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Measurements of branching fractions for B* — p*y, B’ — py, and B — wy
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We present branching fraction measurements for the radiative decays B™ — p*y, B — py, and
B° — wy. The analysis is based on a data sample of 465 X 10® BB events collected with the BABAR
detector at the PEP-II asymmetric-energy B Factory located at the Stanford Linear Accelerator Center. We
find B(B* — pTy) = (1.205042 = 0.20) X 107%, B(B" — p°y) = (0.97732 £ 0.06) X 107°, and a
90% C.L. upper limit B(B® — wy) < 0.9 X 107°, where the first error is statistical and the second is
systematic. We also measure the isospin-violating quantity I'(B* — p*y)/2I'(B® — py) — 1 =

—0.43335 * 0.10.

DOI: 10.1103/PhysRevD.78.112001

L. INTRODUCTION

Within the standard model (SM), the radiative decays
BT — p*y, B — p%y, and B — wy' proceed mainly
through a b — dvy electroweak penguin amplitude with a
virtual top quark in the loop. Hence, the decay rates depend
on the magnitude of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element V,,. The branching fraction results
from recent next-to-leading order calculations are listed in
Table I. While these exclusive decay rates have a large
theoretical uncertainty dominated by the imprecise knowl-
edge of the form factors, some of this uncertainty cancels
in the ratio of B — p(w)y to B — K"y branching frac-
tions. This ratio provides a constraint on the ratio of the
CKM matrix elements |V,,/ VI, which can also be ob-
tained from the ratio of B, and B, mixing frequencies [4].
Physics beyond the SM could affect differently B —
p(w)y and B,/B, mixing, and hence create inconsisten-
cies between the results obtained from the two methods.

The ratio of B — p(w)y to B — K"+ branching frac-
tions is related to |V,;/V,,| [5] via

B[B— p(@)y] _ | Vi 2(1 - mi(w)/m%f X
B(B— K*y) Vi 1 — m%./m} ple)
X [1+ AR, )l (1)

Via

The coefficient S is 1 for p* and % for p® or w, m is the
particle mass, {,(,) is the ratio of the form factors for the
decays B — p(w)y and B— K"y, and AR, accounts
for differences in decay dynamics, including weak annihi-
lation contributions. The precision of the |V,;/V,,| deter-
mination can be improved by using an average branching
fraction for B — p(w)7y decays. Within the SM, the isospin
asymmetry between Bt — p*y and B — p°y is domi-
nated by weak annihilation contributions, and is expected

!Charge conjugate modes are implied throughout.

PACS numbers: 12.15.Hh, 13.25.Hw

to be small; on the other hand, the asymmetry between
B? — py and B® — w1y can be sizable, due to the differ-
ence in the form factors [1,3].

We report an updated study of the decays Bt — p*y,
B° — p%y, and B — wy based on 465 X 10° BB events,
corresponding to an integrated luminosity of 423 fb™!, a
data sample 25% larger than that used in our previous
publication [6]. In addition, we reduce backgrounds con-
siderably by using a multivariate algorithm based on
bootstrap-aggregated (bagged) decision trees (BDTs) [7]
and additional discriminating variables to separate signal
from background.

II. THE BABAR DETECTOR AND DATA SET

The data sample is collected with the BABAR detector at
the PEP-II asymmetric-energy e’ e~ storage ring at a
center-of-mass (CM) energy near /s = 10.58 GeV, corre-
sponding to the Y'(4S) resonance (on resonance). Charged
particle trajectories and energy loss (dE/dx) are measured
with a five-layer silicon vertex tracker (SVT) and a 40-
layer drift chamber (DCH) in a 1.5 T magnetic field.
Photons and electrons are detected in a CsI(TI) crystal
electromagnetic calorimeter (EMC) with photon energy
resolution o/E = 0.023(E/GeV)~/*®0.019. A ring-
imaging Cherenkov detector based on the detection of
internally reflected Cherenkov light (DIRC) provides in-
formation for charged particle identification. The K-

TABLE 1. Recent predictions of the branching fractions.
Mode Branching fraction ( X 107°)
Reference [1]  Reference [2]  Reference [3]
Bt —pty 141027 1.587033 1.16 = 0.26
B’ — ply 0.69 = 0.12 0.76+92% 0.55 +0.13
B — wy 0.55 = 0.09 0.44 £ 0.10
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separation in the DIRC is above 40 at laboratory momenta
up to 3 GeV/c. In order to identify muons, the magnetic
flux return is instrumented with resistive plate chambers
and limited streamer tubes. A detailed description of the
detector can be found elsewhere [8].

