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Abstract 
Multizone models form the basis of most computer simulations of airflow and pollutant transport 

in buildings. In order to promote computational efficiency, some multizone. simulation programs,. such as 
CO MIS and CO.I)<TAM, restrict the form that thei~ fl0w models m~y-t~ke. Whit~ these tools al!ow scie~tists 
and engineers to explore a wide range of building airflow problems,iric~easingly the'i'r use has led to new 
questions not answerable by the current generation of programs. · · ., ' . - . 

. . This paper,directed at softwar!' develop,ers working on the.next genera,tion of building airftqw ,moqels, 
identif.i~ stn,tctural ¥P~cts ofCQMIS and related pr.lgrams that.pniveU:t them fro~-easlly i~ccirporating 
desirable new airfl~w models. The paper also suggests c.rite~ia for evaluating'·attetnate simuia:tioli environ-
ments for future irlodelirigefforts. . .• ' .ri .. ,, 

Keywords: airflow, COMIS, multizone 

1. Introduction 
Multi~one mdi:relsform th~ basis of most computer simulations' of airflow and1polluti:i.nt transport 

in buildings. The.state of the art in whole-building flow analysis relies on these lumped-pararrietkt, 
~r 'macroscopic, models, because representing an' entire b~ilding mkr~scopically (e.g.:<; using cO'mpu­
tationai fluid dynami:cs )'would reqUire· unn:ia:listic amounts of input data, computer memory; and 
proc~ssing pow~r. 'Tiii'ssituadbri will likely persist forsoine time. :- ' . 

This paper assesses current multizone simulation programs;· in light of modeling applications of 
interest to the Air'flow and Pollutant Transport group a:t La:w~eiice Berkeley National Laboratory. 
To ground the discussion, it mainly focuses on a particular code, CO MIS. The faCt that this code was 
developed at' L13NL gives' us greateriri!Jight irito its architecture, and' greater latitrtde to criticize it. 
However< rrtuch of the discussiCni. applies generally to other imiltizone airflow arid pollutant transport 

. . •• t.;: •• 

programs. 

Orga~izatio~. Section 2 provides an overview of the present criti~ue of multizone simulation 
software:· n discusses the' rationale f6r reviewi~g the stat~ of the' art in multizone simulation, and 
summarizes the 'argument's contained in the rest of the paper. · 

S~ctions 3 ·ahd 4 provide background material for the critique itself. Section 3 discusses geneta:l 
software cha~actetisti;cs: of interest to inultizone modelers, ·defining some terms used in the later 
comments &!specific sifuuiation programs. Section 4 briefly describes COMIS; and defines a sample 
flow component-a duct-for later reference. · . · 

Section 5 ctit'iques multizohe software toois, both 'itt terms of existing flow models, and in terms 
of their ~Bility to incorporate· new models: Section 6 considers the prospects for modifying COMIS 
to 'answer the~e objections, and proposes key feat~res to look for fn a new;environment. 

Unless otherwise noted, "COMIS" refers to COMISv.3.0.2, the last freely-available release of 
the souwi code to the program [7]. ' 

2. Overvi~w _. . . .. . . . . . 
. J •. . • ; ;, ' • . " ~ . ' ~ ' ) . : : .' . . 

The design of the current generation of multizone programs results from a systematic drive 
toward computational efficiency. This effort was founded in the desire to bring whole-building 
airflow simulation to ordinary desktop computers, with their limited memory 'an'd ~omptiting phwer: 
Therefore-the' data'structlires and solution algorithms of these programs were optimized for a fairly 
specific task.c.::_br'iefly;''that·of solving' a steady-state flow network In which the flow through each 
path increases inonotcihically with the pressure 'drop across it, 

Partly.becau~e·'of'this spetializat'iori, COMIS and programs like it have allowed researchers and 
engineers to explore a wide range of building airflow problems. However, these programs now can 
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be seen as victims of their own success. The insights gained thrptigh the use of these tools have 
naturally led to questions that probe beyond the problem space they were designed to explore. 

This situation, along with the availability of faster, rriore capable computers, makes a less 
specialized, and more flexible, software tool increasingly attractive. 

An important implementation question involves whether to design a more general rnultizone 
simulation tool "from scratch," or to structure it around an existing program. This paper argues 
that a number of factors make COMIS unsuitable for the long-term needs of users interested in 
modeling complex phenomena such as pollutant <fispersion times, feedback control systems, and 
natural ventilation. 

These factors fall into tw<;> broad categories. ·First, COMIS lacks specific models necessary for 
certain kinds ot sitnulations~ s'econd, and more importantly, structural limitations in the program 
limit it~ ability to accO"modate new models. . ·. 

2.1. Missing inodeis'; As rese~rchers attempt to simulate builc~ings in which effects such as natural 
convec#on, nqyel mechanical systems, alltomatit' cdntrols, arid transport delays in flow paths' play an 
important part, they i~~re~ingly require' a number of models' not currently supp~rt~d by CO MIS. 

Such models include: (1) buoyancy-induced two-way flows through horizontal apertu;es·, includ­
ing stairwells and elevator shafts; (2) "lossy" duct junctions, which provide the correct pressure drops 
at all flows; (3) feedback control elements, such as sensors, controllers, and actuators; (4) dynamic 
flow components, including both the time needed to carry pollutants through flow elements,,and 
trar1sient airflow, effects;. a.I).d ( ,'\). detail~d · rp.odels <;>f the air movement in large spaces,, for e~arnpl~ 
u.sh1g <;pars~grid computationalfiu_jd 4ynamics (CFD). · . · . ' 

,Minor JTIOdificatipns wo1.ll<i f!.l~ow COMIS to suppo~t some of these models. However, it'cannqt 
suppor,t others. for example,;.it coul(L!J.C<;omodate a simple model for bidirectional flows in horizontal 
apert~es, subje~t to the pro~isi~~descri~~d b~lmy. HoV.:ever, thestapda,rdm9~el for du~tJuncti~ns 
yiolatef? a:fuqdament~;~.l designrestricti<m. of. the program. · · · · 

. Other fiowmodels have not.,y~t been.ch.aracterize<,l well enough to permit 3: de~nitive stat~ment 
about incorporatingthem into COMIS. Hqwev.er, due to structural limitations in ~he code, nothing 
less .t,b,!J,I). a coriJ:plete oyerh3:ul w.ould ,make it accoinodate a)! of these models. More to the point, 
adding those m9dels tha.t COMIS C!J.I1, suppo.rt without. ~ major rewrite would only i~c'rease _th~ 
pressure from modelers to add one of the proscribed models. Hence, these modeling limitations ni."ust 
be.addressed eventually--either inside or outside the framework provided by the current program. 
·. o~.J:·. ... ., ' ·: ·. ' . . . : •, ·. . ... 

2.2. Structural limitatiqns. Any major pverhaul o.fCOMIS should address the following struc;­
tural issues: (1) incomplete coupling qft4e energy balance to the flow element relations; (2) non­
repeatable flow calculations; (3) rest.ri,ctim)s on the mathematical form of flow eiement and .zone 
wodels; ( 4) tight coupljng between the .p(l.rts of the c()de that define flow systems, and the parts th,at 
so\v.e flow systems; ar1d {5J a co<fe ba,se, that induces slow turn-around tim~s for creating, testing, 
and modifying new models. · · · 

. These. struct.ura,l issues. ;mainly resul~ ,fr0m qesign decisions taken to optimi;~e the code. In 
such cases;-the,speciaJized data structures and solution algorithms employed also a~t to restrict the 
form that model$ can ta,ke. Inaddition, unintended restrictions arise que to details ofthe program 
implementation. . . . . ·. :. . 

