnXDsSNsJkyh4BKGaTfWEDHeZ11oGBowH3QzmR42pKdGadNOqEwFSKfq74mE+VoPfM90+gx7etGbiP95jRg7181EBFGMEPDZR51YUgzpJCXaFgo4yoEhjCthdqW8xxTjaLJMmxCcxZOXSbWQd+y8c3eZLRXmcaTIMTkhOeKQK1Iit6RMKoSTZ/JK3smH9WK9WZ/W16x1xZrPHJE/sMY/aXKeFA==</latexit>

 = 1 (` = 0 j = 1
2 )

<latexit sha1_base64="QPYOx459hyf3kUV/rDvS5Ka6oRM=">AAACF3icbVDJSgNBEO1xjXEb9eilMQjxEmaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IVXvwVLx4U8ao3/8bOctDEBwWP96q6q54fS6HRcb6tldW19Y3NzFZ2e2d3b98+OKzpKFEcqjySkWr4TIMUIVRRoIRGrIAFvoS6P7ia+PV7UFpE4S0OY2gFrBeKruAMjdS2C96AxTGjJerScd4DKUvOmN6VPIQH1DiUkLrUi8wTtDiiZ2075xScKegyceckR+aotO0vrxPxJIAQuWRaN10nxlbKFAouYZT1Eg0x4wPWg6ahIQtAt9LpXSN6apQO7UbKVIh0qv6eSFmg9TDwTWfAsK8XvYn4n9dMsHvZSkUYJwghn33UTSTFiE5Coh2hgKMcGsK4EmZXyvtMMY4myqwJwV08eZnUigXXKbg357lycR5HhhyTE5InLrkgZXJNKqRKOHkkz+SVvFlP1ov1bn3MWles+cwR+QPr8wf2a53d</latexit><latexit sha1_base64="QPYOx459hyf3kUV/rDvS5Ka6oRM=">AAACF3icbVDJSgNBEO1xjXEb9eilMQjxEmaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IVXvwVLx4U8ao3/8bOctDEBwWP96q6q54fS6HRcb6tldW19Y3NzFZ2e2d3b98+OKzpKFEcqjySkWr4TIMUIVRRoIRGrIAFvoS6P7ia+PV7UFpE4S0OY2gFrBeKruAMjdS2C96AxTGjJerScd4DKUvOmN6VPIQH1DiUkLrUi8wTtDiiZ2075xScKegyceckR+aotO0vrxPxJIAQuWRaN10nxlbKFAouYZT1Eg0x4wPWg6ahIQtAt9LpXSN6apQO7UbKVIh0qv6eSFmg9TDwTWfAsK8XvYn4n9dMsHvZSkUYJwghn33UTSTFiE5Coh2hgKMcGsK4EmZXyvtMMY4myqwJwV08eZnUigXXKbg357lycR5HhhyTE5InLrkgZXJNKqRKOHkkz+SVvFlP1ov1bn3MWles+cwR+QPr8wf2a53d</latexit><latexit sha1_base64="QPYOx459hyf3kUV/rDvS5Ka6oRM=">AAACF3icbVDJSgNBEO1xjXEb9eilMQjxEmaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IVXvwVLx4U8ao3/8bOctDEBwWP96q6q54fS6HRcb6tldW19Y3NzFZ2e2d3b98+OKzpKFEcqjySkWr4TIMUIVRRoIRGrIAFvoS6P7ia+PV7UFpE4S0OY2gFrBeKruAMjdS2C96AxTGjJerScd4DKUvOmN6VPIQH1DiUkLrUi8wTtDiiZ2075xScKegyceckR+aotO0vrxPxJIAQuWRaN10nxlbKFAouYZT1Eg0x4wPWg6ahIQtAt9LpXSN6apQO7UbKVIh0qv6eSFmg9TDwTWfAsK8XvYn4n9dMsHvZSkUYJwghn33UTSTFiE5Coh2hgKMcGsK4EmZXyvtMMY4myqwJwV08eZnUigXXKbg357lycR5HhhyTE5InLrkgZXJNKqRKOHkkz+SVvFlP1ov1bn3MWles+cwR+QPr8wf2a53d</latexit><latexit sha1_base64="QPYOx459hyf3kUV/rDvS5Ka6oRM=">AAACF3icbVDJSgNBEO1xjXEb9eilMQjxEmaCoJdAwIvHCGaBTAg9nUrSpmehu0YMQ/IVXvwVLx4U8ao3/8bOctDEBwWP96q6q54fS6HRcb6tldW19Y3NzFZ2e2d3b98+OKzpKFEcqjySkWr4TIMUIVRRoIRGrIAFvoS6P7ia+PV7UFpE4S0OY2gFrBeKruAMjdS2C96AxTGjJerScd4DKUvOmN6VPIQH1DiUkLrUi8wTtDiiZ2075xScKegyceckR+aotO0vrxPxJIAQuWRaN10nxlbKFAouYZT1Eg0x4wPWg6ahIQtAt9LpXSN6apQO7UbKVIh0qv6eSFmg9TDwTWfAsK8XvYn4n9dMsHvZSkUYJwghn33UTSTFiE5Coh2hgKMcGsK4EmZXyvtMMY4myqwJwV08eZnUigXXKbg357lycR5HhhyTE5InLrkgZXJNKqRKOHkkz+SVvFlP1ov1bn3MWles+cwR+QPr8wf2a53d</latexit>
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 = �2 (` = 0 j = 1
2 )

<latexit sha1_base64="+V635nkjIWvIzlVd5h0Ds7IfIBA=">AAACGHicbVDJSgNBEO1xjXGLevTSGIR4MM4EQS+BgBePEcwCmRB6OpWkTc9Cd40YhuQvvPgrXjwo4jU3/8bOctDEBwWP96q6q54XSaHRtr+tldW19Y3N1FZ6e2d3bz9zcFjVYaw4VHgoQ1X3mAYpAqigQAn1SAHzPQk1r38z8WuPoLQIg3scRND0WTcQHcEZGqmVuXD7LIoYLdLzAh3lXJCyaI/oQ9FFeEKNAwmJQ93QvEELQ3rWymTtvD0FXSbOnGTJHOVWZuy2Qx77ECCXTOuGY0fYTJhCwSUM026sIWK8z7rQMDRgPuhmMj1sSE+N0qadUJkKkE7V3xMJ87Ue+J7p9Bn29KI3Ef/zGjF2rpuJCKIYIeCzjzqxpBjSSUq0LRRwlANDGFfC7Ep5jynG0WSZNiE4iycvk2oh79h55+4yWyrM40iRY3JCcsQhV6REbkmZVAgnz+SVvJMP68V6sz6tr1nrijWfOSJ/YI1/AGsanhU=</latexit><latexit sha1_base64="+V635nkjIWvIzlVd5h0Ds7IfIBA=">AAACGHicbVDJSgNBEO1xjXGLevTSGIR4MM4EQS+BgBePEcwCmRB6OpWkTc9Cd40YhuQvvPgrXjwo4jU3/8bOctDEBwWP96q6q54XSaHRtr+tldW19Y3N1FZ6e2d3bz9zcFjVYaw4VHgoQ1X3mAYpAqigQAn1SAHzPQk1r38z8WuPoLQIg3scRND0WTcQHcEZGqmVuXD7LIoYLdLzAh3lXJCyaI/oQ9FFeEKNAwmJQ93QvEELQ3rWymTtvD0FXSbOnGTJHOVWZuy2Qx77ECCXTOuGY0fYTJhCwSUM026sIWK8z7rQMDRgPuhmMj1sSE+N0qadUJkKkE7V3xMJ87Ue+J7p9Bn29KI3Ef/zGjF2rpuJCKIYIeCzjzqxpBjSSUq0LRRwlANDGFfC7Ep5jynG0WSZNiE4iycvk2oh79h55+4yWyrM40iRY3JCcsQhV6REbkmZVAgnz+SVvJMP68V6sz6tr1nrijWfOSJ/YI1/AGsanhU=</latexit><latexit sha1_base64="+V635nkjIWvIzlVd5h0Ds7IfIBA=">AAACGHicbVDJSgNBEO1xjXGLevTSGIR4MM4EQS+BgBePEcwCmRB6OpWkTc9Cd40YhuQvvPgrXjwo4jU3/8bOctDEBwWP96q6q54XSaHRtr+tldW19Y3N1FZ6e2d3bz9zcFjVYaw4VHgoQ1X3mAYpAqigQAn1SAHzPQk1r38z8WuPoLQIg3scRND0WTcQHcEZGqmVuXD7LIoYLdLzAh3lXJCyaI/oQ9FFeEKNAwmJQ93QvEELQ3rWymTtvD0FXSbOnGTJHOVWZuy2Qx77ECCXTOuGY0fYTJhCwSUM026sIWK8z7rQMDRgPuhmMj1sSE+N0qadUJkKkE7V3xMJ87Ue+J7p9Bn29KI3Ef/zGjF2rpuJCKIYIeCzjzqxpBjSSUq0LRRwlANDGFfC7Ep5jynG0WSZNiE4iycvk2oh79h55+4yWyrM40iRY3JCcsQhV6REbkmZVAgnz+SVvJMP68V6sz6tr1nrijWfOSJ/YI1/AGsanhU=</latexit><latexit sha1_base64="+V635nkjIWvIzlVd5h0Ds7IfIBA=">AAACGHicbVDJSgNBEO1xjXGLevTSGIR4MM4EQS+BgBePEcwCmRB6OpWkTc9Cd40YhuQvvPgrXjwo4jU3/8bOctDEBwWP96q6q54XSaHRtr+tldW19Y3N1FZ6e2d3bz9zcFjVYaw4VHgoQ1X3mAYpAqigQAn1SAHzPQk1r38z8WuPoLQIg3scRND0WTcQHcEZGqmVuXD7LIoYLdLzAh3lXJCyaI/oQ9FFeEKNAwmJQ93QvEELQ3rWymTtvD0FXSbOnGTJHOVWZuy2Qx77ECCXTOuGY0fYTJhCwSUM026sIWK8z7rQMDRgPuhmMj1sSE+N0qadUJkKkE7V3xMJ87Ue+J7p9Bn29KI3Ef/zGjF2rpuJCKIYIeCzjzqxpBjSSUq0LRRwlANDGFfC7Ep5jynG0WSZNiE4iycvk2oh79h55+4yWyrM40iRY3JCcsQhV6REbkmZVAgnz+SVvJMP68V6sz6tr1nrijWfOSJ/YI1/AGsanhU=</latexit>
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Figure 2.3: Same as Fig. 2.1 but for 184W.
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More quantitatively, we can assess the validity of the effective momentum approximation
by computing the relative RMS error

〈δG2〉RMS ≡
(∫

dr ρ(r) (G(r)−Geff(r))2∫
dr ρ(r)G(r)2

)1/2

, (2.37)

where G(r) is the numerical Coulomb solution and Geff(r) is the effective momentum plane-
wave solution given by Eq. (2.36). An analogous definition can be made for 〈δF 2〉RMS. This
quantity should provide a reliable estimate of the error incurred in generic µ→ e transition
matrix elements. The results for all of our nuclei of interest are shown in Table 2.2. For the
light- and medium-mass targets of primary interest, the relative errors in the EMA wave
function are at or below the level of 2% in each partial wave considered. Even in our fiducial
heavy nucleus 184W, the effective momentum approximation continues to perform very well,
with errors consistently below the 10% level. Also shown in Table 2.2 is the relative RMS error
of the free Dirac plane wave solution at the physical momentum q relative to the numerical
Coulomb solution. Even in the lightest targets, the uncorrected plane wave suffers ≈ 5%
errors that quickly grow with A to exceed 10%. The EMA results in systematic improvement,
reducing the RMS error by roughly a factor of 5-10 across the various nuclei and partial
waves. In particular, the EMA reduces the average RMS deviation from 8%→ 1% in 27Al,
14%→ 2% in 63Cu, and 33%→ 5% in 184W.

When considering the most general effective theory of µ→ e conversion, we must rely on
many-body nuclear physics calculations that—even at the present state-of-the-art—do not
have rigorous uncertainty quantification, especially for the medium-mass nuclei of primary
interest. In our approach, we rely on nuclear shell-model wave functions obtained from
phenomenological interactions that have been tuned to reproduce nuclear charge radii and
low-lying spectra. The errors that result when such interactions are used to compute generic
nuclear response functions are not well understood. Certainly, errors at least at the level of
10% would not be unexpected. For this reason, we are able to tolerate the few-percent error
in the electron wave functions introduced through the EMA. As we shall demonstrate, the
dramatic simplifications that this approximation enables are very much worth the associated
errors, particularly considering that searches for µ→ e conversion are presently in the initial
discovery phase.

2.4 Approximate Treatment of the Bound Muon
Muons that are trapped by the target quickly de-excite to the 1s (κ = −1) orbital of the
nuclear Coulomb field. As discussed above, it is possible to obtain a highly accurate wave
function for the bound muon by numerical solution of the Dirac equation. Despite the
complexity of these solutions, the physics of the captured muon can be understood rather
simply.

First, for light- to medium-mass nuclei, the muon is essentially non-relativistic. Figure
2.4 shows the upper and lower components of the muon’s Dirac wave function, as well as
the corresponding Schrödinger solution in the nuclei 27Al and 48Ti. For both targets, the
Schrödinger solution is an excellent approximation to the upper component of the Dirac
solution. Furthermore, we can appraise the relative importance of the muon’s lower component
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% RMS Error
Target G−1 F−1 G+1 F+1 G−2 F−2 G+2 F+2

12C 0.34% 0.44% 0.72% 0.24% 1.05% 1.78% 1.32% 1.53%
12C 2.22% 4.87% 5.29% 1.99% 3.68% 5.90% 6.32% 3.23%
16O 0.47% 0.61% 0.95% 0.23% 0.90% 1.60% 1.16% 1.37%
16O 2.86% 5.83% 6.24% 2.58% 4.56% 7.39% 7.80% 4.13%
19F 0.54% 0.72% 1.07% 0.27% 0.78% 1.44% 1.02% 1.22%
19F 3.19% 6.13% 6.53% 2.94% 4.89% 7.85% 8.25% 4.46%

23Na 0.64% 0.91% 1.27% 0.34% 0.81% 1.48% 1.07% 1.25%
23Na 3.79% 7.29% 7.69% 3.56% 5.85% 9.53% 9.93% 5.43%
27Al 0.70% 1.05% 1.42% 0.41% 0.66% 1.27% 0.90% 1.08%
27Al 4.35% 8.02% 8.41% 4.17% 6.60% 10.92% 11.31% 6.18%
28Si 0.74% 1.13% 1.50% 0.46% 0.60% 1.17% 0.83% 0.98%
28Si 4.72% 8.31% 8.69% 4.57% 6.91% 11.42% 11.80% 6.50%
32S 0.84% 1.33% 1.70% 0.57% 0.61% 1.10% 0.83% 0.91%
32S 5.52% 9.11% 9.47% 5.39% 7.63% 12.51% 12.88% 7.24%

40Ca 0.95% 1.51% 1.87% 0.76% 0.60% 0.85% 0.84% 0.64%
40Ca 7.24% 9.98% 10.33% 7.19% 8.69% 14.46% 14.82% 8.31%
48Ti 1.04% 1.57% 1.92% 0.91% 0.76% 0.87% 1.02% 0.61%
48Ti 8.47% 10.13% 10.46% 8.47% 8.99% 14.91% 15.27% 8.63%
56Fe 1.23% 1.73% 2.07% 1.16% 0.93% 1.05% 1.30% 0.67%
56Fe 10.54% 11.17% 11.49% 10.57% 10.08% 16.90% 17.25% 9.74%
63Cu 1.46% 1.89% 2.22% 1.42% 1.16% 1.30% 1.60% 0.85%
63Cu 12.35% 11.95% 12.24% 12.39% 10.85% 17.87% 18.21% 10.53%
184W 6.64% 4.39% 4.38% 6.67% 2.60% 3.43% 3.76% 2.40%
184W 47.79% 28.17% 28.13% 47.91% 25.77% 26.60% 26.86% 25.76%

Table 2.2: Relative root-mean-square error 〈δG2〉RMS, 〈δF 2〉RMS between the numerical
Coulomb solutions G, F and the free Dirac plane wave solutions Gq, Fq. For each target, the
top line corresponds to the effective momentum plane-wave solutions with momentum qeff
whereas the bottom line corresponds to the plane wave solutions with the physical momentum
q.
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27Al
<latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit><latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit><latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit><latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit>

27Al
<latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit><latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit><latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit><latexit sha1_base64="E70aXw0FMMv26cwoI+maLs9EUw0=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkR67LixmUF+4A2lsl00g6dScLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoH1U6KkokoW0S8Uj2fKwoZyFta6Y57cWSYuFz2vWnN7nffaRSsSi817OYegKPQxYwgrWRhnYlzR7SeiMbCKwnUqTXPBvaVafmzIFWiVuQKhRoDe2vwSgiiaChJhwr1XedWHsplpoRTrPyIFE0xmSKx7RvaIgFVV46z56hM6OMUBBJ80KN5urvjRQLpWbCN5N5RLXs5eJ/Xj/RwZWXsjBONA3J4lCQcKQjlBeBRkxSovnMEEwkM1kRmWCJiTZ1lU0J7vKXV0mnXnOdmnt3UW1eFnWU4ARO4RxcaEATbqEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx9Va5SU</latexit>

<latexit sha1_base64="pvWVjVuCY830Wr8+fFPh5w9halM=">AAACCHicbVDLSsNAFJ3UV62vqEsXBotQQWtSpLosCOqygn1AGstkOmmHziRhZiKUkO7c+CtuXCji1k9w5984abPQ1gMzHM65l3vvcUNKhDTNby23sLi0vJJfLaytb2xu6ds7TRFEHOEGCmjA2y4UmBIfNySRFLdDjiFzKW65w8vUbz1gLkjg38lRiB0G+z7xCIJSSV19v8OgHHAWX9vcOR5fqX9c8th9fGKdVpKjpKsXzbI5gTFPrIwUQYZ6V//q9AIUMexLRKEQtmWG0okhlwRRnBQ6kcAhREPYx7aiPmRYOPHkkMQ4VErP8AKuni+Nifq7I4ZMiBFzVWW6tpj1UvE/z46kd+HExA8jiX00HeRF1JCBkaZi9AjHSNKRIhBxonY10AByiKTKrqBCsGZPnifNStmqlq3bs2KtmsWRB3vgAJSABc5BDdyAOmgABB7BM3gFb9qT9qK9ax/T0pyW9eyCP9A+fwCLZJj6</latexit> G
[r
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F
[r

]
(f

m
�
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/
2
)

<latexit sha1_base64="p6dDDqH0hL/d55JoYBLGrYfMH5o=">AAACDHicbVDLSsNAFJ3UV62vqks3wSJU0DapUl0WBHVZwT4gjWUynbRDZ5IwMxFKSPdu/BU3LhRx6we482+cpFlo9cIwh3PO5d57nIASIQ3jS8stLC4tr+RXC2vrG5tbxe2dtvBDjnAL+dTnXQcKTImHW5JIirsBx5A5FHec8UWid+4xF8T3buUkwDaDQ4+4BEGpqH6x1GNQjjiLrixuV/nR9DL9p2WX3UXHJ9VafBgrl1Ex0tL/AjMDJZBVs1/87A18FDLsSUShEJZpBNKOIJcEURwXeqHAAURjOMSWgh5kWNhRekysHyhmoLs+V8+Tesr+7IggE2LCHOVMVhfzWkL+p1mhdM/tiHhBKLGHZoPckOrS15Nk9AHhGEk6UQAiTtSuOhpBDpFU+RVUCOb8yX9Bu1Yx6xXz5rTUqGdx5MEe2AdlYIIz0ADXoAlaAIEH8ARewKv2qD1rb9r7zJrTsp5d8Ku0j28465pm</latexit> G
[r

]/
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F
[r

]/
r

(f
m

�
3
/
2
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<latexit sha1_base64="xbBG9gVv3KSyJuUj8d9Le2nUyWE=">AAAB+HicbVDLSgMxFL3js9ZHR126CRahbsqMSHVZcOOygn1AW0omzbShSWZIMkId6o+4caGIWz/FnX9jpp2Fth4IHM65l3tygpgzbTzv21lb39jc2i7sFHf39g9K7uFRS0eJIrRJIh6pToA15UzSpmGG006sKBYBp+1gcpP57QeqNIvkvZnGtC/wSLKQEWysNHBLPYHNWIlUPVVCcT4buGWv6s2BVomfkzLkaAzcr94wIomg0hCOte76Xmz6KVaGEU5nxV6iaYzJBI9o11KJBdX9dB58hs6sMkRhpOyTBs3V3xspFlpPRWAns5h62cvE/7xuYsLrfspknBgqyeJQmHBkIpS1gIZMUWL41BJMFLNZERljhYmxXRVtCf7yl1dJ66Lq16r+3WW5XsvrKMAJnEIFfLiCOtxCA5pAIIFneIU359F5cd6dj8XompPvHMMfOJ8/2GiTLA==</latexit>

r (fm)
<latexit sha1_base64="xbBG9gVv3KSyJuUj8d9Le2nUyWE=">AAAB+HicbVDLSgMxFL3js9ZHR126CRahbsqMSHVZcOOygn1AW0omzbShSWZIMkId6o+4caGIWz/FnX9jpp2Fth4IHM65l3tygpgzbTzv21lb39jc2i7sFHf39g9K7uFRS0eJIrRJIh6pToA15UzSpmGG006sKBYBp+1gcpP57QeqNIvkvZnGtC/wSLKQEWysNHBLPYHNWIlUPVVCcT4buGWv6s2BVomfkzLkaAzcr94wIomg0hCOte76Xmz6KVaGEU5nxV6iaYzJBI9o11KJBdX9dB58hs6sMkRhpOyTBs3V3xspFlpPRWAns5h62cvE/7xuYsLrfspknBgqyeJQmHBkIpS1gIZMUWL41BJMFLNZERljhYmxXRVtCf7yl1dJ66Lq16r+3WW5XsvrKMAJnEIFfLiCOtxCA5pAIIFneIU359F5cd6dj8XompPvHMMfOJ8/2GiTLA==</latexit>

r (fm)

<latexit sha1_base64="InIPWTkAOfBwNw1dBYHMofI+zNw=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRKR2mXBjcsKfUEby2Q6aYfOTMLMpFBC/sSNC0Xc+ifu/BsnbRbaemDgcM693DMniBlV2nW/rdLW9s7uXnm/cnB4dHxin551VZRITDo4YpHsB0gRRgXpaKoZ6ceSIB4w0gtm97nfmxOpaCTaehETn6OJoCHFSBtpZNtP6W0jG3Kkp5KnbZqN7Kpbc5dwNolXkCoUaI3sr+E4wgknQmOGlBp4bqz9FElNMSNZZZgoEiM8QxMyMFQgTpSfLpNnzpVRxk4YSfOEdpbq740UcaUWPDCTeUS17uXif94g0WHDT6mIE00EXh0KE+boyMlrcMZUEqzZwhCEJTVZHTxFEmFtyqqYErz1L2+S7k3Nq9e8x9tqs17UUYYLuIRr8OAOmvAALegAhjk8wyu8Wan1Yr1bH6vRklXsnMMfWJ8/ojuToQ==</latexit>

48Ti

<latexit sha1_base64="InIPWTkAOfBwNw1dBYHMofI+zNw=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRKR2mXBjcsKfUEby2Q6aYfOTMLMpFBC/sSNC0Xc+ifu/BsnbRbaemDgcM693DMniBlV2nW/rdLW9s7uXnm/cnB4dHxin551VZRITDo4YpHsB0gRRgXpaKoZ6ceSIB4w0gtm97nfmxOpaCTaehETn6OJoCHFSBtpZNtP6W0jG3Kkp5KnbZqN7Kpbc5dwNolXkCoUaI3sr+E4wgknQmOGlBp4bqz9FElNMSNZZZgoEiM8QxMyMFQgTpSfLpNnzpVRxk4YSfOEdpbq740UcaUWPDCTeUS17uXif94g0WHDT6mIE00EXh0KE+boyMlrcMZUEqzZwhCEJTVZHTxFEmFtyqqYErz1L2+S7k3Nq9e8x9tqs17UUYYLuIRr8OAOmvAALegAhjk8wyu8Wan1Yr1bH6vRklXsnMMfWJ8/ojuToQ==</latexit>

48Ti

r2⇢(r)j0(qr)
<latexit sha1_base64="157ah/NVwd0LNqW2dDy09PruXdk=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEdlOSIuqy4MZlBfuANobJdNqOTiZxZiLUUPwVNy4Ucet/uPNvnLZZaOuBC4dz7uXee4KYM6Ud59vKLS2vrK7l1wsbm1vbO/buXlNFiSS0QSIeyXaAFeVM0IZmmtN2LCkOA05bwd3FxG89UKlYJK71KKZeiAeC9RnB2ki+fSBvqqgrh1FJltGt75TukSz7dtGpOFOgReJmpAgZ6r791e1FJAmp0IRjpTquE2svxVIzwum40E0UjTG5wwPaMVTgkCovnV4/RsdG6aF+JE0Jjabq74kUh0qNwsB0hlgP1bw3Ef/zOonun3spE3GiqSCzRf2EIx2hSRSoxyQlmo8MwUQycysiQywx0SawggnBnX95kTSrFdepuFcnxdppFkceDuEISuDCGdTgEurQAAKP8Ayv8GY9WS/Wu/Uxa81Z2cw+/IH1+QOqMZNe</latexit><latexit sha1_base64="157ah/NVwd0LNqW2dDy09PruXdk=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEdlOSIuqy4MZlBfuANobJdNqOTiZxZiLUUPwVNy4Ucet/uPNvnLZZaOuBC4dz7uXee4KYM6Ud59vKLS2vrK7l1wsbm1vbO/buXlNFiSS0QSIeyXaAFeVM0IZmmtN2LCkOA05bwd3FxG89UKlYJK71KKZeiAeC9RnB2ki+fSBvqqgrh1FJltGt75TukSz7dtGpOFOgReJmpAgZ6r791e1FJAmp0IRjpTquE2svxVIzwum40E0UjTG5wwPaMVTgkCovnV4/RsdG6aF+JE0Jjabq74kUh0qNwsB0hlgP1bw3Ef/zOonun3spE3GiqSCzRf2EIx2hSRSoxyQlmo8MwUQycysiQywx0SawggnBnX95kTSrFdepuFcnxdppFkceDuEISuDCGdTgEurQAAKP8Ayv8GY9WS/Wu/Uxa81Z2cw+/IH1+QOqMZNe</latexit><latexit sha1_base64="157ah/NVwd0LNqW2dDy09PruXdk=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEdlOSIuqy4MZlBfuANobJdNqOTiZxZiLUUPwVNy4Ucet/uPNvnLZZaOuBC4dz7uXee4KYM6Ud59vKLS2vrK7l1wsbm1vbO/buXlNFiSS0QSIeyXaAFeVM0IZmmtN2LCkOA05bwd3FxG89UKlYJK71KKZeiAeC9RnB2ki+fSBvqqgrh1FJltGt75TukSz7dtGpOFOgReJmpAgZ6r791e1FJAmp0IRjpTquE2svxVIzwum40E0UjTG5wwPaMVTgkCovnV4/RsdG6aF+JE0Jjabq74kUh0qNwsB0hlgP1bw3Ef/zOonun3spE3GiqSCzRf2EIx2hSRSoxyQlmo8MwUQycysiQywx0SawggnBnX95kTSrFdepuFcnxdppFkceDuEISuDCGdTgEurQAAKP8Ayv8GY9WS/Wu/Uxa81Z2cw+/IH1+QOqMZNe</latexit><latexit sha1_base64="157ah/NVwd0LNqW2dDy09PruXdk=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEdlOSIuqy4MZlBfuANobJdNqOTiZxZiLUUPwVNy4Ucet/uPNvnLZZaOuBC4dz7uXee4KYM6Ud59vKLS2vrK7l1wsbm1vbO/buXlNFiSS0QSIeyXaAFeVM0IZmmtN2LCkOA05bwd3FxG89UKlYJK71KKZeiAeC9RnB2ki+fSBvqqgrh1FJltGt75TukSz7dtGpOFOgReJmpAgZ6r791e1FJAmp0IRjpTquE2svxVIzwum40E0UjTG5wwPaMVTgkCovnV4/RsdG6aF+JE0Jjabq74kUh0qNwsB0hlgP1bw3Ef/zOonun3spE3GiqSCzRf2EIx2hSRSoxyQlmo8MwUQycysiQywx0SawggnBnX95kTSrFdepuFcnxdppFkceDuEISuDCGdTgEurQAAKP8Ayv8GY9WS/Wu/Uxa81Z2cw+/IH1+QOqMZNe</latexit>

r2⇢(r)j2(qr)
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Figure 2.4: Lower panels: muon κ = −1 bound-state Dirac solutions G(r)/r (orange line)
and F (r)/r (green) are shown for 27Al (left) and 48Ti (right), along with the Schrödinger
solutions (blue dashed). These solutions are computed for extended nuclear charges, using
the parameterizations of Table 2.1, and are properly normalized. Upper panels: the G(r)
(orange), F (r) (green), and Schrödinger (red) solutions; also shown are the volume-weighted
charge distributions r2ρ(r)j0(qr) and r2ρ(r)j2(qr) (shaded). The overall normalization (but
not the relative normalization) of the two densities is arbitrary. As the muon wave function
varies slowly over the extent of the nucleus, it is appropriate to use an average value: the
black dotted line is the value obtained by averaging over r2ρ(r)j0(qr).
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by evaluating the ratio F (r)/G(r). As the behavior of the muon wave functions is most
important over the extent of the nucleus, a natural radius at which to measure this ratio is the
radius R0 at which the nuclear density r2ρ(r) peaks. Table 2.3 shows the ratio |F (R0)/G(R0)|
evaluated in several nuclei of interest, ranging from the very light 12C to the very heavy 184W.
In the nucleus 27Al, the lower component amounts to roughly a 3% correction to the µ→ e
conversion amplitude. For sufficiently heavy nuclei, relativistic effects exceed the 10% level.

More concretely, we can assess the importance of the muon’s lower component in the
evaluation of a particular matrix element contributing to the µ→ e conversion amplitude.
Substituting the EMA form of the electron wave function into the coherent interaction of Eq.
(2.25), the relevant transition operator is

M̂ = qeff

∫ ∞
0

dr r
(
j0(qeffr)G(µ)

−1(r) + j1(qeffr)F (µ)
−1 (r)

)
ρN(r). (2.38)

We can compute the relative contribution of the muon’s lower component by defining

δ 〈M̂〉 ≡
∫
dr rj1(qeffr)ρN(r)F (µ)

−1 (r)∫
dr r

(
j0(qeffr)G(µ)

−1(r) + j1(qeffr)F (µ)
−1 (r)

)
ρN(r)

. (2.39)

The resulting values of δ 〈M̂〉 are shown in Table 2.3. In 27Al, the muon’s lower component
contributes ≈ 2% of the conversion amplitude, roughly in line with the more general estimate
based on |F (R0)/G(R0)|. In 184W, the lower component contributes approximately 1/4 of the
total coherent amplitude, twice the value obtained by evaluating the radial wave functions at
the peak of the nuclear density.

Effectively, the lower component is generated by the action of the muon velocity operator
~vµ on the upper component, and therefore one can interpret the relative suppression of
the lower component as reflecting the fact that the muon velocity is small; indeed, in 27Al√
〈~v 2
µ 〉 ≈ 0.05. As the electron is ultra-relativistic—with upper and lower components always

contributing significantly—the muon’s lower component consistently appears in conjunction
with its upper component, permitting one to view the lower component as a correction.

Based on these appraisals, we shall at present entirely neglect the lower component of
the muon’s Dirac wave function. Correspondingly, in our initial formulation of the nuclear
effective theory, we will overlook the impact of the muon velocity operator. These omissions
are rectified in Chapter 7, where we extend the nuclear effective theory to include the
muon velocity operator (and hence the lower component). The essential structure of the
effective theory—as well as the insights obtained from it—are not significantly altered by
this generalization, and so we now proceed with the construction of the effective theory sans
lower component.

Having dispensed with the lower component of the muon’s Dirac wave function, we now
aim to replace the upper component by an approximate form. Focusing on 27Al, the muonic
Bohr radius a0

µ ≈ 19.7 fm is large compared to either the nuclear radius rrms
N =

√
〈r2〉 ≈ 3.1

fm or the scale over which the outgoing electron wave function varies, which is given by
the first zero of the Bessel function j0(qr), re ≈ π

q
≈ π

mµ
≈ 5.9 fm. Adopting the EMA

plane-wave form for the electron, the muon wave function will be folded with ground-state
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Target
∣∣∣F (R0)
G(R0)

∣∣∣ δ 〈M̂〉 Target
∣∣∣F (R0)
G(R0)

∣∣∣ δ 〈M̂〉 Target
∣∣∣F (R0)
G(R0)

∣∣∣ δ 〈M̂〉
12C 0.013 0.007 27Al 0.030 0.019 48Ti 0.049 0.039
16O 0.018 0.010 28Si 0.032 0.021 56Fe 0.057 0.048
19F 0.020 0.012 32S 0.036 0.024 63Cu 0.062 0.056

23Na 0.025 0.015 40Ca 0.045 0.033 184W 0.13 0.26

Table 2.3: Two measures of the importance of the muon’s lower component: |F (R0)/G(R0)|,
the ratio of the lower F (r) to upper G(r) components of the muon’s Dirac wave function
evaluated at the radius R0 where the nuclear density r2ρ(r) peaks. δ 〈M̂〉, the contribution
of the muon’s lower component to the coherent amplitude.

matrix elements of local nuclear operators as
∫
d3r e−i~qeff ·~rφµ1s(~r ) 〈g.s.|

A∑
i=1
O(i)δ(~r − ~ri)|g.s.〉 . (2.40)

It is instructive to consider the case of a point-like nucleus. In this limit, two simplifications
arise: First, the Coulomb potential of the nucleus is that of a point-like charge, and the
resulting wave function of the muon has a known analytic form. Second, as the nuclear
density is concentrated entirely at the origin, the only relevant part of the muon wave function
is the value at ~r = 0. Explicitly,

∫
d3r e−i~qeff ·~rφµ1s(~r ) 〈g.s.|

A∑
i=1
O(i)δ(~r − ~ri)|g.s.〉 → φZ1s(~0) 〈g.s.|

A∑
i=1
O(i)|g.s.〉 , (2.41)

where it is known from the point-like Schrödinger solution that

φZ1s(~0) = 1√
π

[
Zαµc

~

]3/2
. (2.42)

Returning to the case of an extended nuclear charge distribution, as the upper component of
the muon wave function varies slowly over the extent of the nuclear density, we may replace
the complicated numerical solution by a constant value

∫
d3r e−i~qeff ·~rφµ1s(~r ) 〈g.s.|

A∑
i=1
O(i)δ(~r − ~ri)|g.s.〉

= φavg
1s

∫
d3r e−i~qeff ·~r 〈g.s.|

A∑
i=1
O(i)δ(~r − ~ri)|g.s.〉 .

(2.43)

Of course, there are many inequivalent—but physically reasonable—ways to define the average
value φavg

1s . When it is present, the isoscalar monopole operator

M00;0(q) =
A∑
i=1

j0(qri)Y00(r̂i), (2.44)
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is expected to dominate the elastic µ→ e transition amplitude, we define the average muon
value as

φavg
1s ≡

〈g.s.|∑i j0(qeffri)Y00(r̂i)φµ1s(~ri)|g.s.〉
〈g.s.|∑i j0(qeffri)Y00(r̂i)|g.s.〉

= 1√
4π

∫
dr rρ(r)j0(qeffr)G(r)∫
dr r2ρ(r)j0(qeffr)

,

(2.45)

so that the M00;0 transition amplitude is exactly reproduced. In analogy with the point-like
limit, we can parameterize the average muon value in terms of the point-like Schrödinger
solution with an effective nuclear charge Zeff

φavg
1s = φZeff

1s (~0) = 1√
π

[
Zeffαµc

~

]3/2
. (2.46)

An alternative parameterization that is common in the muon capture literature (see e.g., Ref.
[65]) is to write the average wave function in terms of a reduction factor R < 1 defined by

|φavg
1s (~0)|2 ≡ R|φZ1s(~0)|2, (2.47)

from which it follows that R is given by the cube of the ratio of the effective charge to the
physical charge

R =
(
Zeff

Z

)3
. (2.48)

The values of R and Zeff for our nuclear targets of interest are shown in Table 2.1. It is clear
from these results that the finite nuclear size is crucial to the physics of µ→ e conversion;
even for the relatively light nucleus 27Al (with a charge radius

√
〈r2〉 = 3.062 fm) the coherent

conversion rate is reduced by ≈ 35% compared to the point-like nucleus result.
As discussed above, we have chosen to define the average muon value in order to exactly

reproduce the matrix element of the isoscalar monopole operator. Therefore, errors will
only be incurred when this constant value is employed in the calculation of other transition
amplitudes. For example, consider the isovector monopole operator

M00;1(q) =
A∑
i=1

j0(qri)Y00(r̂i)τ3(i), (2.49)

which depends on the isovector nuclear density ρp(r)− ρn(r). In 27Al, the isovector density
is approximately that of a single 1d5/2 proton hole in a 28Si core. We see from Table 2.4
that one incurs an error of ≈ 2% in the µ → e decay rate by using the value of R (Zeff)
defined for the operator M00;0 to compute matrix elements of M00;1. By a similar token, the
ground state of 27Al carries total angular momentum J = 5/2, and therefore the nuclear
charge generates contributions not just from the monopole (M0) but also the quadrupole
(M2) and hexadecapole (M4) operators as well. Figure 2.4 illustrates the difference in nuclear
transition densities between the monopole and quadrupole operators—not including the
additional effects of nuclear structure. As shown in Table 2.4, the inclusion of the J > 0
charge multipole operators alters the computed value of R (and hence the µ→ e rate) by
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Target R and % variation
W 00
M0 W 00

M W pp
M0 W pp

M W 11
M0 W 11

M

27Al 0.6566 0.6565 0.6570 0.6569 0.6434 0.6417
0.00% -0.01% 0.07% 0.06% -2.01% -2.26%

63Cu 0.3204 0.3204 0.3200 0.3199 0.3287 0.3281
0.00% -0.01% -0.15% -0.16% 2.58% 2.38%

W 00
Σ′1

W 00
Σ′ W pp

Σ′1
W pp

Σ′ W 11
Σ′1

W 11
Σ′

27Al 0.6475 0.6463 0.6513 0.6495 0.6561 0.6533
-1.38% -1.56% -0.81% -1.08% -0.07% -0.49%

63Cu 0.3689 0.3141 0.3673 0.3085 0.3655 0.3026
15.11% -1.99% 14.62% -3.72% 14.05% -5.58%

W 00
Σ′′1

W 00
Σ′′ W pp

Σ′′1
W pp

Σ′′ W 11
Σ′′1

W 11
Σ′′

27Al 0.6345 0.6339 0.6338 0.6332 0.6331 0.6323
-3.36% -3.45% -3.46% -3.56% -3.58% -3.69%

63Cu 0.3275 0.2951 0.3228 0.2921 0.3182 0.2891
2.20% -7.92% 0.74% -8.85% -0.71% -9.77%

Table 2.4: Variation in the constant muon approximation that results from averaging over
transition densities other than the isoscalar monopole. The exact transition probability
containing the muon wave function G(r)/r has been computed for the odd-proton targets
27Al and 63Cu, for the charge M , transverse spin Σ′, and longitudinal spin Σ′′ operators,
and for isoscalar (00), isovector (11), and proton (pp) couplings. The probability is then
re-expressed with an effective constant Coulomb density proportional to the point-nucleus
Schrödinger density, R|φZ1s(~0)|2, where R is a parameter adjusted to reproduce the exact
result. For cases in which the operator appears with a subscript 0 (e.g., M0), this exercise
was performed by retaining only the leading multipole (J0 = 0 for M , and J0 = 1 for Σ′ and
Σ′′). Otherwise, it was done using the full structure function. The second row of entries
shows the percent deviation in the resulting value of R compared to the standard value, that
obtained by averaging over the isoscalar monople M0.
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≈ 0.01% in 27Al. This effect is so small primarily because of the coherent enhancement of
the monopole contribution.

We also consider the error incurred by employing the constant muon value in the calculation
of the spin-dependent operators Σ′ and Σ′′, which correspond, respectively, to the transverse
and longitudinal components of the nuclear spin current. In 27Al, the typical size of these
errors—as a variation in the determined value of R—is . 3%. As R corresponds to a
probability, the use of a fixed R across all responses in this target nucleus will affect limits
derived on CLFV parameters at the level of . 1%.

2.5 Comparison to Other Works
Not long after Feinberg’s original work on µ→ eγ, Weinberg & Feinberg [66] considered the
analogous process in a muonic atom, wherein the photon is virtual and exchanged with the
nuclear charge (see Fig. 6.1). This was the first calculation of µ → e conversion in nuclei.
In their formulation, the outgoing electron is treated as a free Dirac plane wave, and the
bound muon is taken to be a constant parameterized by an effective charge Zeff . Weinberg &
Feinberg adopted the following definition of Zeff , employed first by Wheeler [67]—and later
by Primakoff [68]—in the study of standard muon capture:

〈φZ̃eff
1s (~0)〉

2
≡ 1
π

(
αµc

~

)3 Z̃4
eff
Z

≡
∫
d3r ρp(r)|φµ1s(~r )|2∫

d3r ρp(r)
,

(2.50)

where we have introduced the notation Z̃eff to distinguish this definition of the effective charge
from that which we adopted in the previous section. Two important differences should be
noted: First, Z̃eff is computed by averaging the muon probability over the nuclear proton
density ρp(r) whereas Zeff is computed by averaging the muon amplitude over the isoscalar
monopole transition density j0(qeffr)ρ(r). The latter quantity has the advantage that it
exactly reproduces the leading coherent operator contributing to elastic µ→ e conversion.
On the other hand, Z̃eff is more appropriate for the inclusive process of standard muon
capture in which no single transition is expected to dominate. Indeed, the rate for standard
muon capture obeys

Γcapture ∝
∑
f

F (Ef )| 〈i|Ωφµ1s(~r )|f〉 |2

≈ F (Ēf )
∑
f

| 〈i|Ωφµ1s(~r )|f〉 |2

≈ F (Ēf ) 〈i|Ω†Ω|φµ1s(~r )|2|i〉

≈
∫
d3r ρ(r)|φµ1s(~r )|2∫

d3r ρ(r) F (Ēf ) 〈i|Ω†Ω|i〉 ,

(2.51)

where Ω is a nuclear operator, and, after replacing the final-state phase space factor F (Ef ) by
an average value, the sum over final states has been completed by the closure approximation.
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Therefore, in the case of muon capture, the appropriate average value of the muon wave
function is, in fact, the ground-state average of the muon probability.

The second significant difference between the two definitions of the effective charge is
the fact that Z3

eff ∝ |φ
µ
1s|2 whereas Z̃4

eff ∝ |φ
µ
1s|2. Where does the extra power of the effective

charge in the latter expression originate? Once again, the answer lies in the inclusive nature
of standard muon capture, which is typically dominated by first-forbidden nuclear transitions.
Consequently, rather than the naïve closure approximation invoked in Eq. (2.51), the rate for
standard muon capture is governed by a modified Thomas-Reiche-Kuhn sum rule [69], leading
to an additional dependence ∝ Z/2. Thus, the effective charge in muon capture reflects a
subtle combination of Coulomb and nuclear structure effects whereas the effective charge in
µ→ e conversion is meant only to account for the softening of the Coulomb potential due to
the finite nuclear extent. Unfortunately, this distinction has frequently been overlooked in
the µ→ e conversion literature, with many authors adopting the definition appropriate to
muon capture. Table 2.5 provides an incomplete survey of the µ→ e conversion literature.
Beginning with the work of Shanker, studies of coherent conversion frequently retain the full
Dirac forms of the muon and electron wave functions, avoiding altogether the issue of the
effective charge.

The majority of the existing literature on µ→ e conversion is specialized to the coherent
case, where the only nuclear operator under consideration is the charge monopole M0. A
few limited works exist concerning incoherent contributions to the elastic conversion process.
These investigations of so-called “spin-dependent” conversion augment the spin-independent
charge operator with the nuclear spin operator. To our knowledge, the general effective
theory has never been constructed, as the nucleon velocity has always been neglected. Several
authors have attempted to estimate the strength of inelastic contributions in various target
nuclei.

