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Analytic theory of L\H transition, barrier structure, and hysteresis
for a simple model of coupled particle and heat fluxes

M. A. Malkov and P. H. Diamond
Center for Astrophysics and Space Sciences and Department of Physics, University of California,
San Diego, La Jolla, California 92093, USA

!Received 28 January 2008; accepted 29 October 2008; published online 3 December 2008"

The two-field !pressure/density" model for the L→H transition is extended and analyzed
qualitatively. In its original form the model is ambiguous as to the location of the transition within
the range of bistability of particle and thermal fluxes. Here, the model is regularized by including
!i" hyperdiffusion, !ii" time dependence, and !iii" curvature of the pressure profile. The
regularizations !i"–!ii" agree and indicate that the Maxwell rule for the forward and back transition
applies, as opposed to the maximum flux forward and minimum flux backward transition rules
!which yields hysteresis" as suggested previously. Regarding !i"–!ii", simple models suggest that for
a pressure gradient driven electric field shear bifurcation, the basic scale of the pedestal is
inexorably tied to the particle fueling depth, which normally is the neutral penetration depth. There
is no hysteresis predicted by the local model of transport suppression. However, the effect of
pressure profile curvature !iii" changes these results substantially. When it dominates, the curvature
effect reduces the transition threshold to the lower end of the range of heating power, which falls
within the phase coexistence region for both forward and back transitions. This softens the transition
threshold requirements. In this limit, the model with pressure curvature also predicts transitions
which occur in regimes of flat density and driven exclusively by the temperature gradient. This
allows the pedestal to extend beyond the fueling depth, and also allows some decoupling of density
and pressure profiles. In a parameter range where the pressure curvature is less important the
transition occurs somewhere between the above two limits. © 2008 American Institute of Physics.
#DOI: 10.1063/1.3028305$

I. INTRODUCTION

A very important goal of magnetic confinement fusion is
to understand the mechanisms for the edge1 and internal2

transport barrier formation. The physics of the L→H transi-
tion may very well be related to an abrupt change of the edge
plasma stability. However, an intrinsic bistability3 of the
transport fluxes is a more plausible alternative to this sce-
nario. Loosely put, the two stable branches correspond to the
low !L" and high !H" confinement modes, respectively. The
details of the mechanism for L→H transition remain contro-
versial but nearly all candidates involve some variation on
the theme of electric field shear Er! leading to reduction or
suppression of turbulence.4,5 It is natural to think of L→H
transition and profile problems as phase transition
phenomena,6 with the electric field shear Er! as the order
parameter.7 Here, the L-mode is analogous to the disordered
phase !i.e., one with weak Er! and strong turbulence" while
the H-mode is analogous to the ordered phase !i.e., strong Er!
shear and weak or negligible turbulence". The local L→H
bifurcation is then naturally analogous to a phase transition
!or, more precisely, the advance or expansion of a region of
H-phase into a region of L-phase8", and the problem of un-
derstanding H-mode pedestal structure is analogous to under-
standing phenomena, such as phase separation in the co-
existence region !i.e., as in spinodal decomposition9", or the
expansion of one phase into another, etc. Of course, the most
important questions are when and where the forward L→H
transition and back-transition actually occur. These play an

important role in setting the actual pedestal width, as they
define the effective dynamical boundary of the enhanced
confinement region.

To this end, significant insight has been gained by con-
sidering simple, bistable S-curve bifurcation models.10–12 In
such models, the variation of the system state !e.g., local
density gradient" as a function of the control parameter !e.g.,
local diffusive flux" is represented by an S-figure with two
stable branches which, respectively, correspond to the L and
H modes. These are connected by an unstable branch or tran-
sition region !see Fig. 1". Of course, this approach is intrin-
sically somewhat unsatisfactory, for many reasons. These
include:

!a" The fact that the edge barrier !L→H" transition is a
two-field problem, and must be described in terms of
density and temperature, at minimum. This is because
the ion pressure gradient driven electric field shear is
dependent on both the density and ion temperature pro-
files, and so is sensitive to both particle and !ion" heat
sources. This is, of course also consistent with the em-
pirical observations that the L→H transition has both a
power and a density threshold.13

!b" The fact that the S-curve is, itself, a function of the
local plasma parameters. While the radial variation of
structure of the S-curve can be represented by consid-
ering a static folded surface, or flux-landscape14 func-
tion !!Er! ,r", its time evolution cannot be described
without a dynamical model.
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!c" The model is grossly oversimplified, and omits essen-
tially all of the details of the transition dynamics, such
as evolution of zonal flow15–17 and mean poloidal and
toroidal flows, interplay of fluctuation, flow and profile
evolution, etc.18,19 The model lumps all these phenom-
ena into a simple bifurcation between the L-mode and
an H-mode in which all fluctuations are quenched, and
the residual transport is purely neoclassical. The effects
of the radial variation of the transport coefficients are
not addressed.

In spite of these shortcomings, the one-field S-curve
paradigm has definitely furthered our understanding of the
L→H bifurcation phenomena, as it captures many key as-
pects of the problem in a simple paradigmatic example.
Moreover, there is some evidence that the experimentally
determined flux versus. gradient plot is consistent with an
S-curve bifurcation model.20 However, it is also true that
further progress now requires a new, improved model to be
developed.

In this paper, we progress beyond the one field S-curve
paradigm to consider a two-field transport bifurcation model,
which describes the evolution of density n and pressure p.
This model is solved analytically. It was proposed, but stud-
ied only numerically, by Hinton and Staebler.11 Also, an ad
hoc transition criterion was used in that work. We show this
criterion to be invalid. The model employs a minimal model
of Er! suppression of turbulent thermal and particle transport.
A simple substitution !diagonalization" reduces the coupled
equations for density and pressure to two one-field bifurca-
tion problems. Other than proximity to threshold, no simpli-
fying assumptions or restrictions are invoked. We note that
while independent equations for density and pressure are ob-
tained, both particle and thermal source functions enter each

equation. An exact criterion for phase coexistence !i.e., the
possibility of bifurcation" is derived. While the model is a
useful guide to the parameter study of L→H transitions, it
does not, however, resolve the fundamental questions, which
are of course !1" which of the two possible stable states does
the system actually prefer, and !2" under what conditions do
transitions between them occur? In the aforementioned spa-
tial context, solution of this problem translates into determi-
nation of the exact position of the L→H interface and of the
thickness of the plasma domain in which the state with the
enhanced density and temperature gradients is established
!i.e., the transport barrier or pedestal width". The thickness of
the pedestal in turn, determines the improvement in the over-
all device performance through the enhancement of the den-
sity and temperature in the core plasma “contained” by the
barrier, as well as the enhancement of the overall energy and
particle confinement times !i.e., the H-factor".

Bistable systems are described by evolution equations
whose stationary solutions are bivalued. While the underly-
ing physics may be different in different systems, the very
existence of a governing S-curve implies some aspects of
universality in the dynamics. At the same time, a complete
time dependent description is necessary to determine the
time asymptotic state of a system. In other words, it is not
clear a priori which of the two stable branches will be se-
lected if the both are permissible stationary solutions for
given values of control parameters.

This problem can be illustrated by an example, as fol-
lows !Fig. 2". Let us take the particle deposition rate ! inside

ΓΓΓ1 2

n
∆

H-mode

L-mode

Intermediate (unstable)

FIG. 1. Generic bifurcation diagram !S-curve" that illustrates a possible
transition from the L !lower gradient" to H-mode !higher gradient" solution
for a given particle deposition rate !1"!"!2.
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H-mode

L-mode
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L-mode
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FIG. 2. The same as Fig. 1 but with the underlying alignment of L and H
domains that may coexist in the interval x1"x"x2.
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a closed region as a control parameter, and the density gra-
dient #n at its boundary as an order parameter. Note #n /n is
related to Er!. Clearly, as long as ! is sufficiently small, so is
the gradient #n, and the dependence #n!!" is unique. Thus,
only one !L-mode" solution occurs. For growing ! this
changes, namely #n!!" becomes nonlinear and two addi-
tional solutions for #n!!" branch off at, say !=!1, so that
for !1"!"!2 three solutions are now possible. For !#!2
only one !H-mode solution" remains. The intermediate solu-
tion is usually unstable, but the uppermost is stable and the
transition to the upper branch may occur !theoretically" at
any value of !1"!"!2. In low dimensional systems, such
as electric circuits, where the control and order parameters
are just simple time dependent variables, such as voltage and
current, the transition occurs where one of the stable solu-
tions simply no longer exists, i.e., in our case at !2. Simi-
larly, the reverse transition occurs when the upper solution
disappears. In our case this happens when ! goes below !1.
Obviously a hysteresis loop of the width $!=!2−!1 in the
particle flux forms in this case.

