UC Irvine
ICS Technical Reports

Title
Storage Structures Formalism

Permalink
https://escholarship.org/uc/item/2x78r2k1|

Authors

Rowe, Lawrence A.
Tonge, Fred M.

Publication Date
1975-04-01

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2x78r2k1
https://escholarship.org
http://www.cdlib.org/

oy
STR

AGH

H

5T

)
(W
O
vﬁl*

[
Ga &
el O
~ Sy
[

Ga O
O
- @
«
PSS o)
0 >
Lo K
@
>
d
<
D

RO T
ALCSIRAUL

A storage structure formalism is described which can

[0}

be used as a precise symbolic representation of lcw level
storage organizations and alsc as a descripticn of storace

reculrements to

1

m
4]
¢t
Q
"3
0]
18]
4]

allocation mechanism. The
formalism is based cn three forms of Lnemory nmanagenmnsent
sequential, linked, and asscciative) and theif associated
referencing mechanisnms (indexing, pointing, and hashing).
Several examples of the formalism are presented. The
weaning, or interpretaticn, of a storace structure as used
to implement a modelling strueture is discussed Exaumples
cf altegnative implementation structuresA(sto:a‘
and their interpretations) for a particular modelling

structure are presented.

INTRODUCTION ALD OVERVIEV

Our view of the programming process is that problen
demain information and algerithms are mapped into
implementation cdomain representations by ‘way of varicus

modelling domain representations. One way to improve this

process 1is to provide substantial machine assistance in

mapping from modelliing domain representations to
~implementation domain representaticns (Tou75]. ~ In a
previous paper [ROWT4] we deseribed a modelling structures

Y

ormalism for representing problem domain information within
a modellihg’ demain. Representation of informatioh in a
mocdelling domain éerves three purpcses: (1) it provides a
way for formally describing problem doﬁain information
without commitments k‘to underlying implenmentation
representations, (z) in many ecases, it eases the task of
expressiné and’understanding a problem sclution procedure,
and (3) it makes easiér the discovery of alternative
implementation represesntations.

Ve ‘are develcping a system which, given a mod lling
structuré representation of the information and a
descripticn o¢f its use in a particular problem sclution
proceduré, assists in the generation, evaluation, and
selection among alternativebkmp¢wm0n+a icn representations

o} do this we must be tle to - deserib different

implementaticn represesntations, both the data and procedures
for wmanipulating tne data, and we nmust be able *to

cific knowledge

O]
e
[)]
O
o]
[0
;,..I
M
o,
D
¢t
o8]
o
[}
)]
D
%)
T
D

incorporate in
concerning possible implenentation representations for
mod;liing representations.

There are three 1levels of implementation domain
'knowledge to be considered. The lowest level includes the
nctions of indivisible <cells (ecapable o©f representing
ﬁrimitive values) and of grcupings of cells intoc structures.
sSuen structures may be implemented using contigucus
groupings of cells (referenced by a ccnventicnal indexing
mechanism), cells which point explicitly to other cells or
grocups of cells (referenced by a 'conventional. linking
mechanisn), and cells whose value serves as an arguﬁent tc a

structure-definin unction (refercnced by a hashing

#ia]
)

mechanism). These low level representations, which we call .

storage structures, do not include the procedu

"3
e}

s for using

fthem, nor do they define the correspondence of their
components to the modelling structures that they represent.

an intermediate level is knowledge we call

i

A
implementaticn strategies. These strategies are conecerned
with storage structures and their relationship with the

modelling structures they are being used to implement. ue

)

ref

it

:r to the result of applying this implementatiocon

an

W
o2}
L4
O

+
4]

ntation

me

¥
i

imple

3

ol

Ay

[

includes the storace

“and

a

3

0
el

G

durss

LY

it represents.
cerns

re

i

ructu

4
v

iing st

implementat

cerresporidences
man

can have

menory.

o
oI

lock

£

w

severa

how

in a b

and

[wi

e
4
«
(@}
[

4
8

a
L)

~q

[

knc

uces

el

£
Lo

second

he

ianl

S

%]
W]
12}
=3

()

]

3

I
0
oot
(9]
Q

[sl4]

aly]

6]

for

cf

nechanism.
level

est

J

-
W

G

16]

5
i

= N4

AT

ey

is con

rmalisn

n

o

$2

r—1

s

4}

epresenteu in

r
i

- o
e G

leve

the

4]

modelling structure represented.
Following the description of the formaliism, a third

section presents examples of storage structures.

include most of the ”stqrége structures' provided in other
implementation representation synthesis and selection
systems [GOTT74, LOWT4]. The fourth = section discusses
‘interpretations of storage structures. The final secticn

summarizes what we ‘have presented.