Arguably, the effort needed to overhaul the current code would,be,better spent writing are­
placement tool, or reproducing the current capabilities in an existing-general simulation environment. 
This conclusion follows both from the extent to which structural limitations pervade. the existing 
code, and from the difficulty of recasting that code into a structured programming style. · 

r ' • ' " ' • . • • ' ~ c : ~ . I i · ' ' ' 

3. , Modul& Si~ulation 
.·The .inultizone airflow literature usually des:crjbes CO MIS, af\d simulation environments like 

it; as "modular." Before .examining specific problems with these programs, it helps to distir1guish 
between modularity as perceived by casual users, by programmers; and by resel).rchE)rs. This,section 
makes some general points about .modular environments, in, preparation for the later discussion of 
CO MIS: 
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3.1. Modularity. In macroscopic modeling, a modular simulation .environment allows the user 
to construct complex systems by assembling relatively simple component models. The system's 
behavior arises from the composite interaction of its components. By ~ontrast, a monolithic tool 
defines the system response integrally. 

Many simulation programs claim some degree of modularity. Examples from. the builqip.g air­
flow and energy fields include COMIS, CONTAM, HVACSIM+, and EnergyPlus. For electronics 
applications, the modular program SPICE represents circuits as collections of resistors, capacitors, 
transistors, and so on. 

At their best, modular environments aid simulation by decomposing a: system into manageablE;), 
verifiable·, and interoperable submodels. This can provide greater. flexibility than a monolithic tooJ, 
by allowing the user to propose new combinations of existing component models. It also eases. the 
task of adding new components to the simulation environment. 

Modularity does not, :however, guarantee flexibility in the models thE;Jmselves. Like all simu­
lation environments, modular programs support orily certain types of c0mponents,and component 
connections. Usually therestrictions follow from implementation issues-such as limitation;:; of the 
programming language, or, more often, the decision to improve efficiency·atthe-expense offlexipility. 
For example, COMIS requires every flow to depend on the pressure difference between twq zones 
[14]. This guarantees certain "nice" numerical properties, but prevents the program from accurately 
representing some real-world flow components, such as duct junctions, . 

3.2. Weak versus strong modularity. In practice,· modular environments can exhibit monolithic 
behavior for certain aSpects of the system. This occurs whenever the program rriitkes implicit as­
sumptions about the models-as part of the solution algorithm, for example. Although in theory the 
system behavior results solely from interactions be·t~een· the modular· componerits, monolithic code 
adds interactions between the component models and the simulation environment. Unfortunately, 
these monolithic assumptions often remain hidden from the user. ,, 

For example, COMIS is modular in that the-'user assembles an airflow network by connecting 
zones via flow elements. However, the program distributes the calculations associated with the zones 
throughout the code that solves the airflow system. Thus .the air density calculations.lie.outside the 
reach of any model explicitly provided to the user, and COMIS enforces a monolithi<; ?One IUOdel. 
Furthermore, the program uses a common subroutine to calculate the hydrostatic effects associated 
with every flow path: To this extent, it -enforces monolithic behavior for part of every flow q10del. 

To formalize .this distinction, define a weakly modular simulation environment as one that simply 
treats its components as building blocks for creating system models. A strongly mQdular environ~ 
ment, on the other hand; represents-every component.as a collection of independent algorithms. The 
algorithms are independent in two senses. First, taken together, they completely specify .the com­
ponent's behavior. Second, removing a component's algorithms from a.strongly n;J.Odular_simulation 
environment does not affect the behavior. of any ·other component. , . 

Note that the distinction between strong and weak modularity concerns only where in code the 
models reside, without reference to the severity of the· :r~tri~tioO:S' pla~.~d t:i:ri th.e ~odek- · 

In the coding of a computational tool, weak inqdularity often marilf~sts itself in: (1) the distii;_ 
bution of a component model's definition across a number of programming modules; (2) extensive 
generic preprocessing or postprocessing of the data associated with the component models; (3) case­
based logic that inv~kes special processing depending on the status of one or more ~ortlponents~ and 
(4) the merging of the solution algorithm with the component routines. 

These practices obscure the actual modeling assu~ptions made in a weakly modular program. 
They also complicate the process of updating or 8.d<:Iing coinponerits: becalis~ t~ey expdse stipposediy 
stable or mat.ure component models to the possibility of qniritepd'ed changes.· C6riSequeritly, they 

• • ' . ; < • . J ·~ e - ' • ~ • - • :, . : ' < , ' ' ' \ , • ·' 

require the programmer to have deep familiaritY with the)nternal workings, of tlle envitoriment.· 
,·(( .· ,.,, . . .: . . . ' . 

Finally, weak modularity complicates the inclusion of new solution ·algorithms, to the extent that 
it requires new solution methods to implement the <modeling assumptions made in the ·existing 
algorithms. · ·· 

3.3. Modularity and user expectations. Casual users, programmers, and researchers all place 
different demands on a simulation tool. · 1 

· · . 
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A casual user, interested in flexible system-level modeling rather than in the behavior of indi­
vidual components, demands only weak modularity (and some assurance that the models perform 
as advertised). 

From a programmer's point of view, however, weak modularity does not .imply flexibility, since 
the implementation may achieve its component orientation in roundabout ways-for example, us­
ing extensive patches of monolithic eode to modify the behavior of its internal algorithms on a 
component-by-component basis: · 

The defects of weak modularity affect the research user as well as the programmer. of a simulation 
toot Weak modularity prevents researchers from easily identifying the assumptions behind:a model, 
from specifying and testing changes to an existing model, and• from adding new models withoutfear 
of altering the behavior of existing ones. 

Strong modularity counters these objections. However, a strongly modular-simulation tool does 
not necessatiiy provide·the researcher with complete flexibility in adding new components>E:ven a 
strongly modular environment can r(')strict the form of components and-their -interconnections.- For 
instance, CO MIS could be recoded 'in a strongly-modular fashi0n, yet still otrly support flow: models 
whose -flows depended on:the pressure difference between two zones, Thus,, it would:r~maiwunable 
to simulate duct junctions' accurately. 

Of course, restricting the types of models supported by a simulation environment-does not have 
all negative effects. As mentioned above, it can· promote computational efficiency;, F\wthermore, 
such-restrictions can force th\l user to clarify his ?.r_he~ thinking abqu~ th~ mJ?dels !J:~d tlw II!09elin~ 
process. For example, .sy~tem dynamics programs do not normally allq"' algebraic !,oops. Besides 
reciucing,the compU:tational burd~n of running the model, this restriction forte!l the ,us~r to focUs on 
the i~port~ntdyna~ic effectsin tP,e sy~tem of iil.te~est [8 §7]. ' . . ..• ·_ .. . ' ' < •• 

. .. . . •, . ·. . ; ' ... ·: . 
' ' • ~ • 'I_ 

4. Sample Flow Element 
Muttizone models idealize a building as a collection of zones (e.g. rooms}, connected by discrete 

flow paths. ·coMIS solves a steady-state airflow system by balancing flows so.that the total inflows 
and b'utflows· of' air for each zone sum to -zero [14]. The flows.are assumedJtci have no ·effect on the 
zohe'temperatures. After finding the·flows, the program can solve a dynamic ,contaminant transport 
problem: ,, , 

Flow elements dominate multizone:models; in two ways. First,-inultizone.programs prediCt 
the 1flows in each path, but ignore details of flow within .rooms'.- Thus, a user< adds richness and 
complexity to a building inodel mainly -by selecting from among a variety of-flow element models. 
S~cond, the majority of the modeling restrictions •in multizone ·simulation' programs apply to. the 
flow models [14]. -. 