2.6 The Nuclear Diffraction Minimum
One may wonder why the next-generation experiments have chosen a relatively light target,
27Al, rather than opting for a very heavy nucleus (like W, Au, or Pb) that could maximize
the coherent enhancement. Naïvely, one expects the coherent nuclear form factor

F0(qeff) ≡
∫ ∞

0
dr r2j0(qeffr)ρ(r), (2.52)

to grow proportionally with A. This is certainly true at zero momentum-transfer, as F0(0) = A.
However, as is apparent for W 184 in Fig. 2.3, in heavier nuclei the first zero of the Bessel
function j0(qeffr) leads to a cancellation and a reduction in the strength of the F0 form factor.
For a given nuclear density, there exists some value of qeff such that the cancellation is exact,
resulting in a zero in the form factor. This is the first nuclear diffraction minimum. In 184W,
this minimum occurs at a momentum of q = 133.52 MeV. The effective momentum qeff =
114.93 is sufficiently close to the minimum to significantly depress the coherent contribution.
On the other hand, the first diffraction minimum in 27Al occurs at q = 270.93 MeV—quite far
from the effective momentum qeff = 110.81 MeV—and the resulting cancellation is relatively
small. In Table 2.6, we report the value of the coherent form factor evaluated at the relevant
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Author(s) Year [Ref] Target(s) Operator(s) ψe ψµ

Weinberg & Feinberg† 1959 [66] Many M0;p Plane wave 〈|ψµ|2〉ρ
Marciano & Sanda 1977 [70] Many M0;τ Plane wave 〈|ψµ|2〉ρ
Shanker 1979 [71] Many M0;τ Dirac Dirac
Kosmas & Vergados† 1990 [72] Many M0;τ Plane wave 〈|ψµ|2〉ρ
Chiang et al.† 1993 [73] Many M0;τ Plane wave 〈|ψµ|2〉ρ
Kosmas et al.† 1993 [74] 48Ti M0;τ Plane wave 〈|ψµ|2〉ρ
Czarnecki, Marciano, & Melnikov 1998 [75] 27Al, 48Ti, 208Pb M0;τ Dirac Dirac
Siiskonen, Suhonen, & Kosmas† 2000 [76] 27Al, 48Ti MJ;τ Σ′J;τ Σ′′J;τ Plane wave 〈|ψµ|2〉ρ
Kosmas† 2001 [77] 48Ti, 208Pb MJ;τ Σ′J;τ Σ′′J;τ Plane wave 〈|ψµ|2〉ρ
Kitano, Koike, & Okada 2002 [78] Many M0;τ Dirac Dirac
Kosmas 2003 [79] Many M0;τ Plane wave Dirac
Cirigliano et al. 2009 [80] Many M0;τ Dirac Dirac
Crivellin et al. 2017 [81] 27Al, 197Au M0;τ Dirac Dirac
Bartolotta & Ramsey-Musolf 2018 [56] 27Al M0;τ Dirac Dirac
Cirigliano, Davidson, & Kuno 2018 [82] 27Al M0;τ Σ′J;τ Σ′′J;τ Plane wave |φZ1s(~0)|2

Davidson, Kuno, & Saporta 2018 [83] 27Al, Ti M0;τ Σ′J;τ Σ′′J;τ Plane wave |φZ1s(~0)|2

Civitarese & Tarutina† 2019 [84] 208Pb M0;τ Plane wave |G(RN )|2

Heeck, Szafron, & Uesaka 2022 [85] Many M0;τ Dirac Dirac
Cirigliano et al. 2022 [57] 27Al,48Ti,197Au,208Pb M0;τ Dirac Dirac

Table 2.5: An incomplete survey of elastic µ→ e conversion studies including the nuclear
targets considered, the nuclear multipole operators evaluated, and the form of the lepton
wave functions employed. OJ ;τ means that both isospin structures and all allowed J were
included. For the Dirac electron, all of the references surveyed restrict attention to the lowest
partial waves κ = ±1. Besides the Dirac solution, the remaining forms of the muon wave
function are all constant approximations: 〈|ψµ|2〉ρ is obtained by averaging the probability
of the Dirac solution over the nuclear density, |φZ1s(~0)|2 is the probability of the point-like
Schrödinger solution evaluated at the origin, |G(RN )|2 is the upper component of the muon’s
Dirac wave function evaluated at the nuclear radius. Superscript † indicates that the reference
considers the inelastic process as well, although the information in the table reflects only the
treatment of the elastic process.
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12C 16O 19F 23Na 27Al 28Si
F0(qeff) 8.748 10.880 12.312 14.582 16.281 16.380

Γ̄(A)/Γ̄(27) 0.08 0.21 0.31 0.62 1.00 1.17

32S 40Ca 48Ti 56Fe 63Cu 184W
F0(qeff) 17.952 20.04 22.032 23.968 25.011 18.142

Γ̄(A)/Γ̄(27) 1.64 2.80 3.39 4.84 5.73 5.15

Table 2.6: The value of the coherent form factor F0(qeff) and the coherent decay rate per
target nucleon Γ̄(A) = Γ(A)/A (normalized by the corresponding value for 27Al) are computed
for each target nucleus.

momentum qeff in order to demonstrate the impact of the nuclear diffraction minimum. As A
increases towards the medium-mass nuclei 48Ti and 56Fe, the coherent enhancement begins
to diminish. Somewhere just beyond 63Cu, the coherent form factor peaks and begins to
decrease with increasing A.

In addition to the form factor F0, the coherent µ→ e conversion rate Γ is a function of
the target-dependent quantities qeff and |φZeff

1s (~0)|. In particular,

Γ ∝ q2
eff |φ

Zeff
1s (~0)|2F0(qeff)2. (2.53)

Assuming a fixed target mass1, the optimal nucleus for observing the coherent process is the
one that maximizes the rate per target nucleon Γ̄(A) ≡ Γ(A)/A, which we report in Table 2.6
(normalized by the value in 27Al). For light- and medium-mass nuclei, the rate per nucleon
increases steadily with A due to the coherent enhancement as well as the strengthening of the
nuclear Coulomb potential, which brings the peak of the muon wave function closer to the
nucleus. The coherent form factor peaks just beyond 63Cu; for heavier nuclei, the coherent
enhancement is outweighed by the reduction from the diffraction minimum, ultimately leading
to a diminishing rate per target nucleon. Thus, no advantage is gained by employing a very
heavy target. (In this discussion, we have neglected the effect of the muon’s lower component,
which, depending on the character of the CLFV interaction, may significantly increase or
decrease the coherent amplitude in heavy nuclei. Nonetheless, as the underlying nature of
CLFV is yet unknown, it is probably unwise to choose a heavy nuclear target based on the
tenuous assumption that some considerable relativistic enhancement will occur.)

1Here, we assume a pure target, whereas typically in conversion experiments natural targets are employed.
Considering natural targets would alter the numbers in Table 2.6 somewhat but would not change the
conclusion that beyond a certain point the coherent rate per nucleon begins to decrease with increasing A.
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Chapter 3

Nuclear Effective Theory

In the previous chapter, we demonstrated that the essential physical behavior of the bound
muon and the outgoing electron can be captured by approximate wave functions that
dramatically simplify the description of the leptons in µ→ e conversion. In this chapter, our
primary focus is the nucleon degrees of freedom. After performing a standard non-relativistic
reduction of the nucleon currents, we demonstrate that when these results are combined with
the approximate lepton wave functions, a simplified effective theory emerges that is built
from four basic Hermitian vector operators acting between Pauli spinors.

The construction of an effective theory involves the enumeration of all operators that
respect the chosen symmetries. The complete effective theory basis is generally an infinite
set of operators, each with an unknown coupling coefficient. In order for the theory to have
predictive power, we must reduce this basis to a finite number of operators by imposing a
power-counting scheme, allowing us to identify and retain all operators through a given order
in the (hopefully) small power-counting parameter(s). This truncation should translate to
a modest error in the calculation of observables. In a proper effective theory, the accuracy
improves systematically as one progresses to higher-order in the power-counting.

In elastic µ→ e conversion, the dimensionless parameters that govern the power-counting
are the three velocities: the average single-nucleon velocity ~vN , the muon velocity ~vµ, and the
nuclear recoil velocity ~vT . In Section 2.4, we argued that the muon velocity can be neglected
in our initial formulation of the effective theory. For calculations performed in the target rest
frame, the center-of-mass velocity of the recoiling nucleus is quite small, |~vT | ≈ q/MT ≈ 0.004
in 27Al, and therefore this operator can be excluded as well. The average single-nucleon
velocity does contribute significantly: Treating 27Al as a single unpaired 1d5/2 proton, we
find

√
〈~v 2
N〉 ≈ 0.21. To achieve better than 10–20% accuracy in the effective theory, we must

construct the operator basis through first order in the nucleon velocity. Beyond first order in
vN/c, ambiguities arise in the non-relativistic reduction of the nucleon currents [86].

In similar formulations, such as the effective theory of dark matter direct detection, one
identifies a power-counting parameter that has the form of the three-momentum transfer
divided by some mass scale, typically q/mN . While this combination does enter into the
present construction, we cannot treat it as a fundamental small quantity in our theory
because—due to the ultra-relativistic nature of the electron—the alternate dimensionless
quantity q̂ arises naturally in our approach. Thus, operator structures such as q̂ · ~σLq̂ · ~σN ,
which would be heavily suppressed in dark matter effective theory where we must replace
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q̂ → ~q/mN , are not necessarily suppressed by any small quantity in the present case.

3.1 Single-nucleon Effective Operator Basis
The available scalar Hermitian operators are those that can be constructed from the lepton
and nucleon identity operators 1L and 1N and from the four dimensionless three-vectors

iq̂ = i
~q

|~q |
, ~vN , ~σL, ~σN . (3.1)

Here q̂ is the unit vector along the direction of the three-momentum transfer to the leptons
(or alternatively the velocity of the outgoing ultra-relativistic electron). The average nucleon
velocity operator is defined as

~vN = 1
2mN

(~pi + ~pf ) , (3.2)

where ~pi and ~pf are the initial and final nucleon momenta, respectively. Our aim is to
combine these six Hermitian “building-block” operators to form new scalar operators that
will constitute our effective theory basis. The construction is limited by two constraints:
(1) We work to first-order in the average single-nucleon velocity ~vN . (2) The nucleon spin
operator can be combined with ~vN as ~vN · ~σN and ~vN × ~σN , but not as the rank-two tensor
[~vN ⊗ ~σN ]2, which would not triangulate between spin-1

2 nucleon states. We identify a total
of 16 independent operators:

O1 = 1L 1N
O′2 = 1L iq̂ · ~vN
O3 = 1L iq̂ · [~vN × ~σN ]
O4 = ~σL · ~σN
O5 = ~σL · (iq̂ × ~vN)
O6 = iq̂ · ~σL iq̂ · ~σN
O7 = 1L ~vN · ~σN
O8 = ~σL · ~vN
O9 = ~σL · (iq̂ × ~σN)
O10 = 1L iq̂ · ~σN
O11 = iq̂ · ~σL 1N
O12 = ~σL · [~vN × ~σN ]
O′13 = ~σL · (iq̂ × [~vN × ~σN ])
O14 = iq̂ · ~σL ~vN · ~σN
O15 = iq̂ · ~σL iq̂ · [~vN × ~σN ]
O′16 = iq̂ · ~σL iq̂ · ~vN

(3.3)

We note that 12 of the 16 operators arise from scalar and vector exchanges whereasO3,O12,O′13
andO15 arise from higher-spin mediators. The 16 Pauli-reduced operators can also be obtained
from a complete basis of Lorentz-invariant amplitudes (see Section 3.9).
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The operators in Eq. (3.3) form the basis of our effective theory; that is, we may write
our effective Lagrangian density as

Leff =
∑
α=n,p

16∑
i=1

cαi Oαi , (3.4)

where the ci are the unknown low-energy constants (LECs) of the effective theory, which
must be determined from experiment or by matching to a predictive UV theory. We have
allowed for each operator to couple distinctly to protons and neutrons. Equivalently, we can
transform to the isospin basis, writing

Leff =
∑
τ=0,1

16∑
i=1

cτiOitτ , (3.5)

where c0
i = 1

2 (cpi + cni ) and c1
i = 1

2 (cpi − cni ), and the isospin matrices are t0 = 1 and t1 = τ3.
Therefore, the effective theory contains a total of 32 unknown parameters associated with 16
space/spin operators each of which can have distinct couplings to protons and neutrons. If
we exclude operators that are not associated with spin-0 or spin-1 mediators, 12 space/spin
operators and 24 couplings remain. In general, the LECs are complex-valued.

So far, the effective theory is specified at the level of single-nucleon operators. Once these
operators are properly embedded in the target nucleus, we will find that the nuclear-level
effective theory is more restrictive—although the individual nucleons appear to have 32
independent CLFV responses, the same is not true of the total nuclear system. Our aim is to
determine the specific constraints that a program of elastic µ→ e conversion measurements
can place on the single-nucleon LECs.

As defined in Eq. (3.5), the low-energy constants carry dimensions of 1/(mass)2. Because
experimental results are conventionally expressed as a ratio with respect to the rate of a
standard-model muon process, it is convenient to introduce a set of dimensionless LECs c̃i
defined with respect to the weak scale

ci ≡ c̃i/v
2 =
√

2GF c̃i, (3.6)

where v = 246.2 GeV is the Higgs vacuum expectation value, and GF = 1.166× 10−5 GeV−2

is the Fermi constant. Alternatively, given an experimental measurement (or limit) on an
LEC, one can define a typical energy scale associated with the CLFV physics

Λτ
i ≡

1√
|cτi |

= v√
|c̃τi |

. (3.7)

In fact, we may characterize the sensitivity of a particular experimental search in terms of
the reach in energy scale Λτ

i (which is operator-dependent).
Having specified the effective Lagrangian, it is relatively straightforward to obtain an

expression for the µ → e conversion rate. In order to arrive at a simple expression that
factorizes the nuclear physics from the CLFV physics, we proceed by performing a multipole
expansion of the nuclear charges and currents.
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3.2 One-Body Nuclear Charges and Currents
The nucleon-level effective operators of Eq. (3.3) contain two single-nucleon charges: scalar
1N and axial ~vN ·~σN , and three single-nucleon currents: spin ~σN , velocity ~vN , and spin-velocity
~σN × ~vN . These charges and currents naturally arise in the non-relativistic expansion of
Lorentz-covariant nucleon currents (see Appendix A.1). In order to embed these single-nucleon
operators in a many-nucleon system, we define the total nuclear charge J0(~x) and axial charge
JA0 (~x) operators as

J0(~x) ≡
A∑
i=1

δ(~x− ~xi),

JA0 (~x) ≡
A∑
i=1

1
2mN

[
−1
i

←−
∇ i · ~σN(i)δ(~x− ~xi) + δ(~x− ~xi)~σN(i) · 1

i

−→
∇ i

]
,

(3.8)

and the total nuclear velocity current ~Jc(~x), spin current ~JA(~x) and spin-velocity current
~JM(~x) operators as

~Jc(~x) ≡
A∑
i=1

1
2mN

[
−1
i

←−
∇ iδ(~x− ~xi) + δ(~x− ~xi)

1
i

−→
∇ i

]
,

~JA(~x) ≡
A∑
i=1

~σN(i)δ(~x− ~xi),

~JM(~x) ≡
A∑
i=1

1
2mN

[←−
∇ i × ~σN(i)δ(~x− ~xi) + δ(~x− ~xi)~σN(i)×−→∇ i

]
.

(3.9)

Defining the corresponding leptonic charges and currents

lτ0 ≡ cτ11L + cτ11iq̂ · ~σL
lA τ
0 ≡ cτ71L + cτ14iq̂ · ~σL
~lτ5 ≡ cτ4~σL + cτ6iq̂ · ~σLiq̂ − cτ9iq̂ × ~σL + cτ10iq̂1L
~lτM ≡ cτ2iq̂1L − cτ5iq̂ × ~σL + cτ8~σL + cτ16iq̂ · ~σLiq̂
~lτE ≡ −cτ3 q̂1L + cτ12i~σL + cτ13q̂ × ~σL − icτ15q̂ · ~σLq̂,

(3.10)

we may write our effective Hamiltonian density as

Heff(~x) =
√
Ee

2me

|φZeff
1s (~0)|qeff

q
e−i~qeff ·~x

∑
τ=0,1

[
lτ0

A∑
i=1

δ(~x− ~xi)]

+lA τ
0

A∑
i=1

1
2mN

(
−1
i

←−
∇ i · ~σN(i)δ(~x− ~xi) + δ(~x− ~xi)~σN(i) · 1

i

−→
∇
)

+~lτ5 ·
A∑
i=1

~σN(i)δ(~x− ~xi) +~lτM ·
A∑
i=1

1
2mN

(
−1
i

←−
∇ iδ(~x− ~xi) + δ(~x− ~xi)

1
i

−→
∇ i

)

+~lτE ·
A∑
i=1

1
2mN

(←−
∇ i × ~σN(i)δ(~x− ~xi) + δ(~x− ~xi)~σN(i)×−→∇ i

)]
int

tτ (i).

(3.11)
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Here the subscript int denotes that technically the A single-nucleon velocities appearing in
the expression should be replaced by the A − 1 relative (or Jacobi) velocities. There are
techniques for addressing this issue connected with, for example, shell-model techniques that
employ single-nucleon coordinates but nevertheless create wave functions where the nuclear
center-of-mass is in a definite state, thereby removing the extra degrees of freedom. More
commonly, though, this issue is ignored.

Note that if one sets ~vN = 0, lτ0 and ~lτ5 are unchanged, while lA τ
0 , ~lτM , and ~lτE all vanish.

In this limit—that of a point-like nucleus—the only surviving operators are those associated
with the macroscopic nuclear properties of charge and spin.

3.3 The Nuclear Multipole Decomposition
The effective Hamiltonian now has the form of a plane wave multiplying either a nuclear
charge as ei~q·~xJ0(~x) or current as ei~q·~x ~J(~x). In both cases, we may expand the exponential
plane-wave factor into partial waves and thereby perform a multipole decomposition of the
corresponding nuclear charge/current. Orienting our coordinate system along the direction of
three-momentum transfer (q̂ = ê0), the plane-wave factor may be expanded in partial waves
as

ei~q·~x =
∞∑
J=0

√
4π(2J + 1)iJjJ(qx)YJ0(x̂). (3.12)

It immediately follows that any local charge density J0(~x) can be decomposed into multipole
operators with good angular momentum quantum numbers J,M as

MJM(q) =
∫
d3x [jJ(qx)YJM(x̂)] J0(~x). (3.13)

When the plane wave factor multiplies a vector current, then we may expand the vector
current in the spherical basis as

~J =
∑
λ

Jλê
∗
λ, (3.14)

and then use the fact that

êλYlm(x̂) =
∑
JM

〈l m 1 λ|J M〉 ~YJ l M(x̂) (3.15)

to write

êλe
i~q·~x = − i

q

∞∑
J=0

√
4π(2J + 1)iJ ~∇ (jJ(qx)YJ0(x̂)) , for λ = 0

= −
∞∑
J≥1

√
2π(2J + 1)iJ

[
λjJ(qx)~YJJλ(x̂) + 1

q
~∇×

(
jJ(qx)~YJJλ(x̂)

)]
, for λ = ±1.

(3.16)

Three unique tensor structures arise, reflecting the fact that each vector current can be
decomposed into longitudinal, transverse-magnetic, and transverse-electric components. The
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corresponding multipole projections are

LJM(q) = i

q

∫
d3x

[
~∇ (jJ(qx)YJM(x̂))

]
· ~J(~x),

T mag
JM (q) =

∫
d3x

[
jJ(qx)~YJJM(x̂)

]
· ~J(~x),

T el
JM(q) = 1

q

∫
d3x

[
~∇×

(
jJ(qx)~YJJM(x̂)

)]
· ~J(~x).

(3.17)

The multipole projections defined in this section are valid for any local nuclear charge J0(~x)
or current ~J(~x). In the next section, we will construct these projections explicitly for the
two nuclear charges and three nuclear currents that appear in the effective theory of elastic
µ→ e conversion.

3.4 Projections of Nuclear Currents and Charges
The two nuclear charges and three nuclear currents that arise in the effective theory of µ→ e
conversion admit a total of eleven distinct multipole response operators, corresponding to
one projection of each charge and three independent projections of each current. Indeed, we
find the following projections of J0, JA0 , ~Jc, ~JA, and ~JM :

MJM(J0) =
A∑
i=1

MJM(q~xi)

MJM(J5
0 ) = −i q

mN

A∑
i=1

[
ΩJM(q~xi) + 1

2Σ′′JM(q~xi)
]

LJM( ~JA) = i
A∑
i=1

Σ′′JM(q~xi),

T el
JM( ~JA) = i

A∑
i=1

Σ′JM(q~xi),

T mag
JM ( ~JA) =

A∑
i=1

ΣJM(q~xi)

LJM( ~Jc) = q

mN

A∑
i=1

[
∆′′JM(q~xi)−

1
2MJM(q~xi)

]
(3.18)

T el
JM( ~Jc) = q

mN

A∑
i=1

∆′JM(q~xi)

T mag
JM ( ~Jc) = −i q

mN

A∑
i=1

∆JM(q~xi)

LJM( ~JM) = q

mN

A∑
i=1

Φ′′JM(q~xi)

T el
JM( ~JM) = q

mN

A∑
i=1

[
Φ′JM(q~xi) + 1

2ΣJM(q~xi)
]
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T mag
JM ( ~JM) = −i q

mN

A∑
i=1

[
ΦJM(q~xi)−

1
2Σ′JM(q~xi)

]
,

where the single-nucleon multipole operators that we obtain are those familiar from the
study of semi-leptonic weak interactions [87, 88]. Adding a label to denote isospin, the
single-nucleon response functions are

MJM ;τ (q) ≡
A∑
i=1

MJM(q~xi) tτ (i)

ΩJM ;τ (q) ≡
A∑
i=1

MJM(q~xi)~σN(i) · 1
q
~∇i t

τ (i)

∆JM ;τ (q) ≡
A∑
i=1

~MJJM(q~xi) ·
1
q
~∇i t

τ (i)

∆′JM ;τ (q) ≡ −i
A∑
i=1

{
1
q
~∇i × ~MJJM(q~xi)

}
· 1
q
~∇i t

τ (i)

∆′′JM ;τ (q) ≡
A∑
i=1

(
1
q
~∇iMJM(q~xi)

)
· 1
q
~∇i t

τ (i)

ΣJM ;τ (q) ≡
A∑
i=1

~MJJM(q~xi) · ~σN(i) tτ (i)

Σ′JM ;τ (q) ≡ −i
A∑
i=1

{
1
q
~∇i × ~MJJM(q~xi)

}
· ~σN(i) tτ (i)

Σ′′JM ;τ (q) ≡
A∑
i=1

{
1
q
~∇iMJM(q~xi)

}
· ~σN(i) tτ (i)

ΦJM ;τ (q) ≡ i
A∑
i=1

~MJJM(q~xi) ·
(
~σN(i)× 1

q
~∇i

)
tτ (i)

Φ′JM ;τ (q) ≡
A∑
i=1

(
1
q
~∇i × ~MJJM(q~xi)

)
·
(
~σN(i)× 1

q
~∇i

)
tτ (i)

Φ′′JM ;τ (q) ≡ i
A∑
i=1

(
1
q
~∇iMJM(q~xi)

)
·
(
~σN(i)× 1

q
~∇i

)
tτ (i),

(3.19)

where we have defined the basic multipole projections

MJM(q~x) ≡ jJ(qx)YJM(x̂),
~MJLM(q~x) ≡ jL(qx)~YJLM(x̂),

(3.20)

and ~YJLM is a vector spherical harmonic (see Appendix B.2).
In addition to carrying angular momentum (J,M) each multipole operator has a well-

defined transformation under parity ~x→ −~x. The operators M , ∆′, ∆′′, Σ, Φ′, and Φ′′ are
normal parity operators that transform with a phase (−1)J under parity whereas Ω, ∆, Σ′,
Σ′′, and Φ are abnormal parity operators that transform with a phase (−1)J+1 under parity.
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Matrix elements of the above multipole operators evaluated between harmonic oscillator
states can be expressed analytically in terms of the dimensionless quantity y = (qb/2)2, where
b is the parameter that sets the length scale of the harmonic oscillator states. In particular,
letting TJ(q~r ) represent any of the 11 single-particle operators, we have

〈n′ (`′ 1/2) j′||TJ(q~r )||n (` 1/2) j〉 = 1√
4π
y(J−K)/2e−yp(y), (3.21)

where K = 2 for the normal parity operators M , ∆′, ∆′′, Σ, Φ′, and Φ′′, and where K = 1
for the abnormal parity operators Ω, ∆, Σ′, Σ′′, and Φ. The function p(y) is a finite-degree
polynomial in y. See Appendix D for a detailed derivation of Eq. (3.21) and other properties of
the single-nucleon response functions. For the choices of phase conventions in our definitions,
all of the matrix elements are real. In order to discuss time-reversal symmetry, we define the
transformed operators

Ω̃JM(q) ≡ ΩJM(q) + 1
2Σ′′JM(q),

∆̃′′JM(q) ≡ ∆′′JM(q)− 1
2MJM(q),

Φ̃JM(q) ≡ ΦJM(q)− 1
2Σ′JM(q),

Φ̃′JM(q) ≡ Φ′JM(q) + 1
2ΣJM(q),

(3.22)

which have well-defined transformations under the exchange of initial and final single-particle
states

〈n (` 1/2) j||TJ(q~r )||n′ (`′ 1/2) j′〉 = (−1)λ 〈n′ (`′ 1/2) j′||TJ(q~r )||n (` 1/2) j〉 , (3.23)

with λ = j′ − j for the operators M , ∆, Σ′, Σ′′, Φ̃′, and Φ′′, and λ = j′ + j for the operators
Ω̃, ∆′, ∆̃′′, Σ, and Φ̃.

The parity and time-reversal properties of the 11 single-nucleon response functions are
summarized in Table 3.1. The restriction of the nucleus to remain in the ground state (which
is approximately an eigenstate of P and T) throughout the µ→ e conversion process now has
profound consequences for the form of the nuclear response: only those multipole operators
that are even under both parity and time-reversal can contribute to the elastic conversion
process. The five operators for which λ = j′ + j under exchange of initial and final states
always have opposite P and T transformations for a given J . Therefore Ω̃, ∆′, ∆̃′′, Σ, and Φ̃
are entirely excluded from the elastic response. For the remaining multipole operators, we
are restricted to either even J for normal parity operators and odd J for abnormal parity
operators. Thus, the nuclear response is limited to the six allowed response functions: even
multipoles of M , Φ̃′, and Φ′′, and odd multipoles of ∆, Σ′, and Σ′′. We will now derive an
expression for the µ→ e conversion rate in terms of these six response functions.

3.5 The Elastic µ→ e Decay Rate
Knowing the multipole decomposition of the relevant nuclear charges and currents, as well as
the parity and time-reversal transformation properties of the resulting single-nucleon operators,
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Projection Charge/Current Operator Even J Odd J LECs Probed
Charge 1N MJM E-E O-O c1, c11

Charge ~vN · ~σN Ω̃JM O-E E-O c7, c14

Longitudinal ~σN Σ′′JM O-O E-E c4, c6, c10

Transverse magnetic " ΣJM E-O O-E c4, c9

Transverse electric " Σ′JM O-O E-E c4, c9

Longitudinal ~vN ∆̃′′JM E-O O-E c2, c8, c16

Transverse magnetic " ∆JM O-O E-E c5, c8

Transverse electric " ∆′JM E-O O-E c5, c8

Longitudinal ~vN × ~σN Φ′′JM E-E O-O c3, c12, c15

Transverse magnetic " Φ̃JM O-E E-O c12, c13

Transverse electric " Φ̃′JM E-E O-O c12, c13

Table 3.1: Characteristics of the 11 single-nucleon response functions including the
charge/current projection from which they arise, their parity and time-reversal transfor-
mation properties, and the LECs of the nucleon-level effective theory that are associated with
each response. Based on these results, the elastic µ→ e conversion amplitude can depend
only on even multipoles of M , Φ̃′, and Φ′′, and odd multipoles of ∆, Σ′, and Σ′′ .

we now proceed to compute the µ→ e decay rate. Beginning from the Hamiltonian density
in Eq. (3.11) and letting ji = jf = jN be the total nuclear angular momentum, mi, mf the
initial and final magnetic quantum numbers of the nuclear state, and si, sf the initial and
final magnetic quantum numbers of the leptons, we compute the decay amplitude

M = 〈12sf ; jNmf |
∫
d3x H(~x) |12si; jNmi〉 , (3.24)

by performing the multipole decomposition of the nuclear charges and currents. The result is

M =
√
Ee

2me

|φZeff
1s (~0)|qeff

q

∑
τ=0,1

〈12sf ; jNmf |
∞∑

J=0,2,...

√
4π(2J + 1)(−i)J

[
lτ0MJ0;τ (qeff) + qeff

mN

lτE0Φ′′J0;τ (qeff)
]

+
∞∑

J=1,3,...

√
2π(2J + 1)(−i)J

∑
λ=±1

[
−ilτ5λΣ′J−λ;τ (qeff) + i

qeff

mN

lτMλλ∆J−λ;τ (qeff)
]

+
∞∑

J=2,4,...

√
2π(2J + 1)(−i)J

∑
λ=±1

[
− qeff

mN

lτEλΦ̃′J−λ;τ (qeff)
]

+
∞∑

J=1,3,...

√
4π(2J + 1)(−i)J

[
ilτ50Σ′′J0;τ (qeff)

] |12si; jNmi〉 ,

(3.25)

where we note that the leptonic current lA τ
0 does not appear because the nuclear axial charge

operator (which generates the response Ω̃) is excluded from the elastic conversion process by
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P and T symmetry. Next, we write the amplitude in terms of reduced matrix elements of the
nuclear multipole operators using the Wigner-Eckart theorem

〈jNmf |TJM |jNmi〉 = (−1)jN−mf
 jN J jN

−mf M mi

 〈jN ||TJ ||jN〉 , (3.26)

which allows us to compute the nuclear spin-averaged amplitude squared

1
2jN + 1

∑
mf ,mi

|M|2, (3.27)

using the completeness relation for the Wigner 3-j symbols

1
2jN + 1

∑
mf ,mi

 jN J jN

−mf M mi

 jN J ′ jN

−mf M ′ mi

 = δJJ ′δMM ′
1

2J + 1
1

2jN + 1 . (3.28)

The resulting expression is

1
2jN + 1

∑
mf ,mi

|M|2 = Ee
2me

|φZeff
1s (~0)|2 q

2
eff
q2

4π
2jN + 1

∑
τ=0,1

∑
τ ′=0,1

∞∑
J=0,2,...

 〈lτ0〉 〈lτ ′0 〉
∗ 〈jN ||MJ,τ (qeff)||jN〉 〈jN ||MJ,τ ′(qeff)||jN〉

+ ~qeff

mN

· 〈~lτE〉
~qeff

mN

· 〈~lτ ′E 〉
∗
〈jN ||Φ′′J,τ (qeff)||jN〉 〈jN ||Φ′′J,τ ′(qeff)||jN〉

+ 2~qeff

mN

· Re
[
〈~lτE〉 〈lτ

′

0 〉
∗] 〈jN ||Φ′′J,τ (qeff)||jN〉 〈jN ||MJ,τ ′(qeff)||jN〉


+

∞∑
J=2,4,...

1
2

(
q2

eff
m2
N

〈~lτE〉 · 〈~lτ
′

E 〉
∗
− ~qeff

mN

· 〈~lτE〉
~qeff

mN

· 〈~lτ ′E 〉
∗
)
〈jN ||Φ̃′J,τ (qeff)||jN〉 〈jN ||Φ̃′J,τ ′(qeff)||jN〉

+
∞∑

J=1,3,...

q̂ · 〈~lτ5〉 q̂ · 〈~lτ ′5 〉
∗
〈jN ||Σ′′J,τ (qeff)||jN〉 〈jN ||Σ′′J,τ ′(qeff)||jN〉

+ 1
2
(
〈~lτ5〉 · 〈~lτ

′

5 〉
∗
− q̂ · 〈~lτ5〉 q̂ · 〈~lτ

′

5 〉
∗)
〈jN ||Σ′J,τ (qeff)||jN〉 〈jN ||Σ′J,τ ′(qeff)||jN〉

+ 1
2

(
q2

eff
m2
N

〈~lτM〉 · 〈~lτ
′

M〉
∗
− ~qeff

mN

· 〈~lτM〉
~qeff

mN

· 〈~lτ ′M〉
∗
)
〈jN ||∆J,τ (qeff)||jN〉 〈jN ||∆J,τ ′(qeff)||jN〉

+ ~qeff

mN

· Re
[
i 〈~lτM〉 × 〈~lτ

′

5 〉
∗]
〈jN ||∆J,τ (qeff)||jN〉 〈jN ||Σ′J,τ ′(qeff)||jN〉

,
(3.29)

where we have introduced the shorthand 〈l〉 ≡ 〈12sf |l|
1
2si〉 for the leptonic matrix elements.

The sum over lepton spins can now be computed in a straightforward way by performing the
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traces over the leptonic currents. For example,

1
2
∑
sf ,si

〈lτ0〉 〈lτ
′

0 〉
∗ = 1

2
∑
sf ,si

ξ†sf

(
cτ11L + cτ11iq̂ · ~σL

)
ξsiξ

†
si

(
cτ
′∗

1 1L − cτ
′∗

11 iq̂ · ~σL
)
ξsf

= 1
2Tr

[(
cτ11L + cτ11iq̂ · ~σL

)(
cτ
′∗

1 1L − cτ
′∗

11 iq̂ · ~σL
)]

= cτ1c
τ ′∗
1 + cτ11c

τ ′∗
11 ,

(3.30)

where the final result depends only on the LECs of the nucleon-level CLFV operators.
Performing the spin summation for the remaining leptonic currents yields

1
2

1
2jN + 1

∑
spins
|M|2 = Ee

2me

|φZeff
1s (~0)|2 q

2
eff
q2

4π
2jN + 1

∑
τ=0,1

∑
τ ′=0,1

∞∑
J=0,2,...

[
Rττ ′

M 〈jN ||MJ ;τ (qeff) ||jN〉 〈jN ||MJ ;τ ′(qeff)||jN〉

+ q2
eff
m2
N

Rττ ′

Φ′′ 〈jN ||Φ
′′

J ;τ (qeff)||jN〉 〈jN ||Φ
′′

J ;τ ′(qeff)||jN〉

− 2qeff

mN

Rττ ′

Φ′′M 〈jN ||Φ′′J ;τ (qeff)||jN〉 〈jN ||MJ ;τ ′(qeff)||jN〉
]

+
∞∑

J=2,4,...

[
q2

eff
m2
N

Rττ ′

Φ̃′ 〈jN ||Φ̃
′
J ;τ (qeff)||jN〉 〈jN ||Φ̃′J ;τ ′(qeff)||jN〉

]

+
∞∑

J=1,3,...

[
Rττ ′

Σ′′ 〈jN ||Σ
′′

J ;τ (qeff)||jN〉 〈jN ||Σ
′′

J ;τ ′(qeff)||jN〉

+Rττ ′

Σ′ 〈jN ||Σ′J ;τ (qeff)||jN〉 〈jN ||Σ′J ;τ ′(qeff)||jN〉

+ q2
eff
m2
N

Rττ ′

∆ 〈jN ||∆J ;τ (qeff)||jN〉 〈jN ||∆J ;τ ′(qeff)||jN〉

− 2qeff

mN

Rττ ′

∆Σ′ 〈jN ||∆J ;τ (qeff)||jN〉 〈jN ||Σ′J ;τ ′(qeff)||jN〉
],

(3.31)

where we have defined the following combinations of the LECs:

Rττ ′

M ≡ cτ1c
τ ′∗
1 + cτ11c

τ ′∗
11

Rττ ′

Φ′′ ≡ cτ3c
τ ′∗
3 + (cτ12 − cτ15)

(
cτ
′∗

12 − cτ
′∗

15

)
Rττ ′

Φ′′M ≡ Re
[
cτ3c

τ ′∗
1 − (cτ12 − cτ15)cτ ′∗11

]
Rττ ′

Φ̃′ ≡ cτ12c
τ ′∗
12 + cτ13c

τ ′∗
13

Rττ ′

Σ′′ ≡ (cτ4 − cτ6)(cτ ′∗4 − cτ
′∗

6 ) + cτ10c
τ ′∗
10

Rττ ′

Σ′ ≡ cτ4c
τ ′∗
4 + cτ9c

τ ′∗
9

Rττ ′

∆ ≡ cτ5c
τ ′∗
5 + cτ8c

τ ′∗
8

Rττ ′

∆Σ′ ≡ Re
[
cτ5c

τ ′∗
4 + cτ8c

τ ′∗
9

]
.

(3.32)
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The R coefficients defined above are in terms of the dimensionful LECs cτi . If we consider
instead the analogous dimensionless leptonic tensors R̃ defined in terms of c̃τi , then the elastic
µ→ decay rate can be expressed as

Γ = G2
F

π

q2
eff

1 + q
MT

|φZeff
1s (~0)|2

∑
τ=0,1

∑
τ ′=0,1

[R̃ττ ′

M W ττ ′

M (qeff) + R̃ττ ′

Σ′′W
ττ ′

Σ′′ (qeff) + R̃ττ ′

Σ′ W
ττ ′

Σ′ (qeff)
]

+ q2
eff
m2
N

[
R̃ττ ′

Φ′′W
ττ ′

Φ′′ (qeff) + R̃ττ ′

Φ̃′ W
ττ ′

Φ̃′ (qeff) + R̃ττ ′

∆ W ττ ′

∆ (qeff)
]

− 2qeff

mN

[
R̃ττ ′

Φ′′MW
ττ ′

Φ′′M(qeff) + R̃ττ ′

∆Σ′W
ττ ′

∆Σ′(qeff)
],

(3.33)

where the factor (1 + q/MT )−1 accounts for the distortion of phase space by nuclear recoil,
and where we have defined the nuclear response functions

W ττ ′

O (q) ≡ 4π
2jN + 1

∞∑
J=0,2,...

〈jN ||OJ ;τ (q)||jN〉 〈jN ||OJ ;τ ′(q)||jN〉 for O = M,Φ′′

W ττ ′

O (q) ≡ 4π
2jN + 1

∞∑
J=1,3,...

〈jN ||OJ ;τ (q)||jN〉 〈jN ||OJ ;τ ′(q)||jN〉 for O = Σ′,Σ′′,∆

W ττ ′

Φ̃′ (q) ≡ 4π
2jN + 1

∞∑
J=2,4,...

〈jN ||Φ̃′J ;τ (q)||jN〉 〈jN ||Φ̃′J ;τ ′(q)||jN〉

W ττ ′

Φ′′M(q) ≡ 4π
2jN + 1

∞∑
J=0,2,...

〈jN ||Φ′′J ;τ (q)||jN〉 〈jN ||MJ ;τ ′(q)||jN〉

W ττ ′

∆Σ′(q) ≡
4π

2jN + 1

∞∑
J=1,3,...

〈jN ||∆J ;τ (q)||jN〉 〈jN ||Σ′J ;τ ′(q)||jN〉 .

(3.34)

Both the nuclear response functionsW and the leptonic response functions R̃ are dimensionless.
If all dimensionful prefactors in Eq. (3.33) are evaluated in GeV units, rates in 1/sec will be
obtained by dividing by ~.

As expected from considerations of parity and time-reversal symmetry, the µ → e
conversion rate can be expressed in terms of the six allowed single-nucleon response functions,
as well as two interference terms. Each nuclear response function W is multiplied by a
corresponding leptonic response function R. This is precisely the factorization between
nuclear physics and CLFV physics that we hoped to achieve in formulating an effective
theory of µ→ e conversion at the nuclear scale. As one varies the choice of nuclear target,
the nuclear response functions W vary depending on the details of nuclear structure. The
parameters of the lepton approximations, qeff and Zeff , also change depending on the target.
Crucially, the low-energy constants of the single-nucleon CLFV operators, the cτi , should not
depend on the nuclear target, and therefore the leptonic response functions R will inherit
this target-independence. By performing an ensemble of measurements of µ→ e conversion
in a range of nuclear targets, an experimentalist can, in principle, use Eq. (3.33) to constrain
and/or determine the values of the R coefficients. As we have formulated the most general
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nuclear-scale effective theory, such a determination would extract the maximum amount of
information that can be obtained about CLFV operators from observations of elastic µ→ e
conversion. One cannot determine the values of individual operator coefficients cτi , only the
particular combinations specified by the leptonic response functions R. In Section 3.8, we
discuss situations in which the assumed target-independence of the CLFV LECs is (weakly)
violated.

Of the 16 low-energy constants describing the nucleon-level effective theory, there are
4 that do not appear in the leptonic response functions: c2, c7, c14, and c16. Consequently,
the operators associated with these LECs are not probed in elastic µ→ e conversion. The
reason that these operators are excluded from the elastic process is that they correspond to
projections of nuclear charges and currents whose multipole projections always have opposite
parity and time-reversal properties. For example, O7 = ~vN · ~σN is the nuclear axial charge
operator, which generates the ˜OmegaJ family of multipole operators that are even (odd)
under parity and odd (even) under time-reversal for odd (even) J . Thus, the approximate P
and T symmetries of the nuclear ground state preclude these operators from contributing.
If nature conspires to sequester CLFV within these operators, measurements of the elastic
process will be completely blind to the flavor violation.

The four excluded operators can, however, be probed by the inelastic process where
the nucleus transitions to an excited state, thereby avoiding the rather severe parity and
time-reversal constraints of the ground-state process. The inelastic process is sensitive to
CLFV operators that otherwise cannot be probed, and therefore one would like to ensure
that µ→ e conversion experiments can set limits on this mode. The challenge is that the
energy for the nuclear excitation is subtracted from the energy of the outgoing electron,
resulting in substantially higher backgrounds in the relevant region of the electron spectrum.
Nonetheless, the sensitivity of next-generation µ→ conversion experiments is so impressive
that interesting limits can likely be set on the inelastic process, and it is a high priority for
our own future theoretical work to generalize the nuclear-scale effective theory to the inelastic
case (see Section 10.1).

Returning to the elastic case, in order to utilize our formalism to place constraints on the
CLFV parameters, we must be able to evaluate the nuclear response functions for the chosen
nuclear target. We will now demonstrate how this can be done within the paradigm of the
nuclear shell model (NSM).

3.6 Shell-model Evaluation of Nuclear Responses

Calculation of the nuclear response functions defined in Eq. (3.34) requires the evaluation of
the matrix elements

〈jN ||TJ ;τ (qeff)||jN〉 , (3.35)

where |jN〉 is a wave function for the nuclear ground state, and TJ ;τ is any of the basic
single-nucleon operators in Eq. (3.19). Here, the isospin of the nuclear states has been
suppressed. We will demonstrate how to compute these matrix elements using the nuclear
shell model. Restoring isospin explicitly, we may write the desired matrix element in terms
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of one that has been doubly-reduced in total angular momentum J and total isospin τ

〈jN ;TMT ||TJ ;τ0(q)||jN ;TMT 〉 = (−1)T−MT

 T τ T

−MT 0 MT

 〈jN ;T ...... TJ ;τ (q)
...... jN ;T 〉 .

(3.36)
Each nuclear operator is a sum of single-nucleon operators

TJ ;τ (q) =
A∑
i=1

TJ ;τ (q~xi), (3.37)

and therefore the doubly-reduced total nuclear matrix element can be expressed in terms of
the doubly-reduced one-body density matrix ρJ,τab (see Appendix C.1) as

〈jN ;T ...... TJ ;τ (q)
...... jN ;T 〉 =

∑
a,b

ρJ,τab 〈na (`a 1/2) ja; 1/2 ...... TJ ;τ (q)
...... nb (`b 1/2) jb; 1/2〉 ,

(3.38)
where the sum extends over all single-particle orbits, labeled by harmonic oscillator quantum
numbers n, `, and j but not mj. As TJ ;τ (qeff) = TJ(qeff)tτ , the single-particle isospin matrix
elements are readily evaluated

〈1/2||tτ ||1/2〉 =

√

2, τ = 0√
6, τ = 1.

(3.39)

From Section 3.4 (and Appendix D), we know how to evaluate the matrix elements of TJ
between single-particle harmonic oscillator states in terms of the dimensionless quantity
y = (qeffb/2)2. All that remains is to obtain the density matrix, which requires us to construct
the nuclear shell-model wave function.

As an example, we model the nucleus 27Al using the 2s-1d valence space above an inert
16O core; that is, we assume that the 8 lowest-energy protons and neutrons are fixed in their
orbitals whereas the remaining 5 protons and 6 neutrons can occupy any of the 12 states
(for each species) in the 1d5/2-2s1/2-1d3/2 valence space, while respecting Pauli exclusion.
The core, although trivial to model, is crucial to include as it contributes significantly to
the coherent response. In total, 80,115 basis states are required to describe the state of
the 11 valence nucleons. The ground-state configuration is determined by diagonalizing an
effective Hamiltonian in the valence space. Table 3.2 reports the model spaces employed
and the effective interactions available for the nuclear targets considered in this work. In
addition to the shell structure, the harmonic oscillator model space is only fully specified once
the oscillator length scale b has been chosen. To this end, one may employ the well-known
empirical formula

b =
√

41.467
45Ā−1/3 − 25Ā−2/3

fm, (3.40)

where Ā is the isotope-averaged nucleon number. In many cases, the effective shell-model
interactions have been tuned to reproduce nuclear charge radii as well as low-lying nuclear
spectra. Alternative to the empirical formula, one may also determine a value of b that, in
combination with the nuclear density obtained from the shell-model, accurately reproduces the
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known nuclear charge radius. These independent determinations of the oscillator parameter
b are compared in Table 3.2. The agreement is generally quite good.

As the size of the shell-model basis grows combinatorially in the number of states and
particles—the basis size for 56Fe is 501,113,392—it quickly becomes infeasible to diagonalize
the Hamiltonian directly. Fortunately, one can obtain a converged result for the ground-state
wave function using the iterative Lanczos algorithm. In particular, we employ the massively-
parallel Lanczos-algorithm code bigstick [89, 90] in order to obtain the ground-state of the
chosen effective interaction within the model space.

The one-body density matrix is particularly useful due to the size of the basis required to
model the nuclei of interest. Technically, one may obtain the many-body matrix element of a
nuclear operator by expressing the total nuclear wave function in terms of a basis of Slater
determinants. As mentioned, in some cases that we are interested in this basis contains over
half a billion many-body states, resulting in more than 1017 unique matrix elements that
would have to be evaluated in this naïve approach. In the present case, the nuclear operators
that we wish to evaluate are all one-body operators, acting only on a single nucleon at a time
while leaving the remaining A− 1 nucleons unchanged; one-body operators can only alter the
nuclear state by one nucleon at a time. The one-body density matrix is constructed to reflect
this fact, containing exactly that information about nuclear structure that is required to
evaluate the total nuclear matrix element of a one-body operator of total angular momentum
J and isospin τ .

In practice, ρJ,τab is obtained by evaluating the second-quantized one-body operator[
c†a ⊗ c̃b

]
J,τ

between the initial and final nuclear wave functions. For large model spaces, this
calculation can still be computationally intensive (although various symmetry arguments can
be utilized in order to minimize this cost). The primary advantage is that this calculation
only needs to be performed once for each J and τ , and the resulting density matrix can
then be used to evaluate nuclear matrix elements of any one-body operator of the same total
angular momentum and isospin. bigstick has built-in functionality to construct and output
the one-body density matrices that are required in the evaluation of the nuclear response
functions.

