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Highlights

•  Measurements from 38 laboratory chars using 7 characterization methods were compared.

•  Most measurements captured the aromaticity or aromatic condensation degree.

•  Aromaticity and condensation degree showed distinct patterns with charring temperature.

•  Simple methods potentially capture char aromatic features as well as more costly ones.

Abstract

The aromatic carbon structure is a defining property of chars and is often expressed 

with the help of two concepts: (i) aromaticity and (ii) degree of aromatic condensation. 

The varying extent of these two features is assumed to largely determine the relatively 

high persistence of charred material in the environment and is thus of interest for, 

e.g., biochar characterization or carbon cycle studies. Consequently, a variety of 

methods has been used to assess the aromatic structure of chars, which has led to 

interesting insights but has complicated the comparison of data acquired with different 

methods. We therefore used a suite of seven methods (elemental analysis, 

MIR spectroscopy, NEXAFS spectroscopy, 13C NMR spectroscopy, BPCA 

analysis, lipid analysis and helium pycnometry) and compared 13 measurements from 

them using a diverse sample set of 38 laboratory chars. Our results demonstrate that 

most of the measurements could be categorized either into those which assess 

aromaticity or those which assess the degree of aromatic condensation. A variety of 

measurements, including relatively inexpensive and simple ones, reproducibly captured 
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the two aromatic features in question, and data from different methods could therefore 

be compared. Moreover, general patterns between the two aromatic features and 

the pyrolysis conditions were revealed, supporting reconstruction of the highest heat 

treatment temperature (HTT) of char.
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1. Introduction

Natural and anthropogenic chars have recently received much attention (Manyà, 

2012, Knicker, 2011, Glaser and Birk, 2012). Their role as important environmental 

constituents is increasingly being recognized; chars persist in soils and sediments, 

which has important implications for the global C budget (Schmidt and Noack, 2000) 

and they can exert beneficial properties on soils, improving fertility (Biederman and 

Harpole, 2013) and immobilizing hazardous compounds (Beesley et al., 2011). 

Moreover, anthropogenic chars (biochars) involve additional economic advantages; 

prudent biocharproduction can provide green energy, providing an interesting alternative

to management of organic waste (Meyer et al., 2011).

With increasing interest in the use of charred material, there is a growing need to 

characterize and classify the material accurately in order to improve understanding of its

properties and behavior in the environment. A defining property of chars and 

of pyrogenic organic matter in general (Preston and Schmidt, 2006) is their aromatic C 

structure (Lehmann and Joseph, 2009), which is believed to consist of at least two 

different aromatic C phases: (i) an amorphous phase comprising randomly 

organized aromatic rings and (ii) a crystalline phase, comprising condensed 
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polyaromatic sheets that are turbostratically aligned (Franklin, 1951, Cohen-Ofri et al., 

2006, Keiluweit et al., 2010). The concepts of aromaticity (the total proportion of 

aromatic C including both phases; McNaught and Wilkinson, 1997) and that of the 

degree of aromatic condensation (the proportion of the condensed aromatic C 

only; McBeath et al., 2011) relate to this two phase model. The varying extent of the two

phases is believed to largely determine stability of the charred material against 

degradation in the environment (Lehmann et al., 2009, Singh et al., 2012). 

Consequently, aromaticity and the degree of aromatic condensation of a char likely 

influence its sequestration potential as well as the duration during which it can provide 

benefit to the soil (Nguyen et al., 2010).

The two features are themselves influenced by the feedstock, and 

the pyrolysis conditions. The type of feedstock contributes to the aromaticity and the 

degree of aromatic condensation by providing different chemical structures as starting 

material. For example, a high amount of aromatic structures in a feedstock (e.g. lignin in

wood) can promote the resulting char aromaticity (Antal and Grønli, 2003). Similarly, 

different precursor materials attain a high degree of aromatic condensation at different 

temperatures (Setton et al., 2002). The pyrolysis conditions, in particular the 

highest heat treatment temperature (HTT), but also residence time, O2 availability and 

pressure, influence the C properties of the resulting char (Shafizadeh, 1982, Lua et al., 

2004). Aromaticity has been reported to increase with HTT from 200 °C to ca. 500 °C, 

where maximum aromaticity values are reached. The degree of aromatic condensation 

showed, on the other hand, a more gradual increase with HTT from 400 °C, reaching 

maximum values at > 1000 °C (McBeath et al., 2011, Schneider et al., 2011).