In continuous media !described by PDEs", where two
states or phases can coexist in static, adjacent domains, this
simple rule does not determine the L–H transition. To dem-
onstrate this, suppose that !!x" is monotonically increasing
so that !!x"#!2=!!x2" for x#x2 !Fig. 2" and the above rule
applies. Hence, the H-mode definitely occupies at least the
half-space x#x2. Since ! decreases to the left, the transition
H→L should occur !by the above rule" only at x=x1, where
!!x1"=!1. Now, a similar consideration can be repeated go-
ing from smaller to larger x. Namely, the L-mode must oc-
cupy the x"x1 half-space and it should even persist up to
x=x2, where the L-branch disappears and the L→H transi-
tion must occur. This clearly contradicts our previous asser-
tion that the region x1"x"x2 is occupied by the H-mode!
There is no contradiction only for the trivial case x1=x2.
Hence, the simple transition rule described above gives an
ambiguous result for the transition location !x=x1 or x=x2".
Alternatively put, this example shows that the actual location
of the transition layer in the interval #x1 ,x2$ is indeterminate.
This dilemma, while not explicitly discussed in Ref. 11, was
de facto circumvented there by an additional ad hoc require-
ment that the jump in the density !or pressure" gradient
across the transition should be the “least possible.” This ad
hoc rule happened to select x=x1 as the transition point. Not
only is this requirement arbitrary, but there are well known
elementary examples where the opposite principle applies.
For instance, in a flow with a coordinate dependent velocity
profile, shocks form at such points so as to maximize the
velocity jump across them and thus also maximize the effi-
ciency of energy dissipation.

To summarize, the transition occurs anywhere within the
phase coexistence interval x1"x"x2. Note that the model
introduced in Ref. 11 and used below certainly admits that
possibility. Therefore, further physical arguments are needed
to determine the location of the transition.

The goal of this paper is thus twofold. First, we derive
an exact criterion for phase coexistence. This will be
achieved by obtaining a single “S-curve” by reducing the
two coupled transport equations to two independent equa-

tions and then to a single combined equation for the product
of the density and temperature gradients. Second, we con-
sider temporal evolution and regularization of stationary
equations to locate the transition point on the S-curve. One
general and commonly used approach is to regularize the
equations in the coexistence region by adding physically rel-
evant regularization terms, such as a small hyperdiffusivity.
For a flux driven, one field transport model, such a regular-
ization has been performed in Ref. 8. It resulted in an “equal
area,” or Maxwell transition rule across the S-curve, similar
to that in the shock formation or phase transition problems,
and in contrast to the “maximum profile smoothness” prin-
ciple suggested in Refs. 10 and 11. We also applied the hy-
perdiffusive regularization to the two field, distributed source
driven model of Ref. 11. Not surprisingly, upon application
to the diagonalized equations !i.e., which are in many re-
spects similar to the one field model", this procedure also
leads to the Maxwell rule for the transition location, as is
shown in Sec. III B. However, the situation with the two field
model is more complex. Indeed, a more consistent approach
would be to add hyperdiffusive terms to both energy and
particle transport equations prior to their diagonalization.
This possibility was explored in detail by the late
Rosenbluth.21 He was able to prove that the transition point
depends on the relation between the two regularizing coeffi-
cients. This is not an appealing result, and renders the whole
regularization approach here dubious. Indeed, in general, the
regularization implies that the transition point does not de-
pend on the regularizing coefficient as long as it is small. Put
more rigorously, the solution must converge to a unique
weak solution of the original equation as the regularizing
parameter tends to zero. Now that we need two regulariza-
tion parameters !particle and heat hyperdiffusivities", the re-
sult is sensitive to the relation between them !even if they
both are vanishingly small!" and, unless a reliable hyperdif-
fusion model is available, the regularization cannot deter-
mine the transition point. This rather unsatisfactory result is
quite understandable from the stand point of singular pertur-
bation theory, a category of problem into which the hyper-
diffusive regularization falls. As the dependence of such a
problem on small parameters is usually nonanalytic #e.g., a
boundary layer that behaves as exp!−x /%" as %→0$, the or-
der in which the limits !of the two hyperdiffusivities" are
taken clearly matters. Therefore, we also explore methods of
determination of the transition point that do not require any
additional terms in the transport equations.

It is best to solve an initial value problem. This is diffi-
cult in the general case. Thus, with the interest of treatability
in mind, we make the plausible assumption that the heat and
density relaxation times are significantly different and the
heat transport, as the faster process, follows the density
transport closely. We develop a variational principle and
demonstrate that an underlying functional, akin to a free en-
ergy, decreases while the system evolves towards a steady
state. Therefore, the correct stationary solution must mini-
mize this functional. We apply this method to the decoupled
particle transport equation and again arrive at the Maxwell
rule. We can now conclude that the obtained transition loca-
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tion within the fueling depth is not caused by a mathematical
ambiguity of the governing equations.

To test whether additional terms or physical effects alter
this result, we retain the second derivative of the radial
plasma pressure profile in the flux suppression term. This
automatically increases the order of the system of differential
equations, so that the transition point can be located unam-
biguously. In particular, the transition occurs at a value lower
than the Maxwell rule predictions for the heating and particle
deposition rate. Since the flux suppression can come from
the pressure curvature alone and does not require the density
gradient, a striking new result of this approach is the predic-
tion of a pressure gradient driven transition for a flat density
profile. In particular, the transition point is no longer located
within the fueling depth. Note, that a second derivative term
for the density has been included in the nonlinear particle
flux of a one-field bifurcation model in Ref. 22. This predic-
tion has implications for the dynamics of pedestal expansion,
as we will show.

The remainder of this paper is organized as follows: In
Sec. II, the basic transport model is described. A simple sub-
stitution is then used to decouple the density and pressure
equations. An exact criterion for a stationary state of phase
coexistence is obtained. In Sec. III a time dependent varia-
tional approach along with a hyperdiffusive regularization
are used to determine the exact transition point between the
H and L modes in their coexistence range. In Sec. IV we
include the curvature of the pressure profile as an alternative
regularization for the transition problem. The profile curva-
ture results in a different transition rule than the above two
types of regularization. Therefore, in Sec. IV we also study
the combined effects of hyperconductivity regularization and
profile curvature on the transition rule. In Sec. V we discuss
possible time dependent scenarios and hysteresis. This is fol-
lowed by the discussion and conclusion in Sec. VI.

II. BISTABLE PARTICLE AND ENERGY TRANSPORT
MODEL AND ITS STATIONARY SOLUTIONS

In this section we present and simplify the transport
model suggested by Hinton and Staebler.11 This model con-
sists of two coupled diffusion equations for particle and en-
ergy transport, including independent particle and heat
sources. The particle and heat fluxes are diffusive !with tur-
bulent diffusion" and contain model transport suppression
factors related to the effect of the sheared E&B flow. The
E&B flow shear is then related to the density and pressure
gradients by the radial force balance equation

VE! %
c

eB

$

$x
n−1!x"

$

$x
p!x" . !1"

The effects of toroidal and poloidal mass flows are neglected.
In this model, bistability originates from the multiplicative
factor dependent on flow shear. For convenience, we assume
slab geometry. Thus, the transport equations can be written
as

$n

$t
−

$

$x&D0 +
D1

1 + 'VE!
2' $n

$x
= S!x" , !2"

3
2

$p

$t
−

$

$x&(0 +
(1

1 + 'VE!
2' $p

$x
= H!x" !3"

with VE! given by Eq. !1". Both the neoclassical transport
coefficients !D0 and (0" and the turbulent transport coeffi-
cients !D1 and (1" may, in principle, vary with radius x. The
constant ' parametrizes the level of E&B velocity shear
necessary for turbulence suppression. ' is obviously related
to the turbulence correlation time, '()c

2. Here S!x , t" is the
particle source and H!x , t" is the thermal source term. In the
case of time dependent S and H, they represent the rate of
gas puffing and heating power ramps, respectively. Since we
are concerned with edge barriers with !standard" edge fuel-
ing, S!x" is taken to be localized near x%a, while H!x" is
localized near x=0. Note that it is the flow shear VE! , via its
dependence on density and pressure, which couples the two
bistable transport equations.