3.7 Nuclear Multipole Power Counting
Frequently when one performs a multipole decomposition, the expansion converges rapidly
enough that the desired accuracy can be achieved by retaining only the first few leading
multipoles. In this section, we demonstrate that this is explicitly not the case in elastic
µ → e conversion. As demonstrated by Eq. (3.21), the parameter y = (bqeff/2)2 governs
the convergence of the nuclear multipole expansion. For µ→ e conversion in the nuclei of
interest, the effective three-momentum transfer is of order the muon mass qeff ≈ mµ and the
nuclear oscillator parameter b ≈ 2 fm, and therefore y ≈ 0.3. The exact value of y for each
nuclear target may be found in Table 3.2.

Not only is the dimensionless parameter y large enough to warrant the inclusion of
terms beyond the leading multipole, but it turns out that any truncation scheme in y is
an uncontrolled approximation. Eq. (3.21) describes the dependence on y of single-particle
matrix elements. As discussed in the previous section, the total nuclear matrix elements can
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Target Isotopes SM Space Interactions b (fm) y = (qeffb/2)2

C 12,13 1p [91] 1.67/1.70 0.21/0.22

O 16,18 2s-1d [92, 93] 1.73/1.83 0.23/0.26

4~ω [94] 1.73/1.80 0.23/0.25

F 19 2s-1d [92, 93] 1.76/1.88 0.24/0.27

Na 23 2s-1d ” 1.80/1.83 0.25/0.26

Al 27 2s-1d ” 1.84/1.85 0.27/0.27

Si 28-30 2s-1d ” 1.85/1.89 0.27/0.28

S 32-34 2s-1d ” 1.88/1.91 0.28/0.29

Ca 40,42,44 2p-1f [95–97] 1.94/2.02 0.30/0.33

Ti 46-50 2p-1f ” 1.99/2.09 0.32/0.35

Fe 54,56-58 2p-1f ” 2.03/2.08 0.34/0.36

Cu 63,65 1f5/2-2p-1g9/2 [98–100] 2.07/2.12 0.35/0.37

Table 3.2: Nuclear shell-model spaces employed and available effective interactions. The first
entry for the oscillator parameter b is calculated from the empirical formula Eq. (3.40). The
second entry is the value of b that reproduces the measured nuclear charge radius. These
values of b are then used in calculation of the corresponding value of y.
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be decomposed into a sum of single-particle matrix elements multiplied by the corresponding
one-body density matrix factor. The details of nuclear structure that are encoded in the
density matrix determine the overall y dependence of the nuclear response functions W (y)
and may significantly enhance or suppress contributions from higher-J multipoles. One
frequently-exploited example of this is the coherent enhancement of the isoscalar monopole
operator M0;0. Let us specialize, for the moment, to 27Al. At the level of single-particle
matrix elements, one naïvely expects the quadrupole operator M2;0 to be suppressed by
y ≈ 0.27 relative to the monopole. Due to coherent enhancement of the monopole, however,
the total nuclear matrix element of M2;0 is suppressed by an additional order of magnitude
relative to the monopole

〈jN ||M2;0(qeff)||jN〉
〈jN ||M0;0(qeff)||jN〉

≈ 0.027. (3.41)

Thus, in the case of coherent conversion, one is justified in retaining only the leading multipole;
the resulting error in the µ→ e rate is less than 0.1%.

The isoscalar charge operator is very much a special case. Let us repeat the previous
exercise with the corresponding isovector operators. Now there is no coherent enhancement,
and the quadrupole operator M2;1 is suppressed by roughly the expected factor of y:

〈jN ||M2;1(qeff)||jN〉
〈jN ||M0;1(qeff)||jN〉

≈ −0.23. (3.42)

Truncating the multipole expansion at leading order then introduces a 4.8% error in the
conversion rate. A point of caution should therefore be made in regard to calculations of
coherent µ→ e conversion in the literature: Many works that specialize to coherent conversion
(e.g., [56, 57, 71, 78, 80, 81, 85, 101]) retain the isovector operator even though the multipole
expansion is truncated at leading order. The neglect of higher multipoles should be justified
when the isoscalar component is significant enough to provide a coherent enhancement—for
example, if the coupling is purely to either protons or neutrons. However, in cases where the
nuclear ground state carries sufficient angular momentum jN ≥ 1, one should not necessarily
trust the result of these calculations when the coupling becomes dominantly isovector. In such
a scenario, the coherent enhancement diminishes and contributions from higher multipoles
become significant.

The impact of higher-order multipoles is also significant for spin-dependent nuclear
operators. Among the 11 targets that we focus on in this work, there are three—Na, Al, and
Cu—with only odd isotopes, an unpaired proton, and a ground-state angular momentum
jN ≥ 3

2 so that more than one multipole operator contributes to the total response function.
Consider the spin-dependent interaction O4 = ~σL · ~σN , which generates the Σ′J and Σ′′J
response functions comprised of odd J multipoles, and suppose that the isospin coupling is
(1 + τ3)/2 so that the operator couples only to the unpaired proton. Evaluating the µ→ e
decay rate first retaining only the leading J = 1 multipoles and then with all contributing
multipoles, we find rate increases of 22.4% in Na, 4.7% in Al, and 65.4% in Cu. In Al, the
truncation of the multipole expansion has produced only a modest error in the decay rate,
whereas in Cu the error is nearly o(1). It is therefore essential that one retain all allowed
multipole operators in the general effective theory.
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3.8 Form Factors and LEC Independence
The effective theory is constructed from single-nucleon operators and does not contain the pion,
other mesons, or baryonic resonances as explicit degrees of freedom. As the three-momentum
transfer in elastic µ → e conversion satisfies q = |~q | ≈ mµ ≈ mπ, pionic contributions to
single-nucleon form factors are expected to be significant. On the other hand, these form
factors are evaluated at fixed q2, and, as the magnitude of the three-momentum transfer
varies by only a few percent across the light- and medium-mass nuclei of primary interest, the
effect of these form factors can be absorbed into the LECs. More generally, the momentum-
transfer-squared q2 is an invariant scalar quantity (in the non-relativistic effective theory),
and so for every operator O that is allowed by symmetries, then so is q2nO for any n ≥ 0.
We can group all such operators using a form factor

c(0)O + c(2)q2O + c(4)q4O + ... = FO

(
q2

M2

)
O, (3.43)

where M is some mass scale characterizing the form factor. Massless mediators, such as a
virtual photon, can be included by the addition of 1/q2 terms. The form factor associated
with one-pion exchange is the pion propagator

Fπ(q2) = 1
q2 +m2

π

, (3.44)

where mπ = 138.039 MeV is the isospin-averaged pion mass. Evaluating this form factor at
the appropriate effective momentum, we find a variation of ≈ 5% between 12C and 184W.
For a massless mediator, the variation is slightly more than 10% across the same range
of targets. In practice, the single-nucleon LECs associated with these interactions will be
forced to absorb the q dependence of these form factors, thereby violating the assumed
target-independence of the resulting leptonic response functions. This does not reduce the
utility of the nuclear effective theory: The target-dependence of the LECs is expected to be
relatively weak, and in the initial discovery phase of searches for CLFV, one can overlook
the ≈ 10% errors introduced by the single-nucleon form factors. When greater accuracy is
required, one can match the single-nucleon effective theory to, say, chiral effective theory
in order to identify the relevant form factors. The LECs of the nuclear effective theory can
then be related to the corresponding momentum-independent parameters of the higher-scale
effective theory. Thus, one obtains a theory in which the unknown parameters are genuinely
target-independent and can be faithfully constrained by an ensemble of measurements on
different nuclear targets.

One can adopt a similar attitude towards the effect of multi-nucleon interactions. As
discussed in detail in Chapters 8 and 9, at next-to-leading order in chiral effective theory there
is a two-nucleon diagram [see Fig. 8.1 (c)] that contributes to coherent µ→ e conversion in
the case of a heavy scalar mediator. This operator is fundamentally incompatible with the
structure of our effective theory, which is comprised only of single-nucleon operators. We can
attempt to capture the impact of this operator by reducing it to an effective single-nucleon
operator by, for example, averaging the two-nucleon operator over a degenerate Fermi gas
model of the target nucleus, as done in Appendix E.
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We expect that a generic two-nucleon operator can be reduced to an effective single-nucleon
operator as

O(2) →
∑
τ=0,1

16∑
i=1

f τi Oitτ , (3.45)

where the effective couplings f τi depend on the relevant kinematic quantities as well as the
nuclear density of the target. In analogy with the treatment of propagator effects, the impact
of two-nucleon operators can thus be absorbed into the LECs of the single-nucleon effective
theory, introducing a dependence of the LECs on the nuclear target that we anticipate will
be weak as long as the higher-body terms enter at higher orders. An important aspect of
matching the nuclear effective theory to higher-scale effective theories will be understanding
the order at which multi-nucleon interactions become relevant.

3.9 Connection to Relativistic Amplitudes
The effective theory of µ→ e conversion was developed in terms of non-relativistic operators,
assuming no underlying Lorentz-invariance. Of course, we know that the 16 operators of the
effective theory must embed into Lorentz-invariant contractions of lepton and nucleon spinor
currents. Defining the basic lepton

χe ≡

 ξ

~σL · q̂ ξ

 , χµ ≡

 ξ

0

 , (3.46)

and nucleon

N ≡

 ξ
~σN ·~vN

2 ξ

 , (3.47)

spinors, the relativistic interactions are constructed from the available leptonic scalar

χ̄eχµ, χ̄eiγ
5χµ, (3.48)

and four-vector
χ̄eγ

µχµ, χ̄eiσ
µν qν
mL

χµ, χ̄eγ
µγ5χµ, χ̄eσ

µν qν
mL

γ5χµ, (3.49)

amplitudes, contracting these with their nucleon counterparts to form all possible bilinear
scalars. Here, mL is some (not necessarily heavy) scale associated with the leptons. The Pauli
reductions of the Lorentz-covariant nucleon and lepton currents are given in Appendices A.1
and A.2, respectively. The nuclear expansion neglects terms of order ~v 2

N ≈ 1
100 and q2

m2
N
≈ 1

100 .
The leptonic expansion includes first-order terms in the muon velocity ~vµ, which we have
so far neglected but will consider in Chapter 7. The relationships between the relativistic
amplitudes and the Pauli-reduced operators are summarized in Table 3.3.

In this reduction, four of our effective Pauli operators—O3, O12, O′13, and O15—do not
appear. These are the interactions associated with the nuclear spin-velocity three-current
~vN × ~σN , which cannot be generated by scalar or vector couplings to the nucleus, but will
arise for more general mediators. For example, the pseudotensor interaction

χ̄eiσ
µνγ5χµN̄iσµνγ

5N, (3.50)
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reduces to the Pauli form
q

mN

1L1N + 2iq̂ · [~vN × ~σN ]− 2~σL · ~σN − 2~σL · (q̂ × [~vN × ~σN ])

= q

mN

O1 + 2O3 − 2O4 + 2iO′13,
(3.51)

generating O3 and O′13. The four operators associated with ~vN × ~σN should be retained to
ensure that the EFT formulation is general. On the other hand, the 20 covariant interactions
reduce to linear combinations of only 12 Pauli operators; significant redundancies exist in the
covariant description, owing to the non-relativistic nature of the muon and nucleons and the
ultra-relativistic nature of the electron. Although one may employ either description as a
starting point, the Pauli-reduced form is more natural in the sense that it has already taken
account of this overcompleteness.
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j Ljint Pauli Reduction
∑

i
ciOi

1 χ̄eχµN̄N 1L1N O1

2 χ̄eχµN̄iγ
5N 1L

(
i ~q

2mN
· ~σN

)
q

2mN
O10

3 χ̄eiγ
5χµN̄N (−iq̂ · ~σL) 1N −O11

4 χ̄eiγ
5χµN̄iγ

5N (−iq̂ · ~σL)
(
i ~q

2mN
· ~σN

)
− q

2mN
O6

5 χ̄eγ
µχµN̄γµN 1L1N O1

− (q̂1L − iq̂ × ~σL) ·
(
~vN + i ~q

2mN
× ~σN

)
+iO′2 −O5 − q

2mN
(O4 +O6)

6 χ̄eγ
µχµN̄iσµα

qα

mN
N − (q̂1L − iq̂ × ~σL) ·

(
−i ~q

mN
× ~σN

)
q
mN

(O4 +O6)

7 χ̄eγ
µχµN̄γµγ

5N 1L (~vN · ~σN )− (q̂1L − iq̂ × ~σL) · ~σN O7 + iO10 −O9

8 χ̄eγ
µχµN̄σµα

qα

mN
γ5N 1L

(
−i ~q

mN
· ~σN

)
− q
mN
O10

9 χ̄eiσ
µν qν

mL
χµN̄γµN − q

mL
1L1N − q

mL
O1

−
(
−i ~q

mN
× ~σL

)
·
(
~vN + i ~q

2mN
× ~σN

)
− q
mL

(
O5 + q

2mN
(O4 +O6)

)
10 χ̄eiσ

µν qν
mL

χµN̄iσµα
qα

mN
N −

(
−i ~q

mL
× ~σL

)
·
(
−i ~q

mN
× ~σN

)
q
mL

q
mN

(O4 +O6)

11 χ̄eiσ
µν qν

mL
χµN̄γµγ

5N
(
− q
mL

1L
)
~vN · ~σN −

(
−i ~q

mL
× ~σL

)
· ~σN − q

mL
(O7 +O9)

12 χ̄eiσ
µν qν

mL
χµN̄σµα

qα

mN
γ5N

(
− q
mL

1L
) (
−i ~q

mN
· ~σN

)
q
mL

q
mN
O10

13 χ̄eγ
µγ5χµN̄γµN (q̂ · ~σL)1N − ~σL ·

(
~vN + i ~q

2mN
× ~σN

)
−iO11 −O8 − q

2mN
O9

14 χ̄eγ
µγ5χµN̄iσµα

qα

mN
N −~σL ·

(
−i ~q

mN
× ~σN

)
q
mN
O9

15 χ̄eγ
µγ5χµN̄γµγ

5N (q̂ · ~σL)(~vN · ~σN )− ~σL · ~σN −iO14 −O4

16 χ̄eγ
µγ5χµN̄σµα

qα

mN
γ5N (q̂ · ~σL)

(
−i ~q

mN
· ~σN

)
i q
mN
O6

17 χ̄eσ
µν qν

mL
γ5χµN̄γµN

(
−i ~q

mL
· ~σL
)

1N − q
mL
O11

−i q
mL

(~σL − q̂q̂ · ~σL) ·
(
~vN + i ~q

2mN
× ~σN

)
− q
mL

(
iO8 + i q

2mN
O9 + iO′16

)
18 χ̄eσ

µν qν
mL

γ5χµN̄iσµα
qα

mN
N −i q

mL
(~σL − q̂q̂ · ~σL) ·

(
−i ~q

mN
× ~σN

)
i q
mL

q
mN
O9

19 χ̄eσ
µν qν

mL
γ5χµN̄γµγ

5N
(
−i ~q

mL
· ~σL
)

(~vN · ~σN ) − q
mL
O14

−i q
mL

(~σL − q̂q̂ · ~σL) · ~σN − q
mL

(iO4 + iO6)

20 χ̄eσ
µν qν

mL
γ5χµN̄σµα

qα

mN
γ5N

(
−i ~q

mL
· ~σL
) (
−i ~q

mN
· ~σN

)
q
mL

q
mN
O6

Table 3.3: Relativistic µ → e conversion amplitudes Ljint and the corresponding linear
combinations of the Oi resulting from the Pauli reduction.



CHAPTER 3. NUCLEAR EFFECTIVE THEORY 54



55

Chapter 4

Nuclear Response Function Properties

The factorized form of the conversion rate presents a clear path to extracting all of the
information about CLFV operators that can be probed in elastic µ→ e conversion. Indeed,
the nuclear response functions W can be interpreted as the “nuclear dials” available to an
experimentalist—dials that can be tuned through nuclear target selection in order to probe
different linear combinations of the CLFV response functions. To aid in this endeavor, one
would like to understand the general properties of the 6 (12, accounting for isospin) allowed
nuclear response functions, including their dependence on macroscopic nuclear quantities
such as charge and spin.

Broadly, we may distinguish three of the allowed nuclear responses, M , Σ′, and Σ′′, as
velocity-independent and the remaining three, ∆, Φ̃′, and Φ′′, as velocity-dependent. The
velocities in question—consistent with our definition of the effective interaction in terms
of intrinsic nuclear coordinates—are the relative (or Jacobi) velocities of the nucleons. As
these quantities are purely internal to the nuclear system, the velocity-dependent operators
must vanish in the limit of a point-like nucleus. One way of approaching the point-like
limit is to consider that the nucleus is probed by a very long wavelength operator; that is,
qeff → 0. We note that in the expression for the µ→ e decay rate, Eq. (3.33), each of the
velocity-dependent operators is accompanied by a factor q2

eff/m
2
N , reflecting the fact that

these responses vanish in the point-like limit.
On the other hand, the velocity-independent operators survive in the point-like limit;

indeed, the leading multipoles have rather simple forms at qeff = 0

M00(0) = 1√
4π

A∑
i=1

1(i)

Σ′1M(0) = 1√
6π

A∑
i=1

σ1M(i)

Σ′′1M(0) = 1√
12π

A∑
i=1

σ1M(i).

(4.1)

These are the total charge and total spin operators for the nucleus—macroscopic quantities
that do not depend on any internal structure. The transverse-electric Σ′1 and longitudinal Σ′′1
projections of the spin current are proportional in the long-wavelength limit, though they
are distinct at finite qeff . If a target with total ground-state angular momentum jN = 0 is
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selected, then only the coherent operator M00 will contribute; the spin-dependent operators
require a nuclear state with jN ≥ 1

2 .
Although the prefactor q2

eff/m
2
N causes their response functions to vanish in the limit

of zero momentum-transfer, the velocity-dependent operators can be expanded for long
wavelengths as

∆1M(0) = − 1√
24π

A∑
i=1

`1M(i)

Φ̃′2M(0) = − 1√
20π

A∑
i=1

[
~x(i)⊗

(
~σ(i)× 1

i
~∇(i)

)
1

]
2M

Φ′′JM(0) =
 − 1

6
√
π

∑A
i=1 ~σ(i) · ~̀(i), J = 0

− 1√
30π

∑A
i=1

[
~x(i)⊗

(
~σ(i)× 1

i
~∇
)

1

]
2M

, J = 2
,

(4.2)

where ~̀ is the orbital angular momentum operator, and ⊗ denotes a spherical tensor product
whereas × denotes the conventional cross product. The lowest multipole of the transverse-
electric projection of the spin-velocity current is J = 2, and therefore Φ̃′ can only contribute
if jN ≥ 1.

The momentum-dependence of the nuclear response functions W ττ
O (q) for 27Al is shown

in Fig. 4.1. In Fig. 4.2, we show the corresponding results for Cu—a case analogous to Al,
as the only stable isotopes, 63Cu and 65Cu, have an unpaired nucleon. The nuclear responses
for Al were computed by diagonalizing the USDB interaction in the 2s-1d shell-model space,
whereas for Cu we employed the GCN2850 interaction in the 1f5/2-2p-1g9/2 valence space.
The ground state of 27Al has total angular momentum jN = 5

2 , and both isotopes of Cu have
ground-state angular momentum jN = 3

2 . The angular momentum selection rules therefore
allow all six response functions to contribute. The nuclei 27Al, 63Cu, and 65Cu carry total
isospin T = 1

2 , T = 5
2 , and T = 7

2 , respectively, thereby permitting a coupling to isovector
operators in all cases.

The isoscalar nuclear response is dominated, unsurprisingly, by the charge operator,
particularly the coherent contribution of M00. Quite remarkable is the strength of the Φ′′
response. In the long-wavelength limit, Φ′′00 reduces to the spin-orbit operator, which satisfies
(for spin s = 1/2 nucleons)

~σ · ~̀= ~j 2 − ~̀ 2 − ~s 2

= j(j + 1)− `(`+ 1)− 3
4 .

(4.3)

There are 2(`+ 1) states where j = `+ 1
2 , for which the spin-orbit term evaluates to `, and

2` states where j = `− 1
2 , for which the spin-orbit term evaluates to −(`+ 1). In nuclei, the

strong nuclear spin-orbit force breaks the degeneracy between the j = `± 1
2 subshells and

moves the spin-aligned subshell j = `+ 1
2 to lower energy. As this subshell is progressively

filled with nucleons, the spin-orbit response of Φ′′0 sums coherently. Once the spin-anti-aligned
j = ` − 1

2 subshell starts to be filled, the spin-orbit contribution begins to cancel against
that from the spin-aligned subshell. When both subshells are completely occupied, the total
spin-orbit contribution is identically zero.
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27Al is an ideal nucleus for exploiting the semi-coherence of Φ′′0: in the extreme single-
particle picture, all five states of the spin-aligned 1d5/2 subshell are occupied, while the
anti-aligned 1d3/2 subshell is entirely vacant. Even after accounting for the additional
momentum suppression factor—not included in the figures—q2

eff/m
2
NW

00
Φ′′(qeff) ≈ 0.16 is larger

than either of the spin responses W 00
Σ′ (qeff) ≈ 0.09, W 00

Σ′′(qeff) ≈ 0.11.
Cu also shows a strong semi-coherent response from the operator Φ′′0. Protons completely

fill the 1f7/2 subshell, leaving the anti-aligned counterpart vacant. In 63Cu (65Cu), neutrons
completely fill the 1f7/2 and 2p3/2 subshells with two (four) neutrons occupying the anti-
aligned 1f5/2 subshell, partially negating the coherence of the spin-orbit operator. Nonetheless,
we find that the semi-coherence significantly enhances the response: q2

eff/m
2
NW

00
Φ′′(qeff) ≈ 0.78

is larger than either of the spin responses W 00
Σ′ (qeff) ≈ 0.15, W 00

Σ′′(qeff) ≈ 0.12.
Consequently, in the targets Al and Cu, we identify a hierarchy of isoscalar response
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that is contrary to the naïve picture in which the velocity-dependent operators are generically
subleading. As Φ′′ is associated with the spin-velocity current ~vN × ~σN , which arises for
tensor and other more exotic mediator, targets like Al and Cu have a special sensitivity to
velocity-dependent couplings associated with such interactions.

In the case of isovector couplings, an isospin-symmetric core makes no contribution, and
consequently in light targets with no appreciable neutron excess like 27Al, one finds a hierarchy{
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that is fully dictated by velocity-suppression. To an extent, this picture is altered in heavier
nuclei, where the excess of neutrons restores some of the coherence from the M00;1 and Φ̃′′00;1
responses. This effect is readily observed in Fig. 4.2 in the case of Cu.

Figure 4.3 shows the strength of the various velocity-independent response functions
across 11 different nuclear targets, ranging in mass from the lightest, C, to the heaviest, Cu.
One can plainly see how the coherent response increases with nucleon number A, though
it is also somewhat dampened by the nuclear diffraction minimum for heavier nuclei. The
isovector charge response function W 11

M also generally exhibits the expected behavior and
is roughly proportional to the isospin asymmetry |Z −N |. Examining the spin-dependent
responses, the targets that are composed primary of odd-nucleon isotopes—F, Na, Al, and
Cu—provide the strongest response. The minor impurities of 13C, 29Si, 33S, 47Ti/49Ti, and
57Fe are not sufficient to produce an appreciable spin-dependent response in their respective
targets. It is interesting to note how strong the Σ′ and Σ′′ responses are in 19F.

Turning to the velocity-dependent response functions in Fig. 4.4, the trends are more
difficult to discern. It is clear that Φ̃′, the transverse-electric projection of the spin-velocity
current, is consistently the weakest nuclear response, owing to the fact that it is velocity-
suppressed and its leading multipole is J = 2. The transverse-magnetic projection of
convective current ∆ is also generally suppressed, though it is worth noting that 27Al shows
the strongest ∆ response in both isospin channels of all nuclei considered. Finally, as discussed
above, the longitudinal projection of the spin-velocity current Φ′′ sums coherently over spin-
aligned j = `+ 1

2 and spin-anti-aligned j = `− 1
2 subshells but vanishes when both subshells
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Figure 4.1: The nuclear response functions W ττ
O (qeff) for the six operators contributing to

elastic µ → e conversion in 27Al. The left (right) panel gives the results for the isoscalar
(isovector) coupling. The response functions are needed at the three-momentum transfer qeff
indicated by the dashed line. The results in blue correspond to charge and spin couplings,
while those in orange correspond to the velocity-dependent operators where the response
functions are accompanied by the additional factor q2

eff/m
2
N ≈ 0.014.

Figure 4.2: As in Fig. 4.1 but for Cu.
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are fully occupied. As such, this contribution vanishes entirely for the doubly-magic nuclei
16O and 40Ca (though the response for the natural targets O and Ca is nonzero due to
valence neutrons in the non-magic isotopes). The spin-orbit response is strongest when the
lower-energy spin-aligned subshells are filled and the anti-aligned subshells are vacant. In
Ti especially, we see how the response is primarily driven by neutrons filling the 1f7/2 shell,
leading to a strong isovector response.

Comparing across all 12 allowed response functions, it appears that 27Al is quite a
good choice of initial nuclear target for the next-generation experiments, with competitive
sensitivities to coherent, spin-dependent, and velocity-dependent operators. The interplay
between nuclear target selection and the resulting nuclear response functions provides the
blueprint for determining the nature of CLFV through an ensemble of measurements on
various target nuclei. For example, if a µ → e conversion signal were observed with an
Al target but not with a Ca target, it would be good evidence that the underlying CLFV
operators are not coherent, but either nuclear spin- or velocity-dependent. One might then
attempt an experiment on Ti, which is typically weak in spin-dependent responses but rather
sensitive to the majority of velocity-dependent couplings.

Finally, we may consider the limit ~vN → 0, in which case only the three velocity-
independent response functions M , Σ′, and Σ′′ contribute to the conversion amplitude. The
resulting formalism is a valid effective theory in its own right, corresponding to the limit of a
point-like nucleus. Accordingly, the operators of the nucleon-level theory that survive in the
point-nucleus limit are O1, O4, O6, O9, O10, and O11, representing the most general set of
single-nucleon operators that probe only the macroscopic nuclear quantities of charge and spin.
Although the spin-dependent response has been considered previously in the literature (see
Table 2.5), the only spin operator included in those works is the Gamow-Teller O4 = ~σL · ~σN ,
which generates a specific linear combination of the longitudinal Σ′′ and transverse-electric Σ′
responses. In fact, these responses are entirely independent, and therefore, to our knowledge,
our work is the first time that even the relatively simple point-nucleus response has been
considered in full generality.
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Figure 4.3: Velocity-independent response functions computed for the 11 nuclear targets of
interest.
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Figure 4.4: Velocity-dependent response functions computed for the 11 nuclear targets of
interest and multiplied by the corresponding momentum suppression factor q2

eff/m
2
N .
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Chapter 5

LEC Analysis

Having demonstrated how the nuclear response functions can be computed for a specified
target using nuclear many-body techniques, the only unknowns that remain in our expression
for the decay rate Γ(µ→ e) are the CLFV low-energy constants c̃τi . Of course, our primary
objective is to constrain these quantities through experimental measurements of the branching
ratio

B (µ→ e) = Γ (µ→ e)
Γ (µ→ νµ) , (5.1)

where Γ(µ→ νµ) is the rate of standard muon capture.
Over the next five years, new experiments employing high-intensity pulsed muon beams

should lead to substantial improvement in µ→ e conversion limits. The COMET experiment
at J-PARC is expected to reach a branching ratio sensitivity B(µ → e) < 7 × 10−15 (90%
CL) in Phase I and, ultimately, B(µ→ e) . 7× 10−17 in Phase II. The Mu2e experiment
at Fermilab is expected to reach a branching ratio sensitivity of 8× 10−17 (90% CL), and a
proposed followup experiment Mu2e II, which will take advantage of future beam upgrades
at Fermilab, could improve this limit by another order of magnitude. Both COMET and
Mu2e will employ Al targets. A second J-PARC experiment has been proposed by the DeeMe
collaboration [102] and aims to achieve a µ → e branching ratio limit of 1 × 10−13 for a
graphite target. A followup experiment, hoping to achieve a branching ratio sensitivity
2× 10−14 with a silicon carbide target, has also been discussed.

With the exception of the SIN experiment on 32S, all past and planned experiments have
employed natural targets; therefore, we carry out shell-model calculations for each isotope
with natural abundance > 0.2% and compute the total µ→ e conversion rate as a sum over
the isotopes weighted by their abundance. To convert the CLFV decay rate to a branching
ratio, we normalize by the corresponding rate for standard muon capture, adopting the values

Γ (µ→ νµ) =



0.0378 C
0.703 Al
0.865 Si
1.351 S
2.592 Ti
5.673 Cu


× 106 s−1, (5.2)
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which were obtained by computing weighted averages of the measurements compiled in
Ref. [103]. For the capture of muons onto the compound SiC, the capture probability is
proportional to Z [104], and therefore 70% of muons capture onto Si and 30% capture onto
C.

We estimate the impact of these proposed new experiments on CLFV bounds in the
following way: We isolate the impact of individual effective theory operators by setting all of
the single-nucleon LECs equal to zero except for one, say c̃τi . For a given branching ratio
bound, there is an implied upper limit on the magnitude of the non-zero CLFV coupling
|c̃τi | ≤ yτi . Larger couplings would yield observable rates of µ→ e conversion. Table 5.1 shows
the maximum magnitude of each LEC that is consistent with the specified branching ratio
limit.

More physically, assuming that the LEC under consideration is natural at the scale of
CLFV physics, one may convert the dimensionless LEC limit into an approximate scale
probed by the given operator

Λτ
i = v√

yτi
. (5.3)

The corresponding values of Λτ
i are shown in Table 5.2. The operators that generate the

coherent response, c̃0
1 and c̃0

11, probe the highest scale of new physics—up to 104 TeV in 27Al at
a branching ratio sensitivity ≈ 10−17. By this same measure, the existing limit in Ti provides
a constraint up to ≈ 900 TeV; the next-generation experiments will improve the reach in
energy scale by more than an order of magnitude. The isovector operators c̃1

1 and c̃1
11, which

do not benefit from the coherent enhancement, are still capable of probing up to ≈ 2, 000
TeV. The Mu2e/COMET design sensitivity is so impressive that even the weakest probe, c̃τ13,
associated only with the highly-suppressed Φ̃′ response function, is capable of probing new
physics up to ≈200 TeV in the isoscalar case and ≈500 TeV in the isovector. The fact that the
Mu2e and COMET measurements in 27Al will provide much stricter individual operator limits
does not render previous (or planned but less ambitious, e.g., DeeMe) experiments obsolete, as
different nuclear targets constrain different combinations of the underlying leptonic response
functions. The single-source scenario considered here is only meant to illustrate the relative
sensitivity of each CLFV operator; in practice, we must retain all allowed operators, which
are then constrained by the available measurements.
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Target Al C SiC 32S Ti Cu

Branching

Ratio
10−17 † 10−13 † 2× 10−14 † 7× 10−11 6.1× 10−13 1.6× 10−8

c̃0
1, c̃

0
11 4.0E-10 5.1E-8 1.8E-8 1.0E-6 7.4E-8 1.2E-5

c̃1
1, c̃

1
11 1.2E-8 6.3E-6 1.4E-6 - 1.3E-6 1.9E-4

c̃0
3, c̃

0
15 1.6E-8 4.0E-6 7.3E-7 4.5E-5 3.8E-6 3.5E-4

c̃1
3, c̃

1
15 1.9E-7 1.3E-4 4.0E-5 - 7.3E-6 2.1E-3

c̃0
4 1.4E-8 9.4E-6 4.1E-6 - 1.5E-5 5.9E-4

c̃1
4 1.7E-8 1.1E-5 4.9E-6 - 1.7E-5 6.1E-4

c̃0
5, c̃

0
8 7.8E-8 9.6E-5 7.1E-5 - 5.8E-5 9.0E-3

c̃1
5, c̃

1
8 1.2E-7 1.6E-4 7.3E-5 - 6.5E-5 2.7E-2

c̃0
6, c̃

0
10 2.0E-8 1.1E-5 5.5E-6 - 1.8E-5 8.7E-4

c̃1
6, c̃

1
10 2.2E-8 1.2E-5 6.1E-6 - 2.0E-5 8.7E-4

c̃0
9 2.1E-8 1.9E-5 6.2E-6 - 2.8E-5 8.0E-4

c̃1
9 2.8E-8 2.2E-5 8.1E-6 - 3.4E-5 8.7E-4

c̃0
12 1.6E-8 4.0E-6 7.3E-7 4.5E-5 3.8E-6 3.5E-4

c̃1
12 1.4E-7 1.3E-4 4.0E-5 - 7.3E-6 2.1E-3

c̃0
13 1.8E-6 - - - 8.4E-5 5.3E-2

c̃1
13 2.1E-7 - - - 3.7E-4 1.2E-2

Table 5.1: Limits on the CLFV LECs imposed by µ→ e conversion branching ratios. Given
the specified branching ratio limits, the allowed values of the dimensionless LECs are given by
|c̃τi | . yτi , where the yτi are the column entries. The †’s indicate branching ratios achievable
in planned experiments. E-x ≡ 10−x.
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Target Al C SiC 32S Ti Cu

Branching

Ratio
10−17 † 10−13 † 2× 10−14 † 7× 10−11 6.1× 10−13 1.6× 10−8

c̃0
1, c̃

0
11 1.2E4 1.1E3 1.9E3 2.4E2 9.1E2 7.1E1

c̃1
1, c̃

1
11 2.2E3 9.8E1 2.1E2 - 2.1E2 1.8E1

c̃0
3, c̃

0
15 1.9E3 1.2E2 2.9E2 3.7E1 1.3E2 1.3E1

c̃1
3, c̃

1
15 5.7E2 2.1E1 3.9E1 - 9.1E1 5.3E0

c̃0
4 2.1E3 8.0E1 1.2E2 - 6.3E1 1.0E1

c̃1
4 1.9E3 7.6E1 1.1E2 - 5.9E1 9.9E0

c̃0
5, c̃

0
8 8.8E2 2.5E1 2.9E1 - 3.2E1 2.6E0

c̃1
5, c̃

1
8 7.2E2 2.0E1 2.9E1 - 3.0E1 1.5E0

c̃0
6, c̃

0
10 1.8E3 7.5E1 1.1E2 - 5.9E1 8.3E0

c̃1
6, c̃

1
10 1.7E3 7.1E1 9.9E1 - 5.5E1 8.3E0

c̃0
9 1.7E3 5.7E1 9.9E1 - 4.7E1 8.7E0

c̃1
9 1.5E3 5.2E1 8.7E1 - 4.2E1 8.4E0

c̃0
12 1.9E3 1.2E2 2.9E2 3.7E1 1.3E2 1.3E1

c̃1
12 6.6E2 2.1E1 3.9E1 - 9.1E1 5.4E0

c̃0
13 1.8E2 - - - 2.7E1 1.1E0

c̃1
13 5.4E2 - - - 1.3E1 2.3E0

Table 5.2: Approximate energy scale Λ̃τ
i = Λτ

i /TeV probed by the effective CLFV operators
at a given µ→ e conversion branching ratio limit. The †s indicate branching ratios achievable
in planned experiments. E-x ≡ 10−x.
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Chapter 6

Relationship to µ→ eγ and µ→ 3e

The process of µ→ e conversion in nuclei is just one probe of possible CLFV physics. There
is significant theoretical and experimental interest in CLFV processes involving the tau lepton,
in addition to the muon and electron, as well as non-leptonic particles in the initial and/or
final states. Flavor-violating decays of relatively heavy particles such as the Higgs, Z boson,
B mesons, and τ lepton are currently constrained by proton-proton collider experiments
including ATLAS, CMS, and LHCb. Competitive limits on select CLFV processes—especially
τ decays—are anticipated in the near future from e+e− collisions at the Belle II experiment
and from collisions at the Electron-Ion Collider of electrons with either protons or heavy
atomic nuclei. Dedicated experiments MEG II and Mu3e are designed to search, respectively,
for the relatively low-energy CLFV processes µ→ eγ and µ→ 3e.

Many of the above-mentioned processes are interrelated. For example, if the CLFV
vertex that mediates h→ eµ exists, then it will induce both µ→ e conversion through the
exchange of a virtual Higgs and µ→ eγ through one- and two-loop diagrams. (This scenario
is considered in detail in Section 8.6.) Thus, a combination of measurements from colliders
and dedicated decay experiments will play a complementary role in distinguishing among
candidate UV theories of CLFV. In this chapter, limiting our discussion to CLFV muon
decays, we explore the relationship between µ → e conversion, µ → eγ, and µ → 3e. We
explore the limits that can be placed on operator coefficients if Mu2e/COMET, MEG II, and
Mu3e achieve their design sensitivity and comment on the wide range of possible detection
scenarios at these next-generation experiments.

The most general CLFV electromagnetic vertex coupling a photon to the leptons is

Γµµ→e = 1
Λ2

(
q2γµ − qµ/q

) [
f̃R(q2) + if̃A(q2)γ5

]
+ i

mµ

Λ2 σ
µνqν

[
f̃M(q2) + if̃E(q2)γ5

]
,

(6.1)

where Λ is the scale of CLFV physics, and the subscripts R, A, M , and E denote the induced
(dimensionless) CLFV charge radius, anapole, magnetic dipole, and electric dipole form
factors, respectively. In the case of on-shell photon production, shown in Fig. 6.1 (a), the
four-momentum transfer satisfies q2 = 0, and the charge radius and anapole form factors do
not contribute. The resulting µ→ eγ decay rate has the simple form

Γ (µ→ eγ) = 1
2α

m5
µ

Λ4

(
|f̃M(0)|2 + |f̃E(0)|2

)
. (6.2)
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Figure 6.1: (a) On-shell µ→ eγ decay mediated by CLFV vertex. (b) Conversion process
induced by the µ→ eγ vertex. The photon is virtual and exchanged with the nuclear charge.

To arrive at the branching ratio, we normalize by the rate of standard model µ → e + 2ν
decay. The result is exceedingly simple:

B(µ→ eγ) = 192απ3
(
v

Λ

)4 (
|f̃M(0)|2 + |f̃E(0)|2

)
. (6.3)

In comparison to µ→ e conversion, the on-shell µ+ → e+γ process—the focus of the MEG
and MEG-II experiments—is a relatively clean probe of CLFV physics, as it does not depend
on any nuclear physics. The drawback is that one must detect both the positron and the
photon, with backgrounds primarily coming from radiative muon decay µ+ → e+νν̄γ and
from accidental coincidence of a positron from Michel decay µ+ → e+νν̄ with a photon
originating from either radiative muon decay, bremsstrahlung, or e+e− → γγ annihilation.
Consequently, the expected branching ratio sensitivity at the next-generation MEG II
experiment, B(µ → eγ) < 6 × 10−14 (90% CL), is roughly three orders of magnitude less
sensitive than the corresponding limits on µ→ e conversion expected at Mu2e and COMET.

If µ → e conversion proceeds through exchange of a virtual photon, as in Fig. 6.1 (b),
then all four CLFV electromagnetic form factors in Eq. (6.1) contribute. The photon couples
directly to the nuclear Coulomb charge, and therefore the µ→ e conversion amplitude is

4πα
q2 χ̄eΓµµ→e(q2)χµ N̄γµ

(1 + τ3

2

)
N. (6.4)

Retaining only the dominant coherent contribution and approximating the fixed four-
momentum of the photon propagator as q2 ≈ −m2

µ, we find the following values for the
nucleon-level effective theory LECs:

c̃0
1 = c̃1

1 = 2πα v
2

Λ2

[
f̃R(−m2

µ) + f̃M(−m2
µ)
]

c̃0
11 = c̃1

11 = 2πα v
2

Λ2

[
f̃A(−m2

µ)− f̃E(−m2
µ)
]
.

(6.5)

If we assume that the momentum dependence of the form factors is mild f̃(−m2
µ) ≈ f̃(0),

then the rates for µ→ e conversion and µ→ eγ will be correlated through their dependence
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on the dipole form factors f̃M and f̃E. We can explore this relationship further by setting
f̃A = f̃E = 0 and assuming that |f̃R| + |f̃M | = 1. This latter condition corresponds to the
requirement that at least one of the non-zero form factors is approximately natural at the
scale of CLFV physics Λ. Figure 6.2 shows the regions of parameter space in Λ and |f̃R/f̃M |
that are excluded by current and future experiments. As expected, we see that the on-shell
process provides no constraint in the limit f̃R � f̃M .

For the conversion process, two cases must be distinguished: If f̃R and f̃M have the
same sign, then the total rate is independent of the ratio |f̃R/f̃M |, as we have assumed
|f̃R|+ |f̃M | = 1. If, however, the charge radius and magnetic dipole form factors are opposite
sign, then they interfere destructively, leading to a total cancellation when |f̃R/f̃M | = 1.
(In actuality, the cancellation is not exact—only the leading coherent contribution is zero,
and the typically suppressed spin- and velocity-dependent operators constitute the leading
response. We can infer from Table 5.2 that the limits on Λ in this case are at least a factor of
five weaker.) In the cancellation scenario, it is possible to observe a µ→ eγ signal at MEG
II without a corresponding µ→ e conversion signal at Mu2e/COMET Phase II. Otherwise,
one generically expects the conversion experiments to provide a more stringent constraint on
electromagnetic CLFV couplings than the on-shell photon experiments, despite the fact that
the rate for virtual-photon-mediated µ→ e conversion is suppressed by a factor of α relative
to the on-shell process—the conversion experiments aim to achieve roughly six-thousand
times better sensitivity.

To get some sense of the relationship of these processes to µ → 3e, we consider the
effective Lagrangian

L = 1
Λ2

(
CL
µeeeē

c
LµLēLe

c
L + CR

µeeeē
c
RµRēRe

c
R

)
, (6.6)

where ecL = −iσ2e
∗
R and ecR = iσ2e

∗
L are charge-conjugated electron spinors. CL

µeee and CR
µeee

are (dimensionless) Wilson coefficients. The branching ratio is then given by

B(µ→ 3e) = 1
2

(
v

Λ

)4 (
|CL

µeee|2 + |CR
µeee|2

)
. (6.7)

In general, there are dimension-six operators that mediate µ→ 3e beyond those included in
Eq. (6.6). We have restricted to those operators unique in that at one-loop order [see Fig.
6.3 (a)] they generate an effective µ→ eγ vertex that is enhanced by a large logarithm. The
resulting electromagnetic couplings are [105–107]

f̃R = − 1
(4π)2

2
3
(
CL
µeee + CR

µeee

)
ln−q

2

Λ2 ,

f̃A = −i 1
(4π)2

2
3
(
CL
µeee − CR

µeee

)
ln−q

2

Λ2 ,

(6.8)

where we have retained only the large logarithm contributions. Assuming that these are
the only contributions to the charge radius and anapole form factors, these relations can be
inverted to write the µ→ 3e branching ratio in terms of the induced couplings

B(µ→ 3e) =
(
v

Λ

)4
 12π2

ln
(
m2
µ/Λ2

)
2 (
|f̃R(−m2

µ)|2 + |f̃A(−m2
µ)|2

)
. (6.9)
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Figure 6.2: Exclusion curves for the CLFV electromagnetic coupling considered in Eq. (6.1)
for the case f̃A = f̃E = 0 and |f̃R| + |f̃M | = 1. The dashed (solid) black curve shows the
(expected) limit for on-shell µ → eγ obtained from MEG (MEG II). The branching ratio
limits are B(µ→ eγ) < 4.2× 10−13 for the MEG experiment and 6× 10−14 for MEG II. The
dashed (solid) green curve shows the (expected) limit for µ→ 3e obtained from Mu3e Phase
I (Phase II). The branching ratio limit is B(µ → 3e) < 6 × 10−15 (4 × 10−16) for Phase I
(II) of Mu3e. The orange curve corresponds to the existing limit B(µ→ 3e) < 1.0× 10−12

obtained by SINDRUM. The solid red (blue) curve corresponds to a µ→ e branching ratio
limit B(µ→ e) < 10−17 (7× 10−15) for the case where f̃R and f̃M contribute with the same
sign. The dashed red (blue) curve is analogous to the solid red (blue) curve for the case
where f̃R and f̃M are opposite sign. In this case, the charge radius and magnetic dipole
contributions to the coherent conversion on nuclei cancel when |f̃R/f̃M | = 1.
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Figure 6.3: (a) One-loop diagram in which an underlying µ→ 3e vertex [that of Eq. (6.6)]
generates µ → eγ. This contribution is only nonzero for off-shell photons. (b) Tree-level
diagram in which µ→ e induces µ→ 3e via pair production.

This expression describes the µ→ 3e process when the CLFV is dominated by the charge
radius (or anapole) coupling but vanishes in the limit where the magnetic (or electric) dipole
moment coupling becomes large. In the latter case, the strong dipole interaction mediates
µ → eγ, and the µ → 3e process then proceeds through a virtual photon decaying to an
electron/positron pair, as in Fig. 6.3 (b). In this limit, the branching ratios satisfy a simple
relation [108]

B(µ→ 3e) ≈ α

3π

(
ln
m2
µ

m2
e

− 2
)
B(µ→ eγ). (6.10)

We may now interpret the µ→ 3e exclusion curves in Fig. 6.2: When |f̃R| � |f̃M |, µ→ 3e
proceeds through the four-fermion interaction of Eq. (6.6), and µ→ e conversion is induced
by the large-logarithm-enhanced loop diagram. Despite the logarithmic enhancement, the α
suppression of the virtual photon process is significant enough that—assuming final phase
sensitivities—Mu3e will provide a stronger constraint on the charge-radius-dominated region
of parameter space. In contrast, when |f̃R| � |f̃M |, then both µ→ e conversion and µ→ 3e
are suppressed by α, and consequently the advantage in sensitivity of Mu2e and COMET
over Mu3e translates into a stronger constraint on dipole-dominated couplings.