We use a GEANT4-based [9] Monte Carlo (MC) simula-
tion to model the BABAR detector response, taking into
account the varying accelerator and detector conditions.
Dedicated signal and background MC samples are used to
optimize selection criteria, to obtain signal efficiencies,
and to validate the analysis. Data control samples, includ-
ing 41 fb~! of data collected about 40 MeV below the BB
production threshold (off resonance), are used to study
backgrounds coming from continuum e*e™ — ¢g, with
q=u,d,s,ec.

III. EVENT RECONSTRUCTION AND
BACKGROUND SUPPRESSION

The decays B — p(w)y are reconstructed by combining
a high-energy photon with a vector meson reconstructed in
the decay modes p* — 7t 7%, p* > 777, and w —
7" 7~ 7°. The dominant source of background is coming
from continuum events that contain a high-energy photon
from 70 or 7 decays or from initial-state radiation (ISR).
There are also significant backgrounds from B meson
decays. The decays B — K"y, K* — K can mimic the
signal when the kaon is misidentified as a pion. Decays of
B — (p/w)(7°/mn) with a high-energy photon from the 7°
or 1 decay also mimic the signal. In addition, there are
other B backgrounds originating mainly from B — X,y
and B — X(7°/n) decays.

The event selection and background suppression are
performed in two steps. We apply a set of loose selection
criteria to select well-measured photons and charged pions
and to reject background events that are kinematically very
different from the signal events. For events that pass the
loose event selection criteria, we then use the BDT tech-
nique to further reduce background.

A. Loose selection

We reduce background contributions from continuum
processes by considering only events for which the ratio R,
of second-to-zeroth Fox-Wolfram moments [10], calcu-
lated using the momenta of all charged and neutral parti-
cles in the event, is less than 0.7.

A photon candidate is identified as a cluster of energy
deposited in contiguous EMC crystals, and not associated
with any charged track. The high-energy photon must have
energy 1.5 <E, <4.4 GeV in the laboratory frame and
1.5< Ei; < 3.5 GeV in the CM frame, be well contained
within the EMC acceptance with polar angle —0.74 <
cosf < 0.93, and be isolated by at least 25 cm at the
entrance of the EMC from any other photon candidate or
charged track. The distribution of the energy deposition is
required to be consistent with that of a photon shower.
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Charged-pion candidates are selected from well-
reconstructed tracks that have at least 12 DCH hits used
in the track fit and a minimum momentum transverse to the
beam direction of 100 MeV/c. The tracks are required to
originate near the interaction point (IP): the distance of
closest approach to the IP must be less than 10 cm along
the beam direction and less than 2 cm in the plane perpen-
dicular to the beam direction. The 77~ identification is
based on a likelihood L; computed for particle hypothesis
i(= m, K, p) using dE/dx measured in the SVT and DCH
and the information of Cherenkov photons detected by the
DIRC. The selection criteria are optimized to reject
charged kaons produced in B — K*vy decays. The pion
candidates in B — @y must have Lg/(Lx + L) <0.5
andL,/(L, + L,) < 0.98 and must not be consistent with
being an electron. The pion candidates in B — p7y must
have Ly/(Lx +L,) <02 and L,/(L,+ L;)<0.5 and
must not be consistent with either an electron or a muon
candidate hypothesis; in addition, for all candidates with
laboratory momenta above 0.6 GeV/c, the number of
photons observed in the DIRC is required to be consistent
with the number that is expected for the pion hypothesis.
The performance of the pion identification requirements is
evaluated with the decay D** — D°(— K~ 7r*)#™, which
provides a large, clean sample of 7= and K*. Using the
results shown in Fig. 1, we find that the pion identification
requirement retains 85% of the pions from B — p+y decays
and rejects 99% of the kaons from B — K™y decays.

We form 7° candidates from pairs of photons with
energies greater than 50 MeV in the laboratory frame and
an invariant mass n1,,, in the range 115-150 MeV/ c?. We
combine the identified pions into vector-meson candidates
requiring 630 < m+,- <960MeV/c?, 640 <m_+_o <
930 MeV/c?, and 760 <m_+_ -0 <790 MeV/c* for
p° pT, and w, respectively. The charged-pion pairs are
required to originate from a common vertex.