STURAGE STRUCTURES FURMALISH

}_h
O
o]
Q
)
¢t
e}
(@]
rry
O
]
2]
ju]
f'“
f.J
2

Lescript

The primitive indivisible entities of the formalism are
cells capable of representing values. Each value has a typse
which names the class to which the value belongs. New
entities, or types, can be created by ccmposing entities
using the aSsuméd meméry ﬁanagement forms: rséqueﬁtial,
linked, or associative. Given twec entities, naﬁed é and ¥

there are three compcsition operators:

e?f there exists a structure-defining function on e
(based either on e's content a
specified by the formalism) which yields
to-f.

tultiple instances of an entity can be expressed by

n(e) n distinet instances of an e, and

#(e) an indeterminate number of instances of

(D

A conposition operator can bs distributed over a collection

cf entity instances by an APL-like distr

},)o

butive rule

bde
U

The possible cecurrence of alternative entities

gilven by

(o)
[l

sigans a pcinter or link to an e. Thus, stcorags for a link
to an e 1s declaredq.

entities can be namsd, for example

¢t

names an entity e wnich is <composed of n contiguous

instances of 1. rf'or convenience, particular entities or

4]

operators can be 1indexed by subseripts. (Subseripting is

necessary in expressing the interpretation -of a storage
structure.)

A storage structure made up of several different
constructs without explicit description of their
intarconnection is represented by Jjoining the constituent
constructs with a semicolon {(;). For exanmple,

iwle);w ()
is a structure conposed ¢f an arditrary number of e’s and an

sy

rour simple exanples are:

n(e)/+ n instances of e stored contiguously.

#(e)r@ An arbitrary number of e’s linked togethsr.

n(elf)/+ An indeterminate number each c¢f e’s or s
stored contiguocusly. The total number of

entities is n.

cellbe
e: (f+2(€e)/+) An empty cell 1linked toc an e. in e is
compesed of an instance of an f and two links

to e’s stored contigucusly. Thus, there is
an arbitrary number of e’s. {fotics that
this storage structure does not describe how
the e’s are connected, merely that each e
ineludes space for a pcinter to an e.)

An ITnterpretat

'»Jc
O
o
QO
ey
ot
oy
@
(@]
9
el
ko]
a
[&]
'.J
4
}-—h
O
o
<
ko]
6]
R
ju]
ct
O
'y
n

+3

he three eompoSition operators can be viewed as
corresponding tc three different storase managemsent schemsas:
sequential storage, linked storage, and assceiative storage.
Thus, 1f the storage allcecation system within which the
storage structures are to reside provides linked blocks of
',storage "automatically” (as, for example, in L% or the TPL

series of languages), tne composition cperator

(2]
0
(]
ot
o
Q
O
D

used directly to link entities. On the other hand, if the

v

storage management scheme as visible to the usser consists of
blocks of sequential storage available independently on
reqguest, the storage struéture definition must include space
for user-provided pointers from blcoek to blceck, using the

t
G
|

s, only

(L

ontempcocrary architectur

=
o]
bt
(@]
G}
T
]

unary operatcr ¢.
at the mazhine and assenbly

}_-h
¢]
28]
<
O]
2
|
9]
o
[
0

seguential storage

language level.

EXAHPLES COF STURAGE STHUCTURES

The example storage structures specified in

selection systems of Gotlieb and Tompa [GOCTT74] and

LLOW74]. Eaeh example includes a graphic representation
the storage structure, a description of what it is, and
specification in ocur formalisn. In the exanples,

corresponds to the actual object information.

Example 1: 1-way linked -1ist

,,,,,,,,,,,,,,,,, 2-viay linked list

#(e)

g:o+2(€e}/+

<
o
N
n
o
o le)
cellde; nle)

ero+2(e)/+

mxample 4: Fathered Binary Tree

vt

s
[jo)
i3
i
i§n

o]

-
e
)]

pir

and Linked

A
(@]
O
=
ot
3
[o}]
(&
o
O
s
PLJ
=
»
¢}
jo 3
-
D
3

e
¢t
jay
et
)
(w
n
o
"3
[
o]

oq

LINGT H

Variable

ength

b ot i

#(o)/+

»_-/?”70

n(éc)/+

Contiguously Stored

Y

Contiguously Stored Links to Object

“n(o)

to T-way

Links %o

st s B

e

THTERPRETATIUN OF STORAGE STRUCTURES

As defined above, a storage structurs doces not
conpletely represent the modell ing structure from which it
is derived. That is to say, there is loss of information in

the mapping rocess from modelling structures to storage
. S & g

structures. Two types of additional information in
o) icular are needed %o represent the mapping:

A) corréspondence of elements of the modelling
structure with elements of the storage structure,
and

b) specification of the manner in which essentially
arbltrary chcices are made in "laying out”™ the
modelling structure in st torage.