Equations !2" and !3" can be simplified as follows. First,
we write

g1 = −
$n

$x
, !4"

g2 = −
$p

$x
. !5"

Thus, for stationary n and p, the balance of transport and
sources immediately gives the stationarity conditions

D0g1 +
D1g1

1 + 'VE!
2 = )

0

x

S!x"dx * !s!x" , !6"

(0g2 +
(1g2

1 + 'VE!
2 = )

0

x

H!x"dx * Qs!x" . !7"

Here !s!x" and Qs!x" are the sources balancing the particle
and thermal fluxes. For edge barriers, H!x" may be assumed
to be peaked at the origin, so that Qs is constant in the barrier
region. However, the spatial dependence of !s!x" is impor-
tant, since S!x" grows sharply towards the edge. Therefore,
the formation and structure of edge barriers is indeed sensi-
tive to the fueling profile S!x" #via !s!x"$, but depends only
parametrically on the spatially constant heat flux Qs. One of
the gradients, e.g., g2 can be eliminated by multiplying Eq.
!6" by (1g2, multiplying Eq. !7" by g1D1, and then subtract-
ing the results. This yields

g2 =
QsD1g1

(1!s − !D0(1 − (0D1"g1
. !8"

Note Eq. !8" allows us to completely decouple Eq. !2"
from Eq. !3". Introducing a new variable
g='1/4+cQsD1 /eBn2(1!s!x"g1, and substituting Eqs. !1" and
!8" into Eq. !6", the latter can be rewritten as

F!g" * g +
*g

1 + g4!1 ++g"−2 = !̂ , !9"

where

+ = K−1+(1D1/Qs!s!x"!(0/(1 − D0/D1", * = D1/D0;
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!̂ = KD0
−1+Qs!s!x"D1/(1;

and

K = '1/4+c/eBn−1.

Now, to understand the structure of solutions and bifurca-
tions in the solution g=g!!̂ ,* ,+" it is useful to plot F!g",
Fig. 3. First of all, we note that our treatment is limited to a
local approximation in the following sense. The function
F!g" in Eq. !9" depends not only on the density gradient g
but also on the density, temperature and on coordinate x
through the parameters involved in Eq. !9". Within the local
approximation these quantities are assumed to be fixed at
their values at the transition point in F!g". Clearly, the ap-
proximation is strictly valid in a small vicinity of the transi-
tion point and may become inaccurate far away from it. Also,
in Eq. !9", the contribution of the second derivative of the
pressure in the flow shear given by Eq. !1" is neglected. This
restriction will be relaxed in Sec. IV.

Obviously, a local bifurcation #i.e., an abrupt transition
from a smaller to a larger gradient at some radius x, which
enters !̂!x"$ can occur if Eq. !9" has more than one solution.
This requires F!g" to be nonmonotonic, or in other words, an
adjacent local maximum and a local minimum should be
present. In the simplest case of +=0 !which has been studied
numerically in Ref. 11" this is only possible if *=D1 /D0
#*crit=16 /9. Obviously, L and H modes can coexist where
!̂!x" is between the local minimum and local maximum of
F!g". The latter condition can be written in the following
symmetric form:

,+ " K+Qs!s

(0D0
",−, !10"

where

,- * y-
1/41 + * + y-

1 + y-

with

y- =
3*
2

− 1-
3
2
+*,* −

16
9
- .

Note that the dimensionless parameters ,- depend only on
the ratio of transport coefficients *=D1 /D0, which, in this
particular case, is equal to (1 /(0, and are thus independent of
fueling and heating. The parameter bounded by ,+ and ,− in
Eq. !10" characterizes power input and fueling in a symmet-
ric way and is related to the corresponding neoclassical
transport coefficients.

Evidently, in those regions where +Qs!s /(0D0",+ /K,
only the L-mode is possible while for +Qs!s /(0D0#,− /K,
only the H-mode can exist. As we pointed out earlier, Qs is
nearly constant at the transition point while !s changes rap-
idly with x. Therefore, it is the !s!x" profile that determines
the pedestal width. However, if the transport coefficients also
change on the same scale as !s, then the width of the pedes-
tal may be significantly affected, as seen from Eq. !10".

Equation !10" gives the criterion for the possibility of the
local bifurcation in the density gradient at a radius x, for
given Qs!s /(0D0 and *=D1 /D0. Note that Eq. !10" estab-
lishes upper and lower bounds on the product Qs!s!x", re-
lated to heating and fueling sources, in terms of particle dif-
fusivities and thermal conduction coefficients in L and H
modes. This criterion applies to the pressure gradient by vir-
tue of Eq. !8". Equation !10" may be looked at as a criterion
for the coexistence of L and H phases. When the product
Qs!s is within the range prescribed by this inequality, either
mode is consistent with the steady state equations !6" and
!7". Equation !10" constitutes a necessary, but not sufficient,
condition for L→H bifurcation. Furthermore, it is a local
criterion for a bifurcation at a particular point. As long as the
exact transition point is not determined, it does not constitute
a criterion for, say, the emergence of a density pedestal of a
typical width, which is the criterion of practical interest. Fi-
nally, note that Eq. !10" states that, in general, a density
pedestal requires both particle and heat sources in order to
form.

If, as usual, the proportionality between the transport
coefficients given by the condition +=0 is not fulfilled, the
bifurcation problem given by Eq. !9" must be treated in a
two-dimensional !* ,+" parameter space and its complete
study is more tedious. However, another simple result can be
obtained in the case of very large +.1, in which we easily
find the following necessary condition of transport bifurca-
tion *#*crit=8, which is considerably more stringent than
that in the case +=0. Complete calculations of the steady
state bifurcation problem for arbitrary coefficients (1,2 and
D1,2 can be more conveniently represented in terms of the
following two symmetric combinations of the transport pa-
rameters !details are given in the Appendix":

A =
D0

D1
+
(0

(1
; B =

D0(0

D1(1
. !11"

The condition for the local bifurcation takes the following
form:

0 2 4
0

2

4

6

λ=6, Θ=0.2

λ=6, Θ=−0.2

λ=4, Θ=0

F(g)

g

F1

F2

L-H transition

FIG. 3. !Color online" Bifurcation diagram given by Eq. !9" for *=6 and
different values of parameter +. An L→H transition is shown by an arrow.
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A3!32B − 4" − 4A4 − 9A2 + 108B!4B − 1"" 0 !12"

which is represented graphically in Fig. 4 as a function of the
ratios of transport coefficients D0 /D1 and (0 /(1. Clearly,
strong imbalance of the turbulent components !amenable to
shear suppression" relative to the neoclassical ones increases
the phase contrast. The resulting magnitude of the gradient
jump remains to be determined !see the next section" by
obtaining the exact position of the transition within the mode
coexistence domain. Nevertheless, at this point we can char-
acterize the “strength” of the transition as a ratio of the local
maximum to the local minimum value on the bifurcation
curve. This quantity is represented in Fig. 5 and some of the
details of its calculation are presented in the Appendix.

III. BIFURCATION THEORY

As we have seen in the previous section Eqs. !6" and !7",
or equivalently, Eq. !9" can be satisfied by a family of sta-
tionary solutions with different locations of L→H transition.
It is important to understand that these equations alone do

not uniquely specify the point of transition, just the region of
phase coexistence. The reason is that Eq. !9" can be satisfied
identically even though g jumps between two different
branches of the bifurcation diagram, Fig. 1. Such a jump
without variation of F!g" is possible anywhere within the
interval given by Eqs. !10" and !A4", i.e., where more than
one !in fact three" stationary solution!s" is !are" possible. One
possible approach to resolve this uncertainty is to regularize
the equation by adding a higher order diffusion term, such as
hyperdiffusion.