We reiterate that the scenario discussed here is not general. Although Eq. (6.1) is the
most general CLFV electromagnetic coupling describing the µ → eγ process, additional
(non-photonic) sources of µ → 3e and µ → e conversion will alter the interplay between
these three processes. Nonetheless, it is worth taking a moment to survey the landscape of
Fig. 6.2 to get a scope of the rich variety of experimental outcomes that are possible in the
next generation. If we consider the charge-radius-dominated scenario |f̃R/f̃M | � 1, then it
is extremely unlikely that we will detect the on-shell process at MEG II. Depending on the
scale of CLFV physics, it may be possible to detect CLFV at both Mu2e/COMET and Mu3e
or only at Mu3e (or, of course, a null result at all experiments). At the other extreme, the
magnetic-dipole-dominated scenario |f̃R/f̃M | � 1, the sensitivities of Mu3e and MEG II are
quite comparable but fall short of the conversion experiments. Depending on the scale Λ, we
may observe one of three possible outcomes: (1) detection at all experiments (2) detection at
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Mu2e/COMET but not Mu3e or MEG II (3) no detection.
Finally, if the source of CLFV is such that the charge radius and magnetic dipole couplings

are roughly equal |f̃R/f̃M | ≈ 1, then we must also consider the possible cancellation in the
µ → e conversion rate. Without cancellation, the sensitivity of Mu3e is roughly on par
with the conversion experiments, and we could observe one of four possible outcomes: (1)
detection at all experiments (2) detection at Mu2e/COMET and Mu3e but not MEG II
(3) detection only at either Mu3e or Mu2e/COMET (4) no detection. If the cancellation is
significant, then we don’t expect any signal from the conversion experiments. One particularly
interesting possibility is that we may observe a CLFV signal at MEG II and Mu3e but not
Mu2e/COMET. Such a result could be interpreted as good evidence for the cancellation
scenario, though a more general analysis would be warranted.
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Chapter 7

Relativistic Muon Corrections

In our initial formulation of the nuclear effective theory of µ→ e conversion, we argued that
for light- and medium-mass nuclei it is an acceptable approximation to neglect contributions
proportional to the lower component of the muon wave function (see Section 2.4). This
stands in contrast to many previous authors, who—typically focusing only on the case of
coherent conversion—retain the complete numerical Dirac solution for the lower component.
In that restricted setting, such a treatment makes it possible to obtain percent-level errors in
the prediction for the µ → e conversion rate without unduly complicating the calculation.
In general, however, inclusion of the lower component of the muon requires a significant
extension of the formalism, and the impact of these relativistic corrections is not as immediate
as in the coherent case.

As we shall demonstrate in this chapter, the lower component of the muon’s Dirac wave
function is effectively generated by the action of the muon velocity operator ~vµ on the upper
component. Thus, the inclusion of the muon’s lower component in the effective theory is
(approximately) equivalent to the addition of the muon velocity operator. The effective theory
describes the intrinsic interactions that result from removing the center-of-mass motion of
the system by a phase-space integration [see Eq. (3.11) and subsequent discussion]. The
initial system, assumed to be at rest, is described by A− 1 inter-nucleon coordinates and one
coordinate describing the muon’s position relative to the nuclear center-of-mass. Consequently,
there are A−1 inter-nucleon velocity operators and one muon velocity operator, which, again,
is defined relative to the nuclear center-of-mass. From this perspective, the muon velocity
operator is not privileged—it is one of A internal bound-state velocities. In fact, one may
argue that it is more essential to retain the velocity operator of the nucleons than that of the
muon: In 27Al,

√
〈v2
µ〉 ≈ 0.05, whereas for a single unpaired 1d5/2 proton

√
〈v2
N〉 ≈ 0.21. As

the electron is ultra-relativistic, the muon’s lower component always appears in combination
with the upper component and therefore can be considered a correction. On the other
hand, depending on the underlying CLFV operators, the µ→ e conversion response may be
generated at leading order by ~vN .

As discussed at the end of Chapter 4, the most fundamental nuclear-scale effective theory
is that of the point-like nucleus, which depends on three nuclear response functions. The
point-like effective theory can then be extended to include first-order corrections in the
nucleon velocity operator ~vN , generating three additional nuclear responses. Based on the
above discussion, a final step in this program is to introduce operators that are first-order
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in the muon velocity ~vµ (neglecting terms of order vµvN ≈ 1/100). We will now undertake
this construction, introducing the modifications of the nuclear-scale effective theory that
are necessary in order to include the impact of the muon’s lower component, leading to the
introduction of six additional nuclear response functions.

7.1 Relationship between the Lower Component and
the Velocity Operator

We begin by demonstrating how the muon’s lower component can be obtained by action
of the muon velocity operator on the corresponding upper component. (See Chapter 2, in
particular Section 2.4, for complete details of the Dirac treatment of the muon wave function.)
The muon is known to occupy the 1s orbital of the nuclear Coulomb field, and for κ = −1,
the muon’s Dirac solution has the form

ψ(µ)
m (~r ) =

 G(r)
r

Ω0
1
2m

(r̂)
iF (r)

r
Ω1

1
2m

(r̂)

 , (7.1)

Using the fact that
Ω1

1
2m

(r̂) = −~σ · r̂ Y00(r̂)ξm, (7.2)

we may write

ψ(µ)
m (~r ) =

 G(r)
r
Y00(r̂)ξm

−iF (r)
r
~σ · r̂ Y0,0(r̂)ξm

 , (7.3)

which makes manifest the two primary differences between the muon’s upper and lower
components: (1) The radial wave functions G(r) and F (r) are different. (2) The lower
component carries an additional angular dependence through the operator ~σ · r̂. The
latter issue cannot be avoided and leads to a significant reorganization of the multipole
decomposition, as we show in the next section. The difference between the radial wave
functions can be addressed by noting that, for κ = −1, the radial Dirac equation implies that

d

dr

(
G(r)
r

)
=
(
2m̄− Ebind

µ − V (r)
) F (r)

r
. (7.4)

In analogy with the effective momentum treatment of the electron (see Section 2.3), we may
replace the Coulomb potential by an average value V̄C and write

d

dr

(
G(r)
r

)
≈ 2m∗F (r)

r
, (7.5)

where
m∗ ≡ m̄−

(
Ebind
µ + V̄C

)
/2, (7.6)

is an effective muon mass, which varies from the physical reduced muon mass m̄ by ≈ 2.6%
in 27Al. We can now express both components of the muon wave function in terms of the
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Figure 7.1: Comparison of the exact result (green line) for the absolute value of the muon
wave function lower component |F (r)/r| and the effective wave function (blue dashed line)
given by Eq. (7.5) in four target nuclei: 12C, 27Al, 63Cu, and 184W. The grey shaded region
shows the extent of the nuclear density r2ρ(r) (arbitrary normalization). Note that the scale
of the plot is different across the four nuclei. In all cases, the effective wave function provides
a good approximation of the muon’s lower component.

radial function G(r) as

ψ(µ)
m (~r ) ≈

 ξm
~σ·~pµ
2m∗ ξm

 G(r)
r

Y00(r̂)

=
 ξm

m̄
m∗

~σ·~vµ
2 ξm

 G(r)
r

Y00(r̂),
(7.7)

where ~pµ = m̄~vµ is the muon momentum operator. Figure 7.1 compares the numerically
obtained Coulomb solution F (r) to the effective lower-component wave function in Eq. (7.7)
in four target nuclei. Across the range of targets, the effective form of the lower component
accurately reproduces the reference solution; even in 184W, the relative root-mean-square
error, defined in analogy with Eq. (2.37), is ≈ 1%. In the next-generation target 27Al, the
RMS error is ≈ 0.5%.
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7.2 Effective Theory Operators
We now construct all operators through first-order in the muon velocity operator ~vµ. We
ignore terms that depend on both the muon and nucleon velocities, as these terms are higher
order. The new operators are

Of
′

2 = iq̂ · ~vµ2 1N

Of3 = iq̂ ·
[
~vµ
2 × ~σL

]
1N

Of5 =
(
iq̂ × ~vµ

2

)
· ~σN

Of7 = ~vµ
2 · ~σL 1N

Of8 = ~vµ
2 · ~σN

Of12 =
[
~vµ
2 × ~σL

]
· ~σN

Of
′

13 =
(
iq̂ ×

[
~vµ
2 × ~σL

])
· ~σN

Of14 = ~vµ
2 · ~σL iq̂ · ~σN

Of15 = iq̂ ·
[
~vµ
2 × ~σL

]
iq̂ · ~σN

Of
′

16 = iq̂ · ~vµ2 iq̂ · ~σN ,

(7.8)

where the superscript f indicates that these operators are paired with the muon lower-
component wave function. The lower-component operators are related to their upper-
component counterparts by exchanging ~vN ↔ ~vµ/2 and ~σN ↔ ~σL. The operators that do not
have a lower-component analogue, O1, O4, O6, O9, O10 and O11, transform among themselves
under the lepton ↔ nucleon interchange.

7.3 Connection to Relativistic Amplitudes
The operators Ofi naturally arise from a Pauli reduction of the lepton-nucleon Dirac spinor
currents. In Appendix A.2, the leptonic bilinears are expanded through first order in ~vµ. The
mappings between the relativistic amplitudes and the Pauli-reduced effective operators linear
in ~vµ are shown in Table 7.1. These results should be added to the corresponding terms
in Table 3.3 to obtain the complete expression. The fact that the upper and lower muon
components are constrained by Lorentz covariance gives some advantage to the relativistic
effective theory as a starting point over the Pauli-reduced form.

The 20 relativistic amplitudes that we consider correspond to scalar and vector couplings
of the leptons to the nucleons. Originally, we found that operators that depend on the
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j Ljint Pauli Reduction
∑
i ciOi

1 χ̄eχµN̄N −1
2 q̂ · ~vµ1N − i

2 q̂ · [~vµ × ~σL] 1N iOf
′

2 −O
f
3

3 χ̄eiγ
5χµN̄N

i
2~vµ · ~σL1N iOf7

5 χ̄eγ
µχµN̄γµN

1
2 q̂ · ~vµ1N + i

2 q̂ · [~vµ × ~σL] 1N −iOf
′

2 +Of3
7 χ̄eγ

µχµN̄γµγ
5N −1

2~vµ · ~σN −
i
2 [~vµ × ~σL] · ~σN −Of8 − iO

f
12

9 χ̄eiσ
µν qν

mL
χµN̄γµN

q
2mL (q̂ · ~vµ + iq̂ · [~vµ × ~σL]) 1N q

mL

(
−iOf

′

2 +Of3
)

11 χ̄eiσ
µν qν

mL
χµN̄γµγ

5N q
2mL (~vµ · ~σN + i [~vµ × ~σL] · ~σN q

mL

(
Of8 + iOf12

−iq̂ · [~vµ × ~σL] q̂ · ~σN − q̂ · ~vµq̂ · ~σN ) +iOf15 +Of
′

16

)
13 χ̄eγ

µγ5χµN̄γµN
1
2~vµ · ~σL1N Of7

15 χ̄eγ
µγ5χµN̄γµγ

5N i
2 [q̂ × ~vµ] · ~σN − 1

2 (q̂ × [vµ × ~σL]) · ~σN Of5 + iOf
′

13

−1
2~vµ · ~σL q̂ · ~σN +iOf14

17 χ̄eσ
µν qν

mL
γ5χµN̄γµN

iq
2mL~vµ · ~σL1N iq

mL
Of7

19 χ̄eσ
µν qν

mL
γ5χµN̄γµγ

5N q
2mL ([q̂ × ~vµ] · ~σN + (iq̂ × [~vµ × ~σL]) · ~σN ) q

mL

(
−iOf5 +Of13

)
Table 7.1: As in Table 3.3 but listing the additional terms that are generated when the muon
velocity operator ~vµ is retained to first order. The terms presented in this table should be
combined with the corresponding results in Table 3.3 to obtain the full result.

nucleon spin-current ~vN × ~σN cannot be obtained from these simple interactions but require
more exotic mediators, such as the pseudo-tensor interaction χ̄eiσ

µνγ5χµN̄iσµνγ
5N . The

underlying reason for this is that the Pauli-reduced nucleon currents can be suppressed by
factors of q/mN and/or ~vN ; indeed, the relativistic amplitudes that generate the nucleon
spin-velocity current are suppressed by both of these factors and hence are neglected. In the
leptonic case, the ultra-relativistic electron depends on the quantity q̂, which removes the
suppression penalty and allows one to obtain the lepton spin-velocity current ~vµ × ~σL from
the scalar and vector interactions. As a result, all 10 of the lower component operators are
generated by the set of 20 relativistic amplitudes.

7.4 Expression for the Decay Rate

The effective theory Lagrangian is now expanded to include the lower-component operators
with corresponding low-energy constants bτi . As we neglect terms that depend on both the
muon and nucleon velocity operators, the resulting operators contain only the nucleon charge
1N and spin-current ~σN . Consequently, we modify the leptonic currents [originally defined in
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Eq. (3.10)] as

lτ0 → lτ0 + bτ2iq̂ ·
~vµ
2 + bτ3iq̂ ·

[
~vµ
2 × ~σL

]
+ bτ7

~vµ
2 · ~σL

≡ lτ0 + lτ0f ,

~lτ5 → ~lτ5 + bτ5iq̂ ×
~vµ
2 + bτ8

~vµ
2 + bτ12

~vµ
2 × ~σL + bτ13iq̂ ×

[
~vµ
2 × ~σL

]

+ bτ14
~vµ
2 · ~σL iq̂ + bτ15iq̂ ·

[
~vµ
2 × ~σL

]
iq̂ + bτ16iq̂ ·

~vµ
2 iq̂

≡ ~lτ5 +~lτ5f ,

(7.9)

with lA τ
0 , ~lτM , and ~lτE unchanged. The conversion amplitude is then given by

M =
√
Ee

2me

qeff

q

∑
τ=0,1

〈12sf ; jNmf |

 A∑
i=1

e−i~qeff ·~xi

(
lτ0
g(xi)√

4π
− lτ0f (x̂i)

if(xi)√
4π

)

+ lA τ
0

A∑
i=1

1
2mN

(
−1
i

←−
∇ i · ~σN(i) e−i~qeff ·~xi g(xi)√

4π
+ g(xi)√

4π
e−i~qeff ·~xi~σN(i) · 1

i

−→
∇ i

)

+
A∑
i=1

~σN(i) e−i~qeff ·~xi ·
(
~lτ5
g(xi)√

4π
−~lτ5f (x̂i)

if(xi)√
4π

)

+~lτM ·
A∑
i=1

1
2mN

(
−1
i

←−
∇ i e

−i~qeff ·~xi g(xi)√
4π

+ g(xi)√
4π

e−i~qeff ·~xi 1
i

−→
∇ i

)

+~lτE ·
A∑
i=1

1
2mN

(
←−
∇ i × ~σN(i)e−i~qeff ·~xi g(xi)√

4π
+ g(xi)√

4π
e−i~qeff ·~xi~σN(i)×−→∇ i

)
int

tτ (i) |12si; jNmi〉 ,

(7.10)

where g(r) = G(r)/r, f(r) = F (r)/r, and where the muon’s p-wave lower component
introduces an additional angular dependence through x̂i

lτ0f (x̂i) ≡ bτ2iq̂ · x̂i + bτ3iq̂ · [x̂i × ~σL] + bτ7x̂i · ~σL
~lτ5f (x̂i) ≡ bτ5iq̂ × ~xi + bτ8x̂i + bτ12x̂i × ~σL + bτ13iq̂ × [x̂i × ~σL]

+ bτ14x̂i · ~σLiq̂ + bτ15iq̂ · [x̂i × ~σL] iq̂ + bτ16iq̂ · x̂iiq̂.
(7.11)

When combined with the plane-wave factor exp(−i~qeff · ~xi), the operator x̂i restructures the
multipole expansion. Indeed, we identify eight new nuclear operators associated with the
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muon lower component:

M
(1)
JM ;τ (q) ≡

A∑
i=1

√
J(J + 1) 1

qxi
jJ(qxi)YJM(x̂i) tτ (i)

M
(2)
JM ;τ (q) ≡

A∑
i=1

d

dqxi
jJ(qxi)YJM(x̂i) tτ (i)

Σ(1)
JM ;τ (q) ≡

A∑
i=1

√
J(J + 1) 1

qxi
jJ(qxi)~YJJM(x̂i) · ~σN(i) tτ (i)

Σ(2)
JM ;τ (q) ≡

A∑
i=1

d

dqxi
jJ(qxi)~YJJM(x̂i) · ~σN(i) tτ (i)

Σ′(0)
JM ;τ (q) ≡

A∑
i=1

jJ(qxi)
√ J

2J + 1
~YJJ+1M(x̂i) +

√
J + 1
2J + 1

~YJJ−1M(x̂i)
 · ~σN(i) tτ (i)

Σ′(2)
JM ;τ (q) ≡

A∑
i=1

−
√

J

2J + 1
d

dqxi
jJ+1(qxi)~YJJ+1M(x̂i)

+
√
J + 1
2J + 1

d

dqxi
jJ−1(qxi)~YJJ−1M(x̂i)

 · ~σN(i) tτ (i)

Σ′′(0)
JM ;τ (q) ≡

A∑
i=1

jJ(qxi)
−

√
J + 1
2J + 1

~YJJ+1M(x̂i) +
√

J

2J + 1
~YJJ−1M(x̂i)

 · ~σN(i) tτ (i)

Σ′′(2)
JM ;τ (q) ≡

A∑
i=1

√ J + 1
2J + 1

d

dqxi
jJ+1(qxi)~YJJ+1M(x̂i)

+
√

J

2J + 1
d

dqxi
jJ−1(qxi)~YJJ−1M(x̂i)

 · ~σN(i) tτ (i)

(7.12)

Table 7.2 summarizes the properties of these novel responses. Two of these operators, Σ(1)

and Σ(2), have opposite P and T transformation properties and therefore cannot contribute
to the elastic conversion process. Consequently, the lower-component operator Of5 , which is
associated only with the response Σ(1), is not probed when the nucleus remains in the ground
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state. The elastic conversion amplitude can then be expressed as

M =
√
Ee

2me

qeff

q

∑
τ=0,1

〈12sf ; jNmf |
∞∑

J=0,2,...

√
4π(2J + 1)(−i)J

[
lτ0M

g
J0;τ (qeff)− ilτ(2)

0 M
(2)f
J0;τ (qeff) + qeff

mN

lτE0Φ′′gJ0;τ (qeff)
]

+
∞∑

J=1,3,...

√
2π(2J + 1)(−i)J

∑
λ=±1

[
− ilτ5λΣ

′g
J−λ;τ (qeff) + l

τ(0)
5λ Σ′(0)f

J−λ;τ (qeff) + l
τ(2)
5λ Σ′(2)f

J−λ;τ (qeff)

+ i
qeff

mN

lτMλλ∆g
J−λ;τ (qeff)

]

+
∞∑

J=2,4,...

√
2π(2J + 1)(−i)J

∑
λ=±1

[
− ilτ(1)

λ M
(1)f
J−λ;τ (qeff)− qeff

mN

lτEλΦ̃
′g
J−λ;τ (qeff)

]

+
∞∑

J=1,3,...

√
4π(2J + 1)(−i)J

[
ilτ50Σ′′gJ0;τ (qeff) + l

τ(0)
50 Σ′′(0)f

J0;τ (qeff)

+ l
τ(2)
50 Σ′′(2)f

J0;τ (qeff)
] |12si; jNmi〉 ,

(7.13)

where we have introduced the notation

Ôg
JM(q) ≡

A∑
i=1

g(xi)√
4π

ÔJM(qxi)

Ôf
JM(q) ≡

A∑
i=1

f(xi)√
4π

ÔJM(qxi).
(7.14)

The lower-component leptonic currents in Eq. (7.13) are

l
τ(1)
λ = −i (bτ3λ+ bτ7)σLλ, l

τ(2)
0 = −bτ2 + ibτ7σL0,

l
τ(0)
5λ = [λ (−bτ12 + bτ15) + bτ14]σLλ, l

τ(2)
5λ = [−bτ13 + bτ14 + λbτ15]σLλ,

l
τ(0)
50 = −ibτ8 + bτ13σL0, l

τ(2)
50 = (bτ13 − bτ14)σL0 − ibτ16.

(7.15)

The nuclear-spin-averaged amplitude squared can be expressed as

1
2jN + 1

∑
mf ,mi

| 〈12sf ; jNmf |M|
1
2si; jNmi〉 |2 = Ee

2me

q2
eff
q2

4π
2jN + 1

∑
τ=0,1

∑
τ ′=0,1

∞∑
J=0,2,...

 〈lτ0〉 〈lτ ′0 〉
∗ 〈jN ||M g

J ;τ (qeff)||jN〉 〈jN ||M g
J ;τ ′(qeff)||jN〉

+ 2 Re
[
i 〈lτ0〉 〈l

τ ′(2)
0 〉

∗]
〈jN ||M g

J ;τ (qeff)||jN〉 〈jN ||M (2)f
J ;τ ′ (qeff)||jN〉

+ 〈lτ(2)
0 〉 〈lτ

′(2)
0 〉

∗
〈jN ||M (2)f

J ;τ (qeff)||jN〉 〈jN ||M (2)f
J ;τ ′ (qeff)||jN〉
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Operator Even J Odd J LECs Probed Operator Even J Odd J LECs Probed

M
(1)
JM E-E O-O b3, b7 M

(2)
JM E-E O-O b2, b7

Σ(1)
JM E-O O-E b5, b12, b14, b15 Σ(2)

JM E-O O-E b12, b13

Σ′(0)
JM O-O E-E b12, b14, b15 Σ′(2)

JM O-O E-E b13, b14, b15

Σ′′(0)
JM O-O E-E b8, b13 Σ′′(2)

JM O-O E-E b13, b14, b16

Table 7.2: Multipole operators associated with the muon’s lower component, their transforma-
tion properties under parity and time-reversal, and the LECs associated with each response.

+ ~qeff

mN

· 〈~lτE〉
~qeff

mN

· 〈~lτ ′E 〉
∗
〈jN ||Φ′′gJ ;τ (qeff)||jN〉 〈jN ||Φ′′gJ ;τ ′(qeff)||jN〉

+ 2~qeff

mN

· Re
[
〈~lτE〉 〈lτ

′

0 〉
∗] 〈jN ||Φ′′gJ ;τ (qeff)||jN〉 〈jN ||M g

J ;τ ′(qeff)||jN〉

+ 2~qeff

mN

· Re
[
i 〈~lτE〉 〈l

τ ′(2)
0 〉

∗]
〈jN ||Φ′′gJ ;τ (qeff)||jN〉 〈jN ||M (2)f

J ;τ ′ (qeff)||jN〉


+
∑

J=2,4,...

1
2
q2

eff
m2
N

(
〈~lτE〉 · 〈~lτ

′

E 〉
∗
− q̂ · 〈~lτE〉 q̂ · 〈~lτ

′

E 〉
∗)
〈jN ||Φ̃′gJ ;τ (qeff)||jN〉 〈jN ||Φ̃′gJ ;τ ′(qeff)||jN〉

+ 1
2
(
〈~lτ(1)〉 · 〈~lτ ′(1)〉

∗
− q̂ · 〈~lτ(1)〉 q̂ · 〈~lτ ′(1)〉

∗)
〈jN ||M (1)f

J ;τ (qeff)||jN〉 〈jN ||M (1)f
J ;τ ′ (qeff)||jN〉

− Re
[
qeff

mN

i 〈~lτE〉 · 〈~lτ
′(1)〉

∗
− ~qeff

mN

· i 〈~lτE〉 q̂ · 〈~lτ
′(1)〉

∗
]
〈jN ||Φ̃′gJ ;τ (qeff)||jN〉 〈jN ||M (1)f

J ;τ ′ (qeff)||jN〉


+
∞∑

J=1,3,...

1
2
(
〈~lτ5〉 · 〈~lτ

′

5 〉
∗
− q̂ · 〈~lτ5〉 q̂ · 〈~lτ

′

5 〉
∗)
〈jN ||Σ′gJ ;τ (qeff)||jN〉 〈jN ||Σ′gJ ;τ ′(qeff)||jN〉

+ 1
2
(
〈~lτ(0)

5 〉 · 〈~lτ
′(0)

5 〉
∗
− q̂ · 〈~lτ(0)

5 〉 q̂ · 〈~lτ
′(0)

5 〉
∗)
〈jN ||Σ′(0)f

J ;τ (qeff)||jN〉 〈jN ||Σ′(0)f
J ;τ ′ (qeff)||jN〉 (7.16)

+ 1
2
(
〈~lτ(2)

5 〉 · 〈~lτ
′(2)

5 〉
∗
− q̂ · 〈~lτ(2)

5 〉 q̂ · 〈~lτ
′(2)

5 〉
∗)
〈jN ||Σ′(2)f

J ;τ (qeff)||jN〉 〈jN ||Σ′(2)f
J ;τ ′ (qeff)||jN〉

− Re
[
〈~lτ5〉 · i 〈~l

τ ′(0)
5 〉

∗
− q̂ · 〈~lτ5〉 iq̂ · 〈~l

τ ′(0)
5 〉

∗]
〈jN ||Σ′gJ ;τ (qeff)||jN〉 〈jN ||Σ′(0)f

J ;τ ′ (qeff)||jN〉

− Re
[
〈~lτ5〉 · i 〈~l

τ ′(2)
5 〉

∗
− q̂ · 〈~lτ5〉 iq̂ · 〈~l

τ ′(2)
5 〉

∗]
〈jN ||Σ′gJ ;τ (qeff)||jN〉 〈jN ||Σ′(2)f

J ;τ ′ (qeff)||jN〉

+ Re
[
〈~l(0)τ

5 〉 · 〈~lτ
′(2)

5 〉
∗
− q̂ · 〈~lτ(0)

5 〉 q̂ · 〈~lτ
′(2)

5 〉
∗]
〈jN ||Σ′(0)f

J ;τ (qeff)||jN〉 〈jN ||Σ′(2)f
J ;τ ′ (qeff)||jN〉

+ 1
2

(
q2

eff
m2
N

〈~lτM〉 · 〈~lτ
′

M〉
∗
− ~qeff

mN

· 〈~lτM〉
~qeff

mN

· 〈~lτ ′M〉
∗
)
〈jN ||∆g

J ;τ (qeff)||jN〉 〈jN ||∆g
J ;τ ′(qeff)||jN〉

+ ~qeff

mN

· Re
[
i 〈~lτM〉 × 〈~lτ

′

5 〉
∗]
〈jN ||∆g

J ;τ (qeff)||jN〉 〈jN ||Σ′gJ ;τ ′(qeff)||jN〉

+ ~qeff

mN

· Re
[
〈~lτM〉 × 〈~l

τ ′(0)
5 〉

∗]
〈jN ||∆g

J ;τ (qeff)||jN〉 〈jN ||Σ′(0)f
J ;τ ′ (qeff)||jN〉
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+ ~qeff

mN

· Re
[
〈~lτM〉 × 〈~l

τ ′(2)
5 〉

∗]
〈jN ||∆g

J ;τ (qeff)||jN〉 〈jN ||Σ′(2)f
J ;τ ′ (qeff)||jN〉

+ q̂ · 〈~lτ5〉 q̂ · 〈~lτ
′

5 〉
∗
〈jN ||Σ′′gJ ;τ (qeff)||jN〉 〈jN ||Σ′′gJ ;τ ′(qeff)||jN〉

+ q̂ · 〈~lτ(0)
5 〉 q̂ · 〈~lτ

′(0)
5 〉

∗
〈jN ||Σ′′(0)f

J ;τ (qeff)||jN〉 〈jN ||Σ′′(0)f
J ;τ ′ (qeff)||jN〉

+ q̂ · 〈~lτ(2)
5 〉 q̂ · 〈~lτ

′(2)
5 〉

∗
〈jN ||Σ′′(2)f

J ;τ (qeff)||jN〉 〈jN ||Σ′′(2)f
J ;τ ′ (qeff)||jN〉

+ 2 Re
[
q̂ · 〈~lτ5〉 iq̂ · 〈~l

τ ′(0)
5 〉

∗]
〈jN ||Σ′′gJ ;τ (qeff)||jN〉 〈jN ||Σ′′(0)f

J ;τ ′ (qeff)||jN〉

+ 2 Re
[
q̂ · 〈~lτ5〉 iq̂ · 〈~l

τ ′(2)
5 〉

∗]
〈jN ||Σ′′gJ ;τ (qeff)||jN〉 〈jN ||Σ′′(2)f

J ;τ ′ (qeff)||jN〉

+ 2 Re
[
q̂ · 〈~lτ(0)

5 〉 q̂ · 〈~lτ
′(2)

5 〉
∗]
〈jN ||Σ′′(0)f

J ;τ (qeff)||jN〉 〈jN ||Σ′′(2)f
J ;τ ′ (qeff)||jN〉

.
In most practical calculations, we will replace both radial wave functions f and g by constant
values. In order to exactly reproduce the leading coherent response, the upper-component
wave function g(r) is averaged over the isoscalar monopole operator M00;0(qeffr)

〈g〉 ≡ |φZeff
1s (~0)| = 1√

4π

∫
dr r2ρ(r)j0(qeffr)g(r)∫
dr r2ρ(r)j0(qeffr)

. (7.17)

A suitable constant value for the muon’s lower component f(r) can be obtained by averaging
over the corresponding lower-component operator M (2)

00;0(qeffr)

〈f〉 ≡ 1√
4π

∫
dr r2ρ(r)j1(qeffr)f(r)∫
dr r2ρ(r)j1(qeffr)

. (7.18)

This choice of 〈f〉 exactly reproduces the leading lower-component correction to the coherent
conversion amplitude. The constant approximation is then implemented via the replacements

Ôg
JM(q)→ |φZeff

1s (~0)|
A∑
i=1

ÔJM(qxi)

Ôf
JM(q)→ |φZeff

1s (~0)| 〈f〉
〈g〉

A∑
i=1

ÔJM(qxi).
(7.19)

The values of the ratio 〈f〉 / 〈g〉 for the nuclear targets of interest are reported in Table 7.3.
It is not strictly necessary to employ the constant approximation: the radial wave functions
of the muon may be retained inside the nuclear matrix elements, where they contribute an
additional weight to the corresponding radial integrals. The downside of this approach is that
nuclear matrix elements that include the muon wave function can no longer be evaluated
analytically—each multipole operator requires a distinct radial integral that must be evaluated
numerically. Nonetheless, the effective theory framework can be extended in this way to more
accurately describe the muon physics, which may be particularly important in heavy nuclei
where the curvature of the muon wave function over the nuclear size becomes significant.
Throughout the remainder of this chapter, we will continue with the approximate constant
values, having implemented the substitutions of Eq. (7.19).
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The various contributions in Eq. (7.16) can be distinguished by their dependence on
the muon lower component: there are terms that depend only on the upper component (no
powers of f), terms that represent interference between the upper and lower components
(one power of f), and terms that depend only on the lower component (two powers of f). To
make this distinction manifest, we express the final decay rate as

Γ(µ→ e) = Γ(0) + 2〈f〉
〈g〉

Γ(1) +
(
〈f〉
〈g〉

)2

Γ(2), (7.20)

where the factor of 2 in the coefficient of Γ(1) reflects the fact that these terms result from
interference. The leading term Γ(0) is, of course, the result that we previously obtained in Eq.
(3.33).

As we have incorporated the muon velocity (hence the lower component) to first order in
the single-nucleon effective theory, we should technically only be concerned with the first-order
relativistic correction Γ(1). The terms contained in Γ(2), although valid, are incomplete from
an effective theory perspective, as we did not include any terms of order ~v 2

µ ∝ 〈f〉
2 in our

basis of lower-component single-nucleon operators Ofi . Likewise, we neglect single-nucleon
operators that contain both the muon and nucleon velocity operators. However, there are
interference terms in Eq. (7.16) between muon-velocity-dependent lower-component responses,
such as M (2), and nucleon-velocity-dependent upper-component responses, such as Φ′′. These
are genuine contributions to the CLFV rate, but the effective theory as constructed is not
complete through the relevant order in power counting (first order in both ~vN and ~vµ).
Therefore, the relativistic corrections that we are primarily interested in are those contained
within Γ(1) and consisting of nucleon-velocity-independent response functions. Nonetheless,
we will provide the complete expressions for Γ(1) and Γ(2).

Defining the leptonic response functions

Rττ ′

MM(2) ≡ Im
[
cτ1b

τ ′∗
2 − cτ11b

τ ′∗
7

]
Rττ ′

Σ′Σ′(0) ≡ Im
[
cτ4b

τ ′∗
14 + cτ9(−bτ ′∗12 + bτ

′∗
15 )

]
Rττ ′

Σ′Σ′(2) ≡ Im
[
cτ4(−bτ ′∗13 + bτ

′∗
14 ) + cτ9b

τ ′∗
15

]
Rττ ′

Σ′′Σ′′(0) ≡ Im
[
(cτ6 − cτ4)bτ ′∗13 + cτ10b

τ ′∗
8

]
Rττ ′

Σ′′Σ′′(2) ≡ Im
[
(cτ6 − cτ4)(bτ ′∗13 − bτ

′∗
14 ) + cτ10b

τ ′∗
16

]
Rττ ′

∆Σ′(0) ≡ Im
[
−cτ5bτ

′∗
14 + cτ8(bτ ′∗12 − bτ

′∗
15 )

]
Rττ ′

∆Σ′(2) ≡ Im
[
cτ5(bτ ′∗13 − bτ

′∗
14 )− cτ8bτ

′∗
15

]
Rττ ′

Φ̃′M(1) ≡ Im
[
−cτ12b

τ ′∗
7 − cτ13b

τ ′∗
3

]
Rττ ′

Φ′′M(2) ≡ Im
[
−cτ3bτ

′∗
2 + (−cτ12 + cτ15)bτ ′∗7

]
,

(7.21)
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the leading lower-component corrections to the conversion rate can be expressed as

Γ(1) = G2
F

π

q2
eff

1 + q
MT

|φZeff
1s (~0)|2

∑
τ=0,1

∑
τ ′=0,1

R̃ττ ′

MM(2)W
ττ ′

MM(2)(qeff)

+ R̃ττ ′

Σ′Σ′(0)W
ττ ′

Σ′Σ′(0)(qeff) + R̃ττ ′

Σ′Σ′(2)W
ττ ′

Σ′Σ′(2)(qeff)
+ R̃ττ ′

Σ′′Σ′′(0)W
ττ ′

Σ′′Σ′′(0)(qeff) + R̃ττ ′

Σ′′Σ′′(2)W
ττ ′

Σ′′Σ′′(2)(qeff)

+ qeff

mN

[
R̃ττ ′

∆Σ′(0)W
ττ ′

∆Σ′(0)(qeff) + R̃ττ ′

∆Σ′(2)W
ττ ′

∆Σ′(2)(qeff)
]

+ qeff

mN

[
R̃ττ ′

Φ′′M(2)WΦ′′M(2)(qeff) + R̃ττ ′

Φ̃′M(1)W
ττ ′

Φ̃′M(1)(qeff)
],

(7.22)

where R̃ denotes that the leptonic tensors are composed of dimensionless LECs b̃ and c̃,
defined with respect to the weak scale v. The corresponding nuclear response functions are

W ττ ′

OM(2)(q) ≡
4π

2jN + 1

∞∑
J=0,2,...

〈jN ||OJ ;τ (q)||jN〉 〈jN ||M (2)
J ;τ ′(q)||jN〉 for O = M,Φ′′

W ττ ′

OΣ′(i)(q) ≡
4π

2jN + 1

∞∑
J=1,3,...

〈jN ||OJ ;τ (q)||jN〉 〈jN ||Σ′(i)J ;τ ′(q)||jN〉 for O = ∆,Σ′,

and i = 0, 2

W ττ ′

Σ′′Σ′′(i)(q) ≡
4π

2jN + 1

∞∑
J=1,3,...

〈jN ||Σ′′J ;τ (q)||jN〉 〈jN ||Σ
′′(i)
J ;τ ′(q)||jN〉 for i = 0, 2

W ττ ′

Φ̃′M(1)(q) ≡
4π

2jN + 1

∞∑
J=2,4,...

〈jN ||Φ̃′J ;τ (q)||jN〉 〈jN ||M
(1)
J ;τ ′(q)||jN〉

(7.23)

Every single-nucleon lower-component operator contributes to Γ(1) except for O5. The upper-
component responses M , Σ′, Σ′′, ∆, Φ̃′, and Φ′′ generically receive corrections (in the form of
interference terms) from the lower component of the muon. The CLFV response functions
that contribute to Γ(1) vanish if the LECs are strictly real. We see from Tables 3.3 and 7.1
that both the ci and bi coefficients are generically complex.

The leptonic response functions that contribute to the second-order relativistic correction
Γ(2) are defined as

Rττ ′

M(1) ≡ bτ3b
τ ′∗
3 + bτ7b

τ ′∗
7

Rττ ′

M(2) ≡ bτ2b
τ ′∗
2 + bτ7b

τ ′∗
7

Rττ ′

Σ′′(0) ≡ bτ8b
τ ′∗
8 + bτ13b

τ ′∗
13

Rττ ′

Σ′′(2) ≡ (bτ13 − bτ14)(bτ ′∗13 − bτ
′∗

14 ) + bτ16b
τ ′∗
16

Rττ ′

Σ′(0) ≡ (−bτ12 + bτ15)(−bτ ′∗12 + bτ
′∗

15 ) + bτ14b
τ ′∗
14

Rττ ′

Σ′(2) ≡ (−bτ13 + bτ14)(−bτ ′∗13 + bτ
′∗

14 ) + bτ15b
τ ′∗
15

Rττ ′

Σ′′(0)Σ′′(2) ≡ Re
[
bτ8b

τ ′∗
16 + bτ13(bτ ′∗13 − bτ

′∗
14 )

]
Rττ ′

Σ′(0)Σ′(2) ≡ Re
[
(−bτ12 + bτ15)bτ ′∗15 + bτ14(−bτ ′∗13 + bτ

′∗
14 )

]
,

(7.24)
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and the corresponding decay rate is

Γ(2) = G2
F

π

q2
eff

1 + q
MT

|φZeff
1s (~0)|2

∑
τ=0,1

∑
τ ′=0,1

R̃ττ ′

M(1)W
ττ ′

M(1)(qeff) + R̃ττ ′

M(2)W
ττ ′

M(2)(qeff)

+ R̃ττ ′

Σ′(0)W
ττ ′

Σ′(0)(qeff) + R̃ττ ′

Σ′(2)W
ττ ′

Σ′(2)(qeff)
+ R̃ττ ′

Σ′′(0)W
ττ ′

Σ′′(0)(qeff) + R̃ττ ′

Σ′′(2)W
ττ ′

Σ′′(2)(qeff)

+ 2
[
R̃ττ ′

Σ′(0)Σ′(2)W
ττ ′

Σ′(0)Σ′(2)(qeff) + R̃ττ ′

Σ′′(0)Σ′′(2)W
ττ ′

Σ′′(0)Σ′′(2)(qeff)
],
(7.25)

where the nuclear response functions are

W ττ ′

M(1)(q) ≡
4π

2jN + 1

∞∑
J=2,4,...

〈jN ||M (1)
J ;τ (q)||jN〉 〈jN ||M

(1)
J ;τ ′(q)||jN〉

W ττ ′

M(2)(q) ≡
4π

2jN + 1

∞∑
J=0,2,...

〈jN ||M (2)
J ;τ (q)||jN〉 〈jN ||M

(2)
J ;τ ′(q)||jN〉

W ττ ′

O (q) ≡ 4π
2jN + 1

∞∑
J=1,3,...

〈jN ||OJ ;τ (q)||jN〉 〈jN ||OJ ;τ ′(q)||jN〉 , for O = Σ′(0),Σ′(2),

Σ′′(0),Σ′′(2)

W ττ ′

Σ′(0)Σ′(2)(q) ≡
4π

2jN + 1

∞∑
J=1,3,...

〈jN ||Σ′(0)
J ;τ (q)||jN〉 〈jN ||Σ′(2)

J ;τ ′(q)||jN〉

W ττ ′

Σ′′(0)Σ′′(2)(q) ≡
4π

2jN + 1

∞∑
J=1,3,...

〈jN ||Σ′′(0)
J ;τ (q)||jN〉 〈jN ||Σ′′(2)

J ;τ ′(q)||jN〉 .

(7.26)

7.5 The Rate in Terms of Lorentz-invariant Operators

In the preceding derivations, the low-energy constants associated with the muon’s upper
component ci are assumed to be independent of those associated with the muon’s lower
component bi. Of course, we know that the operators of the Galilean-invariant effective theory
must ultimately embed into a Lorentz-invariant theory, and therefore certain constraints
between the two sets of LECs bi and ci must be satisfied. Assuming that the CLFV interaction
is generated by only scalar and/or vector mediators, we may use the results of Tables 3.3 and
7.1 in order to express the conversion rate in terms of the dimensionless coefficients d̃i of the
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Lorentz-invariant interactions Liint (defined in the aforementioned tables). We find

Γ = G2
F

π

q2
eff

1 + q
MT

4π
2jN + 1

∑
τ=0,1

∑
τ ′=0,1{ ∞∑

J=0,2,...

[ ∣∣∣∣(d̃τ1 − q

mL

d̃τ9)〈M g
τ −M (2)f

τ 〉+ d̃τ5〈M g
τ +M (2)f

τ 〉
∣∣∣∣2
ττ ′

+
∣∣∣∣(d̃τ3 + q

mL

d̃τ17)〈M g
τ −M (2)f

τ 〉
∣∣∣∣2
ττ ′

+
∣∣∣∣d̃τ13〈M g

τ +M (2)f
τ 〉

∣∣∣∣2
ττ ′

]
+

∞∑
J=1,3,...

[ ∣∣∣∣d̃τ15〈Σ′gτ + Σ′(0)f
τ 〉 − qeff

mN

(d̃τ5 + q

mL

d̃τ9)〈∆g
τ 〉

+ q

2mN

(d̃τ5 − 2d̃τ6 + q

mL

(d̃τ9 − 2d̃τ10))〈Σ′gτ 〉
∣∣∣∣2
ττ ′

+
∣∣∣∣ qmL

d̃τ19〈Σ′gτ + Σ′(2)f
τ 〉

∣∣∣∣2
ττ ′

+
∣∣∣∣d̃τ7〈Σ′gτ + Σ′(0)f

τ 〉+ q

mL

d̃τ11〈Σ′gτ + Σ′(2)f
τ 〉 − qeff

mN

d̃τ13〈∆g
τ 〉+ q

2mN

(d̃τ13 − 2d̃τ14)〈Σ′gτ 〉
∣∣∣∣2
ττ ′

+
∣∣∣∣ qmL

qeff

mN

d̃τ17〈∆g
τ 〉+ q

mL

q

2mN

(2d̃τ18 − d̃τ17)〈Σ′gτ 〉
∣∣∣∣2
ττ ′

]
+

∞∑
J=2,4,...

[ ∣∣∣∣(d̃τ3 + q

mL

d̃τ17)〈M (1)f
τ 〉

∣∣∣∣2
ττ ′

+
∣∣∣∣d̃τ13〈M (1)f

τ 〉
∣∣∣∣2
ττ ′

+
∣∣∣∣(d̃τ1 − d̃τ5 − q

mL

d̃τ9)〈M (1)f
τ 〉

∣∣∣∣2
ττ ′

]

+
∞∑

J=1,3,...

[ ∣∣∣∣d̃τ15〈Σ′′gτ − Σ′′(0)f
τ 〉 − q

2mN

(d̃τ4 −
2q
mL

d̃τ20)〈Σ′′gτ 〉
∣∣∣∣2
ττ ′

+
∣∣∣∣ qmL

d̃τ19〈Σ′′(0)f
τ + Σ′′(2)f

τ 〉+ q

mN

d̃τ16〈Σ′′gτ 〉
∣∣∣∣2
ττ ′

+
∣∣∣∣ q

2mN

(d̃τ2 − 2d̃τ8 + 2q
mL

d̃τ12)〈Σ′′gτ 〉
∣∣∣∣2
ττ ′

+
∣∣∣∣d̃τ7〈Σ′′gτ − Σ′′(0)f

τ 〉+ q

mL

d̃τ11〈Σ′′(0)f
τ + Σ′′(2)f

τ 〉
∣∣∣∣2
ττ ′

]}
,

(7.27)

where we have introduced the notation 〈O〉 ≡ 〈jN ||O(qeff)||jN〉 and |Aτ |2ττ ′ ≡ AτA
∗
τ ′ . Note

that we have retained the radial muon wave functions g(r) and f(r) within the nuclear matrix
elements. This is our most precise form of the effective theory decay rate, limited only by
the accuracy of nuclear response function evaluations (and the typically very small error
introduced through the effective momentum approximation). We reiterate that Eq. (7.27) is
only applicable in the case that µ→ e conversion is mediated by a scalar or vector coupling
of the leptons to the nucleons. In principle, an analogous expression could be derived for
tensor or other exotic interactions.

7.6 Lower-component Response Functions
The muon’s lower component generates eight additional nuclear response functions, those in
Eq. (7.12), six of which contribute to the elastic conversion process. Like their namesake
counterparts, the operators M (1), M (2), Σ(1), and Σ(2) are normal parity operators that
transform with a phase (−1)J under parity, whereas the operators Σ′(0), Σ′(2), Σ′′(0), and Σ′′(2)
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Figure 7.2: The nuclear response functions W ττ
O (qeff) for the six operators generated by the

muon’s lower component in 27Al. The left (right) panel gives the results for the isoscalar
(isovector) coupling. The response functions are needed at the three-momentum transfer
qeff indicated by the dashed line. The blue solid curves correspond to the modified charge
responses M (1) and M (2), the dashed orange curves correspond to the modified transverse-
electric spin responses Σ′(0) and Σ′(2), and the dotted green curves correspond to the modified
longitudinal spin responses Σ′′(0) and Σ′′(2).

are abnormal parity operators that transform with a phase (−1)J+1 under parity. Similarly,
under exchange of initial and final single-particle states, these operators satisfy

〈n(` 1/2)j||TJ(q~x )||n′(`′ 1/2)j′〉 = (−1)λ 〈n′(`′ 1/2)j′||TJ(q~x )||n(` 1/2)j〉 , (7.28)

with λ = j′ − j for the operators M (1), M (2), Σ′(0), Σ′(2), Σ′′(0), and Σ′′(2), and λ = j′ + j
for the operators Σ(1) and Σ(2). However, harmonic oscillator matrix elements of the novel
lower-component response functions cannot be expressed in the usual way as

〈n′ (`′ 1/2) j′||TJ(q~r )||n (` 1/2) j〉 = 1√
4π
y(J−K)/2e−yp(y), (7.29)

where p(y) is a finite-order polynomial. See Appendix D.1 for the details of evaluating the
lower-component operators between harmonic oscillator wave functions.