Information of type A identifies oo responding parts of the
two structures. Informaticon of type B relates to the

‘storage structure (and modelling structure) as =z whole, and
Lypically will imply additionsal stcrage requiremnents
hecessary for processing or using the storage structure.
Thus, these two types of addluluﬂal informaticn can be
viewed in <terms of the procedures which operate ‘upon a
strucfure. For a modelling structure, these procedurfs are
composed from the operations ineluded in the stru;ture

definition. Equivalent definitions must be developed at the

storage structure lsvel. These storage structure cperations

stcrage (typs A informaticn), but alsc on overall

consideraticns which, for example, preclude or pernit the

use of stacks in processing (type b informaticn).

We call A and B together +tn

)
}..J
3
(o
¥l
D
(@]
'3
0]
¢t
v
fod
}J
@]
3
O
]
t
jo
4]

storage structure. In *his ssction we develcop the notion of
a storage structure interpretation informally = through

several examples. In a 1later paper we shall present a

Preliminaries

Kelated to each type of storage manzgement scheme are

3

certain bounding or limiting eccnventicns. In contiguous
storage, this is expressed as block size or wmaximunm
'dimensigﬁ;‘in linked storage, as a null lihk; in éssociative
storage, as soms means of signifying the absence of a value
and; 1if suech vare pcssible under the par?icular schene,

handling collisicns. For this paper we assume that such

conventions are known to *he mapping procsss and that the

necessary processing steps and tests are provided. We alsoc
assumerthe existance of conventions for null pointers (&e)
and for determing the extent of unspeecified numbers of
elements ’(#). In the focllcwing examples we

omit <these

ccnsiderations.

flodelling

[§9]
w
ct
3
et
@]
ot
[w
"3
]

i
I
sl

f.-!
=
Y]
'3
+3
"3
6]
[¢]

The fcllowing informaticn defines a dinary tree in the

- 17 -

modelling structures formalism [ROWTY .
replicaticn
yES
ordering
no
relaticns
left (1-1, partial domain, partial range, not
connected)
right (1-1, partial donain, partia range, n
connected)
anse (many-1, unique domain, partial rang
connected) 1 1
ansg = left right”
Gdistinguished elements
o root - ansc(roct) is undefined
referencing
external access
distinguished element
operations
.read
delete
repliace
createacecess
relate
related
An example of this modelling structure might be represent

pictorially as focllows:

o}

w

(i

A=
i

£

-

lext we give three example storage struectu rés fof this
modelling structure, with their respective interpretaﬁions.
In each case the in erpretation must provide correspondeaences
(type & infermation) for: the binary tree itself, the trees

element, the relations ieft, right, and anse, and the

distinguished element roct.

N idind N1k I
ol dle|c cjojfjd

&)
ol
R
o
ol
4

where X represents a pointer tc element x and O represents a
null pointer.
Formally:

e

e

#(g)

g 1 (f + g+

1 €48ty 98)
elemental data values>

]

(Henceforth we use the shorthand nctaticn
6-#(f+1e15+2L ¢} where there is no dan nger of

confusicn.)

ot
y

pretation:

= Dilnary tree corresponds to e

element corresponds to ©

left vy corresponds to x+1@1y

ight ¥y corresponds Lo x+1C1z+2@2y
(Henceforth we wuse the shorthand notation left
ccrresponds to +3@'1 and right corresponds to +2@2

where there is no danger of confusicn.)

¥ ansec y correspends to (y+1@1x)v(y+2@2x)
the root (is x) corresponds to 3xV§w[(y+1@1x)v(y+2@2x)]
_(For the other examples we shall omit consideratiocn
cif ansec and rool, since they are derivable from left
and right.)
Wote that the relaticns left and right are bounded by the
null pointer convention. licte alsoc that nc type B
informaticon appears necessary. (Arbitrary chcices must be

mads

in laying out individual elements in storage, but they

do not affect processing routines.)