Considering the importance of the aromatic C structure in char and its dependence on 

many influencing factors, it is not surprising that various attempts have been made to 

measure these archetypal properties of char. A wide variety of chemical and physical 

methods has been used, including elemental analysis, molecular markers, solid 

state 13C nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) 

spectroscopy, Raman spectroscopy, pyrolysis–gas chromatography-mass spectrometry 

(Py–GC–MS), X-ray diffraction, near edge X-ray absorption fine-structure spectroscopy 

(NEXAFS), X-ray photoelectron spectroscopy, measurement of surface area, He based 

solid density, electrical resistivity or high resolution transmission electron 

microscopy (HRTEM) (Derenne et al., 2005, McBeath et al., 2011, Charon et al., 2014).
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While the wealth of methods for aromatic structure characterization of char is 

fascinating, with the methods continuing to grow in number and quality, it has become 

increasingly difficult to compare data using different methods and to relate the findings 

from them. Matters are complicated by the fact that terms such as aromaticity can have 

multiple technique-specific meanings (McBeath et al., 2011). Moreover, from a practical 

point of view, researchers and practitioners may have limited resources and 

instrumentations and would like to optimize both insightful data acquisition and 

reasonable analysis cost. Efforts to compare different methods and their measurements 

and to put them in a common framework are therefore required, thereby guiding the 

interpretation of differently acquired data and suggesting suitable methods for specific 

analysis problems.

Here, we have used an extensive suite of 7 different methods that provided 13 

measurements (cf. Table 1) in a comparative study to evaluate their assessment of the 

aromatic structure in charred materials. A large sample set, consisting of 38 different 

laboratory char samples (cf. Table 2), was analyzed using each method. The objective 

was to show and discuss how the 7 methods and their measurements capture the 

aromatic structures in the largely different chars and how they compare with each other. 

Moreover, we aimed to reveal the influence of feedstock, HTT and other pyrolysis 

parameters on aromaticity and degree of aromatic condensation, by statistically 

exploring the rich dataset from this large scale comparative study.

Table 1. Methods considered comparatively for assessing aromaticity and/or degree of aromatic 

condensation of chars (names of derived indices in bold).

Measurement
principle

Method Index 
(Mindex)

Measurement Reference

Elemental 
composition

Elemental 
analysis

O–Cindex C, H and O content (%), 
H/C, O/C

Baldock and Smernik,
2002, Hammes et al., 
2006H–Cindex

Functional 
groups

Mid-infrared 
spectroscopy 
(MIR)

MIRindex Aromaticity ratio (%), 
(1420 + 821)/(1510 + 1320) 
cm−1

Wood, 1988, Guo and
Bustin, 1998, Moore 
and Owen, 2001

Near-edge X-
ray absorption 
fine structure 
spectroscopy 
(NEXAFS)

NEXAFS-
aromaindex

Aromaticity ratio (%), 
285 eV/286–288 eV

Francis and 
Hitchcock, 
1992, Agren et al., 
1995, Kuznetsova et 
al., 2001, Brandes et 
al., 2008, Keiluweit et

NEXAFS-
condindex

Degree of condensation ratio
(%), 284 eV/285 eV
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Measurement
principle

Method Index 
(Mindex)

Measurement Reference

al., 2010

13C Nuclear 
magnetic 
resonance 
spectroscopy 
(NMR)

NMR-
aromaindex

Deconvolution on fitted 
spectrum with assigned 
aromatic peaks

McBeath and 
Smernik 
(2009), McBeath et 
al. (2011)

