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ABSTRACT OF THE DISSERTATION 
  
  

Division Plane Orientation in Maize 
  
  

by 
  
  

Aimee Naomi Uyehara 
  

Doctor of Philosophy, Graduate Program in Plant Biology 
University of California, Riverside, June 2024 

Dr. Carolyn G. Rasmussen, Chairperson 
   

  
Proper cell division orientation is an important component to plant and animal 

growth and development. In contrast to animal cells which divide through the constriction 

of the contractile ring, plant cells divide through the expansion of a microtubule and actin 

structure, the phragmoplast, to a division site specified at the cell cortex. Plant cells are 

encased in a semi rigid cell wall and do not rotate or migrate, thus coordination of 

division site structures with the division site is very important. In Chapter 1, I discuss 

temporal, genetic, and synthetic redundancies that ensure plant cell division planes are 

positioned correctly. In Chapter 2, I examine and characterize the role of cortical 

telophase microtubules in positioning the phragmoplast through interactions with the 

division site protein TANGLED1 (TAN1). In Chapter 3, I demonstrate that TAN1 is also 

recruited independently of the preprophase band by the phragmoplast. Finally, in 

Chapter 4, I use bioinformatics and whole genome resequencing to identify new 

molecular players important to division plane orientation or cytokinesis in maize. 

Altogether these chapters provide new perspectives into the function of TAN1 in maize.   
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CHAPTER 1:

REDUNDANT MECHANISMS IN DIVISION PLANE POSITIONING

Keywords:

Genetic redundancy, cell division, phragmoplast, cytokinesis, division plane orientation,

synthetic genetic interaction
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ABSTRACT

Redundancies in plant cell division contribute to the maintenance of proper

division plane orientation. Here we highlight three types of redundancy: 1) Temporal

redundancy, or correction of earlier defects that results in proper final positioning, 2)

Genetic redundancy, or functional compensation by homologous genes, and 3) Synthetic

redundancy, or redundancy within or between pathways that contribute to proper division

plane orientation. Understanding the types of redundant mechanisms involved provides

insight into current models of division plane orientation and opens up new avenues for

exploration.

SUMMARY OF CURRENT MECHANISMS IN CELL DIVISION

Cell division is a fundamental process where a cell divides into two new daughter

cells. Cell division is essential for survival in all organisms and plays a vital role in plant

growth and development. Plant cells do not migrate and instead control the location of

new cells by positioning the division plane. Plant division plane orientation is established,

maintained, and completed through the coordination of microtubule and actin arrays with

division site proteins. A short description of the microtubule arrays and DNA structures

observed in typical symmetric land plant divisions is shown in Figure 1.1. Symmetric cell

divisions generate the same cell type while asymmetric divisions generate new cell

types. For more on division plane determination in symmetric and asymmetric divisions,

see reviews (Buschmann et al., 2019; Facette et al., 2019; Livanos et al., 2019; C. G.

Rasmussen et al., 2018; Yi et al., 2022). For a synthesis of developmental and cell

biological frameworks that modulate division plane orientation, please see (Facette et al.,

2019; Glanc, 2022; Arvid Herrmann et al., 2021; Yi et al., 2022; Yi Zhang et al., 2023).
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Figure 1.1. Overview of mitotic microtubule and DNA structures and locations important in
typical land plant division plane orientation.
Typical land plant cells form five key microtubule arrays (green) during the cell cycle. The division
site is marked in pink.
1) The interphase cortical microtubule array: During interphase, microtubules at the cell cortex,
the region just underneath the plasma membrane, form a variety of cortical microtubule array
organizations. Rapidly elongating cells form ordered arrays perpendicular to the growth axis while
isotropically expanding cells tend to form more disordered microtubule arrays. These cortical
interphase arrays contribute to positioning cellulose synthase complexes and generating new cell
wall material. Therefore, the orientation of the interphase cortical microtubule array influences the
direction of cell elongation (Dixit et al., 2004; Oda, 2015). Orientation of the interphase cortical
microtubule array often, but not always, precedes orientation of the preprophase band (PPB),
described below (Gunning et al., 1990).
2) The preprophase band (PPB): Increased microtubule dynamicity precedes the formation of the
PPB ring at the cell cortex during the last part of the G2 phase in the cell cycle (Vos et al., 2004).
The PPB surrounds the nucleus (purple) and accurately predicts the future division site and cell
plate insertion site (Mineyuki, 1999; Pickett-Heaps et al., 1966; A. Smertenko et al., 2017). While
the PPB is disassembling, microtubules accumulate around the nuclear envelope to coalesce into
an acentrosomal spindle. The cortical division zone, however, remains marked by
division-site-localized proteins (pink) even though the PPB is no longer present.
3) The spindle: The spindle captures and separates chromosomes (purple) during metaphase
and anaphase. Spindle formation is reviewed in (B. Liu et al., 2022; H. Zhang et al., 2011). After
chromosome separation in anaphase, the spindle disassembles to form a plant specific structure
called the phragmoplast.
4) The phragmoplast: The phragmoplast directs the formation of the cell plate. The cell plate
transitions into the new cell wall after the completion of cytokinesis, reviewed in (Gu et al., 2022;
Y.-R. J. Lee et al., 2019; A. Smertenko et al., 2017, 2018).
5) The cortical-telophase microtubule array: The cortical-telophase microtubule array contributes
to positioning the phragmoplast. Cortical-telophase microtubules are added into the phragmoplast
at the cortex to direct phragmoplast expansion at the division site (Bellinger et al., 2023). As the
phragmoplast disassembles at the cell plate fusion site, the cell plate fuses with the mother cell
plasma membrane to form the new cell wall.
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A number of proteins and processes relevant to plant division plane orientation

occur with some level of redundancy. Similar to other systems where redundancy is

present, redundancies may contribute to the robustness of maintaining proper division

plane positioning (Láruson et al., 2020). Open questions remain about why some

processes are reinforced through redundant mechanisms and whether redundancy in

division plane orientation contributes to phenotypic plasticity. Typical model systems

used to understand division plane positioning include the dicot model Arabidopsis

thaliana (Arabidopsis), monocots Zea mays (maize) and Brachypodium distachyon, and

non-flowering models Physcomitrium patens (P. patens) and Marchantia polymorpha (M.

polymorpha) although important discoveries have been found in other plants. This review

focuses on genetic and non-genetic redundancies that contribute to proper division

plane orientation.

Cell shape, size, and nuclear movement are closely intertwined with the onset of

mitosis and division plane positioning. Plant cells grow to a certain size before they enter

mitosis (Gutierrez, 2022). After asymmetric divisions generate small cells, S phase is

delayed until cells reach a certain size (D’Ario et al., 2021). Prior to mitosis, the nucleus

moves to the future division plane in both symmetrically and asymmetrically dividing cells

through the coordinated action of microtubule and actin motor proteins (Facette et al.,

2019; Frey et al., 2010). Proteins connecting the nucleus and the cytoskeleton are

critical for positioning the PPB (Arif Ashraf et al., 2022). PPB positioning defects may

result from errors in nuclear positioning but also reflect combinations of defective cell

elongation, disorganized microtubule arrays, or failures in establishing polarity prior to

asymmetric division (Pietra et al., 2013; L. Zhang et al., 2022). Some mutants discussed

below have defects in cell elongation or microtubule orientation in interphase, which may
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influence the position of the division plane and subsequently alter organ shape. Indeed,

cell elongation prior to division typically favors a division bisecting the long axis of the

cell (Martinez et al., 2018). The relationship between division plane orientation and cell

shape is discussed in more detail in (Laruelle et al., 2022; Louveaux et al., 2016;

Martinez et al., 2018; Moukhtar et al., 2019; C. G. Rasmussen et al., 2018). Identifying

mutants that only alter PPB formation or positioning (some of which are discussed

below) but do not seriously alter interphase microtubule orientation, polarity cues, or cell

shape provide exceptionally valuable insight e.g. (Schaefer et al., 2017).

TEMPORAL REDUNDANCY

Cell division positioning is buffered through temporal redundancy. We use

temporal redundancy to describe situations where alterations to division plane

orientation are corrected later by another independent mechanism. Two examples of

temporal redundancy discussed below are: 1) when defects in proper organization or

positioning of mitotic structures (Figure 1.2), such as the spindle, does not alter the

proper localization of the final division and 2) when protein recruitment to a specific

location earlier in the cell cycle partially abrogates the need for that protein to be

recruited later (Figure 1.3).
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Figure 1.2. Temporal redundancy during division plane orientation showing schematic
examples of correctly oriented divisions, and when mitotic structures deviate from the
“correctly oriented” position.
Microtubule structures are green, DNA is purple, and black lines indicate the cell wall.
The inner ring (clockwise starting from interphase) illustrates normal symmetric divisions with
typical land-plant mitotic structures from interphase to cytokinesis (Pathway 1). Blue lines
represent a cell-cycle progression that leads to a “correctly oriented” division. Red lines represent
defects that may lead to an aberrantly positioned new cell wall (orange line). In Pathway 2,
mispositioned PPBs result in misoriented spindles and phragmoplasts that lead to a final
misoriented division. In Pathway 3, PPB formation does not occur which either results in wild-type
division planes (blue line) or division-plane-orientation defects (red line). In Pathway 4, spindle
rotation occurs both in mutant and non-mutant cells, but the tilt is corrected leading to normally
positioned phragmoplasts (Pathway 5) or generating tilted phragmoplasts that are sometimes
corrected later (Pathway 6). In Pathway 7, phragmoplast guidance defects result in misoriented
divisions. Finally in Pathway 8, some misoriented phragmoplasts can be corrected as they near
the cortical division site, but before cytokinesis is completed.
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Plant cells are capable of robustly maintaining proper division plane orientation

via dynamic re-positioning of mitotic structures (Figure 1.2, Pathway 1). Analysis of

divisions with and without PPBs provides insight into the stabilizing function of the PPB

and its contribution to efficient coordination of mitotic progression. Although the PPB

facilitates efficient spindle formation, cells lacking PPBs still assemble functionally and

morphologically normal spindles (Figure 1.2, Pathway 3). This includes both cells with

defective/missing PPBs and those that always lack PPBs, such as the cells that will

undergo meiosis (meiocytes) or some divisions in early diverging plants e.g. in (Chan et

al., 2005; Higgins et al., 2016; Otegui et al., 2000; Rensing et al., 2020; Sakai et al.,

2022). Unlike cells that have PPBs, cells that lack PPBs may require additional time for

spindle coalescence as exemplified in Arabidopsis cultured cells (Chan et al., 2005). In

addition, naturally PPB-less meiotic spindles often form incorrectly, taking additional time

to realign to form a bipolar spindle in maize (Weiss et al., 2022; H. Zhang et al., 2011).

For cells that typically form PPBs, both spindle rotation and spindle morphology

defects can be overcome to maintain proper division planes by corrective rotation of the

phragmoplast (Figure 1.2, Pathways 4 and 5, or Pathways 4 and 6). Phragmoplast

correction has been observed in bean, maize, and onion cells where imaging

experiments revealed tilted spindles (e.g. >50% in maize epidermal cells), but normal

final division orientations (Cleary et al., 1998; Oud et al., 1992; Palevitz, 1986). In onion

guard mother cells, live cell imaging demonstrated correction of oblique spindle and

phragmoplast angles occurs as the cell plate expands along the location previously

marked by the PPB (Palevitz, 1986). In addition, in tobacco, when cells with PPBs are

treated with microtubule depolymerizing drugs followed by washout, spindles formed that
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are often tilted, but division positioning is typically corrected prior to cytokinesis (Marcus

et al., 2005).

Corrections to spindle orientation are also observed in mutants with defects in

spindle formation, morphology, and organization (Figure 1.2, Pathway 4 and 5 or

Pathway 4 and 6). Mutants of the gene encoding the microtubule severing protein

KATANIN1 (KTN1) make defective PPBs and have spindles that exhibit random rotations

in Arabidopsis (Komis et al., 2017). However, the phragmoplasts eventually return to the

former location of the PPB (Komis et al., 2017). Other mutants that produce highly

elongated, mispositioned, or multipolar spindles also typically divide in the correct

location. Examples include Arabidopsis endosperm defective 1 (ede1), which is a mutant

in an AUGMIN8 homolog (Y.-R. J. Lee et al., 2017), and mutants lacking minus-end

directed Kinesin 14A motors (atk1 and atk5) (Ambrose et al., 2007; C. Chen et al., 2002;

Hotta et al., 2022; Marcus et al., 2003).

Other redundant mechanisms that correct spindle mispositioning or multipolarity

occur in cells lacking PPBs. In maize meiocytes, mutants in Kinesin14A have defects in

spindle assembly and form multipolar spindles. However, multipolar spindles then

coalesce to form bipolar spindles and division proceeds normally (Higgins et al., 2016;

Weiss et al., 2022). This suggests that spindle correction also occurs in a

PPB-independent manner. A similar redundancy is observed in M. polymorpha

suspension cells which have centrosome-like structures called polar organizers that

define the poles of the cell and promote the formation of the PPB. In the absence of the

PPB but presence of multiple polar organizers, Marchantia suspension cells form

multipolar prometaphase spindles that resolve into a bipolar arrangement for normal

division progression (Buschmann et al., 2016).
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Alternatively, in some divisions without PPBs, such as those observed in P.

patens, meiocytes, or mutants, spindle orientation may play a greater role in determining

division plane orientation. Here, we propose that the PPB may provide one or more

corrective mechanisms because it recruits division site localized proteins that later adjust

phragmoplast positioning. Therefore in the absence of a PPB, defects in spindle

positioning may not be corrected later in the cell cycle. For example, the PPB-less

divisions of male meiocytes in the Arabidopsis atk1 mutant (mentioned above) have a

more severe phenotype consisting of chromosome segregation defects than in

PPB-containing mitotic divisions (C. Chen et al., 2002; Marcus et al., 2003). In addition,

P. patens gametophore initial cells lack PPBs but instead make a microtubule structure

called the gametosome, which predicts spindle positioning (Kosetsu et al., 2017).

Spindle mispositioning in the asymmetric divisions of gametophore initials in the P.

patens TPX2 mutant results in aberrant division positioning (Kozgunova et al., 2022).

Finally, greater variation in spindle angle was also observed in an Arabidopsis triple

mutant (discussed below in the genetic redundancy section) that rarely produced PPBs

called tonneau recruiting motif (trm678). In the trm678 mutant, spindle angle variation

was correlated with variation in cell wall angle (Schaefer et al., 2017). However,

confirming if spindle angle defects indeed lead to mispositioned final cell walls would

require timelapse imaging. Together these examples suggest that in the absence of a

PPB (e.g. in mutants such as trm678, some P. patens divisions, and meiocytes), the

spindle may play a greater role in division plane determination.

Spindle rotation and other defects are often compensated by phragmoplast

guidance to the correct division plane (Pathway 8). In Arabidopsis, several proteins

(discussed in more detail below) are hypothesized to guide the phragmoplast to the
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correct division site by interacting with microtubules emanating from the phragmoplast

called peripheral phragmoplast microtubules (Livanos et al., 2019). In maize, another

mechanism is proposed to coordinate phragmoplast positioning with division site

localized proteins. Cortical telophase microtubules, a population of microtubules that

nucleates at the cell cortex independent from phragmoplast microtubules, were observed

to interact with the phragmoplast and likely influence phragmoplast positioning (Bellinger

et al., 2023). Interaction of these cortical telophase microtubules with division site

localized proteins (discussed below) pre-orients cortical telophase microtubules at the

cell cortex ahead of phragmoplast expansion, thereby positioning the phragmoplast

(Bellinger et al., 2023). These cortical telophase microtubules have been observed in

both monocot and dicot species, suggesting that this type of phragmoplast positioning

may be conserved through the plant lineage (Lucas, 2021; E. Panteris et al., 1995; Wick,

1985). Phragmoplast guidance is also mediated by both short and long range

interactions between division site localized proteins, actin filaments, and microtubules.

After centrifugation of dividing tobacco cells, long actin cables are observed connecting

the displaced phragmoplast and the division site or former PPB location (Arima et al.,

2018). Both classes of actin motor proteins, MYOSIN VIIIs and MYOSIN XIs, promote

proper phragmoplast guidance (Abu-Abied et al., 2018; Huang et al., 2022; Nan et al.,

2021; S.-Z. Wu et al., 2014). MYOSIN VIII coordinates actin filaments and microtubules

at the phragmoplast and the division site to move the phragmoplast towards the division

site (S.-Z. Wu et al., 2014).
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Figure 1.3. Temporal redundancy in protein recruitment.
In the wild-type example (top), early protein localization is reinforced by redundant, later
recruitment to the same location. In the absence of either early or late recruitment (second and
third from top), the protein is sufficient to maintain correct division plane orientation. Complete
loss of recruitment results in a division plane orientation defect. Dotted lines represent the correct
division site. Pink circles represent division site localized proteins. Solid orange line represents
the final misoriented division.
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A final example discusses temporal redundancy in terms of protein localization.

TANGLED1 (TAN1) is a key division site localized protein recruited during both prophase

and telophase by independent mechanisms (Carolyn G. Rasmussen et al., 2011),

although only a part of the protein is only required for full function (Mills, Morris, et al.,

2022). In Arabidopsis, this fragment accumulates at the division site during telophase,

and interacts with another division site localized protein called PHRAGMOPLAST

ORIENTING KINESIN1 (POK1) (Müller et al., 2006; Carolyn G. Rasmussen et al., 2011),

which is described in more detail in the genetic redundancy section. Why then is TAN

recruited to the division site during prophase? Recent data shows that when TAN1 is

recruited during prophase, both TAN1-telophase recruitment and interaction with POK1

is less important for in vivo function. In other words, if TAN1 is already at the division

site, there may be less need for it to be recruited again later and for interactions thought

to mediate its telophase division site localization (Mills et al., 2022).