Ft‘i’-

%}

e

[}
o))
e}

rormally:

e o (F 9 e)

g o3 +1 h +s L2€)/+3

f 1 <elemental data values>
h 0 19

Interpretation:

the binary tree corresponds to e

an element corresponds to f

left . eorresponds to +QA+11
o

right ‘ cerresponds to +9@2

Note that the relation left is bounded by +,0 and that right

is bounded by the null pointer convention. Again, no type B

information appears necessary

Storage. Structure TIT

‘arg bleid

ol
®
=
0
]
i
5;

@]

w(f +, €.e)/+.
i 1(,6)/4

f : <elemental data values>
Interpretation:

the binary tree corresponds tc e

an element corresponds to f
X left y corresponds to X+2yAVZﬁLZ+}§1yJ
right eorresponds toc +.Q

Y

i
Wote that the relation left is bounded by the extent of the

b

-

cek (#) and the absence of a "right" pointer, and that

rignt is bounded by the null pointer conventiocn. liote alsc

that tnere are ssveral alternative methods of "ilaying out®

the elements in storage, and that these can affent the time

the definition of the relation left, whose evaluation

reguires that potentially all other =slements be examined.
Thus, type B information is required for a complete
interpretaticn.

Three possible completions of the interpretation fcr

&
[¢]

storage structure III are given below. Tc consider the
cases which deal with the arbitrary ordering c¢f elements in

contigucus stcorage, we introduce an index or address

i(x) < i(y) <==> x preceeds y in contigucus storage

ko additional interpretation.
b

- — = |- P —
exanmple: agc el1d; 0181 0feiflel 0
i 1
In this case, each element must be checked against all

pcinters in the structure.

La

e

i

0
m
HAS)

i

{

X+1@1y K==> i(x)<ily)

o

IO o f e;Ojf;O
: |

Y
oy

In this ecase an element mus:t onl

x+€1y <==> i(x)<ily)n

Vw[i(x)<i(w)<i(y}hw+1@1z::>(i(Z)<l(y))]
: —_ | —— [
example: a2 3|b2|d T|s|[Ofe| T[T

¢t

In this cass, an element mus: only be checked against the
nearest preceeding pointer not ‘mateched by a pfeceeding'
element; e.g. against the tcp element of a stack of as yet

unmatehed peinters.

kemarks

The introducticn of an index funetion allows‘ a
straightforward way of speecifying the roct as the ”firstﬁ
element in contigucus storage.

It would require a highly scphisticated mapping process
4 & J f

ct
Q
[45s]
¢]
=
]
"3
m
¢t
4
o}
-
}..1
(s}

£ these alternétives.» Their appearance
here doces not imply that we have on hand sueh a process;
they are merely intended as examples of possible storage
structures. (However, Schneiderman [SCH7L] has ciaimed that

the transformation from the equiva

=

ent of our storage

th

structure I to storage structure ITT is straightfcrward.)

SUMIARY

The storage structures formalism presented here
orovides a precise symbolic representaticn »of the stcorage
requirenents of an implementation structure. -It permits
specificaticn of structures thin sequential, linked, and
associative storage managens nt schemes, and allows fixed and
arvitrary numbers of atomic data and pointers. To éomplete

the description of the mapping fronm modelling structures to

implementation structures, an 1n+e"prevation of the stcrage

structure is needed. An interpretation consists of two
types of knowledge: ccrrespondence of elements of the
wocelling structure with elements of the storage structure,

[

and specification of arbitrary ordering choices in storage.
Wnile it 1is unlikely that an algorithm can be disecovered
which nerates all possible implementaticn structures for a
glven mwodelling structure, this fcrmalism and knowledge

organization provides a framework for developing an

acceptable one.

[GGTT4]

[LCWTH J

[ROWT4]

R

tlieb, C. C and W Tompa. Cheosing
Storage Schema. ACTA Informatica, vol. 3 (1C74)
pp. 297-319.
Low, dJ. R Dutomatl Coding: Choice of bData
Structures. Report 5-452, Computer Secience
Department, Stanfcrd Univ r31ty (August 1974).
Howe, L. A. todelling Structures Formalisn.
Technical Keport #52, rtment of Information and
Computer Science, U. Irvine (liovenber 1974).
Schneiderman, b. Towar a Theory of Enccded Data
Structures and Data T lation. Technical Report
#13, University of Ind (Jduly 1974).
Tonge, . M. ar L. A. Howe. Data
Hepresentaticn and Synthesis. Technical Report
#0503, Department o¢f Information and Conmputer
Sclence, U. . Irvine (karch 1975).

