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Dissecting postharvest chilling injury through 
biotechnology 
Karin Albornoz1, Jiaqi Zhou2, Jingwei Yu3 and Diane M Beckles2   

Paradoxically, refrigerating many fruits and vegetables destroys 
their quality, and may even accelerate their spoilage. This 
phenomenon, known as postharvest chilling injury (PCI), affects 
produce from tropical and subtropical regions and leads to 
economic and postharvest loss and waste. Low temperatures 
are used to pause the physiological processes associated with 
senescence, but upon rewarming, these processes may resume 
at an accelerated rate. Chilling-injured produce may be 
discarded for not meeting consumer expectations or may 
prematurely deteriorate. In this review, we describe progress 
made in identifying the cellular and molecular processes 
underlying PCI, and point to advances in biotechnological 
approaches for ameliorating symptoms. Further, we identify the 
gaps in knowledge that must be bridged to develop effective 
solutions to PCI. 
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Introduction 
Refrigeration can lead to postharvest loss and waste 
(PLW), although it is the most effective strategy to 
maintain the quality and prolong the shelf-life of horti
cultural products. The rates of metabolic reactions in
crease 2–3-fold for every 10°C rise in temperature [1], 
and low-storage temperature delays deterioration by 
slowing down respiration and ethylene production, and 

by reducing pathogen growth and water loss. Commod
ities such as apples, blackberries, blueberries, cherries, 
and grapes benefit from refrigeration, however, in pro
duce originating from tropical and subtropical regions, 
such as tomato, banana, pineapple, potato, and basil, 
refrigeration may lead to injury [2]. 

Postharvest chilling injury (PCI) is initiated when the 
tissues of cold-sensitive species are stored between 0 
and 15°C, but becomes apparent after transfer to warmer 
conditions [2]. Because the affected species are tax
onomically diverse and the organs affected vary, for ex
ample, fruit, tuber, root, leaf, and stem, PCI symptoms 
can be variable (Figure 1). However, some common 
phenotypes include tissue browning or blackening, 
pitted surfaces, shriveling, negative changes in texture, 
carbohydrates and aroma volatiles, and fungal infec
tion [2,3••]. 

PCI severity is determined by many factors with tem
perature and storage time being the most important. If 
low temperatures are mild and exposure istransient, 
many metabolic functions will resume after rewarming, 
and visible symptoms may not develop. Under sustained 
low-temperature stress, tissue acclimation fails, leading 
to exhaustion and the onset of severe PCI [4] (Figure 1). 
Preharvest factors, including genotype, environmental 
variables, and agronomic practices, all interact to influ
ence PCI severity [5]. PCI is more severe in tissues 
harvested before reaching horticultural maturity (which 
is common practice), as the developmental pathways are 
incomplete and will be largely disrupted by chilling and 
rewarming [6]. 

Economic losses due to postharvest chilling 
injury 
Although PCI is a significant problem, determining the 
PLW that can be ascribed to PCI is challenging because 
of the difficulty in identifying when it occurs. Most da
mage appears in retail outlets or in consumers’ homes, 
which is hard to monitor. Further, symptoms are internal 
in many species, for example, pineapple, nectarines, and 
so on, and some abnormalities in texture and flavor are 
only detected when the fruit or vegetable is eaten  
[2,7••] (Figure 1). PCI symptoms are also misdiagnosed. 
For example, PCI increases susceptibility to pathogens, 
which is often mistaken as the primary cause of loss, and 
poor-quality produce due to PCI may be attributed to 
early harvest or poor varietal selection [8]. 
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Given the above factors, quantifying economic losses 
due to PCI is also difficult. The global trade of fresh 
fruits and vegetables was worth 115 billion USD in 2018  
[9]. More than half of the 50 highest-traded global 
commodities are PCI-susceptible [10], and PLW glob
ally is estimated at ∼33%. If PCI reaches even 0.5% of 
PLW, it could cost USD $144 M. Additional costs re
lated to 1) shipping at temperatures higher than the 
commonly used 4°C, and 2) the complex logistics that 
factor in harvest date and storage life into transportation, 
are not included into this estimate, but they collectively 
reduce flexibility for growers and distributors. 