– with 
sorbed 13C label

NMR-
condindex

−Δδ (ppm), Shift of 
sorbed 13C labelled benzene 
– shift of benzene

Molecular 
markers

Benzene 
polycarboxylic 
acid (BPCA) 
analysis

BPCA-
aromaindex

Total BPCA amount per 
organic carbon (g/kg): 
BPCA/C

Schneider et al. 
(2011), Wiedemeier et
al. (2013)

BPCA-
condindex

Ratio of B6CA per total 
BPCA amount (%), 
B6CA/BPCA

Lipid analysis TLEindex Total lipid extract yield (g), 
TLE

Wiesenberg et al., 
2009, Wiesenberg et 
al., 2010, Wiedemeier
et al., 2015– n-alkanes ACLindex Average chain length, ACL

– Polycyclic 
aromatic 
hydrocarbons

PAHindex Ratio of 4–6 ring to 2–3 ring
polycyclic aromatic 
hydrocarbons (%)

Density He pycnometry Pycnoindex Skeletal density (g/cm3) Brown et al., 
2006, Brewer et al., 
2009, Brewer et al., 
2014

Table 2. Laboratory chars measured with each method.

Feedstock Pyrolysis procedure HTT n Thermosequence

Chestnut (Wood) (Castanea 
sativa)

A: 5 h HTT, N2 flow 200–1000 °
C

12 Wood-A

Rice (Grass) (Oryza sativa) 200–1000 °
C

12 Grass-A

Pine (Wood) (Pinus ponderosa) B: 1 h HTT, Closed 
chamber

100–700 °C 7 Wood-B

Fescue (Grass) (Festuca 
arundinacea)

100–700 °C 7 Grass-B

2. Material and methods

2.1. Char thermosequences

Four different feedstocks (chestnut wood, pine wood, fescue grass and rice grass) and 

two different pyrolysis procedures (A, 5 h residence time at HTT with continuous N2 flow;
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B, 1 h residence time at HTT in a closed chamber) were used to create 38 laboratory 

char samples with HTT between 100 and 1000 °C (A, 200–1000 °C; B, 100–700 °C), as

reported in detail in two previous studies (Keiluweit et al., 2010, Schneider et al., 2011). 

The resulting char thermosequences (Wood-A, Grass-A, Wood-B, Grass-B) are 

displayed in Table 2.

2.2. Methods, measurements and derived indices

The char samples were measured using elemental analysis, mid-

IR (MIR) spectroscopy, NEXAFS 

spectroscopy, 13C NMR spectroscopy, benzenepolycarboxylic acid (BPCA) 

analysis, lipid analysis and He pycnometry, as described in detail in the Supplementary 

data. Some of the methods provided more than one measurement (e.g. elemental 

analysis gives H/C ratio and O/C ratio), as summarized in Table 1. Because the 

measurements are in widely different units and sometimes inversely proportional to 

each other, indices were built for comparison purposes that project the data on a 

common scale (0–1) and in the same direction (0, lowest aromaticity or lowest degree of

aromatic condensation; 1, highest aromaticity or highest degree of aromatic 

condensation). Thus, each value x of a measurement Mwas transformed according to 

Eq. (1) to provide Mindex[0–1]. In the case of inversely proportional measurements, 

denoted [1–0], they were further transformed according to Eq. (2) to yield Mindex[0–1]. 

From here on, the methods and measurements are referred to by their indices (Mindex), as

listed in Table 1.

2.3. Data presentation and statistical analysis

The large set of original data can be found in the Supplementary data, while we focus 

here on the most important findings, showing only simplified data for reasons of clarity 

and understanding. All data analysis was conducted using the statistical software R 

(2011). The few missing values (ca. 5%) were imputed with the missForest algorithm 

(Stekhoven and Buehlmann, 2012) with an estimated normalized root mean square 

error of only 0.2%. Principal component analysis (PCA; Mardia et al., 1979) including 

biplots (Gabriel, 1971) was computed on the correlation matrix of the inputed dataset.