Such an approach was pursued in Ref. 8 where a flux
driven bifurcation #!s!x"*0 in, e.g., Eq. !6"$ was studied.
The transition rule was found to be the ubiquitous equal area
!Maxwell" construction. We demonstrate in Sec. III B that
the same rule applies to any bistable flux of the type given by
Eq. !9", regardless of the specific functional form of flux
suppression, so long as the flux is regularized with a second
derivative term. Unfortunately, this does not guarantee that
the solution of the original time dependent system converges
time asymptotically to the same stationary solution selected
by the Maxwell rule. Indeed, as we discussed in the Intro-
duction, a consistent regularization would require an addition
of regularizing terms to each of the stationary equations !6"
and !7"21 and the transition point will depend on their ratio,
no matter how small they are. Not only is this ratio unknown,
but so are the correct forms of the regularizing terms, as
well. Therefore, we must rely on the full time dependent
treatment of the original equations, Eqs. !2" and !3". In this
treatment, however, we remain in the frame work of weak
solutions, i.e., we admit discontinuous gradients of n and p.

It is important to make the following two remarks here.
First, the Maxwell construction rule or any other rule for a
stationary transition gives a criterion for stationarity of the
transition front, not the total disappearance of a phase. In-
deed, it seems clear that front stationarity is the relevant
criterion for a local transition since the transition will con-
tinue while one phase advances into the other. At each point,
the Maxwell construction rule specifies the source !̂!x"
strength required for transition front stationarity at that point
x. Moreover, front stationarity is a weaker criterion than is
disappearance of the L-phase, in that it requires a lower level
of driving flux !̂.

A. Time dependent variational approach

To obtain mathematically accurate results in the time
dependent case, we assume that the temperature relaxation
time is significantly shorter than that of the density, i.e.,
(0,1.D0,1. Note that in reality, only the first inequality can
be considered as marginally valid, while (1/D1. Neverthe-
less, one can make progress by working in the regime where
(0,1.D0,1 and then later relaxing the inequality between (1
and D1 somewhat. Now, we can assume that the pressure
follows the density quasi-instantaneously !is slaved to it" so
one can determine p from Eq. !7" for any moment of time by
considering n to be a slow function of time. Formally, the
same result can be obtained by a proper ordering of time
dependent equations !2" and !3" in the limit D /(→0. Thus,

FIG. 4. L–H mode coexistence region in (0 /(1, D0 /D1 parameter space. In
the shaded area no bifurcations are permitted.

FIG. 5. Bifurcation depth as a function of transport coefficient as given by
Eq. !A5".
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we express g2 through g1 from Eq. !7" and substitute the
result into Eq. !2". In fact, it is convenient to express the
common suppression factor

1

1 + 'VE!
2 =

1
1 + !K2g1g2"2

through g2 and substitute this factor into Eq. !2". After dif-
ferentiating the result by x, and omitting the index at g1 for
brevity, we obtain

$g

$t
=

$2

$x2 .D1#$ + 0−11!g"$g − !s/ , !13"

where $=D0 /D1−(0 /(1, 0=(1 /Qs, and 1 is a branch of
1!g" fixed by the condition 1"1"1+0 and determined by
the following relation:

g2 =
12

K4

0 + 1 − 1
1 − 1

. !14"

In fact, we simply denoted 1=1 /g2, and we do not need the
explicit expression for 1!g".

Let us now apply a variational approach to the determi-
nation of the transition point between the L and H regions
when the solution of Eq. !13" approaches the steady state. In
contrast to the hyperdiffusion regularization considered in
Sec. III B, the variational approach does not require any spe-
cific additional terms in Eq. !6", and is therefore more gen-
eral. We begin with reformulating Eq. !13" in terms of the
following variational problem:

$g

$t
=

$2

$x2

23

2g
, !15"

where the effective “free energy” is given by the following
functional:

3 = )
0

a

#4!g" − !sg$dx !16"

and 4!g" is defined by

$4

$g
= D1#$ + 0−11!g"$g . !17"

Note that Eq. !15" resembles the Cahn–Hilliard equation,9

except it has a more general functional form of the flux on its
r.h.s. In fact, the specific form of the flux 4! is unimportant
so long as it is nonmonotonic. Recall that the steady state
solution of Eqs. !15" and !13" is given by

23

2g
=4!!g" − !s!x" = 0, !18"

i.e., the functional 3 assumes its extremal value for a sta-
tionary solution. As we discussed earlier, the region involved
in the transition phenomenon is the one where 4!!g" is non-
monotonic, i.e., where !1"4!"!2. Therefore, to isolate the
transition phenomena from the possible influence of the
boundaries we assume that !s!a"#!2, i.e., only the H-mode
solution is possible and actually realized as a stationary so-
lution, at least in some small vicinity of the right boundary.
On the left boundary !x=0" we assume that the L-mode so-

lution is established, since there is no fueling in the core.
Multiplying Eq. !15" by 23 /2g, integrating it between the
boundaries and using the above conditions at the boundaries,
along with Eqs. !15" and !16", we obtain

d3

dt
= − )

0

a 0 $

$x
#4!!g" − !s$12

dx5 0. !19"

The boundary conditions discussed above also allows us to
expand the function 4!!g"−!s!x" in a series of functions
sin!6nx /a" so that we can further refine the last result to

d3

dt
5 −

62

a2 24!!g" − !s22.

Here,

24!!g" − !s22 = )
0

a

34!!g" − !s32dx .

During the evolution to a steady state, the functional 3 is
thus decreasing and

d3

dt
= 0

only when a steady state solution is reached. In a situation
close to a steady state, the functional 3 can be defined on a
discontinuous function g!x" which assumes the upper branch
values g=g+!x" for x#b !H-mode" and g=g−!x" for x"b
!L-mode". Here g- are the upper and the lower branches of
the solution of Eq. !18", respectively, and x=b is the transi-
tion point. Therefore, we can represent 3 as

3 = )
0

b

#4!g−" − !sg−$dx + )
b

a

#4!g+" − !sg+$dx . !20"

Thus, the functional 3 depends both on g and b #or equiva-
lently, on !b=!s!b"$. It can reach its local minimum as a
functional of g when b is within the coexistence region.
Then, the extremal condition given by Eq. !18" is satisfied.
However, this is only a condition for a local minimum of the
functional 3!g ;b". The global minimum requires in addition

$3

$b
= 0.

Substituting 3 from Eq. !20" into the last condition we
obtain

4#g−!b"$ − !bg−!b" =4#g+!b"$ − !bg+!b" . !21"

This can also be represented in the form of a “standard”
Maxwell rule as

)
g−!b"

g+!b"

#4!!g" − !b$dg = 0. !22"

A further insight into the steady state solution can be gained
by considering the density of the functional 3, i.e., 4!g"−!g
which is shown in Fig. 6 as a function of g for three repre-
sentative values of ! #Figs. 6!a"–6!c", respectively$. Note
that the left local minimum corresponds to the L-mode while
the right one corresponds to the H-mode. Evidently, to en-
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sure the global minimum of 3, g!x" must always follow the
lowest of the two local minima of this function, as x varies
from 0 to a. Therefore, the transition between the two should
occur when they are equal, which is exactly the Maxwell rule
transition given by Eq. !21".

Equation !22" is simply the Maxwell construction equal
area rule, familiar from the theory of first order phase tran-
sitions, Ref. 6. This equation states that the points g− and g+
on the bifurcation diagram should be chosen in such a way
that the areas above and below the curve of $4 /$g, when cut
by the line !s=!b, are equal !see Fig. 7". This condition

uniquely determines the location of the transition front.
However, note that we have now shown this rule to charac-
terize the two-field problem. It is also important to keep in
mind that this stationary solution is a special, “weak” solu-
tion !with a discontinuous derivative" selected out of a con-
tinuum of solutions labeled by the coordinate of the phase
transition. The selection principle is based on the time de-
pendent relaxation. Once the time asymptotic limit is
reached, the omitted higher derivative terms, even negligibly
small in the smooth parts of the solution, become important
at the phase transition point and will likely lead to a slow
front propagation towards a different stationary position.
Clearly, the outcome of such evolution will depend on the
dominant higher derivative term included. Therefore, in the
next subsection and in Sec. IV we explore regularization
approaches that are based on hyperdiffusion and on the cur-
vature of the pressure profile.