Periodically, the apparent benefits of extending shelf-life 
by storing produce at inappropriate temperatures may 
outweigh the negative impact on quality: if fruit are 
stored at non-PCI-inducing temperatures for the equiva
lent time, they may spoil and will be rejected, whereas 
fruit with invisible PCI symptoms are salable. This in
centivizes refrigerating sensitive produce, which may be 
profitable in the short term, but leads to long-term con
sumer distrust in produce quality and value [11,12]. 

Biological processes underlying postharvest 
chilling injury molecular pathways 
The abnormalities associated with PCI that lead to 
consumer dissatisfaction, waste, and loss can be linked to 

specific cellular dysfunctions (Figure 2). Mealy texture, 
surface pitting, and fungal susceptibility are due to re
duced pectin solubilization and depolymerization [13], 
and microfractures in the cell-wall network [6]. 

Tissue browning is initiated when organelles lose their 
structural integrity in chilled tissues. Chilling leads to 
membrane disassociation that releases polyphenol oxi
dase, peroxidase, and their phenolic substrates into the 
cytosol where they react to form quinones [14]. Poly
merization of quinone creates the brown pigments in 
chilling-injured tissues [15]. 

The physiological diversity of fresh fruits and vegetables 
will lead to differences in the molecular processes af
fected by PCI, which can be summarized as follows: 

Fruit 
Cold storage disrupts the finely-tuned ripening program 
that is modulated by the interplay of hormones, tran
scriptional factors (TFs), and epigenetic marks [16] 
often, with negative consequences for fruit quality  
[17,18]. Upon rewarming, increases in respiration 
and ethylene production are initiated, and visible chil
ling-injury symptoms develop, the magnitude of which 
is inversely proportional to the storage temperature  
[19••]. Even mild chilling injury in red tomato fruit 
triggers epigenetic changes in ripening TFs such as 
RIN, NOR, and CNR that downregulate the production 
of key volatiles responsible for hedonistic values [3••]. 
However, this is not always so, ‘abnormal chilling injury 
behavior’ occurs at milder storage temperatures and has 
been reported in peach and nectarine [20], plum [21], 
persimmon [22], and papaya [23,24]. The mechanisms 
underlying 'abnormal chilling injury' are unknown, but 
the enhancement of sugar and energy metabolism may 
be relevant. 

Produce harvested at immaturity 
Many economically important commodities, for ex
ample, zucchini, cucumber, and bell pepper, are har
vested before reaching physiological maturity, and will 
thus have different cold-stress responses to those com
monly studied such as tomato and banana, which are 
harvested when mature [25]. Commodities harvested at 
immaturity typically have higher respiratory and dete
rioration rates, greater water loss because of incomplete 
cuticle development, and inefficient reactive oxygen 
species (ROS) scavenging systems [25], which will in
fluence their PCI response. 

Storage tubers 
In potato, chilling leads to cold-induced sweetening 
(CIS) — starch breakdown and sugar accumulation 
(Figure 3) [26], where the latter serves as protective 
compatible solutes [27]. When these ‘sugared’ tubers are 
fried, baked, or roasted, they turn black as acrylamide 

Figure 1  
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PCI symptoms in horticultural products. A. Progressive loss of 
surface color proportional to increasing storage time at 2.5°C in tomato 
fruit cv. ‘Micro-Tom’. B. Tissue maceration and pedicel discoloration in 
chili pepper. C. Seed browning in rewarmed tomato fruits cv. ‘Sungold’ 
after 2.5°C storage compared to a control non-chilling temperature 
(12.5°C). D. Internal browning (IB) in coconut cv. 'Nam Hom'. E. IB in 
pineapple cv. 'Pattavia'. F. Leaf browning and necrosis in basil. Photo 
credits: Karin Albornoz and Kietsuda Luengwilai.   
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forms, which is visually unappealing, bitter in taste, and 
harmful to human health [28]. 