3. Results and discussion
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All the methods provide measurements of physical or chemical variables linked either to

aromaticity or degree of aromatic condensation, but the link between the variables and 

the derived aromatic features varies greatly. Measuring ring current with NMR (NMR-

condindex) is, for example, a more direct approach for assessing the degree of aromatic 

condensation than measuring skeletal density of char with He pycnometry (Pycno index). 

However, the methods differ not only in how they provide assessment of aromatic 

structures but also in cost, availability and necessary expertise. Moreover, sample 

amount and composition can prevent the use of one method and/or promote the 

application of another. For these reasons, the aim was not to identify a reference 

method via inferential statistics or cost benefit analysis but rather to show method 

performance and explore qualitatively method similarities and differences within the two 

categories of aromaticity and aromatic condensation. The standardized measurement 

results from each method (indices) are shown in full in Fig. 1, Fig. 2 and mathematically 

summarized according to their resemblance in the form of a PCA, in Fig. 3.
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Fig. 1. Char aromaticity as measured via nine different indices. The median of all the indices is shown at 
the lower right corner and thus describes the typical trend in aromaticity with HTT.
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Fig. 2. Degree of aromatic condensation as measured via four different indices. The median of all the 
aromatic condensation indices is depicted in the lower left and thus shows a typical increase in degree of
aromatic condensation with HTT.
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Fig. 3. PCA of the large dataset generated. The first PC is projected along the HTT axis and thus 
differentiates the chars according to heating temperature. The darker the circle symbol for a sample, the 
higher its HTT (top). The second PC spreads between aromaticity and the degree of aromatic 
condensation, showing that the char samples first become more aromatic with increasing HTT and then 
increase in aromatic condensation in the higher temperatures range (top). Likewise, the PCA 
differentiates between the different measurements (center and bottom) and groups them into typical 
aromaticity indices (3–9) and typical indices for assessing the degree of aromatic condensation (10–12). 
The numbers indicate: 1, PAHindex; 2, NEXAFS-condindex; 3, BPCA-aromaindex; 4, TLEindex; 5, MIRindex; 6, O–Cindex; 7, 
NMR-aromaindex; 8, ACLindex; 9, H–Cindex; 10, BPCA-condindex; 11, NMR-condindex; 12, Pycnoindex; 13, NEXAFS-aromaindex.
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3.1. Aromaticity

Aromaticity in char is generally easier to assess than the degree of aromatic 

condensation (McBeath et al., 2011). Thus, more methods are available for measuring 

aromaticity than for measuring the degree of aromatic condensation (Fig. 1, Fig. 3). In 

particular, the determination of elemental composition (O–C index, H–Cindex), the 

spectroscopic assessment of functional groups (MIR index, NEXAFS-aromaindex, NMR-

aromaindex) and the measurement of aromatic molecular markers (BPCAindex, PAHindex) can 

yield insight into the proportion of aromatic C in chars (Table 1). Non-aromatic molecular

markers (TLEindex, ACLindex) may also be related to the proportion of aromatic C in chars as

charring also affects the composition of these moieties.

The O–Cindex and the H–Cindex are routine measurements for chars (Baldock and Smernik, 

2002, Hammes et al., 2006) and are an indirect measurement of aromaticity because 

the proportion of C in a sample increases with HTT, as 

dehydration, depolymerization and volatilization take place, eventually leading to the 

formation of H and O depleted aromatic C structures (Keiluweit et al., 2010, Wang et al.,

2013).

The O–Cindex of fresh chars depicts a characteristic trend for aromaticity measurements 

(Fig. 1), because it traces closely the median of all aromatic measurements and thereby

shows a typical pattern for aromaticity in the samples: The proportion of aromatic rings 

in a sample is lowest for low temperature chars, then increases sharply between 200 

and 500 °C and reaches a plateau > 600 °C. The increasing O–Cindex reflects the 

elimination of O, mostly early in the charring process. The O–C index also differentiates 

between wood and grass char in the low temperature range (e.g. Wood-B vs. Grass-B). 