Because many of-the specific problems-in COMIS .relate to its handling of. flow .. elemerits, this 
section defines a specific flow model, •a duct, to •provide a point ;of reference;, . ,. ... ·:; .. 

4.1. Mecha,rii~~ energy balarice:· C6iisidei aJCOMIS flow element that cbnnects tvJo zohes, 1 
al)-d2. __ The component model relates the mass flow leaving: zbne 1, ]!~2 , td the presstifes p't and 
P2 at th~ component cori~ections (note that the'siniple notation used llere does nofexteild well to 
~ultiple flow elements). · ·- · _ . · 

Ne~lecting kinetic energy,· a mechanidal energy bal~nceon the flow elemel)-t 'Y!eids [iO §5.4] 
' . ' . . •. - .'' ' ' . ' . . . : ' . . . . : ': ( ' -~ .: ; •.' .· . . . . . ' . 

Pl +pgz1 = P2 +pgz2 + ~PD,. {4.1) 

..,;here_: (1) 'p gi~es tht:; d~nsity of'air in· the 'fl6~,eleinetit; (2) Z1 and Z2 give the absolUteheightsof 
~he eletne~t;s connections to zone~ 1 ali.d.' 2; measured from a global reference 'l~Vel;':il:nd' (3) /1pL 
expresses the rn~chani~a:t ~:Jnergy: <l_issipa~ed by viscous and dynamic JffJcts. · Witli fidv.i'f'tom zon:e 2 

' < • '• • ' • ' q • .' ' l ' ; , I 
0 

' ' 
0 

0 ' ' ' 0 '•' ' t' l 

to :ziOile l, ft-2 < 0, ~1h: becom~s ;llegatiye., ·· , . 
•.'(. 

4.2 .. Duct model. Every flow comppnent defines its own relation b~t;.yeen th~:flow anq, the <;Jissi­
pated mechanical energy. For instance, a steady-state Darcy-Weisbach duct model [10 §7.2] ,uses 

~PL = sign{Vl-2}.\ ~ (pi:2
) ,,.. . ' '.· (4:2) 
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for a duct of length Land diameter D. Since the mass flow varies directly with the average velocity, 
let V1_2 replace fi_2 as the variable of interest. The friction factor, >..,comes from the Hagen-P9iseuille 
and Colebrook relations: 

>.. = .64 
.· Re 

if Re < 2300 (4.3a) 

1 ( f 2.51 ) .JX = -2.0log 3.7D +Rev:\. if · Re;::: 2300 (4.3b) 

where the Reynolds number Re = PIV1-2ID/J.L· Note that the Colebrook reiation defines the friction 
factor implicitly, that is, it cannot be solved explicitly for >.. For simplicity, ignore the discontinuity 
in >. at Re = 2300. 

Finally, a path density relation 
. (4A) 

reflects the 'fa9t that': as vl~~ changes from large positive to large negative values, the steady~state 
derisity of air in the. dud changes from zone density p1 to P2· In pra:ctice, 'f~~qhation 4.4 cannot 
be inverte<;i' to giveyelo~ity in terms of the path,.density, because: (1) a range ofvelocities can set 
p = Pl (or P2F and (2) identicalz(me temperatures give the same p, regarclless of the velo2ity. 

" Equations 4:1 through '4.4 c~uple more tightly than suggested by casual inspection. The path 
density p appears in every equation; and the flow ~~locity' appears iii three o'f therii. · · 
· ·A typical simulati()n treats z1 , ··;2, L, D, · E,· P,, p1 , ;~ila P2 as :(iaraineters. This leaves four 

equations in six unk~ciwns:. p1, p~;APL, p, V1-2, and >... A well~f>Osed sirhulation prbbleill: mlist 
specify· two of t'he unknowns. CO MIS always resolves the choiee by h~vii:ig the solution algorithm' 
choose the pressures. The duct component model calculates the resrtlthig flow. 

' • • - • ( f i ;-: .· . ! : ; :. . ~ . ':'; ." . ". • . ~ . I · , · ' • 

5. Critique 
A number of concerns raise doubts about using COMIS as the starting point for a more f.lex­

ible multizone simulation program. Some .follow from its weak mo.dularity,. with all the djfficulties 
that implies for understanding; updating, and· adding new components. :Others follow from desigp. 
decisions made to improve efficiency in the original program. Still;others relate to purely practical 
implementation issut:Js. . . . . · 

Concerns related to w~ak modularity include: 
• It d,ecouples the me~~an.i<::al ~ne~gy bala~ce frorh the ~ow ~leme~t equations. 
• It does.not provide interchangeable zone models. . . . · 

• • . ; ~ . . . ~ ' . ' ' . • . . ' . . . ' ·. • f • . ' ' . . - . 

• It d!JE!~not ffi~ke, aneff~stire.model deveLopment environment. 

Concerns related to design decisions made to improve efficiency include; _ 
• .Flows must take the form h~2 =1 h-2 {Pl· - P2}: 
• Airflo~· models carinot·inchide ,dynamic' effects. f i .. ; " 

• Flow componerits.give nonrepeatable results due to "memory." · j ·: 

PraCtical Implementation. concerns include: . 
• The code ·uses static 'memory allocation, and is riot objed·orie.iited. 
• The CO:tv1IS licetise agreement' complicates questions' of ownership . . , . ' . 

The fqflowin~ subsections' treat, thesr ppints ,ip..greater.deta,il. ,, '''.';:·· · 

5.1. Decoupled mechanical·eilergy balance. ['he program does riot solve the mechanical ene~gy 
balance tog~ther \vitn the .flow element equations.' In the ca.Se of tlie.·duct, this:m.eansjt do.e!l npt 
simultaneously satisfy all of Equations 4.1 through:4.4. Hence, it can•,calculate incorrect flow~>. 

The equations defining the duct couple to the mechanical energy balance through two;vari!tbles: 
the path density, p, and the dissipated energy, b.PL· .COMIS ignores this coupling,. by.:-(,!.) setting 
the path density in Equation '4.!1 to some average of the zone densities p1 and p2 ; and :then 1(2) -:using 
the mechanical energy balance torfind b.p£. It does this without regard for the flow velocity--:-;in the 
case of the duct, ignoring Equation 4.4. 
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Inspecting the mechanical energy balance shows that this procedure finds an incorrect hydro­
static effect,-pg( z1 - i 2 ), for any vertical path between two zones of different density. That is, unless 
p1 = P2, or unless z1 = z2, COMIS can find an incorrect value for b..PL· Consequently the duct 
routine, which treats the resulting dissipation as a fixed input, can find an incorrect flow. In fact, 
since b..p L may even have the wrong sign, the c3.iculated flow may go in the wrong direction. 

The calculation of b..p L takes place in a piece of monolithic code, meaning no flow element 
couples to the mechanical energy balance corr~ctly. This simplifies the flow (:Omponent routines­
they no longer have to solve all the equations Simultaneously-but can yield incorrect flows. 