Leafy greens 
The shelf-life of leafy greens is relatively short, given 
their limited energy reserves and high transpiration rate. 
Fresh basil is a popular herb with high export value, but 
chilling causes changes in leaf photosynthetic para
meters and stimulates ethylene biosynthesis, which 

accelerates senescence [29,30] (Figure 1F). Loss of 
membrane permeability, suppression of the protective 
antioxidant system, tissue browning, and Botrytis attack, 
all lead to premature spoilage [29]. 

Gene targets for postharvest chilling 
injury improvement 
Reducing the severity of the negative traits of PCI that 
lead to waste and loss could be achieved by inducing 

Figure 2  
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A composite diagram showing elements of the cellular and molecular response to cold stress. Although many tissues experience PCI, most of 
the data are derived from tomato and may not be universal. (1) Chilling stress alters membrane composition and fluidity [77,78], cytoskeleton 
rearrangement, and calcium-channel functioning, leading to uncontrolled ion influx into the cytoplasm [79]. (2) Changes of cell-membrane composition 
and fluidity are caused by phospholipid hydrolysis enhanced by PLD and LOX activities [80,81], and by altering membrane-bound enzyme activity  
[82,83]. (3) Second messengers and a series of phosphorylation and dephosphorylation reactions amplify the cold signal [79,84]. Ca2+ is one of 
second messengers. Cold-induced changes in cell membrane, affect the transmembrane receptors responsible for Ca2+ regulation. Activation of Ca2+ 

induces mitogen-activated protein kinases (MAPK) and Ca2+/calmodulin (CaM)-dependent kinases for downstream transcriptional regulation [85]. In 
other species, C-repeat binding factor (CBF)-independent pathways may regulate the upstream chilling-induced hormonal signal-transduction 
response [86]. (4) Plant hormones, including ethylene, abscisic acid, auxin, jasmonic acid, gibberellins, and brassinosteroids, have been shown to 
influence MAPK cascades, which are important for propagating the cold signaling through the CBF-mediated pathways [87]. (5) Cold causes oxidative 
stress, and reactive oxygen species (ROS) accumulate to harmful levels due to inefficient scavenging, causing oxidative damage, and further 
membrane peroxidation [88,89]. (6) Decreased levels of ATP, and increased rates of respiration and ethylene production, reflect global metabolic 
disruption and imbalanced energy status [90–92]. The sections labeled in red are related to transcriptional and translational regulation: (7) Cold- 
responsive TFs differentially bind to the cis-regulatory elements (CREs) of cold-responsive genes to modulate their expression. (8) Gene expression is 
also regulated by the DNA methylation status of the promoters of some cold-responsive genes [3••]. Further, (9) the methylation and acetylation status 
of histones regulate tomato fruit ripening. Histone demethylases SlJMJ6 [93] and SlJMJ7 [94], and histone deacetylase SlHDT1, are key regulators of 
ripening [95], but their cold responsiveness has not been yet determined. (10) Micro-RNAs (miRNAs) can regulate gene expression post- 
transcriptionally. Sly-miR164a is a negative regulator of some aspects of PCI, by changing hydrogen peroxide levels and fruit firmness [96].   
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allelic diversity at single or multiple genes that directly 
regulate relevant pathways (Figure 2). Integration of 
multi-omics data of cold-injured tissue compared with 
non-chilled tissues, has helped identify gene targets that 
influence PCI [3••,31] (Figure 3). 

In tomato, two important discoveries were made from 
genes identified using functional genomics: over
expressing the TF SlGRAS4 reduced fruit-surface pitting, 
and promoted a more uniform color due to increased β- 
carotene content after chilling [32•]. Likewise, over
expression of SlCYP90B3, a key brassinosteroid biosyn
thetic gene, improved the antioxidant response of fruits 
during cold storage, reducing PCI [33•]. These genes 
coordinated multiple pathways to improve PCI tolerance 
(Figure 3). 