The photon and p/w candidates are combined to form
the B meson candidates. We define AE = Ej — \/5/2,

where E = E; o T E is the CM energy of the B meson

candidate. The AE distributions of signal events are ex-
pected to peak near zero with a resolution of about 50 MeV
dominated by the photon energy resolution, and to have a
tail in the negative region due to photon energy loss in the
detector. We also define the beam-energy-substituted mass
mgg = 4/s/4 — pi?, where pl; is the CM momentum of
the B candidate modified by scaling the photon momentum
so that E;/w + Ey — \/s/2 = 0. This procedure improves
the mgg resolution for the signal events in the AE negative
tail. Signal events are expected to have an mgg distribution
centered at the mass of the B meson mp with a resolution of
3MeV/c?>. We consider candidates with mpg >
5.22 GeV/c?* and —0.3 <AE<0.3 GeV for further
analysis. This region includes sidebands that allow the
continuum background yields to be extracted from a fit to
the data.
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Performance of the charged-pion identification requirement applied to B — p7y decays, evaluated using the D* control

sample. Filled circles are for 7= efficiency and use the left-hand scale. Open circles are for K= misidentification and use the right-hand
scale. The plot on the left shows results for continuum MC events and the plot on the right shows results for data.

The signal efficiencies for the loose selection described
above are 22% for B* — p*vy, 25% for B* — p°vy, and
17% for B® — wy.

B. Bagged decision tree

The bagged decision trees are trained separately for the
Bt — p*y, B — p%y, and B — w1y channels with MC
simulated signal and background samples of about 60 000
and 90000 events, respectively, and then validated with
independent samples of the same size. The background
sample consists of a BB MC sample that is about 3 times
larger than the data and of a continuum MC sample that is
about 1.5 times larger. For the input classifiers, we choose
approximately 60 event quantities that characterize the
kinematics of the 7° candidates, the high-energy photon,
the vector meson, the B meson, and the rest of the event
(ROE), which are the particles that are not used to recon-
struct the B candidate. These quantities all have distribu-
tions that agree well between off-resonance data and
continuum MC events.

To reduce combinatorial background in the recon-
structed 770 candidates, we use in the BDT the invariant
mass m.,, and cosf,,, the cosine of the opening angle
between the photons in the laboratory frame.

We associate the high-energy photon candidate y with
each of the other photons y’ in the event and calculate the
likelihood ratio

’P(mwr, E'y’ | l)

.ER[ . a2
E,|signal) + P(m.,, E,i)

2

B P(m

Yy
where i = 7%, i and P is the probability density function
(PDF) defined in terms of the energy of the second photon
in the laboratory frame E,, and the invariant mass of the
pair m.,,,. The PDFs are determined from simulated signal
and continuum background events. The likelihood ratios
LR 0 and LR, are used in the BDT to reject high-energy
photons from 77° and 7 decays.

To reject background events from B — p(7°/%) and
B — w(m/7), we also use the vector-meson helicity
angle 6y, which is defined as the angle between the B
momentum vector and the 77 track calculated in the p rest
frame for a p meson, or the angle between the B momen-
tum vector and the normal to the w decay plane for an w
meson. This variable is useful because in signal events the
vector meson is transversely polarized, while in the back-
ground events it is longitudinally polarized.

Variables used in the BDT to reduce continuum back-
ground include R,, the significance of the separation of the
two B vertices along the beam axis (S,,), the polar angle of
the B candidate momentum in the CM frame with respect
to the beam axis (63), and R, which is R, in the frame
recoiling against the photon momentum. We compute the
moments M; =Y pj - |cos6?jf|"/szj with i =1, 2, 3,
where pj is the momentum of each particle j in the ROE
and 0; is the angle of the momentum with respect to an

axis. We use the M; with respect to the photon direction
and the ROE thrust axis. We also include flavor-tagging
variables [11] to exploit the differences in lepton and kaon
production between background and B decays.

While we find that all the variables contribute to the
sensitivity of the analysis, the most effective ones are S,_,
cosf,,, R,, costly, M3 with respect to the photon direction,
the missing mass of the ROE, cosfly, and £Rw0,n- The
distribution of the BDT output for the decay B® — p®y is
shown in Fig. 2. We require the BDT output to be greater
than 0.94 (0.93) for B — py (B — wy). These selection
requirements have been optimized for maximum statistical
signal significance with assumed signal branching frac-
tions of 1.0 X 1076 and 0.5 X 107° for the charged and
neutral modes, respectively. The signal significance is
determined from a fit described in the next section. For
the signal events that pass the loose selection criteria, the
BDT requirements have an efficiency of 19% for B™ —
p" v, 31% for B — p°y, and 34% for B — wy.
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FIG. 2 (color online). Distributions of the BDT output for
B? — p%y in signal (dashed line) and background (dotted line)
MC samples. The distributions are normalized to the same area.