GENETIC REDUNDANCY IN DIVISION PLANE ORIENTATION

Genetic redundancy exists for some genes that are important for division plane

orientation (Figure 1.4). Genetic redundancy (on the scale of the individual rather than a

population) is defined as the ability of closely related genes (homologs) to functionally

compensate for the absence of the other (Ascencio et al., 2013; Láruson et al., 2020).

Single mutants have no or subtle phenotypes, whereas two or more mutant

combinations in related genes show phenotypes with varying severity. In contrast,

mutants in non-redundant genes, genes without homologs in the genome, often have

noticeable phenotypes. Below, we highlight some examples of genetic redundancy

involved in division plane positioning.
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Figure 1.4. Genetic redundancy in division plane orientation.
In processes that involve two or more homologous genes within a family, some genes are able to
functionally compensate for mutations within other related genes. For lower order mutants (e.g.
single mutants shown here), this can result in a normally positioned division. Higher order
mutants, such as the last example of the double mutant shown here, are required to observe
division plane orientation defects (orange line).
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Proteins important for PPB positioning

The first genes required for PPB positioning were discovered using forward

genetic screens described below. Later, protein-protein interaction studies identified

redundant partners that promote proper PPB positioning. As an example, we highlight

the pathway that contributes to asymmetric divisions during stomatal formation in maize.

The pathway required for PPB positioning and stomatal development in Arabidopsis has

been beautifully and recently reviewed in (L. Chen, 2022; Guo et al., 2022; Arvid

Herrmann et al., 2021).

The early components of the maize asymmetric subsidiary mother cell pathway

were identified using forward genetics as many of the identified genes have

non-redundant functions. Subsidiary mother cells divide into a subsidiary cell and

pavement cell and begin with the polarized recruitment of BRICK to the subsidiary

mother cell and guard mother cell interface. BRICK1 is a highly conserved component of

the SCAR/WAVE (suppressor of cAR/WASP family/Verprolin-homologous protein)

complex important for nucleating branched actin, first characterized in maize (Frank et

al., 2002). Arabidopsis brk1 mutants have aberrant actin organization and reduced

trichome branching and pavement cell lobing (Djakovic et al., 2006; Le et al., 2006).

Similarly maize brick1 mutants with aberrant actin organization and form brick-shaped

epidermal cells that lack lobes and have defects in subsidiary cell formation (Facette et

al., 2015; Frank et al., 2002). BRICK1 is required for the recruitment of two catalytically

dead leucine-rich-repeat receptor-like-kinases (LRR-RLK) PANGLOSS2 (PAN2) and

PAN1 (Cartwright et al., 2009; Xiaoguo Zhang et al., 2012).

Redundant players important for subsidiary mother cell divisions were identified

through protein-protein interactions. PAN2 is required to recruit PAN1 to the subsidiary
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mother and guard cell interface, but they do not physically interact. Instead, PAN1 and

PAN2 both interact with two members of the WEB1-PMI2-RELATED (WPR) protein

family (Nan et al., 2023). Founding members of the WPR family, WEAK CHLOROPLAST

MOVEMENT UNDER BLUE LIGHT 1 (WEB1) and PLASTED MOVEMENT IMPAIRED 2

(PMI2) promote actin nucleation during chloroplast movement (Kodama et al., 2010;

Luesse et al., 2006; Suetsugu et al., 2017). WPRs are a large redundant family (16 in A.

thaliana and 17 in maize) that share a coiled-coil domain which likely mediates

protein-protein interactions (Nan et al., 2023). Four maize WPRs belonging to the WPRA

and WPRB clades interact with each other, while WPRBs interact directly with PAN2 and

PAN1. These WPRs polarly localize to the subsidiary mother cell face near the guard

mother cell. PAN1 and PAN2 accumulation and interaction with these WPRs promote

actin patch formation. Single wpra mutants have no phenotype, but double wpra1 wpra2

mutants were not recovered and are therefore likely essential for viability (Nan et al.,

2023). Similarly, the two WPRB genes are redundant: single mutants have no

phenotype, while double mutants have subsidiary cell division defects. The WPRs may

act redundantly to mediate PAN1 recruitment following polarization of BRIK1 and PAN2

(Nan et al., 2023). Finally, PAN1 is required for the recruitment of a class of small

monomeric GTPase proteins found in plants called Rho-related GTPases of Plants

(ROPs) (Facette et al., 2015), whose redundancy is discussed in more detail below.

ROPs promote cell elongation required for division plane positioning

ROPs act as molecular switches critical for coordinating polar growth via

cytoskeletal rearrangements and vesicle trafficking (Craddock et al., 2012; E. Li et al.,

2023; Nielsen, 2020; Ou et al., 2022; Z. Yang, 2008). Like other small GTPases, ROPs
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cycle between an activated GTP-bound state and an inactive GDP-bound state

mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating

proteins (GAPs) respectively. Activated ROP-GTP interacts with ROP effectors. A final

class of ROP regulators called guanine dissociation inhibitors (GDIs) inhibit ROP activity

by sequestering ROP-GDP away from the plasma membrane. ROPs and their related

proteins are often highly redundant. For example, in moss (P. patens), there are twelve

GEFs, six ROPGAPs, and four GDIs. Silencing entire families of ROP regulators by

RNAi results in loss of tip growth and highlights their role in cell expansion (Bascom et

al., 2019). Arabidopsis has eleven highly similar ROPs, so overexpression or

gain-of-function mutants have been used to overcome redundancy to reveal defects in

directed cell expansion in root hairs, pollen tubes, during phloem development, and in

epidermal cells (Fowler, 2009; Fu et al., 2005; Roszak et al., 2021; Z. Yang, 2002).

Interestingly, a few proteins within the ROP signaling module may also play roles in

division plane orientation. These include ROPs, ROP-GAP proteins (also known as

PLECKSTRIN HOMOLOGY GAPS, PHGAPs), ROP-GEFs, and ROP effectors called

ROP INTERACTING PARTNERS (RIPs) (Hasi et al., 2022; Rong et al., 2022; C. Zhang

et al., 2022).

Two of the nine ROPs in maize play redundant roles in polarizing subsidiary

mother cell divisions. Like Arabidopsis, maize ROPs can be classified based on

post-translational modifications into two groups (Type-I or Type-II) which affect

membrane targeting (Berken et al., 2008; Christensen et al., 2003a). Maize Type-I

rop2/rop2 rop9/+ mutants have defective subsidiary mother cell divisions due to failure to

accumulate actin patches during polarization (Christensen et al., 2003b; Humphries et

al., 2011). Maize ROPs are recruited by an initial BRICK/PAN polarizing signal
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(discussed above) to promote actin patch formation. After ROP recruitment, the guard

mother cell and the subsidiary mother cell expand (Facette et al., 2015).

P. patens and M. polymorpha, have fewer ROP genes than Arabidopsis and

maize. In P. patens, all four ROP genes act redundantly to regulate polarized tip growth

and individually contribute to plant size (Burkart et al., 2015). Quadruple rop1234

mutants lose polar growth completely, resulting in diffusely growing spherical cells that

lack branches (Cheng et al., 2020). Less severe triple ROP mutants rop134 (Cheng et

al., 2020) and rop234 (Yi et al., 2020) exhibit defective placement of asymmetric branch

divisions (Cheng et al., 2020). Similar phenotypes can be seen in cells treated with

Latrunculin A, a drug that disrupts actin filaments, suggesting that ROPs regulate actin

accumulation to promote branch initiation and then cell elongation (Yi et al., 2020).

Division plane orientation defects in rop234 mutants seem to be a consequence of failed

branch expansion and failed nuclear migration (Yi et al., 2020). The sole ROP gene in M.

polymorpha is most similar to AtROP2 (Rong et al., 2022). rop mutant thallus cells had

aberrant shapes and defects in cortical microtubule organization that likely contributed to

more random division positioning. While it is known that M. polymorpha cells forms PPBs

following the formation of polar organizers (perinuclear microtubule accumulations),

whether PPBs were misplaced in rop mutants is unknown because they were not

observed in these cells (Buschmann et al., 2016; Rong et al., 2022).

Arabidopsis PHGAPs/RENs are another example of redundant genes that impact

division plane positioning. Mutants in Arabidopsis PHGAPs/RENs have aberrant PPB

localization, potentially due to defects in cell elongation. PHGAPS are a class of

pleckstrin homology ROP GTPase-activating proteins (GAPs) that promote GTP

hydrolysis and thus inactivation of ROP (Stöckle et al., 2016). The founding member,
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ROP ENHANCER1 (REN1), maintains pollen-tube tip growth through its regulation of

ROP1 (Hwang et al., 2008). Two other closely related PHGAPs, PHGAP1/REN2 and

PHGAP2/REN3, interact with ROP2 and are redundantly required for epidermal-cell

lobing (Lauster et al., 2022). PHGAPs are stabilized by BRASSINOSTEROID

INSENSITIVE 2 kinase-dependent phosphorylation, accumulating in pavement-cell

indentations to deactivate ROP2 (C. Zhang et al., 2022). In addition to the role of

PHGAPs in polar expansion, PHGAPs are recruited to the division site from metaphase

to cytokinesis in the Arabidopsis root meristem (Stöckle et al., 2016). PHGAPs likely

alter PPB positioning via their roles in cell elongation, although some other mechanism is

possible. The role PHGAPs play at the division site remains unknown (Stöckle et al.,

2016).

Other ROP-related proteins in Arabidopsis that influence the direction of cell

division include a class of ROP effector proteins, interactor of constitutive active ROPs

(ICRs)/ ROP interactive partners (RIPs) (Lavy et al., 2007; Nagawa et al., 2010), and the

ROPGEFs (Roszak et al., 2021). Arabidopsis has five RIPs that all label cortical

interphase microtubules (Hasi et al., 2022). Several double or triple mutant combinations

have no phenotype while the two quadruple mutants rip1245 and rip1235 as well as the

quintuple rip12345 mutant generate narrower leaves due to less longitudinally-oriented

PPBs leading to fewer transversely-oriented cells (Hasi et al., 2022). Thus far, mutants in

another class of highly redundant ROP effectors, the ROP-interactive CRIB motif

proteins (RICs), reveal functions in cell lobing in Arabidopsis (G. Wu et al., 2001) but no

obvious function in P. patens (Bascom et al., 2019). Interestingly, individual

overexpression of three Arabidopsis ROPGEFs (ROPGEF2, ROPGEF3, and ROPGEF5)

activate ROPs to generate asymmetric periclinal divisions during phloem development
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(Roszak et al., 2021). These ROPGEFs localize ubiquitously on the plasma membrane

but are depleted from the division site (Roszak et al., 2021), similar to the actin depleted

zone (Emmanuel Panteris, 2008; Sano et al., 2005; Daniel Van Damme et al., 2007).

This suggests that ROP activity may be reduced at the division site

In summary, mutants of ROPs and ROP-related proteins demonstrate their roles

in cell expansion and polar growth. Impacts on division plane placement may be indirect

through alterations in cell shape mediated by cell expansion. However, the absence of

ROPGEFs from the division site, and accumulation of PHGAPs at the division site may

reflect more direct roles in division plane orientation.

IRK/PXC2

Preventing aberrant divisions is another critical role in division plane positioning

played by two partially redundant leucine-rich-repeat receptor-like kinases (LRR-RLK) in

Arabidopsis. One of them is INFLORESCENCE AND ROOT APICES RECEPTOR

KINASE (IRK), a LRR-RLK that polarly localizes and is essential for preventing ectopic

divisions in the endodermis and restricting stele width (Campos et al., 2020). A closely

related LRR-RLK called PXY/TDR CORRELATED2 (PXC2) also restricts stele width.

Double mutants have more frequent and aberrantly positioned divisions, wider steles

and noticeable root growth defects: enhanced phenotypes are likely due to differences in

gene expression domains (Goff et al., 2021).

GRAS Transcription Factors

The Arabidopsis GRAS family transcription factor SHORT-ROOT (SHR) together

with another GRAS transcription factor, SCARECROW, promotes periclinal divisions in
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the root to generate cortex and endodermal cell layers (Benfey et al., 1993; Koizumi et

al., 2012). Arabidopsis SHR is a mobile protein that moves from the stele to the

endodermis (Nakajima et al., 2001). Maize has three SHR homologs: ZmSHR1,

ZmSHR2, and ZmSHR2-h, while Setaria viridis has two SHR homologs (Ortiz-Ramírez

et al., 2021). In contrast to Arabidopsis, ZmSHRs are expressed in the endodermis and

move to the cortex (Ortiz-Ramírez et al., 2021). While single mutants have no or slight

phenotypes, maize and S. viridis double mutants have reduced cortical layer numbers,

illustrating the redundant functions of two monocot SHR homologs in regulating root

periclinal divisions (Ortiz-Ramírez et al., 2021). In P. patens, SHR homologs are also

genetically redundant and play a role in division plane positioning of an asymmetric

division that occurs in the phyllid (leaf) (Ishikawa et al., 2023). P. patens has two SHR

homologs, PpSHR1 and PpSHR2 (Ishikawa et al., 2023; Moody et al., 2021). Double

ppshr1 ppshr2 mutants have defects in the orientation of a cell type called the

most-medial lateral cell, resulting in narrower leaves and thicker midribs (Ishikawa et al.,

2023). In most-medial lateral cells, PpSHR functions to promote longitudinal divisions

instead of dividing along the path that minimizes surface area (Ishikawa et al., 2023).

Proteins important for PPB formation

One protein complex essential for PPB formation contains a core of five proteins

called the TONNEAU1 (TON1)/TONNEAU1 RECRUITING MOTIF (TRM)/ PROTEIN

PHOSPHATASE TYPE 2A (PP2A) (TTP) complex (Spinner et al., 2013). The complex

contains a PP2A phosphatase holoenzyme composed of three subunits described below

in more detail, a connector protein, TON1, and one or more proteins from the TRM

family. Genes encoding proteins within the complexes are often redundant: double or
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triple mutants are required to see a phenotype, which is typically altered cell elongation

due to misorganized microtubule arrays (except in the trm678 mutant where arrays

appear normal, although this was not quantitatively analyzed) and no PPB. When core

TTP components are removed, lethality is sometimes observed, suggesting that the TTP

complex plays multiple vital roles in both interphase and mitotic cells. The TTP complex

is targeted to specific locations by TRMs and the B’’ regulatory subunit of PP2A.

PP2A holoenzymes play important roles in plant defense, regulating transcription

factor stability, and signaling e.g. (Bheri et al., 2019; Bian et al., 2020; Máthé et al.,

2019), but here we focus on its role in PPB formation. The PP2A heterotrimeric

holoenzyme is composed of a scaffolding subunit (PP2AA), a regulatory B-type subunit

that controls its localization, and a catalytic subunit (PP2AC). B-type subunits can be

broken into B, B’, and B’’ families and function in substrate specificity or PP2A complex

targeting. FASS/TON2 encodes a B’’ type regulatory subunit (Camilleri et al., 2002). In

Arabidopsis, fass/ton2 mutants have defects in cortical-microtubule organization and

lack PPBs (Camilleri et al., 2002; Kirik et al., 2012; McClinton et al., 1997; Torres-Ruiz et

al., 1994). In maize, the B’’ subunit is encoded by two homologs, DISCORDIA1 (DCD1)

and ALTERNATIVE DISCORDIA1 (ADD1). Similar to Arabidopsis fass/ton2

loss-of-function mutants, maize dcd1 add1 double mutants do not make PPBs and are

seedling lethal. DCD1 and ADD1 localize to the division site from preprophase to

metaphase (Wright et al., 2009) similar to FASS/TON2 (Kirik et al., 2012). Single add1

mutants have no discernable phenotype (Wright et al., 2009). Single dcd1 mutants have

partially defective preprophase bands which disrupt subsidiary mother cell divisions but

do not affect symmetric divisions (Wright et al., 2009). Perhaps symmetric divisions in
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maize have additional redundant mechanisms to ensure proper division plane orientation

not found in asymmetric divisions.

There are five copies of the Arabidopsis PP2A phosphatase catalytic subunit.

Single pp2ac-3 or pp2ac-4 mutants do not have significant root growth, microtubule

organization, and division positioning defects until combined into a double mutant

(Ballesteros et al., 2013; Spinner et al., 2013; Yoon et al., 2018; Yue et al., 2016). A

receptor-like kinase called ARABIDOPSIS CRINKLY4 (ACR4) phosphorylates PP2A-C3,

while PP2A-C3 dephosphorylates ACR4. This cross-regulation is implicated in formative

cell divisions within the Arabidopsis root (Yue et al., 2016). Similarly, three

PP2AA-scaffolding subunits facilitate PP2A assembly and double or triple mutants are

required to observe cells lacking PPBs (Spinner et al., 2013; H.-W. Zhou et al., 2004).

Neither the scaffolding subunit double mutants (pp2aa1-a3 or pp2aa1-a2 ) nor the

catalytic subunit double mutant pp2ac3-c4 make PPBs (Spinner et al., 2013). Enhanced

phenotypes in higher order mutants reveal redundancies in the PP2A complex and its

impact on PPB formation.

The original ton1 mutant allele is actually a double mutant disrupting two

tandemly-linked paralogs, TON1a and TON1b in Arabidopsis (Azimzadeh et al., 2008;

Nacry et al., 1998; Traas et al., 1995). TON1a and TON1b are 86% identical at the

amino acid level and both contain a serine-rich motif, a dimerization motif, and bind to

the calcium-binding protein called centrin (Azimzadeh et al., 2008). TON1 also shares

domains with human centrosome proteins and may be involved with microtubule

nucleation (Azimzadeh et al., 2008). The double mutant produces a tiny plant with no

PPBs and disordered microtubule arrays. In contrast, ton1a-1 single mutants have a

milder phenotype consisting of slightly slower root growth and misoriented symmetric
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divisions mostly in the root epidermis (Yanwen Zhang et al., 2016). Disruption of the

single gene TON1 in P. patens leads to normally shaped but agravitropic vegetative cells

and small, disorganized leafy gametophores with defects in PPB formation and cell

elongation (Spinner et al., 2010).