Figures 7.2 and 7.3 show the momentum dependence of the six allowed lower-component
response functions evaluated in Al and Cu, respectively. All contributions from lower-
component operators vanish in the long wavelength limit q → 0. In this limit, the nucleus
becomes point-like and all operators are evaluated at the origin—the muon’s lower component
is a p-wave and therefore f(r) is required to vanish as r → 0. The isoscalar charge response
W 00
M(2) contains a leading J = 0 multipole component that sums coherently over the nuclear

target and is consequently the strongest of the lower-component responses. However, the
more important measure of the strength of the lower-component nuclear responses is the
relative size of the correction that they yield. For example, the interference term WMM(2)

enters the decay rate at first-order in 〈f〉 / 〈g〉 and acts as a relativistic correction to the
upper-component charge response WM .

The radial-weighting functions differ between the standard nuclear multipole operators
and their lower-component counterparts. For example, M (2)

J is obtained from MJ by the
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Figure 7.3: As in Fig. 7.2 but for Cu.

Target
〈f〉

〈g〉

W 00
MM(2)

W 00
M

W 00
Σ′Σ′(0)

W 00
Σ′

W 00
Σ′Σ′(2)

W 00
Σ′

W 00
Σ′′Σ′′(0)

W 00
Σ′′

W 00
Σ′′Σ′′(2)

W 00
Σ′′

C -0.015 -0.49 2.23 -1.31 -0.83 0.07
O -0.019 -0.49 — — — —
F -0.021 -0.56 0.72 -0.72 0.69 -0.70
Na -0.025 -0.58 0.90 -0.61 0.39 -0.35
Al -0.029 -0.62 1.25 -0.95 0.10 -0.40
Si -0.031 -0.63 1.15 -0.83 -0.16 -0.24
S -0.035 -0.67 2.96 -1.77 -0.60 -0.07
Ca -0.042 -0.73 — — — —
Ti -0.045 -0.81 2.04 -1.32 0.09 -0.45
Fe -0.051 -0.89 1.33 -1.19 0.39 -0.81
Cu -0.055 -0.95 0.95 -0.55 0.56 -0.39

Table 7.3: Importance of the relativistic muon corrections compared to the leading-order result.
〈f〉 / 〈g〉 is the ratio of average lower and upper muon wave functions defined, respectively, in
Eq. (7.18) and Eq. (7.17). In the remaining columns, the interference term W 00

OO(i) between
upper- and lower-component isoscalar nuclear responses is compared to the corresponding
upper-component response function W 00

O . All nuclear response functions are evaluated at the
appropriate effective momentum qeff .
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Target
〈f〉

〈g〉

W 11
MM(2)

W 11
M

W 11
Σ′Σ′(0)

W 11
Σ′

W 11
Σ′Σ′(2)

W 11
Σ′

W 11
Σ′′Σ′′(0)

W 11
Σ′′

W 11
Σ′′Σ′′(2)

W 11
Σ′′

C -0.015 -0.55 2.42 -1.39 -0.89 0.10
O -0.019 -0.68 — — — —
F -0.021 -0.73 0.73 -0.72 0.70 -0.71
Na -0.025 -0.74 1.33 -0.89 -0.33 -0.15
Al -0.029 -0.70 1.54 -1.02 -0.16 -0.25
Si -0.031 -0.76 0.91 -0.50 0.30 -0.23
S -0.035 -0.82 3.81 -2.10 -0.76 0.02
Ca -0.042 -1.16 — — — —
Ti -0.045 -1.23 2.14 -1.30 0.01 -0.40
Fe -0.051 -1.19 0.97 -0.97 2.65 -2.60
Cu -0.055 -1.22 1.04 -0.54 0.46 -0.35

Table 7.4: As in Table 7.3 but for isovector responses.

replacement
jJ(qr)→ d

dqr
jJ(qr). (7.30)

Compared to the original upper-component operators, there is no guarantee that the nuclear
responses associated with the muon’s lower component will contribute with a similar magni-
tude. Tables 7.3 and 7.4 compare the size of the relativistic corrections to the corresponding
leading order response in isoscalar and isovector channels, respectively1. In both isospin
channels, the lower-component responses are generally comparable to the upper-component
responses across the range of nuclei considered. The isoscalar charge interference termW 00

MM(2)

contributes at roughly 50% of the strength of the leading charge response W 00
M in C and

at roughly 90% in Cu, smoothly varying between these values for intermediate nuclei. We
observe similar behavior in the isovector charge response. The spin-dependent responses do
not show such a regular pattern, but the ratios are typically order one, with a maximum
of 2.96 (3.81) and a minimum of 0.07 (0.01) in the pure isoscalar (isovector) case. Thus,
there are scenarios where relativistic muon effects are moderately amplified, relative to the
naïve power-counting in 〈f〉 / 〈g〉, by a factor of roughly 3–4 and scenarios where these
corrections are significantly suppressed, by as much as two orders of magnitude. The sign of
the lower-component correction relative to the leading contribution appears to be consistent
across all nuclei for the operators M (2), Σ′(0), and Σ′(2), whereas the sign of the contributions
from Σ′′(0) and Σ′′(2) can vary depending on the target.

In computing the decay rate, the nuclear responses are weighted by different leptonic
1The reported ratios are meant only to assess the strength of the leading lower-component contributions

vis-à-vis the nuclear response. In computing the decay rate, the lower-component interference terms are
additionally suppressed by 〈f〉 / 〈g〉, as in Eq. (7.22).
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R factors. For example, let us consider the case of coherent conversion where, including
relativistic muon effects to first order, the µ→ e decay rate is

Γcoherent = G2
F

π

q2
eff

1 + q
MT

|φZeff
1s (~0)|2

[
R̃00
MW

00
M (qeff) + 2〈f〉

〈g〉
R̃00
MM(2)W

00
MM(2)(qeff)

]
. (7.31)

Assuming that the leptonic response functions are equal in magnitude, the inclusion of the
muon’s lower component corrects the rate obtained from the upper-component result by
≈ 3.6% in 27Al. We can make this scenario more concrete by assuming that the upper- and
lower-component operators arise from a common Lorentz-invariant operator, as in Tables
3.3 and 7.1. For example, suppose that the sole CLFV operator is the relativistic scalar,
isoscalar interaction ēµN̄N . Then, the relevant LECs obey b̃0

2 = ic̃0
1, which implies that

R̃00
M = −R̃00

MM(2) . As a result, we are able to determine that the relativistic correction reduces
the leading-order coherent rate by 3.6% in 27Al.

In these evaluations, we have replaced both the upper g(r) and lower f(r) radial wave
functions of the muon by constant approximations. The errors incurred in the relativistic
corrections due to this procedure are summarized in Table 7.5. In particular, we report the
variation that results when the exact response function

W ττ ′

OgO(i)f (qeff) ≡ 4π
2jN + 1

∑
J

〈jN ||Og
J ;τ (qeff)||jN〉 〈jN ||O(i)f

J ;τ ′(qeff)||jN〉 , (7.32)

is replaced by the constant approximation

〈f〉 〈g〉W ττ ′

OO(i) = 〈f〉 〈g〉 4π
2jN + 1

∑
J

〈jN ||OJ ;τ (qeff)||jN〉 〈jN ||O(i)
J ;τ ′(qeff)||jN〉 . (7.33)

In 27Al and 63Cu, the error incurred in the isoscalar charge response W 00
MM(2) is entirely

negligible. Consequently, the relativistic correction to the coherent rate in Eq. (7.31) should
accurately reproduce the exact result, up to terms of order (〈f〉 / 〈g〉)2. This is not guaranteed
by construction: the average values 〈g〉 and 〈f〉 are defined with respect to the lowest J = 0
multipoles of the operators M and M (2), respectively. The full response function evaluation
includes all allowed multipoles. Contributions from multipoles with J > 0 are highly
suppressed relative to the leading coherent response. In other isospin channels, errors . 5%
are observed in 27Al and 63Cu. Similar errors result when one considers the spin-dependent
responses, with variations as high as 22% in some cases. The typical deviations are ≈ 6.4%
in 27Al and ≈ 5.5% in 63Cu. Thus, the constant approximations should provide a reasonable
estimate of the conversion rate, though, in any case where greater precision is required, the
full radial muon wave functions can be restored in the nuclear matrix elements, as in Eq.
(7.32).

The consideration of relativistic corrections to the muon wave function is most sensible
in a “top-down” approach to µ→ e conversion; that is, if one begins from a particular UV
theory of CLFV and proceeds down to the nuclear scale. Then, it is straightforward—using
the formalism developed here—to include the effect of the lower component of the muon,
sharpening the prediction of the branching ratio by a few percent. (Of course, uncertainties
arising elsewhere in the procedure, for example in the evaluation of nuclear responses, may,
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Target % variation
W 00
MM(2) W 11

MM(2) W 10
MM(2) W 01

MM(2)

27Al 0.00% -5.19% 0.98% -5.91%
63Cu 0.00% -4.05% -1.27% -2.83%

W 00
Σ′Σ′(0) W 11

Σ′Σ′(0) W 10
Σ′Σ′(0) W 01

Σ′Σ′(0)

27Al -5.58% -6.78% -6.20% -6.17%
63Cu -3.26% -4.16% -2.69% -4.76%

W 00
Σ′Σ′(2) W 11

Σ′Σ′(2) W 10
Σ′Σ′(2) W 01

Σ′Σ′(2)

27Al -5.61% -6.47% -6.38% -5.68%
63Cu -10.29% -13.03% -11.04% -12.27%

W 00
Σ′′Σ′′(0) W 11

Σ′′Σ′′(0) W 10
Σ′′Σ′′(0) W 01

Σ′′Σ′′(0)

27Al -2.70% -22.12% -2.59% -22.11%
63Cu 3.57% 3.27% 4.58% 2.37%

W 00
Σ′′Σ′′(2) W 11

Σ′′Σ′′(2) W 10
Σ′′Σ′′(2) W 01

Σ′′Σ′′(2)

27Al -5.33% -3.79% -5.29% -3.82
63Cu -5.78% -7.27% -4.15% -8.86%

Table 7.5: Error incurred when W ττ ′

OgO(i)f is replaced by 〈g〉 〈f〉W ττ ′

OO(i) , where 〈g〉 is obtained
by averaging over the isoscalar monopole operator M00;0 and 〈f〉 is obtained by averaging
over the corresponding lower-component operator M (2)

00;0. To some extent, this table can be
considered as the analogue of Table 2.4, which describes the error incurred in the upper-
component nuclear response functions when g(r) is replaced by its average.
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at least partially, negate the benefit of including these corrections.) In general, however,
the quantities probed by µ → e conversion experiments are not particularly sensitive to
these relativistic effects: The muon’s lower component always enters as a correction to the
upper-component result, which is itself described by 12 independent response functions.
Considerable experimental effort will be required to distinguish among these leading order
responses. In light- and medium-mass nuclei, it is far more important to include in the
effective theory the operators associated with the nucleon velocity, which heretofore have
been completely ignored in the literature.

Any attempt to discern relativistic corrections would almost certainly require conversion
experiments to be performed on very heavy nuclei. In 184W, the inclusion of the muon’s lower
component reduces the expected coherent conversion rate by 50%. In 63Cu, the corresponding
effect is only at the level of 10%. If µ → e conversion were to be observed in 27Al at
Mu2e and COMET, there would be little motivation to thereafter consider an exceedingly
heavy target, aside from perhaps probing the isospin-dependence of CLFV operators with a
neutron-rich target. The spin- and velocity-dependence can be investigated without resorting
to heavy nuclei where relativistic muon corrections complicate the analysis. Nonetheless, the
nucleon-scale effective theory is now equipped to describe heavy nuclei, which may play a
role in determining the nature of CLFV.
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Chapter 8

Scalar-mediated Coherent µ→ e
Conversion

At present, there exist a wealth of possible extensions of the standard model that are not in
tension with current limits on CLFV processes. Although any positive observation of CLFV is
an unambiguous signal of BSM physics, an isolated measurement is not sufficient to distinguish
between candidate UV theories. In this thesis, we have introduced the necessary formalism
at the nuclear scale to extract all of the available information about CLFV operators from
elastic µ→ e conversion experiments. Satisfied that we have constructed the most general
effective theory at the single-nucleon level, our next aim is to connect constraints obtained
on the low-energy constants of the nuclear effective theory to the coefficients of higher-scale
effective theories through a successive matching procedure, eventually making contact with
UV theories of CLFV.

Short of developing the general matching program, in this chapter we focus our attention
on the case of coherent µ→ e conversion mediated by scalar quark operators. We map these
operators to the nucleon-level effective theory, using chiral perturbation theory (with inputs
from lattice QCD) to match the quark and nucleon degrees of freedom through next-to-leading
order. Particular care is devoted to the treatment of the two-nucleon CLFV interaction,
which—in contrast to the single-nucleon coherent operators—cannot be evaluated a priori
using the scalar nuclear density.

We illustrate the advantages of this specialized, top-down approach by computing the
µ → e conversion branching ratio with quantified uncertainty, allowing one to translate
limits on CLFV processes into rigorous constraints on the parameter space of candidate BSM
theories. In the case that CLFV processes are observed, one may leverage complementary
measurements of µ → eγ and µ → e (in multiple nuclear targets) to exclude altogether
particular classes of UV models, including, as we consider, those in which CLFV is mediated
by the standard model Higgs. Finally, we take the first steps toward the general effective
theory matching program by connecting the single-nucleon operators of the nuclear-scale
effective theory to the quark-level Lagrangian of scalar-mediated coherent conversion. The
analysis and discussion in this chapter mirror that originally described in Ref. [57].
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8.1 Quark-level Effective Theories: SM-EFT & LEFT
Augmenting the standard model with higher-dimensional SU(3)c×SU(2)L×U(1)Y invariant
operators constructed from standard-model fields, one obtains the so-called standard model
effective field theory (SM-EFT) [109]. At dimension five, there is only one operator that
obeys the SM gauge symmetries: the famous Weinberg operator [110], which violates lepton
number L by two units and therefore permits processes such as neutrinoless double beta
decay. The Weinberg operator is not relevant to the L-conserving CLFV processes that we
consider in this work1; on the other hand, a variety of CLFV operators arise in SM-EFT at
dimension six.

Below the scale of electroweak symmetry breaking, the SU(2)L×U(1)Y symmetry is broken
to the electromagnetic gauge symmetry U(1)EM. The gauge symmetry that governs the
effective theory is now SU(3)c×U(1)EM, and the consistent set of higher-dimensional operators
is known as low-energy effective field theory (LEFT). The complete set of LEFT operators
up to and including dimension six is known [111], as is their anomalous dimension [112]. At
the electroweak scale, the operators of LEFT can be matched to the operators of SM-EFT
(at tree-level and one-loop [113]).

Thus, one envisions a general procedure, starting with a particular UV theory of CLFV
characterized by some energy scale Λ above the electroweak scale. Below the scale of new
physics, any heavy particles associated with CLFV can be integrated out, inducing higher
dimensional SM-EFT operators. The SM-EFT operators can be renormalized down to
the scale where the Higgs vacuum expectation value breaks electroweak symmetry; at this
point, the SM-EFT operators are matched onto the operators of LEFT. This program of
renormalization and matching was recently carried out for the full set of dimension-six
operators mediating CLFV τ decays [33]. As the procedure is relatively straightforward, and
the physics is well-understood, we shall begin our discussion below the electroweak scale.
Short of considering the most general basis of CLFV LEFT operators, we will restrict our
attention to those operators that arise when CLFV is mediated by a heavy scalar particle—
including, as we consider in detail in Section 8.6, the standard-model Higgs boson. We take
the effective Lagrangian below the electroweak scale to be given by

Leff = − 1
Λ2

∑
α=L,R

[
CDα mµ ēσ

λνPαµ Fλν +
∑

q=u,d,s,c,b,t
C

(q)
Sα GFmµmq q̄q ēPαµ

+ CGα GFmµαs G
a
λνG

a λν ēPαµ+ h.c.
]
,

(8.1)

where Λ is a mass scale associated with the CLFV physics, PL/R = (1∓ γ5) /2 are the chiral
projection operators, Fµν and Ga

µν are, respectively, the photon and gluon field strength
tensors, and the Wilson coefficients CDα, C(q)

Sα, and CGα are dimensionless. The effective
theory of scalar-mediated coherent conversion is therefore specified by 16 dimensionless
Wilson coefficients.

The CLFV operators themselves carry the following mass dimension: the photon dipole
operator is dimension five, the scalar quark operator is dimension six, and the gluonic operator

1One can consider processes that violate both lepton number and lepton flavor, such as µ− → e+ conversion
in nuclei.
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is dimension seven. We have included the factors of mq and αs in the quark and gluon
operators, respectively, to ensure that the Wilson coefficients C(q)

Sα and CGα do not run under
QCD renormalization. When the heavy quarks are integrated out at the GeV scale, their
scalar quark couplings generate contributions to the gluonic Wilson coefficients

CGα → CGα −
1

12π
∑

q=c,b,t
C

(q)
Sα. (8.2)

Otherwise, the effective Lagrangian remains unchanged, with the summation of q in Eq. (8.1)
restricted to q = (u, d, s). This is the reason for retaining the dimension-seven gluon operator
in our treatment: it is induced by the dimension-six heavy quark operators.

The photon dipole term induces the µ→ e conversion process through the exchange of
a virtual photon with the target nucleus, as in Fig. 6.1 (b). The dipole operator can also
mediate the µ→ eγ process whereby an on-shell photon is produced, as in Fig. 6.1 (a). The
branching ratio for this latter process has the simple form

Bµ→eγ = 96π2
(
v

Λ

)4 (
|CDR|2 + |CDL|2

)
. (8.3)

Relating the dipole Wilson coefficients to the electric and magnetic dipole form factors defined
in Eq. (6.1), we find

f̃M(0) = 1
e

(CDL + CDR) ,

f̃E(0) = i

e
(CDL − CDR) ,

(8.4)

where e =
√

4πα is the elementary electromagnetic charge. The on-shell process provides
a valuable complementary constraint on CLFV, particularly when the µ → e conversion
branching ratio can be computed to high accuracy with known uncertainties.

8.2 Connecting Quarks to Nucleons with Chiral Effec-
tive Theory

To make contact with µ → e conversion experiments, we must continue to run down in
energy past the QCD scale where the quarks confine into hadrons. Beyond this point, QCD
becomes strongly coupled, and a perturbative treatment in terms of quark degrees of freedom
becomes intractable. In order to proceed, we must match the quark theory to one in which
the degrees of freedom are protons, neutrons, and light mesons. Retaining only the up and
down quark, in the limit that mu,md → 0, the QCD Lagrangian exhibits a chiral symmetry
SU(2)L×SU(2)R that allows for separate isospin rotations of right-handed and left-handed
up and down quark doublets uL

dL

→ gL

 uL

dL

 ,
 uR

dR

→ gR

 uR

dR

 , (8.5)



CHAPTER 8. SCALAR-MEDIATED COHERENT µ→ e CONVERSION 96

N

µ

N

e

(a)

π π

N

µ

N

e

(b)

π

π

N

µ

N

N

e

N

(c)

Figure 8.1: Diagrams in ChPT contributing to scalar-mediated µ→ e conversion through
next-to-leading order: (a) LO NNeµ contact interaction. (b) NLO two-pion one-loop diagram
with ππeµ vertex. (c) NLO two-nucleon two-pion-exchange diagram with ππeµ vertex.

where gL ∈ SU(2)L and gR ∈ SU(2)R. Ultimately, the chiral symmetry is spontaneously
broken to the vector subgroup SU(2)L × SU(2)R → SU(2)V . (The chiral symmetry is also
explicitly broken by the non-zero quark masses, leading to massive pions as the pseudo-
Goldstone bosons.) Nonetheless, we may construct effective hadronic operators that transform
under the broken chiral symmetry. The resulting effective field theory is known as SU(2)
Chiral Perturbation Theory (ChPT).

In µ→ e conversion, the three-momentum transfer is roughly equal to the strange quark
mass |~q | ≈ ms. Technically, one should retain the strange quark in the preceding analysis and
consider the chiral symmetry SU(3)L × SU(3)R that rotates among the three lightest quarks.
However, as the external nucleon states do not carry net strangeness and the momentum
transfer is not significantly greater than the strange quark mass, one expects that the effect
of the strange quark on CLFV processes will be suppressed relative to the contributions from
up and down quarks. In that case, we may work in SU(2) ChPT with the strange quark
treated as an additional singlet under the chiral symmetry.

The one- and two-nucleon operators arising in SU(2) ChPT through next-to-leading order
(NLO) in chiral power-counting have been computed previously [56, 114–116]. The diagrams
relevant to scalar-mediated coherent µ→ e conversion are shown in Fig. 8.1. The quark-level
operators hadronize into nucleon-level operators as

〈N(~k′)|
(
C

(u)
Sαmuūu+ C

(d)
Sαmdd̄d

)
|N(~k)〉 → N̄ ′J

(1)
ud,α(~q)N

〈N(~k′1)N(~k′2)|
(
C

(u)
Sαmuūu+ C

(d)
Sαmdd̄d

)
|N(~k1)N(~k2)〉 → N̄ ′1N̄

′
2J

(2)
ud,α(~q1, ~q2)N1N2

〈N(~k′)|C(s)
Sαmss̄s|N(~k)〉 → N̄ ′J (1)

s,α(~q)N
〈N(~k′)|CGααsGa

λνG
a λν |N(~k)〉 → N̄ ′J

(1)
G,α(~q)N

〈N(~k′1)N(~k′2)|CGααsGa
λνG

a λν |N(~k1)N(~k2)〉 → N̄ ′1N̄
′
2J

(2)
G,α(~q1, ~q2)N1N2,

(8.6)
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where the corresponding nucleon currents are given by

J
(1)
ud,α(q) =

[
σπN −

3m3
πg

2
A

64πf 2
π

F (q2/m2
π)
]
C

(0)
Sα −

δmN

4 τ3C
(1)
Sα

J
(2)
ud,α (~q1, ~q2) = −g

2
Am

2
π

4f 2
π

~σ(1) · ~q1 ~σ(2) · ~q2

(q2
1 +m2

π) (q2
2 +m2

π) ~τ1 · ~τ2 C
(0)
Sα

J (1)
s,α(q) =

(
σs − σ̇sq2

)
C

(s)
Sα

J
(1)
G,α(q) = −8π

9 CGα

{
mN −

[
σπN −

3m3
πg

2
A

64πf 2
π

F (q2/m2
π)
]

+ δmN

2 τ3 −
(
σs − σ̇sq2

)}

J
(2)
G,α(~q1, ~q2) = −8π

9 CGα
g2
Am

2
π

4f 2
π

~σ(1) · ~q1 ~σ(2) · ~q2

(q2
1 +m2

π) (q2
2 +m2

π) ~τ1 · ~τ2.

(8.7)

The isoscalar and isovector combinations of scalar Wilson coefficients are

C
(0)
Sα = 1− ε

2 C
(u)
Sα + 1 + ε

2 C
(d)
Sα ,

C
(1)
Sα =

(
1− 1

ε

)
C

(u)
Sα +

(
1 + 1

ε

)
C

(d)
Sα ,

(8.8)

where
ε = md −mu

md +mu

, (8.9)

describes the mass difference between up- and down-type quarks. This quantity can be
computed from lattice QCD, and we adopt the value ε = 0.365(23) from the Flavour Lattice
Averaging Group (FLAG) [117]. The strong-force contribution to isospin violation is captured
by the nucleon mass splitting

δmN = (mn −mp)strong , (8.10)

which determines the strength of the isovector contributions. We adopt the lattice QCD
determination δmN = 2.32(17) MeV [118]. The quark content of the nucleons is quantified
by the so-called sigma terms

σπN = 1
2 〈N |(mu +md)(ūu+ d̄d)|N〉 ,

σs = 〈N |mss̄s|N〉 .
(8.11)

For the pion-nucleon sigma term, we employ the value σπN = 59.1(3.5) MeV, obtained
from the Roy-Steiner equations [119]. Lattice QCD calculations of this quantity indicate
σπN = 63(13) MeV (with dynamical charm quark [120]) and σπN = 40(4) MeV (no dynamical
charm quark [121–123]). A recent analysis [124] of the lattice results suggests that the
inclusion of excited state effects can alleviate some of the tension between the (currently
less precise) lattice QCD determinations and the Roy-Steiner value. For the strange sigma
term, we adopt the FLAG value σs = 41(9) MeV [117], while for the slope of this form factor
we take σ̇s = 0.3(2) GeV−1 [125]. Finally, we take gA = 1.2759± 0.0045 [126] as the value
of the nucleon axial-vector coupling constant and fπ = 92.2(1) MeV as the physical pion
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decay constant [117]. Table 8.1 provides a summary of the values of the hadronic parameters
adopted in this work.

The single-nucleon scalar form factor F (x), corresponding to the one-loop diagram in Fig.
8.1, is given by

F (x) = 2 + x√
x

arccot
(

2√
x

)
− 1

≈ 5
12x−

7
240x

2 + 9
2240x

3 + ...

(8.12)

Although the typical momentum transfer2 is comparable to the pion mass

(q/mπ)2 ≈ (mµ/mπ)2 ≈ 0.6, (8.13)

the dependence of the form factor on x is quite mild. (Higher order terms in the Taylor series
are naturally suppressed.) The first-order term reproduces the full expression to 2% accuracy
for x ≤ 1 and to 5% accuracy for 1 < x ≤ 2. Therefore, we are justified in retaining only the
linear term in our analysis.

8.3 Treatment of Two-Nucleon Operators
Having successfully traded the quark degrees of freedom for nucleons, the one- and two-nucleon
CLFV amplitudes are

A(1) = −GFmµ

Λ2

∑
α=L,R

N̄ ′J (1)
α N 〈ēPαµ〉 ,

A(2) = −GFmµ

Λ2

∑
α=L,R

N̄ ′1N̄
′
2J

(2)
α N1N2 〈ēPαµ〉 ,

(8.14)

where

J (1)
α ≡ J

(1)
ud,α + J (1)

s,α + J
(1)
G,α

J (2)
α ≡ J

(2)
ud,α + J

(2)
G,α.

(8.15)

The two-nucleon current J (2)
α presents a significant theoretical challenge. First, the nuclear

effective theory that we have developed throughout this thesis is based entirely on single-
nucleon charges and currents. According to ChPT, however, two-nucleon operators can
contribute to the coherent conversion amplitude at the 10% level. The fact that these terms
are incompatible with the structure of the nuclear effective theory threatens to spoil our
conclusion that µ→ e conversion is governed by six response functions (plus two interference
terms) and to undermine the utility of the effective theory as a tool for constraining the most
general set of CLFV operators.

2In contrast to the effective theory treatment, when we retain the full Dirac solutions for the leptons,
the three-momentum transfer is not a well-defined quantity. Instead, the “typical” momentum transfer is
determined by the electron wave function, which is peaked in momentum space near q = mµ.
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Quantity Accepted Value Reference
σπN 59.1± 3.5 MeV [119]
σs 41± 9 MeV [117]
σ̇s 0.3± 0.2 GeV−1 [125]
ε 0.365± 0.23 [117]
δmN 2.32± 0.17 MeV [118]
fπ 92.2± 0.1 MeV [117]
gA 1.2759± 0.0045 [126]

Table 8.1: Hadronic input parameters, their uncertainties, and references.

The two-nucleon operator also endangers the present top-down approach. In order to
provide a clean prediction for the µ→ e conversion branching ratio Bµ→e with a quantified
error, we must be able to compute the strength of the two-nucleon term and understand
the associated uncertainty. The difficulty with J (2)

α arises because—unlike the single-nucleon
current J (1)

α —total nuclear matrix elements of the two-nucleon current cannot be obtained
using only the (experimentally measured) scalar nucleon density ρN (r) but require knowledge
of the two-nucleon correlation function. One can obtain the two-nucleon correlation function
from a nuclear shell-model calculation, as described in detail in Chapter 9. Such a calculation,
relying on a severely-truncated model space and a phenomenological Hamiltonian, can provide
an estimate of the strength of the two-nucleon operator, but the error cannot be quantified
in any rigorous way. To improve upon this situation somewhat, one would like an additional,
independent determination of the size of the two-nucleon contribution.

Alternative to the shell-model approach, one may replace the two-nucleon operator by an
effective one-body operator by averaging over a degenerate Fermi gas model of the target
nucleus. The resulting single-nucleon operator can then be treated on the same footing as
J (1)
α and evaluated with the scalar nucleon density. More precisely, an effective one-body

operator is obtained by performing a mean-field-like sum over direct and exchange terms

〈α|O(1)|β〉 ≡
∑
γ

〈αγ|O(2)|βγ〉 − 〈αγ|O(2)|γβ〉 , (8.16)

where γ sums over occupied core states. In the degenerate Fermi gas model, each core state
is a direct product of space, spin, and isospin components

|α〉 = |~p(α)〉 ⊗ |12ms(α)〉 ⊗ |12mt(α)〉 . (8.17)

States of momentum ~p are occupied up to the nuclear Fermi momentum kF . The details of
the averaging procedure in the case that O(2) = J (2)

α are relegated to Appendix E. The net
effect of performing the Fermi gas average is a shift in the single-nucleon coupling parameter

σπN → σπN −
3g2

Am
2
πkF

64πf 2
π

fSIeff , (8.18)

where fSIeff is a (nucleus-dependent) constant that encodes the strength of the effective one-body
operator.
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Target cp (fm) cn (fm) β (fm) kF (MeV) q (MeV) fSIeff,FGA fSIeff,NSM

27
13Al 3.05 3.18± 0.19 0.535 238 104.97 0.43+0.03

−0.22 0.18
48
22Ti 3.843 3.843 0.588 255 104.27 0.49+0.03

−0.25 0.18
197
79 Au 6.55 6.83± 0.1 0.522 265 95.61 0.55+0.03

−0.28 —
208
82 Pb 6.624 6.93± 0.09 0.549 265 95.10 0.55+0.03

−0.28 —

Table 8.2: Input parameters and output values of the effective one-body coupling constant
fSIeff for four nuclei of interest. cp (cn) and β are the parameters of the proton (neutron)
density profile, fSIeff,FGA is the value of the spin-independent form factor implied by the Fermi
gas average, and fSIeff,NSM is the value implied by the nuclear shell model (without additional
correlation function).

Table 9.1 compares, in several nuclei of interest, two estimates of the effective single-
nucleon coupling parameter: fSIeff,FGA, the value obtained by the Fermi gas average, and
fSIeff,NSM, the value implied by a shell-model evaluation of the two-nucleon operator. We find
that the FGA result exceeds the NSM result by a factor of ≈ 2–3 in those nuclei, 27Al and
48Ti, for which both calculations were performed. A similar overestimation has been observed
previously in two-nucleon operators that generate nuclear anapole moments [127]. In that
study, which focused on the relatively heavy nuclei 133Cs and 205Tl and considered a variety
of two-body nuclear currents—none of them the operator of present concern—it was found
that the Fermi gas average result was typically 2–3 times larger than the corresponding
shell-model result. Although we did not perform shell-model calculations for the heavy nuclei
197Au and 208Pb, given that the anapole moment study observed this same effect in 133Cs and
205Tl, it seems likely that a similar result would be found for 197Au and 208Pb in the present
case. (In Chapter 9, we compare fSIeff,FGA and fSIeff,NSM for a range of light- to medium-mass
nuclei, from 12C to 63Cu, and observe the same trend.)

We assign to fSIeff,FGA an upper uncertainty that accounts, primarily, for the uncertainty
in the experimental determination of the nuclear Fermi momentum (±5 MeV) and a lower
uncertainty that reflects the expectation that the Fermi gas average tends to overestimate
the shell-model result by approximately a factor of two. This is the value of the effective
single-nucleon coupling constant that we employ in the top-down approach, propagating the
corresponding uncertainty throughout the calculation. We have been rather conservative in
assigning the error, but the lower end of this range may still represent an overestimation
of the strength of the two-nucleon amplitude. The nuclear shell-model calculation is not
rigorous; the two-nucleon correlation function is obtained in a soft Hilbert space that lacks the
high-momentum modes required to resolve the strong repulsion of two nucleons at short range.
Preliminary estimates suggest that the inclusion of the missing short-range physics tends to
further depress the two-nucleon µ→ e conversion operator. (For a detailed discussion of this
issue, see Section 9.2.)

The advantages of the Fermi gas average are twofold. First, it yields an estimate of the
strength of the two-nucleon operator without the need for a computationally intensive nuclear
shell-model calculation; the resulting effective operator can be readily evaluated using the
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scalar nucleon density. Second, the averaging procedure provides additional justification
for basing our nuclear effective theory of µ→ e conversion on single-nucleon currents: any
two-nucleon current that might be relevant can be averaged to an effective one-body operator.
The Fermi gas averaging procedure represents a concrete realization of a generic feature
of nuclear systems: saturation implies that nucleons locally experience little variation in
the nuclear medium with increasing A, and, as a result, density-dependent renormalization
effects are, to a large extent, independent of the target nucleus. This fact is demonstrated
empirically by the apparent constancy of the effective coupling fSIeff,NSM derived from nuclear
shell-model calculations (see Tables 8.2 and 9.1). Therefore, we can interpret the single-
nucleon low-energy constants as already containing information about two-nucleon currents
in the form of effective one-body operators.

In fact, the operator coefficients of the nuclear-scale effective theory should always be
interpreted as effective couplings. In addition to the neglect of higher-body nuclear operators,
the shell-model treatment itself, which typically relies on rather severe model-space truncations
and phenomenological tuning of interactions, can introduce a significant shift in the effective
coupling parameters when the single-nucleon operators are embedded in the target nuclear
system. A famous example of this effect is the renormalization of the axial-vector coupling,
which for a free nucleon has a measured value gA ≈ 1.27. In order for the nuclear shell
model to accurately reproduce beta decay lifetimes of nuclei in the 2s1d valence, an effective
coupling must be employed that reduces the strength of the Gamow-Teller operator by ≈ 20%
[128].

The truncation of the nuclear Hilbert space also induces the mixing of operators within the
same symmetry class, permitting, for example, the axial-vector spin ~σ to mix with the orbital
angular momentum ~̀ and the spin-tensor [Y2(r̂)⊗ ~σ]1. As the operator basis that we employ
to describe µ→ e conversion is complete, the nuclear-scale effective theory should contain
all candidate mixing partners, thereby faithfully encoding this effect into the renormalized
coupling constants. Thus, it is natural to view the single-nucleon LECs as effective coupling
parameters, capable of absorbing the effects of operator mixing and renormalization as well
as contributions from two- and three-nucleon interactions (and momentum-dependent form
factors, as discussed in Section 3.8).

Returning to the specific impact of higher-body operators, the general structure of the
nuclear-scale effective theory—along with the conclusion that six response functions are
probed in elastic µ → e conversion—is unchanged, as long as the contributions from two-
nucleon currents can be reliably captured by effective single-nucleon operators. At such time
that µ→ e conversion is observed experimentally and detailed interpretation of the LECs
is required, one may (in principle) disentangle the various one- and two-nucleon operators
through detailed matching to ChPT, though one must simultaneously unwind the effects of
operator mixing and renormalization induced by the nuclear embedding.

The aforementioned unraveling of the effective LECs is at present not explicitly realizable,
primarily due to the fact that we are currently lacking a bona fide effective treatment of
nuclear many-body systems rooted in the fundamental theory of QCD. (Work in this direction
is ongoing; see Ref. [129] for a review of these efforts.) The first steps in a matching program
capable of separating the various contributions to the effective couplings have only recently
been undertaken in the related case of dark matter direction detection, and many significant
challenges remain. Nonetheless, the fact that these complications—which should arise in any
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general description of the µ→ e conversion process—are elegantly distilled into the effective
single-nucleon LECs makes the nuclear-scale effective theory a useful phenomenology for
understanding CLFV constraints obtained from experiments.

8.4 The Coherent Conversion Branching Ratio
We now proceed to the calculation of the branching ratio, having replaced the two-nucleon
current J (2)

α with an effective contribution to J (1)
α via the substitution in Eq. (8.18). Writing

the standard muon capture rate as Γcapt = κcaptm
5
µ/v

4, the branching ratio for scalar-mediated
µ→ e conversion can be expressed simply as

Bµ→e =
(
v

Λ

)4 1
κcapt

(∣∣∣τ (+1)
∣∣∣2 +

∣∣∣τ (−1)
∣∣∣2) , (8.19)

where τ (±1) are the dimensionless overlap integrals

τ (−1) = (CDL + CDR) τ (−1)
D + τ

(−1)
S ,

τ (+1) = (CDL − CDR) τ (+1)
D − τ (+1)

D .
(8.20)

The superscript (±1) denotes the value of the Dirac eigenvalue κ of the electron solution.
As we retain only the monopole nuclear operator, no angular momentum can be transferred
between the leptons and the nucleus, and therefore the only allowed partial waves for the
electron are those with total angular momentum j = 1/2. The overlap integrals for the dipole
operator can be expressed in terms of the electric field produced by the nuclear charge

τ
(−1)
D = − 1

m
3/2
µ

1
4π

∫ ∞
0

dr
(
G

(e)
−1F

(µ)
−1 + F

(e)
−1G

(µ)
−1

)
E(r),

τ
(+1)
D = − i

m
3/2
µ

1
4π

∫ ∞
0

dr
(
G

(e)
+1G

(µ)
−1 − F

(e)
+1F

(µ)
−1

)
E(r).

(8.21)

Employing a two-parameter Fermi model of the nuclear charge density, the electric field can
be expressed analytically as

E(r) = Ze

r2

∫ r

0
dr′ r′2ρp(r′)

= Ze

r2 + eρ0r

[
β

r
Li1

(
−e(c−r)/β

)
+ 2β

2

r2 Li2
(
−e(c−r)/β

)
+ 2β

3

r3 Li3
(
−e(c−r)/β

)]
,

(8.22)

where ρ0 is the normalization constant defined in Eq. (2.12).
As we are striving to quantify all errors associated with the calculation of the coherent

amplitude, in this chapter we adopt separate values of the nuclear density parameter c for
the proton and neutron distributions, when available [61]. For 48Ti, in the absence of an
independent determination, we retain the assumption that the proton and neutron density
profiles are identical, up to normalization. Table 8.2 summarizes that values that we adopt
for the four nuclei considered in this chapter.
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The scalar overlap integrals

τ
(−1)
S = 1

2GFm
2
µ

∑
N=p,n

[
(Cρ

NL + Cρ
NR) τ (−1)

ρN
+
(
Cf
NL + Cf

NR

)
τ

(−1)
fN

]
,

τ
(+1)
S = 1

2GFm
2
µ

∑
N=p,n

[
(Cρ

NL − C
ρ
NR) τ (+1)

ρN
+
(
Cf
NL − C

f
NR

)
τ

(+1)
fN

]
,

(8.23)

have been decomposed into contributions that are momentum-independent

mµC
ρ
Nα =

(
σπN −

3g2
Am

2
π

64πf 2
π

kFf
SI
eff

)(
C

(0)
Sα + 8π

9 CGα

)
∓ δmN

4

(
C

(1)
Sα + 16π

9 CGα

)
+ σs

(
C

(s)
Sα + 8π

9 CGα

)
− 8π

9 CGαmN ,

(8.24)

and momentum-dependent

mµC
f
Nα = −3g2

Am
3
π

64πf 2
π

5
12

(
C

(0)
Sα + 8π

9 CGα

)
− σ̇sm2

π

(
C

(s)
Sα + 8π

9 CGα

)
. (8.25)

In Eq. (8.24), the minus (plus) sign in the second term corresponds to the proton (neutron).
The basic scalar overlap integrals are

τ (−1)
ρN

= 1
m

5/2
µ

1
4π

∫ ∞
0

dr
(
G

(e)
−1G

(µ)
−1 − F

(e)
−1F

(µ)
−1

)
ρN(r)

τ
(−1)
fN

= 1
m

5/2
µ

1
4π

∫ ∞
0

dr
(
G

(e)
−1G

(µ)
−1 − F

(e)
−1F

(µ)
−1

)
fN(r)

τ (+1)
ρN

= i

m
5/2
µ

1
4π

∫ ∞
0

dr
(
F

(e)
+1G

(µ)
−1 +G

(e)
+1F

(µ)
−1

)
ρN(r)

τ
(+1)
fN

= i

m
5/2
µ

1
4π

∫ ∞
0

dr
(
F

(e)
+1G

(µ)
−1 +G

(e)
+1F

(µ)
−1

)
fN(r),

(8.26)

where ρN is the usual scalar nucleon density and

fN(r) = − 1
m2
π

(
∂2

∂r2 + 2
r

∂

∂r

)
ρN(r), (8.27)

is the position-space representation of the linear term in the expansion of the single-nucleon
scalar form factor F (q2/m2

π).
The resulting values of the overlap integrals are shown in Table 8.3. In the limit that we

neglect the electron mass, a symmetry emerges between the Dirac solutions: F (e)
+1 = −G(e)

−1 and
G

(e)
+1 = F

(e)
−1 . Consequently, the numerical difference between the κ = ±1 overlap integrals is

almost negligible. Comparing the dipole, momentum-independent, and momentum-dependent
overlap integrals directly is not particularly useful, as the scalar quantities τ (±1)

ρN
and τ (±1)

fN

must be multiplied by various hadronic factors before being combined into the expression
for the branching ratio. In order to assess the relative importance of the LO contact, NLO
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Target τ
(−1)
D −iτ (+1)

D τ
(−1)
ρp τ

(−1)
ρn τ

(−1)
fp

τ
(−1)
fn

−iτ (+1)
ρp −iτ (+1)

ρn −iτ (+1)
fp

−iτ (+1)
fn

27
13Al 0.013 0.013 0.043 0.045 0.029 0.030 −0.043 −0.045 −0.029 −0.030
48
22Ti 0.029 0.029 0.099 0.117 0.067 0.079 −0.099 −0.116 −0.067 −0.079
197
79 Au 0.059 0.059 0.148 0.161 0.030 0.007 −0.147 −0.159 −0.029 −0.007
208
82 Pb 0.057 0.057 0.140 0.148 0.022 −0.006 −0.138 −0.147 −0.022 0.006

Table 8.3: Dimensionless overlap integrals computed for the target nuclei of interest.

Target ILO(−)
p I

NLO(−)
p,loop I

NLO(−)
p,2N ILO(−)

n I
NLO(−)
n,loop I

NLO(−)
n,2N

27
13Al 268.49 -9.65 -25.2 280.16 -10.01 -26.30
48
22Ti 618.10 -22.15 -70.84 730.48 -26.18 -83.72

197
79 Au 924.93 -9.79 -123.66 1003.3 -2.31 -134.13
208
82 Pb 871.15 -7.23 -116.47 923.59 2.00 -123.48

Table 8.4: Comparison of the LO and NLO contributions [defined in Eq. (8.28)] in units of
MeV2. Given the near degeneracy of the Dirac solutions, we report the results for κ = −1
only. In computing the two-nucleon contribution, we have adopted the value of the effective
one-body coupling obtained from the Fermi gas average.

one-loop, and NLO two-nucleon contributions, we define

I
LO(±)
N ≡ σπNmµτ

(±1)
ρN

,

I
NLO(±)
N,loop ≡ −3g2

Am
3
πmµ

64πf 2
π

5
12τ

(±1)
fN

,

I
NLO(±)
N,2N ≡ −3g2

Am
2
πkFmµ

64πf 2
π

fSIeff τ
(±1)
ρN

.

(8.28)

The corresponding values in the nuclei of interest are given in Table 8.4. The NLO
contributions generically come with a minus sign relative to the LO result, thereby reducing
the expected CLFV amplitude. In 27Al, the one-loop correction amounts to ≈ 4% of the LO
result whereas the two-nucleon diagram contributes at the level of 10%. In very heavy nuclei,
the momentum-dependent one-loop effect is suppressed while the two-nucleon operator still
contributes a ≈ 10% correction to the LO amplitude.

The above calculations were performed by adopting the central values of the relevant
hadronic parameters (see Table 8.1). To assess the sensitivity of the overlap integrals to
each input parameter, we vary one parameter at a time over its 1σ error range and compute
the ratio of the resulting overlap integral τ (−1)

S to the “central value” overlap integral τ (−1)
S,c .

The outcome depends on the values of the quark Wilson coefficients, and so we consider two
illustrative examples: (1) the case where only down-type right-handed quarks contribute,
C

(d,s,b)
SR 6= 0, with all other couplings set to zero (2) the case where all right-handed quarks

contribute, Cq=all
SR 6= 0. In both scenarios, all non-zero Wilson coefficients are assumed equal
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Figure 8.2: Dependence of the scalar overlap integrals τ (−1)
S on the hadronic parameters σπN ,

σs, and ε, the two-nucleon contribution, represented by 2N(fSIeff ), and the NLO single-nucleon
form factors, represented by 1N FF (u, d) and (s). In each case, the relevant parameter is
varied over its 1σ range of uncertainty, and the resulting value of τ (−1)

S is compared to that
obtained when all parameters are set to their central values. In the left panel, only down-type
right-handed quarks have non-zero Wilson coefficients. In the right panel, all right-handed
quarks contribute.

(i.e., C(d)
SR = C

(s)
SR = C

(b)
SR in the former case).

Figure 8.2 shows the dependence of the scalar overlap integrals on the hadronic parameters
σπN , σs, and ε, as well as the two-nucleon contribution, represented by the effective coupling
fSIeff , and the single-nucleon form factors. The strange-quark form factor depends on the
quantity σ̇s. We assign to the isoscalar form factor an uncertainty corresponding to ±50% of
the central value. The parameters gA, fπ, and δmN are not included, as the impact of their
uncertainty is too minor to be discerned on the scale of the figure. In both scenarios, the
leading source of uncertainty is the strange quark sigma term. When only the down-type
quarks are active, the uncertainty in σs translates to ≈ 10% error on the scalar overlap
integrals. This effect is somewhat diminished when the number of contributing quark flavors
is increased from three to six. In fact, the inclusion of additional heavy quarks reduces the
sensitivity of the overlap integrals to all of the input parameters, as the gluonic coupling
CGα contributes to τS primarily though the term proportional to mN . The µ→ e conversion
amplitude is fairly insensitive to the precise value of the two-nucleon effective coupling:
reducing the value of fSIeff by a factor of 2 results in a ≈ 1–2% increase in the overlap integrals.