Fortunately, the most significant errors are likely to occur when the driving pressure drop 
across an element, IPI - p2 l, is small compared to the hydrostatic pressure through the vertical path, 
pgjz1 -'- ·z21- Thus, the calculation errors will appear mainly in situations of low flow. However, for 
vertical paths of large cross-sectional area, such as stairways, elevator shafts, and passive ventilation 
stacks, these flows (and hence the absolute error) can be quite large. Appendix A gives a numerical 
example that suggests errors in the neighborhood of 30%, 

. Bifl.irectionfLLv~rtical fi9.ws. As __ apartisular .cop.sequence of decoupling the mechap.ical energy 
balance from th~ flow equations, COMIS cannot i'!nplement any meaningful model for bidirectional 
flow bet~~en flo~~s of a buildihg. Bidirecti~nal flo~ can ~ccur whert the buoyancy-induced pressure 
difference- across a hori~pntal pai:tit!oJ;J. is significant compared to any m~chanically-imposed pressures 
(12]., WJI.ert the imposed pressure di·£f~rence d~~s not dominate the calculation of b..p L; the flciw model 
must solve for the dissipated ep.ergy and the mB.ss flow simultaneously. · 

Fixing the problem. Correcting the program;s t~eati:nent of the energy balance could'fcillmv one 
oftwo 'bioa(j ·approacheS: ,(1) JeSt~llct~re the co4e to COUple all the flow models correctly; or (2) 
p~tch the monolithic part o( tlie code SQ thafit 'correctly couples any criticai flow elements, such as 
st~i~ays and horizo~tal ap~rt#es. . . . ·_ . _·_· . . - . . . . _· . 

These two alternatives illlistrate one reason a weakly modular program tends 'to accUmulate 
"special case" programming over time. The first approach would strengthen the code's modularity, 
and make the entire program more technically correct. However, it would also demand a large 
programming effort, complicate every flow. routine, and in many cases produce no change in the 
calculated flows.· The second approach would require less programming. However, it would make 
the monolithic routine more difficult to interpret' and modify, and would place .a greater burden on 
system modelers -to choose the appropriate flow models when representing vertical flow. paths. 

5.2. No modular zone models. COMIS provid~s interchangeable models only in the flow com­
ponents. Zones have exactly one, built-in, idealiz~tion-as ilweil-mixed space. Furthermore, the 
airflow system rep~esents thaf ;pace tisib.g exa<;:tly on~ state variable (the pressure at a reference 
height)' from which it calculates all other zone data by applying the hydrostatkprindple ihd any 
user-defined temperature distribution. :For e~e& contaminartt, the pollutant transport model adds 
another state variable to each i6iie. . ,• '. <' .-\ ... . 

This monolithic zone model appears: (1) in the airflow network solver; which seeks the reference 
pressures jJlat produce mass balance in each zone; (2) throughout the code that calculates pressures 
and densities at the points where flow-elements connect to the zones, including--the decoupled energy 
balance; and (3) in the code that finds the pollutant transport. between zones. This implementation 
affects both the ease of addip.g.new zone.mo_d~ls, ~nd the zp.a~ntaim~bility ~f the co<l.e-

New zone models. Providing. only op.e ;1:0ne.m~del siJ;Ilplifles the program's structure (14], but 
restricts the types of systems the program can simulate. Situa.tio~s 'tliat would require rrtore gene~al 
zone models include the need to resdlve flows. within a rciorri·, ah'd the desire to modef pollutants with 
significantly. different density than .air, Izp.plemeilting .. these mm;e general models. with9!;1t -cl;!!):nging 
the internn.l -structure' of·OOMIS would require breaking a room up int<J a collection. of well7roix.ed 
subzones;:each completely ~haracterized.-by the given state variables._ - . ;/. 

The·first case----computing flows within a: room-'--arisesfor example in an atrium or auditorium, 
where details of pollutant transport ii:!- the room determine occupant exposures, and affect the 
placement and performance of sensorsc Two competing approaches, zonal models and computational 
fluid dynamics, can'both represent a room as an interconnected set of well:.mixed subzones. ,Coarse­
grid CFD predicts flow velocities better than zonal models of the Same arithmetic complexity [16]. 
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However, coarse-grid CFD cannot be formulated directly in COMIS, because the airflow system 
would require more than a pressure state variable to characterize each subzone*. 

The second case demanding a detailed zone model~pollutant stratification-involves for ex­
ample the transport of smoke, or of dense pollutants. In this case, finding air velocities in the zone 
matters less than establishing the vertical distribution of pollutant: Modeling these effects would 
require changing the code that calculates pollutant transport between zones, and possibly the code 
that accounts for hydrostatic effects in the zones. 

For detailed zone models that break up a room into .well-mixed- subzones, note that the flows 
between subzones also have to conform to the restrictions imposed by .CO.MIS; in order to imple­
ment the desired behavior without changing the program. A later section takes up the· modeling 
requirements COMIS imposes on flow paths, and their implications for zonal models. 

Maintainability: Because the monolithic COMIS zone implemention appears ,throughout the 
code that solves the airflow and pollutant transport systems, it. also makes it hard to modify the 
solution techniques. That is, under the present dBSign·, any new-solution algorithm~introduced, say, 
to improve the speed, robustness, or memory requirements ofthe program-:-would have to reproduce 
the current zone representation. Besides increasing the programming complexity, this could;lead. to 
a situation in which the simulated system behavior depends on the particular' solver a user chooses 
to employ. , : · 

5.3. Not a model development environment. Due to its weak modularity, CO MIS complicateS 
the development of new flow models, and lacks transparency as .a res~arch tooL As pointed out 
above, weak modularity obscures the assumptions behind the component models......:..for example, by 
distributing the code that defines a component's behavior across many programming modules,··arid 
by modifying the behavior of the solution 'algorithm based 'on the status of one or more compoh'ents. 
This makes it difficult to understand and hpdate existing conipoiients, and difficult to add 'new 
components . 

. . "'-f 

. On the face of it, these amount to programming concerns, nothing more: That i~, a progra-ilimer 
familiar enough with the code can implement any model that meets the lntri~sic restrictions ofthe 
program. However, the difficulties associated with adding new models' go beyorid mere programming 
matters, because they lengthen the developm~nt cycle suffiCiently tha:t.COMIS car'mot serve ·as~~n 
effective tool for research on the models themselves. . . . . . '. 

For this discussion, divide airflow and poUU:tant • transport r~searchers into two groups: .those 
who develop component models, .and those who simulate systems using previously-devel~ped models. 
Computational experience at the Lawrence Berkeley National Laboratory shows that only the simu­
lationists use CO MIS. Mod~! 'development' takes place exclusively in other· simulation 'environments­
for instance~ SPARK for zonal models, Matlab for dynanut duct mo'clels, and purpos&produced code 
for dynamic pollutant transport models. ' . n' ' 

This distinction between modelers and simulationists 'would not ·exist if CO MIS provided a 
natural platform for expressing, modifying, arid testing' new l:nodels. If it did, the model researchers 
would ado_pt COMIS, since it would: (1) support their work by providing tested .models of: other 
system components; and (2) increase the likelihood that their models would pass dir~ctly int0 the 
hands of users. 

5.4. Restricted flow form. Flow components must taketh~ form HJ~ -~ fi-2{Pl- P2J. That is, 
they must calculate a steady-state flow as a function of the 'pressure difference· across a component's 
terminals. Beyond this, the flow must not decrease as the pressure drop across the elemimt 'increases. 

Flow expressions of this form yield symmetriC system matrices. If, in addition; the flow between 
zones increases monotonically with the pressure drop, the system yields '}:)Qsitive-definite matrices 
[14]. COMIS uses the symmetric positive-definite pi:'operty'tci simplify its data stnictutes, tnatrix 
factorization methods, and nonlinear solution algorithms considerably. Thus, it requires steady~state 
flow models that give flow as a nondecreasing function of the pressure drop. : 

* Calling an external CFD program from within CO MIS, and incorporating its results 'into the remaining calcu-' 

lations, would remo~e this objection: However, this-approach still would require modifying the prdgram wherever it 

invoked the well-mixed zone model, and might introduce convergence problems in the ·airflow system. 
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Steady-state flow elements. Two common steady-state flow components, duct junctions and 
fans, violate these requirements. 

