Lawrence Berkeley National Laboratory
LBL Publications

Title
Assessing Multizone Airflow Software

Permalink
bttgs:ggescholarshiQ.orgéucgitem42x9000fg
Author

Lorenzetti, David M

Publication Date
2001-12-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at bttgs://creativecommons.orq/licenses/bv/4.0,|

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/2x9000fw
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

BERKELEY LAB

LBNL-47653

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

Assessing Multizone Airflow Software

David M. Lorenzetti

Environmental Energy
Technologies Division

December 2001

24 ‘?5%%;?‘”@1‘?
‘::5": s '%"’r

e el

FE -
P s
A e R~ o
<k - Q m
AH o L)
E v
R _ag (o]
vy ol m
éf o o
Kl g o 2
t %
e -~ 3
YOy ;
A ‘S—
Ay 3 Y]
oa -3
R (%3
P45 >
- 3
. ] 3
i - LV aRP o
. % 0 pitalem x
<7 R e o 5 o
e Lo 2 . 2 o
B & TN A g g
? L LT b ke
- IR e g <
44 [

LES9LP-INGT



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



| LBNL-47653

ASSESSING MULTIZONE AIRFLOW SOFTWARE

‘David M. Lorenzetti
dmlorenzetti@lbl.gov

Environmental Energy Technologies Division
Indoor Environment Department
Lawrence Berkeley National Laboratory -
' " Berkeley CA, USA

December 2001

This work was supported by the Office of Nonproliferation Research and Engineering, Chemical and
Biological National Security Program, of the National Nuclear Security Administration under U.S.-
Department of Energy Contract No. DE-AC03-76SF00098.



Assessmg Multlzone Alrﬂow Software .

: Dav1d M Lorenzetti-
Lawrence Berkeley National Laboratory, Berkeley CA 94720 .
-Report LBNL-47653 -
December 2001 -

Abstract : »
Multizone models form the basis of most computer simulations of arrﬂow and pollutant transport
in buildings. In order to promote computational efficiency, some multizone. simulation programs; such as
. COMIS and CONTAM, restrict the form that their flow models may ‘take. While these tools allow scientists
and engineers to explore a wide range of building airflow problems, mcreasmgly thexr use has led to new
questions not answerable by the current generation of programs. :
This paper, directed at software developers working on the next generation of burldmg airflow models
1dent1ﬁes structural aspects of COMIS and related programs that prevent them from eas:ly mcorporatmg
" desirable new sirflow models. The paper also suggests cntena for evaluatmg altemate srmulatlon environ-
ments for future modelmg eﬁorts ‘ : E ‘ L el

€
. LR

Keywords alrﬂow, COMIS multlzone

1. Introductlon BT ‘ o e
Multlzone models form the basis of most compuitér simulations of airflow and’ pollutant transport
in buildings. The state of the art in whole-building flow analysis relles on thése ]umped -paramieter,
or macroscoplc, modéls, becaiise representmg an' entire building mlcroscoplcally (e:g’ using compu-
tatlonal ﬂu1d dynamlcs) “woilld require unrealistic amounts of mput data computer memory, and
processing power. THis situation will likely persist for soine time. 7 . ‘
This paper assesses current multizone simulation programs; in'light of modelmg applrcatxons of
interest to the Airflow and Pollutant Transport group at Lawrerice Berkeley National Laboratory.
To ground the discussion, 1t mainly focuses on a particular code, COMIS The fact that this code was
developed at LBNL gives us greater- inisight inito its architecture, and’ greater latitude to criticize it.
However much of the dlscusswn applies generally to other multlzone alrﬂow and pollutant transport
programs : :

Orgamzatron Sect1on 2 prov1des an overv1ew of the present cr1t1que of mult1zone simulation
software. It discussesthé rationale for reéviewing the state of the art in- multlzone simulation, and
sumimarizes the arguments contained in the rest of the paper. :

Sectlons 3'and 4 prov1de background material for the critique itself. Section 3 discusses general
software’ characterlstlcs of intérest to multizone modelers, -defining’ some terms used in the later
comments of ‘specific sifnulation programs. Section 4 briefly describes COMIS and deﬁnes a sample
flow component—a duct—for later reference. :

Section 5 critiques multizone software tools, both'in terms of existing flow models and in terms
of their ablhty td’iricorporate niew models: Section 6 considers the prospects for modifying COMIS
to answer these Gbjections, and proposes key features to look for in-a new‘environment.

Unless otherwise noted, “COMIS” refers to COMISV 3.0.2, the last freely—avallable release -of
the source code to the prog;ram [7] '

o

2. Overv1ew _

The de51gn of the current generatlon of multlzone programs results from a systematrc drive
toward computational efficiency. This effort was founded in the desire to bring whole-building
airflow simulation to ordinary desktop computers, with their limited memory and compiiting power.
Thereforé the data structures and solution algorithms of these programs were optimizéd for .a fairly
specific task——brxeﬂy, ‘that- of solving 'a steady-state flow network in which the flow through each
path increases- monotomcally with the pressure drop across-it.

Partly because of this specialization, COMIS and programs like it have allowed researchers and
engineers to explore a wide range of building airflow problems. However, these programs now can



2 LBNL-47653

be seen as victims of their own success. The insights gained through the use of these tools have
naturally led to questions that probe beyond the problem space they were designed to explore.

This situation, along with the availability of faster, more capable computers, makes a less
specialized, and more flexible, software tool increasingly attractive..

An important implementation question involves whether to desrgn a more general multizone
simulation tool “from scratch,” or to structure it around an existing program. This paper argues
that a number of factors make COMIS unsuitable for the long-term needs of users interested in
modeling complex phenomena such as pollutant d1spers1on times, feedback control systems and
natural ventilation. T : :

These factors fall into two: broad categorres FlI‘St COMIS lacks specrﬁc models necessary for
certam k1nds of s1mulat10ns Second and rore 1mportantly, structural limitations i in the program
limit its ablhty to accomodate new models. -

2.1. Mlssmg models As reséarchers attempt to s1mu1ate buildings in which effects such as natural
convection, novel mechamcal systems automat1c ‘controls, and transport delays in flow pathis' play an
important part they mcreasmgly require a ‘number of models not currently supported by COMIS

Such models include: (1) buoyancy-induced two-way flows through horizontal apertures, includ-
ing stairwells and elevator shafts; (2) “lossy” duct junctions, which provide the correct pressure drops
at all flows; (3) feedback control elements, such as sensors, controllers, and actuators; (4) dynamic
flow components, including both the time needed to carry pollutants through flow elements,:and
transient airflow, effects; and (5). detailed models of the air movement in large spaces,, for example
using coarse—grld computatlonal ﬂuld dynarmcs (CFD)

.Minor modifications would allow COMIS to support-some of these models. However it cannot
support others. For example,it. could accomodate a sunple model for bldlrectronal flows i in horlzontal
apertures, subject to the provisions descrrbed below However the standard model for duct Junct1ons
violates a,fundamental design. restrlctlon of the program. .

.Other flow models have not yet been characterlzed well enough to permit a deﬁmtlve statement
about incorporating them into COMIS. However due to structural limitations in the code, nothrng
less than a complete overhaul would make it accomodate all of these models. More- to the pomt
adding those models. that COMIS can support, without, a major rewrite would only increase the
pressure from modelers to add one of the proscribed models. Hence, these modelmg limitations must
be addressed eventually—elther 1n51de or outside the framework prov1ded by the current program.

2; 2 Structural hmrtatlons Any major overhaul of COMIS should address the followmg struc-
tural issues: (1) incomplete coupling of the energy balance to. the flow element relations; (2) non-
repeatable flow calculations; (3) restrictions on the mathematlcal form of flow element and zone
models; (4) tight coupling between the parts of the code that define flow systems, and the parts that
solve flow systems; and:(5) a code base that mduces slow turn-around times for creating,. testing,
and modifying new models.