One important source of error that is not represented in Fig. 8.2 is the uncertainty in
the determination of the neutron density profile. The error on the value of cn determined
from experiments on pionic atoms is ≈ 6% in 27Al, which propagates to ≈ 5% error on the
resulting neutron overlap integrals. In 48Ti, we have assumed that the proton and neutron
density profiles are equivalent, up to normalization. While these distributions are effectively
the same in light systems with roughly equal numbers of protons and neutrons, in nuclei
with an appreciable neutron excess the neutron density is peaked at a larger radius than the
proton density, and one may incur significant error by assuming that cn = cp. For example, in



CHAPTER 8. SCALAR-MEDIATED COHERENT µ→ e CONVERSION 106

56Fe—a nucleus close in mass to 48Ti but for which a measurement of the neutron density is
available—the difference between using a neutron density measured in pionic atoms compared
to assuming that cn = cp results in ≈ 7% change in the neutron overlap integrals. Accounting
for this discrepancy, as well as the underlying uncertainty in the neutron profile parameter,
we assume an overall error of 8% on the Ti neutron overlap integrals. The proton density
parameters, which are constrained by electron scattering experiments, are known to a much
higher precision than their neutron analogues. Their error is neglected in this analysis.

The relative importance of the NLO contributions depends on the nature of the underlying
CLFV physics. In scenarios where flavor-violation is driven primarily by the light quarks, the
size of the NLO contribution can exceed the uncertainty on the LO result, implying that the
NLO corrections are relevant to phenomenology. Consider the case in which only the two
lightest quarks have non-zero couplings, C(u)

Sα ≈ C
(d)
Sα . Then the 1σ uncertainty on the LO

result for Bµ→e(Al) is ±13%, and the NLO contribution reduces the LO branching ratio by
≈ 25%. Including the strange quark, C(u)

Sα ≈ C
(d)
Sα ≈ C

(s)
Sα, increases the LO uncertainty on the

branching ratio to ±19% and decreases slightly the relative size of the NLO contribution to
23% of the LO rate. Still, the NLO correction exceeds the LO uncertainty. On the other hand,
in scenarios with large contributions from either photon dipole operators or gluonic couplings
(possibly induced by heavy quarks), the relative significance of the NLO contributions can be
substantially diminished.

8.5 Dipole-Scalar Dominance Model
As an application of the top-down approach, we consider the dipole-scalar dominance model
[130], where the only CLFV sources are the photon dipole and scalar quark operators. For
simplicity, we limit to right-handed down-type quark operators and introduce a parameter r
that describes the relative strength of the dipole and scalar operators

CDR = r

8eCSR, (8.29)

with CSR = C
(d)
SR = C

(s)
SR = C

(b)
SR. All other Wilson coefficients are set to zero. Although this

setup may seem contrived, such a scenario may, in fact, be explicitly realized in some regions
of the R-parity conserving SUSY seesaw parameter space [131] and within R-parity violating
SUSY [132–134].

In addition to µ→ e conversion, the photon dipole operator mediates the on-shell µ→ eγ
process. Applied to the dipole-scalar dominance model, the top-down formalism provides
concrete predictions for the CLFV branching ratios Bµ→eγ and Bµ→e (in various target
nuclei). By taking ratios of these quantities, we arrive at a result that depends only on
the dipole-scalar ratio r. Figure 8.3 shows the behavior of the quotient Bµ→e(Al)/Bµ→eγ,
including the associated uncertainty, as r is varied. For r . 10−5, the scalar quark operators
dominate, the photon production rate becomes increasingly suppressed, and the result is
sensitive to the uncertainty in the hadronic physics. For r & 10−5, the response is dictated
by the dipole coupling, the relevant nuclear physics simplifies dramatically (depending only
on the nuclear charge), and the overall error becomes negligible.
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Figure 8.4 compares the ratio Bµ→e(Ti)/Bµ→e(Al) as a function of r. As in the previous
example, there is a clear transition (near r = 10−5) between the scalar- and dipole-dominated
regions. When the process is dipole-dominated, the uncertainty is, as before, negligibly small.
In the scalar-dominated region, not only is the prediction sensitive to the uncertainty in the
hadronic input parameters, but significant error—at the level of ±10%—results from the
uncertainty in the neutron density profile.

The width of the lines in Figs. 8.3 and 8.4 should only be used to compare the relative
uncertainty (as r is varied) within each plot. It is misleading to compare the line width
between the two figures, as the scale of the vertical axes is different. For example, at r = 10−7,
where the process is dominated by the scalar quark operators, the uncertainty stemming from
hadronic parameters in Bµ→e(Al)/Bµ→eγ is ±20%, whereas the corresponding uncertainty in
Bµ→e(Ti)/Bµ→e(Al) is ±0.5% (±15% including the error in the neutron density parameter
cn). Variations in the hadronic input parameters have relatively little effect on the quantity
Bµ→e(Ti)/Bµ→e(Al), as any impact on the individual branching ratios largely cancels in their
quotient. The opposite is true for Bµ→e(Al)/Bµ→eγ, where the leading source of uncertainty
is the hadronic parameters, especially σs, while the error in the neutron density has little
effect on the overall result.

With these results, we have succeeded in our original ambition to produce testable
predictions from a quark-level effective theory of CLFV. If experiments succeed in measuring
the quantities Bµ→e(Ti)/Bµ→e(Al) and Bµ→e(Al)/Bµ→eγ , and the implied values of the dipole-
scalar ratio r are not consistent with one another, then one can confidently exclude the
dipole-scalar dominance model. Alternatively, if such measurements do yield a consistent
value of r, then it would significantly restrict the parameter space of candidate UV theories.
We now turn to the consideration of one such BSM model, in which flavor violation is
mediated by the standard-model Higgs, generating both dipole and scalar operators.

8.6 Higgs-Mediated CLFV
As an explicit example of the top-down formalism that we have developed, let us consider
the Higgs-mediated CLFV model with effective Lagrangian

L = −YeµēPRµh− Yµeµ̄PReh+ h.c., (8.30)

specified by two Yukawa-like coupling parameters Yeµ, Yµe. The tree-level Higgs exchange
shown in Fig. 8.5 (a) induces the scalar quark couplings

1
Λ2GFmµvC

(q)
SR = − 1

m2
h

Yeµ,

1
Λ2GFmµvC

(q)
SL = − 1

m2
h

Yµe,
(8.31)

where mh = 125 GeV is the Higgs boson mass. Thus, in the Higgs-mediated model, the scalar
quark Wilson coefficients are independent of quark flavor.

The Yukawa-like CLFV interaction generates a coupling of the leptons to on-shell photons
at one- and two-loop level. The one-loop diagrams are shown in Fig. 8.5 (b) and (c). Given
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Figure 8.3: Comparison of the branching ratios for µ → e conversion in 27Al and µ → eγ
within the dipole-scalar dominance model, as the ratio of dipole and scalar Wilson coefficients
r is varied. The width of the curve indicates the uncertainty obtained by varying each of the
hadronic input parameters over its 1σ range.
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Figure 8.4: Comparison of the µ→ e conversion branching ratios in Ti and Al within the
dipole-scalar dominance model, as the ratio of dipole and scalar Wilson coefficients r is varied.
The width of the curve indicates the uncertainty obtained by varying each of the hadronic
input parameters over their 1σ range. The light-blue shaded region shows the uncertainty
when the error in the neutron density parameters is included in the analysis.
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µ e

q q(a)

µ

h

µ

γ

µ e
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e

h
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γ
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Figure 8.5: CLFV Higgs Diagrams. (a) Tree-level Higgs exchange that mediates µ → e
conversion (b) One-loop diagram that induces µ → eγ with muon Yukawa coupling. (c)
One-loop diagram that induces µ→ eγ with electron Yukawa coupling. The dotted vertex is
the CLFV Higgs coupling.
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the hierarchy of the lepton Yukawas, Yµµ � Yee, diagram (b) dominates, and the one-loop
contributions to the CLFV dipole couplings are given approximately by [135]

1
Λ2C

1loop
DR ≈ − e

32π2
1
m2
h

Yµµ

[
ln m

2
h

m2
µ

− 4
3

]
Yeµ ≈ −5.27× 10−6 1

m2
h

Yeµ,

1
Λ2C

1loop
DL ≈ − e

32π2
1
m2
h

Yµµ

[
ln m

2
h

m2
µ

− 4
3

]
Yµe ≈ −5.27× 10−6 1

m2
h

Yµe.

(8.32)

Thus, the leading one-loop diagram contributing to µ → eγ is suppressed by the muon’s
standard-model Yukawa coupling to the Higgs, Yµµ. At two-loop order, this suppression
can be avoided by the Bar-Zee type diagrams shown in Fig. 8.6, whose flavor-conserving
analogues contribute to fermion electric dipole moments [136, 137]. We do not reproduce the
full result for the two-loop amplitudes here—complete gauge-invariant expressions can be
found in Ref. [33]. Numerically, the two-loop contributions to the dipole Wilson coefficients
are roughly three orders of magnitude larger than the one-loop contributions

1
Λ2C

2loop
DR ≈ −4.67× 10−3 1

m2
h

Yeµ,

1
Λ2C

2loop
DL ≈ −4.67× 10−3 1

m2
h

Yµe,
(8.33)

and therefore dominate the response. We now recognize that Higgs-mediated CLFV has
the form of the dipole-scalar dominance model considered in the previous section with
dipole-scalar ratio r = 3.4× 10−6.

The µ→ eγ branching ratio can be expressed in terms of the unknown CLFV Yukawas as

Bµ→eγ ≈ 0.312
(
|Yeµ|2 + |Yµe|2

)
, (8.34)

from which one can immediately exclude regions of parameter space based on the existing limit
from MEG, Bµ→eγ < 4.2× 10−13, and the expected limit from MEG II, Bµ→eγ < 6× 10−14.
Using Eq. (8.19), the branching ratio for the coherent conversion process can also be used
to restrict the values of Yeµ and Yµe. The resulting exclusion plot is shown in Fig. 8.7.
The strongest limit on the CLFV Yukawas is currently provided by MEG. In the future,
the conversion experiments, Mu2e and COMET, should provide a more sensitive probe of
Higgs-mediated CLFV than MEG II. In addition to tree-level Higgs exchange, µ → e is
also induced by the dipole operator through exchange of a virtual photon with the nuclear
charge. In fact, the contribution to the conversion rate in 27Al from virtual photon exchange
is roughly 4 times larger than the contribution from tree-level Higgs exchange—the quark
Yukawa in the latter process introduces a suppression factor mN/v = o (10−3), even for the
heaviest quarks.

We now demonstrate the primary advantage of the top-down approach by computing the
branching ratio for µ→ e conversion with a quantified uncertainty

Bµ→e(Al)
Bµ→eγ

= (8.7± 0.3)× 10−3, (8.35)

where we have divided by the branching ratio for the on-shell photon process to remove any
dependence on the unknown CLFV parameters. Therefore, if these quantities were to be
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Figure 8.6: Two-loop diagrams that constitute the dominant contribution to µ → eγ in
Higgs-mediated CLFV. The dotted vertex is the CLFV Higgs coupling.
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measured at Mu2e/COMET and MEG II, respectively, and their ratio fell significantly outside
of the 1σ uncertainty window, then it would be good evidence to disfavor the Higgs-mediated
CLFV model specified by Eq. (8.30). The same is true when comparing the conversion rate
in different nuclei— the following ratio is predicted by the Higgs-mediated theory:

Bµ→e(Ti)
Bµ→e(Al) = 1.5± 0.1. (8.36)

The primary source of error in the ratio in Eq. (8.35) is the uncertainty in the hadronic
input parameters, whereas the primary source of error in Eq. (8.36) is the uncertainty in
the neutron overlap integrals. When computing the ratio of µ→ e conversion rates in two
different targets, the hadronic uncertainties are common to both nuclei and therefore have a
negligible impact on the overall error.

8.7 Matching to Nuclear Effective Theory
The top-down approach to µ→ e conversion that we have outlined in this chapter is a valuable
tool for constraining certain classes of BSM models—particularly, as we have considered,
theories in which flavor violation is mediated by a heavy scalar particle. Our grand objective,
however, is to establish the complete chain of effective theories depicted in Fig. 1.2, spanning
from the very high energies where the BSM physics originates, all the way down to the scale
of µ→ e conversion experiments where the response is rooted in the simple, factorized form
of the nuclear-scale effective theory developed in this work. The top-down treatment of
scalar-mediated conversion represents the first steps in this program, connecting a limited set
of UV operators to their nucleon-level counterparts. In particular, the isoscalar and isovector
single-nucleon currents are related to the quark-level Wilson coefficients by

J (T=0)
α (q2) =

[
σπN −

3m3
πg

2
A

64πf 2
π

(
F
(
q2/m2

π

)
+ kF
mπ

fSIeff

)](
C

(0)
Sα + 8π

9 CGα

)
+
(
σs − σ̇sq2

) (
C

(s)
Sα + 8π

9 CGα

)
− 8π

9 CGαmN

J (T=1)
α (q2) = −δmN

4

(
C

(1)
Sα + 16π

9 CGα

)
.

(8.37)

In the nuclear effective theory, the one-loop pion form factor F (q2/m2
π) and the momentum-

dependent correction to the strange quark sigma term σ̇sq
2 will be evaluated at the effective

momentum transfer qeff .
The low-energy coefficient c1 corresponds to the scalar leptonic charge and therefore

depends on the sum of right- and left-handed Wilson coefficients

c̃0
1 = 1

2
√

2
mµ

Λ2

{[
σπN −

3g2
Am

3
π

64πf 2
π

(
F
(
q2

eff/m
2
π

)
+ kF
mπ

fSIeff

)] [
C

(0)
SR + C

(0)
SL + 8π

9 (CGR + CGL)
]

+
(
σs − σ̇sq2

eff

) [
C

(s)
SR + C

(s)
SL + 8π

9 (CGR + CGL)
]
− 8π

9 mN (CGR + CGL)
}

+
√
απ

v2

Λ2 (CDR + CDL) ,
(8.38)
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Figure 8.7: Exclusion curves for the Higgs-mediated CLFV model considered in Eq. (8.30).
The dashed (solid) black curve shows the (expected) limit for on-shell µ → eγ conversion
obtained from MEG (MEG II). The branching ratio limits are Bµ→eγ < 4.2× 10−13 for the
MEG experiment and 6× 10−14 for MEG II. The red (blue) curve corresponds to a µ→ e
branching ratio limit Bµ→e(Al) < 10−17 (7× 10−15).
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whereas c11 corresponds to the lepton axial charge and depends on the difference of right-
and left-handed Wilson coefficients

c̃0
11 = i

2
√

2
mµ

Λ2

{[
σπN −

3g2
Am

3
π

64πf 2
π

(
F
(
q2

eff/m
2
π

)
+ kF
mπ

fSIeff

)] [
C

(0)
SR − C

(0)
SL + 8π

9 (CGR − CGL)
]

+
(
σs − σ̇sq2

eff

) [
C

(s)
SR − C

(s)
SL + 8π

9 (CGR − CGL)
]
− 8π

9 mN (CGR − CGL)
}

+ i
√
απ

v2

Λ2 (CDR − CDL) .
(8.39)

Similarly, for the isovector operators

c̃1
1 = − 1

2
√

2
mµ

Λ2
δmN

4

[
C

(1)
SR + C

(1)
SL + 16π

9 (CGR + CGL)
]

+
√
απ

v2

Λ2 (CDR + CDL)

c̃1
11 = − i

2
√

2
mµ

Λ2
δmN

4

[
C

(1)
SR − C

(1)
SL + 16π

9 (CGR − CGL)
]

+ i
√
απ

v2

Λ2 (CDR − CDL) .
(8.40)
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Chapter 9

Two-Nucleon Contribution to µ→ e
Conversion

In the previous chapter, we identified a two-nucleon diagram [shown in Fig. 8.1 (c)] that
contributes to scalar-mediated µ→ e conversion at next-to-leading order in the chiral power
counting. Such operators have important consequences for the interpretation of experimental
outcomes—in coherent conversion, the two-nucleon contribution can reduce the expected
CLFV rate by ≈ 20%. Furthermore, the ability to fully utilize the single-nucleon effective
theory that we have developed in this work depends on understanding the impact of higher-
body operators and the degree to which they can be approximated by effective one-body
operators.

Here, we demonstrate how the coherent two-nucleon operator is evaluated in the nuclear
shell model, comparing the result to that obtained from the Fermi gas effective one-body
operator. We discuss the limitations of the shell-model calculation. In particular, we identify a
strong dependence on the two-nucleon correlation function, which has known deficiencies when
obtained from the nuclear shell model. Despite these obstacles, the shell-model calculation
provides decent evidence that the essential two-body physics can be well-described by an
effective single-nucleon operator.

9.1 The Two-Nucleon Operator in Position Space
In Appendix F, we demonstrate that the total two-nucleon operator contributing to scalar-
mediated µ→ e conversion can be expressed as

O(2)(q) = −g
2
Am

2
π

4f 2
π

1
2
∑
i 6=j

7∑
k=1
Ok(~rij, ~Rij, q) ~τ(i) · ~τ(j), (9.1)

where ~rij = ~ri − ~rj, ~Rij = (~ri + ~rj)/2, and the summation over i, j extends over all nucleons
in the target nucleus. The seven independent operators are

O1(~r, ~R, q) = − 1
12
√
π
~σ(1) · ~σ(2)

∞∑
L=0,2,...

YL(r̂)� YL(R̂) jL(qR)

×
∫ 1

0
dα e−rΠ(q,α)jL (qr(α− 1/2)) 2− rΠ(q, α)

r
,

(9.2)
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O2(~r, ~R, q) = 1
12
√
π
~σ(1) · ~σ(2)

∞∑
L=0,2,...

YL(r̂)� YL(R̂) jL(qR)

×
∫ 1

0
dα e−rΠ(q,α)jL(qr (α− 1/2)) q

2α(1− α)
Π(q, α) ,

(9.3)

O3(~r, ~R, q) = 1
5
√

24π

∞∑
L1=0,2,...

∞∑
L2=0,2,...

(−1)(L1−L2)/2C20
L10L20

√
(2L1 + 1)(2L2 + 1)jL2(qR)

×
[
YL1(r̂)⊗ YL2(R̂)

]
2
� [~σ(1)⊗ ~σ(2)]2

∫ 1

0
dα e−rΠ(q,α)jL1 (qr(α− 1/2)) q

2α(1− α)
Π(q, α) ,

(9.4)

O4(~r, ~R, q) = 1
5
√

24π

∞∑
L1=0,2,...

∞∑
L2=0,2,...

C20
L10L20

√
(2L1 + 1)(2L2 + 1)jL2(qR)

×
[
YL1(r̂)⊗ YL2(R̂)

]
2
� [~σ(1)⊗ ~σ(2)]2

∫ 1

0
dα e−rΠ(q,α)jL2(qr(α− 1/2))1

r
[1 + rΠ(q, α)] ,

(9.5)

O5(~r, ~R, q) = 1
12
√
π

∞∑
L1=1,3,...

∞∑
L2=0,2,...

(−1)(1+L1−L2)/2
(2L1 + 1

2L2 + 1

) (
CL20
L1010

)2

× jL2(qR) YL2(r̂)� YL2(R̂) ~σ(1) · ~σ(2) q
∫ 1

0
dα e−rΠ(q,α)(1− 2α)jL1(qr(α− 1/2)),

(9.6)

O6(~r, ~R, q) = − 1
4
√
π

∞∑
L1=0,2,...

∞∑
L2=1,3,...

∞∑
J=1,3,...

(−1)(1+L1−L2)/2CL20
L1010C
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1 J 1
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1
� [~σ(1)⊗ ~σ(2)]1 jL2(qR) q

∫ 1

0
dα e−rΠ(q,α)jL1(qr(α− 1/2)),

(9.7)
and

O7(~r, ~R, q) = − 1
4
√
π

∞∑
L1=1,3,...
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L2=0,2,...

∞∑
J=0,2,...

(−1)(1+L1−L2)/2CL20
L1020C

J0
L1020

 L1 1 L2

2 J 1


× (2L1 + 1)

[
YJ(r̂)⊗ YL2(R̂)

]
2
� [~σ(1)⊗ ~σ(2)]2

× jL2(qR) q
∫ 1

0
dα e−rΠ(q,α)(1− 2α)jL1(qr(α− 1/2)).

(9.8)

In the above operators, α is a Feynman parameter and

Π2(q, α) ≡ α(1− α)q2 +m2
π. (9.9)

Total nuclear matrix elements of the two-nucleon operator can be computed in terms of the
reduced two-body density matrix, as discussed in Appendix C.2. Each of the seven operator
structuresOk(~r, ~R, q) contains an infinite sum of tensor operators indexed by angular momenta
L, (L1, L2), or (L1, L2, J). It is worth exploring whether these series can be truncated in
practical calculations. Figure 9.1 shows the relative strength of various operator components
in 27Al, normalized by the strength of the leading contribution, the L = 0 component of
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Figure 9.1: The relative strength of various tensor components of the two-nucleon operators
evaluated in 27Al with q = 104.976 MeV. Labels in parentheses indicate the angular momenta
(L), (L1, L2), or (L1, L2, J) of the tensor operator. For this chart, we ignore the sign of the
resulting matrix element and normalize by the leading operator, the L = 0 component of O1.
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Figure 9.2: Total nuclear matrix element of the NLO coherent two-body operator contributing
to µ→ e conversion as a function of three-momentum transfer q for the case of 27Al. The
orange and blue curves, respectively, show the matrix element computed from a nuclear
shell-model wave function with and without the additional two-body correlation function of
Eq. (9.17). The marked points denote the physically relevant value of the three-momentum
transfer q ≈ mµ. The green point and error bars indicate the value of the 1-body effective
operator obtained via the Fermi gas average calculation.

O1(~r, ~R, q). We see that there are only five components that contribute above the level of
1%. Two of these operators, the dominant L = 0 mode of O1 and the (L1 = 2, L2 = 0)
mode of O4, correspond to the two distinct operator structures that survive in the q → 0
limit [see Eq. (F.19)]. The three remaining operators that contribute significantly to the
total two-body operator are the L = 0 mode of O2, the (L1 = 1, L2 = 0) mode of O5, and
the (L1 = 0, L2 = 1, J = 1) mode of O6. These operators represent intrinsically finite-q
corrections to the two-nucleon response.

We have retained the full q dependence of the two-nucleon operator based on the fact
that the magnitude of the three-momentum transfer in µ→ e conversion is comparable to
the pion mass, q ≈ mπ. Figure 9.2 shows the value of the total two-body nuclear matrix
element in 27Al as a function of three-momentum transfer q. The strength of the operator
at q = mµ is reduced by roughly 40% from the value at q = 0. The finite-q corrections are
significant and should not be neglected.

Figure 9.2 also compares the nuclear shell-model result to the Fermi gas average result at
the physically relevant value of the momentum-transfer q ≈ mµ. As discussed in Section 8.2,
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the Fermi gas result is roughly a factor of two larger than the shell-model result. We can
compute the value of the effective 1-body coupling implied by the shell-model calculation,
fSIeff,NSM, by equating the matrix elements

〈Ji||O(2)(q)||Ji〉 = −3g2
Am

2
πkF

64πf 2
π

fSIeff,NSM 〈Ji||M0(q)||Ji〉 , (9.10)

where M00(q) = ∑A
i=1 j0(qri)Y00(r̂i) is the one-body isoscalar monopole charge operator. The

resulting values of fSIeff,NSM for the nuclear targets of interest are shown in Table 9.1. The
effective coupling implied by the shell model is essentially constant across the range of nuclei
from 12C to 63Cu, and the value is insensitive to the interaction employed to obtain the
nuclear wave function.

The FGA result is consistently larger than the NSM result, by a factor that ranges from
2.0 for 12C to 2.83 for 63Cu. The effective one-body coupling implied by the NSM calculation
fSIeff,NSM is nearly constant across the range of nuclei considered in Table 9.1. The fact that
the shell-model result does not depend strongly on the target isotope or the shell-model
interaction is evidence that the two-nucleon physics can be well-described by an effective
one-body operator. Unlike the shell-model calculations, the Fermi gas average does not
include any correlations between nucleons. In principle, the two-nucleon operator can depend
strongly on these correlations, in which case we would expect to observe significant variation
in the value of fSIeff,NSM as the target is varied. Fortunately, it appears that the two-nucleon
operator depends primarily on the single-nucleon density, and therefore can be captured by a
single-nucleon effective operator.

The one-body monopole operator can be evaluated using either measured proton and
neutron densities or the same many-body wave function that is used to evaluate the two-body
operator. Using the measured densities we find

〈Ji||M0(q)||Ji〉ρ = 11.69± 0.23, (9.11)
whereas the NSM wave function yields

〈Ji||M0(q)||Ji〉NSM = 11.81. (9.12)
Thus the NSM value is consistent with the measured nuclear density result. The uncertainty
in the value computed from proton and neutron densities is due entirely to the error in the
determination of the neutron density.

Having identified the most important components of the two-nucleon operator, we may
obtain a simplified form by expanding to first order in q/mπ. To this order, Π(q, α) ≈ mπ,
and consequently the Feynman parameter integrals can be performed analytically. Combining
the leading multipoles of O1, O2, O4, O5, and O6, we may express the total two-nucleon
operator in terms of three unique tensor structures

O(2)(q) = − g2
Am

2
π

64π3/2f 2
π

1
2
∑
i 6=j

e−rijmπ

rij

1
3~σ(i) · ~σ(j) j0(qRij)

[
F (0)(qrij/2) + q

mπ

F
′(0)(qrij/2)

]
+ r̂ · ~σ(i) r̂ · ~σ(j) j0(qRij)F (1)(qrij/2)

−
[
r̂ij × R̂ij

]
·
[
~σ(i)× ~σ(j)

]
j1(qRij)F (2)(qrij/2)

~τ(i) · ~τ(j).

(9.13)
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Isotope kF (MeV) q (MeV) fSIeff,FGA fSIeff,NSM fSDeff,FGA

12
6 C 221.0 105.07 0.36+0.03

−0.18 0.18 0.38+0.04
−0.19

16
8 O 225.7 105.11 0.38+0.03

−0.19 0.18 0.40+0.04
−0.20

19
9 F 229.2 105.12 0.40+0.03

−0.20 0.18, 0.18, 0.18 0.41+0.04
−0.21

23
11Na 233.8 105.07 0.41+0.03

−0.21 0.18, 0.18, 0.18 0.42+0.04
0.21

27
13Al 238.0 104.98 0.43+0.03

−0.22 0.18, 0.18, 0.18 0.43+0.03
−0.22

28
14Si 239.0 104.91 0.43+0.03

−0.22 0.18, 0.18, 0.18 0.44+0.03
−0.22

32
16S 243.0 104.78 0.45+0.03

−0.23 0.18, 0.18, 0.18 0.45+0.03
−0.23

40
20Ca 251.0 104.45 0.48+0.03

−0.24 0.19 0.47+0.03
−0.24

48
22Ti 255.0 104.28 0.49+0.03

−0.25 0.18, 0.18, 0.18 0.48+0.03
−0.24

56
26Fe 259.0 103.84 0.51+0.03

−0.26 0.18, 0.18, 0.18 0.48+0.03
−0.24

63
29Cu 259.0 103.48 0.51+0.03

−0.26 0.18, 0.18, 0.18 0.48+0.03
−0.24

Table 9.1: Input parameters and outputs for the one-body averaging of the two-nucleon
coherent operator: kF is the nuclear Fermi momentum, obtained by linear interpolation
between the values measured in Ref. [138], q is the value of the three-momentum transferred
to the nucleus, fSIeff,FGA is the value of the effective spin-independent coupling obtained from
the Fermi gas average, fSIeff,NSM is the value implied by the nuclear shell-model evaluation
of the two-nucleon operator, fSDeff,FGA is the value of the effective spin-dependent coupling
obtained from the Fermi gas average (see Appendix E). Shell-model wave functions for 12C,
16O, and 40Ca are taken to be an inert core. The nuclei 19F, 23Na, 27Al, and 28Si are modeled
in the 2s-1d valence space above an inert 16O core. The nuclei 48Ti and 56Fe are modeled
in the 2p-1f valence space above an inert 40Ca core. 63Cu is modeled in the 1f5/2-2p-1g9/2
valence space above an inert 56Ni core. The interactions employed in the sd valence space
are BW [93], USDA [92], USDB [92], in the fp valence space GXPF1 [96], KB3G [95], KB′
[97], and in the pfg valence space JUN45 [98], GCN2850 [100], jj44b [99]. Multiple entries of
fSIeff,NSM for a single target correspond to calculations performed with different shell-model
interactions (ordered as they appear in this caption).
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The form factors are given by

F (0)(z) ≡ −1
z

Si(z)− 2j0(z)

F
′(0)(z) ≡ 1

2Si(z)− 2j1(z)

F (1)(z) ≡ j0(z)
F (2)(z) ≡ sin(z),

(9.14)

where
Si(x) ≡

∫ x

0
dt

sin t
t
. (9.15)

9.2 Correlation Function
The shell-model calculations that we have performed may still overestimate the strength
of the two-nucleon contribution. The nuclear shell-model wave functions are obtained by
diagonalizing a phenomenological interaction that has been tuned to reproduce low-energy
nuclear observables, such as charge radii and low-lying spectra. The model spaces employed
in these calculations are severely truncated. In 27Al, the valence nucleons are restricted to the
2s-1d harmonic oscillator shells. Although this treatment is capable of accurately reproducing
a range of nuclear observables, it is known to fail at capturing the following behavior: at
short range, the two-nucleon potential is strongly repulsive, causing a hole to develop in the
two-nucleon correlation function at very small separations.

Resolving this fine structure, however, requires high-momentum modes that are not
included in the typically very soft Hilbert spaces of nuclear shell-model calculations. To
demonstrate this concretely, we take the exact S-channel deuteron wave function obtained by
solving the Schrödinger equation with potential given by the Argonne v18 (Av18) potential
[139] and project this solution into harmonic oscillator spaces of varying dimension, specified
by a cutoff in harmonic oscillator quanta of N = 100 (101 states), N = 50 (51 states), N = 10
(6 states) and finally N = 0 (1 state). In Fig. 9.3, these model-space projections are compared
to the exact wave function. Although the long-range behavior is faithfully reproduced by
the projected wave functions, the “hole” in the exact wave function at small separations
is removed when the higher momentum modes are integrated out. The closest analogue
to the nuclear shell-model calculations that we employ in our µ → e studies is the N = 1
curve. Thus, the two-nucleon correlation function obtained in our shell-model calculations is
erroneously enhanced at short range.

In the present case, the induced error is of particular consequence because matrix elements
of the two-nucleon µ→ e conversion operator strongly depend on the short-range behavior of
the two-nucleon correlation function. As illustrated in Fig. 9.1, the leading contribution to
the two-nucleon amplitude in 27Al is the L = 0 multipole of the O1 operator, which has the
following dependence on the relative radial coordinate:

V1(r, q) ≡
∫ 1

0
dα e−rΠ(q,α)j0(qr(α− 1/2))2− rΠ(q, α)

r
(9.16)
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Figure 9.3: The 3S1 component of the deuteron wave function projected into various harmonic
oscillator spaces indexed by cutoff in oscillator quanta N . The coordinate r is the separation
between the two nucleons. The exact solution is obtained from the potential Av18. A value
for the harmonic oscillator parameter b = 1.7 fm was employed in these calculations.
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Figure 9.4: Dependence of the leading 2-body multipole on the relative radial coordinate
r. The solid blue curve show the bare radial potential evaluated at the momentum transfer
q = mµ. The dashed orange curve shows the same radial potential modified by an ad
hoc correlation function that is intended to restore the hole in the two-nucleon density at
short-range.

For small values of r, V1(r, q) ∝ 1/r, and the potential divergences. This behavior is illustrated
in Fig. 9.4. In matrix elements, the divergence is regulated by the harmonic oscillator basis,
yielding a finite result. Nonetheless, the matrix element is very sensitive to the behavior of
the two-nucleon correlation function. We can see this explicitly by modifying the two-nucleon
density with the addition of an ad hoc correlation function [140]

ψ(~ri, ~rj)→ (1− β(rij))ψ(~ri, ~rj)
β(r) = e−ar

2 (1− br2
)
,

(9.17)

where a = 1.1 fm−2 and b = 0.68 fm−2. The radial coordinate here is rij = |~ri − ~rj|. The
effect of this modification is to add a hole to the two-nucleon density at separations r . 1 fm
while leaving the long-distance behavior unchanged. We see this effect in Fig. 9.4, where the
additional correlation function removes the divergence at r = 0. Compared to the bare result,
the total two-body matrix element in 27Al is reduced by ≈ 40% by the additional correlation
function, as in Fig. 9.2.

The shell-model wave functions that we obtain are not genuine effective wave functions.
No attempt is made to properly normalize them in the model space (i.e., to account for the
proportion of the total wave function that lies outside of the model space). Furthermore,
when computing matrix elements with the shell-model wave functions, we (erroneously)
evaluate only the bare operator. Having truncated the full Hilbert space down to a model
space, the bare operator must be replaced by an effective operator that accounts for the
physics that has been integrated out. Although a framework does exist for promoting the
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nuclear-shell model to a bona fide effective theory [141–145], these considerations are beyond
the scope of the current work. For now, it suffices to have some estimate of the strength of
the two-nucleon operator in µ→ e conversion, particularly given that our estimates likely
represent an upper limit, as evidenced by the significant reduction effected by the addition of
the ad hoc correlation function.
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Chapter 10

Conclusions

Before summarizing the work presented in this thesis, we discuss two directions for future
endeavors: First, we generalize the effective theory to describe the inelastic process in
which the nucleus transitions to an excited state. This result will enable new efforts, in
close consultation with experimentalists, to identify the best opportunities for constraining
the unique CLFV operators that are probed when µ → e conversion proceeds via nuclear
excitation. Second, we discuss the steps that remain in connecting the nuclear-scale theory
to effective theories formulated at higher energy scales. Once completed, this program will
allow us to leverage the full information extracted from µ → e conversion experiments to
constrain candidate BSM theories.

10.1 Next Step: Inelastic µ→ e Conversion
In Chapter 3, we identified 11 independent response functions arising from the multipole
decomposition of the relevant nuclear charges and currents. Restricting our attention to the
case of elastic conversion, we found that the approximate parity and time-reversal symmetries
of the nuclear ground state permit only six allowed response functions to contribute to the
CLFV amplitude (each response appearing in only even or odd multipoles). Consequently, we
determined that 4 of the 16 single-nucleon CLFV operators are not probed in elastic µ→ e
conversion. This apparent blind spot can be remedied by extending the effective theory
formalism to the case of inelastic µ→ conversion, allowing the nucleus to transition to an
excited state. Experimentally, it is a considerable challenge to distinguish outgoing electrons
originating in the inelastic conversion process from background electrons. Nonetheless, one
can likely set interesting limits on otherwise inaccessible regions of CLFV parameter space.

The energy required to excite the nucleus is subtracted from the energy of the outgoing
electron

Ee = mµ − Ebind
µ − ~q 2

2MT

−∆Enuc, (10.1)

where ∆Enuc is the energy difference between the final and initial nuclear states. The case
of elastic conversion (∆Enuc = 0) is experimentally favorable because the energy of the
conversion electron is at the exact endpoint of the spectrum of background electrons that
originate in standard-model µ→ e+ 2ν decays. In the inelastic process, the outgoing electron
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is shifted into a region with considerably larger backgrounds. Near the endpoint energy, the
spectrum of background decay-in-orbit electrons may be approximated as [146]

1
Γ0

dΓ
dEe
≈ B

(
mµ − Ebind

µ − Ee −
E2
e

2MT

)5

, (10.2)

where
Γ0 =

G2
Fm

5
µ

192π3 , (10.3)

is the free-muon decay rate and B = 8.98×10−17 MeV−6 in 27Al. The µ→ e+2ν background
increases dramatically as the electron energy decreases (as the fifth power of the energy
difference from the endpoint). Sufficiently far from the endpoint energy, one begins to
encounter an additional electron background from radiative muon capture (RMC)

µ− + A(Z,N)→ νµ + γ + A(Z − 1, N + 1), (10.4)

where the emitted photon can subsequently undergo pair production γ → e+e−. The
maximum energy of the emitted electron is limited by the mass difference between the initial
and final nuclei. In 27Al, with daughter nucleus 27Mg, the endpoint of the RMC electron
spectrum is 2.61 MeV below the conversion electron energy.

The spectrum of background electrons in 27Al is shown in Fig. 10.1. The RMC background
is indicated by a region, as the exact shape of this spectrum near the endpoint is not well
known. There are four states of 27Al that are capable of producing µ→ e conversion electrons
with an energy above the endpoint of the RMC background: the ground state with spin
J = 5

2
+ and the first three excited states with spin J = 1

2
+, 3

2
+, and 7

2
+, respectively, and

excitation energies ∆Enuc = 0.844 MeV, 1.015 MeV, and 2.212 MeV. The design goal of the
Mu2e experiment is to reconstruct the energy of the outgoing electron with full width at half
maximum (FWHM) resolution ≈ 900 KeV for electrons near the endpoint of the spectrum.
To assess the magnitude of the decay-in-orbit background relevant to each transition, we
have marked resolution windows1 around the energy of the electron produced when µ→ e
conversion proceeds to each of the four final states. The decay-in-orbit background for the
inelastic process is several orders of magnitude larger compared to the ground-state process.
Even if they can be discerned above the background, given the substantial overlap of the
J = 1

2
+ and J = 3

2
+ states, it will be quite difficult to distinguish the two energy levels.

Despite these challenges, it is worthwhile to consider the limits that can be obtained, as
the inelastic process is capable of probing CLFV operators to which the elastic process is
completely insensitive.

The construction of the inelastic effective theory proceeds in a similar manner to the
elastic case. As before, we employ the effective momentum approximation for the outgoing
electron, now accounting for the energy lost to nuclear excitation

q2
eff = MT

mµ +MT

[(
mµ − Ebind

µ −∆Enuc − V̄c
)2
−m2

e

]
. (10.5)

1The actual energy response function of Mu2e is asymmetric, with a long low-energy tail. See Fig. 3.16 of
Ref. [53].
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Figure 10.1: Comparison of the backgrounds for elastic and inelastic µ→ e conversion. The
curve shows the differential decay rate for standard model µ→ e+ 2ν decays. The vertical
bands represent the approximate energy resolution window of the Mu2e detector, centered
on the energy of the outgoing conversion electron for the ground state J = 5

2
+ and first three

excited states J = 1
2

+, J = 3
2

+, and J = 7
2

+ of 27Al.
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The 16 operators introduced in Section 3.4 still represent the most general basis of single-
nucleon CLFV operators in the inelastic case. The µ → e conversion amplitude is then
expressed in terms of 11 independent nuclear response functions

M =
√
Ee

2me

|φZeff
1s (~0)|qeff

q

∑
τ=0,1

〈12sf ; jfmf |
∞∑
J=0

√
4π(2J + 1)(−i)J

[
lτ0MJ0;τ (qeff)− ilA τ

0
qeff

mN

Ω̃J0;τ (qeff)
]

+
∞∑
J=1

√
2π(2J + 1)(−i)J

∑
λ=±1

[
− lτ5λ

(
λΣJ−λ;τ (qeff) + iΣ′J−λ;τ (qeff)

)

+ i
qeff

mN

lτMλ

(
λ∆J−λ;τ (qeff) + i∆′J−λ;τ (qeff)

)
+ i

qeff

mN

lτEλ
(
λΦ̃J−λ;τ (qeff) + iΦ̃′J−λ;τ (qeff)

) ]

+
∞∑
J=0

√
4π(2J + 1)(−i)J

[
ilτ50Σ′′J0;τ (qeff) + qeff

mN

lτM0∆̃′′J0;τ (qeff)

+ qeff

mN

lτE0Φ′′J0;τ (qeff)
] |12si; jimi〉 ,

(10.6)

where ji and jf are, respectively, the total angular momentum of the initial and final nuclear
states.

The inelastic process need not conserve parity, and as a result the summation over multipole
angular momenta is not restricted to even or odd J . When we consider a particular nuclear
final state, then the contributing operators will be limited based on their P transformation
properties (see Table 3.1). The constraint of parity also determines the interference terms
that can contribute to the overall conversion rate. For example, although ∆ and Σ are both
transverse-magnetic projections, they do not interfere because for fixed J they connect to
states of opposite parity.

Let us assume that the nuclear transition conserves parity. We will also assume that the
CP violation in the nuclear wave functions is negligible, so that all nuclear matrix elements
are real. Then the µ→ e transition probability may be written as

1
2ji + 1

∑
mf ,mi

| 〈12sf ; jfmf |M|
1
2si; jimi〉 |2 = Ee

2me

|φZeff
1s (~0)|2 q

2
eff
q2

4π
2ji + 1

∑
τ=0,1

∑
τ ′=0,1

∞∑
J=0,2,...

 〈lτ0〉 〈lτ ′0 〉
∗ 〈jf ||MJ,τ (qeff)||ji〉 〈jf ||MJ,τ ′(qeff)||ji〉

+ ~qeff

mN

· 〈~lτE〉
~qeff

mN

· 〈~lτ ′E 〉
∗
〈jf ||Φ′′J,τ (qeff)||ji〉 〈jf ||Φ′′J,τ ′(qeff)||ji〉

+ ~qeff

mN

· 〈~lτM〉
~qeff

mN

· 〈~lτ ′M〉
∗
〈jf ||∆̃′′J,τ (qeff)||ji〉 〈jf ||∆̃′′J,τ ′(qeff)||ji〉

+ 2~qeff

mN

· Re
[
〈~lτE〉 〈lτ

′

0 〉
∗] 〈jf ||Φ′′J,τ (qeff)||ji〉 〈jf ||MJ,τ ′(qeff)||ji〉
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+ 2~qeff

mN

· Re
[
〈~lτM〉 〈lτ

′

0 〉
∗] 〈jf ||∆̃′′J,τ (qeff)||ji〉 〈jf ||MJ,τ ′(qeff)||ji〉

+ 2Re
[
~qeff

mN

· 〈~lτE〉
~qeff

mN

· 〈~lτ ′M〉
∗
]
〈jf ||Φ′′J,τ (qeff)||ji〉 〈jf ||∆̃′′J,τ ′(qeff)||ji〉


+

∞∑
J=2,4,...

1
2

(
q2

eff
m2
N

〈~lτE〉 · 〈~lτ
′

E 〉
∗
− ~qeff

mN

· 〈~lτE〉
~qeff

mN

· 〈~lτ ′E 〉
∗
)
〈jf ||Φ̃′J,τ (qeff)||ji〉 〈jf ||Φ̃′J,τ ′(qeff)||ji〉

+ 1
2

(
q2

eff
m2
N

〈~lτM〉 · 〈~lτ
′

M〉
∗
− ~qeff

mN

· 〈~lτM〉
~qeff

mN

· 〈~lτ ′M〉
∗
)
〈jf ||∆′J,τ (qeff)||ji〉 〈jf ||∆′J,τ ′(qeff)||ji〉

+ 1
2
(
〈~lτ5〉 · 〈~lτ

′

5 〉
∗
− q̂ · 〈~lτ5〉 q̂ · 〈~lτ

′

5 〉
∗)
〈jf ||ΣJ,τ (qeff)||ji〉 〈jf ||ΣJ,τ ′(qeff)||ji〉

− ~qeff

mN

· Re
[
i 〈~lτ5〉 × 〈~lτ

′

M〉
∗]
〈jf ||ΣJ,τ (qeff)||ji〉 〈jf ||∆′J,τ ′(qeff)||ji〉 (10.7)

− ~qeff

mN

· Re
[
i 〈~lτ5〉 × 〈~lτ

′

E 〉
∗]
〈jf ||ΣJ,τ (qeff)||ji〉 〈jf ||Φ̃′J,τ ′(qeff)||ji〉

+ Re
[
q2

eff
m2
N

〈~lτM〉 · 〈~lτ
′

E 〉
∗
− ~qeff

mN

· 〈~lτM〉
~qeff

mN

· 〈~lτ ′E 〉
∗
]
〈jf ||∆′J,τ (qeff)||ji〉 〈jf ||Φ̃′J,τ ′(qeff)||ji〉


+

∞∑
J=1,3,...

 q2
eff
m2
N

〈lA τ
0 〉 〈lA τ ′

0 〉∗ 〈jf ||Ω̃J,τ (qeff)||ji〉 〈jf ||Ω̃J,τ ′(qeff)||ji〉

+ q̂ · 〈~lτ5〉 q̂ · 〈~lτ
′

5 〉
∗
〈jf ||Σ′′J,τ (qeff)||ji〉 〈jf ||Σ′′J,τ ′(qeff)||ji〉

+ 1
2
(
〈~lτ5〉 · 〈~lτ

′

5 〉
∗
− q̂ · 〈~lτ5〉 q̂ · 〈~lτ

′

5 〉
∗)
〈jf ||Σ′J,τ (qeff)||ji〉 〈jf ||Σ′J,τ ′(qeff)||ji〉

+ 1
2

(
q2

eff
m2
N

〈~lτM〉 · 〈~lτ
′

M〉
∗
− ~qeff

mN

· 〈~lτM〉
~qeff

mN

· 〈~lτ ′M〉
∗
)
〈jf ||∆J,τ (qeff)||ji〉 〈jf ||∆J,τ ′(qeff)||ji〉

+ 1
2

(
q2

eff
m2
N

〈~lτE〉 · 〈~lτ
′

E 〉
∗
− ~qeff

mN

· 〈~lτE〉
~qeff

mN

· 〈~lτ ′E 〉
∗
)
〈jf ||Φ̃J,τ (qeff)||ji〉 〈jf ||Φ̃J,τ ′(qeff)||ji〉

+ ~qeff

mN

· Re
[
i 〈~lτM〉 × 〈~lτ

′

5 〉
∗]
〈jf ||∆J,τ (qeff)||ji〉 〈jf ||Σ′J,τ ′(qeff)||ji〉

+ ~qeff

mN

· Re
[
i 〈~lτE〉 × 〈~lτ

′

5 〉
∗]
〈jf ||Φ̃J,τ (qeff)||ji〉 〈jf ||Σ′J,τ ′(qeff)||ji〉

− 2~qeff

mN

· Re
[
〈~lτ5〉 〈lA τ ′

0 〉∗
]
〈jf ||Σ′′J,τ (qeff)||ji〉 〈jf ||Ω̃J,τ ′(qeff)||ji〉

+ Re
[
q2

eff
m2
N

〈~lτM〉 · 〈~lτ
′

E 〉
∗
− ~qeff

mN

· 〈~lτM〉
~qeff

mN

· 〈~lτ ′E 〉
∗
]
〈jf ||∆J,τ (qeff)||ji〉 〈jf ||Φ̃J,τ ′(qeff)||ji〉

.