A subset of highly redundant TON1 interactors, TRMs, were identified by

yeast-two-hybrid screening that are required for both PPB positioning and formation.

TRMs are a superfamily of 34 proteins that share a conserved C-terminal TON1

interacting motif. Some TRMs also contain microtubule-binding domains and

FASS/TON2 interaction domains (Drevensek et al., 2012; Spinner et al., 2013). The

founding TRM genes, called LONGIFOLIA1 (LNG1) and LNG2, were identified by a

dominant mutant that overexpressed LNG1/TRM2 in Arabidopsis, lng1-1D (Y. K. Lee et

al., 2006). The lng1-1D overexpression produces aberrantly elongated cells leading to

long, narrow leaves. Neither lng1 nor lng2 loss-of-function mutants have a noticeable

phenotype. However, lng1 lng2 double mutants have short, round leaves (Y. K. Lee et

al., 2006). Progressively higher order mutant combinations generated cell elongation

defects that led to shorter rounder leaves (Y. K. Lee et al., 2018). Whether these mutants

have PPB positioning defects is unknown. In maize, a naturally-occurring mutation within

the LNG1/TRM2 gene ZmLNG1, alters leaf shape and plant architecture in specific

genetic backgrounds. The mutation generates a protein that disrupts ZmLNG1 and

ZmTON1 interactions but does not alter ZmLNG1 localization. ZmLNG1 overexpression

generates long, narrow leaves and kernels. Yeast-three-hybrid assays suggest that

ZmLNG1 may act as a bridge between TON1 and Ovate Family Proteins (OFPS,

discussed below) (Q. Wang et al., 2023).
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While several LNG/TRM genes promote cell elongation, possibly due to

modulation of interphase microtubule orientation or PPB location, other TRM genes are

critical for PPB formation itself. A subset of three similar TRMs in Arabidopsis, TRM6,

TRM7 and TRM8 (Drevensek et al., 2012), have partially redundant roles in PPB

formation (Schaefer et al., 2017). Single and double mutants have minor phenotypes,

but the triple trm678 mutant has significantly impaired PPB formation (Schaefer et al.,

2017). Triple trm678 mutants do not have obvious growth defects but have increased

spindle angle variance. Interestingly, division site localized proteins still accumulate,

albeit less often than in wild-type cells (Huang et al., 2022; Schaefer et al., 2017). This

suggests that a partial or defective PPB still accumulates in these mutants, and/or that

division site protein localization is not strictly contingent on PPB formation.

Multiple TRMs interact with another class of plant-specific proteins called Ovate

Family Proteins (OFPs) that likely alter PPB positioning or directional cell elongation, as

mutants originally characterized in tomato produce elongated tomato fruits (Snouffer et

al., 2019; van der Knaap et al., 2014; S. Wu et al., 2018). OFPs contain a conserved ~70

amino acid “ovate” motif in addition to protein-protein interaction domains (J. Liu et al.,

2002). Multiple OFP family members are found across the land plants lineage: P. patens

has 11, Arabidopsis has 19, and maize has 45 (D. Liu et al., 2014). Arabidopsis OFPs

also interact with FASS/TON2 (Xiaowei Zhang et al., 2020). However, the founding OFP

was a loss-of-function mutant in OVATE that produced elongated tomato fruits (J. Liu et

al., 2002). Additional mutations in another OFP gene called SlOFP20 led to highly

elongated fruits in the ovate mutant background (S. Wu et al., 2018) indicating that

redundant OFP functions can be revealed through higher order mutant combinations.
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Indeed, single loss-of-function ofp mutants often do not have any phenotype (S. Wang et

al., 2011).

Although OFPs and TRMs interact, they often have antagonistic effects on fruit or

organ shape in diverse plant species e.g. (Colle et al., 2017; Lazzaro et al., 2018;

Snouffer et al., 2019; Q. Wang et al., 2023; C. Yang et al., 2018; Zhao et al., 2018). TRM

overexpression often generates elongated organs, while overexpression of OFPs often

generates short, round organs (Snouffer et al., 2019). Transiently co-expressing OFPs

with TRMs alters localization of one interacting partner or another (sometimes to

microtubules or the cytosol), suggesting that both interactions and relative amounts are

delicately balanced to generate proper localization eventually leading to correctly shaped

organs (S. Wu et al., 2018).

IQ67 DOMAIN proteins

IQ67 DOMAIN proteins are a large family of plant-specific proteins (33 in

Arabidopsis) that modulate cell shape, contain calmodulin binding motifs (IQ67) and

often localize to microtubules (Bürstenbinder et al., 2013; Lazzaro et al., 2018; Liang et

al., 2018; Hao Li et al., 2022; Yan Li et al., 2021; Yuanfeng Li et al., 2020; van der Knaap

et al., 2014; B. Yang et al., 2022). Similar to the TRMs, a subset of three IQD proteins

(IQD6,7 and 8) are also redundantly required for PPB formation as triple iqd678 mutants

result in 50% of cells without PPBs (Kumari et al., 2021). IQD8 fused to GFP rescues the

iqd678 mutant and marks a broad zone that encompasses the division site until

cytokinesis and colocalizes with phragmoplast microtubules (Kumari et al., 2021).

IQD678 are also important for the asymmetric divisions in the Arabidopsis embryo and

likely indirectly contribute to division plane positioning by influencing cell shape through
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auxin dependent cytoskeletal changes (Vaddepalli et al., 2021). Intriguingly, IQD8

interacts with PHGAP proteins, which are required for PPB placement (discussed above)

and recruits them to microtubules when concurrently overexpressed in tobacco cells.

IQD8 interacts with both PHRAGMOPLAST ORIENTING KINESIN1 (POK1) and POK2

discussed in more detail below (Kumari et al., 2021). In iqd678 mutants, POK1

recruitment is delayed but eventually accumulates to wild-type levels (95%) by

cytokinesis (Kumari et al., 2021).

Proteins important for phragmoplast guidance or the maintenance of division

plane orientation

POK1/POK2

The homologs POK1 and POK2 encode two kinesin-12 class proteins in A.

thaliana that localize to the division site from prophase to cytokinesis and together play

critical roles in division plane orientation (A. Herrmann et al., 2018; Lipka et al., 2014;

Müller et al., 2006). Both proteins have an N-terminal motor domain, coiled-coil domains,

and a C-terminal cargo binding domain. Single mutants do not have division plane

orientation defects. However, pok1 pok2 double mutants have division plane orientation

defects (Müller et al., 2006) due to defects in phragmoplast guidance, which often inserts

the cell plate at a location different from the PPB (Lipka et al., 2014). POK1 also rescues

the double mutant, suggesting functional redundancy (Lipka et al., 2014). However,

phragmoplast expansion rates are significantly slower in pok2 single mutants, indicating

its distinct role (A. Herrmann et al., 2018). POK1 and POK2 have similar N-terminal

motor domains but localize to the division site via C-terminal regions (A. Herrmann et al.,
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2018; Lipka et al., 2014). The C-terminus mediates interaction with another division site

localized protein TANGLED1, described in the next section (Müller et al., 2006). POK1 is

actively recruited to the division site during prophase but is statically maintained in

metaphase (Lipka et al., 2014). POK2 motor activity is diffusive and weakly processive

towards microtubule plus-ends (Chugh et al., 2018). POK2-YFP noticeably accumulates

in the phragmoplast midline and the division site, in contrast to POK1, which is primarily

at the division site in wild-type cells (A. Herrmann et al., 2018; Lipka et al., 2014; Mills,

Morris, et al., 2022). If POK1 is not recruited to the division site when interactions with

other division site localized proteins are disrupted, it also accumulates in the

phragmoplast midline and on the phragmoplast microtubules (Mills, Morris, et al., 2022).

Perhaps in the absence of division-site recruiters and stabilizers, plus-end directed

kinesins preferentially localize to the phragmoplast midline and the phragmoplast where

microtubule plus-ends accumulate. POK1 interacts with the

RAN-GTPASE-ACTIVATING-PROTEIN1 (RAN-GAP1), a protein that localizes to the

division site and is likely required for division positioning with its redundant partner

RAN-GAP2 (Xu et al., 2008). POK1 is actively maintained at the division site after the

PPB disassembles through direct or indirect interactions with two other proteins,

TANGLED1 (TAN1) and AUXIN INDUCED IN ROOT CULTURES9 (AIR9) (Mills, Morris,

et al., 2022), which are discussed in more detail in the next section.

Myosin XI and Myosin VIII

POK1 and POK2 interact with other proteins including actin-binding motor

proteins called myosins that transport cargo along actin filaments (Huang et al., 2022;

Nan et al., 2021). Plants contain two myosin classes: MYOSIN XI, which contains a
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similar domain structure as Myosin class V proteins from animals and fungi, and

MYOSIN VIII, which is plant specific (Nebenführ et al., 2018). Interestingly, both

MYOSIN XIs and MYOSIN VIIIs play critical but often highly redundant roles in division

plane positioning in addition to their roles in cell elongation, nuclear and organelle

movement, and cytoplasmic streaming (Bibeau et al., 2021; Haraguchi et al., 2018;

Madison et al., 2015; Tominaga et al., 2012). In Arabidopsis, there are 13 MYOSIN XIs:

3 of them, MYOSIN XI-K, MYOSIN XI-1 (also called MYA1) and MYOSIN XI-2, are

redundantly required for division plane positioning, particularly within the stele

(Abu-Abied et al., 2018). The myosin xi-k xi-1 xi-2 triple mutant generates additional

lateral and adventitious roots and shows both unpolarized auxin transport efflux protein

localization and lower auxin response in roots. MYOSIN XI-K-YFP rescues the triple

myosin mutant and localizes to the division site during prophase, metaphase and

telophase suggesting it may play a direct role in division plane positioning (Abu-Abied et

al., 2018). The triple mutant was combined with a mutation in MYOSIN XI-I to generate a

quadruple myosin mutant. Surprisingly, the quadruple mutant grew similarly to wild-type

plants during the seedling stage. However, the quadruple mutant was hypersensitive to

the microtubule-depolymerizing drug, oryzalin. Similar to MYOSIN XI-K-YFP, MYOSIN

XI-1-YFP localized to the division site. MYOSIN XI-1 localization was dependent on a

functional PPB, showing partially disrupted localization in the trm678 triple mutant

described above but no division site accumulation in the fass/ton2 mutant. In addition,

MYOSIN XI-K and XI-1 interact via co-immunoprecipitation and they are found together

at the division site in puncta with other division site localized proteins including POK1,

TAN1 and RAN-GAP1 (Huang et al., 2022).
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In maize, a MYOSIN XI related to MYOSIN XI-I, called OPAQUE1 (O1) promotes

phragmoplast guidance to the division site in asymmetric divisions and interacts with

POK1 homologs and other myosins (Nan et al., 2021). The o1 mutant has aberrant

protein body accumulation in endosperm cells which produce the opaque kernel

phenotype (G. Wang et al., 2012). Despite similarities in interactors, MYOSIN XIs also

perform distinct, apparently non-conserved roles. For example, Arabidopsis MYOSIN

XI-I is required for proper nuclear movement and nuclear shape (Muroyama et al., 2020;

Tamura et al., 2013; X. Zhou et al., 2015), but the o1 mutant does not have obvious

defects in nuclear positioning or shape (Nan et al., 2021). Additionally, while several

Arabidosis MYOSIN XIs fused to fluorescence proteins localize to the division site and

the phragmoplast midline (Abu-Abied et al., 2018; Huang et al., 2022),

immunolocalization shows that maize O1 localizes only to the phragmoplast midline

(Nan et al., 2021). In P. patens, the two MYOSIN XIs are redundantly required for

polarized growth via interaction with a RAB monomeric GTPAse and also play roles in

vesicle clustering and trafficking (Galotto et al., 2021; Orr et al., 2020). MYOSIN XI

accumulates at the growing tip prior to actin filaments (Furt et al., 2013) and localizes to

the spindle and phragmoplast midline but not at the division site (Sun et al., 2018).

These recent exciting breakthroughs and differences among MYOSIN XIs illuminate the

need to determine how MYOSIN XIs promote proper division plane positioning possibly

through interaction with POKs or other proteins at the division site or the phragmoplast

midline.

The plant-specific myosins, MYOSIN VIIIs, also play critical roles in division plane

positioning, although their interaction with other division-site localized proteins is still

unknown. MYOSIN VIII genes are found in large and sometimes partially redundant
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families. Deleting one, two, and up to five MYOSIN VIIIs in P. patens generates

progressively smaller plants, with the quintuple mutant most severely affected (S.-Z. Wu

et al., 2011). In addition, quintuple mutants have defects in division plane positioning that

can be mostly rescued by overexpression of one MYOSIN VIII. MYOSIN VIII localizes to

the division site both in P. patens PPB-independent divisions, and in PPB-containing

tobacco cells (S.-Z. Wu et al., 2014). MYOSIN VIIIs also localize to plasmodesmata,

plasma membrane, microtubule and actin filaments (Golomb et al., 2008; Kastner et al.,

2022; L. Liu et al., 2001; S.-Z. Wu et al., 2014). In P. patens, division site localization

requires an intact actin cytoskeleton (S.-Z. Wu et al., 2014). While mutants in a single

MYOSIN VIII, arabidopsis thaliana myosin1 (atm1), have slower growth and less dividing

root cells, division plane orientation was not assessed (Olatunji et al., 2022). It will be

interesting to determine whether MYOSIN VIIIs interact with division site localized

proteins.

MAP65s

In addition to interacting with MYOSIN XIs, POK2 also interacts with several

members of the MICROTUBULE ASSOCIATED PROTEIN65 (MAP65) family: MAP65-1,

MAP65-3 and MAP65-5 (A. Herrmann et al., 2018). The founding MAP65 protein was

identified through a robust interaction with microtubules, including in vitro bundling

(Chang-Jie et al., 1993). MAP65s typically bundle parallel or antiparallel microtubules

with shallow contact angles (Hashimoto, 2015; A. P. Smertenko et al., 2004; Tulin et al.,

2012). MAP65 gene families tend to be large (9 in Arabidopsis), and have variable

regions that provide specificity within subfamilies. In addition, expression,
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phosphoregulation, and localization of MAP65 proteins is variable (Hussey et al., 2002;

Sasabe et al., 2012; A. P. Smertenko et al., 2008).

Unlike other MAP65s, MAP65-3 and MAP65-4 exhibit mitosis-specific expression

and are together essential for cytokinesis (Haoge Li et al., 2017; Daniël Van Damme et

al., 2004). MAP65-3 plays a critical and non-redundant role in antiparallel microtubule

bundling within the phragmoplast (Ho et al., 2011). map65-3/pleiade mutants are small

and have defects in cytokinesis (Müller et al., 2004) that cannot be rescued with

MAP65-1 driven by the MAP65-3 promoter (Ho et al., 2012). MAP65-3 localizes to the

phragmoplast midline (Müller et al., 2004) and interacts with many proteins including

POK2 (A. Herrmann et al., 2018). Other MAP65s are also important in cytokinesis as

demonstrated through exacerbated cytokinetic defects in MAP65-3 double mutants with

MAP65-1, MAP65-2, or MAP65-4 respectively (Haoge Li et al., 2017; Sasabe et al.,

2011). Interestingly, map65-1 map65-2 double mutants do not have defects in division

positioning or cytokinesis and instead function redundantly in cell expansion (Lucas et

al., 2012; Sasabe et al., 2011). map65-4 mutants have no noticeable phenotypes until

combined with map65-3 mutants but double mutants are not viable due to cytokinesis

failures. MAP65-4 localizes to the division site and the phragmoplast midline, but its

function at the division site is not yet known (Haoge Li et al., 2017).
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Figure 1.5. Modular redundancy in division plane orientation inspired by (Zinovyev et al.,
2013).
(A) Synthetic enhancement within pathways can occur (i) through accumulation of partial pathway
mutations in genes (black and gray arrows) within the same pathway or (ii) through mutations
within a complex that lead to complex disassembly. (B) Schematic of genes (black and gray
arrows) that occur in two distinct but redundant pathways that contribute to correct division plane
orientation. Loss of components in one pathway does not result in a phenotype. However, loss of
both pathways results in a synthetically enhanced division plane orientation defect. Orange lines
represent final misoriented divisions.
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SYNTHETIC REDUNDANCY

In this section we discuss another type of redundancy that is mediated not by

homologous genes, but by unrelated genes. The framework for understanding synthetic

genetic interactions has been described (Zinovyev et al., 2013). Unrelated genes may

contribute redundant functions through involvement in the same pathway (Figure 1.5A-i,

ii) or in different pathways (Figure 1.5B). Within a singular genetic pathway, loss of an

unrelated gene may represent a “partial loss of function” (Figure 1.5A). Alternatively,

unrelated genes may contribute to similar functions, likely in genetically parallel

pathways that converge on a single phenotypic output (Figure 1.5B). For both within or

between pathway redundancies, when one gene or the other is disrupted there is no or

little obvious phenotype, but the double mutant has a synthetic or synergistic phenotype,

described as “synthetic sick” or “synthetic lethal”. The most comprehensive analysis of

synthetic sick or synthetic lethal mutants comes from a systematic double mutant screen

in budding yeast. This screen identified many unexpected genetic interactions between

unrelated genes (Tong et al., 2001). Alternatively, synthetic lethality screens have led to

treatments of human cancers: poly(ADP-ribose) polymerase (PARP) inhibitors are

synthetically lethal with mutations in Breast Cancer gene1 (BRCA1) or BRCA2 (Turk et

al., 2018).