Junctions, as three-port flow elements, break symmetry.· While nominally COMIS provides a 
junction flow model; it cannot solve systems containing one. Of course, a modeler can imglement a 
duct junction as a zone, and attempt to account for junction losses using the duct model. However, 
this approach misses the fact that the dissipated energy in each branch of a junction depends on the 
flows in the other branches [15 §11-Sj. Changing the flow in one branch can eyen pJ:oduce. suction 
on a branch that previously faced a retarding pressure. In effect, this would change the sign of the 
loss .coefficient in the corresponding duct. Therefore if flow rates can vary, and especially. if air can 
reverse through any branch of the junction, then only a three-port junction model. can accqunt for 
the losses correctly. 

The other problematic element, the fan, typically has a negative slope over some portion of 
its ·pressure-flow curve. Besides· ,violating· the requirement. for non decreasing flows, this qeates. ,a 
low-flow region where some pressure .drops have.two or three associated flows [15§11-2]. COMIS 
overcomes this problem by replacing·the low-flow part of the actuaLfan:curve with an approximate, 
monotone-increasing curve that yields a unique flow for every pressure drop [7J. If a simulation 
involves only design flow rates, this numerical device does not affect the calculated results. 

Zonal models. As noted above, to model details of airflow in a room without changing the ,inter­
nal.stru,cture of CO MIS would require representing tlw room as a collection of well-mixed subzones, 
each characterized by asingle'state variable. :Qnlike computational fluicl' dynamics ap{JI'miches, ~anal 
models meet this requirement. However, the flow elements used by thezorialmoder'to connect its 
subzories also would have to satisfY the restrictions imposed by COMIS. · . · '. · ' 

. z;.onal models draw strongly on. a standard COMISflow model, th~ orifi<;:e [l'i]., Unfo~t~nately, 
this flo~ element does not properly express the physics ofairflow in rooms [1 1. This probably expi3ins 
the poor performance of zonal models in predicting ~oom airflows [16j. ' ' . ' 

Other published zonal model elements simply prescribe the flciws, based on fixed conditio~~ shch 
as wall temperatures and jet mass flow rates [llj. Models based on prescribed flo~s preserit little 
computational difficulty. In particular, CO MIS caq enforce a known flo.\r betweeri; two ·subzones, so 
lol}g as each also has a V{triable-flow connection [141: Naturally, models that rely on prescribed'flows 
will have limited application in cases where the room ipteracts strongly with the rest of the bui'ldihg. 

Of course, the zonal approach admits other flo~ ~elations than ori~ce models and pre~~ribed 
flows. CO MIS can support them so !ong as they express the flow ~.a function of the pre~s~r~ differ-: 
ence between the subzones .. However, an inherent numerical difficulty will arise il,lany 1)Uch'model. 
Intu,itio,n suggests that the pr~ssure differEmc~ .between two points in a r~OIP, will l:;>e s~all c<;>mpared to 
the corresponding range of possible flows between those points. Thus, Hn}itations of fil,lltE}-precision 
arithmetic may dominate the flo'w model's hehavi~r. Sp.ecificali~, the $ma1l~t 'm'achin~resolvable 
change in ~subzone's reference pressure coul.d, create a htrge change i~ ~he ca!Cu)ated flow. In this 
case., COMIS m;:ty not be able to achieve mass b,alance. · . , .·· 

5.5. No dynamic airflows. As stated above, COMIS imposes a steady~state airflow model. That 
is, the functional form fr-2 = ft-z{Pt - p2} does not admit dynamics in: the airflow system, for 
example to account for the momentum of air in a duct. . .. 

This modeling capability might be important in a building that attempts to ltmit the &udden 
spread of pollutants through its ventilation system, for example by dosing ll.:damper. In 's'tich ~ ca.Se,' 
the momentum of air already moving through the duct would cre,ate greater pressure drops across 
the damper, and hence greater flows, thl).~ a steady~state model would predict. ,• " '. .. ' 

This duct-damper system h.as another dynamic of interest-the tim,e neeqed.to :c1o~e th~ damper,. 
For this, CO MIS could use a quasi~steady damper model, which would t;ike li l'jteady.,.st~J,te,:model :~r 
a variable-position damper; and cha~ge ~ts position setpoint over the ti~epe~iod ofinterest. This 
would move the damper, in simulated time, th.rough.a series of steady-state operating pointll; While 
implementing a quasi-steady damper model in CO MIS would require som~ work, it would iJ:~f ~ffect 
the airflow calculatiQns, and hence would not violate the expected flow model form: · 

Given such a quasi-steady damper model, some flow systems .will not require a dynamic duct 
model. If the damper closes much more slowly than it takes for the duct, to come to.steady-state 
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after an- instantaneous change in the damper position, then the damper model alone would account 
for the dynamics of interest. · 

Similar comments apply to duct-fan combinations. Suppose the start-up or spin-down time of 
the fan dominates the ventilation system response, and depends mainly oh dynamics in the .fan's 
rotor and motor. Then purely steady-state airflow .elements may suffice. The quasi-steady simulation 
would use a steady-state model of a variable-speed fan, and change the fan speed from one time: step 
to the next. 

Dynamic sensor models fall into the same category as damper actuators, and other time­
dependent elements that do not directly involve airflow calculations .. Incorporating ·such ele,ments 
in CO MIS might require considerable programming effort, but .would not violate its restrictions on 
the flow element models. In fact, CO NT AM has a simple •event-based· controls modeL 

Transport tiine. The dynamics considered here involve only the program's airflow calculations. 
Another, possibly more important, dynamic effect involves the transport time in flow elements. 

CO MIS doe$ not account for the time pollutants spend in flow paths .. While it uses the calculated 
mass flows to determine the total amount of pollutant transported between zones at each time Step, 
it assumes that transport occurs instantaneously. Thus, the program overestimates-the speed at 
which a ventilation system spreads pollutants throughout a building.·' 

A natural approach to modeling transport time in flow paths involves breaking up a flow element 
up into multiple pieces, connected in series. In a sense, CO MIS aiready supports. this approach. The 
modeler can replace a single flow element 'with n new elements, linking n - 1 new zones whose 
volumes suin to the presumed volume of the flow path. ·This technique can greatly increase the 
number of flow elements and zones in a simulation. It also requires the modeler to adjust th~ flow 
element parameters, so that an arbitrary pressure drop of flPa-b/n across a single .element produces 
th_e same flow as a pr~ssur~ dr?p of.b..Pacb vrould ha,ve produced .in the original flow path. . . _ . 

A more elegant soluti~n would implement thip approach directly in the ~ode that_ cakulates 
pollutant t-ransport. This would allow the user- to estimate-transporttimes without introduCing new 
zon~s and links to the airflow ~>ystem. In additio~ to re<,iudri.g the size. of the airflow system, this 
would eliminate the need to re-parameterize the affected fiow elements, and yvould ease the task of 
establishing the appropriate number of divisipns for ead1 flow path. · ' · ·· 

No effort has been made to investigate the difficulty of irr{plementlng any transport time m~del 
in COMIS, However, since it would affect only the code tP,at calculate& poliutant dispersion, it would 
notviolate the req~irement for steady-state airflow models. , ·· . 

5.6. Nonrepeatable calculations. Flow ·models in CO MIS can give nonrepeatable results due 
to "memory" in the calculation routines. ·In order to reduce the:computational.burden incurred by 
repeated 'evaluations, some flow routines store intermediate results ·for use during the next evaluation 
of the flow' path in question. For these models, the·flow resulting from one evaluation of a particular 
element may depend on the value calculated at the last call of the defining routine. 