This can be attributed to the higher lignin content of the wood feedstock (Rutherford et 

al., 2012). At high temperatures, the wood char samples again acquire higher O–

Cindex values than the grass char samples. This probably reflects the higher ash content 

of the latter, which tends to retard aromatization (Mukome et al., 2013). Despite the fact 

that O content was assessed differently between the different thermosequences (actual 

measured O content for the A thermosequences vs. calculated by difference for the B 

thermosequences – cf. Supplementary data), similar results were obtained in both 

cases, indicating that the less expensive option of calculating O content by difference 

may be sufficient for assessing aromaticity in most freshly produced chars. However, 
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measuring O by difference could be problematic for aromaticity assessment of chars 

with high ash content.

The H–Cindex showed the lowest values for aromaticity in the lowest HTT range at 100–

200 °C, as expected (Wang et al., 2013). Like the O–Cindex, it also yields higher 

aromaticity for the lignin-rich wood char samples (Wood-B) than the lignin-poor grass 

char samples (Grass-B) at these low temperatures. A steep increase in aromaticity then 

followed from 200–500 °C HTT. However, highest values for H–Cindex based aromaticity 

were only reached at the highest HTT (1000 °C), indicating that the H–Cindex is not a pure 

measurement for aromaticity. In fact, the H–Cindex is positioned at the edge of the 

aromaticity measurements in Fig. 3 (vector number 9), relatively adjacent to the 

aromatic condensation measurements. This also makes sense from a theoretical point 

of view, because H is also lost during condensation of aromatic structures at high 

charring temperature (Franklin, 1951). Thus, the H–Cindex probably indicates both an 

increasing amount of aromatic rings, up to ca. 500 °C HTT, and then the increasingly 

condensed nature of the aromatic rings, that continues to develop at higher charring 

temperature.

There was a slight lag in aromaticity of the Wood-B and Grass-B thermosequences vs. 

the Wood-A and Grass-A thermosequences with respect to HTT; the two 

thermosequences that were charred for 5 h and with a N2 flow (A) attain higher values of

aromaticity at slightly lower HTT than the two thermosequences that were charred for 

only 1 h in closed chambers (B). This pattern was observed for most of the aromaticity 

measurements (cf. H–Cindex, NMR-aromaindex, BPCAindex, TLEindex) and was independent of 

feedstock (grass vs. wood). Thus, it appears to be related to the pyrolysismethod, 

indicating that the longer residence times of pyrolysis procedure A charred the samples 

more completely at the same HTT than the shorter residence times in procedure B. The 

slight difference in pyrolysis procedures proved useful in this study because it allowed 

us to check if the various methods detect this feature.

The MIRindex distinguished low temperature chars from high temperature chars, with an 

increase in aromaticity between 300 and 500 °C, as similarly observed by Harvey et al. 

(2012a). It can thus serve as a quick and relatively inexpensive screening method for 

categorizing unknown char samples roughly according to their aromaticity and HTT. 

However, the MIRindex used here only qualifies as a rough estimate for aromaticity, given 

its large variability for chars > 300 °C, which can also be seen from the shorter length of 

vector 5 in Fig. 3. Moreover, the MIRindex seems to depend on the pyrolysis procedure in 
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this mid- and high-temperature range, which was not reproduced by any of the other 

methods. The data show that MIR has the potential to measure aromaticity and possibly

other HTT dependent variables, but clearly requires more research and fine tuning with 

respect to IR bandselection and spectral data analysis.

The NEXAFS-aromaindex has been similarly used to describe the B thermosequence 

chars elsewhere (Keiluweit et al., 2010) and was in the frame of the comparative study 

now also applied to part of the A thermosequence chars. In the case of the A 

thermosequence, the NEXAFS-aromaindex increased between 600 and 1000 °C. This is 

unlike most other aromaticity measurements that show a pronounced increase in 

aromaticity at lower HTT. The NEXAFS-aromaindex also gave higher aromaticity values for

the Grass-A chars than the Wood-A chars; this is in contrast to most other observations 

but in line with previous results from NEXAFS applications (Keiluweit et al., 2010). In the

case of the B thermosequence, the NEXAFS-aroma index behaved unexpectedly in the low

temperature range, indicating high aromaticity values for almost unaltered feedstock 

and showing decreasing aromaticity with increasing HTT. The reason for the 

unexpected behavior of the NEXAFS indices is discussed below in Section 3.2.