In events where multiple candidates are present, we
select the one with the reconstructed vector-meson mass
closest to the nominal mass. This criterion is chosen be-
cause the mass of the vector meson is found to be uncorre-
lated with the variables used in the fit. After applying all
the selection criteria described above to signal MC
samples, we find signal efficiencies of 4.2% for B* —
p 7y, 1.7% for B® — p°y, and 5.2% for B — w1y [taking
into account the branching fraction B(w — 7+ 7~ 7Y) =
0.892 = 0.007 [12]], while backgrounds are reduced by
0(107).

IV. MAXIMUM LIKELIHOOD FIT

We determine signal yields from an unbinned maximum
likelihood fit to mpg and AE. The likelihood function for a
signal mode k (= p*y, p’y, wy) with a sample of N,
events is defined as

Niyp Nhyp

£y =exp- 3 ni)[ﬁ(z nPiza)] @

i=1 j=1%i=1

where Ny, is the number of event hypotheses, and n; is the
yield for each. For B — w1y, three event hypotheses are
considered: signal, continuum background, and combina-
torial B backgrounds. For B — p°y, a B — K*0y back-
ground hypothesis is also included, while for B¥ — p*y, a
combined B* — K**y/p™ 7" hypothesis is included.
Since the correlations between mgg and AE are found to
be negligible in MC event samples, we define the proba-
bility density function P;(%;; &;) as the product of individ-
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ual PDFs for each observable x; = mgg, AE, given the set
of parameters &;.

The individual PDFs are determined from fits to dedi-
cated MC event samples. The signal mgg PDFs are pa-
rametrized by a Crystal Ball (CB) function [13] and the AE
PDFs are parametrized as

—(AE — p)? )

AE
FIAE) = exp<20'%,1e + ay R(AE — w)?

“)

where u is the peak position of the distribution, o; and o
are the widths on the left and right of the peak, and «; and
ap are measures of the tails on the left and right of the
peak, respectively. The peak positions and widths of the
signal mgg and AE PDFs are corrected for the observed
difference between data and MC samples of B — K"y
decays. The PDFs for the remaining B — K**y and com-
bined B — K**y/B" — p* #° backgrounds are deter-
mined from dedicated MC samples that are 100 times
larger than the data. These PDFs are described by a CB
function for mgg with a peak position the same as that of
the signal PDF—but with a much larger width—and a CB
function for AE with a peak position near —80 MeV. The
negative AE peak position is due either to a kaon mis-
identified as a pion in B — K*y or to a single missing
photonin Bt — p* 7%, The mgg and A E PDFs for all other
B backgrounds are determined from the BB MC sample.
The mgg spectra peak slightly in the signal region, and
therefore are parametrized by a CB function, while the AE
spectra are parametrized by an exponential function. The
continuum mgg and AE PDFs are parametrized by an
ARGUS threshold function [14] and a first order polyno-
mial, respectively.

The fit to the data determines the signal yield ngy, the
continuum yield, and the shape parameters of the contin-
uum PDFs. The shape parameters of the signal and B
background PDFs are fixed in the fit. The relative yield
between the peaking and the other B backgrounds is fixed
to the value obtained from known branching fractions [12]
and selection efficiencies determined from MC event
samples. The overall yields of the B backgrounds are
also fixed. All fixed parameters are later varied to evaluate
systematic errors in ng,.

We validate the fitting procedure using ensembles of
signal and background events, with signal contributions
of zero, 1, and 2 times the rate expected from previous
measurements of the p*y, p’y, and wy branching frac-
tions. Two types of ensembles are produced: one with both
signal and background events generated using the PDFs
described above, and the other with signal events randomly
sampled from the GEANT4 MC events and background
events generated using the corresponding PDFs. No bias
is found in the fit to these event samples.

Figure 3 shows the data points and the projections of the
fit results for AE and mgg separately for each decay mode.
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AE and mgg projections of the fits for the decay modes B* — p ™y (top panels), B — p°y (middle panels),

and B — w7y (bottom panels). For illustrative purposes only, these plots are made by requiring —0.2 < AE < 0.1 GeV for the mgg
projections and mgg > 5.27 GeV/c? for the AE projections. The points are data, the solid line is the fit result, the dashed line is the
sum of B backgrounds, and the dash-dotted and dotted lines are the contributions from continuum background and signal, respectively.