Candidate genes for improving PCI tolerance have also 
been found by applying physical and chemical treat
ments that alleviate symptoms, and by studying the 

associated changes in the signal-transduction pathway. 
This is an active area of research where the literature is 
expanding rapidly [34]. For example, physical treat
ments such as dipping in hot water before chilling mi
tigated fruit PCI, and have been associated with the 
upregulation of heat-shock proteins in banana [35] and 
in mango [36,37], among others. The MaAPY gene fa
mily and the ATP receptor MaDORN1.19 are likely to 
be important for maintaining ATP homeostasis under 
chilling, after exogenous application of ATP or GTP to 
banana fruit [38,39]. TFs MabHLH060 and MabHLH183, 
which are associated with reduced cold-induced mem
brane rigidity, were induced by Ethrel®, an ethylene- 
releasing agent, which also reduced banana fruit PCI 
visual symptoms [40]. Melatonin reduced peel browning 
in bananas, by inducing miR528 expression, which in 
turn downregulated several ‘browning genes’, i.e., 
MaPPO1, MaPPO2, and MaPPO3 [41]. In tomato fruit, 
melatonin improved surface pitting, increased the ex
pression of FAD3 and 7, and reduced the expression of 

Figure 3  
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A summary of changes in the expression of genes that are associated with alleviating chilling injury. When the gene in blue was suppressed, or 
the genes in red were increased, tissues had reduced PCI symptoms. The blue and red triangles indicate that the gene is negatively or positively 
correlated with chilling tolerance, respectively (please note — the physical position of elements in the diagram does not reflect their importance). (1) 
The CBF transcription-factor family is at the center of this diagram, because of the importance of this signaling pathway in cold response (reviewed in 
Hwarari et al., 2022) [97], but there are also CBF-independent cold-tolerance pathways. Recent examples include CBF1 in citrus [98], CBF6 in peach 
fruit [99], and CBF4 in grapevine plants [100], while knocking out SlCBF1 in tomato seedlings led to severe CI symptoms [101]. (2) Overexpression of 
SlGRAS4 improved chilling tolerance by CBF-independent and -dependent pathways [32•]. (3) Sly-miR164a was knocked down by tandem target- 
mimic structure, alleviating chilling injury and enhancing the NAC gene expression and ABA contents in tomato fruit [96]. (4) Exogenous ferulic acid 
enhanced chilling tolerance by inducing SlMAPK3 and CBF expression, knocking out SlMAPK3 by CRISPR/Cas9 decreased PCI tolerance in tomato 
fruit [102]. (5) Overexpression of SlCYP90B3 decreased PCI by increasing brassinosteroid content and upregulation of CBF genes [33•]. (6) SlFY3 
physically binds to SlHY5, enhancing SlMIPS3 expression by binding to its promoter. SlMIPS3 is important in myo-inositol synthesis, and increased 
myo-inositol-alleviated chilling-injury symptoms. Overexpression of SlFY3 or SlHY5 individually alleviated chilling symptoms, and silencing SlFY3, 
SlHY5, or SlMIPS3 enhanced chilling susceptibility in tomato plants [103–105].(7) MeJA application increased SlMYC2 expression, a TF involved in 
MeJA signaling, and chilling tolerance was increased. Silencing SlMYC2, resulted in fruit with high PCI [106,107]. (8) An ethyl methanesulfonate (EMS) 
mutant in banana called RF1 had enhanced chilling tolerance, potentially by increasing carbohydrates [108].   
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phospholipase D (PLD) and lipoxygenase (LOX) genes, 
which helped to maintain membrane integrity under 
cold stress [42]. 