These structural- issues,:mainly. result from design dec131ons taken to optimize the code. In
such cases; the specialized data structures and solution algorithms employed also act to restrict the
form that models can take. In addition, umntended restrictions arise due to detalls of the program
implementation... -, S - C : -

Arguably, the effort needed to overhaul the current code would, be better spent wrltmg a re-
placement tool, or reproducing the current capabilities in an existing- general simulation environment.
This conclusion follows both from the extent to which structural limitations pervade the existing
code, and from the difﬁculty of recasting that code into a structured programming style. '

3. Modular S1mulat10n o

.- The multizone airflow. literature usually describes COMIS and simulation env1ronments llke
1t as “modular.” Before:examining specific problems with these programs, it helps to.distinguish
between modularity as perceived by casual users, by programmers; and by researchers. This, section
makes some general pomts about . modular environments, in. preparatron for the later d1scussron of
COMIS.




LBNL-47653 3

3.1. Modularity. In macroscopic modeling, a modular simulation environment allows the user
to construct complex systems by assembling relatively simple component. models. The system’s
behavior arises from the composite interaction of its components. By contrast, a monolithic tool
defines the system response integrally. :

Many simulation programs claim some degree of modularity. Examples from. the bmldmg air-
flow and energy fields include COMIS, CONTAM, HVACSIM+, and EnergyPlus For electronics
applications, the modular program SPICE represents circuits as collectlons of resistors, capacitors,
transistors, and so on. : : : .

At their best, modular environments aid SLmulatlon by decomposmg a;system mto manageable
verifiable, and interoperable submodels. This can provide greater flexibility than a monolithic tool,
by allowing the user to propose new combinations of existing component models. It also eases the
task of adding new. components to the simulation environment.: ;

Modularity does not, however, guarantee flexibility: in the. models themselves lee all simu-
lation environments, modular programs support orily certain types of components. and component
connections. Usually the restrictions follow from.implementation issues—such as limitations. of the
programming language, or, more often, the decision to improve efficiency ‘at:the-expense of flexibility.
For example, COMIS requires every flow to depend on the pressure difference between two zones
[14]. This guarantees certain “nice” numerical properties, but prevents the program from accurately
representing some real-world flow components, such as duct junctions. . ;

3.2. Weak versus strong modularity. In practice, modular environments can exhibit mondlithic
behavior for certain aSpects of the system. This occirs whenever the program mniakes implicit as-
sumptions about the models—as part of the solution algorlthm for example. ‘Although in theory the
system behavior results solely from interactions between’ the modular’ componéiits, monolithic code
adds interactions between the component models and the simulation envxronment Unfortunately,
these monolithic assumptions often remain hidden from the user. oo S ceed

For example, COMIS is modular in that the-user assembles an alrﬁow network by connectmg
zones via flow elements. However, the program distributes the calculations associated with the zones
throughout the code that solves the airflow system. Thus the air density calculations lie.outside the
reach of any model explicitly provided to the user, and COMIS enforces a monolithic zone model.
Furthermore, the program uses a common subroutine to calculate the hydrostatic effects assomated
with every flow path: To this extent, it enforces monolithic behavior for part of every. flow model.

To formalize this distinction, define a weakly modular simulation environment as one that simply
treats its components ‘as building blocks for creating system models.- A strongly modular environ-
ment, on the other hand, represents-every component as a collection of independent algorithms. . The
algorithms are independent in two senses. First, taken together, they completely specify the com-
ponent’s behavior. Second, removing a-comporent’s algorithms from a. strongly modular simulation
environment does not affect the behavior of any-other component. -, . .. ;.. :

Note that the distinction between strong and weak modularity concerns only where in code the
models re31de without reference to the severity of the restrictions placed on the models ’

In thé coding of a computational tool, weak modularlty often manifests itself in: (1) the distri-
bution of a component model’s definition across a number of programming modules; (2) extensive
generic preprocessing or postprocessmg of the data associated with the component models; (3) case-
based logic that invokes special processing depending on the status of one or more comiponents; and
(4) the merging of the solution algorithm with the component routines.

These practices obscure the actual modeling assumptlons made in a weakly modular program.
They also complicate the process of updating or adding components because they expose supposedly
stable or mature component models to the possnblhty of unmtended changes Consequently, they
require the programmer to have deep fam111ar1ty ‘with the mternal Workmgs of the env1ronment N
Finally, weak modularity complicates the inclusion of new solution algorithms, to the extent that
it requires new solutxon methods to 1mplement the modelmg assumptmns made in the exxstmg
algorithms. : : : .

3.3. Modularity and user expectations. Casual users, programmers, and researchers all place
different demands on a simulation tool.



4 LBNL-47653

A casual user, interested in flexible system-level modeling rather than in the behavior of indi-
vidual components, demands only weak modularrty (and some assurance that the models perform
as advertised). :

From a programmer s point of view, however, weak modularity does not imply ﬁexrblllty, since:
the implementation may-achieve its component orientation in roundabout ways—for example, us-
ing extensive patches of monolithic ¢ode to modlfy the behav1or ‘of its internal algorrthms on: &
comporent-by-component ‘basis. ' P o )

The defects of weak modularity affect the research user as well as the programmer of a srmulatron
tool: Weak modularity prevents researchers from easily identifying the assumptions behind :a model,
from specifying and testing changes to an exrstmg model, and: from addmg new modéls. Wlthout fear'
of altering the behavior of existing ones. . . e :

Strong modularity counters these ob Jectlons However a strongly modular simulation tool does
not necessarily provide the researcher with complete flexibility in adding new compenents.:‘Even a
strongly modular environment can réstrict the form of components and their interconnections.. For
instance, COMIS could be recodedin a strongly-modular fashioen, et still only support flow: models
whose flows déepetided on'the pressure difference between two zones: Thus, it would remainrunable
to'simuilate duct junctions accurately. : : o

Of course, restricting the types of models supported by a- s1mulat10n envrronment does not have
all negative effects. As mentioned -above, it can promote computational efficiency:.: Furthermore,
such restrictions can force the user to clarify his or her thinking abqut the models and the modelmg
process. For example system dynamlcs programs ‘do not normally aliow algebralc loops Besrdes
reducing;the computatronal burden of running the model this restrlctlon forces the user to focus on _
the 1mportant dynamic effects in the system of mterest [8 §7] .

4. Sample Flow Element T - e
: Multizone models idealize a building as-a collectlon of zones (e.g. rooms), connected by, dlscrete

flow ‘paths. COMIS solves a steady-state airflow system by balancing flows so.that the total inflows
and’ outflows of air for each zone sum to-zero [14].- The flows.are assumed:to have no effect on the
Zohe temperatures. After ﬁndlng the ﬁows the. program can solve a dynamrc contaminant transport
problem . o : oo e

“Flow elements dommate multlzone models; iin two ways. Flrst,amultrzone.:progr‘ams; pred1'ct
the flows in each path, but ignore details of flow within rooms.. Thus, a user:adds. richness and
complexrty to a building model mainly by selecting from among a variety of flow element models.
Sécond, the majority of: the’ modelmg restrictions in multlzone sxmulatron programs apply to.the
flow models [14]. - ¢ - oo :

- Becausé many of-the specrﬁc problems 4in COMIS relate to its handhng of flow elements, thls
sectlon defines a specific flow model, ‘a duct, tos provxde a point.of reference e T

4. 1 Mechamcal energy balance Consrder a, COMIS flow element that connects tWo zones 1
and 2. The component model relates the mass flow leavmg zoné 1, fi_g, to the pressures Py 4nd
P2 at the component connectlons (note that the’ snmple notatlon used here does not extend well to
multrple flow elements).