B. Hyperdiffusion regularization

With a hyperdiffusive regularization, the steady state
problem, given by Eq. !18" becomes

4!!g" − !s!x" − 72$2g

$x2 = 0, !23"

where 7#0 is a small parameter. Recall that the one-field
problem given by Eq. !18" was obtained from the two-field
problem, Eqs. !6" and !7" by eliminating the pressure gradi-
ent in favor of the density gradient. Therefore, the regular-
ization in Eq. !23" is equivalent to a special type of regular-
ization of the two-field problem in which hyperdiffusivity
pertains only to the particle but not the heat transfer. Here we
refer the reader to our earlier discussion of the two-field
regularization, given in the Introduction. Returning to Eq.
!23" we note that it represents a simple singular perturbation
problem !7→0". Introducing an “inner” variable

Φ(g)−Γg

g

Γ<Γb

Φ(g)−Γg

g

Γ>Γb

Φ(g)−Γg

g

Γ=Γb

(a)

(b)

(c)

g

Γ(x)

g (x)
+

g
+

g (x)
-

g
-

Γ=Γb

(d)

FIG. 6. Three types of behavior of the functional density 4−!g in Eq. !16"
and the solution of g!x" that minimizes the functional 3: !a" the L-mode part
of the solution, !b" the L–H transition, and !c" the H-mode solution. The
g−! diagram on !d" shows the Maxwell construction corresponding to the
L–H transition in !b".

dΦ/dg

g

Γ

FIG. 7. Depiction of the Maxwell rule for the selection of transition point
given analytically by Eq. !16".
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8 =
x − b

7
,

where b is the transition front coordinate, to the leading order
in 7→0 we have

$2g

$82 −4!!g" + !b = 0. !24"

Here the dependence of function 4 on x should be regarded
as dependence on a parameter x=b and !b*!s!b". The so-
lution of this equation !which is the inner solution of the
problem" must tend to the discontinuous outer solution as
8→-9. These are represented by the H and L roots of Eq.
!23" with 7=0. Recall that here discontinuous refers to the
fact that the L and H profiles have different slopes. In other
words,

lim
8→-9

g!8,x" = g-!x" , !25"

where g- on the r.h.s. are the upper and lower branches of
the discontinuous solution of the problem for 7=0. This
asymptotic matching condition determines b. Now we con-
sider the first integral of Eq. !24". Multiplying Eq. !24" by
$g /$8 and integrating yields

)
−9

+9

d8&1
2

$

$8
, $g

$8
-2

−
$g

$8
, $4

$g
− !b-' = 0.

Integrating the first term directly and changing variables to
an integration over g in the latter two then yields

41
2
, $g

$8
-24

−9

+9

− )
g−

g+ , $4

$g
− !b-dg = 0.

Since g→g-=const as 8→-9, this result is thus equivalent
to

)
g−

g+ & $4

$g
− !b'dg = 0. !26"

Observe that g-=g-!b". This is equivalent to the Maxwell
rule given by Eq. !22". Strictly speaking, the equivalence of
the transition rules in time-dependent and hyperdiffusive
case is established in a situation in which hyperdiffusion is
added to the density transport !in a steady state" and where
we assume that the temperature relaxation is faster than the
density relaxation. The equivalence follows from the fact
that the description of the temperature relaxation does not
require any regularization, due to its rapid rate.

IV. FRONT TRANSITION IN THE PRESENCE
OF PRESSURE CURVATURE

A significant simplification in the reduced transport
model represented by Eq. !9" has been achieved by neglect-
ing the second derivative of the plasma pressure in Eq. !1".
At the same time this makes the steady solution more diffi-
cult to obtain, since the relevant equation #Eq. !9"$ is alge-
braic with respect to the pressure gradient and the selection
of the correct branch of the solution requires a time depen-
dent treatment, or an ad hoc hyperdiffusion regularization. At

the same time, retaining the second derivative of the pressure
in Eq. !1" preserves the differential character of the transition
equation, Eq. !9". Note, that within a one-field model the
density curvature effects have been considered in Ref. 22.

Returning to the two field model studied in this paper,
and given by Eqs. !2" and !3", from Eq. !1" we obtain

$VE

$x
% −

c

eBn2

$n

$x

$p

$x
+

c

eBn

$2p

$x2 . !27"

Observe that since both density and pressure gradients are
negative, the first term in the last formula is also negative. So
is the last term, since the pressure profile is convex in the
L→H transition region. This enhances the flux suppression
effect in Eqs. !2" and !3". Moreover, the density profile is
likely to be flat in the core if no fueling is present there. In
this case the pressure curvature term in Eq. !27" is the only
thermal flux suppression term.

We note that higher order transport terms may also be
important and we consider a combined action of the pressure
curvature and hyperdiffusion later in this paper. We start,
however, from a simple consideration of a pure curvature
effect and turn then to the situation in which both higher
order transport and pressure curvature are present.

A. Bifurcation with no density gradient

Using the relation between the density and pressure gra-
dients given by Eq. !8", the system of Eqs. !6" and !7" re-
duces to

F!g2,:" * g2 +
!; − 1"g2

1 + , <g2
2

1 + =g2
+ :

dg2

dx
-2 = q!x" , !28"

where q=Qs /(0, ;=1+(1 /(0, and the remaining notations
used here are as follows:

< = +' c

eBn2

!s(1

QsD1
; = =

D0(1 − (0D1

D1Qs
; : = +' c

eBn
* nK2.

We consider here the case :%0 but small, that is

:/a> <g2/!1 + =g2" . !29"

This allows us to treat the coefficients of the equation as
constants !on a scale of the L→H transition which is of the
order l(:". Furthermore, by the nature of the transition we
assume that the gradient g2 is monotonically increasing with
x from its value g− on the L-branch of the S-curve to g+ on
the H-branch. One can see from Eq. !28" that g2!x" increases
monotonically along the transition layer only if F!g2 ,0"#q
!this inequality should be evaluated at x=b, the transition
point, since : is small". To fulfill the last inequality, the
transition should start at the lowest possible value of the heat
function q, as shown in Fig. 8 by a heavy line. This consid-
eration establishes a minimum heating transition rule for the
case of the profile curvature driven transition. The rule re-
places the Maxwell rule for this case, as will be confirmed in
the next subsection using a stability analysis.

We may see from Eq. !28", in the case :=0, i.e., if
pressure curvature is not considered, an L→H transition can
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only occur when both density and pressure gradients are
present !i.e., <%0". However, if :#0 the situation changes.
Let us consider a simple case in which there is no particle
deposition in the core, i.e., !s*0, so that g1*0, or equiva-
lently <=0 in Eq. !28". This equation can be rewritten as

:
dg2

dx
=+;g2 − q

q − g2
. !30"

For simplicity we assume that the heat source H in Eq. !3" is
constant in some vicinity of the transition point, H=H0.
Then, q!x" in Eq. !30" is a linear function coordinate, q
=H0x /(0. Upon substitution v=:g2 /x, z=ln!x /:", instead of
Eq. !30" we obtain

dv
dz

=+;v − h0

h0 − v
− v * R!v" !31"

with h0=:H0 /(0. Depending on the parameters ; and h0 this
equation has three or one fixed points, R!v"=0, as shown in
Fig. 9. Let us consider the case when the three roots of R!v"
are present, and denote them as v−1"v0"v1. They can be
expressed through the parameters ; and h0 as follows:

vn =
h0

3
+

2
+3
+h0

2

3
− ; sin026n

3

−
1
3

sin−1& 33/2h0

2!h0
2/3 − ;"3/2,1 +

2
27

h0
2 −

1
3
;-'1 . !32"

The smallest root v=v−1 corresponds to the L mode solution.
This is easy to see for the simple case 1>h0>;>h0

2 di-
rectly from Eq. !31". Indeed, in this case v−15h0 /; corre-
sponds to the solution g2=Qs!x" / !(0+(1", which is clearly
an L-mode solution since the turbulent thermoconductivity
(1 is not suppressed. However, the fixed point v−1 is an un-
stable equilibrium of Eq. !31" #since R!!v−1"#0$. Therefore
the system must leave this point and transit to the stable fixed
point v=v05; /h0 as z changes from z=−9 !x=0", to z
→9. Recall that z=ln!x /:" and thus plays the role of an
internal variable of the transition, since x is scaled to the
small parameter !:" in the highest derivative term in Eq.