New insights into regulatory networks governing PCI 
can be gained through-omics profiling as shown in 
several examples. Treating peach fruit with methyl- 
jasmonate (MeJA) delayed internal browning (IB), 
maintained fruit texture and aroma volatiles, and the 
accompanying transcriptomic and methylomic changes 
were revealed [43]. In bell pepper, MeJA reduced 
surface pitting, shriveling, discoloration, and seed 
browning, and differences in the transcriptome, pro
teome and metabolome compared with untreated fruit 
were detected [44]. Other studies combined cold sto
rage with additional factors such as varying carbon di
oxide, or fruit harvested at different times, and 
identified differentially expressed transcripts by 
RNASeq [45,46]. These differential transcripts, 

proteins, and metabolites may help to identify gene 
networks and their regulators for genetic engineering. 

Gene targets for minimizing CIS in potato have been 
identified. CIS has been extensively studied compared 
with PCI in fruit, because potato is a staple for one billion 
people [47], and in some production areas, tubers are 
stored at low temperature for up to eight months [48]. 
During tuber storage, there are cycles of synthesis and 
degradation of both sucrose and starch, but at tempera
tures between 4 and 10°C, the degradative fluxes are 
activated, so that reducing sugars accumulate (Figure 4). 
This change in metabolism occurs via the upregulation of 
genes encoding the beta-amylase, glucan water dikinase, 
sucrose phosphate synthase, and invertase enzymes [49] 
(see Figure 4 for details). Attempts to alleviate CIS by 
modulating the activity of core enzymes of carbohydrate 
metabolic pathways have been made, although the role of 
each enzyme isoform is still to be elucidated. Recently 

Figure 4  
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Gene targets in potato tuber that alter chilling-induced sweetening. Carbohydrate metabolic pathways associated with CIS in tuber were modified 
from Zhang et al., 2017 [49]. Green arrows indicate when enhancement of gene expression would alleviate the CIS phenotype and red arrows show 
when suppression of that gene reduced CIS symptoms. Key: Genes are shown in blue: SUS, sucrose synthase; UGPase, UDP-glucose 
pyrophosphorylase; GPT, glucose-6-phosphate/phosphate translocator protein; PGM, phosphoglucomutase; AGPase, ADP-glucose 
pyrophosphorylase; SS, starch synthase; SBE, starch-branching enzyme; DBE, debranching enzyme; AMY, alpha-amylase; ISA, isoamylase; α-GPs, 
α-glucan phosphorylase; DPE2, disproportionating enzyme; MT, maltose transporter protein; AI, amylase inhibitor; RFP1, ring finger protein 1; PGI, 
glucose-6-phosphate isomerase; InvInh, invertase inhibitor; RAP23, ERF-VII transcription factor; SnRK, SNF-related serine/threonine-protein kinase; 
TINY3, a CBF/DREB transcription factor; GAPC, cytosolic glyceraldehyde-3-phosphate dehydrogenase; PFK, phosphofructokinase; PK, pyruvate 
kinase; PDC, pyruvate decarboxylase; Ryadg, Rysto, and Rych, a locus containing three genes. Metabolites: UDP-Glc, UDP-glucose; Glc1P, 
glucose-1-phosphate; Glc-6-P, glucose-6-phosphate; Fru-6-P, fructose-6-phosphate; ADP-Glc, ADP-glucose; Fru-1,6-P2, fructose-1,6- 
bisphosphate.   
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identified non-metabolic genes that regulate CIS (Figure 
4), for example, A CBF/DREB transcription factor 
(StTINY3) [50•] and ring finger protein 1 (RFP1) [51], are 
good targets for developing new germplasm. 

Longer-term biotechnological solutions 
There is an acute need for a greater foundational un
derstanding of PCI. Several advances have been made in 
model species, where regulatory elements of the cold 
signal-transduction pathway response have been identi
fied and functionally verified. Integrating the discrete 
‘snapshot’ studies discussed previously into full models 
across tissues, developmental stages, and conditions, is 
the next step for developing functional biotechnological 
solutions. 