Using NMR is a recently established means for assessing aromaticity of charred 

samples (McBeath et al., 2011). The NMR-aromaindex determined the wood char samples 

in the low temperature range (100–200 °C) as being more aromatic than the grass char 

samples, like the H–Cindex and O–Cindex, and then also showed the typical increase in 

aromaticity between 200 and 500 °C, reaching a plateau from 600 °C for all feedstocks 

and pyrolysis methods, with little variability. Since NMR measures directly the organic C 

bonds, it is not sensitive to ash content, yielding equally high values for high 

temperature wood and grass chars. A small shift between the differently pyrolyzed 

thermosequences (A vs. B) could also be observed where aromaticity increased, further

corroborating the idea that the two pyrolysis procedures produced slightly different chars

in the mid-temperature range.

The BPCA method separates and quantifies aromatic moieties that originate from 

condensed aromatic structures, which is why it is insensitive to lignin. Thus, the BPCA-

aromaindex scored very low for both wood and grass chars in the range up to 200 °C. It 

then increased steadily with HTT up to 500 °C, where maximum values were reached, 

and decreased slightly from 700 °C onwards. The trend at low and mid-temperatures 

was consistent with the other aromaticity measurements, while the slight decrease at 
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high temperature was inconsistent with the expected high aromaticity at high HTT. This 

can be attributed to a method artifact from which BPCA-aroma indexsuffers: highly 

condensed aromatic structures are not completely converted to quantifiable BPCAs and

thus, as condensation increases above 600 °C, the BPCA-aromaindex declines slightly 

(Schneider et al., 2010). Still, it is able to distinguish the high temperature chars (grass 

vs. wood) and also the effect of the two different pyrolysis procedures A and B, which is 

why the BPCA-aromaindex plots well within the aromaticity vector in Fig. 3.

The lipid indices (TLEindex, ACLindex, PAHindex) are indirectly linked to changes in aromaticity 

because the lipid proportion (e.g. TLEindex) and quality (e.g. ACLindex, PAHindex) vary with HTT

and the associated changes in aromaticity. The TLE index showed a typical pattern for the 

aromaticity measurements, with low values (high extractability) at low temperatures and 

high values (low extractability) > 600 °C. Simple lipid extraction thus seemed to be a 

good proxy for aromaticity. It was able to differentiate between the two pyrolysis 

methods, showing the delayed increase in aromaticity of the B thermosequences, and 

remained at a constant maximum > 600 °C. However, it suffered from too high index 

values at low HTT for all thermosequences except the Grass-A thermosequence. This is

probably due to the generally low content of extractable lipids in woody tissue (Gocke et

al., 2013).

The ACL of alkanes decreases with increasing HTT due to cracking of carbon bonds 

(Simoneit and Elias, 2000, Wiesenberg et al., 2009), which translates into an increasing 

trend in the reciprocal ACLindex with increasing temperature. The ACL index showed the 

general pattern of the other aromaticity measurements, e.g. pronounced increase in the 

index between 200 and 600 °C, a higher lignin-derived aromaticity for woody low 

temperature chars than grassy chars and the characteristic difference between the two 

pyrolysis procedures between 200 and 600 °C. However, while the ACLindex was similar to

other aromaticity measurements for the Grass-A thermosequence, it showed a high 

variability between the different thermosequences and sometimes no characteristic 

trend was observable at all (e.g. for the Wood-A thermosequence). These important 

drawbacks do not seem to depend on pyrolysis method or two types of starting material 

(wood vs. grass) but rather seem dependent on each of the four individual feedstocks. 