The signal yields are reported in Table II. The significance
is computed as ~2AInL, where AlnL is the log-
likelihood difference between the best fit and the null-
signal hypothesis. To take into account the systematic error
in ng,, the likelihood function is convolved with a
Gaussian distribution that has a width equal to the system-
atic error.

TABLE II.  The signal yield ng;,, significance X in standard
deviations including the systematic error in ng,, efficiency €, and
branching fraction B for each mode. The first error is statistical
and the second is systematic. The branching fractions for B —
(p/w)y and B — py are obtained with the assumption of
isospin and SU(3)r symmetries; see Sec. VL.

B(1079)
1.207042 = 0.20

Mode Ngg S e(%)
23381 £31 320 42

BT —pTy

BY— p%y 349738 +12 540 77 097753 +0.06
B’ — wy 124786 +2.0 220 52 050753 +0.09
B—(p/w)y 6.50 1.63%239 + 0.16
B—py 6.00 17319334 + 0.17

V. SYSTEMATIC UNCERTAINTIES

Table III gives the contributions to the systematic un-
certainties. The systematic error affecting the signal effi-
ciency includes uncertainties on tracking, particle
identification, y and 7 reconstruction, and BDT selection.
The modeling of signal and background in the fit contrib-
utes to the uncertainties on the signal yields.

TABLE III. Fractional systematic errors (in %) of the mea-
sured branching fractions.

Source of error oty Py wy py (p/o)y
Tracking efficiency 0.4 0.4 04 04 0.4
Particle identification 1.0 2.0 1.0 1.4 1.2
Photon selection 2.8 2.8 2.8 2.8 2.8
70 reconstruction 3.0 S 30 1.7 2.0
BDT efficiency 9.3 4.2 5.1 7.0 7.5
Signal model 7.1 21 163 3.0 3.0

Background model 10.9 2.8 27 43 3.6
BB counting 1.1 1.1 1.1 1.1 1.1
B(w — 77~ 7°) . 08 - 0.1

Sum in quadrature 16.7 6.6 179 95 9.5
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The errors in BDT selections are determined from a
control sample of the decay B® — K**(— K7 )y for
the p° mode and a sample of B — K**(— K #7%)y for
the p* and @ modes. These B — K"y decays are kine-
matically similar to B — (p/w)y decays. The events are
required to pass all applicable loose selection criteria,
except the pion identification requirements. We also re-
quire the invariant mass 0.80 < mg+,- < 1.0 GeV/c? and
0.82 < my+ 0 <0.96 GeV/c?. The BDT output classifiers
are computed from the decision trees trained for the cor-
responding signal modes. The differences in the BDT
selection efficiencies between the B — K*y data and MC
samples are used to correct the signal efficiencies. The
efficiency correction factor is 0.88 = 0.09 for B" —
pTy, 091 +0.04 for B — p°y, and 0.90 = 0.05 for
B° — wvy. The uncertainty of the correction is taken as
the systematic error. The large BDT systematic error for
the decay B — p*y is due to the limited size of the
Bt — K**(— K* 7%y sample. As a means of validating
the BDT technique, we apply the same analysis technique
to the B— K"y data control samples and measure the
branching fractions for B — K*vy. The results are consis-
tent with the world averages [12].

The error in the pion identification requirements is esti-
mated using the D* control sample as shown in Fig. 1.
Based on the difference of a momentum-weighted effi-
ciency between the continuum MC sample and data, a
1% systematic error per charged pion is assigned to the
B — py decays. The MC sample is in better agreement
with data for the looser pion identification criteria applied
to B — w1y, and a 0.5% error per charged pion is assigned.
The uncertainties from tracking, 70 reconstruction, and
photon selection are also determined from suitable inde-
pendent data control samples.

To estimate the uncertainty related to the modeling of
the signal and background, we vary the parameters of the
PDFs that are fixed in the fit within their errors. We vary the
relative and absolute normalizations of B background
components that are fixed in the fit based on a kaon mis-
identification study using the D* control sample as shown
in Fig. 1. We find that the difference in the momentum-
weighted kaon misidentification rates between the data and
MC samples is 23%, and we conservatively vary the B —
K*vy background yield by 30%. The effect of the uncer-
tainty of B(B™ — p*#%) [12] is also considered for the
decay BT — p ™. For all the variations, the corresponding
changes in the extracted signal yield are taken as system-
atic uncertainties, which are then combined, taking into
account correlations. The error on background modeling
for B¥ — p*+y is dominated by uncertainties in B back-
ground PDFs.