We see that all 11 nuclear response functions—and various interference terms—contribute to
this process. Many of the leptonic factors are not unique. We recover eight familiar leptonic



CHAPTER 10. CONCLUSIONS 130

response functions, unchanged from the elastic effective theory:

Rττ ′

M ≡ cτ1c
τ ′∗
1 + cτ11c

τ ′∗
11

Rττ ′∗
Φ′′ ≡ cτ3c

τ ′∗
3 + (cτ12 − cτ15)(cτ ′∗12 − cτ

′∗
15 )

Rττ ′

Σ′′ ≡ (cτ4 − cτ6)(cτ ′∗4 − cτ
′∗

6 ) + cτ10c
τ ′∗
10

Rττ ′

Φ̃ = Rττ ′

Φ̃′ ≡ cτ12c
τ ′∗
12 + cτ13c

τ ′∗
13

Rττ ′

Σ = Rττ ′

Σ′ ≡ cτ4c
τ ′∗
4 + cτ9c

τ ′∗
9

Rττ ′

∆ = Rττ ′

∆′ ≡ cτ5c
τ ′∗
5 + cτ8c

τ ′∗
8

Rττ ′

Φ′′M ≡ Re
[
cτ3c

τ ′∗
1 − (cτ12 − cτ15)cτ ′∗11

]
Rττ ′

∆′Σ = Rττ ′

∆Σ′ ≡ Re
[
cτ5c

τ ′∗
4 + cτ8c

τ ′∗
9

]
,

(10.8)

and seven new leptonic response functions, unique to the inelastic case:

Rττ ′

Ω̃ ≡ cτ7c
τ ′∗
7 + cτ14c

τ ′∗
14

Rττ ′

∆̃′′ ≡ cτ2c
τ ′∗
2 + (cτ8 − cτ16)(cτ ′∗8 − cτ

′∗
16 )

Rττ ′

∆̃′′M ≡ Im
[
−cτ2cτ

′∗
1 + (cτ8 − cτ16)cτ ′∗11

]
Rττ ′

Φ′′∆̃′′ ≡ Im
[
−cτ3cτ

′∗
2 − (cτ12 − cτ15)(cτ ′∗8 − cτ

′∗
16 )

]
Rττ ′

Σ′′Ω̃ ≡ Im
[
(cτ4 − cτ6)cτ ′∗14 − cτ10c

τ ′∗
7

]
Rττ ′

∆Φ̃ = Rττ ′

∆′Φ̃′ ≡ Im
[
cτ5c

τ ′∗
13 + cτ8c

τ ′∗
12

]
Rττ ′

Σ′Φ̃ = Rττ ′

ΣΦ̃′ ≡ Im
[
−
(
cτ4c

τ ′∗
13 + cτ9c

τ ′∗
12

)]
.

(10.9)

The first two novel terms are direct contributions, whereas the remaining five are interference
terms. The direct terms correspond to multipoles of the axial charge Ω̃ and the longitudinal
projection of the convection current ∆̃′′. Together, these responses provide sensitivity to the
four LECs to which the elastic theory is blind: c2, c7, c14, and c16. The five new interference
terms depend on the LECs containing an imaginary component. In general, these coefficients
are complex. (Table 3.3 demonstrates that imaginary components arise naturally from the
relativistic matching.)

In total, we identify 15 unique CLFV response functions, allowing one to probe 15
independent combinations of the underlying LECs, compared to 8 independent combinations
probed by the elastic process. The transverse-electric and transverse-magnetic projections of
a given current are always paired with the same leptonic response, reducing the number of
unique LEC combinations that can be constrained.
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The rate for inelastic µ→ e conversion can then be expressed as

Γ = G2
F

π

q2
eff

1 + q
MT

|φZeff
1s (~0)|2

∑
τ=0,1

∑
τ ′=0,1

R̃ττ ′

M W ττ ′

M (qeff) + q2
eff
m2
N

R̃ττ ′

Ω̃ W ττ ′

Ω̃ (qeff)

+ R̃ττ ′

Σ′′W
ττ ′

Σ′′ (qeff) + R̃ττ ′

Σ′
(
W ττ ′

Σ′ (qeff) +W ττ ′

Σ (qeff)
)

+ q2
eff
m2
N

[
R̃ττ ′

∆̃′′W
ττ ′

∆̃′′ (qeff) + R̃ττ ′

∆′
(
W ττ ′
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N

[
R̃ττ ′
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M∆̃′′(qeff)− R̃ττ ′
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Φ′′∆̃′′W
ττ ′
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Σ′Φ̃(qeff)−W ττ ′
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)

+ 2q2
eff

m2
N

R̃ττ ′

∆Φ̃

(
W ττ ′

∆Φ̃(qeff) +W ττ ′

∆′Φ̃′(qeff)
).

(10.10)

As usual, the notation R̃ indicates that the leptonic responses have been expressed in terms
of dimensionless LECs, defined relative to the weak scale v. For transitions that conserve
parity, the nuclear response functions are

W ττ ′

O (q) ≡ 4π
2ji + 1

∞∑
J=0,2,...

〈jf ||OJ ;τ (q)||ji〉 〈jf ||OJ ;τ ′(q)||ji〉 for O = M,Φ′′, ∆̃′′

W ττ ′

O (q) ≡ 4π
2ji + 1

∞∑
J=1,3,...

〈jf ||OJ ;τ (q)||ji〉 〈jf ||OJ ;τ ′(q)||ji〉 for O = Σ′,Σ′′,∆, Ω̃, Φ̃

W ττ ′

O (q) ≡ 4π
2ji + 1

∞∑
J=2,4,...

〈jf ||OJ ;τ (q)||ji〉 〈jf ||OJ ;τ ′(q)||ji〉 for O = Φ̃′,∆′,Σ

W ττ ′

Φ′′M(q) ≡ 4π
2ji + 1

∞∑
J=0,2,...

〈jf ||Φ′′J ;τ (q)||ji〉 〈jf ||MJ ;τ ′(q)||ji〉

W ττ ′

∆Σ′(q) ≡
4π

2ji + 1

∞∑
J=1,3,...

〈jf ||∆J ;τ (q)||ji〉 〈jf ||Σ′J ;τ ′(q)||ji〉

W ττ ′

∆′Σ(q) ≡ 4π
2ji + 1

∞∑
J=2,4,...

〈jf ||∆′J ;τ (q)||ji〉 〈jf ||ΣJ ;τ ′(q)||ji〉 (10.11)

W ττ ′

O∆̃′′(q) ≡
4π

2ji + 1
∑

J=0,2,...
〈jf ||OJ ;τ (q)||ji〉 〈jf ||∆̃J ;τ ′(q)||ji〉 , for O = M, Φ̃′′

W ττ ′

Σ′′Ω̃(q) ≡ 4π
2ji + 1

∞∑
J=1,3,...

〈jf ||Σ′′J ;τ (q)||ji〉 〈jf ||Ω̃J ;τ ′(q)||ji〉

W ττ ′

∆Φ̃(q) ≡ 4π
2ji + 1

∞∑
J=1,3,...

〈jf ||∆J ;τ (q)||ji〉 〈jf ||Φ̃J ;τ ′(q)||ji〉

W ττ ′

∆′Φ̃′(q) ≡
4π

2ji + 1

∞∑
J=2,4,...

〈jf ||∆′J ;τ (q)||ji〉 〈jf ||Φ̃′J ;τ ′(q)||ji〉
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W ττ ′

Σ′Φ̃(q) ≡ 4π
2ji + 1

∞∑
J=1,3,...

〈jf ||Σ′J ;τ (q)||ji〉 〈jf ||Φ̃J ;τ ′(q)||ji〉

W ττ ′

ΣΦ̃′(q) ≡
4π

2ji + 1

∞∑
J=2,4,...

〈jf ||ΣJ ;τ (q)||ji〉 〈jf ||Φ̃′J ;τ ′(q)||ji〉 .

If the nucleus transitions to a state of opposite parity, then the nuclear response functions
must change to opposite parity. In this case, the conversion rate is still described by Eq.
(10.10), the leptonic response functions R are unchanged, but the nuclear response functions
are given by

W ττ ′

O (q) ≡ 4π
2ji + 1

∞∑
J=1,3,...

〈jf ||OJ ;τ (q)||ji〉 〈jf ||OJ ;τ ′(q)||ji〉 for O = M,Φ′′, ∆̃′′, Φ̃′,∆′,Σ

W ττ ′

O (q) ≡ 4π
2ji + 1

∞∑
J=0,2,...

〈jf ||OJ ;τ (q)||ji〉 〈jf ||OJ ;τ ′(q)||ji〉 for O = Σ′′, Ω̃

W ττ ′

O (q) ≡ 4π
2ji + 1

∞∑
J=2,4,...

〈jf ||OJ ;τ (q)||ji〉 〈jf ||OJ ;τ ′(q)||ji〉 for O = Φ̃,∆,Σ′

W ττ ′

Φ′′M(q) ≡ 4π
2ji + 1

∞∑
J=1,3,...

〈jf ||Φ′′J ;τ (q)||ji〉 〈jf ||MJ ;τ ′(q)||ji〉

W ττ ′

∆Σ′(q) ≡
4π

2ji + 1

∞∑
J=2,4,...

〈jf ||∆J ;τ (q)||ji〉 〈jf ||Σ′J ;τ ′(q)||ji〉

W ττ ′

∆′Σ(q) ≡ 4π
2ji + 1

∞∑
J=1,3,...

〈jf ||∆′J ;τ (q)||ji〉 〈jf ||ΣJ ;τ ′(q)||ji〉 (10.12)

W ττ ′

O∆̃′′(q) ≡
4π

2ji + 1
∑

J=1,3,...
〈jf ||OJ ;τ (q)||ji〉 〈jf ||∆̃J ;τ ′(q)||ji〉 , for O = M, Φ̃′′

W ττ ′

Σ′′Ω̃(q) ≡ 4π
2ji + 1

∞∑
J=0,2,...

〈jf ||Σ′′J ;τ (q)||ji〉 〈jf ||Ω̃J ;τ ′(q)||ji〉

W ττ ′

∆Φ̃(q) ≡ 4π
2ji + 1

∞∑
J=1,3,...

〈jf ||∆J ;τ (q)||ji〉 〈jf ||Φ̃J ;τ ′(q)||ji〉

W ττ ′

∆′Φ̃′(q) ≡
4π

2ji + 1

∞∑
J=1,3,...

〈jf ||∆′J ;τ (q)||ji〉 〈jf ||Φ̃′J ;τ ′(q)||ji〉

W ττ ′

Σ′Φ̃(q) ≡ 4π
2ji + 1

∞∑
J=2,4,...

〈jf ||Σ′J ;τ (q)||ji〉 〈jf ||Φ̃J ;τ ′(q)||ji〉

W ττ ′

ΣΦ̃′(q) ≡
4π

2ji + 1

∞∑
J=1,3,...

〈jf ||ΣJ ;τ (q)||ji〉 〈jf ||Φ̃′J ;τ ′(q)||ji〉 .

Having obtained the expression for the inelastic µ → e conversion rate, significant work
remains in fully utilizing this formalism. In order to determine the most suitable targets
for constraining CLFV-induced transitions to excited nuclear states, we must work with
experimentalists to carefully consider the impacts of various backgrounds and detector
limitations. In addition, further study of the novel inelastic nuclear response functions ∆̃′′
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and Ω̃ must undertaken in hopes of identifying nuclear targets with enhanced sensitivity to
inelastic CLFV operators. To this end, additional nuclear shell-model calculations must be
performed in order to obtain wave functions that accurately describe the low-lying excited
states of interest.

Finally, we note that special attention must be devoted to the operators O′2 and O′16,
which contain the longitudinal projection of the nuclear convection current q̂ · ~vN , a quantity
constrained by current conservation through Siegert’s theorem [147]. The continuity equation
in position space takes the form

~∇ · ~J(~x) = ρ̇(~x) = −i [H0, ρ(~x)] , (10.13)

where ρ is the charge and H0 is the nuclear Hamiltonian. Equation 10.13 implies that the
longitudinal projection of the convection current is related to the standard charge operator.
Explicitly,

L( ~Jc) = i

q

∫
d3x

[
~∇ (jJ(qx)YJM(x̂))

]
· ~Jc(~x)

= − i
q

∫
d3x jJ(qx)YJM(x̂) ~∇ · ~Jc(~x)

= 1
q

∫
d3x jJ(qx)YJM(x̂) [H0, ρ(~x)]

= q0

q
MJM(q),

(10.14)

where q0 = Ef − Ei is the time component of the four-momentum transfer. Therefore the
constraint of current conservation implies the existence of a redundancy between the operators
∆̃′′ and MJM .

In practice, the situation is more subtle. For free nucleons, one reasonably expects that
the nuclear convective current and charge density will obey the continuity equation. When
the nucleons are embedded in the nucleus, however, the relevant degrees of freedom are the
A − 1 inter-nucleon Jacobi coordinates, which are unconstrained by external kinematics.
Thus, further study is required to determine the impact that current conservation has on the
form of the inelastic nuclear response.

10.2 Next Step: Effective Theory Matching
The nuclear scale is a natural setting for an effective theory treatment of the low-energy
µ→ e conversion process, allowing us to factorize the CLFV leptonic physics from the nuclear
physics, each described in terms of response functions that are directly probed by experiments.
Understanding the interplay between the various nuclear response functions—depending on
both macroscopic nuclear quantities and details of nuclear structure—provides us with a
pathway to extracting all of the information about CLFV operators that µ→ e conversion
experiments (performed across a range of nuclear targets) can provide. Whether or not flavor
violation is ultimately observed, the constraints obtained from µ→ e conversion experiments
provide information about the potential form of BSM physics. Of course, the nuclear-scale
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theory alone is not a complete tool for distinguishing among candidate UV theories. In order
to translate limits obtained at low energies into constraints on the parameter space of CLFV
BSM models, one must construct the full tower of effective theories illustrated in Fig. 1.2,
with the nuclear-scale effective theory as the low-energy base that interfaces directly with
experiment.

In Chapter 8, we implemented a portion of this matching program, for the limited case
of coherent µ → e conversion mediated by heavy scalar particles, allowing us to connect
limits on CLFV branching ratios directly to constraints on parameters of candidate UV
theories. In order for this formalism to apply to any extension of the standard model, we
must undertake the full matching program, wherein a complete basis of CLFV operators
is constructed at each relevant energy scale in terms of appropriate degrees of freedom. At
the boundaries between these energy domains, the operators in neighboring theories can be
matched. Specifically, below the scale of new CLFV physics and above the scale of electroweak
symmetry breaking, the effect of BSM operators can be described within standard model
effective field theory (SM-EFT). When the Higgs boson acquires a vacuum expectation value,
electroweak symmetry is spontaneously broken, and the relevant description is the so-called
low-energy effective field theory (LEFT). (See Section 8.1 for a brief review of SM-EFT
and LEFT). These effective theories have already been employed in the study of CLFV τ
decays at the Electron-Ion Collider [33], including the one-loop renormalization and tree-level
matching of operators. Adapting these results for µ → e conversion should be relatively
straightforward.

We anticipate that the most significant effort will be required in matching the LEFT
operators, which describe quark degrees of freedom, to nucleon-level operators through chiral
perturbation theory. Fortunately, we are not without a guide, as the analogous matching
has been performed for the effective theory of dark matter direct detection [148–152]. When
we considered scalar-mediated conversion in Chapter 8, the only relevant hadronic matrix
elements were those of the scalar quark bilinear

〈N ′|mq q̄q|N〉 , (10.15)

and trace of the gluon field strength tensor

〈N ′| αs12πG
a µνGa

µν |N〉 . (10.16)

In the general case, we must also compute nuclear matrix elements of the pseudoscalar

〈N ′|mq q̄iγ
5q|N〉 , (10.17)

vector
〈N ′|q̄γµq|N〉 , (10.18)

axial-vector
〈N ′|q̄γµγ5q|N〉 , (10.19)

and tensor quark operators
〈N ′|mq q̄σ

µνq|N〉 , (10.20)
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and the contraction of the gluon field strength tensor with its dual

〈N ′|αs8πG
a µνG̃a

µν |N〉 . (10.21)

Each hadronic matrix element can be expanded in terms of a momentum-dependent form
factor, and the various low-energy constants that determine the behavior of the form factors
can be obtained from lattice QCD calculations. As written, the above matrix elements are
specified between single-nucleon states, but in the hadronization of the scalar quark operator
mq q̄q, we encountered two-nucleon contributions at next-to-leading order in the chiral power
counting. One crucial aspect of the matching program is to understand the order at which
two-nucleon contributions become relevant in each form factor. Although this classification
has already been performed in the case of dark matter effective theory, we have to verify if the
same behavior persists in µ→ e conversion. Given the differing nature of the external fields
(non-relativistic dark matter vs. bound muon and ultra-relativistic electron), it remains to be
seen whether the power-counting is modified in any way. Once we have specified the complete
matching procedure, our ultimate goal is to make available a computer program—analogous
to the dark matter effective theory code directdm [150] —that will automate the process of
connecting high-energy CLFV theories to the low-energy constraints obtained from µ→ e
conversion experiments.
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10.3 Summary
Inspired by previous work on dark matter direct detection and spurred by the looming
promise of exceptional experimental progress in searches for charged lepton flavor violation,
we have developed a nuclear effective theory of µ→ e conversion. Whereas previous works in
the literature have either focused on the narrow—though exceptionally interesting—case of
coherent conversion or retained only the relatively simple nuclear charge and spin operators,
we have, for the first time, identified the most general set of response functions that can
be probed through measurements of elastic µ → e conversion in nuclei. As the nature of
possible CLFV operators is yet entirely undetermined, one should consider a complete basis
of effective operators (through a given order in some small power-counting parameter). Such
a construction can be performed at a variety of energy scales in terms of different degrees
of freedom, but the nuclear-scale effective theory is the most natural in the sense that it
interfaces directly with experiments. Moreover, by constructing the effective theory directly
at the nuclear scale, we are able to achieve a factorization between the underlying CLFV
physics—which must be independent of the choice of target—and the nuclear physics. This
separation provides a clean path for constraining the underlying CLFV response functions
through an ensemble of µ→ e conversion measurements on various nuclear targets.

Crucial to obtaining the simple yet general form of our effective theory are the approxi-
mations that we have employed for the leptonic fields. In particular, the effective momentum
approximation allows us to accurately model the outgoing electron as a Dirac plane wave,
thereby permitting a straightforward multipole decomposition of the nuclear charges and
currents. Our novel application of this technique yields a powerful compromise between the
numerical solution, which is highly-accurate but extremely cumbersome to employ in the
general case, and the uncorrected plane-wave solution, which allows for a simplified treatment
but is a rather poor model of the outgoing electron. In 27Al, the effective momentum solution
introduces . 1% deviations from the numerical solution while retaining all the advantages of
the plane wave.

The muon wave function can be treated exactly in the effective theory while maintaining a
reasonably simple expression for the conversion rate. An even more transparent form for the
effective theory can be obtained by neglecting entirely the muon’s lower component and/or
replacing the muon’s slowly-varying (compared to the nuclear extent) radial wave function
by a constant value. Applying both of these approximations, performing the multipole
decomposition of the nuclear charges and currents, and appealing to the approximately good
parity and time-reversal symmetries of the nuclear ground state, we find that the most general
µ→ e conversion response is governed by six response functions and two interference terms.
Restoring the muon’s lower component supplements the effective theory with six additional
response functions, which are proportional to the muon velocity and always subleading.

The form of the effective theory dictates what can and cannot be learned about CLFV
operators from measurements of elastic µ→ e conversion: in principle, one can determine
the values of the leptonic response functions but one cannot parse out the values of the
individual low-energy constants of the nucleon-level effective theory. Only the particular
bilinear combinations of LECs specified by the CLFV response functions can be constrained
by experiment. The nuclear effective theory provides a blueprint for a program of µ → e
conversion measurements on an ensemble of nuclear targets that would allow one to probe
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the various CLFV response functions.
As the ultimate goal of this experimental program is to constrain and/or determine the

nature of beyond-standard-model CLFV physics, one must be able to relate any information
obtained in the nuclear-level effective theory to candidate UV theories. These apparently
disparate descriptions can be connected through a program of effective theory renormalization
and matching that relates physics at different energy scales, beginning from the very low
nuclear scale of µ→ e conversion experiments, past the scale where quarks deconfine, past
the scale of electroweak symmetry breaking, and eventually to the scale of new CLFV physics.
In fact, this matching program has already been explicitly realized in the special case of
scalar-mediated coherent conversion. Work is now underway to extend the matching to the
general effective theory. An analogous matching program has already been completed for the
closely related case of dark matter direct detection, connecting UV models of dark matter to
the corresponding nuclear scale effective theory.

Having successfully modeled our effective theory of µ→ e conversion after its dark matter
predecessor, we can begin to think of nuclear effective theory as a general approach, applicable
to a variety of problems where the nucleus acts as a low-energy laboratory in which to search
for new physics. In order for these experimental programs to be successful, one must be
able to systematically disentangle the nuclear physics, which is not the primary object of
interest, from the desired observable. As nuclear many-body theory progresses to the level of
a genuine effective theory with controlled approximations and well-understood uncertainties,
we expect that formalisms like the one developed in this work will play a key role in utilizing
low-energy measurements to probe physics at energy scales far beyond the reach of direct
searches.

And so we await the results of the next-generation experiments in eager anticipation
that, in probing ten thousand times deeper than ever before, we might bear incontrovertible
witness to a 1-in-100-quadrillion event—a physical miracle, indisputable evidence of a law
of nature beyond our current understanding. Equipped with the nuclear effective theory of
µ→ e conversion, we are confident in our ability to isolate and interpret any signal of new
physics that we might receive.
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Appendix A

Treatment of Spinor Currents

Following Bjorken & Drell [62], we work in the Dirac representation of the γ matrices and
employ the following normalization convention for spinors:

u(p) =
√
E +m

2m

 ξ
~σ·~p
E+mξ

 , (A.1)

so that
ū(p)u(p) = 1. (A.2)

The γ matrices in the Dirac basis are

γ0 =
 I2 0

0 −I2

 , γk =
 0 σk

−σk 0

 , γ5 =
 0 I2

I2 0

 (A.3)

The basis for Dirac spinors is then furnished by the scalar 1, pseudoscalar γ5, vector γµ,
axial-vector γµγ5 and tensor σµν ≡ i

2 [γµ, γν ] matrices. Explicitly, in the Dirac basis, the
tensor operator can be written as

σ0i = i

2
[
γ0, γi

]
= i

 0 σi

σi 0


σij = i

2
[
γi, γj

]
= εijk

 σk 0
0 σk

 .
(A.4)

The left and right projections of a Dirac spinor are defined by

PL ≡
1
2 (1− γ5) , PR ≡

1
2 (1 + γ5) (A.5)

Using the fact that
(γ5)2 = 1, (A.6)

it follows that
γ5PL = −PL, γ5PR = PR (A.7)
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Using the fact that the fifth gamma matrix anticommutes with the other four{
γµ, γ5

}
= 0, (A.8)

we have
γµPL = PRγ

µ, γµPR = PLγ
µ. (A.9)

Then we may compute
ūu = ūRuL + ūLuR

ūγ5u = ūLuR − ūRuL
ūγµu = ūLγ

µuL + ūRγ
µuR

ūγµγ5u = −ūLγµuL + ūRγ
µuR

ūσµνu = ūRσ
µνuL + ūLσ

µνuR.

(A.10)

A.1 Non-relativistic Expansion of Nucleon Spinor Cur-
rents

In the non-relativistic limit, the nucleon spinors can be written as

N(k) =
 ξ

1
2mN

~k · ~σNξ

 (A.11)

Then the leading Lorentz-covariant nucleon spinor currents can be reduced in terms of Pauli
spinors as

N̄(k′)N(k) ≈ ξ
′† [1N ] ξ

N̄(k′)iγ5N(k) ≈ ξ
′†
[
i
~q

2mN

· ~σN
]
ξ

N̄(k′)γ0N(k) ≈ ξ
′† [1N ] ξ

N̄(k′)γiN(k) ≈ ξ
′†
[
~vN + i

~q

2mN

× ~σN
]i
ξ

N̄(k′)γ0γ5N(k) ≈ ξ
′† [~vN · ~σN ] ξ

N̄(k′)γiγ0N(k) ≈ ξ
′† [~σN ]i ξ

N̄(k′)iσ0i qi
mN

N(k) ≈ 0

N̄(k′)iσij qj
mN

N(k) ≈ ξ†
′
[
−i ~q

mN

× ~σN
]i
ξ

N̄(k′)σ0iγ5
qi
mN

N(k) ≈ ξ†
′
[
−i ~q

mN

· ~σN
]
ξ

N̄(k′)σijγ5
qj
mN

N(k) ≈ 0

(A.12)

Thus we see that only four unique Hermitian operators arise in the reduction of the single-
nucleon currents: 1N , i~q, ~vN , and ~σN . This fact is crucial to the formulation of the single-
nucleon effective theory.
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A.2 Expansion of Leptonic Spinor Currents
For the purpose of deriving the Pauli operator form of the leptonic Dirac currents, we define
the electron and muon Dirac spinors, respectively, as

χe ≡

 ξ

q̂ · ~σLξ

 , χµ ≡

 ξ
1
2~vµ · ~σLξ

 . (A.13)

It is a straightforward exercise in vector and spinor algebra to derive the following reductions
of the Lorentz-covariant lepton currents:

χ̄eχµ ≈ ξ†
′
[
1L −

1
2 q̂ · ~vµ −

i

2 q̂ · (~vµ × ~σL)
]
ξ

χ̄eiγ5χµ ≈ ξ†
′
[
−iq̂ · ~σL + i

2~vµ · ~σL
]
ξ

χ̄eγ
0χµ ≈ ξ†

′
[
1L + 1

2 q̂ · ~vµ + i

2 q̂ · (~vµ × ~σL)
]
ξ

χ̄eγ
iχµ ≈ ξ†

′
[
q̂ − iq̂ × ~σL + 1

2~vµ + i

2~vµ × ~σL
]i
ξ

χ̄eγ
0γ5χµ ≈ ξ†

′
[
q̂ · ~σL + 1

2~vµ · ~σL
]
ξ

χ̄eγ
iγ5χµ ≈ ξ†

′
[
~σL −

1
2iq̂ × ~vµ + 1

2 q̂ × (~vµ × ~σL) + 1
2 (~vµ · ~σL) q̂

]i
ξ

χ̄eiσ
0i qi
mL

χµ ≈
q

mL

ξ†
′
[
−1L + 1

2 q̂ · ~vµ + i

2 q̂ · (~vµ × ~σL)
]
ξ

χ̄eiσ
ij qj
mL

χµ ≈ −
q

mL

ξ†
′
[
iq̂ × ~σL + 1

2~vµ −
1
2 (q̂ · ~vµ) q̂ − i

2 q̂ · (~vµ × ~σL) q̂ + i

2~vµ × ~σL
]i
ξ

χ̄eσ
0iγ5

qi
mL

χµ ≈
q

mL

ξ†
′
[
−iq̂ · ~σL + i

2~v · ~σL
]
ξ

χ̄eσ
ijγ5

qj
mL

χµ ≈
q

mL

[
i~σL − i (q̂ · ~σL) q̂ − 1

2 q̂ × ~vµ −
i

2 q̂ × (~vµ × ~σL)
]i
ξ

(A.14)

Combining these results with the analogous expressions for the reduction of the nucleon
currents, one can arrive at the expressions given in Tables 3.3 and 7.1. Just as we found
in the case of the nucleons, there are four unique Hermitian operators that appear in the
reduction of the leptonic currents: 1L, iq̂, ~vµ, and ~σL.

A.3 Isospin Matrices
The isospin matrices ~τ are exactly the Pauli matrices

τ1 =
 0 1

1 0

 , τ2 =
 0 −i
i 0

 , τ3 =
 1 0

0 −1

 . (A.15)
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We define the isospin raising and lowering operators

τ± ≡
1
2 (τ1 ± iτ2) , (A.16)

so that

τ+ =
 0 1

0 0

 , τ− =
 0 0

1 0

 (A.17)

We note the following useful relations

[τ+, τ−] = τ3

[τ3, τ±] = ±2τ±
{τ+, τ−} = 1
{τ3, τ±} = 0

(A.18)
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Appendix B

Spherical Tensor Operators

Many calculations performed in this thesis are greatly simplified by working in terms of
mathematical objects with well-defined angular momentum that transform in a prescribed
manner under rotations of the coordinate system. Not only can one decompose scalar-valued
functions in this way but also vector fields and more general tensor- and spinor-valued
functions as well. In this appendix, we introduce the basic machinery required in such a
treatment. We follow the conventions of Edmonds [153].

B.1 The Spherical Basis
Consider a three-dimensional coordinate system where êx, êy, and êz are unit vectors along
the x, y, and z axes respectively. The generators of rotations about these three axes are the
operators

Sx = iêx×, Sy = iêy×, Sz = iêz×, (B.1)

where × indicates the vector cross product. The operators ~S satisfy the usual commutation
relations of angular momentum operators

[Si, Sj] = iεijkSk. (B.2)

We identify simultaneous eigenvectors of ~S2 and Sz by taking appropriate linear combinations
of the spherical basis vectors

ê+1 = − 1√
2

(êx + iêy)

ê0 = êz

ê−1 = 1√
2

(êx − iêy) ,

(B.3)

which satisfy

~S2êλ = 2êλ
Sz êλ = λêλ,

(B.4)
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where λ = 0,±1. The eigenvalue of the total spin operator ~S2 indicates that the representation
is spin 1. The spherical unit vectors êλ have the following useful properties: Under complex
conjugation

ê∗λ = (−1)λê−λ, for λ = 0,±1 (B.5)

The scalar product of two spherical unit vectors is given by

ê∗λ · êλ′ = (−1)λêλ · ê−λ = δλλ′ . (B.6)

Any vector may be expanded in the spherical basis as

~V =
∑
λ

Vλê
∗
λ =

∑
λ

(−1)λVλê−λ (B.7)

where the vector components are given by

V±1 = ∓ 1√
2

(Vx ± iVy) ,

V0 = Vz.

(B.8)

These vector components can be obtained by projecting along the spherical basis vectors

Vλ = êλ · ~V . (B.9)

Taking cross products of the spherical basis vectors yields

êλ × êλ = 0
ê± × ê∓ = ±iê0

ê± × ê0 = ±iê±.
(B.10)

B.2 Vector Spherical Harmonics
The ordinary spherical harmonics Y`m(θ, φ) = Y`m(r̂) form a basis of scalar functions on the
sphere; that is, any (well-behaved) smooth function f(θ, φ) can be decomposed as

f(θ, φ) =
∞∑
`=0

∑̀
m=−`

f`mY`m(θ, φ) (B.11)

where
f`m =

∫
dΩ f(θ, φ)Y ∗`m(θ, φ). (B.12)

The spherical harmonics are a privileged basis in that they are eigenfunctions of orbital
angular momentum

~L2Y`m = `(`+ 1)Y`m
LzY`m = mY`m.

(B.13)



APPENDIX B. SPHERICAL TENSOR OPERATORS 155

One would like to find an analogous basis for vector-valued functions on the sphere ~V (θ, φ).
Of course, if we expand in the spherical basis ~V = ∑

λ(−1)λV−λêλ, then each component
V−λ(θ, φ) is a scalar function that can be decomposed in terms of ordinary spherical harmonics

~V (θ, φ) =
∑
λ

(−1)λêλ
∞∑
`=0

∑̀
m=−`

(V−λ)`m Y`m(θ, φ), (B.14)

where we see that êλ and Y`m carry angular momentum under the operators ~S and ~L,
respectively. Therefore, we may combine these two objects into a tensor of definite total
angular momentum ~J = ~L+ ~S

~YJ ` M(r̂) ≡ [Y`(r̂)⊗ ê]JM
=
∑
mλ

Y` m(r̂)êλ 〈` m 1 λ|J M〉 , (B.15)

where J = `, ` ± 1. The resulting objects, the vector spherical harmonics, satisfy the
orthogonality condition ∫

dΩ ~Y ∗J ` M(r̂) · ~YJ ′ `′ M ′(r̂) = δJJ ′δ``′δMM ′ (B.16)

and are eigenfunctions of total angular momentum

~J2~YJ ` M = J(J + 1)~YJ ` M
Jz~YJ ` M = M~YJ ` M .

(B.17)

Indeed they furnish a basis of vector-valued functions on the sphere

~V (θ, φ) =
∞∑
`=0

∑
J

J∑
M=−J

VJ ` M ~YJ ` M(θ, φ), (B.18)

where the coefficients are given by

VJ ` M =
∫
dΩ ~V (θ, φ) · ~Y ∗J ` M(θ, φ). (B.19)

The vector spherical harmonics have several other properties that make them an effective tool
for, among other uses, performing a multipole expansion of three-current operators. First,
they inherit the parity transformation of the ordinary spherical harmonics

Y`m(−r̂) = (−1)`Y`m(r̂), (B.20)

and therefore ~YJ ` M has parity (−1)`. Next, as one may expect, there are many close
relationships between the scalar and vector spherical harmonics. For example, the vector
spherical harmonics can be obtained from the ordinary spherical harmonics by application of
the unit vector r̂

r̂Y`M(r̂) = −
√
`+ 1
2`+ 1

~Y` `+1 M(r̂) +
√

`

2`+ 1
~Y` `−1 M(r̂), (B.21)
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or the gradient operator

~∇ (f(r)Y` M(r̂)) = −
√
`+ 1
2`+ 1

(
d

dr
− `

r

)
f(r)~Y` `+1 M(r̂)

+
√

`

2`+ 1

(
d

dr
+ `+ 1

r

)
f(r)~Y` `−1 M(r̂),

(B.22)

where f(r) is any (well-behaved) scalar function. Conversely, the ordinary spherical harmonics
arise through application of the divergence operator to the vector spherical harmonics

~∇ ·
(
f(r)~Y` `+1 M(r̂)

)
= −

√
`+ 1
2`+ 1

(
d

dr
+ `+ 2

r

)
f(r)Y` M(r̂)

~∇ ·
(
f(r)~Y` ` M(r̂)

)
= 0, for any f(r)

~∇ ·
(
f(r)~Y` `−1 M(r̂)

)
=
√

`

2`+ 1

(
d

dr
− `− 1

r

)
f(r) Y` M(r̂),

(B.23)

as well as the unit vector

r̂ · ~Y` `+1 M(r̂) = −
√
`+ 1
2`+ 1Y` M(r̂)

r̂ · ~Y` ` M(r̂) = 0

r̂ · ~Y` `−1 M(r̂) =
√

`

2`+ 1Y` M(r̂).

(B.24)

Finally, as the curl operator ~∇× maps vector fields to vector fields, so it transforms the
vector spherical harmonics among themselves:

~∇×
(
f(r)~Y` `+1 M(r̂)

)
= i

√
`

2`+ 1

(
d

dr
+ `+ 2

r

)
f(r)~Y` ` M(r̂),

~∇×
(
f(r)~Y` ` M(r̂)

)
= i

√
`

2`+ 1

(
d

dr
− `

r

)
f(r)~Y` `+1 M(r̂)

+ i

√
`+ 1
2`+ 1

(
d

dr
+ `+ 1

r

)
f(r)~Y` `−1 M(r̂),

~∇×
(
f(r)~Y` `−1 M(r̂)

)
= i

√
`+ 1
2`+ 1

(
d

dr
− `− 1

r

)
f(r)~Y` ` M(r̂).

(B.25)

Similarly,

r̂ × ~Y` `+1 M(r̂) = i

√
`

2`+ 1
~Y` ` M(r̂)

r̂ × ~Y` ` M(r̂) = i

√
`+ 1
2`+ 1

~Y` `−1 M(r̂) + i

√
`

2`+ 1
~Y` `+1 M(r̂)

r̂ × ~Y` `−1 M(r̂) = i

√
`+ 1
2`+ 1

~Y` ` M(r̂).

(B.26)
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In this work, we often find that the scalar function is the regular spherical Bessel function of
order `, f(r) = j`(qr). It is useful to know the raising and lowering operators for the spherical
Bessel functions

(
d

dr
− `

r

)
j`(qr) = −qj`+1(qr),(

d

dr
+ `+ 1

r

)
j`(qr) = qj`−1(qr).

(B.27)

Using these relations, we obtain the following expressions for the gradient and curl, specialized
to the case f(r) = j`(qr):

~∇ (j`(qy)Y` M(r̂)) = q

√ `+ 1
2`+ 1j`+1(qr)~Y` `+1 M(r̂)

+
√

`

2`+ 1j`−1(qr)~Y` `−1 M(r̂)


~∇×
(
j`(qr)~Y` ` M(r̂)

)
= iq

−
√

`

2`+ 1j`+1(qr)~Y` `+1 M(r̂)

+
√
`+ 1
2`+ 1j`−1(qr)~Y` `−1 M(r̂)

.

(B.28)

We can invert these expressions to obtain

j`+1(qr)~Y` `+1 M(r̂) = 1
q

√ `+ 1
2`+ 1

~∇ (j`(qr)Y` M(r̂))

+ i

√
`

2`+ 1
~∇×

(
j`(qr)~Y` ` M(r̂)

) 
j`−1(qr)~Y` `−1 M(r̂) = 1

q

√ `

2`+ 1
~∇ (j`(qr)Y` M(r̂))

− i
√
`+ 1
2`+ 1

~∇×
(
j`(qr)~Y` ` M(r̂)

) ,

(B.29)



APPENDIX B. SPHERICAL TENSOR OPERATORS 158

or equivalently

j`(qr)~Y`−1 ` M(r̂) = 1
q

√ `

2`− 1
~∇ (j`−1(qr)Y`−1 M(r̂))

+ i

√
`− 1
2`− 1

~∇×
(
j`−1(qr)~Y`−1 `−1 M(r̂)

) 
j`(qr)~Y`+1 ` M(r̂) = 1

q

√ `+ 1
2`+ 3

~∇ (j`+1(qr)Y`+1 M(r̂))

− i
√
`+ 2
2`+ 3

~∇×
(
j`+1(qr)~Y`+1 `+1 M(r̂)

) ,

(B.30)

The utility of these expressions is that the two vector fields j`(qr)~Y`±1 ` M have been decom-
posed into longitudinal (curl-free) and transverse (divergence-free) components. The vector
field j`(qr)~Y` ` M is inherently transverse [see Eq. (B.23)].

In general, a plane wave can be expanded in partial waves as

ei~q·~r = 4π
∞∑
L=0

iLjL(qr)YL(q̂)� YL(r̂). (B.31)

If we define our basis so that ẑ is along the direction of q̂, then the plane wave expansion
takes the form

ei~q·~r =
∞∑
L=0

√
4π(2L+ 1)iLjL(qr)YL0(r̂). (B.32)

Defining the multipole projection functions

MJM(q~r ) ≡ jJ(qr)YJM(r̂)
~MJLM(q~r ) ≡ jL(qr)~YJLM(r̂)

(B.33)

we find that the expansion of a plane wave times a vector field can be written as

ei~q·~rêλ = −
∞∑
L=1

√
2π(2L+ 1)iL

[
λ ~MLLλ(q~r ) + 1

q
~∇× ~MLLλ(q~r )

]
(B.34)

for λ = ±1, whereas when λ = 0 we have

ei~q·~rê0 = − i
q

∞∑
L=0

√
4π(2L+ 1)iL~∇MJ0(q~r ). (B.35)

We identify the basic multipole projections: an arbitrary charge ρ(~r ) can be decomposed
into component with good angular momentum

MJM(q) =
∫
d3r MJM(q~r )ρ(~r ) (B.36)
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whereas an arbitrary three-current ~J(~r ) admits three independent projections

LJM(q) = i

q

∫
d3r

[
~∇MJM(q~r )

]
· ~J(~r )

T el
JM(q) = 1

q

∫
d3r

[
~∇× ~MJJM(q~r )

]
· ~J(~r )

T mag
JM (q) =

∫
d3r ~MJJM(q~r ) · ~J(~r ).

(B.37)
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Appendix C

Nuclear Matrix Elements of Few-body
Operators

In order to make contact with µ→ e conversion experiments, the underlying nuclear operators
must be evaluated between many-body wave functions that accurately capture the detailed
structure of the target nucleus. Although many competing methods for these evaluations
exist, our preferred paradigm is that of the nuclear shell model. In the shell-model approach,
the total nuclear wave function is composed of linear combinations of Slater determinant basis
elements. Each Slater determinant is a totally anti-symmetric combination of single-particle
harmonic oscillator states labeled by nodal quantum number n, orbital angular momentum `,
spin s = 1/2, total angular momentum j = `± 1/2, and corresponding magnetic quantum
number m. Separate Slater determinants are constructed for neutron and proton degrees
of freedom, which are distinguished by the isospin quantum number mt = +1/2 (−1/2) for
protons (neutrons).

Having specified the basis, the required wave functions are obtained by diagonalizing a
suitable Hamiltonian that describes the interactions among the nucleons. One encounters
several difficulties in this construction: first, the exact form of these interactions—which
contains two-body, three-body, and higher contributions—is not known precisely; the proper
theory is that specified by quantum chromodynamics (QCD), which does not lend itself to a
simple description in the strongly-coupled regime of nuclear physics. Second, the shell-model
space that we have adopted must be severely truncated in practical calculations, requiring one
to perform a program of operator and wave function renormalization. These complications
can be avoided by abandoning efforts to root the calculation of the nuclear wave function in
the first-principles of QCD and instead adopting a phenomenological interaction that has
been tuned in the model space to reproduce low-energy nuclear observables such as charge
radii and low-lying spectra. This is the strategy that we apply in work. The interactions and
shell-model spaces that we employ are given in Table 3.2.

Having thus obtained the nuclear wave functions, there remains a significant computational
task in evaluating matrix elements of few-body operators. A well-organized approach is
required to avoid unnecessary effort and potential confusion. By formulating the problem
in terms of irreducible tensor operators and exploiting the good angular momentum J and
(approximate) isospin T quantum numbers of the nuclear ground state, we are able to factorize
many-body matrix elements of few-body operators in terms of few-body matrix elements,
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extracting from the total nuclear wave function only that nuclear structure information that
is required to evaluate the few-body operators under consideration. In this appendix, we will
demonstrate how this factorization is performed for one- and two-body operators.

C.1 One-body Density Matrices
The total one-body tensor operator for a system of A nucleons can be written in the coordinate
representation as

OJM =
A∑
i=1
OJM(~xi), (C.1)

or in the second-quantized form as

OJM =
∑
α,β

OαβJMc†αcβ, (C.2)

with

OαβJM ≡ 〈α|OJM |β〉 =
∫
d3x φ†α(~x)OJM(~x)φβ(~x). (C.3)

The summation α extends to all single-particle states; for harmonic oscillator states, α =
(nα, `α, jα,mα). The operators and the states may carry additional isospin quantum numbers,
which we suppress here for brevity (the generalization to include isospin is straightforward).

Our aim is to evaluate the given operator for a total nuclear wave function. The nuclear
response can be factorized into a piece that describes how the operator acts on single-particle
states and a piece that encodes how the single-particle states are embedded in the initial
and final nuclear wave functions. The latter quantity is known as the one-body density
matrix. An expression for the one-body density matrix can be obtained directly from the
second-quantized form of a one-body operator operator:

〈Jf ||OJ ||Ji〉 =
∑
a,b

1√
2J + 1

〈Jf ||
[
c†a ⊗ c̃b

]
J
||Ji〉 〈a||OJ ||b〉

≡
∑
a,b

ρf,i;Jab 〈a||OJ ||b〉 ,
(C.4)

where we have defined the reduced one-body density matrix

ρf,i;Jab ≡ 1√
2J + 1

〈Jf ||
[
c†a ⊗ c̃b

]
J
||Ji〉 , (C.5)

and introduced the time-reversed annihilation operator

c̃b = c̃jb,mb = (−1)jb+mbcjb,−mb . (C.6)

The summation in Eq. (C.4) is over single-particle orbits a, b, which do not carry magnetic
angular momentum quantum numbers, as all of the matrix elements have been reduced. Thus
the problem of computing many-body matrix elements of single-nucleon operators has been
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reduced in terms of single-nucleon matrix elements. Assuming that one has obtained the
initial and final nuclear wave functions in a Slater-determinant basis, it is straightforward—
though perhaps computationally intensive—to obtain the desired one-body density matrix.
No approximation has been made in deriving Eq. (C.4); when summed over a complete basis
of single-particle states, the product of the one-body density matrix and the corresponding
single-particle matrix element exactly reproduces the many-body matrix element of any one-
body operator. In practical computations, the single-particle basis is truncated, introducing
some error (that is typically difficult to quantify).