One type of synthetic genetic interaction is observed when two genes from

different parts of a single pathway are mutated (Figure 1.5A-i). Several examples came

from a screen that generated double mutants focused on the MITOGEN ACTIVATED

PROTEIN KINASE (MAPK) pathway in Arabidopsis. Single mutants in different parts of

the MAPK pathway have minor growth phenotypes, while the double mutants show

synthetic short-root phenotypes (Su et al., 2016). This conserved MAPK pathway is
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essential for cytokinesis, reviewed in (Sasabe et al., 2012). An additional example of a

synthetic genetic interaction occurs in pan1 pan2 double mutants which have ~3X more

asymmetric division defects than single mutants (Xiaoguo Zhang et al., 2012). PAN1 and

PAN2 are two different LRR-RLK proteins that accumulate during different times during

the developmental sequence of subsidiary mother cell division (Facette et al., 2015).

When unrelated genes contribute to a singular pathway, partial-loss-of-function

mutant alleles are enhanced by additional “within-complex” mutant alleles (Figure

1.5A-ii). Two fascinating examples took advantage of weak alleles of fass/ton2 to screen

for enhancers. A new allele of ton1a was identified as a ton2-15 enhancer (Kirik et al.,

2012). TON1A protein directly interacts with FASS/TON2 (Spinner et al., 2013),

suggesting that the “synthetic” phenotype may be caused by loss of multiple components

within a complex. Another use of a different weak fass/ton2 allele showed strong genetic

enhancement when combined with pp2aa1, pp2aa2 or pp2aa3 mutants. The PP2AA

proteins also interact directly with FASS/TON2 in the TTP complex (Spinner et al., 2013).

Another partial-loss-of-function mutant enhanced by additional “within complex”

mutant alleles occurs during asymmetric divisions that produce the subsidiary cells in

maize (BRICK/PAN/ROP pathway described earlier). Combining rop2 homozygous

mutants with rop9 heterozygotes (rop2/rop2 rop9/+) generates a mild subsidiary cell

division-positioning defect, likely representing a partial loss of ROP Type I function.

Combining this with the pan1 mutant (which by itself has ~20% defective subsidiary

cells) generates plants with >50% defective subsidiary cells. This synthetic enhanced

phenotype is consistent with their physical interaction (Humphries et al., 2011).

A synthetic double mutant with defects in growth and division plane orientation

was recently identified through the combination of a mutant in TANGLED1 (TAN1), which
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encodes a microtubule-binding protein that localizes to the division site, together with a

mutant in AUXIN INDUCED IN ROOT CULTURES9 (AIR9), which encodes an unrelated

microtubule-binding protein that localizes to the division site in preprophase and late

telophase in Arabidopsis (Buschmann et al., 2006, 2015; Walker et al., 2007). The

current hypothesis is that TAN1 and AIR9 function in two separate but functionally

redundant pathways (schematically outlined in Figure 1.5B) that maintain division plane

orientation in Arabidopsis because no interaction between them has been identified (Mir

et al., 2018). TAN1 was originally identified in maize, in which tan1 mutants are short and

have defects in phragmoplast guidance to the division site (Cleary et al., 1998; Martinez

et al., 2017; Smith et al., 1996). TAN1 is found in plants either as a single gene (e.g.

Arabidopsis (Walker et al., 2007)) or is within a small family with a few paralogs (e.g.

sorghum or maize). TAN1 is plant-specific and in maize, it encodes a protein that binds,

bundles and crosslinks microtubules in vitro (Martinez et al., 2020; Smith et al., 2001)

and likely captures microtubules in vivo to position the expanding phragmoplast at the

division site (Bellinger et al., 2023). In Arabidopsis, tan1 and air9 single mutants do not

have significant division plane or growth defects. However, tan1 air9 double mutants

exhibit a synthetically enhanced phenotype, consisting of short, slow-growing plants with

phragmoplast guidance defects. Unexpectedly, TAN1 and AIR9 functionally converge on

their ability to maintain POK1 at the division site after metaphase. While POK1 localizes

to the division site in either single mutant, POK1 is not maintained at the division site in

tan1 air9 double mutants after metaphase (Mills, Morris, et al., 2022). It will be

interesting to determine whether AIR9 directly interacts with POK1 similar to the direct

interaction between TAN1 and POK1.
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The synthetic tan1 air9 double mutant phenotype in Arabidopsis is rescued by

transforming it with TAN1 constructs, allowing identification of TAN1 domains that are

critical for its function in growth and division plane positioning (Mills, Morris, et al., 2022;

Mills & Rasmussen, 2022; Mir et al., 2018). The first ~130 amino acids of TAN1

(TAN11-132) localize to the division site primarily during telophase, are necessary and

sufficient for POK1 interaction, and fully rescued the tan1 air9 double mutant (Carolyn G.

Rasmussen et al., 2011). Disrupting the interaction between TAN1 and POK1 in the tan1

air9 double mutant causes phragmoplast guidance defects (Mills, Morris, et al., 2022).

Another example of genes likely functioning in a parallel pathway was identified

in the monocot Brachypodium distachyon. BdPOLAR was identified by its reduced RNA

accumulation (D. Zhang et al., 2022) in a mutant which fails to form subsidiary cells

(Raissig et al., 2017). POLAR is a plant-specific polarly-localized protein that

accumulates during Arabidopsis stomatal development. Unlike the Atpolar mutants that

have no phenotype (Pillitteri et al., 2011), Bdpolar mutants have misoriented subsidiary

cell divisions, which are greatly enhanced by combination with Bdpan1 mutants. Since

BdPOLAR and BdPAN1 localize to opposite domains of the subsidiary mother cell, it is

likely that they are in parallel pathways, although BpPOLAR requires BdPAN1 to localize

correctly (D. Zhang et al., 2022).
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CONCLUSIONS

Multiple types of redundancy make identifying the specific roles of proteins implicated in

division plane positioning an exciting challenge. After protein-protein interactions identify

additional components, high-throughput methods of gene editing such as CRISPR-Cas9

may be used to generate higher order mutants in genetically redundant pathways.

Additional insight into synthetic redundancy may be provided by enhancer screens.

Finally, detailed mechanistic studies will be required to unravel situations with temporal

redundancy.
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ABSTRACT

Cell divisions are accurately positioned to generate cells of the correct size and shape.

In plant cells, the new cell wall is built in the middle of the cell by vesicles trafficked along

an antiparallel microtubule and a microfilament array called the phragmoplast. The

phragmoplast expands towards a specific location at the cell cortex called the division

site, but how it accurately reaches the division site is unclear. We observed microtubule

arrays that accumulate at the cell cortex during the telophase transition in maize (Zea

mays) leaf epidermal cells. Before the phragmoplast reaches the cell cortex, these

cortical-telophase microtubules transiently interact with the division site. Increased

microtubule plus-end capture and pausing occur when microtubules contact the division

site-localized protein TANGLED1 or other closely associated proteins. Microtubule

capture and pausing align the cortical microtubules perpendicular to the division site

during telophase. Once the phragmoplast reaches the cell cortex, cortical-telophase

microtubules are incorporated into the phragmoplast primarily by parallel bundling. The

addition of microtubules into the phragmoplast promotes fine-tuning of the positioning at

the division site. Our hypothesis is that division site-localized proteins such as

TANGLED1 organize cortical microtubules during telophase to mediate phragmoplast

positioning at the final division plane.
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IN A NUTSHELL

Background: Both cell division and proper orientation of the division are important for

plant development and growth. Cell division is initiated in the middle of the cell by a

structure called the phragmoplast. The phragmoplast is composed of filaments including

microtubules and it expands outwards to form the new cell wall. Phragmoplast

positioning is mediated by proteins that localize in a ring at the future division location or

division site. It is not known how these proteins promote division positioning.

Question: How do proteins at the division site contribute to the phragmoplast reaching

the correct location?

Findings:We propose a potential mechanism linking phragmoplast positioning with

division site localized proteins using maize epidermal cells expressing a live-cell

microtubule marker. We discovered that an extensive network of microtubule filaments

accumulates at the cell periphery and are captured at the division site by a microtubule

binding protein called TANGLED1, leading to microtubules that are oriented

perpendicular to the division site. Pre-oriented microtubules are added into the

phragmoplast as it reaches the cell periphery to accurately direct the movement of the

phragmoplast.

Next steps:Whether microtubules participate in division positioning and how

TANGLED1 might modulate their dynamics in other plant cells is not yet known.
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INTRODUCTION

Cell division in plants occurs via the transport of vesicles along an antiparallel

microtubule array called the phragmoplast to build a new cell wall (Smertenko et al.,

2017). The phragmoplast grows towards the cell cortex via microtubule nucleation on

pre-existing phragmoplast microtubules. Microtubule-dependent microtubule nucleation

on the phragmoplast is mediated by gamma-tubulin and augmin-complex proteins

(Murata et al., 2013; Lee et al., 2017; Lee and Liu, 2019; Hotta et al., 2012; Nakaoka et

al., 2012). Microtubule bundling in the phragmoplast may be mediated by

MICROTUBULE ORGANIZATION 1 (MOR1)/TMBP200/GEM1, which localizes to the

phragmoplast and also crosslinks microtubules in vitro (Yasuhara et al., 2002; Hamada

et al., 2004). This activity is consistent with its role in rapid phragmoplast expansion, as

demonstrated by quantitative live-cell imaging (Kawamura et al., 2006). In addition to

nucleation and bundling, microtubule disassembly at the phragmoplast lagging edge

also promotes phragmoplast expansion. Mitogen Activated Protein Kinase (MAPK)

phosphorylates MAP65-1, which in turn reduces the microtubule bundling efficiency of

MAP65-1. MAP65-1 phosphorylation allows lagging edge microtubules to disassemble,

thereby promoting phragmoplast expansion (Sasabe et al., 2006; Sasabe and Machida,

2012). MAP65-1 is also phosphorylated by alpha Aurora Kinase, which similarly

promotes timely phragmoplast expansion (Boruc et al., 2016). PHRAGMOPLAST

ORIENTING KINESIN2 (POK2) promotes timely phragmoplast expansion, possibly

through interaction with the phragmoplast midzone crosslinker MAP65-3 (Herrmann et

al. 2018).
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Although there has been progress in identifying factors that mediate phragmoplast

expansion, how the phragmoplast is directed towards a specific cortical location, called

the division site, is still unknown (Livanos and Müller, 2019; Rasmussen and Bellinger,

2018). In land plants, the location of the future division site can be accurately predicted

by a microtubule and microfilament structure that assembles during the G2 phase of the

cell cycle at the cell cortex called the preprophase band (PPB). Several proteins

co-localize with the PPB and remain at the division site until division is completed. These

division-site-localized proteins promote phragmoplast guidance to the division site:

phragmoplasts in mutant cells often do not return to the division site (Müller et al., 2006;

Martinez et al., 2017; Cleary and Smith, 1998). Several division-site-localized proteins

are microtubule- or microfilament-bundling or motor proteins (Wu and Bezanilla, 2014;

Müller et al., 2006; Hermann et al., 2018; Martinez et al., 2020), suggesting that division

site positioning may be mediated by local alterations in cytoskeletal dynamics.

Current models of division plane positioning propose that division-site and

phragmoplast-localized proteins pull or push cytoskeletal filaments within the

phragmoplast to guide it to the division site. More specifically, these models propose that

microtubules attached to and nucleated from the phragmoplast (peripheral microtubules)

interact with division-site-localized proteins such as the PHRAGMOPLAST ORIENTING

KINESIN2 (POK2) or MYOSINVIII (Chugh et al., 2018; Wu and Bezanilla, 2014). A

proposed function of POK2, a microtubule plus-end directed kinesin, is to bind peripheral

microtubules and, through plus-end directed movement, push them away from the

division site, thereby positioning the phragmoplast (Chugh et al., 2018). MYOSINVIII, a

division site-localized protein that also localizes to the plus ends of peripheral

phragmoplast microtubules, mediates an interaction between microtubules and actin
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filaments to guide the phragmoplast to the division site (Wu and Bezanilla, 2014). The

microtubule-binding protein TANGLED1 (TAN1) localizes to the division site in maize

(Zea mays) and Arabidopsis (Arabidopsis thaliana) (Walker et al., 2007; Martinez et al.,

2017). In vitro, TAN1 bundles and promotes transient microtubule capture and

crosslinking. Furthermore, it co-localizes with a small population of phragmoplast

microtubules at the division site in vivo and promotes timely phragmoplast expansion

(Martinez et al., 2017; Martinez et al., 2020). Maize tan1 mutants have defects in

phragmoplast guidance to the division site, indicating that TAN1 contributes to

positioning the phragmoplast, but the underlying mechanisms are not yet clear (Cleary

and Smith, 1998; Martinez et al., 2017).

The plant cell at telophase has often been considered devoid of microtubules outside of

the phragmoplast (Smertenko et al., 2017). However, many reports indicate that both

microtubules and microtubule nucleators such as gamma tubulin are present at the cell

cortex during telophase in monocots, dicots, ferns, and moss (Kong et al., 2010; Liu et

al., 1995; Wick, 1985; Panteris et al., 1995; Wu and Bezanilla, 2014; Gunning et al.,

1978). Additionally, in dicots, microtubules nucleated from the nuclear envelope in late

telophase contact the cell cortex but their function was not described (Van Damme and

Geelen, 2008; Chan et al., 2005). More recently, cortical microtubules were shown to

accumulate independently of the nuclear envelope in Arabidopsis during late telophase

(Lucas, 2021). A previously proposed function of cortical-telophase microtubules is to

prepopulate the cortex for microtubule reorganization during G1 (Flanders et al., 1990).

Here we demonstrate that cortical microtubules are organized by a transient interaction

with the division site, specifically near TAN1 puncta, in maize during telophase. This
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interaction may be directly mediated by the division site-localized protein TAN1. The

cortical-telophase microtubules are pre-arranged via interactions with TAN1 or other

nearby proteins at the division site. Cortical-telophase microtubules are then added by

parallel bundling into the phragmoplast at the cortex. Therefore, cortical-telophase

microtubules direct the movement of the phragmoplast towards the division site in maize

cells.

RESULTS

Analysis of cortical microtubule accumulation and orientation during telophase

Live-cell imaging of symmetrically dividing maize leaf epidermal cells revealed an

unexpected population of cell-cortex-localized microtubules that typically accumulated

during telophase (n = 45/49 cells) (Figure 2.1A, 2.1B, Supplemental Figure S2.1A, B).

Cortical microtubules were sparse or nonexistent during metaphase (10% n = 2/20 cells

from 8 plants, Supplemental Figure S2.1G, S2.1H) and anaphase (0% n =0/8 cells from

8 plants). These cortical-telophase microtubules were spatially distinct from the

phragmoplast and accumulated before the phragmoplast reached the cortex, as shown

by time lapse imaging (Figure 2.1A, and 2.1B). We measured the density of

cortical-telophase microtubules using the BoneJ plug-in in ImageJ (Doube et al., 2010),

as described in the Materials and Methods section. Using confocal z-stacks with 0.5 µm

resolution, we observed that the cortical-telophase array started to accumulate when the

phragmoplast was as far as 3 to 4.5 microns away from the cell cortex (5% density, n = 2

cells). When the phragmoplast was between 0.5 and 1.5 microns from the cell cortex,

the cortical-telophase array covered 33% of the cortex (n = 6 cells, standard error (SE) ±

7%). The density of the cortical-telophase microtubules increased as the leading edge of
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the phragmoplast neared the cell cortex. The density of the cortical-telophase array

when the phragmoplast touched the cortex was 39% (n= 24 cells, SE ± 4%, from 12

plants). Together, these results indicate that cortical-telophase microtubules accumulate

during telophase but before the phragmoplast reaches the cortex.
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Figure 2.1 Cortical-telophase microtubules accumulate at the cortex before the
phragmoplast contacts the cortex in wild-type maize epidermal cells.

Times are indicated in hours:minutes:seconds at the bottom left corner. A) Timelapse imaging of
a cell expressing YFP-TUBULIN from metaphase to telophase. Microtubules at the cortex (top
panel), microtubules at the midplane (middle panel), and merged images (cortex: green, and
midplane: magenta; bottom panel) are shown. Cortical-telophase microtubules faintly accumulate
at 14:11, with more accumulating by 29:16; additional intermediary timepoints shown in
Supplementary Figure S2.1. B) Timelapse imaging of microtubules from anaphase to telophase.
Merged images (cortex: green, and cell plate and plasma membrane dyed with FM-4-64:
magenta). X-Z projections show that the cortical telophase arrays accumulate before the
phragmoplast reaches the cell cortex. Bar is 10 µm for X-Y images and ~10 µm for the X-Z
projection (estimated due to sample drift). Images were acquired using a Zeiss LSM 880
equipped with Airyscan at 100x (NA=1.46).
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Supplemental Figure S2.1. Cortical-telophase microtubules in wild-type maize epidermal
cells, Arabidopsis root cells, and very sparse cortical-telophase microtubules in maize
tan1 mutant epidermal cells.