VI. RESULTS

To calculate the branching fractions from the measured
signal  yields, we assume B(Y(4S)— B°B) =

PHYSICAL REVIEW D 78, 112001 (2008)

B(Y(4S)— B*B~) =0.5. The results are listed in
Table II. For B — w7y, we also compute the 90% C.L.
upper limit B(B® — wy) < 0.9 X 107° using a Bayesian
technique, assuming a prior that is flat in the branching
fraction and taking into account the systematic uncertainty.

We test the hypothesis of isospin symmetry by measur-
ing the quantity

_F(B+_’P+7)_ _ +025 4

P T MBS Py 1 0.43755 *£0.10.
Most theoretical calculations [1-3,15] predict small Ap.
For example, the estimate in Ref. [3] is —0.05 = 0.03 for
vy =60° and —0.10 £ 0.02 for vy = 70°, where vy is the
phase of V7, . Our result is consistent with these predictions
within the large experimental errors. However, it is worth
noting that a recent calculation [16] indicated that non-
perturbative charming penguin contributions can accom-
modate large A ,. We also measure the SU(3)g-violating
quantity

_TI'(B"— wy)

A =_2 7@V
“  T(B"— py)

1= —0.49+030 + 0,10,

which is consistent with the theoretical calculations.

We extract average branching fractions using a simulta-
neous fit to all the relevant decay modes with the con-
straints on the widths of the decay modes:
Pgipry = 20500, = 20p The average branching
fractions are defined as

—wy"*

BB — py) = %[B(B+ —pty)

2B -] )
TBO

and

BB~ (/)] = 3{BE = p) + L [BE— )

+ BB — m)]}, ©)

where 75+ /7o is the measured ratio between the charged
and neutral B meson lifetimes, for which the current world
average is 1.071 = 0.009 [12]. Our measurements of the
individual branching fractions are consistent with this hy-
pothesis, with a y? of 2.3 for 2 degrees of freedom. We find

B(B— py) = (1.735035 £ 0.17) X 1079,

BB — (p/w)y] = (1.637030 = 0.16) X 107°.
Using the world average value of B(B™ — K*'y) =
(4.03 +£0.26) X 1073, B(B* — K*0y) = (4.01 £ 0.2) X

1073 [12], and the isospin averaged branching fraction
B(B— K*y) = (4.16 = 0.17) X 1073, we calculate
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R, = f(f%m — 0.03070012,
Ry = % = 0.024 * 0.006,
R = oo = 00124,
R, = 1?((:_»;1?3) = 0.042 + 0.009,

R = w = 0.039 = 0.008.

vle " B(B—K"y)

These ratios of branching fractions can be used to calculate
[V.a/ Vil [3.5,17]. Following Eq. (1) and using 1/{, =
1.17 £ 0.09, 1/¢, =130 £0.10 [3], AR, =
0.05770%7, AR, =0.0067004, and AR, =
—0.002*338 [1], we obtain

IVia/Visl o = 0.19852032 + 0.016,
[Via/ Vil jo = 0.25473933 + 0,021,
IVia/Vislo = 0.20279038 = 0.016,
where the first error is experimental and the second is

theoretical. Using the average branching fractions and
following Ref. [1], we obtain

[Via/Visl, = 0.2355202¢ & 0.020,

_ +0.025+0.022
|th/Vts|p/w = 0.23325021 0.001-

Similar values are found following Ref. [3]. These results
are consistent with the value of this ratio, 0.208 =
0.002(exp) T 508 (theory) [12], obtained from the studies
of B; and B, mixing by the CDF and DO Collaborations.

VII. SUMMARY

We report the updated measurements of the branching
fractions for the radiative decays B™ — p*y, B — p°y,
and B — wvy,
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B(B* — pTy) = (1.207342 + 0.20) X 107,
B(B° — py) = (0.977533 £ 0.06) X 107°,
B(B* — wy) < 0.9 X 107°(90% C.L.).

We test the hypothesis of isospin symmetry by measuring
the quantity A, = —0.437023 + 0.10. We also measure
the averaged branching fractions B(B— py) =
(1.7350% £0.17) x 100 and  B[B— (p/w)y] =
(1.63%93% £ 0.16) X 1076, These results are in good
agreement with, and supersede, the previous published
BABAR measurement [6], which uses a subsample of the
data used for this analysis. These results are also consistent
with the measurements from Belle [18]. These branching
fraction measurements are used to extract |V,;/V,| in a
way that is complementary to the approach using B mixing

[4].
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