Memory in a flow routine has two negative .consequences. First, the routine can find- flows 
incompati];)lewith the defining equations. Second, repeated evaluations of the flow element with the 
same input pressures ·can result in different flows. ' --

Inconsistent with definition. A flow element ·routine that depends on values from previous cal­
culations will, at some point, find: flows incompatible with -its defining equations. For example, the 
routine iinplementii:ig the crack m6del in COMIS finds the path density; p; using .the flow calculated 
during the last evaluation of the crack in question*. It then uses this density to find the new flow, 
However, it does not require that the new flow and density jointly satisfy the density relation. Thus, 
the routine can return flows that violate the crack model's defining equations (even if no errors arise 
due to incorrect coupling of the mechanical energy balance): 

Fortunately, in most cases the deviation from the model is likely to be small compared to 
uncertainty in the model. In 'other words, any errors· induced by -memory in the flow routines 
probably fall below the liser's expectations of the accuracy with which the model predicts. the 

' 

* In the duct model, this ~ould be equivalent to ·finding p by .using the last calculated velocity in Equation 4.4: 

The actual duct model sets p to either Pt or p2, depending on the sign of APL· 
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flows in a real building. Furthermore, as the airflow solver converges, it tends to make only small 
adjustments to the estimated pressures. Hence, flow elements with memory often converge to values 
exactly consistent with their defining relationships. 

Nonrepeatability. If a flow routine's calculations depend on previous results, then repeated eval­
uation with the same set of input pressures may not produce the -same flows. In practice, the non­
repeatability of flow evaluations has greater consequences than the simple fact of inconsistency with 
the defining equations-it can affect the algebraic solver responsible for finding a solution to the 
steady~state airflow problem. 

Iterative methods for solving nonlinear algebraic systems generate a sequence of trial solutions 
for the system. Many iterative methods do not accept a new trial step automatically. Rather, they 
compare the results of each tr:ial step to those of the last accepted step, both in order to accept or 
reject the-trial solution, and .·in order to control the selection of the next trial point [6 §6.5]. 

In CO MIS, this means comparing the overall flow imbalance for different sets of trial pressures. 
When flow routines can deliver different flows at .the same pressures, the solver cannot meaningfully 
distinguish which of two slightly different trial solutions produces smaller flow imbalances. In some. 
cases, nonrepeatable flow evaluations can stagnate such a solver, as it repeatedly cuts the step length 
in an attempt to reduce the flow-imbalances [13], 

The effect of. nonrepeatable flow .evaluations on the solver can be interpreted in t~rr:ns of the 
derivatives of the flow relations. The solver requires continuous flows, with continuous., bounded 
first derivatives·with respect to the pressures [14]. When a flow can change merely as a result of 
r~evaluating at the same pressures, then the. flow function is not continuous. Furthermore,, the 
change in flow resulting from a slight perturbation to a zone pressure may bear no relation to the 
derivative of the .flow model. 

5.7. Programming lang~age. COMIS is coded in'Fortran-77, which lacks both dynamic memory 
lrianagement ·and support for object-oriented programming. 

. Memory alloeation. CO MIS, cooed in Fort'rim-77, 'necessarily allocates all memory statically::.::..: 
that is, at the time the; program ~tarts up. This means the programmer, not the modeler, s'ets the 
size of every array. Hence it is possible to define a simulation with mote zones or linksthan the 
program supports. In this case, it is necessary to indrease the hard-coded number of zoneS or links 
a\!allabfe, 'and build a new ~x~cutable. . 

. Cl~ariy this scheme "~astes" computer memory when running the programon prhblems much 
smaller than those for which the executable wa.S built. Worse, if the environment used for building 
an' executable limits the size .of the program stack, then it places absolute limits on the, size of prob:­
leins ·the program can simulate. The Airflow and Pollutant Transport group at Lawrenc_!l Berkeley 
National Laboratory has encountered this limitation, for executables .built using Compaq Visual 
Fortran v. 6.1 on Windows machines. This build environment limits executables to something in the 
neighborhood o£1000 .zones and 5000 links (of course, the balance between zones .and linl}s affects 
the 'in emory use); . 
· • · r .'@bject style. :In an object-oriented language, a programmer~defined. clq,ss combines both. vari­
ables (which contain data) and functions (which operate on data). Thus the programmer can bind 
together the data and- functions that support a ~ertain model [5 §9]. This supports strongly modular 
simulation by: (1) collecting all model.,related code together; and (2) restri~ting a Il,lodel's inter.ac­
tions, with both the simul;ttion environment and other .models, to a few well-defineq exd~;tnges of 
data . 

. Object-oriented languages also support inheritance, allowing the programmer to. create pan~f\t 
classes from which all child .classes acquire variables and functions [5 §14]. Thus. for example ~duct' 
and 'crack' models could inherit behavior·from a parent class of generic 'flow..e!ements'. -This wot1ld 
reduce the effort required to·add new: models, for example by providing routines to read. :the model 
parameters from an input file, link the model to the system, or estim11te the mo<;lel derivatives 
using finite differences. More important, it would force new.models to conform to e){pected coding 
standards. Such standards might govern what routines a new model had to provide, the types of 
data those routines accepted and returned, or the assumptions it could make about the other models 
with which it interacts. 
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Another advantage of inheritance becomes apparent when adding new flow models to the code 
base. Fortran-77 requires a decision tree at every point where COMIS loops through all the flow 
elements in a system. The decision logic checks the type of the current flow elemeii.t (e.g., duct, 
crack, etc.), and calls the appropriate routine. To add a riew flow model,: thepr6gran1mer must add 
a new test to every such decisio~ tree. These trees become quite long; and they occur in a number of 
plac~s in the code. An object-oriented program would contain a: single call to a gen~ric flow el~ment 
routine at e~ery such poi~t, and would select automatically, at nu'l'-tim~; the routine appropriate for 
the flow component currently at hand. · 

Fortran-90~ Fortran~90 provides .many features not· found in F~rt~an-77, including dynamic 
memory. allocation, user-defined data structures, ahd provision for 'a modular programiiling:style. 
Furthermo're, its compatibility with Fortran-77 mea.rls it wouid 'provide a relatively straightforW-ard 
upgrade path for COMIS. 'However, it does hot go far enough toward object orientation .. In partie'" 
ular; it does not .suppoit inheritance. . . · · · . 

5.8. Ownership. The most recent version of the program, COMISv.3.1,is administered by the 
Swiss Federal'Labo;atories for.Materials Testing ahd Research (EMPA). The di~tributiori fee (about 
$40b) supports activities such as fixing eri:ors, updating the USer guide, improvirig the; graphical 
interface, and providing user support. · ·· 

From a user's point of view, this is a positi~e developmenf It does, however, complicate the 
questi~n of ownership of the code. Researchers who plan to modify the source code extensively (i.e., 
to the pgint where they end up with a substantially· different program) may prefer to work from an 
unlicensed, "free" code bas~that is, from CO MIS v. 3.0.2. . . ' 

Obviously, researchers' will prefer to use CO MIS v. 3.1 whenever possible---:~ot onlY' bedtu~e· of 
its superior support, continuing development, and bug fixes, b1,1t also because staying ih step with 
the re8t of the COMISeom~unity increa.S~s the ability to share models to others. However; ~hen 
the possibility exists that the researcher may have to "fo;k'; the' program, creating a distinct version, 
then these advantages may carry less force. In that case,'the desire"for dear ownership of the. forked 
code may make CO MIS v. 3.0.2 mo're desireable as a starting-poi:rit fot development. 

Where researchers widh to combine COMIS with other programs, for example the aerosol tran8-
port and fate model MIAQ4, other licensing issues will come into play. For example, the ·GNU 
General Public License ( GPL ), under which MIAQ4 is rele'ased, requires that any program contain­
ing or derived from MIAQ4 must also be distributed under the terms of the GPL '[9] > The'legal 
implications of the GPL go beyond the scope of this document. 