Thus, using ACLindex as an aromaticity measurement requires a careful calibration 

according to feedstock before conclusions can be drawn from it.
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The PAHindex is another measurement theoretically linked to aromaticity in chars and 

which can be retrieved after lipid extraction (Simoneit, 2002, Yunker et al., 2002). 

Despite its rather straightforward concept of comparing larger with smaller PAH 

structures, no monotonic trend with HTT was observed. Instead, a maximum of the 

PAHindex was found at 400–500 °C, which interestingly correlates with total solvent-

extractable PAH yield, as found in a more detailed study by Keiluweit et al. (2012). 

These results indicate that the relationship between PAH composition and HTT of chars 

is rather complex (Wiedemeier et al., 2015) and requires more research.

3.2. Degree of aromatic condensation

We assessed the degree of aromatic condensation by investigating functional groups 

and atomic bonds (NMR-condindex, NEXAFS-condindex), quantifying molecular markers 

(BPCA-condindex) and measuring the structural density (Pycnoindex) of the chars (Table 1).

The NMR method is the most recent development in the field and had already afforded 

plausible results on one set of the chars (Wood-A thermosequence; McBeath et al., 

2011). In the same study, it was shown that the degree of aromatic condensation 

increases more gradually with increasing HTT than aromaticity and that a high degree of

condensation only occurs at high HTT. Here, the inclusion of the Grass-A, Wood-B and 

Grass-B thermosequences again showed a similar pattern: the degree of aromatic 

condensation was minimal up to 250 °C and then constantly and monotonically 

increased up to the highest HTT. Interestingly, the chars from the B pyrolysis procedure 

again lagged behind those from the A pyrolysis procedure, indicating that the shorter 

pyrolysis time not only reduced the aromaticity but also the degree of aromatic 

condensation.

The BPCA method reproduced the NMR-cond index general pattern consistently, despite 

the large difference in methodology. The relationship between the degree of aromatic 

condensation and HTT was more curved than that for NMR, pointing to a slightly non-

linear behavior of the BPCA-condindex. This minor deviation is probably method inherent 

because it occurred reproducibly for all the thermosequences. However, it is surprising 

that the grass chars scored higher with respect to aromatic condensation than the wood

chars at high temperature. This probably reflects the lower BPCA yield from grass chars

than wood chars at high temperature (cf. Fig. 1, BPCA-aromaindex). This effect therefore 

has to be taken into account when the BPCA-cond index is used for the assessment of the 

degree of aromatic condensation in chars from different feedstocks.
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He pycnometry represents a third, completely independent approach for assessing the 

degree of aromatic condensation. He can penetrate the smallest of pores and can thus 

be used to assess the skeletal density (Brewer et al., 2014), which increases with 

increasing molecular condensation. Despite its lower cost and shorter analysis time, this

indirect measurement appeared to reproduce quite well the main trend from the above, 

more complex and expensive aromatic condensation measurements. It depicted a 

rather linear increase in aromatic condensation from 300 °C up to the highest measured

HTT. He pycnometry measurements in the low temperature range (< 300 °C) seem, 

however, to be less promising because the Pycno index overestimated aromatic 

condensation for such mild heat treatment. Besides, the Wood-B thermosequence 

showed unusual behavior, whereby only the highest HTT (700 °C) would be assigned 

as giving a condensed aromatic carbon structure.

The NEXAFS-condindex indicated a pronounced increase in the degree of aromatic 

condensation of the chars between 200 and 500 °C and a decrease above 600 °C, 

which is not consistent with the other aromatic condensation measurements (Fig. 3, 

vector 2). Both NEXAFS indices used here (NEXAFS-aroma index and NEXAFS-condindex) 

showed different behavior compared with other metrics of aromaticity and aromatic 

condensation. The use of simple indices derived from NEXAFS spectra is most likely 

limited by the fact that resonances in NEXAFS are not derived exclusively from specific 

functional groups but rather are a result of the entire electronic structure of the char 

material.

3.3. General patterns of aromatic features and implications

Applying a large suite of 7 methods with 13 measurements to a diverse char sample set

of four thermosequences enabled us to identify general patterns between analytical 

methods and char C properties.