_ Neglectrng kmetrc energy,, a mechamcal energy balance on the ﬁow element ylelds [10 §5 4]

p1+pgzl p2+p922+ApL,, (41)

where (1) p g1ves the densrty of air in the ﬁow element (2) 21 and 7 give the absolute herghts of
the element s connections to zones I’ and' 2, measured from a global referénice ‘level: ‘and (3) Apy,
expresses the mechanrcal energy dlssrpated by v1scous and dynamlc effects W1th ﬁ' ‘:fror.n zone 2
to zone 1, fi-2 <0, Apy. becomes negatwe K h T -

Duct model. Every ﬂow component deﬁnes its own relatlon between the ﬁow and the d1551-
pated mechanical energy. For instance, a steady—state Darcy-Weisbach duct model [10 §7. 2] ‘uses

V R L . TR
Apy = sign{Via}A 5 <p212) L R (‘_1;-:2)




LBNL-47653 5.

~ for-a duct of length L and diameter D. Since the mass flow varies directly with the average velocity,
let V.o replace fi-o as the variable of interest. The friction factor; A, comes from the Hagen-Poiseuille
and Colebrook relations:

L , |
P if -~ Re< 2300 » - (4:3a)

Re )
1 € 2.51 ' L
—_— . i i > . .
\//_\ -2 Olog <3 D + e\/_) _ 1f.‘ ‘l:te 2 2300 | (4 3b)

where the 'Reynolds number Re = pr;_gID/ p. Note that the Colebrook relation deﬁh_es the friction
factor implicitly, that is, it cannot be solved explicitly for A. For simplicity, ignore the discontinuity
in A at Re = 2300. '

Finally, a-path density relatlon _ L R L
p = p{Vi-2, p1; p2} - o o (44)

reflects the fact that as l/l_g changes from large posrtlve to large negatrve values, the steady—state
densrty of : arr in the duct changes from zone denSIty p1 to p2. In practice, Equation 4.4 carnot
be 1nverted to give veloc1ty in terms of the path den51ty, because: (1) a tange of velocities can set
p=p (or pg) and (2) identical zone temperatures give the same p, regardless of the velocity.

Equations 4.1 through ‘4.4 couple more trghtly than suggested by casual inspection. The path
density p appears in every equatlon, and the ﬂow velocrty appears in three of them. v

A typlcal simulation treats z;, z2, L, D, ¢ g, p1, and P> as parameters This leaves four
equations in six. unknowns P, P2, ApL, p, Vi, and A. A well-posed simulation problem fnust
specify two of the unknowns. COMIS always resolves the chorce by havmg the solutron algorlthm

5. Crlthue . - .

A number of concerns raise doubts about using COMIS as the starting point for a more ﬁex—
ible multizone simulation program. -Some follow from its.weak modularity, with all the dlfﬁcultles
that implies for understanding; updating, and adding new components. :Others follow from design
decisions made to.improve efﬁcrency in the original program.. Still,6thers relate to purely practlcal
implementation issues.

Concerns related to. weak modularlty mclude

o It decouples the mechamcal energy. balance from the ﬂow element equatrons
e It.does nof provrde 1nterchangeable zone models ) .
o It does not make an effectlve model development env1ronment

Concerns related to desrgn dec1srons made to 1mprove eﬂic1ency 1nclude N
o -Flows must take: the form' fi.2 = fi.o{p1. — p2}: _ S g
¢ Airflow models carnnot include dyhamicieffects. - . PR cr grs
o Flow components give nonrepeatable results due to “memory.” - " - so e ey

Practical 1mp1ementatron concérns include:
e The code uses static memory allocation, and is riot object-oriented. -
K The COMIS llcense agreement compllcates questlons of ownershlp

The followmg subsectrons treat these pomts 1n greater detarl

5.1. Decoupled mechanical-energy balance. The program does not solve the mechamcal energy
balance togéther wrth the flow element equatrons In the ca.se of the duct thls :means-it does not

The'equations defining the duct- couple to the mechamcal -energy ba.lance through two, ,_varrables:
the path density, p, and the dissipated energy, Apy. COMIS ignores. this coupling; by: (1) setting
the path density in Equation 4.1 to some average of the zone densities'p; and. po; and then(2) using
the mechanical energy baldnce to!find Apy. It does this wrthout regard for the flow velocrty—ln the
case of the duct, ignoring Equation 4.4. . s : _ T



6 ) o LBNL-47653

Inspecting the mechanical energy balance shows that this procedure finds an incorrect hydro-
static effect, pg(z1 — #2), for any vertical path between two zones of different density. That is, unless
p1 = pa2, or unless z; = 29, COMIS can find an incorrect value for Apy. Consequently the duct
routine, which treats the resulting dissipation as a fixed input, can find an incorrect flow. In fact,
since Ap;, may even have the wrong sign, the calculated flow may go in the wrong direction.

The calculation of Apy takes place in a piece of monolithic code, meaning no flow element
couples to the mechanical energy balance correctly. This simplifies the flow component routines—
they no longer have to solve all the equations simultaneously—but can yield incorrect flows.

Fortunately, the most significant errors are likely to occur when the driving pressure drop
across an element, |p; — pz), is small compared to the hydrostatic pressure through the vertical path,
pglzi = z3|. Thus, the calculation errors will appear mainly in situations of low fiow. However, for
vertical paths of large cross-sectional area, such as stairways, elevator shafts, and passive ventilation
stacks, these flows (and hence the absolute error) can be quite large. Appendix A gives a numerical
example that suggests errors in the neighborhood of 30%. -

. Bidirectional vertical flows. As a particular consequence of decoupling the mechanical energy
balance from the ﬁow equations, COMIS cannot 1mplement any meanmgful ‘model for brdlrectlonal
flow between ﬁoors of a building. Bldrrectronal fiow can occur when the buoyancy—mduced pressure
difference across a horlzontal partltlon is srgnlﬁcant compared to any mechanlcally-lmposed pressures
2. When the 1mposed pressure dlﬁerence does not dominate the calculation of Ap L. the flow model
must solve for the dissipated energy and the mass flow s1multaneously

. Fizing the problem. Correctmg the program s treatment of the énergy balance could follow one
of two broad approaches (1) restructure the code to couple all the flow models correctly, or (2)
patch the monollthlc part of the code s0, that it correctly couples any crltlcal ﬂow elements such as
stalrways and horlzontal apertures .

These two alternatives illustrate one reason a weakly modular program tends to accumulate
“special case” programming over time. The first approach would strengthen the code’s modularity,
and make the entire program more technically correct. However, it would also demand -a large
programming effort, complicate every flow. routine, and in many cases produce no change in the
calculated flows: - The second approach would require less programming. However, it would make
the monolithi¢ routine more difficult te interpret”and modify, and would-place a greater burden on
system modelérs to choose the appropriate flow models when representing vertical flow. paths.

5.2. No modular zone models. COMIS provides interchangeable models only in the flow com-
ponents. Zones have exactly one, bullt -in, 1deahzatlon—as a well-mixed space Furthermore, the
airflow system represents that space using exactly one state variable (the pressure at a Tefererice
height), from which it calculates all other zone data by applylng the hydrostatic prmc1ple ‘@nd ahy
user-defined temperature dlStI‘ll)llthIl For every contamlnant the pollutant transport rnodel adds
another state variable to each zonie:r -~ < i L ISR YPI I

This monolithic zone model appears: (1) in the airflow network solver; Wthh seeks:the reference
pressures that produce mass balance in each zone; (2) throughout the code that calculates pressures
and densities at the points where flow.elements connect to the zones, including-the decoupled energy
balance; and (3) in the code that finds the pollutant transport. between zones. This implementation
affects both the ease of adding. new zone models, and the mamtalnabrhty of the code.