Supports Figure 2.1 and Figure 2.2. Microtubules are labeled with YFP-TUBULIN in green,
membranes are labeled with FM4-64 in magenta. Cortical telophase microtubules (asterisks)
were distinct from phragmoplast microtubules (arrowhead). A) A single Z-slice of the cortex of a
maize epidermal cell in telophase surrounded by interphase cells. The phragmoplast has already
reached the cortex in the middle of the cell (arrowhead) but has not reached the edges. The
cortical-telophase microtubules are indicated with asterisks. B) Midplane indicates the middle of
the cell. XZ image is a rotated projection along the XZ axis of the phragmoplast, scale bar is 5
µm. C) Single Z-slice showing the cortex and corresponding cortical telophase microtubules
(asterisks) in A. thaliana root cell with a phragmoplast that has already reached the cortex
(arrowhead). D) Typical mid-plane view of the phragmoplast. E) Maize tan1 mutant epidermal
cells have sparse or no cortical microtubules. Single Z-slice showing the cortex and sparse
cortical-telophase microtubules (asterisks), with a phragmoplast that already reached the cortex
(arrowhead). F) Typical mid-plane view of a tan1 mutant phragmoplast. G) Single Z-slice of the
cell cortex of a maize cell in metaphase shows no independent cortical microtubules,
microtubules are associated with the spindle. H) Single Zslice of the cell cortex of another maize
epidermal cell in metaphase shows very sparse cortical microtubules Bar is 10 µm. I) Two
additional timepoints between 14:11 and 29:16 highlighting the accumulation of cortical-telophase
microtubules. Bar is 10 µm.
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Cortical-telophase microtubules were present in over 90% of wild-type cells

during telophase (n =173/190 cells from 26 plants, Figure 2.2A). Cortical-telophase

microtubule arrays covered 33 ± 2% (mean ± standard error (SE) of the cell cortex

(Figure 2.2D), with an average anisotropy of 0.12 ± 0.01 arbitrary units (Figure 2.2B).

These anisotropy values (reflecting the relative orientation of cortical-telophase arrays)

were similar to those of microtubule arrays in Arabidopsis shoot meristems during

interphase (Boudaoud et al., 2014). The cortical-telophase microtubules were on

average typically arranged into anti-parallel arrays perpendicular to the division site

(~50% within 10 degrees of perpendicular relative to the phragmoplast midline, n = 38

microtubule arrays from 19 cells, 7 plants, Figure 2.2D), with most plus-ends facing the

division site. We also observed cortical telophase microtubule arrays in Arabidopsis root

cells (Supplemental Figure S2.1C). The results were similar to previous reports showing

microtubule-nucleating protein accumulation at the cell cortex e.g. (Kong et al., 2010;

Vavrdová et al., 2019; Lucas, 2021) or cortical microtubules in moss (Physcomitrium

patens) e.g. (Wu and Bezanilla, 2014). Therefore, cortical-telophase microtubule arrays

were abundant and on average oriented perpendicular to the division site during

telophase in maize epidermal cells. Although they are difficult to see, cortical-telophase

microtubules may be a conserved feature of plant cells.
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Figure 2.2. Cortical-telophase microtubules are typically abundant and arranged towards
the division site in wild-type cells but are more variable in abundance and organization in
tan1 mutant cells.

A) a wild-type maize epidermal cell with abundant cortical-telophase microtubules (far left), tan1
mutant cells with abundant (left), asymmetric (middle) or sparse cortical-telophase microtubules
(right). Merged images show midplane view (magenta) and cortex view (green). X-Z shows the
X-Z projection, with orange arrowheads indicating cortical microtubules at the top of the cell. (B)
Cortical-telophase microtubule array anisotropy, n = 38 wild-type arrays (19 cells from 5 plants)
and 50 tan1 arrays (25 cells from 9 plants) with median and quartiles indicated by black bars
(two-tailed Mann-Whitney test p-value = 0.005). Schematic diagrams of cells with high and low
anisotropy (right). (C) Histogram of the average microtubule orientation of the cortical-telophase
microtubule array (n = 38 arrays for wild-type and 50 for tan1 mutant cells, two-tailed Mann
Whitney test comparing angle values, p value <0.001). Schematic diagram showing angle
measurements compared to the division site (D) Relative cortical-telophase coverage,
represented as a fraction, was significantly higher in wild-type (38 arrays) than tan1 (54 arrays)
cells, two-tailed Mann Whitney test, median and quartiles are indicated with black bars (p value
<0.0001). Schematic diagrams with examples of high and low microtubule coverage. Micrographs
were taken under a Zeiss LSM 880 (Airyscan,100X, NA=1.46). Bars are 10 µm.
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Analysis of microtubule dynamics

To assess whether cortical-telophase microtubules had different properties compared to

phragmoplast microtubules, we treated maize epidermal cells with the microtubule

destabilizer propyzamide (5 µM). Propyzamide inhibits microtubule assembly by binding

to beta-tubulin (Young and Lewandowski, 2000). Cortical-telophase microtubules were

more sensitive to 5 µM propyzamide treatment than phragmoplast microtubules. The

majority of cortical telophase microtubules were depolymerized within 30 minutes of

treatment (Supplementary Figure S2.2, n = 50/56 cells from 3 plants). After an additional

30 minutes, all remaining cortical telophase microtubules were disassembled. By

contrast, interphase cortical microtubules were intact after 30 minutes of propyzamide

treatment, depolymerizing after 45 minutes to 1 hr after treatment (n = 117 cells from 2

plants). By contrast, phragmoplast microtubules were resistant to propyzamide treatment

and remained intact after 1 hour (n = 68/68 phragmoplasts). When incubated with

DMSO (negative control), cortical telophase microtubules were still intact 30 minutes

after treatment (n =34/69 cortical-telophase microtubule arrays). Phragmoplast (n = 62)

and interphase microtubules (n = 82 cells) were also intact. Together, these results

indicate that cortical-telophase microtubules are more sensitive to treatment with 5 µM

propyzamide than either interphase cortical microtubules or phragmoplast microtubules,

suggesting that they are more likely to be single, highly dynamic and unbundled

microtubules that are distinct from the phragmoplast, which is consistent with our

imaging data.

70

https://paperpile.com/c/TkzmO4/wu6m


Supplemental Figure S2.2: Propyzamide treatment of maize epidermal cells depolymerizes
cortical telophase microtubules but does not depolymerize phragmoplast microtubules.

Supports Figure 2.1 and Figure 2.2. A) Cells treated with DMSO (negative control) showing intact
cortical-telophase microtubules. Box indicates region used in line scan in panel B. B) Line scan
showing arbitrary fluorescence intensity measured at the cortex indicating intact cortical
telophase microtubules. C) Midplane of the cell, showing the phragmoplast D) Merged Image,
with cortex false colored green, and midplane false colored magenta. E) Cells treated with 5 um
Propyzamide for 30 minutes lacking cortical-telophase microtubules. Box indicates region used in
line scan in panel F. F) Line scan showing arbitrary fluorescence intensity indicating lack of intact
cortical-telophase microtubules. G) Midplane of the cell, showing the phragmoplast H) Merged
image, with cortex false colored green, and midplane false colored magenta. Scale bars are 10
µm.
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Figure 2.3. Cortical telophase microtubules pause at the division site near TAN1 puncta.

A-B) Time-lapse images of cortical telophase microtubules (YFP-TUBULIN, green) pausing at the
division site (top panels) or passing (bottom panels) through the division site ahead of the
phragmoplast in wild-type (A) and tangled1 (B) cells. Red arrowheads indicate the microtubule
plus end. Dotted lines in time-lapse insets mark the division site, as predicted through extension
of FM4-64 cell plate staining (magenta). Scale bar is 10 µm and 5 µm in insets. (C) Dot plot of
microtubule pause times (s) at division site and other cortex locations in wild type and tan1. Bars
represent median with interquartile range. (D) Time-lapse images of a wild-type cell cortex with
cortical telophase microtubules and cortical TAN1 localization. Cortical telophase microtubules
ahead of the phragmoplast pause at the division site with no TAN1 puncta (i, top panel) and at the
division site with TAN1-puncta (ii, bottom panel). Microtubules are labeled with CFP-TUBULIN
(green) and TAN1 by TAN1-YFP (magenta). Arrowheads indicate the respective microtubule
plus-end. Scale bar is 10 microns and 1 micron in insets. E) Dot plot comparing microtubule
pause times(s) at division site locations with or without TAN1 puncta in wild-type cells expressing
TAN1-YFP. Each dot represents one microtubule pause time. Error bars are median with
interquartile range. P-values ns not significant, * <0.05, ** < 0.01, *** <0.001 by Kruskal-Wallis &
Dunn’s Test. Images were acquired using a Zeiss LSM 880 equipped with Airyscan with a 100X
(NA=1.46) lens.

72



To understand how cortical-telophase microtubules formed arrays with their

plus-ends facing the division site, we examined individual microtubules interacting with

the division site in addition to other locations within the cell (Supplemental Table S2.1

and Supplemental Data Set S1). In wild-type cells, microtubule plus-ends were

transiently stabilized by pausing or capture at the division site (Figure 2.3A, 2.3C, l Movie

1). When cortical-telophase microtubules contacted the division site, 59.4% of

microtubules paused (n = 60/101 microtubules, 4 cells, 3 plants, Table 2.1), 4.9%

underwent immediate catastrophe after touching the division site, and 35.6% passed

through the division site without altering of their trajectories. When cortical-telophase

microtubules interacted with the division site, 59% (n = 53/90) buckled, indicating that

the microtubule was still growing as it was transiently captured at the division site.

Median pausing or capture time was 15 seconds at the division site but 10.0 seconds in

other locations (Figure 2.3A, 3C, Table 2.2, p value = 0.03). Transient stabilization of

microtubule plus-ends at the division site may promote overall perpendicular orientation.
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Table 2.1. Quantification of individual interaction and bundling events between
cortical-telophase microtubules and the phragmoplast.

(A) Summary of cortical-telophase microtubule bundling times and angles with the phragmoplast.
(B) Summary of cortical-telophase microtubule interaction types with the phragmoplast. (B)
Fisher's exact test was used, and significant differences are indicated by (**) P < 0.01, (****) P <
0.0001. Phragmoplast-interacting MTs: WT (n = 252, 5 cells, 3 individuals), tan1 (n = 163, 5 cells,
3 individuals).

A

Phragmoplast trailing edge Phragmoplast leading edge

Sample
Time bundled
(Seconds,

mean +/- SEM)

Angle bundled
(Degrees, mean

+/- SEM)

Proportion of
microtubules

(%, n)

Time bundled
(Seconds, mean

+/- SEM)

Angle bundled
(Degrees, mean

+/- SEM)

Proportion of
microtubules

(%, n)

Wild type 45.75 +/- 6.781 26.57 +/- 1.804 34 (86) 108.6 +/- 6.922 21.48 +/- 1.113 66 (166)

tangled1 ****63.07 +/-
6.305 28.44 +/- 1.901 **47 (77) 97.96 +/- 7.745 25.14 +/- 2.032 **53 (86)

P value 0.0001 ns 0.0074 ns ns 0.0074

B

Phragmoplast interaction types

Sample Depolymerized (%, n) Stayed (%, n) Severed (%, n) Stabilized (%,n)

Wild type 22 (54) 78 (197) 37 (94) 41 (103)

tangled1 **10 (16) **90 (147) **56 (92) 34 (55)

P value 0.0019 0.0019 0.002 ns

Table 2.2. Percentage of cortical microtubule pausing at or passing through the division
site in wild-type and tangled1 plants.

Comparison of microtubule interactions with the division site between wild type (n = 3 plants, 4
cells) and tangled1 (n = 4 plants, 4 cells). P-values ns not significant, *** ≤ 0.001 by Fisher’s
Exact Test.

Wild Type tangled1
% Pause 59.4% (60/101) 27% (26/96)***

% Pass 35.6% (36/101) 65% (62/96)***

% Depolymerize 4.9 % (5/101) 8% (8/96)ns
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To determine if microtubule pausing at the division site was due to contact with opposing

microtubules, we examined how often microtubules contacted antiparallel microtubules

at the division site. Microtubule pausing at the cortical division site ahead of the

phragmoplast did not typically occur through antiparallel interactions with microtubules

located on the other side of the division site. For wild-type cortical-telophase

microtubules, antiparallel contact at the division site occurred 13% of the time (n =8/61

microtubules from 12 cells from 6 plants). This number of antiparallel contacts was

similar to the number of cortical-telophase microtubule contacts that did not occur at the

division site, 2%, (n = 1/48 microtubules from 12 cells from 6 plants, no significant

difference, two-tailed Fisher’s Exact Test). Similarly, 25% of phragmoplast leading-edge

microtubules had antiparallel contacts at the division site (n = 5/20 microtubules from 8

cells, 5 plants, no significant difference compared to cortical-telophase microtubules at

the division site, two-tailed Fisher’s Exact Test). Together, these results suggest that

cortical-telophase microtubules did not pause at the division site solely due to contact

with antiparallel microtubules. Instead, microtubules paused at the division site

regardless of whether a microtubule from the other side was present, suggesting that a

protein (or proteins) located at the division site mediated microtubule pausing.

TAN1 functions in microtubule plus-end capture

To analyze the role of the microtubule binding protein TAN1 in microtubule plus-end

capture, we measured microtubule plus-end pausing using time-lapse imaging of

wild-type cells expressing both TAN1-YFP and CFP-TUBULIN. TAN1-YFP forms

discrete puncta at the division site during telophase (Figure 2.3D, Movie 2) (Rasmussen

et al., 2011; Walker et al., 2007; Martinez et al., 2017). In time-lapse images, cortical
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telophase microtubules appear to interact with stable TAN1 puncta the division site

(Movie 2). We found that cortical-telophase microtubules remained near TAN1-YFP

puncta longer than other regions within the division site in wild-type maize cells (Figure

2.3D, 2.3E). Microtubule plus-ends paused near TAN-YFP1 puncta for ~20 seconds (20

± 1.6 s, median ± SEM, n = 39 microtubules, 4 plants). By contrast, microtubule

plus-ends that contacted regions of the division site distinct from TAN1-YFP puncta

paused for ~10 seconds (10 ± 1.1, median ± SEM n =48 microtubules, 4 plants, Figure

2.3E). Together, these findings suggest that TAN1 or other division-site localized proteins

in close proximity (within Airy Scan resolution limits of ~150 nm) promote cortical

microtubule plus-end pausing or capture during telophase. This microtubule interaction is

consistent with the results of in vitro dynamic assays where TAN1 transiently captured

microtubules at high contact angles (Martinez et al., 2020). Together, these results

suggest that TAN1 or other nearby division site-localized proteins increase microtubule

pausing or capture at the division site, which over time leads to cortical telophase arrays

that are on average perpendicular to the division site, as observed in Figure 2.2C.

We hypothesized that loss of TAN1 from the division site would lead to defects in

cortical-telophase microtubule organization, so we examined cortical-telophase

microtubules in the maize tan1 mutant. Cortical-telophase microtubule arrays were

sparse or missing in nearly 30% of tan1 cells (n = 24/122 cells from 24 plants, e.g.,

Supplemental Figure S2.1E, S2.1F).
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When cortical-telophase arrays were present in tan1 cells, they were often unevenly

distributed (asymmetric) (Figure 2.2A). Furthermore, cortical-telophase microtubule

arrays in the tan1 mutant were less anisotropic (Figure 2.2B) than wild-type

cortical-telophase arrays. In addition, unlike wild-type cortical-telophase arrays, tan1

mutant arrays were not typically oriented toward the division site (Figure 2.2C, median

orientation 49.5 +/- 3 degrees relative to the phragmoplast midline, P < 0.0001

Mann-Whitney test). These data suggest that TAN1 promotes proper cortical-telophase

microtubule array organization.

In contrast to wild-type cells, cortical-telophase microtubules were not transiently

stabilized at the division site in tan1 mutant cells, showing no significant difference in

microtubule pausing at the division site versus other cortical locations (Figure 2.3B,

2.3C, Supplemental Figure S2.3, Supplemental Data Set S1 Kruskal-Wallis Test and

Dunn’s Test, p = 0.11 (adjusted p-value = 1)). Unlike wild-type cells, where ~60% of

cortical telophase microtubules paused at the division site, significantly fewer cortical

telophase microtubules paused in the tan1 mutant (27%, n = 26/96, Fisher’s Exact Test,

p value < 0.00001, Table 2.2). Instead, the majority of cortical-telophase microtubules in

the tan1 mutant grew past the division site without any alteration in their trajectories

(65% n = 62/96, example in Figure 2.3B, 6 cells from 5 plants, Table 2.2) or shrunk

immediately (8%, n = 8/96). Microtubules that interacted with the division site displayed

similar buckling frequency compared to wild-type cortical microtubules (58%, n = 22/38

compared to 59%, 53/90, p value =1, Fisher's Exact Test). TAN1 also plays a role in

mediating other microtubule dynamics during telophase, as measured using the

Dynamic Kymograph Plugin in Fiji (Zhou et al., 2020) Supplemental Figure S2.4).

Microtubule growth, shrinkage, and pause during telophase tended to be slower in tan1
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mutants compared to wild type (Supplemental Figure S2.3). These data, together with

the finding that microtubule pausing or capture increased at TAN1 puncta, suggest that

TAN1 directly or indirectly promotes both microtubule plus-end capture and shrinkage at

the division site.
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Supplemental Figure S2.3. Wild type and tangled1 microtubule dynamics during telophase.

Supports Figure 2.3 and Figure 2.4. Boxplots of microtubule growth and shrinkage rates and
microtubule capture times. Horizontal lines on boxplot are 1st quartile, median, and 3rd quartile
respectively. Each dot represents an individual microtubule measurement. P-values ns not
significant, * <0.05, ** < 0.01, *** <0.001 by Kruskl-Wallis & Dunn’s Test. For more summary
values, see Supplemental Table S2.1 and Supplemental Dataset 1.
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Supplemental Table S2.1. Summary of microtubule dynamics in wild-type and tangled1
cells across different locations at the cell cortex (supports Supplemental Figure S2.3).