!30". Therefore, as z varies between −9 and +9, the system
transits from the L to H mode. However, both fixed points
v−1 and v0 may vanish for a certain range of parameters h0
and ; !see below". The remaining fixed point v1 is unstable
and the system must transit from this point to the singular
point of Eq. !31", v=h0. However this solution must be re-
jected on the ground that it cannot be continued along the z
axis beyond a critical point z0, where it collapses as
!h0−v"? !z0−z"2/3. We thus conclude that the L→H transi-
tion requires the heating rate h0 to exceed a threshold value
which ensures the coexistence of all three roots vn. The latter
requires that the argument of arcsin in Eq. !32" falls within
the interval !−1,1".

B. Bifurcation in the presence of thermal
hyperconductivity

Since the hyperdiffusion regularization and the pressure
curvature lead to different transition rules !Maxwell equal
area and minimum heating rate, respectively", in this subsec-
tion we study both effects, acting together. Equation !28"
generalizes to the following form, where we write g instead
of g2, for short

g +
!; − 1"g

1 + !<g2 + :dg/dx"2 − 72d2g

dx2 = q!x" . !33"

The notations here are the same as in Eq. !28" while the new
length scale % characterizes the hyperconductivity. We as-
sumed for simplicity that =g2>1. Let us also assume that
characteristic scale of the heat source q is Lq.% and : is a
small parameter. Working in the vicinity of the front transi-
tion at x%b, so that q%q!b"=const we obtain from the last
equation

F(g )

g

2

2

Maxwell Rule

FIG. 8. L→H transition driven by pressure curvature !bottom line" vs Max-
well rule.

R(v)

vv v
-1 0 1

V

L-->H

FIG. 9. Depiction of function R!v" in Eq. !31".
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H!g,gx" *
72

2
,dg

dx
-2

−
1
2

g2 + qg −
1

2<
!; − 1"tan−1!<g2"

+ :!; − 1"D!g" = H0, !34"

where H0 is an integration constant. This expression can ob-
viously be interpreted as the energy of a nonlinear oscillator
that is described by its coordinate g and velocity dg /dx
*gx. The last term is responsible for a weak nonlinear “dis-
sipation” #small :, cf. Eq. !33"$ and the function D!g" is
given by the following formula:

D =) 2<g2gx!g" + :gx
2!g"

!1 + <2g4"#1 + !<g2 + :gx"2$
gdg !35"

which can be evaluated by solving Eq. !34" for gx to zeroth
order in :.

Three critical points of the “Hamiltonian” in Eq. !34"
now correspond to the three solutions of the problem dis-
cussed above, i.e., without thermal hyperconductivity, Eq.
!28". The L→H transition is then represented by a separatrix
of the dynamical system given by Eq. !34" !with :=0"
which connects two hyperbolic points. A similar situation has
already been considered earlier in Sec. III B. The difference
is that the H-level at the two hyperbolic points is different
because of the dissipation term in Eq. !34". This produces a
deviation from the Maxwell rule which can be calculated as
follows.

We start with treating the “dissipation” : as a small
parameter compared to the “inertia” %. The transition rule
can be characterized by a magnitude of the heating source q
at the transition point which, in turn, can be expanded in a
series of :,

q = qM + :q1 + ¯ .

Here qM is the Maxwell rule value of q already calculated in
Sec. III. The L- and H-mode solutions g-, as it can be
readily seen from Eq. !34", do not depend on :, since they
are the stationary points of the Hamiltonian H and
$D!g-" /$g=0. To simplify the algebra we obtain these solu-
tions by assuming that <g−

2>1 and <g+
2.1. The equations

for g- are as follows:

$

$g
H!g-,0" = 0,

so using the assumptions above, we obtain

g− % q/;, g+ % q !36"

so that ; must be rather large. The equations for q and the
constant H0 read

H!g−,0" = H!g+,0" = 0

which can be written as

;

2
g−

2 − qg− =
1
2

g+
2 − qg+ + 6

; − 1
4<

− 2:<!; − 1"

&)
g−

g+ gx!g"g3

!1 + <g4"2dg

while H0%q2 /2;. For q, we thus have

q =+6;

2< &1 −
8
6
:<2)

g−

g+ gx!g"g3

!1 + <2g4"2dg' .

The integral in the last equation can be calculated from Eq.
!34" using the above formula for the constant H0. In the limit
;.1 we finally obtain the following formula for the heating
rate at the transition point:

q =+6;

2<
&1 −

4:
67
+;

<
!ln ; − 3"' . !37"

In the limit :→0 this expression reduces to the case with no
curvature effects, i.e., to the Maxwell transition rule estab-
lished in Secs. III A and III B. The Maxwell rule can be
obtained directly from Eq. !28" by writing the equal area
requirement in the following form:

)
g−

g+

#F!g" − q$dg = 0,

where g- are given by Eq. !36". We can see by inspection
that the correction to the Maxwell rule associated with the
profile curvature in Eq. !37" is very large for large ; and
small % even if the curvature term !:" is small. However,
;*1+(1 /(0 should exceed e3520 in order to reduce the
power threshold for the transition. Therefore, it seems to be
reasonable to suggest that in the presence of the curvature
effect, the stationary transition should obey the minimum
power rule established in the previous subsection. However,
Eq. !37" becomes invalid when the correction term associ-
ated with the curvature is not small. Therefore, to confirm
this suggestion, we turn to the case of small %, for which
from Eq. !33" we have

:
dg

dx
=+;g − q

q − g
− <g2. !38"

In terms of a more general dynamical system described by
Eq. !33" the solution of the last equation corresponds to the
frictional slide of the trajectory from an unstable equilibrium
at g=g− to the stable one at g=g0, which is an intermediate
!between g− and g+" root of the r.h.s. of Eq. !38". This is a
stationary L→H transition solution of the underlying non-
linear diffusion equation supplemented with the pressure cur-
vature term, i.e.,

$g

$t
=

$2

$x2F!g,gx" , !39"

where

F!g,gx" * g +
!; − 1"g

1 + !<g2 + :dg/dx"2 − q!x" .

However, in the context of this time dependent equation the
solution g=g0 is still unstable !at least for sufficiently small
:". The reason for the instability is very simple. The linear-
ization of Eq. !39" about the solution g=g0 leads to an equa-
tion with a negative diffusivity since
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$

$g
3F3g=g0

" 0

and linearized solutions of Eq. !39" are indeed unstable near
g=g0. In other words, the underlying bistability remains
!only g− and g+ branches of the S-curve are stable", despite
pressure curvature. On the other hand, we demonstrated that
precisely the g0 solution is an endpoint for the stationary
transition. The only way to reconcile the instability of the
intermediate solution g0 and the fact that this solution is the
endpoint for the stationary transition is by merging the un-
stable and stable points g0 and g+. This result agrees with the
transition rule established in the previous subsection for the
case of the profile curvature regularization !with v0 and v1
roots being equivalent to g0 and g+". This requirement deter-
mines the transition point since such merging is only pos-
sible at a specific value of the source q!xb". With q growing
beyond q!xb", the stationary solution proceeds, as always,
along the stable g=g+ branch of the S-curve. Then, the actual
stationary transition from the L-mode solution g− to the
H-mode solution g+ in a situation where profile curvature
effects dominate the hyperthermoconductivity effects should
occur at the minimum of the S-curve #see Fig. 8 and also the
discussion following Eq. !29" in the preceding subsection$.

V. TIME DEPENDENT SCENARIO, COMPARISON
OF DIFFERENT TRANSITION RULES
AND HYSTERESIS

In this section we consider possible implications of our
results for the temporal evolution of the bifurcation. To es-
tablish a theoretical framework for our consideration, we as-
sume that the heating rate Qs is ramped up slowly !with all
other control parameters fixed", so that the quasisteady solu-
tions discussed above are relevant. Let us recast the phase
coexistence condition, given by Eq. !10", in the simplest
form possible as

Q1 " Qs " Q2. !40"

As long as Qs"Q1, the system must clearly be in the L state
#lower root of Eq. !9" should be chosen$. When Q exceeds
Q1 !note that this happens first at the edge, since !s is peaked
there and Q1,2?1 /!s", the system can jump to the H-mode at
some point where Qs#Q1 but it does not need to jump.
When the heating is increased beyond Q2, the system must
be in the H-mode at all points where Qs#Q2. Now the ques-
tion is where exactly in the interval Q1"Qs"Q2 does the L
to H transition actually occur?