New zone models. Providing.only one,zone, model s1mpllﬁes the program s structure [14], but
restricts the types of systems the program can simulate. Sltuatlons that would require more general
zone models include the need to resolve flows within a room; and the desire to model pollutants with
significantly-different -density than:-air. Implemeéiting these' more general .medels, without-changing
the internal structure of -COMIS would require breaking.a room up into a collection, of well—rmxed
subzones; each completely characterized by the given state variables.. =, - .. o . 4 ...

‘The first case=~computing flows within a room-—arises for example in an atrlum or audrtorlum
where details ‘of>péllutant transport in: the .room determine occupant exposures, and affect the
placement and performance of sensors. T'wo competing approaches, zonal models and computational
fluid dynamics, can'both represent a room as an intérconnected set of well-mixed subzones. .Coarse-
grid CFD predicts flow velocities better than zonal models of the same arithmetic complexity.[16].




LBNL-47653 ‘ 7

However, coarse-grid CFD cannot be formulated directly in COMIS, because the airflow system
would require more than a pressure state variable to characterize each subzone*.

The second case demanding a detailed zone model—pollutant stratification—involves for ex-
ample the transport of smoke, or of dense pollutants. In this case, finding:air velocities in the zone
matters less than establishing the vertical distribution of pollutant: Modeling these effects would
require changing the code that calculates pollutant transport. between zones, ‘and possibly the code
that accounts for hydrostatic effects in the zones. :

For detailed zone models that break up a room into well-nnxed subzones, note that the flows
between subzones also have to conform to the restrictions imposed by COMIS, in order to imple-
ment the desired behavior without changing the program. A later section takes up the: modeling
requirements COMIS imposes on flow paths, and their implications for zonal models.

Maintainability: Because the monolithic COMIS zone implemention appears throughout the
code that solves the airflow and pollutant transport systems, it also makes it hard to modify the
solution techniques. That is, under the present design, any new solution algorithm——introduced, say,
to improve the speed, robustness, or memory requirements of the program—would have to reproduce
the current zone representation. Besides increasing the programming:complexity, this could.lead.to
a situation in which the simulated system behavior depends on the partrcular solver a user chooses
to employ. - . S . L

5.3. Not a model development environment. ‘Due to its weak modularlty, COMIS complicates
the development of new flow models, and lacks transparercy as a research tool. As pointed out
above, weak modularity obscures the a,ssumptrons béhind the' component rnodels——for example, by
distributing the code that defines a component S behavmr across many prograrnmmg modules,-and
by modlfymg the behavior of the solution algorrthrn based on the status of one or more components
This makes it difficult to understand and update ex1st1ng components and drfﬁcult to add new
components. A

On the face of it, these amount to programmlng concerns, nothing more. That i is, a prograrnrner
familiar enough with the code can 1mplement any model that meets the intrinsic restrictiotis of the
program. However, the difficulties associated with’ addmg new rmodels’ go beyond mere programming
matters, because they lengthen the development cycle’ sufﬁcrently that COMIS cannot serve as an
effective tool for research on the models themselves.

For this discussion, divide airflow and pollutant transport tesearchers ifitd two groups: “those
who develop component models, and those who simulate systems using prev1ously-developed models.
Computational experience at the Lawrence Berkeley National Laboratory shows that only the simu-
lationists use COMIS. Model development takes place exclusively in other simulation environments—
for instance, SPARK for zonal models, Matlab for dynarmc duct models and purpose-produced code
for dynarnlc pollutant transport models.

This distinction between modelers and simulationists ‘would not éxist if COMIS provrded a
natural platform for expressing, modifying, and testing' new models. If it did, thé model researchérs
would adopt COMIS, since it would: (1) support their work by providing tested .models of:other
system components; and (2) increase the likelihood that . their models would pass directly into the
hands of users. ‘ :

5.4. Restricted flow form. Flow components must take the form fi’y'= fis{p; — po}. That is,
they must calculate a steady-state flow as a function of the pressure diffeferiée across a component’s
terminals. Beyond this, the flow must not decrease as the pressure drop across the elefent incréases.

Flow expressions of this form yield symmetric system matrices: If, in ‘addition; the flow betweeri
zones increases monotonically with the pressure drop, the §ystem yields posrtxve-deﬁnlte ‘ratrices
[14]. COMIS uses the symmetric positive-definiite property‘to simplify - its data structutés, matrix
factorization methods, and nonlinear solution algorithms considerably. Thus, it requrres steady—state
flow models that give flow as a nondecreasing funct1on of the pressure drop .

* Calling an external CFD program from within COMIS, and 1ncorpdrat1ng its résults into the remaining calcu-
lations, would remove this objection. However, this approach still would require modifying the program wherever it

invoked the well-mixed zoneé model, and might introduce convergence problems in the airflow system. -



8 LBNL-47653

Steady-state flow elements. Two common steady-state flow components, duct junctions and
fans, violate these requirements.

Junctions, as three-port flow elements, break symmetry.  While nominally COMIS provides a
junction flow model; it cannot solve systems containing one. Of course, a modeler can implement a
duct junction as'a zone, and attempt to account for junction losses using the duct model. However,
this approach misses the fact that the dissipated energy in each branch of a junction depends on the
flows in the other branches [15§11-8]. Changing the flow in one branch can even produce.suction
on-a branch that previously faced a retarding pressure. In effect, this would. change the sign of the
loss coefficient in the corresponding duct. . Therefore if flow rates can vary, and especially.if air can
reverse through any branch of the junction; then only a three-port junction model can account for
the losses correctly. . :

* The other -problematic element, the fan, typ1cally has a negative slope over some portlon of
its pressure—ﬁow curve. Besides wiolating the requirement. for nondecreasing flows, this creates .a
low-flow region where some pressure drops have.two or three associated flows [15§11-2]. COMIS
overcomes this problem by replacing -the low-flow part of the actual fan.curve with an approximate,-
monotone-increasing curve that yields a unique flow for every pressure drop-[7]. If a simulation
involves only design flow rates, this numerical device does not affect the calculated results.

Zonal models. As noted above, to model details of airflow in a room without changing the inter-
nal structure of COMIS would require representing the room as a collection of well-mixed subzones,
each characterized by a s1ngle state variable. Unlike computational fluid dynamlcs approaches zonal
models meet thls requrrement However, the flow elements used by the zonal model to connect 1ts
subzones also would have to satlsfy the restrictions imposed by COMIS. o

Zonal models draw strongly on a standard COMIS flow model, the or1ﬁce [11]. Unfortunately,
thls flow element does not properly express the phy51cs of airflow in rooms [1] ’f‘hrs probably explams
the poor performance of zonal models in predicting room airflows [16]

Other published zonal model elements simply prescribe the flows, based on fixed condltlons such
as wall temperatures. and jet mass flow rates {11). Models based on prescribed flows present little
computational difficulty. In particular, COMIS can enforce a known flow between two subzones, so
long as each also has a varlable-ﬁow connection [14] Naturally, models that rely on prescrrbed flows
wrll have limited application in cases where the room interacts strongly w1th the rest of the bulldlng

Of course, the zonal approach admits other ﬂow relations than orrﬁce models and prescrrbed
flows. COMIS can support them so long as they express the flow as a functron of the pressure differ-
ence between the subzones, However, an inherent numerical dlfﬁculty will arise in any such ‘model.
Intuition suggests that the pressure dlﬁerence between two pomts in aroom will be small’ compared to
the corresponding range of possible flows between those points. Thus, l1m1tat1ons of ﬁmte—precrsron
arithmetic may dominate the flow model’s behavior. Specrﬁcally, the smallest machme—resolvable
change in a subzone’s reference pressure could create a large change in the calculated flow In ‘this
case, COMIS may not be: able to achieve mass balance

5.5. No dynamic airflows. As stated above, COMIS imposes a steady—state alrﬂow model That
is, the functional form fi3 = ‘fi-2{p1 — p2} does not .admit dynamics. in: the airflow system, for
example to account for the momentum of air in a duct. ;

This modeling capability might be important in a building that attempts to limit, the sudden,
spread of pollutants through its ventilation system, for example by closing a damper In such a case,T
the momentum of air already moving through the duct would create greater pressure drops across,
the damper, and hence greater flows, than a steady-state model would predict.