Wild Type
N GROWTH CAPTURE SHRINK

Plants Cells N MTs Median ± SE
(μm/min)

N
MTs

Median ± SE
(s)

N
MTs

Median ± SE
(μm/min)

Cortical Microtubule -
Division Site 6 12 69 6 ± 0.3 61 15 ± 1.1 61 7.6 ± 0.5

Cortical Microtubule -
Not Division Site 6 12 59 5.9 ± 0.3 48 10 ± 1.2 60 7.7 ± 0.5

Phragmoplast Leading
Edge - Division Site 5 8 22 5.1 ± 0.5 20 15 ± 2.1 21 6.5 ± 0.9

Phragmoplast Leading
Edge - Not Division
Site

4 5 16 6 ± 0.5 9 10 ± 1.4 12 8.1 ± 0.9

Cell Plate 4 9 53 6.2 ± 0.5 52 15 ± 1.3 52 7.7 ± 0.5

Not Cell Plate 5 8 47 5.1 ± 0.2 45 10 ± 1.1 47 7.5 ± 0.5

tangled1
N GROWTH CAPTURE SHRINK

Plants Cells N MTs Median ± SE
(μm/min)

N
MTs

Median ± SE
(s)

N
MTs

Median ± SE
(μm/min)

Cortical Microtubule -
Division Site 8 11 35 4.2 ± 0.3 33 20 ± 2.7 33 5.5 ± 0.5

Cortical Microtubule -
Not Division Site 8 11 70 4.6 ± 0.2 65 15 ± 1.3 66 5.8 ± 0.4

Phragmoplast Leading
Edge - Division site 5 7 9 4.5 ± 0.6 10 11 ± 3.4 10 7.5 ± 1.2

Phragmoplast Leading
Edge - Not Division
site

5 8 21 4.8 ± 0.5 18 14 ± 1.7 21 6.1 ± 0.6

Cell Plate 4 8 56 5.2 ± 0.2 52 15 ± 1.4 54 6.9 ± 0.5

Not Cell Plate 5 9 65 4.6 ± 0.3 60 13 ± 1.6 63 8 ± 0.4
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Supplemental Figure S2.4. Examples of microtubule dynamics measurements using the
Dynamic Kymograph plugin tool in Fiji.

Supports Supplemental Table S2.1 and Figure 2.4 (A) Position of microtubule ROIs overlaid on
the first frame of a timelapse image. (B) Time projection of timelapse in (A), where early frames
are colored blue and later frames are colored red. (C) Kymographs of microtubules 1-11 from (A)
annotated with ROIs to measure growth, capture, and shrinkage rates or times. Scale bar is 10
µm.
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Interaction of cortical telophase microtubule arrays with the phragmoplast

We hypothesized that when the phragmoplast reached the cortex, it would interact with

cortical telophase microtubules. To examine how cortical telophase microtubule arrays

interacted with the phragmoplast, we used time-lapse imaging. Cortical-telophase

microtubules were typically added into the phragmoplast by parallel bundling, as

described below. To assess how individual microtubules from the cortical-telophase array

interacted with the phragmoplast, we first identified sites of microtubule nucleation at the

cortex from cortical telophase microtubules that were clearly distinct from the

phragmoplast. Next, we determined how these microtubules interacted with the

phragmoplast. An annotated micrograph describes the terms used here, such as leading

and lagging edges (Supplemental Figure S2.5).
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Supplemental Figure S2.5: Description of the features of cells in telophase
extracted for analysis.

Supports Figure 2.4 and Figure 2.5. The phragmoplast is indicated in red, the cell plate region,
where the phragmoplast is already disassembled, is shown in dark blue. Cortical telophase
microtubules ahead of the phragmoplast are indicated in teal. The leading of the phragmoplast is
indicated in magenta, while the lagging edge is indicated in green. The division site ahead of the
phragmoplast is indicated with a dashed yellow line, while the cell edges are indicated with a
dashed orange line.
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When cortical-telophase microtubules contacted the phragmoplast, most (78%, n =

197/252 microtubules from 5 cells from 3 plants) were incorporated into the leading edge

of the phragmoplast by parallel bunding (Figure 2.4G, Movie 3, Movie 4). After bundling

into the phragmoplast, the microtubules would either remain connected to the original

cortical-telophase array during the 252 second timelapse (41%, n = 103/252, Figure

2.4G) or become fully incorporated into the phragmoplast by severing the connection

between the cortical-telophase array and the phragmoplast (37%, n = 94/251, Figure

2.4E, Movie 5). We speculate that severing was performed by the microtubule severing

protein KATANIN, which localizes to the distal phragmoplast (Panteris et al., 2011;

Nakamura et al., 2010), possibly via the microtubule-binding protein MACET4/CORD4

(Schmidt and Smertenko, 2019; Sasaki et al., 2019). The remaining cortical telophase

microtubules that contacted the phragmoplast underwent catastrophe after touching the

phragmoplast (22%, n = 55/252, Figure 2.4F, Movie 6). Most (66%, n = 166/252) cortical

telophase microtubules interacted with the leading edge, although others interacted with

the lagging edge (n = 86/252) and then primarily were incorporated into the

phragmoplast by low-angle parallel bunding (<45 degrees, Table 2.1).
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Figure 2.4. Time-lapse images of cortical-telophase microtubules interacting with
the phragmoplast using YFP-TUBULIN to label microtubules.

A) A single early snapshot of a maize dividing cell during telophase with surrounding interphase
cells. B) Color-coded time projection showing the movement of the phragmoplast and
cortical-telophase microtubules of the cell in A). C) Time projection of cell in F), D) time projection
of cell in G). E) The cell shown in A) at a later time point. Representative example of severing
leading to the incorporation of a cortical-telophase microtubule into the phragmoplast.
Microtubules of interest are indicated with an adjacent blue line; red asterisks indicate the
cortical-telophase microtubule minus ends and red pluses indicate the microtubule plus end. Red
arrowheads show severing followed by depolymerization. The orange square marks the new
microtubule minus end after severing. F) Representative example of depolymerization of a
cortical-telophase microtubule following contact with the phragmoplast. G) Representative
bundling of a cortical-telophase microtubule into the phragmoplast. Orange arrowheads show a
cortical-telophase microtubule incorporated into the phragmoplast by parallel bundling. Bars are 5
µm, Time (s) rounded to a 10th of a second. Images were acquired using a Zeiss LSM 880
equipped with Airyscan with a 100× (NA = 1.46) lens.
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Cortical telophase microtubules, when present, were also added into tan1 mutant

phragmoplasts. Similar to wild-type microtubules, tan1 cortical telophase microtubules

were incorporated into the phragmoplast, although relatively more microtubules

interacted with the lagging edge of the phragmoplast (Table 2.1). Proportionally more of

the microtubules that interacted with the phragmoplast were eventually incorporated in

tan1 phragmoplasts (90% n = 147/163 versus 78% in wild-type cells n =197/252 Table

2.1). These data indicate that cortical telophase microtubules in close contact with the

phragmoplast were primarily added into the leading edge in both wild-type and tan1

cells. Although cortical-telophase microtubules interacted similarly with the phragmoplast

in wild-type and tan1 cells, the abundance, orientation, and relative accumulation of

cortical-telophase microtubules were more variable in tan1 cells (Figure 2.2A, D).

Effects of cortical-telophase microtubule accumulation on the trajectory of phragmoplast

expansion

We hypothesized that the addition of microtubules from the cortex into the phragmoplast

would alter the direction of phragmoplast expansion. Using timelapse imaging, we

measured the movement of the phragmoplast over time and measured the

corresponding cortical telophase microtubule array. If more cortical telophase

microtubules accumulated on one side of the phragmoplast, the phragmoplast moved

towards the same direction within ~15 minutes (960 s, n = 6 cells). Terms describing

phragmoplasts are defined in the model (Supplemental Figure S2.5, Figure 2.5J).
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Figure 2.5. Long-term uneven accumulation of cortical-telophase microtubules is
correlated with changes in phragmoplast direction.

A) to D) A wild-type phragmoplast: A) Time-lapse imaging with phragmoplast angle relative to the
division site and time (s) indicated below. Time-lapse images were acquired using a Zeiss LSM
880 with Airyscan (100×, NA = 1.46) or a Yokogawa spinning disk with a Nikon stand (100×, NA
1.45). B) Thresholded image with ROI (yellow rectangles) selected to measure relative
cortical-telophase microtubule accumulation above and below the phragmoplast. The
phragmoplast trajectory is indicated by a yellow line. C) Time projection with time-color legend. D)
Graph comparing changes in phragmoplast angle over time (purple) and relative
cortical-telophase microtubule accumulation (orange) above or below the phragmoplast. E) and
F) A tan1 phragmoplast E) Graph of changes in phragmoplast angle and cortical-telophase
microtubule accumulation in tan1 over time. F) Time-lapse imaging of tan1; phragmoplast angle
and time are shown below. G-I) Longer time lapses: G) A wild-type cell with little overall
phragmoplast movement. H) Wild-type cell with consistent cortical-telophase microtubule
accumulation below the phragmoplast and downward phragmoplast angle movement. I) tan1 cell
with consistent cortical-telophase microtubule accumulation above the phragmoplast with
phragmoplast angle movement towards the top. Bars = 10 µm. J) Model of the cell cortex of
maize epidermal cells showing cortical-telophase microtubule accumulation, incorporation into the
phragmoplast, and changes in the trajectory of the phragmoplast over time.
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We compared the phragmoplast trajectory with the relative accumulation of

cortical-telophase microtubules “above” and “below” the division plane (Figure 2.5A-C).

The phragmoplast trajectory was measured as an angle parallel to the division site,

defined in Figure 2.5A: if the angle is positive, it indicates that the phragmoplast angle

moved above the division plane. If the angle is negative, the phragmoplast angle moved

down below the division plane. We selected two equally sized region-of-interest boxes

(Figure 2.5B) above and below the phragmoplast to measure the relative

cortical-telophase microtubule accumulation in front of the expanding phragmoplast.

Relative cortical-telophase microtubule accumulation was measured by subtracting the

microtubule coverage below from above. Positive values indicate that more microtubules

accumulate above the phragmoplast.

The direction of phragmoplast expansion in wild-type cells typically followed a flat

trajectory within 5 minutes, with < 10 degrees overall change (n= 5, Figure 2.5D,

Supplemental Figure S2.6). During longer timeframes (18-30 minutes), wild-type

phragmoplast trajectories were more variable, but overall, they did not persistently

change direction (n = 2/4, Supplemental Figure S2.7), which is consistent with previous

time-lapse observations (Martinez et al., 2017). In wild-type cells with little overall

phragmoplast angle displacement, cortical-telophase microtubule accumulation varied

over time but did not maintain uneven accumulation (Figure 2.5G, Supplemental Figure

S2.7B, S2.6D). By contrast, sustained accumulation of cortical telophase microtubules

either above or below was correlated with phragmoplast movement in the same direction

(Figure 2.5H, Supplemental Figure S2.7A and S2.7C).
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Supplemental Figure S2.6. Short time-lapses (<5 minutes) of four different wild-type
phragmoplasts showing little change in direction. Supports Figure 2.5. Purple dots
indicate measured phragmoplast angle compared to predicted division site.
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Supplemental Figure S2.7. Longer timelapses (>8 minutes) of wild-type phragmoplasts
with >10 degree changes in the direction of movement. (A, C) and (B, D) with < 10 degree
changes in the direction of movement. Supports Figure 2.5
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In tangled1 mutants, both phragmoplast expansion direction and cortical-telophase

microtubule array accumulation were more variable than in wild-type plants, but the

relationship between asymmetric cortical telophase microtubule accumulation and

changes in phragmoplast direction was the same (Supplemental Figure S2.8). Over

longer timeframes, sustained asymmetric cortical-telophase microtubule accumulation in

tan1 mutants also correlated with changes in phragmoplast trajectories in the same

direction (Figure 2.5I, Supplemental Figure S2.9). Therefore, in both wild-type and tan1

mutants, cortical-telophase microtubule accumulation preceded changes in the direction

of the phragmoplast. Cortical-telophase microtubules interacted less with the division site

in tan1 mutants, often passing through without any pause or change in trajectory. We

speculate that this in turn leads to disorganized and asymmetric cortical-telophase

microtubule arrays (Figure 2.2). These asymmetric cortical-telophase arrays are then

added into the phragmoplast (Figure 2.4), leading to defects in phragmoplast guidance

observed as changes in phragmoplast direction over time in the tan1 mutant (Figure

2.5). Changes in phragmoplast direction mediated by cortical-telophase also occurred in

wild-type cells, albeit at lower frequency.
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Supplemental Figure S2.8. Short timelapses (5 minutes or less) of five different
tan1 phragmoplasts showing little change in direction, but frequently unevenly
distributed cortical-telophase array. Supports Figure 2.5.
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Supplemental Figure S2.9. Longer timelapses (>12 minutes) of tan1 phragmoplast
angle measurements compared to relative cortical microtubule accumulation.
Supports Figure 2.5.
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DISCUSSION

We showed that cortical-telophase microtubule arrays accumulate and interact with the

division site in maize during telophase before the phragmoplast reaches the cell cortex.

Cortical-telophase microtubules that nucleated directly at the cortex were our focus,

although some cortical-telophase microtubules may also come from the nucleus.

Cortical-telophase microtubule nucleation is reminiscent of branching clusters of newly

regenerating interphase cortical microtubules that form after the removal of

microtubule-depolymerizing drugs (Wasteneys and Williamson, 1989). Previous reports

of microtubules stabilized with Taxol showed that cortical-telophase microtubules

nucleated directly on the cell cortex in the monocot durum wheat (Triticum durum)

(Panteris et al., 1995), while they may have originated from the nuclear envelope in

tobacco (Nicotiana tabacum) cultured cells (Van Damme and Geelen, 2008). Both

cortical-telophase microtubules and nuclear envelope nucleated microtubules

accumulate at the cortex in Arabidopsis cotyledon cells (Lucas, 2021). Whether

cortical-telophase microtubules primarily originate at the cortex or the nucleus may

depend on the species.

We showed that cortical-telophase microtubules often orient towards the division site

due to increased microtubule plus-end pausing or capture at the division site (Figure 2.3)

and that cortical-telophase microtubules are most often added into the phragmoplast by

parallel bundling at low contact angles (Table 2.1). Cortical-telophase microtubules are

bundled into the phragmoplast leading edge, perhaps similar to previously described

“mini-phragmoplasts”, which are preassembled phragmoplast modules that are added to
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the phragmoplast by parallel bundling during endosperm cellularization (Otegui and

Staehelin, 2000; Lee and Liu, 2013).

Uneven or asymmetric cortical-telophase microtubule accumulation was correlated with

changes in phragmoplast trajectories over time (Figure 2.5J). While it is possible that

asymmetric accumulation of cortical-telophase microtubules and changes in

phragmoplast angles over time both respond independently to some yet unknown cue,

we propose that telophase microtubules, which are incorporated into the phragmoplast

by parallel bunding, fine-tune the positioning of the phragmoplast so it reaches the exact

division site at the cell cortex. The localized addition of pre-loaded and properly oriented

microtubules also provides a plausible mechanism to achieve phragmoplast insertion at

the cell cortex in cells with polarized cytokinesis. In maize, as well as other model

systems, most divisions are polarized: the phragmoplast contacts the cortex at one

location, then expands outward at the cortex to complete division. Highly polarized

cytokinesis occurs during periclinal cambial divisions, in which phragmoplasts traverse

tens to hundreds of microns to complete division (Kajala et al., 2014; Fischer et al.,

2019). Other examples include Arabidopsis epidermal cells (Cutler and Ehrhardt, 2002;

Lucas and Sack, 2012), cultured cells (Chan et al., 2005), and vacuolated Nautilocalyx

cells (Venverloo and Libbenga, 1987). A guiding mechanism provided by local cortical

microtubules, directly incorporated into the phragmoplast as it expands at the cell cortex,

would provide the necessary specificity in targeting. The direct addition of

cortical-telophase microtubules into the phragmoplast to alter its local position occurs

when the phragmoplast is within micron range to the cell cortex. We suspect that this

phragmoplast zippering event occurs when the addition of vesicles to the cell plate

becomes slow and variable (van Oostende-Triplet et al., 2017).
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We showed that cortical telophase microtubule plus ends are stabilized at the division

site near TAN1 puncta. In vitro, when TAN1 is added to microtubule dynamic assays, it

both decreases shrinkage rates and slows microtubule growth compared to microtubules

without TAN1 addition (Martinez et al., 2020). This is consistent with the notion that

TAN1 potentially stabilizes microtubules. However, in vivo, tan1 mutants also have

slower microtubule growth and shrinkage rates than WT. It is still unclear whether TAN1

could also play a role in nucleating microtubules or other functions. Given the intriguing

contact angle-independent in vitro microtubule interactions observed during

co-incubation with HIS-TAN1 (Martinez et al., 2020), we speculate that in vivo, TAN1

may block microtubules from passing through the division site by capturing the

microtubule plus ends. Our hypothesis is that high contact angle microtubule interactions

with TAN1 stabilize their plus ends to increase microtubule pause or capture times at the

division site. An alternate hypothesis is that other division site-localized proteins in close

proximity to TAN1 may mediate this activity. However, no other end-on

microtubule-interacting proteins in plants have yet been shown to localize to the division

site (Livanos and Müller, 2019; Rasmussen and Bellinger, 2018).

In addition to TAN1, other candidate MAPs might also contribute to the stabilization of

cortical microtubules at the division site during telophase. The Kinesin-like Calmodulin

Binding Protein (KCBP), a processive minus-end directed kinesin-14 that localizes to the

division site in moss and Arabidopsis, is a highly plausible candidate (Yamada et al.,

2017; Miki et al., 2014; Buschmann et al., 2015). Analogous minus-end directed motor

proteins in animals and yeast (Saccharomyces cerevisiae), dyneins, capture and

stabilize microtubule plus ends at the cell cortex during division. Dyneins play a critical

role in division plane positioning by pulling on astral spindle microtubules at the cell
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cortex to adjust the position of the spindle (Hendricks et al., 2012; Busson et al., 1998;

Laan et al., 2012). In Arabidopsis, kcbp mutants do not have defects in division plane

positioning, possibly due to a redundant function of a yet unknown minus-end directed

kinesin at the division site. Whether KCBP puncta localized at the division site interact

directly with microtubules is also unknown (Buschmann et al., 2015).