Restoring the isospin quantum numbers, we may define the doubly-reduced one-body
density matrix by

ρf,i;J,Tab ≡ 1√
2J + 1

1√
2T + 1

〈Jf ;Tf
......
[
c†a ⊗ c̃b

]
J,T

...... Ji;Ti〉 , (C.7)

where the time-reversed annihilation operator now satisfies

c̃b = c̃jb,mb; 1
2 ,mtb

= (−1)jb+mb+1/2+mtbcjb,−mb; 1
2 ,−mtb

. (C.8)

The doubly-reduced density matrix allows for efficient calculation of the doubly-reduced
matrix element

〈Jf ;Tf
...... OJ,T

...... Ji;Ti〉 =
∑
a,b

ρf,i;J,Tab 〈a ...... OJ,T
...... b〉 . (C.9)

C.2 Two-body Density Matrices
The total two-body operator for a nuclear system can be written in the coordinate represen-
tation as

OJ,M =
∑
i<j

OJ,M (~xi, ~xj) = 1
2
∑
i 6=j
OJ,M(~xi, ~xj), (C.10)

or in the occupation number representation as

OJ,M = 1
2
∑
αβγδ

OαβγδJ,M c†αc
†
βcδcγ, (C.11)

where
OαβγδJ,M ≡

∫
d3~x1d

3~x2 φ
†
α(~x1)φ†β(~x2)OJ,M (~x1, ~x2)φγ(~x1)φδ(~x2). (C.12)

In the occupation number representation, the operator can also be written in terms of
anti-symmetrized matrix elements

OJ,M = 1
4
∑
abcd

ŌαβγδJ,M c†αc
†
βcδcγ, (C.13)

where
ŌαβγδJ,M ≡ OαβγδJ,M −O

αβδγ
J,M . (C.14)

Defining two-particle states by
|αβ〉 = c†αc

†
β |0〉 , (C.15)
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we write
ŌαβγδJ,M = 〈αβ|OJ,M |γδ〉 . (C.16)

We wish to compute many-body expectation values in terms of two-particle states coupled to
good total angular momentum; that is, we define the two-body density matrix by

〈Jf ||OJ ||Ji〉 =
∑
abcd

∑
JabJcd

ρf,i,J ;Jab,Jcd
abcd 〈ab; Jab||OJ ||cd; Jcd〉 , (C.17)

where the normalized two-particle coupled states are defined as

|a b; J,M〉 = Nab(J)
[
c†ac
†
b

]
J,M
|0〉 , (C.18)

where |0〉 is a suitable vacuum state and the normalization factor is given by

Nab(J) ≡

√
1− δab(−1)J

1 + δab
. (C.19)

The form of the coupled, reduced two-body density matrix follows from inserting the second-
quantized form of the operator into Eq. (C.17):

ρf,i,J ;JabJcd
abcd = 1

4
(−1)Jc+Jd−Jcd√

2J + 1
〈Jf ||

[
[c†a ⊗ c

†
b]Jab ⊗ [c̃d ⊗ c̃c]Jcd

]
J
||Ji〉 . (C.20)

As in the one-body case, prior to truncating the summation over single-particle states, Eq.
(C.17) exactly reproduces the many-body matrix element of any two-body operator. The
preceding section can be generalized in a straightforward manner to include isospin.
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Appendix D

Single-nucleon Response Functions

The 11 single-nucleon response functions through order 1/m2
N are given in Eq. (3.19). One

would like to evaluate matrix elements of these operators between nuclear wave functions
corresponding to the chosen nuclear target. In Appendix C, we demonstrated how total
nuclear matrix elements of one-body operators can be factorized in terms of single-particle
matrix elements multiplied by the relevant one-body density matrix. In this section, we
discuss how to evaluate the single-particle matrix elements of the 11 multipole operators
when the single-particle states are elements of a harmonic oscillator basis.

The basic operators from which the multipole responses are constructed are MJM(q~r ),
~MJ L M (q~r ), ~MJ L M (q~r ) · 1

q
~∇, MJM (q~r ) ~σ · 1

q
~∇, and ~MJ L M (q~r ) ·

(
~σ × 1

q
~∇
)
. Matrix elements

of the standard charge multipole and the projections of the spin current are relatively
straightforward

〈n′ (`′ 1/2) j′||MJ(q~r )||n (` 1/2) j〉 = 1√
4π

(−1)J+j+1/2[`′][`][j′][j][J ]

×

 `′ j′ 1
2

j ` J


 `′ J `

0 0 0

 〈n′`′|jJ(ρ)|n`〉 ,
(D.1)

and

〈n′ (`′ 1/2) j′|| ~MJ L(q~r ) · ~σ||n (` 1/2) j〉 =
√

6√
4π

(−1)`′ [`′][`][j′][j][L][J ]

×


`′ ` L
1
2

1
2 1

j′ j J


 `′ L `

0 0 0

 〈n′`′|jL(ρ)|n`〉 ,

(D.2)

where [J ] =
√

2J + 1 and ρ = qr. The radial matrix elements are computed in terms of radial
harmonic oscillator wave functions

〈n′`′|jL(ρ)|n`〉 =
∫ ∞

0
dr r2Hn′`′(r)jL(qr)Hn`(r). (D.3)

We note that in Eq. (D.1), the 3-j symbol implies that (−1)J+`′+` = +1 or equivalently
J + `′ + ` is even. Similarly in Eq. (D.2), L + `′ + ` must be even. This constraint is
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imposed by the parity transformation of the underlying multipole operator. The fact that
L + `′ + ` is even for these operators is crucial to demonstrating that the radial matrix
element 〈n′`′|jL(ρ)|n`〉 is a polynomial in y = (qb/2)2. Next we consider the projections of
the convection current

〈n′ (`′ 1/2) j′|| ~MJ L(q~r ) · 1
q
~∇||n (` 1/2) j〉 = 1√

4π
(−1)L+j+1/2[`′][j′][j][L][J ]

 `′ j′ 1
2

j ` J


×

−√`+ 1[`+ 1]
 L 1 J

` `′ `+ 1


 `′ L `+ 1

0 0 0

 〈n′`′|jL(ρ)
(
d

dρ
− `

ρ

)
|n`〉

+
√
`[`− 1]

 L 1 J

` `′ `− 1


 `′ L `− 1

0 0 0

 〈n′`′|jL(ρ)
(
d

dρ
+ `+ 1

ρ

)
|n`〉


(D.4)

Here the 3-j symbols imply that L + `′ + ` must be odd. The Coulomb multipoles of the
axial charge operator can be evaluated as

〈n′ (`′ 1/2) j′||MJ(q~r )~σ · 1
q
~∇||n (` 1/2) j〉

= 1√
4π

(−1)`′ [`′][j′][j][2j − `][J ]
 `′ j′ 1

2
j 2j − ` J


 `′ J 2j − `

0 0 0


×

− δj,`+1/2 〈n′`′|jJ(ρ)
(
d

dρ
− `

ρ

)
|n`〉+ δj,`−1/2 〈n′`′|jJ(ρ)

(
d

dρ
+ `+ 1

ρ

)
|n`〉

,
(D.5)

where again we find J + `′ + ` is odd. For the multipoles ΦJ , Φ′J , and Φ′′J , we reorganize

~MJ L M ·
(
~σ × ~∇

)
= −i

√
6
∑
K

(−1)K+L√2K + 1
 1 1 1
J K L

[~σ ⊗ [YL ⊗ ~∇
]
K

]
J,M

(D.6)

Then the projections of the spin-velocity current are

〈n′ (` 1/2) j′|| ~MJ L(q~r ) ·
(
~σ × 1

q
~∇
)
||n (` 1/2) j〉

= i√
4π

(−1)L+J+`6[l′][j′][j][L][J ]
J+1∑

K=J−1
(−1)K [K]


`′ ` K
1
2

1
2 1

j′ j J


 1 1 1
J K L


×

√`+ 1[`+ 1]
 L 1 K

` `′ `+ 1


 `′ L `+ 1

0 0 0

 〈n′`′|jL(ρ)
(
d

dρ
− `

ρ

)
|n`〉

−
√
`[`− 1]

 L 1 K

` `′ `− 1


 `′ L `− 1

0 0 0

 〈n′`′|jL(ρ)
(
d

dρ
+ `+ 1

ρ

)
|n`〉



(D.7)

and L+ `′ + ` is odd. Therefore, each of the 11 single-nucleon multipole operators can be
computed in terms of a product of angular momentum factors and one of three radial matrix
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elements

〈n′`′|jL(ρ)|n`〉 ,

〈n′`′|jL(ρ)
(
d

dρ
− `

ρ

)
|n`〉 ,

〈n′`′|jL(ρ)
(
d

dρ
+ `+ 1

ρ

)
|n`〉

(D.8)

The radial harmonic oscillator wave functions are given in terms of generalized Laguerre
polynomials as

Hn,`(x) =

√√√√ 2Γ(n)
Γ (n+ `+ 1/2)e

−x2/2x`L
`+1/2
n−1 (x2), (D.9)

where the coordinate x = r/b is dimensionless. The harmonic oscillator radial wave functions
satisfy recurrence relations that can be used to express states with n > 1 in terms of states
with n = 1 and various `. Explicitly, for n = 2 and n = 3 we have

H2`(x) = 1√
2
{[`+ 1]H1`(x)− [`+ 2]H1`+2(x)}

H3`(x) = 1√
8
{

[`+ 1][`+ 2]R1`(x)− 2[`+ 2]2R1`+2(x) + [`+ 3][`+ 4]R1`+4(x)
} (D.10)

Note that the recurrence relation conserves the parity of `. After using the recurrence relation
to obtain n = 1 states, we can apply the derivative operators as(

d

dρ
− `

ρ

)
R1`(x) = − 1√

8y [`+ 1]R1`+1(x)(
d

dρ
+ `+ 1

ρ

)
R1`(x) = 1√

8y {2[`]R1`−1(x)− [`+ 1]R1`+1(x)} ,
(D.11)

where the parity of the state is now changed as `→ `± 1. With these relations in hand, the
only matrix element that we need to explicitly compute is

〈1`′|jL(ρ)|1`〉 = (2y)L/2e−y (L+ `′ + `+ 1)!!
(2L+ 1)!! [(2`′ + 1)!!(2`+ 1)!!]1/2 1F1

(
L− `′ − `

2 ;L+ 3
2; y

)
(D.12)

The crucial observation is that the confluent hypergeometric function

1F1(α; β; y) = 1 + α

β
y + α(α + 1)

β(β + 1)
y2

2! + ... (D.13)

terminates at finite order whenever α = (L− `′ − `)/2 is a non-positive integer. Therefore,
letting TJ(q~r ) represent any of the 11 single-particle multipole operators,

〈n′ (`′ 1/2) j′||TJ(q~r )||n (` 1/2) j〉 = 1√
4π
y(J−K)/2e−yp(y), (D.14)
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where K = 2 for the normal parity operators M , ∆′, Σ, Φ′, and Φ′′, and where K = 1 for the
abnormal parity operators ∆, Σ′, Σ′′, Ω, and Φ.

In addition to the recurrence relations, we can derive closed-form expressions for the
matrix elements. The Laguerre polynomial can be expanded as

L
`+1/2
n−1 (x2) =

n−1∑
i=0

 n+ `− 1/2
n− i− 1

 (−1)i
i! x2i (D.15)

The required radial integrals are of the form

IL(m, y) ≡
∫ ∞

0
dx xme−x

2
jL(qbx)

=
√
π

4 yL/2e−y
Γ
(

1
2(L+m+ 1)

)
Γ(L+ 3/2) 1F1

(
1 + L−m

2 ;L+ 3
2; y

)
,

(D.16)

which converges for L+m > −1. Here the confluent hypergeometric function appears with
parameter α = 1 + (L−m)/2. As we see below, for the physically relevant values of m, α is
always a non-positive integer and therefore the summation terminates at order α. The radial
matrix elements can then be expressed in terms of the basic integral IL(m, y) as

〈n′`′|jL(ρ)|n`〉 =

√√√√ 2Γ(n′)
Γ(n′ + `′ + 1/2)

2Γ(n)
Γ(n+ `+ 1/2)

n′−1∑
i=0

n−1∑
j=0

 n′ + `′ − 1/2
n′ − i− 1


×

 n+ `− 1/2
n− j − 1

 (−1)i+j
i!j! IL (2 + 2i+ 2j + `′ + `, y) ,

(D.17)

〈n′`′|jL(ρ)
(
d

dρ
− `

ρ

)
|n`〉 =

√√√√ 2Γ(n′)
Γ(n′ + `′ + 1/2)

2Γ(n)
Γ(n+ `+ 1/2)

n′−1∑
i=0

n−1∑
j=0

 n′ + `′ − 1/2
n′ − i− 1


×

 n+ `− 1/2
n− j − 1

 (−1)i+j
i!j! [2jIL (1 + 2i+ 2j + `′ + `, y)− IL (3 + 2i+ 2j + `′ + `, y)] ,

(D.18)

〈n′`′|jL(ρ)
(
d

dρ
+ `+ 1

ρ

)
|n`〉 =

√√√√ 2Γ(n′)
Γ(n′ + `′ + 1/2)

2Γ(n)
Γ(n+ `+ 1/2)

n′−1∑
i=0

n−1∑
j=0

 n′ + `′ − 1/2
n′ − i− 1


×

 n+ `− 1/2
n− j − 1

 (−1)i+j
i!j!

[
(2j + 2`+ 1) IL (1 + 2i+ 2j + `′ + `, y)

− IL (3 + 2i+ 2j + `′ + `, y)
]
.

(D.19)

D.1 Operators Generated by the Muon’s Lower Com-
ponent

In Chapter 7, we found that the inclusion of the muon’s lower Dirac component leads to the
introduction of new nuclear multipole operators. We will now discuss how single-particle
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matrix elements of these operators can be evaluated in a harmonic oscillator basis. Matrix
elements of the modified charge multipoles are relatively straightforward to compute, only
the radial matrix element differs from the standard result:

〈n′ (`′ 1/2) j′||M (1)
J (q~r )||n (` 1/2) j〉 = 1√

4π
(−1)J+j+1/2[`′][`][j′][j][J ]

√
J(J + 1)

×

 `′ j′ 1
2

j ` J


 `′ J `

0 0 0

 〈n′`′|1
ρ
jJ(ρ)|n`〉 ,

(D.20)

〈n′ (`′ 1/2) j′||M (2)
J (q~r )||n (` 1/2) j〉 = 1√

4π
(−1)J+j+1/2[`′][`][j′][j][J ]

×

 `′ j′ 1
2

j ` J


 `′ J `

0 0 0

 〈n′`′|djJ(ρ)
dρ
|n`〉 .

(D.21)

In both cases, the 3-j symbols imply that J + `′ + ` is even. In order to compute matrix
elements of the modified spin projections Σ′(0) and Σ′′(0), we define the operator

~M
(0)
J L M(q~r ) ≡ jJ(qr)~YJ L M(r̂), (D.22)

which differs from the familiar operator ~MJ L M in that the order of the Bessel function is J
rather than L. The matrix elements are modified accordingly

〈n′ (`′ 1/2) j′|| ~M (0)
J L(q~r ) · ~σ||n (` 1/2) j〉 =

√
6√

4π
(−1)`′ [`′][`][j′][j][L][J ]

×


`′ ` L
1
2

1
2 1

j′ j J


 `′ L `

0 0 0

 〈n′`′|jJ(ρ)|n`〉 ,

(D.23)

where the 3-j symbol implies that L+ `′ + ` is even. In order to compute matrix elements of
the modified spin projections Σ′(2) and Σ′′(2), we define

~M
(2)
J L M(q~r ) ≡ djL(qr)

dqr
~YJ L M(r̂). (D.24)

Again, only the radial matrix element is altered

〈n′ (`′ 1/2) j′|| ~M (2)
J L(q~r ) · ~σ||n (` 1/2) j〉 =

√
6√

4π
(−1)`′ [`′][`][j′][j][L][J ]

×


`′ ` L
1
2

1
2 1

j′ j J


 `′ L `

0 0 0

 〈n′`′|djL(ρ)
dρ
|n`〉 ,

(D.25)
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and L + `′ + ` is even. We find that two new radial matrix elements are needed in the
evaluation of the lower-component operators. They can be expressed in terms of the quantity
IL(m, y) [see Eq. (D.16)]

〈n′`′|1
ρ
jL(ρ)|n`〉 =

√√√√ 2Γ(n′)
Γ(n′ + `′ + 1/2)

2Γ(n)
Γ(n+ `+ 1/2)

n′−1∑
i=0

n−1∑
j=0

 n′ + `′ − 1/2
n′ − i− 1


×

 n+ `− 1/2
n− j − 1

 (−1)i+j
i!j!

1
2√yIL (1 + 2i+ 2j + `′ + `, y) ,

(D.26)

〈n′`′|djL(ρ)
dρ
|n`〉 =

√√√√ 2Γ(n′)
Γ(n′ + `′ + 1/2)

2Γ(n)
Γ(n+ `+ 1/2)

n′−1∑
i=0

n−1∑
j=0

 n′ + `′ − 1/2
n′ − i− 1


×

 n+ `− 1/2
n− j − 1

 (−1)i+j
i!j!

1
2L+ 1

[
LIL−1 (2 + 2i+ 2j + `′ + `, y)

− (L+ 1)IL+1 (2 + 2i+ 2j + `′ + `, y)
]
.

(D.27)

In the previous section, we found that, for all physically-allowed values of `, `′, and L, the
argument α of the hypergeometric function 1F1(α; β; y) is a non-positive integer, yielding a
finite polynomial in y. In the present case, this is no longer true. In fact, we find that, for
all relevant values of the angular momenta, α = 1/2 − k for some k ≥ 0. As a result, the
hypergeometric sum in Eq. (D.13) does not terminate at any finite order. Therefore, matrix
elements of the lower-component operators do not admit a simplified expression of the form
in Eq. (D.14). Nonetheless, the hypergeometric function can be numerically evaluated to
high precision.
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Appendix E

Fermi Gas Average

In the Fermi Gas Average (FGA) approach, we choose a target nucleon and sum over its
interaction with a spin and isospin symmetric core. The core nucleons occupy momentum
states up to the nuclear Fermi momentum kF . Starting from a two-nucleon operator O(2), an
effective one-body operator is obtained by performing a mean-field-like sum over direct and
exchange terms

〈α|O(1)|β〉 ≡
∑
γ

〈αγ|O(2)|βγ〉 − 〈αγ|O(2)|γβ〉 , (E.1)

where γ sums over occupied core states. Each core state is a direct product of space, spin,
and isospin components

|α〉 = |~p(α)〉 ⊗ |12ms(α)〉 ⊗ |12mt(α)〉 . (E.2)

Therefore, the summations over space, spin, and isospin components can be performed
independently. The two-nucleon operator that arises in scalar-mediated coherent µ → e
conversion has the form

O(2) = ~q1 · ~σ(1)
|~q1|2 +m2

π

~q2 · ~σ(2)
|~q2|2 +m2

π

~τ(1) · ~τ(2) (E.3)

We begin by decomposing O(2) into irreducible tensor operators

~q1 · ~σ(1)~q2 · ~σ(2) =
2∑

J=0
(−1)J [~q1 ⊗ ~q2]J � [~σ(1)⊗ ~σ(2)]J

= 1
3~q1 · ~q2~σ(1) · ~σ(2) + 1

2 (~q1 × ~q2) · (~σ(1)× ~σ(2)) + [~q1 ⊗ ~q2]2 � [~σ(1)⊗ ~σ(2)]2

(E.4)

Computing the average over the spin operators (see Table E.1) we find that all direct
contributions vanish. We have only to compute the exchange terms, where we find that the
scalar spin operator ~σ(1) · ~σ(2) averages to the spin-independent operator I2 whereas the
vector operator ~σ(1)× ~σ(2) averages to the spin-dependent operator ~σ.

In the exchange term, the momentum transfers are ~q1 = ~pα− ~pγ , ~q2 = ~pγ− ~pβ, ~q = ~pα− ~pβ.
Let us introduce the average momentum of the single nucleon ~k = 1

2 (~pα + ~pβ). We will write
the effective one-body operator as

O(1)(~pα, ~pβ) = 3
16π

[
fSI(~q,~k)I2 − fSD(~q,~k)i~σ ·

(
~q × ~k

)]
, (E.5)
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2-body 1-body direct 1-body exchange
~σ(1) · ~σ(2) 0 3I2

~σ(1)× ~σ(2) 0 2i~σ
3σz(1)σz(2)− ~σ(1) · ~σ(2) 0 0

~τ(1) · ~τ(2) 0 3I2

Table E.1: One-body average of two-body spin and isospin operators for direct and exchange
contributions. We assume that the Fermi distributions for the protons and neutrons are
identical. This assumption may be violated in very heavy nuclei.

where fSI(~q,~k) and fSD(~q,~k) are, respectively, the spin-independent and spin-dependent
effective one-body form factors to be computed. Let us begin by considering the spin-
independent form factor, which we express as an integral over the Fermi sphere

fSI(~q,~k) = −16π
∫ d3~pγ

(2π)3
(~pα − ~pγ) · (~pγ − ~pβ)[

(~pα − ~pγ)2 +m2
π

] [
(~pγ − ~pβ)2 +m2

π

]
= − 2

π2

∫ KF

0
d|~pγ| |~pγ|2

∫
dΩpγ

(
~k + 1

2~q − ~pγ
)
·
(
~pγ − ~k + 1

2~q
)

[(
~k + 1

2~q − ~pγ
)2

+m2
π

] [(
~pγ − ~k + 1

2~q
)2

+m2
π

]
(E.6)

We introduce the Feynman parameter representation
1
AB

=
∫ 1/2

−1/2
dβ

1
[(1/2− β)A+ (1/2 + β)B]2

, (E.7)

with
A =

(
~k + 1

2~q − ~pγ
)2

+m2
π, B =

(
~pγ − ~k + 1

2~q
)2

+m2
π (E.8)

which yields

fSI(~q,~k) = − 2
π2

∫ 1/2

−1/2
dβ
∫ KF

0
d|~pγ| |~pγ|2

∫
dΩpγ

2~pγ · ~k + 1
4 |~q |

2 − |~k|2 − |~pγ|2[
|~pγ|2 − 2~pγ ·

(
~k − β~q

)
+ ∆

]2 , (E.9)

where we have defined
∆ ≡ −2β~k · ~q + 1

4 |~q |
2 + |~k|2 +m2

π. (E.10)

Now we need to compute the angular Ωpγ integral. Let us orient our coordinate system so
that ẑ is along ~k − β~q. Then

~pγ ·
(
~k − β~q

)
= |~pγ||~k − β~q | cos θ. (E.11)

We also have to consider the angular dependence of ~pγ · ~k. The azimuthal φ-dependence of
this dot product must integrate to zero so we are left with only the ẑ component

~pγ · ~k → |~pγ| cos θ
~k · (~k − β~q)
|~k − β~q |

(E.12)
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Therefore

fSI(~q,~k) = − 4
π

∫ 1/2

−1/2
dβ
∫ KF

0
dp p2

×
∫ 1

−1
dµ

2p
~k ·
(
~k − β~q

)
Q

µ+ 1
4 |~q |

2 − |~k|2 − p2

 1
[p2 − 2pQµ+ ∆]2

,

(E.13)

where we have defined Q = |~k − β~q | and p = |~pγ|.
Before proceeding with the angular integration, let us pause to consider the spin-dependent

term fSD(~q,~k). We begin with the fact that

~q1 × ~q2 = −~q × ~k + ~q × ~pγ (E.14)

and introduce the same Feynman parameter representation as in the spin-independent case.
In the angular integration, the only non-vanishing part of ~q × ~pγ is the ẑ component of pγ , so
we may write

− ~q × ~k + ~q × ~p→ ~q × ~k
(
p

Q
cos θ − 1

)
(E.15)

leading to

fSD(~q,~k) = 4
π

∫ 1/2

−1/2
dβ
∫ KF

0
dp p2

∫ 1

−1
dµ

(
1− p

Q
µ

)
1

[p2 − 2pQµ+ ∆]2
, (E.16)

Both of the required angular integrals can be computed analytically∫ 1

−1
dµ

1
[p2 − 2pQµ+ ∆]2

= 2
(p2 + ∆)2 − 4p2Q2∫ 1

−1
dµ

µ

[p2 − 2pQµ+ ∆]2
= p2 + ∆

pQ

1
(p2 + ∆)2 − 4p2Q2 −

1
2Q2 arctanh

(
2pQ
p2 + ∆

)
.

(E.17)

Introducing dimensionless quantities p̄ = p/kF , k̄ = ~k/kF , q̄ = ~k/kF , m̄ = mπ/kF , Q̄ = Q/kF ,
and ∆̄ = ∆/k2

F , allows us to write the form factors as

fSI(~q,~k) = − 4
π
kF

∫ 1/2

−1/2
dβ
∫ 1

0
dp̄

2
(
k̄ · (k̄ − βq̄)

Q̄2
∆̄ + 1

4 q̄
2 − k̄2

)
p̄2

(p̄2 + ∆̄)2 − 4p̄2Q̄2

+ 2
 k̄ ·

(
k̄ − βq̄

)
Q̄2

− 1
 p̄4

(p̄2 + ∆)2 − 4p̄2Q2 −
k̄ · (k̄ − βq̄)

Q̄3
p̄ arctanh

(
2p̄Q̄
p̄2 + ∆̄

)
fSD(~q,~k) = 4

π
kF

∫ 1/2

−1/2
dβ
∫ 1

0
dp̄


(

2− ∆̄
Q̄2

)
p̄2

(p̄2 + ∆̄)2 − 4p̄2Q̄2

− 1
Q̄2

p̄4

(p̄2 + ∆̄)2 − 4p̄2Q̄2
+ 1

2Q̄3
p̄ arctanh

(
2p̄Q̄
p̄2 + ∆̄

).
(E.18)
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The following three integrals necessary to compute the form factors can be performed
analytically:
∫ 1

0
dp̄

p̄2

(p̄2 + ∆̄)2 − 4p̄2Q̄2
= 1

4
1√

∆̄− Q̄2

arctan
 1− Q̄√

∆̄− Q̄2

+ arctan
 1 + Q̄√

∆̄− Q̄2


− 1

8Q̄
ln
(

1 + ∆̄ + 2Q̄
1 + ∆̄− 2Q̄

)
∫ 1

0
dp̄

p̄4

(p̄2 + ∆̄)2 − 4p̄2Q̄2
= −1

4
3∆̄− 4Q̄2√

∆̄− Q̄2

arctan
 1− Q̄√

∆̄− Q̄2

+ arctan
 1 + Q̄√

∆̄− Q̄2


+ 1 + ∆̄− 4Q̄2

8Q̄
ln
(

1 + ∆̄ + 2Q̄
1 + ∆̄− 2Q̄

)
∫ 1

0
dp̄ p̄ arctanh

(
2p̄Q̄
p̄2 + ∆̄

)
= Q̄

√
∆̄− Q̄2

arctan
 1− Q̄√

∆̄− Q̄2

+ arctan
 1 + Q̄√

∆̄− Q̄2


+ Q̄− 1

4
(
1− 2Q̄2 + ∆

)
ln
(

1 + 2Q̄+ ∆̄
1− 2Q̄+ ∆̄

)
(E.19)

Combining these results with the proper prefactors in Eq. (E.18), the resulting spin-
independent and spin-dependent form factors are

fSI(q̄, k̄) = 2
π

∫ 1/2

−1/2
dβ

2
(

1 + −βk̄ · q̄ + β2q̄2

k̄2 − 2βk̄ · q̄ + β2q̄2

)
−

4(1
4 − β

2)q̄2 + 3m̄2√
(1

4 − β2)q̄2 + m̄2


×

arctan
1 +

√
k̄2 − 2βk̄ · q̄ + β2q̄2√
(1

4 − β2)q̄2 + m̄2

+ arctan
1−

√
k̄2 − 2βk̄ · q̄ + β2q̄2√
(1

4 − β2)q̄2 + m̄2


+ 1

2
√
k̄2 − 2βk̄ · q̄ + β2q̄2

ln
1 + 2

√
k̄2 − 2βk̄ · q̄ + β2q̄2 + k̄2 − 2βk̄ · q̄ + 1

4 q̄
2 + m̄2

1− 2
√
k̄2 − 2βk̄ · q̄ + β2q̄2 + k̄2 − 2βk̄ · q̄ + 1

4 q̄
2 + m̄2

×
1 + 2m̄2 +

(3
4 − 4β2

)
q̄2 − k̄2 + 2βk̄ · q̄ + β

(
1 + 1

4 q̄
2 + m̄2 + k̄2 − 2βk̄ · q̄

) (
k̄ · q̄ − βq̄2

)
k̄2 − 2βk̄ · q̄ + β2q̄2


(E.20)

fSD(q̄, k̄) = − 2
π

∫ 1/2

−1/2
dβ

1√
k̄2 − 2βk̄ · q̄ + β2q̄2

 1√
k̄2 − 2βk̄ · q̄ + β2q̄2

−
1 + m̄2 + k̄2 − 2βk̄ · q̄ + 1

4 q̄
2

4
(
k̄2 − 2βk̄ · q̄ + β2q̄2

) ln
1 + 2

√
k̄2 − 2βk̄ · q̄ + β2q̄2 + k̄2 − 2βk̄ · q̄ + 1

4 q̄
2 + m̄2

1− 2
√
k̄2 − 2βk̄ · q̄ + β2q̄2 + k̄2 − 2βk̄ · q̄ + 1

4 q̄
2 + m̄2


(E.21)

Note that these functions depend on not only the magnitude of the dimensionless momentum
transfer q̄ and average momentum k̄, but on their relative angle. Fortunately, for the physically
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relevant values of these momenta, fSI and fSD do not vary significantly over the range of
possible angular values. Therefore we may replace each function by its angular average. The
angle-averaged functions then depend only on the magnitude of the momentum transfer and
the average momentum. For µ− → e− conversion in 27Al, |~q | ≈ mµ. Fixing the magnitude of
the momentum transfer, fSI and fSD are now functions of the dimensionless average nucleon
momentum k̄, as shown in Fig. E.1. In order to recover a local one-body effective operator,
we now wish to replace these slowly-varying functions of k̄ by a constant. We can weight
our average by the nucleon momentum probability distribution obtained from the measured
nucleon density. The resulting constant values fSIeff and fSDeff are compared to their respective
k̄-dependent form factors in Fig. E.1.

This calculation was first performed in Ref. [56], but several errors were committed that
resulted in incorrect expressions for the form factors fSI(q̄, k̄ and fSD(q̄, k̄) and all quantities
derived from them.
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(a)

(b)

Figure E.1: (a) Angle averaged value of fSI at |~q | = mµ and its constant approximation fSIeff
as a function of the dimensionless average momentum k̄.
(b) Angle averaged value of fSD at |~q | = mµ and its constant approximation fSDeff as a function
of the dimensionless average momentum k̄.
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Appendix F

Fourier Transform of Two-Nucleon
Operator

The two-nucleon current that contributes to µ→ e conversion has the form

J
(2)
ud,α(~q1, ~q2) = −g

2
Am

2
π

4f 2
π

ρ
(
~k1, ~k

′
1,
~k2, ~k

′
2

)
~τ(1) · ~τ(2) C(0)

Sα , (F.1)

where we have defined the two-nucleon density

ρ
(
~k1, ~k

′
1,
~k2, ~k

′
2

)
≡ ~q1 · ~σ(1) ~q2 · ~σ(2)

(q2
1 +m2

π)(q2
2 +m2

π) . (F.2)

The three-momentum transfers are defined to be

~q1 ≡ ~p1 − ~p ′1, ~q2 ≡ ~p2 − ~p ′2, (F.3)

and we use the notation qi = |~qi| to denote the length of the three-vectors. Then to transform
to coordinate space and enforce momentum conservation, we have

ρ(~x1, ~x
′
1, ~x2, ~x

′
2, ~q) = 1

(2π)12

∫
d3p1 d

3p′1 d
3p2 d

3p′2 J̃2(~q1, ~q2, ~q)

× (2π)3δ(~p1 + ~p2 − ~p ′1 − ~p ′2 − ~q)ei(~p
′
1·~x
′
1+~p ′2·~x ′2−~p1·~x1−~p2·~x2)

(F.4)

We transform our integration variables to

~q1 = ~p1 − ~p ′1, ~P1 = 1
2 (~p1 + ~p ′1)

~q2 = ~p2 − ~p ′2, ~P2 = 1
2 (~p2 + ~p ′2) ,

(F.5)

so that

ρ(~x1, ~x
′
1, ~x2, ~x

′
2, ~q)

= 1
(2π)3 δ(~x1 − ~x ′1)δ(~x2 − ~x ′2)

∫
d3q1 ρ(~q1, ~q − ~q1, ~q)e−

i
2 [~q1·(~x1+~x ′1)+(~q−~q1)·(~x2+~x ′2)].

(F.6)
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Next we employ the Feynman parameter representation

1
AB

=
∫ 1

0
dα

1
[αA+ (1− α)B]2

, (F.7)

with
A = q2

1 +m2
π, B = (~q − ~q1)2 +m2

π. (F.8)
Then

αA+ (1− α)B = [~q1 − (1− α)~q]2 + α(1− α)q2 +m2
π. (F.9)

Now let us shift the integration variable

~q1 → ~q1 + (1− α)~q, (F.10)

so that

ρ(~x1, ~x
′
1, ~x2, ~x

′
2, ~q) = 1

(2π)3 δ(~x1 − ~x ′1)δ(~x2 − ~x ′2)e− i
2~q·(~x1+~x ′1)

∫ 1

0
dα eiα~q·~r

×
∫
d3q1

[~q1 + (1− α)~q ] · ~σ(1) [α~q − ~q1] · ~σ(2)
[q2

1 + Π2(q, α)]2
e−i~q1·~r,

(F.11)

where we have defined
Π2(q, α) ≡ α(1− α)q2 +m2

π, (F.12)
and introduced the relative coordinate

~r ≡ 1
2 (~x1 + ~x ′1 − ~x2 − ~x ′2)

= ~x1 − ~x2.
(F.13)

The quantity Π(q, α) can be interpreted as an effective pion mass arising from the finite
momentum-transfer. Indeed, Π(q, α) → mπ when q → 0. Now we can perform the final
momentum integral. There are three distinct integrands. First, with a trivial angular
integrand: ∫

d3q1
e−i~q1·~r

[q2
1 + Π2(q, α)]2

= π2 e
−rΠ(q,α)

Π(q, α) , (F.14)

then with one factor of q̂1 in the angular integrand:∫
d3q1

~q1 · ~σ(i)e−i~q1·~r

[q2
1 + Π2(q, α)]2

= −iπ2r̂ · ~σ(i)e−rΠ(q,α), (F.15)

and finally with two factors of q̂1:∫
d3q1

~q1 · ~σ(1)~q1 · ~σ(2)e−i~q1·~r

[q2
1 + Π2(q, α)]2

= π2

3 ~σ(1) · ~σ(2)e
−rΠ(q,α)

r
[2− rΠ(q, α)]

− π2

√
8π
15 [~σ(1)⊗ ~σ(2)]2 � Y2(r̂)e

−rΠ(q,α)

r
[1 + Π(q, α)r] .

(F.16)
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For this last integration we have employed the identity

(q̂ · ~σ(1)) (q̂ · ~σ(2)) = 1
3~σ(1) · ~σ(2) +

√
8π
15Y2(q̂)� [~σ(1)⊗ ~σ(2)]2 . (F.17)

Putting these pieces together yields

ρ(~x1, ~x
′
1, ~x2, ~x

′
2, ~q) = 1

8πδ(~x1 − ~x ′1)δ(~x2 − ~x ′2)e−i~q·~x1
∫ 1

0
dα eiα~q·~r−Π(q,α)r− iαr̂ · ~σ(1)~q · ~σ(2) + i(1− α)~q · ~σ(1)r̂ · ~σ(2)− 1

3~σ(1) · ~σ(2)1
r

[2− rΠ(q, α)]

+ α(1− α) 1
Π(q, α)~q · ~σ(1)~q · ~σ(2) +

√
8π
15

1
r

[~σ(1)⊗ ~σ(2)]2 � Y2(r̂) [1 + rΠ(q, α)]
.

(F.18)

In the ~q → 0 limit, the Feynman parameter integral becomes trivial, Π(q, α)→ mπ, and the
two-body current becomes

ρ(~x1, ~x
′
1, ~x2, ~x

′
2, 0) = 1

8πδ(~x1 − ~x ′1)δ(~x2 − ~x ′2)1
r

{
1
3F1(r/mπ)~σ(1) · ~σ(2)

+
√

8π
15F2(r/mπ)Y2(r̂)� [~σ(1)⊗ ~σ(2)]2

}
,

(F.19)
where the form factors are given by

F1(x) ≡ e−x(x− 2), F2(x) ≡ e−x(x+ 1). (F.20)

This is a familiar result from studies of 0νββ-decay (e.g., Ref. [154]), where the leading
long-range contribution is due to two-pion exchange. Here, rather than relying on the
long-wavelength limit, we will work at finite q.

If we were to Fourier transform the two-body current in Eq. (F.18) with respect to the
momentum transfer ~q

ρ(~x1, ~x
′
1, ~x2, ~x

′
2, ~x) =

∫ d3q

(2π)3 e
i~q·~xρ(~x1, ~x

′
1, ~x2, ~x

′
2, ~q), (F.21)

then the resulting position space current will exhibit a complicated dependence on the Fourier
transform coordinate ~x. The dominant piece will be the J = 0 component of this current and
so we must project the spatial two-body current onto charge multipoles

MJ,M(κ) =
∫
d3x jJ(κx)YJ,M(x̂)ρ(~x1, ~x

′
1, ~x2, ~x

′
2, ~x)

= 1
4π i

Jδ(κ− q)
∫
dΩq YJ,M(q̂)ρ(~x1, ~x

′
1, ~x2, ~x

′
2, ~q).

(F.22)

Our focus is then the J = M = 0 contribution. We begin by considering the first term in
the second line of Eq. (F.18). The only angular dependence on q̂ in this term is in the
exponentials, so we compute∫

dΩq Y0,0(q̂)e−i~q·~Rei(α−1/2)~q·~r = (4π)3/2
∞∑
l=0

jl(qR)jl (qr(α− 1/2))Yl(R̂)� Yl(r̂), (F.23)
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where we have defined the center-of-mass coordinate

~R ≡ 1
2 (~x1 + ~x2) . (F.24)

Thus we have the two-body operator

O1(~r, ~R, q) = − 1
12
√
π
~σ(1) · ~σ(2)

∞∑
L=0

YL(r̂)� YL(R̂)jL(qR)

×
∫ 1

0
dα e−rΠ(q,α)jL (qr(α− 1/2)) 2− rΠ(q, α)

r
.

(F.25)

The Feynman parameter integral vanishes unless L is even. This can be seen by shifting
the Feynman parameter β = α− 1/2 and noting that Π(q, β) (and thus the entire Feynman
parameter integrand) is an even function of β. Therefore

O1(~r, ~R, q) = − 1
12
√
π
~σ(1) · ~σ(2)

∞∑
L=0,2,...

YL(r̂)� YL(R̂) jL(qR)

×
∫ 1

0
dα e−rΠ(q,α)jL (qr(α− 1/2)) 2− rΠ(q, α)

r

(F.26)

Now let’s look at the second term in the second line of Eq. (F.18) and apply the identity of
Eq. (F.17). We find one term that has the same tensor structure as O1; that is

O2(~r, ~R, q) = 1
12
√
π
~σ(1) · ~σ(2)

∞∑
L=0,2,...

YL(r̂)� YL(R̂) jL(qR)

×
∫ 1

0
dα e−rΠ(q,α)jL(qr (α− 1/2)) q

2α(1− α)
Π(q, α) ,

(F.27)

where again the Feynman parameter integral vanishes unless L is even.
The second term that we get from applying the tensor decomposition of Eq. (F.17) has a

quadrupole dependence on q̂:∫
dΩq Y0,0(q̂)e−i~q·~Rei(α−1/2)~q·~rY2(q̂)� [~σ(1)⊗ ~σ(2)]2

= 4π
∑
L1,L2

(i)L1−L2(−1)L1+L2C20
L10L20

√
(2L1 + 1)(2L2 + 1)

5 jL1 (qr(α− 1/2)) jl2(qR)

×
[
YL1(r̂)⊗ YL2(R̂)

]
2
� [~σ(1)⊗ ~σ(2)]2 .

(F.28)

Therefore we have the operator

O3(~r, ~R, q) = 1
5
√

24π
∑
L1,L2

iL1−L2(−1)L1+L2C20
L10L20

√
(2L1 + 1)(2L2 + 1)jL2(qR)

×
[
YL1(r̂)⊗ YL2(R̂)

]
2
� [~σ(1)⊗ ~σ(2)]2

∫ 1

0
dα e−rΠ(q,α)jL1 (qr(α− 1/2)) q

2α(1− α)
Π(q, α)

(F.29)
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As before, the Feynman parameter integral vanishes unless L1 is even. The Clebsch-Gordan
coefficient then implies that L2 must be even as well. Thus

O3(~r, ~R, q) = 1
5
√

24π

∞∑
L1=0,2,...

∞∑
L2=0,2,...

(−1)(L1−L2)/2C20
L10L20

√
(2L1 + 1)(2L2 + 1)jL2(qR)

×
[
YL1(r̂)⊗ YL2(R̂)

]
2
� [~σ(1)⊗ ~σ(2)]2

∫ 1

0
dα e−rΠ(q,α)jL1 (qr(α− 1/2)) q

2α(1− α)
Π(q, α) .

(F.30)

Now we turn our attention to the term in the third line of Eq. (F.18). The only angular
dependence on q̂ is in the exponentials but after completing the angular integral we must
recouple the resulting two r̂ spherical harmonics. For this task we need the identity

Yl2(r̂)� Yl2(R̂) Y2(r̂)� [~σ(1)⊗ ~σ(2)]2

= (−1)l2
√

2l2 + 1
4π

∑
l1

C l10
l2020

[
Yl1(r̂)⊗ Yl2(R̂)

]
2
� [~σ(1)⊗ ~σ(2)]2 .

(F.31)

As before, we find that the integrand vanishes unless L2 is even and the Clebsch-Gordon
coefficient then requires that L1 be even as well. Thus

O4(~r, ~R, q) = 1
5
√

24π
∑

L1,L2 even
C20
L10L20

√
(2L1 + 1)(2L2 + 1)jL2(qR)

×
[
YL1(r̂)⊗ YL2(R̂)

]
2
� [~σ(1)⊗ ~σ(2)]2

∫ 1

0
dα e−rΠ(q,α)jL2(qr(α− 1/2))1

r
[1 + rΠ(q, α)] .

(F.32)

Now we turn our attention to the final set of terms, the first line of Eq. (F.18). First we
decompose the tensor structure as

− αr̂ · ~σ(1)q̂ · ~σ(2) + (1− α)q̂ · ~σ(1)r̂ · ~σ(2)

= 4π
3

2∑
K=0

[Y1(q̂)⊗ Y1(r̂)]K � [~σ(1)⊗ ~σ(2)]K
[
−α + (1− α)(−1)K

]
.

(F.33)

Next we must perform a more complicated angular integral: the Y1(q̂)-dependence is non-
trivially coupled to the Y1(r̂). After integrating and re-coupling (using an identity to rewrite a
sum of three Clebsch-Gordon coefficients as a single Clebsch-Gordon coefficient and a Wigner
6-j symbol), we find∫

dΩq Y00(q̂)e−i~q·Rei(α−1/2)~q·~r [Y1(q̂)⊗ Y1(r̂)]K � [~σ(1)⊗ ~σ(2)]K

= 3
√

4π
∑
L1,L2

(i)L1−L2(2L1 + 1)CL20
L1010

∑
J

(−1)1+JCJ0
L1010

 L1 1 L2

K J 1


×
[
YJ(r̂)⊗ YL2(R̂)

]
K
� [~σ(1)⊗ ~σ(2)]K jL1(qr(α− 1/2))jL2(qR)

(F.34)
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Now let us consider the three cases: K = 0, 1, 2. When K = 0, then J = L2 and many of the
angular momentum factors simplify. In particular, L1 1 L2

0 L2 1

 = (−1)1+L1+L2√
3(2L2 + 1)

, (F.35)

[
YL2(r̂)⊗ YL2(R̂)

]
0,0

= (−1)L2

√
2L2 + 1

YL2(r̂)� YL2(R̂), (F.36)

and
[~σ(1)⊗ ~σ(2)]0,0 = − 1√

3
~σ(1) · ~σ(2). (F.37)

Therefore we have the operator

O5(~r, ~R, q) = 1
12
√
π

∑
L1,L2

(i)1+L1−L2

(2L1 + 1
2L2 + 1

) (
CL20
L1010

)2

× jL2(qR) YL2(r̂)� YL2(R̂) ~σ(1) · ~σ(2) q
∫ 1

0
dα e−rΠ(q,α)(1− 2α)jL1(qr(α− 1/2)).

(F.38)

The integral with respect to α vanishes unless L1 is odd, and the Clebsch-Gordon coefficient
then implies that L2 must be even. Therefore

O5(~r, ~R, q) = 1
12
√
π

∞∑
L1=1,3,...

∞∑
L2=0,2,...

(−1)(1+L1−L2)/2
(2L1 + 1

2L2 + 1

) (
CL20
L1010

)2

× jL2(qR) YL2(r̂)� YL2(R̂) ~σ(1) · ~σ(2) q
∫ 1

0
dα e−rΠ(q,α)(1− 2α)jL1(qr(α− 1/2))

(F.39)

Similarly when K = 1, we have

O6(~r, ~R, q) = − 1
4
√
π

∞∑
L1=0,2,...

∞∑
L2=1,3,...

∞∑
J=1,3,...

(−1)(1+L1−L2)/2CL20
L1010C

J0
L1010

 L1 1 L2

1 J 1


× (2L1 + 1)

[
YJ(r̂)⊗ YL2(R̂)

]
1
� [~σ(1)⊗ ~σ(2)]1 jL2(qR) q

∫ 1

0
dα e−rΠ(q,α)jL1(qr(α− 1/2)).

(F.40)
Finally when K = 2,

O7(~r, ~R, q) = − 1
4
√
π

∞∑
L1=1,3,...

∞∑
L2=0,2,...

∞∑
J=0,2,...

(−1)(1+L1−L2)/2CL20
L1020C

J0
L1020

 L1 1 L2

2 J 1


× (2L1 + 1)

[
YJ(r̂)⊗ YL2(R̂)

]
2
� [~σ(1)⊗ ~σ(2)]2

× jL2(qR) q
∫ 1

0
dα e−rΠ(q,α)(1− 2α)jL1(qr(α− 1/2)).

(F.41)
The total two-body operator can then be expressed as

O(2)(q) = −g
2
Am

2
π

4f 2
π

1
2
∑
i 6=j

7∑
k=1
Ok(~rij, ~Rij, q) ~τ(i) · ~τ(j), (F.42)

where the summation over i, j extends over all nucleons in the target nucleus.
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