Spatiotemporal regulation 
PCI is often assessed in a single tissue sampled from a 
defined region. Not only is valuable information about 
the spatial evolution of the process lost [52,53], but 
events occurring in all the tissues that are consumed are 
not captured. A few studies have addressed this gap and 
serve as a guideline for future work. In tomato, tissue- 
specific development of PCI was detected, even though 
pericarp is usually the only tissue traditionally studied  
[19••]. In pineapple, scanning electron microscopy and 
histochemical staining of fruit revealed that IB starts at 
the phloem and diffuses throughout fruit tissues from 
the core [54]. A breakthrough was made when a high- 
resolution spatiotemporal transcriptome atlas in tomato 
was developed, which showed that ripening is not 
homogeneous [55••]. Because cold interferes with fruit 
ripening, some PCI symptoms would be expected to 
occur heterogeneously. Looking holistically at the chil
ling response across cells and tissues in harvested organs 
would uncover additional regulatory features of PCI. 

Fine-tuning gene expression 
Uncontrolled and physiologically abnormal expression of 
genes through genetic engineering may severely disrupt 
the multiple finely-balanced gene-regulatory networks, 
resulting in deleterious phenotypes, especially if con
stitutively expressed in tissues where they do not nor
mally occur [56]. Regulated promoter systems to direct 
tissue gene expression in a highly controllable manner, 
with spatial and temporal precision [57], may be useful 
to study and design long-term solutions to PCI. Se
quential changes in gene expression by promoter en
gineering are also a promising approach [58–60]. Precise 
editing of chilling-associated cis-regulatory elements 
(CRE) and differentially methylated regions due to 
chilling by Clustered Regularly Interspaced Short Pa
lindromic Repeats (CRISPR) could promote ripening 
under chilling conditions and alleviate PCI (see Figure 5 
for detailed explanation). Achieving this precision is an 
immensely challenging prospect that likely depends on 

attaining the previously described holistic knowledge of 
chilling response. 

Challenges to studying and ameliorating 
postharvest chilling injury 
There are many longstanding challenges related to PCI 
that remain largely to be tackled, and which limit pro
gress. The nature of research appears fragmented, and 
many species are studied with a substantial focus on 
symptom alleviation through exogenous treatments ra
ther than development of endogenous/innate solutions. 
The importance of PCI is reflected in the number of 
papers published in Google Scholar using the search 
term ‘Postharvest chilling injury’, which has increased 7- 
fold over the past 20 years (2001–2021). This directly 
points to the urgency of developing biotechnological 
approaches to address PCI, and the immediacy with 
which solutions are needed. 

Variability of the postharvest chilling injury response 
Environmental and management factors, both pre- and 
postharvest, influence whether a tissue will manifest PCI 
after cold storage. Time of year, time of day of harvest, 
and the growing environment (i.e., climatic events, 
daylength, humidity, soil, and day and night tempera
ture) are all documented to influence the trait [61,62]. 
Experiments are by necessity, multifactorial, and rely on 
large harvests of fruit, tubers, and so on, which limit the 
number of experiments that can be set up. In addition, 
plants must reach advanced developmental stages to 
obtain fruit or tubers, and this is followed by weeks of 
postharvest cold storage, limiting the number of ex
periments that can be performed in a year. This is ex
acerbated in perennial crops that fruit annually and may 
be biennial, offering fewer opportunities for experi
mentation. Replication of experiments may not be eco
nomically feasible, therefore, at a minimum, a thorough 
reporting of these factors should be included in PCI 
studies [4,63]. 

Knowledge of cold signal-transduction pathways is 
based on actively growing plants 
Light and carbon availability follows a diurnal cycle 
creating different signaling inputs [64–66]. There is a 
limit to which the data so derived can be translated to 
PCI [64]. The growing plant may use avoidance, escape, 
and tolerance to cope with cold [67], while in contrast, 
options for surviving anthropogenic cold stress in stored 
tissues with limited nutrients are few [19••,68]. Cold- 
responsive genes in Arabidopsis rosettes may have con
served functions in leafy greens, but genes and pathways 
from model crops, for example, cereals, will have limited 
relevance to the consumed tissues in horticultural crops  
[69]. Therefore, postharvest studies must redescribe the 
behavior of these pathways under the conditions of each 
experiment, which is laborious and expensive or work 
with tempered assumptions about them. 
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The events that initiate postharvest chilling injury are 
poorly understood 
The question of if there is a single primary event that 
triggers others, or if multiple events occur simulta
neously, remains. ROS production, and membrane 

disassembly are cited as incipient processes, but their 
relative timing has not been resolved, as there are con
trasting reports of their relative importance [6,70]. 
Studying biological process hours after chilling would 
illuminate the rapid and early, cold-tolerant responses 