One observable pattern was the distinction between measurements that assess 

aromaticity and those that assess the degree of aromatic condensation, as discussed 

above and shown in Fig. 3. The differentiation was sharp and resulted in two distinct 

trends with HTT as depicted in Fig. 1and Fig. 2. The two general trends across methods

are best represented by the median of all measurements for each category: aromaticity 

increased sharply from 200 °C on, reaching maximum values at 500–600 °C, and 

stayed constant at the maximum with higher HTT (Fig. 1, bottom right). The median of 

all aromatic condensation measurements, on the other hand, increased smoothly from 
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300 °C on, reaching highest values at 1000 °C (Fig. 2, bottom left). While this difference

between the two categories of aromatic measures has been reported elsewhere 

(McBeath et al., 2011), it was somewhat surprising how congruently the methods 

behaved within each category, despite the fact that they are based on fundamentally 

different approaches. The O–Cindex, for example, followed the NMR-aromaindex, with only 

very minor differences for all thermosequences, and the H–Cindex, as well as the BPCA-

aromaindex, gave very similar results. Likewise, NMR-condindex, BPCA-condindex and 

Pycnoindex were very similar for the degree of aromatic condensation for all feedstocks 

and pyrolysis procedures. Even the slight shift between pyrolysis procedures A and B 

with respect to HTT was readily detected with most of the methods (O–C index, H–Cindex, 

NMR-aromaindex, BPCA-aromaindex, TLEindex, NMR-condindex, BPCA-condindex, Pycnoindex) 

reflecting both the importance of the pyrolysis conditions on the char C properties and 

the high sensitivity of each measurement for differences in char aromatic structure. Our 

observations imply that a variety of measurements are suitable for assessing the 

aromatic C structure of chars and that differently acquired data, e.g. from different 

research groups and laboratories, can be compared if the data are reasonably 

standardized and calibrated. More comparable data interpretations of diverse published 

and future studies alike can lead to a more consistent and better understanding of the C

structure in different chars, which, in turn, promises to illuminate the C sequestration 

potential of diverse chars (Keiluweit et al., 2010, Singh et al., 2012, Harvey et al., 

2012b, Wang et al., 2013).

The distinctive and reproducibly measurable trends in aromaticity and aromatic 

condensation as a function of HTT also allow the inverse examination of chars: if the 

aim is to determine the unknown HTT of a certain char, it can be estimated by 

measuring its aromatic C structure. A quick multiple linear regression analysis of our 

dataset (data not shown) indicated that it is best to combine a measurement of 

aromaticity with one of aromatic condensation to obtain precise HTT reconstruction 

estimates. Aromaticity and aromatic condensation increase over different ranges of 

temperature and thus yield complementary information about the char HTT. Methods 

that provide both aromatic measurements at the same time (e.g. NMR-aroma indexand 

NMR-condindex or BPCA-aromaindex and BPCA-condindex) are thus beneficial from this point 

of view. However, similarly good results for HTT reconstruction were achieved by 

combining different methods, e.g. the O–Cindex, which captures aromaticity, with the 

Pycnoindex, which measures the degree of aromatic condensation. HTT reconstruction of 

chars may be an important application of the above methods in archeological studies 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/regression-analysis
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(Conedera et al., 2009, Wolf et al., 2013) in addition to the more established focus on 

char stability in an environmental context (Nguyen et al., 2010, Al-Wabel et al., 2013).

We conclude that some indirect, relatively inexpensive and simple methods 

(e.g. elemental analysis or He pycnometry) captured the aromatic structures in fresh 

chars similarly well as more costly and time-consuming techniques. This holds promise, 

whereby aromaticity and the degree of aromatic condensation can be readily assessed 

in all kinds of char studies and with a variety of new and established methods. Thus, 

characterization and classification of charred materials should explicitly take these two 

C aromatic features into account because they are likely key to their stability against 

degradation in the environment as well as being informative about production 

temperature.
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