This duct-damper system has another dynamic of interest—the time needed to close the damper
For this, COMIS could use a quasi-steady damper model, which would take a steady—state model of
a variable-position damper, and change its position setpoint over the. tlme perlod of. mterest This.
would move the damper, in simulated time, through a series of steady-state operating pomts Whlle
implementing a quasi-steady damper model in COMIS would require some work, it would not aﬁect
the airflow calculations, and hence would not violate the expected flow model form,

Given such a quasi-steady damper model, some flow systems will not require a dynamlc duct
model. If the damper closes much more slowly than it takes for the duct. to come to steady-state




LBNL-47653 9

after an.instantaneous change in the damper posxtxon then the damper model alone would account
for the dynamics of interest.- >

Similar comments apply to duct-fan combmatrons -Suppose the start-up or spm—down tune of
the fan dominates the ventilation system response, and depends mainly on dynamics in the fan’s
rotor and motor. Then purely steady-state airflow elements may suffice. The quasi-steady simulation
would use a steady-state- model of a va.rlable-speed fan,; and change the fa.n speed from one time, step
to the next. e S

Dynamic sensor models fall into the same category as damper actuators and other time-
dependent elements that do not directly involve airflow calculations. .Incorporating such . elements
in COMIS might require considerable programming effort, but.would not violate its restrictions on
the flow element models. In fact, CONTAM has a simple event-based controls model.

Transport time. The dynamics considered here involve only: the program’s airflow calculations.
Another; possibly more. important, dynamic effect involves the transport time in flow elements.

- COMIS does not account for the time pollutants spend in flow paths. While it uses the calculated
~ mass flows to detetmine the total amaint of pollutant transported between zones at each time step,
it assumes that transport occurs instantaneously. Thus, the program overestimates the speed at
which a ventilation system spreads pollutants throughout a building.:"

' ‘A natural approach to'modeling transport time in flow paths involves breaking up a ﬁow element
up into multiple pieces,; connected in series. In-a sense, COMIS already supports. this approach. The
modeler can replace a single flow element with n new elements, linking n — 1 new zones whose
volumes sum to the presumed volume of the flow path. -This technique can greatly increase the
number of flow elemerits and zZones in a simulation. It also requires the modeler to adjust the flow
element parameters, so that an arbitrary pressure drop of Ap,./n across a single elemént produces
the same flow as a pressure drop of -Ap,., would have produced.in the original flow path. .

A more elegant solution would implement this approach dlrectly in the code that calculates
pollutant transport. This would allow the user.to estimate. transport times without mtroducmg new
zones and links to the airflow. system. In addition to. reducmg the size “of the airflow system, this
would eliminate the need to re-parameterize the affected flow elements and would case ‘the task of
establishing the appropriate number of d1v151ons for each flow path. '

No effort has been made to investigate the dlfﬁculty of 1mplernentmg any transport time model
in COMIS, However, since it would affect only the code that calculates pollutant dispersion, it would
not violate the requ1rement for steady-state airflow models. ‘

5.6. Nonrepeatable calculations.. Flow models in COMIS can give nonrepeatable results due
to “memory” in the calculation routines.'In order to reduce the:computational burden incurred by
repeated ‘evaluations, some flow routines store intermediate results for use during the next evaluation
of the flow path in question. For these miodels, the-flow resulting from one evaluation.of a partlcular
element may depend on the value calculated at the last call of the defining routine.- ‘

Memory in a flow routine has two negative consequences. First, the routine-can find ﬂows
incompatible with the defining equations. Second, repeated evaluat1ons of the flow element with the
same input pressures ‘can-result in different flows: : g

Inconsistent with definition. A flow element routine that depends on values from previous cal—
culations will, at sore point, find: flows incompatible with its defining equations. For example, the
routine implementing the crack médel in COMIS finds the path density; p; using the flow calculated
during the last evaluation of the crack in question*. It then uses this density to find the new flow:
However, it does not require that the new flow and density jointly satisfy the density relation. Thus,
the routine cdn return flows that violate the crack model’s deﬁmng equatlons {even if no errors arise
due to incorrect coupling of the mechanical energy balance): »

Fortunately, in most ‘cases the deviation from the model ‘is hkely to be small compared to
uncertdinty ‘in  the model. 'In other words, any errors induced by memory in the flow routines
probably fall bBelow -the user’s expectations of the accuracy with which the model predicts. the

1 P . B P o

* In thé duct model, this would be ‘equivalent to finding p by usln'g the last calculated velocity in Equation 44.
The actual duct model sets p to either p; or pgz, depending on the sign of Apr. :



0 _ _ LBNL-47653

flows in a'real building. Furthermore, as the airflow solver converges, it tends to make only small
adjustments to the estimated pressures. Hence, flow elements with memory often converge to values
exactly consistent with their defining relationships. .

‘Nonrepeatability. If a flow routine’s calculations depend on previous results, then repeated eval-
uation with the same set of input pressures may not produce the-same flows. In practice, the non-
repeatability of flow evaluations has greater consequences than the simple fact of inconsistency with
the defining equations—it can affect the algebraic solver responsible for ﬁndmg a solution to the
steady-state airflow problem. :

-Iterative methods for solving nonlinear algebraic systems generate a sequence ‘of trial solutions
for the system. Many iterative methods do not accept a new trial step automatically. Rather, they
compare the résults of each trial step to those of the last accepted step, both in order to accept or
reject the-trial solution, and in order to control the selection: of the next. trial point [6§6.5]:

In-COMIS, this means comparing the:overall flow imbalance for different sets of trial pressures:
When flow routines can deliver different flows at the same pressures, the solver cannot meaningfully
distinguish which of two slightly different trial solutions produces smaller flow imbalances. In some
cases, nonrepeatable flow evaluations can stagnate such a solver, as it repeatedly cuts lche step length
in an attempt to reduce the flow imbalances [13]: :

. The effect of nonrepeatable flow evaluations on the solver can be mterpreted in terms of the
derivatives of the flow relations. The solver requires continuous flows, with contmueu,s_, bounded
first derivatives with respect to the pressures.{14]. When a flow can change merely as a result of
re-evaluating at -the same pressures, then the.flow function . is not continuous. Furthermore, the
change in flow resulting from a slight perturbatlon to. a zone pressure may bear no relation to. the
derlvatlve of the flow model. :

5.7. Programmlng language COMIS is coded in Fortran-77, Wthh lacks both dynamlc memory
management and support for object-oriented programming.
' Memory allocation. COMIS, coded in Fortran-77, ‘necessarily allocates all memory statically=
that is, at the time the program starts up. This means the programmer, not the modeler, sets the
size of every array. Hence it is possible to define a simulation with more zones or links than the
program supports. In this case, it is necessary to 1ncrease the hard-coded number of zones or links
avallable and build a néw executable :