Hinton10 suggested the following rule !also utilized in
Ref. 11". The system must stay at the L branch as long as
possible, which implies that the forward transition occurs at
Qs=Q2. On the way back, when Qs is decreased from its
value exceeding Q2 down to Qs"Q1, the reverse transition
should occur !by the same token" only at Qs=Q1. This rule
clearly implies the strongest hysteresis possible in this sys-
tem. At the same time, the fact that the reverse bifurcation
occurs at Qs=Q1 ensures that the resulting stationary profile
has the smoothest possible form !the smallest jump in g, see
the S-curve in, e.g., Fig. 1", a property which apparently was
one of the motivations for this rule. Even though only steady

state solutions are considered, it is useful to understand how
their branches switch when the fueling increases at the wall.
So long as Qs"Q2, the L-mode solution occupies the whole
range. Only when Qs exceeds Q2, the H-mode phase appears
at the domain boundary !separatrix", where Qs reaches its
maximum !because Qs follows the fueling profile". This is
clearly different from the Maxwell rule and even more so
from the minimum heating rule, by which the forward tran-
sition occurs at the midpoint between Q1 and Q2, and at
Qs=Q1, respectively. However, once established at the wall,
the H-phase should propagate !as is usual for 0D dynamical
systems" to the point Qs=Q1, formally coinciding thus with
the minimum heating rule. The important difference is that
the curvature driven transition does not need to be inside the
fueling depth and may propagate further as long as the heat-
ing requirement is met.

Returning to the 0D rule, we now follow the solution
starting from its L-mode side. Obviously, the solution turns
out to be in conflict with the declared rule of sticking to the
L-branch as long as possible. Indeed, according to this rule
the solution should be in the L-mode up to Qs=Q2. This rule,
being perfectly applicable to low-dimensional dynamical
systems !where there is no spatial overlap of different
branches of the solution" clearly fails in continuous media,
since it prescribes different solutions depending on the direc-
tion from which the phase coexistence region is approached!
This argument pinpoints a major shortcoming in the “con-
ventional wisdom” of the L→H transition.

Our treatment in Secs. III and IV has shown that the
transition should obey the Maxwell rule in the case without
pressure curvature, and the rule of lowest possible Qs transi-
tion if the curvature effects are retained. Both rules, applied
in isolation, preclude hysteresis. One can identify, however,
at least two phenomenological reasons to alter this conclu-
sion. The first reason is that more realistic flux suppression
mechanisms are probably at least somewhat nonlocal, so that
the suppression efficiency should depend on such factors as
the pedestal height and width. This may introduce asymme-
try into the bifurcation process. Specifically, the forward
L→H may change the entire S-curve by lowering the tran-
sition thresholds because of the higher core temperature, Fig.
10. Therefore, if the Maxwell rule applies, the reverse bifur-
cation should occur at lower Qs, thus leading to hysteresis.
The second reason involves the curvature of the pressure
profile. In L-mode this effect may be negligible, while after
the L→H transition a pedestal, along with a narrow region
of significant curvature of the pressure profile, $2p!x" /$x2,
both form. Indeed, existence of the pedestal necessitates the
region of strong curvature. Therefore, at the reverse H→L
transition, curvature must be included. Since, as we have
seen, the transition should occur at the lowest possible Qs,
this forms a hysteresis loop with the forward Maxwell tran-
sition. In this latter case the depth of the hysteresis is deter-
mined and it is approximately half !in the Maxwell sense" of
that prescribed by the 0D rule.10
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VI. CONCLUSIONS AND DISCUSSION

In this paper, the two field bifurcation model is extended
to include the pressure curvature, time dependence, and
higher order regularization. The model is solved analytically.
The principal results of this paper are:

!i" A simple substitution allows decoupling of the density
and pressure evolution equations. This decoupling is
exact for steady state.

!ii" An analytical criterion for the coexistence of the
L-phase and H-phase is derived #Eqs. !10" and !12"
and Fig. 4$. The expression in Eq. !10" bounds the
required product of local heat and particle fluxes with
expressions involving the ratios of heat and particle
transport coefficients in L and H mode. These results
are considerably more general than those of Ref. 11.

!iii" In the case of negligible curvature of the pressure pro-
file #see !vii" below$, the region of coexistence of L
and H phases !i.e., the region where a transition may
occur, though it need not" is limited by the fueling
depth, for central heat deposition. Note, however, that
the fueling depth does not by itself determine the ped-
estal width.

!iv" A local transition criterion is derived. This criterion is
based upon satisfying the conditions necessary for the
spatial advance of one phase !i.e., L" into the other
!i.e., H". We show that the local transition criterion is
equivalent to the Maxwell construction rule.

!v" Detailed regularization arguments are given to sup-
port the conclusions of !iii"–!iv", above. Two indepen-
dent approaches are used, one in which a hyperdiffu-
sion is added and one which uses a time dependent
variational approach. The results of both these proce-
dures agree on the Maxwell construction rule, which
may then be evaluated to obtain the pedestal width.
Transport analysis is required to obtain experimen-

tally relevant pedestal width predictions from the
Maxwell rule formalism. This will be addressed in
future publications.

!vi" The Maxwell rule criterion is shown to preclude local
hysteresis. Thus, we argue that hysteresis must neces-
sarily be due to profile effects. Therefore, the space-
time evolution of the S-curve must be considered in
order to accurately represent hysteresis, or pressure
curvature should be included !see below".

!vii" An alternative approach to the regularization problem,
which is based on the inclusion of the curvature !sec-
ond derivative" of the pressure profile, is developed.
Inclusion of curvature results in softening the thresh-
old requirements, as compared to the conventional
regularization mentioned above. With profile curva-
ture, the transition is shown to be possible even within
a region of a flat density profile !i.e., where there is no
fueling". Technically, this transition scenario also pre-
cludes hysteresis, but if the curvature effects are neg-
ligible for the forward transition, they will surely be-
come important for the reverse !H→L" transition
!i.e., due to development of pedestal", and hysteresis
will be recovered. The strength of the hysteresis
amounts to the difference between the Maxwell
!L→H" and the minimum heating rate Qs !minimum
of the S-curve". This is roughly half the conventional
estimate of the hysteresis.

Several comments are in order here. First, in the spirit of
“truth in advertising,” we reiterate that the model considered
here is simplistic and limited, on account of its “minimalist”
approach to the physics of shear suppression of turbulence
and its postulate of fixed and spatially constant transport co-
efficients. Also, the restriction of the theory to “gentle” tran-
sitions renders it inapplicable to cases of fast power ramps,
etc., and most relevant to slow transitions, which reveal the
most about L→H transition dynamics. Second, since the pa-
per raises at least as many questions as it answers, the agenda
for future work is indeed a lengthy one. First, the simulta-
neous regularization of density and pressure !or temperature"
evolution must be completed. This, then, would form the
foundation for a rigorous solution of the “dual pedestal
width” calculation, for density and temperature. Third, this
type of calculation must be implemented along with trans-
port analysis !including cross phase shift and decorrelation,
observationally confirmed to be important, e.g., Ref. 23".
Thus, the unphysical modeling constraints on transport coef-
ficients may be relaxed. Finally, the effects of noise, Ref. 24
and of MHD stability limits, Refs. 19 and 25–29 should be
included. The latter is a necessary element of any model of
ELM phenomena, Ref. 30. MHD stability may ultimately
limit barrier penetration.