KCBP interacts with a transiently division site-localized protein called AUXIN INDUCED

IN ROOT CULTURES9 (AIR9) (Buschmann et al., 2015). AIR9 localizes to the division

site as the phragmoplast reaches the cortex but is not at the division site from

metaphase until the end of telophase in tobacco cultured cells. Therefore, AIR9 is not at

the division site when the cortical-telophase microtubules originate, or when interactions

between cortical-telophase microtubules and division site localized proteins begin

(Buschmann et al., 2006). The lack of localization of AIR9 during the majority of

telophase suggests that it is unlikely to be a major player in plus-end cortical-telophase

microtubule stabilization at the division site. Another candidate is the antiparallel

microtubule bundling protein MAP65-4, which localizes to the division site (Li et al.,

2017). However, since most cortical-telophase microtubules are not bundled into

antiparallel microtubule arrays, but instead interact directly with the division site, it is

more likely that cortical telophase microtubules interact with other classes of

microtubule-binding proteins.

POK1 and POK2, which are plus-end directed kinesin-12 motor proteins that localize to

the division site (Lipka et al., 2014; Herrmann et al., 2018; Chugh et al., 2018), might

stabilize cortical-telophase microtubules. Since POK1 and POK2 directly interact with
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TAN1 (Müller et al., 2006; Rasmussen et al., 2011; Mills et al., 2022; Lipka et al., 2014),

they might also function together with TAN1 at the division site to capture microtubules.

POK1 and POK2 may capture cortical-telophase microtubules at the division site just

behind their plus-ends and then move towards the plus ends, effectively pushing the

minus-ends away from the division site. This idea is consistent with microtubule buckling

observed following contact with the division site.

Interactions of microtubules and microfilaments with division-site-localized proteins such

as MYOSINVIII are likely broadly conserved features of division plane positioning in

plants. MYOSINVIII interacts with both actin and microtubules: their combined

interaction, which is mediated by MYOSINVIII, guides the phragmoplast towards the

proper division site (Wu and Bezanilla, 2014). Fascinatingly, both actin and MYOSIN VIII

participate in incorporating peripheral microtubules, defined as microtubules that

nucleate from the phragmoplast and grow outwards towards the cortex, back into the

phragmoplast. Drug treatments that block myosin activity cause defects in phragmoplast

guidance towards the cortex (Molchan et al., 2002), as do drugs that disrupt actin

filaments (Wu and Bezanilla, 2014; Yoneda et al., 2004). MYOSINXI also promotes

proper division plane positioning in both maize and Arabidopsis (Abu-Abied et al., 2018;

Nan et al., 2021). Cytoskeleton-mediated (actin-based) division-plane corrections also

occur during telophase in mouse (Mus musculus) epithelial cells, suggesting that

analogous mechanisms occur in other eukaryotes (Lough et al., 2019).
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MATERIALS AND METHODS

Plant growth and imaging conditions

Maize (Zea mays) plants were grown in 1L pots in standard greenhouse conditions, with

the temperature setpoint ~32 ºC with a photoperiod of 14 hours of light (~400

μE*m-2s-1)/10 h of dark. Supplemental lighting was provided by1000w high pressure

sodium bulbs (Gravita Pro Plus 1000W EL). Plants were grown in soil containing 20%

peat, 50% bark, 10% perlite, 20% medium vermiculite with Calcium Nitrate (90ppm CA

75ppm N), Magnesium Nitrate (45ppm Mg, 50ppm N), and further supplemented with

Osmocote (NPK 14-14-14). Maize plants between 3 and 5 weeks old containing

YFP-TUBULIN, CFP-TUBULIN, TANGLED1-YFP (Mohanty et al., 2009; Wu et al., 2013)

or the tangled1 mutant were used for imaging and identified by microscopy or by

genotyping as previously described (Martinez et al., 2017). The primers used for

genotyping were as follows: for TANGLED1-YFP (TAN LSP1 5’

ACGACCGTTAGCACAGAACC and GFP5REV 5’

CTGAACTTGTGGCCGTTTACGTCGC); for YFP-TUBULIN (TubAlpha Rp1 5’

GGTTTCGGGTGATCCCTATT and TubalphaFp1 5’ GCAAGGTTTCGATTTCCGTA); and

for CFP-TUBULIN (BTUBR3187 5’ GACAGGCGGGCATAAGATCC and TUBbeta FP 5’

CGAATTTTCGAATCCTCAGC). Leaves were removed from plants until the ligule height

was <2 mm. Abaxial symmetrically dividing leaf blade samples were mounted in water

between cover glass and glass slides (Fisherbrand) or in a Rose chamber, as previously

described (Rasmussen, 2016). For FM4-64 staining, leaf samples were mounted in 50

μM FM-464 and placed in a Rose chamber for imaging. Three or more plants per

genotype were analyzed. Room temperatures during imaging were between 21 and 24

ºC.
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Arabidopsis thaliana seedlings were grown on ½ strength Murashige and Skoog (MS)

medium solidified with 0.8% agar. Plates were sealed with surgical tape (3M) and grown

vertically in a growth chamber (Percival) with 16-h white light ∼111 µE*m−2s−1

(F17T8/TL741 Fluorescent Tube (Philips)/8-h dark cycles with a 22°C temperature set

point. Arabidopsis plants containing CFP-TUBULIN (identified by microscopy) were

imaged between 3 and 5 days after germination. Seedlings were mounted in water and

covered with a cover slip. Root epidermal cells from the meristematic zone were imaged

at 23 ºC.

Confocal microscopy

Micrographs and short timelapse images were taken with a Zeiss LSM 880 confocal

laser scanning microscope equipped with Airyscan with a 100X, NA = 1.46, oil

immersion objective lens. A 514-excitation laser with bandpass (BP) filters 465-505 with

longpass (LP) 525 filter was used with Airyscan super resolution mode. Images captured

using the Zeiss LSM 880 were processed using default Airyscan settings with ZEN

software (Zeiss). For longer time lapse imaging, 30 second intervals were used to

capture images of microtubules at the cortex to measure both cortical-telophase

microtubule accumulation and the orientation of the phragmoplast (data used in Figure

2.5G-I) with a Yokogawa W1 spinning disk microscope with an EM-CCD camera

(Hamamatsu 9100c) and Nikon Eclipse TE inverted stand with a 100x, NA 1.45, oil

immersion objective lens controlled with Micromanager-1.4 with an ASI Piezo Z stage

and a 3 axis DC servo motor controller. Solid-state lasers (Obis) between 40 to 100 mW

were used with standard emission filters from Chroma Technology. For YFP-TUBULIN or

TANGLED1-YFP, a 514 laser with emission filter 540/30 was used. For CFP-TUBULIN, a
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445 laser with emission filter 480/40 was used. For the membrane dye FM4-64, a 516

nm laser with emission filter 620/60 was used.

Telophase cells were identified by the presence of a phragmoplast, and cortical

telophase microtubules were imaged on the cortical edges of epidermal cells.

Two-dimensional projections, time projections, and three-dimensional reconstructions of

Z stacks and time-lapse images were generated in FIJI (ImageJ,

http://rsb.info.nih.gov/ij/). Image brightness and contrast were altered using the linear

levels option, and figures were assembled with FIJI and Gnu Image Manipulation

Program (GIMP https://www.gimp.org/downloads/). Drift during timelapse imaging was

corrected with StackReg https://imagej.net/StackReg using the translation option

(Thévenaz, 1998).

Quantification of microtubule array organization and coverage

Maize lines expressing YFP-TUBULIN were used to examine the microtubule

cytoskeleton. To measure anisotropy (Figure 2.2B) and orientation (Figure 2.2D), TIFF

image files were converted to PNG files using Fiji software and processed with the

FibrilTool plugin (Boudaoud et al., 2014). For wild-type plants, 38 arrays from 19

transverse cell divisions during telophase were measured from 5 plants with median

anisotropy 0.11 +/- 0.01 A.U. For tan1 mutants, 50 arrays from 25 transverse cell

divisions during telophase were measured from 9 plants (0.07 +/- 0.01 A.U.).

To measure percent microtubule coverage in Figure 2.2C, image files were made binary

and thresholded using mean fluorescence and processed using the Area/Volume

fraction function in the BoneJ plugin (https://imagej.net/BoneJ, (Doube et al., 2010)). The

median value for wild-type cells (n = 38 arrays, coverage fraction 0.33 +/- 0.02) is
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significantly different from median value for tan1 mutant cells (n = 54 arrays, coverage

fraction 0.20 +/- 0.01, Mann-Whitney test, P < 0.0001.)

Measuring microtubule dynamics

Timelapse imaging was used to measure microtubule interactions at the division site,

near TAN1 puncta, and with the phragmoplast. The division site was defined as a

location typically parallel or perpendicular to the long axis of the cell and corresponding

to the position of the phragmoplast midplane or based on the accumulation of the

membrane dye FM4-64 at the cell plate. In tan1 mutants, the “division site” was defined

the same way unless the phragmoplast was misoriented, in which case the “division site”

was defined as the midplane of the phragmoplast or the cell plate location defined using

the membrane dye FM4-64. Individual microtubule movements were measured using the

Dynamic Kymograph plugin (https://imagej.net/plugins/dynamic-kymograph) in Fiji and

binned into categories (for phragmoplast interactions). Growth, pause, and shrinkage

rates were measured by tracing the outlines of dynamic kymographs using regions of

interest (ROIs) in Fiji. Pauses were defined as the presence of a microtubule plus end in

a region ± 3 pixels.

Timelapse imaging was used to compare the abundance of cortical-telophase

microtubules and the phragmoplast angle over time. The phragmoplast angle at each

timepoint was measured in FIJI and saved in Google sheets or Excel (Microsoft Office).

Timelapse image files were first processed to remove drift using the transformation

selection within StackReg, (Thévenaz, 1998) and to correct for photobleaching using

bleach correction (exponential fit) in FIJI. Next, images were made binary and

thresholded using mean fluorescence and processed using the Area/Volume fraction
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function in the BoneJ plugin (Doube et al., 2010). Two equally-sized ROIs were selected

above and below the phragmoplast, such that the ROIs captured cortical-telophase

microtubule accumulation near the phragmoplast but not touching the phragmoplast at

any time frame. The bottom ROI was subtracted from the top ROI. A positive value

indicated more microtubule density or accumulation on the top half of the cell. Both

phragmoplast angle and relative cortical-telophase microtubule accumulation were

graphed together by time using R, RStudio (Version 1.3.1093) and ggplot2 (Computing

and Others, 2013; Wickham et al., 2008). Figures were made using the Gnu Image

Manipulation Program (Gimp, versions 2.10.22-2.10.32) with no interpolation during

scaling and linear adjustments to levels.

Statistical analysis

Microtubule anisotropy measurements were made for wild-type and tan1 mutant plants

described above. Differences in anisotropy were analyzed with GraphPad Prism, and

statistical significance was determined with a Mann-Whitney U-test, P = 0.0054.

Microtubule coverage of the cortex during telophase was measured in wild-type and tan1

mutant plants. Differences in coverage were analyzed with GraphPad Prism, and

significance was determined with a Mann-Whitney U-test, P < 0.0001. Microtubule

dynamics data were graphed in GraphPad Prism and statistically analyzed with R using

the Kruskal-Wallis test followed by Dunn’s test (p-values adjusted with Bonferroni

correction).
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Accession numbers

Sequence data from this article can be found in the GenBank/EMBL libraries under the

following accession numbers:TANGLED1: NP_001105636.1

Maize lines are available at the Maize Cooperative (http://maizecoop.cropsci.uiuc.edu/)

or upon request.
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SUMMARY STATEMENT

The plant division site protein TANGLED1 is recruited to de novo cell plate insertion sites

independently of the preprophase band.

ABSTRACT

Division plane positioning is critical for proper growth and development in many

organisms. In plants, the division plane is established before mitosis, by accumulation of

a cytoskeletal structure called the preprophase band (PPB). The PPB is thought to be

essential for recruitment of division site localized proteins, which remain at the division

site after the PPB disassembles. Here, we show that a division site localized protein,

TANGLED1 (TAN1), is recruited independently of the PPB to the cell cortex by the plant

cytokinetic machinery, the phragmoplast, using the PPB-defective mutant discordia1 and

chemical treatments that disrupt the phragmoplast. TAN1 recruitment to de novo sites on

the cortex is partially dependent on intact actin filaments and the myosin XI motor protein

OPAQUE1 (O1). These data imply a yet unknown role for TAN1 and possibly other

division site localized proteins during the last stages of cell division when the

phragmoplast touches the cell cortex to complete cytokinesis.
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INTRODUCTION

In typical land plant cell divisions, two cytoskeletal structures participate in

division plane positioning: the PPB, which assembles during late G2, and the

phragmoplast, which assembles during telophase and expands to complete cytokinesis.

The PPB is a transient cortical ring of microtubules and actin that is an early indicator of

the cell division plane (Pickett-Heaps and Northcote, 1966; Kakimoto and Shibaoka,

1987; Mineyuki, 1999; Smertenko et al., 2017). Following chromosome and organelle

redistribution in metaphase and anaphase, the phragmoplast forms to facilitate cell plate

formation which divides the two daughter cells (Gunning, 1982; Samuels, Giddings and

Staehelin, 1995; Müller and Jürgens, 2016). The location where cytokinesis is completed

is the cell-plate fusion site, and if the cell plate fuses at the location previously marked by

the PPB, that location is called the division site (Smertenko et al., 2017).

Genetic disruption of PPB formation often leads to significantly stunted growth,

division plane positioning defects, and disrupted cortical microtubule organization which

may impede cell expansion (Whittington et al., 2001; Torres-Ruiz and Jürgens, 1994;

Camilleri et al., 2002; Kawamura et al., 2006; Azimzadeh et al., 2008; Wright, Gallagher

and Smith, 2009; Drevensek et al., 2012; Kirik, Ehrhardt and Kirik, 2012; Spinner et al.,

2013; Kumari et al., 2021; Muroyama et al., 2023). However, absence of >80% of PPBs

generates macroscopically normal plants with minor division plane orientation defects

that were attributed to spindle positioning defects (Ambrose and Cyr, 2008; Shaefer et

al. 2017).

PPB formation requires the PROTEIN PHOSPHATASE TYPE 2A (PP2A) B’’

regulatory subunit encoded by two related genes in maize called discordia1 (dcd1) and

alternative discordia1 (add1) (Gallagher and Smith, 1999; Wright, Gallagher and Smith,
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2009), homologs to fass/ton2 in Arabidopsis (Torres-Ruiz and Jürgens, 1994; Camilleri et

al., 2002). In A. thaliana FASS/DCD1/ADD1 forms a complex with microtubule-binding

proteins including TONNEAU1, TONNEAU1-RECRUITING-MOTIF proteins, and other

PP2A subunits that disrupt cortical microtubule organization and PPB formation (Wright,

Gallagher and Smith, 2009; Spinner et al., 2013). While dcd1 add1 is seedling lethal and

never forms PPBs, single dcd1 mutants grow well and do not have PPB formation

defects in symmetrically dividing cells (Wright et al. 2009). Instead, dcd1 single mutants

produce defective PPBs in several asymmetrically dividing cells such as the

grass-specific stomatal complex subsidiary cells, leading to division positioning defects.

Subsidiary cells, generated from an asymmetric division, serve as an excellent model to

analyze division-plane orientation due to consistently positioned divisions and

well-characterized signaling pathways (Gray et al. 2020; Spiegelhalder and Raissig

2021; Ashraf et al. 2023).

The PPB serves as a hub to recruit multiple proteins, including a small subset

that remains at the division site after PPB disassembly. One division-site localized

protein, TANGLED1 (TAN1), binds microtubules and is required for properly oriented

divisions (Smith et al. 1996; Smith et al. 2001, Martinez et al. 2017, Martinez et al. 2020).

TAN1 localization to the division site requires an intact PPB, where it is maintained until

cytokinesis is completed (Walker et al. 2007; Rasmussen et al. 2011; Martinez et al.

2017). In maize, TAN1 also colocalizes with the phragmoplast midline (Martinez et al.

2017). The maize tan1 mutant has mostly normally placed PPBs, but phragmoplast

guidance defects lead to misoriented symmetric and asymmetric divisions (Smith et al.

1996; Martinez et al. 2017; Martinez et al. 2020). TAN1 promotes contact angle
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independent microtubule interactions which guide the phragmoplast to the division site

(Bellinger et al. 2023; Martinez et al. 2020).

Here, we use the partially defective PPBs in dcd1 mutants to measure the

contribution of PPB formation to division plane positioning. To our surprise, and contrary

to previous reports, the dcd1 mutant revealed an unexpected de novo recruitment of

TANGLED1 from the phragmoplast to misoriented cell plate fusion sites. We

demonstrate that de novo TAN1 accumulation occurs in multiple mutants and chemically

treated cells that have division plane positioning defects. Further, TAN1 accumulation is

partially dependent on actin and a myosin XI OPAQUE1 (O1).

118

https://paperpile.com/c/8mX1SH/FkKv+L2AK


RESULTS AND DISCUSSION

Defects in dcd1 PPB formation reduce TAN1-YFP accumulation

To determine whether partially defective PPBs affect TAN1 recruitment to the

division site, we observed TAN1–YFP in dcd1 and wild-type siblings with the microtubule

marker CFP-TUBULIN (Martinez et al., 2017). Wild-type subsidiary cells had no defects

in PPB formation or TAN1-YFP accumulation (n = 0/112 cells from 19 plants, Figure

3.1A, Supplemental Figure S3.1A). In contrast, dcd1 cells often had defective PPBs that

incompletely encircled the cell, similar to previous results (~40%, Wright, Gallagher and

Smith, 2009) (38%, n = 42/110 cells from 7 plants). Defective PPBs had uneven

microtubule accumulation, including one-sided accumulation (“singular”, Figure 3.1B,

Supplemental Figure S3.1B). Correspondingly, uneven or singular TAN1-YFP

accumulation at the division site was observed in preprophase/prophase (35% n =

38/110 from 7 dcd1 plants) in metaphase and anaphase (35%, n = 16/46), and in

telophase (41%, n =65/157, Figure 3.1C), suggesting that PPB establishment is required

for TAN1 recruitment to the division site.
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Figure 3.1. PPB formation and TAN1-YFP recruitment is defective in dcd1.