Clearly this scheme “wastes” ‘computer memory when runnmg ‘the program on problems midch
smaller than those for which the executable was built. Worse, if the environment used for building
an’exécutable limits the size of the program stack, then it places absolute limits on the size of prob-
lems the program can simulate. The-Airflow and Pollutant Transport group at Lawrence Berkeley
National Laboratory has encountered this limitation, for executables built using Compaq- Visual
Fortran v. 6.1.on Windows machines. This build environment limits executables to something in‘the
nelghborhood of 1000 zones: and 5000 links (of course, the balance between zones and-links affects
the Memory use): * : » .

i :@Qbject style. In an obJect—orlented language, a programmer—deﬁned cla.ss comblnes both ,vari-
ables (which contain data) and functions (which operate on data). Thus the programmer can bind

. together-the data and-functions that support a certain model (5 §9]. This supports strongly modular
simulation by: (1) collecting all model-related code together; and (2) restricting a model’s interac-
trons, with both the simulation environment and other models, to.a few well-defined exchanges of

ObJect—orlented languages also support mhe'mtance allowing: the programmer to create parent
classes from ‘which. all child .classes acquire variablés and functions [5 §14]. Thus for example ‘duct’
and ‘crack’ models could inherit behavior-from a parent class of generic “flow elements’. .This would
reduce the- effort required to-add new models, for example by providing routines to read .the model
parameters. from- an input file, link the model to the system, or estimate the model derivatives
using finite differences. More important, it would force new.models to conform to expected' coding
standards. Such standards might govern what routines a new model had to provide, the types of
data those routines accepted and. returned or the assumptions it could make.about the other models

. with which it interacts. -




LBNL-47653 11

Another advantage of inheritance becomes apparent when adding new flow models to the code
base. Fortran-77 requires a decision tree at every point where COMIS loops through all the flow
elements in a system. The decision logic’ checks the type ‘of the curfent flow element (e.g., duct,
crack, etc.), and calls the appropriate routine. To add a niew flow model, the programmer must add
a new test to every such' decision tree. These trees becorne quite long, and they occur in a number of
places in the code. An object-oriented program would contain a single call to'a generic flow elemért
routine at every such point, and would select automatically, at run—tlme, the routme approprlate for
the flow component currently at hand.

Fortran-90. Fortran-QO provides ‘many features notfound in Fortran—77 including dynamrc
memory. allocatron user-defined data structures, and prov1510n for 'a’ modular programming style.
Furthermore its compatlblllty ‘with Fortran-77 means ‘it would provide a relatrvely stralghtforward
upgrade path for COMIS ‘However, it does’ not go far enough toward obJect orlentatlon In partlc-
ular; it does not support 1nher1tance

5.8. Ownership. The most recent version of the program, COMISv 3 1 is admlmstered by the
Swiss Federal Laboratories for Materials Testmg and Research (EMPA). The dlstrlbutron fee (about
$400) supports activities such as’fixing ertors, updatmg the user gulde, 1mprovmg the graphlcal
interface, and providing user support.

From a user’s point of view, this is a positive development It does, however, comphcate the
questlon of ownershxp of the code. Researchers who plan to modify the source code exténsively (i.e.,
to the pomt where they end up with a substantially differerit program) may prefer to work from an
unhcensed “free” code base—that is, from COMISv.3.0.2." ~ :

Obv1ously, researchers will prefer to use COMISv.3.1 whenever possrble—not only because of
its superior support, continuing development, and bug fixes, but also because staying in step with
the rest of the COMIS community increases the ability to share models to others. However;, when
the p0551b111ty exists that the researcher may have to’ “fork” the program, creating a distinct vérsion,
then these advantages may carry less force. In that case, "the desrre for ¢lear ownership of the forked
¢ode may make COMIS v.3.0.2 more desireablé as a startmg—pomt for development. ;

Where researchers wish to combine COMIS with ‘other programs, for example the aerosol t¥ans-
port and fate model MIAQ4, other hcensmg issues Wlll come into play.” For example the - GNU
General Public License (GPL) under which MIAQ is reléased, requires that any program’contain-
ing or derived from MIAQ4 must also be distributed under the térms of the GPL [9]. The'legal
implications of the GPL go beyond the scope of this document. B

6. Recommendatlons . _ o .

In general, thrée-approaches exist for addressing deﬁmencres in an existing program (1) make
ad hoc changes, introducing code patches and decision trees to modify the program’s behavior on a
case-by-case basis; (2) restructure the code, to reimplement or regularize its behavior in a consistent
marnner for all cases;.or(3) find or write a more capable program. i

Given the known restrictions already embedded in the code.for COMIS; the limited exten31b1hty
of its framework, the difficulty of modifying its significant monolithic parts, and the licensing ques-
tions, the Airflow and Pollutant Transport group at Lawrence Berkeley National Laboratory should
seek a miore' flexible; more capable program for pursumg its research on airflow and-contaminant
transport. : :

Because COMIS can model a useful range of building alrﬂow and pollutant transport problems,
is:reasonably efficient, and has a strong user base, the Laboratory should not abandon COMIS:
However, in light of the constraints that COMIS imposes on airflow models, and its limited support
for new models, the Airflow and Poliutant Transport group should take steps to 1dent1fy, develop,
and gain experience with a viable alternate simulation environment. :

"~ A number of obvious alternatives exist. Most notably, CONTAM, SPARK, and IDA were all
developed specifically with buildings applications in mind. It would also be possrble,to create a
completely new simulation framiework. In addition, other general-purpose simulation environments
must exist—in particular ones with no licensing issues, that support (or even enforce) .strongly



12 _ LBNL-47653

modular simulation.

6.1.. CONTAM. COMIS closely resembles the CONTAM multizone airflow simulation program,
developed at the Natlonal Institute of Standards and Technology [19] CONTAM generally is per-
ceived as easier to upgrade than COMIS—largely because it is written in a more modern program-
ming language (C as opposed to Fortran-77), and because of its more consrstent code (written by
one programmer rather than by many). Thus, the program mev1tably comes up when d1scuss1on
turns to a successor for COMIS.

Unfortunately, CONTAM shares many of the design features that make COMIS a questlonable
platform for long-term development In partrcular CONTAM also: (1) prov1des only well-mixed
zones; (2) restricts the flow components to steady—state, monotone increasing functions of the pres-
sure drop; and (3) decouples the mechanical energy balance from the flow equatlons, though ina
slightly different way than does COMIS. In addition, some flow components in CONTAM also have"
memory, so that the results of one evaluation influence the flow calculated at the next ‘evaluation.

6. 2 SPARK SPARK, -the Slmulatlon Problem Analys1s ‘Research Kernel,” prov1des a general—
purpose environment for simulating differential-algebraic systems [4], {18]. As with COMIS, the
user defines a simulation problem by specifying the connections between components. However, in
SPARK, the user also defines the component models.

Deﬁmng models. To create SPARK components, the modeler first writes the more fundamental
atomic objects, which represent mleldual equatrons Ideally, the modeler provrdes multlple 1mple-
mentations of each atomic equation object, giving various 3551gnment expressions derived from the
algebraic relation. For example, a mass continuity relation for zone 1, fi. 2+ fi- 3 = 0, could yield
the assignments fip := — fi-3 and f1-3 = —fi-2. .

: The modeler may bundle multlple equatlons together to form components " However, this 1s‘
strlctly for convemence—fundamentally, SPARK treats the entire system’ ‘at the equation level.

- SPARK processes a simulation model by constructing a data. flow graph to show how the varr-
ables in the assembled equations depend on one another It applies graph theory, choosing from
among the assignment. expressions in order, to reduce the number of mdependent variables in the
system. It can also decompose the. problem into 1ndependent subsystems For example g1ven equa-
tions that deﬁned a COMIS—style system, SPARK could separate the equatlons deﬁnmg pollutant
transport from those defining the alrﬂows solvmg the transport problern only after calculatlng the
airflows.