The effect of finite curvature of the radial pressure pro-
file studied in this paper appears to be important in both the
edge and core of tokamak plasmas. In the case of an edge
plasma, where both pressure and density gradients are impor-
tant for barrier formation, a new rule for the barrier location
is established. In contrast to the hyperdiffusion regulariza-
tion, which results in the Maxwell equal area rule for the
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FIG. 10. Hysteresis phenomenon in the L–H transition in a three-
dimensional parameter space that also includes the core temperature; first,
the L–H transition !1–2" occurs at a relatively low rate since the system
starts from the L mode. When the gradient g builds up at the edge, increases
!2–3" lowering thus the heating requirements for transitions. Then, if the
heating Q decreases to its Maxwell value, the reverse transition occurs at
lower Q than the forward one.
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transition !driven by both the boundary flux8 and by a dis-
tributed particle source considered in this paper", in the finite
pressure curvature case the transition occurs at the lowest
possible value of thermal flux. This implies a weaker power
requirement for the H-mode to occur. Moreover, we demon-
strated that the pressure gradient transition can occur even
with a flat density profile. Therefore, the transition point can
be outside the fueling profile, so that the pedestal may be
broader than the fueling depth. This observation may poten-
tially explain how the pedestal can extend beyond the fueling
depth.

The profile curvature driven L→H transition is thus
strikingly different from the standard coupled fluxes model11

in which the density and pressure barriers are strongly
coupled. Note that our formula for the coupling between gra-
dients given by Eq. !8" !which is valid for arbitrary pressure
curvature" in the region where no fueling is present !!s=0"
takes an indeterminate form !0 /0" and the equation for the
pressure gradient g2 is independent of the density gradient
!g1=0" in this case. Obviously, the co-location of the density
and pressure transitions which follows from Eq. !8" is no
longer the case here.

Since attempts at building a simple model of the transi-
tion now mark a well-trodden path, some discussion of the
relation of this paper to previous work is appropriate here.
We already have made extensive comparison and contrast of
our results with these of Ref. 11, this paper’s closest ante-
cedent. Hence, no further comments on Ref. 11 are given
below. Regarding the ever-popular Waltz “rule,”31 based on
the comparison of the linear growth rate with the local
“shearing rate,” it seems clear that this approach gives no
information about either bifurcation dynamics or H-mode
layer widths, and serves only as an indicator of when shear-
ing effects “might” become important. Similarly, heuristic
approaches serve only as a test of various ad hoc choices for
the transition layer scale and have no foundation in funda-
mental physics or potential for prediction. Indeed, the
bistable sandpile model of Gruzinov et al.32 gives an excel-
lent demonstration of the failure of the scaling approach. The
empirical model of Groebner et al.,33 which links the
H-mode layer or pedestal width directly to the fueling profile
!i.e., neutral deposition profile" is oversimplified, in that it
downplays a priori the effects of heating power and turbu-
lent transport, and offers no physics-based argument as to
why the fueling profile should be the primary element in
determining the layer scale. Indeed, indications to the con-
trary are discussed in Ref. 34. The bistable sandpile model of
Gruzinov et al.32,35 is also, in essence, a “one-field” model,
which does not account for heating power effects, etc. Fi-
nally, the interesting “noisy transition” model proposed by
Itoh et al.24 is also limited to one field, does not treat heating
and fueling, and incorporates additive noise, only. This paper
does make the important point that noise-induced fluctua-
tions can enable the transition to “tunnel” through the barrier
associated with the Maxwell rule. While incomplete at
present, this approach, when expanded to treat multiple
fields, transport, and multiplicative noise, could yield very
interesting results.

While this paper is decidedly theoretical, it does, how-

ever, offer several predictions suitable for study by experi-
mentalists. First, this theory rigorously demonstrates that
density and pressure profile development are related, but not
identical. In particular, bifurcations of density and pressure
may occur at different points, and the structure of density
and pressure pedestals may be different. Moreover, both ped-
estals can be expected to expand with increasing heating
power. Pedestal expansion with increasing drive was ob-
served in the studies of Refs. 32 and 35. These predictions
are quite amenable to experimental study. Indeed, there al-
ready are some indications that this is the case in
experiments.20 Unfortunately, quantitative tests must await
the solution of the “dual regularization” problem and the
implementation of the theory in concert with transport analy-
sis. Second, the theory predicts that, ignoring profile curva-
ture, the range of possible transition locations !i.e., the phase
coexistence region" is set by the fueling depth, assuming
central heat deposition. Thus, any departure of the pedestal
width from the neutral penetration depth is prima facie evi-
dence for the importance of profile curvature effects or other
departures from the simple model. Third, the theory predicts
that hysteresis is linked to profile structure and is fundamen-
tally nonlocal. This idea naturally suggests studies of the
back-transition in the presence of modest or weak gas-
puffing, which would alter H-mode density profiles and thus
should impact hysteresis. Of course, the aim would be to
compare the empirical hysteresis for different H-mode edge
density profiles and pedestal widths. Finally, a central result
of this paper is that the criterion for advance of the barrier
without pressure curvature is given by the Maxwell construc-
tion rule even for the two field model. When the pressure
curvature is included, the transition occurs at the lowest pos-
sible heating rate. A potentially observable consequence of
the Maxwell rule and the minimum power rule is the dispar-
ity between the pedestal width and the width of the fueling
profile. While a quantitative test of this prediction requires
transport analysis, the use of slow ramps and transitions, may
enable one to empirically construct an S-curve, as was done
in Ref. 20, and see if barrier front stationarity coincides with
a deposition strength which satisfies Maxwell’s rule at the
barrier boundary. More generally, it would be interesting to
determine a generic Maxwell rule scaling for typical pretran-
sition profiles, edge transport, etc.
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APPENDIX: DERIVATION OF A GENERAL
COEXISTENCE CRITERION

Dividing the steady state transport equations !6" and !7"
by D0 and (0, respectively, and then multiplying the results
by each other, we arrive at the following equation for only
one variable y=K4g1

2g2
2@0:

U!y" * +y,1 +
D1/D0

1 + y
-,1 +

(1/(0

1 + y
- = K2!sQs

D0(0
* P , !A1"

where we have used the following notation: K2=+'c /eBn2.
Note a completely symmetric form of the last equation with
respect to the particle and heat components. Clearly the
mode coexistence is only possible if the above expression
has two local extrema. It is somewhat more convenient to
elaborate a condition for the above requirement, if one is
using ln U instead of U and a new variable t=1 / !1+y" in-
stead of y. Differentiating then ln U with respect to t we
obtain the following condition for the extrema:

1
t + D0/D1

+
1

t + (0/(1
−

1
2t!1 − t"

= 0. !A2"

This leads to a cubic equation which has either one or three
real roots. The latter is necessary for the mode coexistence.
The condition for the three real roots to exist can be shown
to have the form given by Eq. !12". Note that in the special
case D1 /D0=(1 /(0 considered earlier in Sec. II, the inequal-
ity in Eq. !12" reduces to (1 /(0#16 /9. The sufficient con-
dition for the L–H transition, however, is the requirement
that the range of the power source P in Eq. !A1" contains the
interval #Umin,Umax$, where the latter two quantities refer to
the local minimum and maximum of the function U!y".

Using a new variable z= t+A /6−1 /4 instead of t in Eq.
!A2", we obtain the following cubic equation for the
extrema:

z3 − 3A2z + < = 0, !A3"

where we denoted

A =
1
12

+4A2 + 9

and

< =
A3

108
+

B

4
−

1
32

.

The condition for the three real roots to exist is <2"4A6,
from which we recover Eq. !12". The two roots of interest
are

zmin = − A cos B + +3A sin B

and

zmax = 2A cos B

which correspond to the local minimum and local maximum
of U!z" in Eq. !A1", i.e., Umin/max=U!zmin/max". We denoted

B =
6

3
−

1
3

cos−1, <

2A3- .

The mode coexistence region is thus given by the following
inequality:

Umin" K2!sQs

D0(0
" Umax. !A4"

The “depth” of the bifurcation can thus be defined as

C*
Umax

Umin
= & A/6 + 3/4 − 2A cos B

A/6 + 3/4 + 2A cos!B + 6/3"'3/2

& & 1/4 − A/6 + 2A cos B
1/4 − A/6 − 2A cos!B + 6/3"'1/2

&
A/3 + 1/4 + 2A cos B

A/3 + 1/4 − 2A cos!B + 6/3"
. !A5"

This quantity is plotted in Fig. 5 for different values of
transport coefficients.
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