6. Recommendations 
In general, three approaches exist for addressing deficienciesin an existing program: (1) make 

ad hoc changes, introducing code patches and decision trees to modify the program's behavior: qn .a 
case-by-case basis; (2) restn~cture the code, to reimplement or regularize its behavior in a con(l\stent 
manner for all cases; or (3) find or write a more capable program. 

Given-the known restrictions already embedded in the codefor CO MIS\ the limited extensibility 
ofits framework,· the difficulty of modifying its significant monolithic parts, and the lic~nsing _ques­
tions, the Airflow and Pollutant Transport group at Lawrence Berkeley National Laboratoryshould 
seek a niore· flexible, more capable program for pursuing its research on airflow and .-contaminant 
transport. 

Because CO MIS ·can model a useful range of building airflow and pollutant transport problems, 
is' re~o·nably efficient, and has a strong user base, the Laboratory should not abandon. GO MIS; 
However, in light ofthe constraints that COMIS imposes on airflow models, and its limited suppor:t 
for new models, the Airflow and Pollutant Transport group Bhould take steps to identify, develop, 
aird gain experience with a viable alternate simulation environment. " , : 

A mimber of obvious alternatives exist. Most notably, CONTAM, SPARK, .and IDAw~qre all 
developed specifically with buildings applications in mind. It would also be possible to ,create a 
completely new simulation framework. In addition, other general-purpose simulation eJ;Ivironments 
must exist-in particular ones with no licensing issues, that support (or even enforce) -~trongly 
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modular simulation. 

6.1. CONTAM. COMIS closely resembles the CONTAM multizone airflow simulation program, 
developed at the National Institute of Standards and Technology [19]. CONTAM generally is per­
ceived as e(j,Sier to upgrade than COMIS-largely because it is ~ritten in a more modern program­
ming language ( C as opposed to Fortran-77), and because of its more consist~nt code (written by 
one programmer rather than by many). Thus, the program inevita,bly comes up when discussion 
turns to a successor for COMIS. . . . . .. -

. . 

Unfortuna,tely, CON:TAM shares many of the design features that ma\<e CO MIS a questio~able 
platform for long-term development. In particular, CONTAM also: (1) provides' only well-mixed 
zones; (2) restricts the flow components.,to ste~y-state,monotone incie'asing functions of the pres~ 
sure drop; and (3) d~couples the mechanical energy balance ~rom the flow equations, tho~ghin a 
slightly diffe~~nt way than does CO Mrs'. Iri addition, some flow component~ in CONTAM also 'have 
memory, so that the results of one evaluation influence the flow calculated at th~ next ·e~aluation'. 

6.2 .. SPARK. SPARK, the Silllulation Pro~lem Analysis Research Kernel,'pro\rides a'''ge~eral­
pm;pose enyironment for simulating differ~ntial~algebra!c systems [4], [18L As with COMIS, the 
user defines a simulation problem by specifying the connections betw~en. components. HoweVEir, in 
SPARK, the. user also defines the component models. · · 

_ Defining models. To cr~ate SPARK components, the modeler first writes th~ more fundamental 
atomic objects, which represent, indhidl!al equations. Ideally, the modeler prov;ides multiple ilriple­
mentations of each atomic equation object, giving various assignment exp~essions derived from the 
algebraic relation. For example,a !fiasS continuity relationfor zone 1, !I~2 +h-3 = 0, could yield 
the assignments h-2 := - h-3 and !I-3 := - h-2· . . · 

: The modeler may bundle multipl,e equatio~s together to form componerits. However, this is' 
strictly for conve:n'ience-fundam€mtal(y, SP ARI(tr{lats the entire system ·at the equation level. . 

· SPARK processes a simulation. model bY, consti;ucting a dataflow graph to show how the vari­
ables in the assembled equations depend on ~n~ another. It applies gr_aph theory, choosing from 
among the. assignment expressions in order, to reduce. the number of independept variables in the 
system. J.t can also decompose the problem 'into. .~ndependent subsystem~: For example, given equa­
tions ~hat defimid a CQMIS-sty;le system, SPA.ItK could separate the equa,dcms defining pollut~nt 
transpprt from those defining th~ airflows, solvi~,g ~he transport. problem qnly after cai~ul~ting 

0 

the 
airflows. · · · · 

After determining the order in ~hich to evaiuate the. equations, SPARK cre~tes an executable 
program tailored to the simulation model at hand. The user runs this executable, possibly supplying 
run-time parameters to complete the model realization. : 

lmplemen'tation issues. SPARK aims to provide a completely general modeling environment, 
and one that eases the task of defining new simulation components. Such an environr:J.ent would 
greatly-aid researchers interested in quickly writing and testing new component models-for example 
to explore novel control strategies·for·a building, to add a previously unsupported feature to.an 
existing mbdel, or to scope experirrientahequirernents .when developing a new model. 

The'progiam.:remains, moreover, a•work in progress. Its.·use of graph theory to sort the equa­
tions,· plus the fact that this process generates . the . complete source code idefining . a simulation, 
means :that SPARK requires a· large amount ,of. memory to. process and compile a;. simulation into 
an executable. Perhaps more seriously, its numerical solution algorithms have shown conve.rgEmce 
problems, Furthermore, processing the assignment expressions using. graph theory can make the 
final selection of variables, and their dependencies, somewhat _opaque. to the user ( thol1gh SPARK 
does provide-tools for both determining and·.influencingthe final selection.of variables). This opa<;ity 
can make troubleshooting component. m_odels, or ~imulation models, more difficult. 

Finally, it is not clear that ·SPARK supports models with variable-length array inputs. This 
would make >it· problematic to define a general zone model, for example, since the number of flow 
elements connecting to each. zone can· vacy .. · 

lrripidndihg-releases of SPARK should address at least some of these problems. For more.infor­
matioh,· see http: //simulation:research .lbl. gov /VS/ spark. html. 



LBNL-47653 13 

6.3. IDA. The simulation environment IDA also provides a general framework for defining and 
solving differential-algebraic systems [17]. The literature describing lDA.also lays out an impressive 
range of ideas regarding desireable qualities in a generalsimulation program. 

IDA is a commercial program, of note here mainly because of: (1) its origins in, and existing 
library of models for, building energy simulation; and (2) its use of Neutral Model Format to express 
models equationally; ratP,er than algorithmically [3]. . ._ . . . 

, . ' : \ . •.· 

For more information on IDA, see http://www.equa.se/eng.ida.ice.litml. 
: " . ! . - ' . . ·:.·· 

6.4. Purpose-produced alternative. It would be possible to create a simulation framework, that 
is, a· program that ,mediates between user-defined component- models .and public-domain general 
differential-algebraic solvers such as DASSL [2 §5). The framework would .consist entirely of an 
interface designed to support strongly modular simulation. , , , 

The interface would define a set of functions through :which the comp,onent models would ~nteract 
with the simulation framework, and with one another., For example, in the duct model these functions 
would include: (1) procedures for creating a particular instance of a ,duct--:-Setting pammeters, 
making requests to the simulation framework for internal variables (such as the friction factor), and 
informing the framework about any connection variables (such as p 1 or fl-2 ); (2) procedures for 
initializing the model at the start of each time'step; (3) a procedure for evaluating the model while 
solving the system; and (4) procedu~es for :reporting variables of intere~t at ,the end of a time step 
(for instance, the power dissipated in the duct).- ·.· ·' ' · .. · · ' · ., 

This design would represent a more algorithm-oriented approach than that of SPARK or IDA. 
Possibly this would relieve the need for the up-front preprocessing time, and the large computer 
memory, that. SPARK requires. On the other hand, it would tend to create larger, sparser Jacobian 
matrices than those c;f SPARK, with the attendant slower factorization.' times [18]'.' 'There is, however' 
anecdotal evidence tosuggest that sparsersysteins can require fewer-iteratioJis.overall to solve than 
the corresponding compacted, dense systems [4 p.286]. 