Figure 5  
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. Strategies for engineering PCI phenotypes by disrupting promoter cis-regulatory elements (CREs) or their DNA methylation fingerprint in 
candidate cold responsive (COR) genes. CREs are DNA sequences often found in gene promoters that are bound by specific TFs upon 
developmental or environmental triggers. (A) TFs can accelerate or slow down the production of mRNAs of the gene by binding the CREs under 
normal condition, bind the CREs of multiple genes in a related pathway, or bind the CREs of itself or other TFs. Examples show how CRE mutations 
may increase the expression of genes that lead to cold tolerance. (B)CRE deletions can prevent binding of a repressor TF. (C) If the TF is an activator, 
engineering additional copies of the cognate CREs would amplify gene expression. (D) Multiplexed editing of chilling-associated CREs with multiple 
gRNAs could potentially generate lines with a range of phenotypes as seen in developmental traits [59]. (E) Chemical modifications of DNA such as 
direct methylation of the CREs, or methylation or acetylation of neighboring histones that result in the physical remodeling of chromatin, would 
influence TF access to CREs and transcription. Key in (D) the red dashed lines indicate deletions; arrow thickness indicates relative expression 
strength, andthe blue line indicates a sequence insertion.   
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that are often overlooked. Understanding the progres
sion of these events in different tissues could allow for 
more targeted and efficient solutions in alignment with 
the spatial and temporal occurrence of PCI events. 

Research is focused on a few model species 
Molecular components of the chilling pathways in to
mato, peach, banana, and potato have been identified 
because of their economic importance and advanced 
functional genomics tools, while research on other spe
cies lag. However, whole genome sequencing of diverse 
crops such as pineapple, coconut, and basil [54,71,72] is 
fueling PCI research in these species. Bridging the 
technological gap for PCI research in tropical species 
would benefit multiple stakeholders, astropical com
modities are rich in bioactive compounds and have 
exotic tastes and flavors [73], of interest to international 
markets. These crops are likely to suffer from PCI that 
increases export costs, since air transport, rather than 
maritime shipping, would be needed. 

Applying synthetic biology principles 
Reliable and efficient transformation systems would ac
celerate a systematic approach to engineering PCI  
[10,74]. Candidate genes would be designed by editing 
their sequence, and the performance of the ‘built’ or 
engineered crops under chilling, tested and observed  
[75]. Through an iterative and systematic ‘De
sign–Build–Test–Learn’ process, we may identify novel 
genes that influence PCI, developing resistant varieties 
contemporaneously with basic discovery. 

Integrating research into the postharvest value chain 
New varieties with improved PCI traits must be re
producible under commercial conditions to be suc
cessful. Most PCI research is done under lab conditions, 
and this disparity must be reconciled to ensure consumer 
satisfaction [76]. Research that spans the lab-to-table 
continuum is therefore critical. 

Conclusions and perspectives 
Crops bred with increased resiliency to PCI would save 
financial and environmental resources, improve con
sumer satisfaction, and encourage higher consumption of 
produce with better public health outcomes. Poor 
awareness of PCI and difficulties in its identification 
make determining the economic value of losses asso
ciated with this disorder challenging, making it hard to 
justify greater investment in a broader range of species. 
The result is that the resources needed to systematically 
tackle PCI are not available. Still, as shown here, recent 
advances in plant functional genomics are increasingly 
being leveraged to discover the genes and mechanisms 
that regulate postharvest chilling for biotechnological 
improvements. 
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