After determining the order in Wthh to evaluate the equatlons SPARK creates an executable
program tailored to the simulation model at hand. The user runs this executable possibly supplymg
run-time parameters to complete the model realization. .

-~ Implementation .issues. SPARK: aims to provide a completely general modeling env1ronment
and -one that eases the task of:defining new simulation components.- Such an environment would
greatly-aid researchers interested in quickly writing and testing new component models—for example
to explore novel control strategies-for-a building, to add a previously unsupported feature to.an

existing model, or to scopé experimental-requirements when developing a new model.

A The program remains, moreover, a work in progress. Itsuse -of graph theory to sort. the equa—
tions, plus the fact that this process generates the:complete: source code idefining a simulation,
means ‘that SPARK requires a'large amountof memory to process and compile a;simulation into
an executable. Perhaps more seriously, its numerical solution algorithms have shown convergence
problemis. Furthermore, processing the -assignment expressions using. graph theory can.make the
final selection:of variables, and -their depéndencies, somewhat opaque.to the user (though SPARK.
does provide.tools for both determining and.influencing:the final selection of variables). This opacity
can make troubleshooting component. models, or simulation models, more difficult. . .

Finally, it is not clear that"SPARK supports models with variable-length array inputs. Thrs
would make ‘it problematic to define a general zone model, for example, since the number of flow
elernents connecting to each zone can:vary. . v

‘Imipénding releases of SPARK should address at least some of these problems For more.infor-
matioh, see htitp://simulationrdsearch.1bl. gov/VS/spark html. »




LBNL-47653 ' 13

6.3. IDA. The simulation environment IDA also provides a general framework for defining and
solving differential-algebraic systems {17]. The literature describing IDA also lays out an impressive
range of ideas regarding desireable qualities in-a general simulation program.

IDA is a commiercial program, of note here mainly because of: (1) its origins in, and emstlng
library of models for, building energy simulation; and (2) its use of Neutral Model Format to express
models equatlonally, rather than algorithmically [3]. .

For more mformatron on IDA, see http://www.equa. se/eng ida.ice.html.

6.4. Purpose-produced alternative. It would be possible to create a simulation fmmework that
is, a program -that mediates between user-defined component models and public-domain general
differential-algebraic solvers such as DASSL (2 §5].- The framework would consist entirely of an
interface designed to:support strongly modular simulation. - . - -

The interface would define a set of functions through which the component models Would 1nteract
with the simulation framework, and with one another.. For example, in the duct model these functions
would -include: (1) procedures for creating a particular instance of .a duct—setting parameters,
making requests to the simulation framework for internal variables (such as the friction factor), and
informing the framework about any connection variables (such as p; or fi.2); (2) procedures for
initializing the model at the start of each time step; (3) a procedure for, evaluating the model while
solving the system; and (4), procedures for reportmg varrables of 1nterest at the end of a time step
(for instance, the power dissipated in the duct).” '

This design would represent a more algorithm-oriented approach than that of SPARK or IDA.
Possibly this would relieve the need for the up-front preprocessing time, and the large computer
memory, that SPARK requires. On the other hand, it would tend to create larger, sparser Jacobian
matrices than those of SPARK, with the attendant slower factorization times (18] There is, however,
anecdotal evidence to suggest that sparser‘systems can require fewer 1terat10ns overall to solve than
the corresponding compacted, dense systéms [4 p.286]. S :

To speed the development of new models, the framework should . include at least two dlstlnct
pieces: (1) a simulation engine, which reads and performs a srmulatlon a.ccordlng toa spemﬁcatron
that is well-formed in some sense; and (2) an input engine, which accepts a human-readable sim-
ulation ‘description; checks it for errors, and converts-it to.a well-formed simulation specification
for the simulation’ engirie to-perform: Separating the:user intefface from the simulation tool would
allow model developers to code and test new-components without first providing a user interface for
the model inputs. Furthermore, it would allow greater flexibility in the user interface, for instance
permitting a text-based input format to coexist w1th a graphlcal mterface, and permrttmg dlfferent
graphical mterfaces for different platforms ‘

Such a limited 31mulat1on framework once deﬁned wotild pose only problems of efficient im-
plementation. However, in some ways it represents a greater risk than SPARK. Even ‘making ‘use
of public-domain software for parsing input files, solving the nonlinear systems, ahd factoring or
indirectly solving sparse matrices, the development of such a framework would still requlre a large
investment in programmer time. The same time mrght be. better spent 1mplement1ng more robust
solvers in SPARK.

6.5. Recommendation. An effort should be made to 1dent1fy and compare simuldtion envrron-
ments that can duplicate the capabrhtres of COMIS without imposing the modéling resttictions
outlined above. The alternatives mentioned above were included, not in the spirit of advocating
the adoption of one or the other, but to point out that a number:of. pOSSlbllltleS exist for replacmg
COMIS for multizone airflow and pollutant transport modehng :
In particular, efforts should be made to identify simulation envuomnents that
e suppott a strongly modular approach'to defining .component models,
o allow systems of mixed differential and algebraic equations; ' : ; :
¢ provide event-based models, for example to simulate a thermostat, or a ventllatlon system
controller that switches modes based on the level of pollutant in a rooin;
e support direct and: indirect solution methods suitable for coarse—grld CFD models, i
e allow variable-length array inputs; :
e provide an intuitive user interface for connectmg component models in order to bu11d up systems



14 ) N LBNL-47653

e encourage experimentation with component models and system-level combinations of compo-
nent models, by providing fast turnaround when implementing new models; and

e support the transparent communication of models and solution techniques between researchers,

" for ex’ample by using public-domain source code and text-based mechanisms for defining models.

" These environments should be evaluated in terrms of their suitability for replacmg COMIS. As a
first step, the current capabilities of COMIS should be programmed as component models, and tested
in simulations of building airflow systems. Noté that in such a trial, one should not expect a general
simulation tool to calculate exactly the same values as a comparable COMIS building. model—mainly .
because it will not reproduce the same implementation details; such as the decoupled mechanical
energy balarice, imposed by the monolithic parts of COMIS. .

Conversely, one should not expect a general simulation environment to match the execution
speed of COMIS, becatise: (1) a general environment cannot employ as efficient a solution algorithm,
since it does not impose the same restrictions on flow models; and.(2) a general environment must.
couple all the equations properly, and hence must solve alarger and more complex system of. nonhnea.r
equatlons : : : 0o :

Acknowledgements This work was supported by the Office of Nonprohferatlon Research and
Engineering, Chemical and Blologlcal National Securlty Program, of the National Nuclear Securlty
Administration under U.S. Departmerit of Energy Contract No DE—AC03—7GSF00098 o

7 References

[1] James W Axley, Zonal models using loop equatzons and surface dmg cell~to cell flow relations,
in Roomvent, 2000, Proceedmgs of the 7th International Conference on Air Dlstrrbutlon in Rooms,
Reading, U.K. (July 2000), v. 1, pp. 235-240. Elsevier Scrence Ltd.

[2] K.E. Brenan, S. L Campbell _and L.R. Petzold, “Numerical Solution of Tnitial-Valie Problems
in leferentlal-Algebralc Equatlons ” Soc1ety for Industrlal and Applied’ Mathematlcs (1996)

[3] ‘Axel Bring snd Per Sahlin, Modelling Azr Flows and Buildings with NMF and IDA in.Building
Simulation '93;, Proceedings of the Third International IBPSA Conference, Adelaide. (August 1993)
pp: 463—469. Internatlonal Building Peérformance Simulation Association.