To speed the development pf new models, the framework shou.ld jnclude at least two distinct 
pieces: (1) ~- s'imulation engine, whi~h reads and perf<;>rms a simull;t.tioll ,according to a specification 
that is well-formed in some sense; and (2) an input engine, which accepts a human-readable sim­
ulation description;- checks it for errors, and converts. it to. a weU-formed simulatiOJ:l specification 
for the simulation engine to-perform; Separating the• user interface from;the simulatj,on tool would 
allow model developers to code and test new- components without first providing a use:r interface for 
the model inputs. Furthermore, it would allow greater flexibility in the user interface, for instance 
permitting a text-baSed input format to coexist with a graphic~{interface, and peri:nitti~~ different 
graphical interfaces for different platforms. · 

Such a limited simulation ·framework, once defined, would pose only problems of efficient im­
plementation. However, in some ways it represents a greater risk 'than SPARK.· Even making use 
of public-domain software for 'parsing inpu! files, solving the nonlinear systems, aiitl factoring or 
indirectly solving,.sparse matrices, the development of such. a framework would still require a large 
investment in programmer time~ The same ti~e ~ight ,be b~tt~r. ~pent implemimti~g 'more robust 
solvers in SPARK. . . .. . . . ' . . . 

6.5. Recommendation. An effort sh~uld be made to id$ntiiy and 'compare sim~ltition environ­
ments that can duplicate the capabilitie~. Of CO MIS ~ithoui imposing the 'inodelin:g restiiCtioiis 
outlined above. The alternatives mentioneq above were included,"·not in the spirit of .advocating 
the adoption of one or the other, but to point out that a numb~r-of.possibiiiqes ~xi~t (or_repl,a,9Jng 
CO MIS for multizone airflow and pollutant transport modeF~g: ·:; 

In {)articular, efforts should be made to identify simulation environments that: 
• support a strongly modular approach 'to defining component mtidels; 
• allow systems of mixed differential and algebraic equations; . ' · · 
• provide event-based mod~ls, for exam.ple to simulate a. thermostat, or a ventilation system 

controller that switches modes based on the iiw~l of poliu'tarit' in a room; 
• support direct and. indirect solution methods ~uitabte for coarse-grid CFD m!:!dels; 'ri; :. · 

• allow variable-length array inputs; , , . . , ; · . .~. . 
• provide an intuitive user interface for connecting component models in order to build up systems; 
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• encourage experimentation with component models and system-level combinations of compo­
nent models, by providing fast turnaround when implementing new models; and 

• support the transparent communication of models and solution techniques between researchers, 
for example by using public-domain soilrce code and text-based mechanisms for defining 'models. 

These e~vironments should be evaluated in terms 6f th~ir suitability for replacing COMIS. As a 
first step, the current capabilities of CO MIS should be p~ogratnmed as component models, and tested 
in simulations of building airflow syJtems. Note that in such a trial, one should riot expect a general 
simulation tool to calculate exactly the same values as a comparable CO MIS building.model-mainly. 
because it will not reproduce the same implementation details; such as the decoupled mechanical 
energy balance, imposed by the monolithic parts of COMIS. 

Conversely, one should not expect a general simulation environment to match the ·execution 
speed of CO MIS, because: (1) a general environment cannot employ as efficient a solution algorithm, 
since it does not impose the same restrictions on flow models; and.(2) a general environment must. 
couple all the equations properly, and hence must solve a larger and more complex system of nonlinear 
equationS. 
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A. Effect of decoupling the flow equations 
As noted above, COMIS decouples Equation 4.1 from the flow element equations by setting 

the path density to some average of the zone densities p1 and p2 . To estimate the flow error for a 
particularly sensitive case, consider a passive stack of diameter D = 10 em and height H = 6 m. Let 
the stack connect a room (zone 1), at 20C, to the outside (zone 2), at OC. 

The analysis makes the following assumptions: 
(1) A properly-coupled set of equations would show that the stack fills with air from the room, so 

that fJ = p1 = 1.204kgjm3
. 

(2) CO MIS uses a path density p = p = (p, ~p2 ) = 1.248 kgjm3 to find /::;,pL, but uses p1 to find the 
flow in the duct equations. 

(3) The pressure drop through the stack from inside to out equals the pressure drop /::;,pw through 
the building envelope from inside to out, plus the pressure drop due to hydrostatic effects in 
the ambient air, 

P1 - P2 = /::;,pw + P2gH . (A.1) 

(4) Parameters J.£ = 184.6·10-7 N·sjm2 and c = 0.0015 mm (a value for very smooth pipes [10 §7.2]). 
It is not certain that COMIS will actually use p in the mechanical energy balance, since the 

logic controlling the density calculation does not admit straightforward analysis. Furthermore, the 
exact pressure drop in Equation A.1 depends on other particulars of the simulation. When the stack 
draws strongly enough, air will infiltrate through the walls, making /::;,pw < 0 and decreasing the 
driving pressure p 1 - p2 . On the other hand, wind at the roof will create suction, increasing the 
pressure drop (but also making /::;,pw more negative). 



16 LBNL-47653 

For the reference case; let /::,.pw == 0. Following assumption 1, a proper coupling of.the mechanical 
energy balar\.ce to the duct equati6ns would give /::,.pL = 5.190Fa and h-2 = 0.02145kg/s (or a 
volume flow of about 0.018 m3/s or 1100 L/min). From ~sumption 2, on the other hand; CO MIS 
calculates /::,.pL = 2.595 Pa and h-2 = 0.01441 kg/s. . · 

In this r~fe~~nc~ case, the flow error ·~ade by qecoupli~g Equation 4.1 comes to about 33%. 
The table below shows, for this reference case and several var'iations, tlie flow calculated. under 

assumption 1; and the corresponding error made by CO MIS uncle~ ass~mption 2: 

.·.· Case ; ., Flow, kg/s Error,% 
···"--Reference- . ' :0.02145 32;8 . 

D: 10cm-+ 30cm 0.4142 32.1' 
Tout : 0 C-+ :-10 C 0.02762 32.7 
/::,.pw :'0 Pa-+ -0.1 Pa ., 0.0.2121 33.6 
H:6m-+l2m 0.02145 '32.8 

In general, a variation on tlie 'reference case t'hat increases' the flow also decrea.Ses the relative 
error associated with using the wrong density in the mechanical energy balance. Therefore increasing 
the stack diameter reduces the relative error. However, the flow varies about its reference value more 
than does the er:ror, and increasing~ the stack <;liameter increases the fj.ow ~~bstaritially. Thus this 
coding problem can make.COMIS calc':llat~ large flo'Ys with la~ge abs<;>lute ~rrors.' . . . 

The last row of the table shows that a taller st'ack yields the same flow as in the reference 
case. That is, under the listed assumptimis; increasing the height ofthe stack has no' effect on the 
flows: This occurs ecause the increased frictionarlosses :in the duct exactly offset the greater driving 
pressure difference due to the hydrostatic effe'ct."ln ah actual simulation; the pressui:e.drop;across 
the stack would depen,d on the calculat~d, flows through all the intercpnnected zones, and changing 
the height of the. stack would affed the' flow 'through it. . ' . ' ' • . .. 

. . ' ' '. 'i ' ' ,' . 

. , 

l/1, 
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