{4 W. F. Buhl AE. Erdem and F.C. Winkelmann, Recent zmprovements in SPARK strong comn-
ponent decomposition, multivalued ob]ects and graphical mterface in. Bulldmg Simulation '93, Pro-
ceedings of the Third International IBPSA Conference, Adelaide (August 1993), pp. 283-289. In-
ternational Building Performance Simulation Association. Lawrence Berkeley Natlonal Laboratory
report LB1-33906.

5] Guldo Buzzi-Ferraris, “Scientific C++: Building numencal llbrarles the object-oriented way.”
Addison-Wesléy Publishing Conipany (1994): -

e
[6] J.E. Dennis, Jr. and Robert B. Schnabel, “Numerical Methods for Unconstrained Optlmlzatlon
and Nonlmear Equations.” Society for Industrlal and Apphed Mathematlcs (1996)

[7] Hélmet E.: Feustel, COMIS—an international multizone air-flow and contaminant:transport
model, Energy ‘and Buildings, v. 30 n. 1 (1999), pp. 3-18. Elsevier Science S:A.. Lawrence Berkeley-
National Laboratory report LBNL—42182 : N

[8] Andrew Ford, “Modellng the Envrronment An 1ntroduct10n to system dynam1cs modelmg of
environmental systems.” Island Press (1999). C y .

[9] Free Software Foundatlon http://www. fsf org/licenses'/li'c'enses html.

{10] Philip M. Gerhart and Richard J. Gross, “Fundamentals of Fluid Mechanics.” Addlson-Wesley
Pubhshmg Company (1985).




LBNL-47653 . 15

[11] Christian Inard, Hassan Bouia, and Pascal Dalicieux, Prediction of air temperature distribution
in buildings with a zonal model Energy and Buildings, v. 24 n..2 (July 1996), pp. 125-132. Elsevier
Science S.A.. : B

[12] Y. Jaluria, S.H-K. Lee, G.P. Mercier, and Q. Tan, Transport processes across a homzontal vent
due to denszty and pressure differences, Experlmental Thermal and Fluld Smence v 16 n. 3 (March
1998), pp. 260-273; Elsev1er Science Inc., New York. '

[13] D.M. Lorenzetti and M.D. Sohn, Impromng speed and robustness of the COMIS solver in
Roomvent 2000, Proceedings of'the 7“‘ International Conference on Air Distribution in Rooms,
Reading, U.K. (July 2000); v. 1, pp. 241-246. Elsevrer Sc1ence Ltd. Lawrence Berkeley Natlonal
Laboratory report LBNL—44792 ; .

[14] David M. Lorenzetti, “Computatlonal Aspects of Nodal Multlzone Alrﬂow Systems.” Lawrence
Berkeley National Laboratory report LBNL-46949 (2001) Accepted for publication in Building and
Environment.

[15] Faye C. McQuiston and Jerald D. Parker, ‘Heating, Ventilating, and Air Condrtlomng Analysis
and. design, Third edition.”. John Wiley & Sons (1988).. . .

[16] Laurent’ Mora Ashok Gadgil, and Etienné Wurtz; ’“Comparmg zonal and CFD model pré-
dictions of air ‘lows in large indoor ‘spdces to experimental data.” ‘Lawrence Berkeley Natlonal
Laboratory report LBNL—47027 (2000) Accepted for pubhcatron in Indoor Air. AR

[17] Per Sahhn and Axel Brmg, IDA Solver: A tool for. buzldzng and energy systems szmulatzon, in
Building Simulation '91 Conference Proceedings, Nice, France (August 1991), pp. 339-348: Inter-
natlonal ‘Building Performance: Simulation Association:;, N y

' [18] Edward F. Sowell and Philip Haves Eﬂiczent solutzor;i"s-tmtegzes for building en‘erg‘y system
simulation, Lawrence Berkeley National Laboratory report LBL-45936 (March 2000). Submitted to
Energy and Buildings.

[19} George N. Walton, “CONTAM96 User Manual.” National Institute of Standards and Technol-
ogy, report NISTIR-6056 (September 1997).

A. Effect of decoupling the flow equations
As noted above, COMIS decouples Equation 4.1 from the flow element equations by setting
the path density to some average of the zone densities p; and p;. To estimate the flow error for a
particularly sensitive case, consider a passive stack of diameter D = 10cm and height H = 6 m. Let
the stack connect a room (zone 1), at 20 C, to the outside (zone 2), at 0 C.
The analysis makes the following assumptions:
(1) A properly-coupled set of equations would show that the stack fills with air from the room, so
that p = p1 = 1.204kg/m3.
(2) COMIS uses a path density p = 5 = (””"’2) = 1.248kg/m? to find Ap[,, but uses p; to find the
flow in the duct equations.
(3) The pressure drop through the stack from inside to out equals the pressure drop Ap,, through
the building envelope from inside to out, plus the pressure drop due to hydrostatic effects in
the ambient air,

p1— P2 = Apy + p2gH . , ' (A1)

(4) Parameters u = 184.6-10~7 N-s/m? and ¢ = 0.0015 mm (a value for very smooth pipes [10 §7.2]).

It is not certain that COMIS will actually use § in the mechanical energy balance, since the
logic controlling the density calculation does not admit straightforward analysis. Furthermore, the
exact pressure drop in Equation A.1 depends on other particulars of the simulation. When the stack
draws strongly enough, air will infiltrate through the walls, making Ap,, < 0 and decreasing the
driving pressure p; — p2. On the other hand, wind at the roof will create suction, increasing the
pressure drop (but also making Ap,, more negative).



16 ‘ _ LBNL-47653

For the reference case; let Ap,, = 0. Following assumption 1, a proper coupling of the mechanical
energy balance to the duct equations would give Apy = 5.190Pa and fi.; = 0.02145kg/s (or a
volume flow of about 0.018 m®/s or 1100L/min). From assumption 2, on the other hand COMIS
calculates Apr = 2.595Pa and fi.2 = 0.01441 kg/s.

In this reference case, the flow error made by decoupling Equatlon 4. 1 comes to aboiit 33%.

‘The table below shows, for this reference case and several variations, the flow calculated under
assumptlon 1, and the correspondmg error made’ by COMIS under a.ssumptlon 2.

. _)r

- Case ... . |; .Flow,-kg/s Error, %

= Réference—: - ..~ | 0.02145 ‘ 328 .

D:10cm — 30cm 0.4142 321"
Towe :0C — —10C._ 002762 397
Apy: OPa — —0. lPa 1.0.02121 " 33.6
H:6m—12m | 002145 ’ "32.8

" In general, & variation on the reference case that increases the flow also decreases the relative
error associated with using the wrong density in the mechanical energy balance. Therefore increasing
the stack diameter reduces the relative error.. However, the flow varies about its reference value more
‘than does the error, and increasing the stack. dlameter 1ncreases ‘the flow substantlally Thus thls
coding problem can make COMIS calculate large ﬂows with large absolute errors. =~

The last row of the table shows that a taller stack yields the same flow as in the reference
case. That is, under the listed- assumptions; increasing the height of :the stack has no’effect on the
flsws. This occurs.ecausé the increased: frictionallosses ‘in the duct exactly offset:the greater driving
pressure difference due to the hydrostatic efféct.«In an actual simulation, the pressure: drop:across
the stack would depend on the calculated flows through all the mterconnected zones, and changing
the height of the stack would aﬂ'ect the flow through it..



EREST ERANIEE LAVEEIER EEREEWEY MATELAL LACERNTEGRR?
B GVELERREN READ | EEREEEY, GAVFERNA O4721E

PRrpEDed G5 o U5, gpaissn ol Bnugy emnids Conos: fa, CHAB REFuED