(A-B) Model of (A) wild-type or (B) dcd1 subsidiary cell divisions. Cell walls (black), microtubule
structures (green), and TAN1-YFP (magenta) are shown. Below are representative images with
CFP-TUBULIN labeling microtubules (green) and TAN1-YFP (magenta) labeling the division site
(>) and sometimes the nucleolus indicated with a diamond (♦). (C) Observed TAN1-YFP
accumulation patterns. Darker and lighter shades of magenta represent higher and lower
TAN1-YFP intensities reflecting greater or less accumulation, respectively. Below, stacked bar
plot comparing wild-type and dcd1 cells that exhibit various TAN1-YFP patterns represented by
the schematic models above. Numbers above bars represent cells examined. Asterisks (***) mark
significant difference, P < 0.001, Fisher’s Exact Test. N = 19 wild-type plants and 7 dcd1 plants.
Scale bars = 10 μm.

121



Supplemental Figure S3.1. Confocal micrographs of divisions in wild type (WT) and dcd1
plants.
(A) Representative images of correctly oriented dcd1 divisions expressing CFP-TUBULIN (green)
and TAN1-YFP (magenta) with typical microtubule structures and TAN1-YFP localization. (B) An
additional example of a defective preprophase band in dcd1 with CFP-TUBULIN and TAN1-YFP
accumulation on one division site and missing from the other. Asterisks mark the typical
interphase microtubule accumulation in the neighboring guard mother cell. Dotted lines outline
the guard mother cell. Carets point to the division site. (C) Micrographs of wild type (left) and
dcd1 (right) cells in telophase at the cell cortex and midplane expressing CFP-TUBULIN
(microtubules, green) and TAN1-YFP (magenta). Below, the CFP-TUBULIN, TAN1-YFP, and
merged channels of XZ-projections showing the side view of the cell. Z-slices were taken at 0.25
µm intervals. Scale bars for A-C cortex and midplane view are 10 µm, and 3.4 µm for the XZ
projections in C.
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Defective PPBs in dcd1 mutants cause division plane positioning defects

Like many studies that have examined the role of the PPB in division plane

positioning (Camilleri et al., 2002; Azimzadeh et al., 2008; Drevensek et al., 2012;

Schaefer et al., 2017; W. Wang et al., 2019; Kumari et al., 2021), our initial analysis of

dcd1 was performed using static images. This data generated strong correlative support

for the role of the PPB in division plane positioning, but cell division trajectories were not

analyzed. To directly assess the relationship between PPB formation, TAN1

accumulation, and final division positioning, 12-minute time intervals were used to track

divisions, capitalizing both on the invariant positions of subsidiary cell divisions and the

dcd1 partial PPB formation defects (Figure 3.2A-D). At dcd1 subsidiary cell division sites

(n = 374 division sites total from 4 plants), we measured the TAN1-YFP and/or

CFP-TUBULIN fluorescence intensities and classed final divisions as ‘oriented’ or

‘misoriented’ dependent upon whether the phragmoplast returned to the division site.

Robust PPB microtubule accumulation strongly predicts correctly oriented cell divisions.

Division sites with undetectable TAN1-YFP tended to be misoriented (79%, n = 26/33

cells with TAN1-YFP fluorescence intensity at background levels, Figure 3.2E). For cell

divisions captured in later stages, 94% (metaphase, anaphase, or telophase, n = 50/53)

of misoriented final divisions were associated with undetectable TAN1-YFP intensity at

the time lapse onset (Figure 3.2F, n = 112 cells). These data show that the PPB is

essential for division plane positioning in subsidiary mother cell divisions and that

TAN1-YFP localization at the division site is a reasonable proxy for previous

preprophase band formation.
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Figure 3.2. Defective preprophase bands and TAN1 localization result in misoriented
divisions.

Time lapses of subsidiary cell divisions expressing CFP-TUBULIN and TAN1-YFP in (A) wild-type
cells and (B-D) dcd1 cells. Left-most columns show TAN1-YFP localization at t = 0 (Merge shows
both TAN1-YFP (magenta) and microtubules (green)). The last column overlays the PPB in the
first frame (cyan) and final division frame (magenta). Carets (>) mark the division site. Scale bars
are 10 µm. (E) Comparative TAN1-YFP and PPB intensity from time lapses of dcd1 cells.
“Oriented” describes phragmoplasts that return to the division site and “misoriented” describes
cell plate insertion at atypical locations. n = 85 cells, N = 4 plants. (F) Histogram displaying the
mean TAN1-YFP fluorescence intensity of cell division sites in dcd1 colored by division
orientation at the first timepoint for time lapses that start after prophase. For E and F, blue =
oriented, magenta = misoriented. Dotted line represents the visible detection limit or the point at
which TAN1-YFP fluorescence is distinguishable over background. n = 112 cells. N = 4 plants.
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TAN1-YFP accumulates at misoriented cell plate insertion sites.

dcd1 cytokinesis often completes in aberrant locations. Surprisingly, TAN1-YFP

accumulated at de novo cell plate fusion sites (n = 21 misoriented phragmoplasts, N = 3

plants) (Figure 3.3A, B, E). Time-lapse imaging revealed that de novo TAN1-YFP

accumulation trails behind the phragmoplast after it touches the cortex (Figure 3.3B, n =

22/22 cells from 3 plants, Supplemental Figure S3.1C). TAN1-YFP has been previously

shown to accumulate near the phragmoplast midline (Martinez et al., 2017). This

suggests that TAN1-YFP may be transported from the phragmoplast to the cell cortex,

independently from the PPB.

TAN1-YFP accumulated at the cell cortex in the dcd1 add1 double mutant cells

that never make PPBs (Figure 3.3C, Supplemental Figure S3.2) (Wright, Gallagher and

Smith, 2009). dcd1 add1 mutants are seedling lethal, so embryos were imaged 21 days

after pollination. Wild-type cells showed normal TAN1-YFP division site accumulation at

all stages (100%, n = 304 cells, n = 24 kernels, Supplemental Figure S3.2A). In

fass/tonneau2 mutants and in cells treated with microtubule depolymerizing drugs,

AtTAN::YFP was not observed at the cortex (Walker et al., 2007; Rasmussen, Sun and

Smith, 2011). Similarly, in the dcd1 add1 mutant, TAN1-YFP was not observed at the

cortex in preprophase/prophase to anaphase cells (0%, n = 0/71 cells, n = 9 kernels,

Supplemental Figure S3.2B). However, TAN1-YFP often accumulated at the cell cortex

in telophase (72%, n = 36/50 cells from 9 kernels). Higher resolution imaging revealed

that TAN1-YFP accumulated only after the phragmoplast touched the cortex (100%, n =

53/53 cells, N = 4 kernels), not before (n = 11/11 cells from 4 kernels) (Figure 3.3C,

Supplemental Figure S3.2). TAN1-YFP rarely accumulated at the cortex ahead of the
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phragmoplast (4%, n = 2/53, Supplemental Figure S3.3). These data further indicate that

TAN1-YFP can be recruited to the cell cortex independently of the PPB.

When additional or misoriented phragmoplast arms were generated in wild-type

cells using the herbicide chlorpropham (CIPC), TAN1-YFP was recruited to de novo cell

plate fusion sites (Figure 3.3D). CIPC generates branched phragmoplasts through its

tubulin binding activity but does not affect PPB formation (Liu, Joshi and Palevitz, 1995;

Eleftheriou and Bekiari, 2000; Buschmann et al., 2006). Wild-type cells expressing

TAN1-YFP and CFP-TUBULIN were treated for two hours with 0.7 µM or 1 µM CIPC or

the respective DMSO controls and imaged. De novo TAN1-YFP was observed after

additional or misoriented phragmoplast arms contacted the cortex (Figure 3.3E, 67%, n

= 31/46 cells from 3 plants).
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Figure 3.3. Cell plate insertion sites accumulate de novo TAN1-YFP. (A-D) CFP-TUBULIN
(green) and TAN1-YFP (magenta) in various dividing cells. Carets (>) mark the division site
and asterisks (*) mark de novo TAN1-YFP.

(A) dcd1 subsidiary mother cell with de novo cortex-localized TAN1-YFP indicated with asterisks.
(B) Time lapse of a dcd1 cell cortex during phragmoplast expansion. Dagger (✝) marks the edge
of TAN1-YFP previously recruited in prophase and the triangle (▼) marks movement of the
phragmoplast. Time stamps are in Hours:Minutes.(C) Z-projection and cortex views of wild type
and dcd1 add1 mutant embryos in telophase. Yellow dotted lines outline the cell. (D)
Representative Z-projections of subsidiary mother cell phragmoplasts from CIPC and DMSO
control treated samples. Asterisks mark de novo TAN1-YFP while carets mark the expected
division site. (E) Bar plots of de novo TAN1-YFP cell cortex accumulation in dcd1, dcd1 add1, or
DMSO and CIPC treated wild-type plants. Numbers above bars represent total cell numbers. N ≥
3 plants or kernels of each genotype or treatment. Asterisks indicate significant differences by
Fisher’s Exact Test, P < 0.001. Scale bars = 10 µm.
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Supplemental Figure S3.2. TAN1-YFP localization in wild type and the dcd1 add1 double
mutant from prophase to early telophase.
Micrographs of cortex and midplane views of (A) wild-type embryos and (B) dcd1 add1 embryos
expressing CFP-TUBULIN (microtubules, green) and TAN1-YFP (magenta). Arrowheads point to
TAN1-YFP localization to the division site and a yellow dotted line marks the cell outline. Scale
bars are 10 µm, all images in the two panels are the same magnification.
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Supplemental Figure S3.3. TAN1-YFP localization patterns in dcd1 add1 embryos.
(A-B) TAN1-YFP localizes to the division site (>) in wild-type embryos (A) before and (B) after the
phragmoplast has reached the cell cortex. (C-D) In early telophase cells in dcd1 add1, TAN1-YFP
is (C) absent from or (D) diffuse at the cell cortex before the phragmoplast has fully expanded.
TAN1-YFP is also visible in the phragmoplast midline. (E-F) In late telophase cells in dcd1 add1,
(E) TAN1-YFP localizes to the cell cortex as a narrow band once the phragmoplast reaches the
cortex and (F) rarely localizes ahead of phragmoplast expansion. Scale bar is 10 µm.

Actin and myosin XI OPAQUE1 (O1) facilitate TAN1-YFP accumulation at de novo cell

plate insertion sites

Accumulation of TAN1-YFP at de novo cell plate insertion sites is partially

dependent on O1. Since TAN1 interacts with PHRAGMOPLAST ORIENTING KINESIN1

(POK1) and POK2 (Müller, Han and Smith, 2006; Rasmussen, Sun and Smith, 2011;

Mills, Morris and Rasmussen, 2022), and related kinesin 12s interact with myosin XI

motor proteins (Huang et al., 2022; Nan, Liang, et al., 2023), we hypothesized that O1

might be necessary for TAN1-YFP accumulation. TAN1-YFP fluorescence intensity

during telophase was reduced but not absent in both correctly oriented and de novo cell

plate fusion sites in o1 compared to wild-type siblings (Figure 3.4A-B, p = 1.02e-12,

One-way ANOVA followed by Tukey’s HSD). Therefore, O1 facilitates TAN1-YFP

accumulation during telophase.
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Actin filament disruption also reduced TAN1-YFP accumulation at de novo cell

plate fusion sites. Actin filament formation was inhibited with latrunculin B (Lat B)

treatment in dcd1 cells. 10-minute treatments with 25 µM Lat B inhibited actin

polymerization (Supplemental Figure S3.4). Lat B treatment reduced TAN1-YFP

accumulation at de novo cell plate fusion sites (Figure 3.4C-E, P = 0.0417, Wilcoxon

rank sum test). To determine whether de novo TAN1-YFP recruitment or maintenance

depends on actin filaments, 10-minute time points were taken after treating dcd1 cells

with control or 25 µM Lat B (Figure 3.4E). We defined recruitment as accumulation of

TAN1-YFP at de novo division sites, and maintenance as the persistence of TAN1-YFP

accumulation once the phragmoplast disassembled in that location. In control-treated

dcd1 cells, TAN1-YFP accumulated and remained at the cell cortex as a narrow line

following the phragmoplast trajectory (n = 15/17 cells, n = 4 plants, Figure 3.4E i-ii).

Rarely, TAN1-YFP accumulation was reduced (n = 1/17) or not maintained at the cell

cortex (n = 1/17). In Lat B treatments, TAN1 accumulation was often reduced (n = 13/18,

e.g., Figure 3.4 iii-iv) or not maintained after treatment (n = 5/18, e.g., Figure 3.4E v-vi).

Therefore, both TAN1-YFP recruitment and maintenance at de novo sites are reduced

when actin filaments were disrupted.
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Figure 3.4. Actin and myosin XI motor protein OPAQUE1 increase TAN1 accumulation at de
novo cell plate insertion sites.
A) Subsidiary cell divisions in the opaque1 (o1-n) mutant and wild-type siblings. B) Boxplot of
TAN1-YFP intensities at telophase in oriented and misoriented divisions in wild type and o1-n
mutant cells. P = 1.02e-12, One-way ANOVA followed by Tukey’s HSD, letters mark significant
differences between groups. (C) TAN1-YFP accumulation in control and 25 µM Lat B treated
dcd1 cells. Bracket and asterisk indicate diffuse TAN1-YFP observed in Lat B treatments. (D)
Boxplot of TAN1-YFP intensity at misoriented divisions of dcd1 in DMSO control (n = 23 cells, N =
2 plants) and 25 µM Lat B (n = 9 cells, N = 2 plants) treatments. P = 0.0417, Wilcoxon rank sum
test. (E) Timelapse of dcd1 cells in control and Lat B treatments. Panels display two examples
each of cells at the beginning and end of control or Lat B treatment: (i-ii) Sharp TAN1
accumulation in control treatment, (iii-iv) reduced TAN1 accumulation in Lat B treatment, and
(v-vi) lack of TAN1 maintenance with Lat B treatment. Carets (>) mark the division site and
asterisks (*) mark de novo TAN1-YFP. Boxplot horizontal lines represent the quartiles and
median. Whiskers are 1.5*IQR.
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Supplemental Figure S3.4. Optimization of latrunculin B treatment for dcd1 and its
wild-type sibling.
Micrographs of actin filaments immunostained with Alex fluor 488-phalloidin. Scale bar is 10 µm.
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In the absence of PPB-mediated recruitment, we observe TAN1-YFP

accumulation at aberrant cell-plate-fusion sites that is partially dependent on actin

filaments and O1. Consistently, when actin is disrupted in Arabidopsis root cells, TAN1,

POK1 and Myosin XI division-site localization becomes diffuse (Huang et al., 2022).

Actin connects the leading edge of the phragmoplast with the division site through the

action of myosin VIII in Physcomitrium patens (Wu and Bezanilla, 2014) and is required

for division plane positioning (Mineyuki and Palevitz, 1990; Gallagher and Smith, 1999;

Frank, Cartwright and Smith, 2003; Gilliland et al., 2003; Galatis and Apostolakos, 2004;

Facette and Smith, 2012; Vaškebová, Šamaj and Ovecka, 2017). During the late stages

of phragmoplast expansion, actin facilitates completion of cell plate fusion (van

Oostende-Triplet et al., 2017), a process potentially dependent on recruitment of TAN1

and other division site proteins. Recruitment of other division site proteins (e.g. POK1) to

de novo cell plate fusion sites have also been observed in mutants which generate

additional ectopic cell plates, suggesting that de novo localization may be a common

feature during cytokinesis (Lebecq et al., 2023).

We hypothesize that TAN1-YFP accumulation may reflect the assembly of entire

“division-site modules”, which may accelerate completion of cytokinesis. In the tan1

mutant, phragmoplast disassembly at the cell cortex is significantly delayed, taking twice

as long as wild-type phragmoplasts (Martinez et al. 2017). Additionally, aberrantly

targeted cell plates generated by CIPC treatment retain the cell-plate-specific callose

polymer long after properly oriented cell plates replace callose with cellulose, indicating

delays in completing cytokinesis (Buschmann et al. 2006). We hypothesize that division

site proteins facilitate the rapid completion of cytokinesis, and determining how this is

accomplished is a fascinating question for future research.
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MATERIALS AND METHODS

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and

will be fulfilled by Carolyn Rasmussen (crasmu@ucr.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

● All data reported in this paper will be shared by the lead contact upon request.

● This paper does not report original code.

● Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

EXPERIMENTAL MODEL DETAILS

Maize (Zea mays) plants were grown in standard greenhouse conditions (31-33˚C

temperature setpoints with supplementary lighting from 5-9 PM at ~400 µ E m-2 s-1) in 1 L

pots with soil (20% peat, 50% bark, 10% perlite, and 20% medium vermiculite)

supplemented with additional magnesium nitrate (50 ppm N and 45 ppm Mg) and

calcium nitrate (75 ppm N and 90 ppm CA) and Osmocote Classic 3-4M (NPK 14-14-14

%, AICL SKU#E90550). Alternatively, plants were grown in the field (Agricultural

Operations https://agops.ucr.edu/, Riverside, CA, USA) to generate maize embryos,

which were hand harvested from ears 21-23 days after pollination.

137

mailto:crasmu@ucr.edu
https://agops.ucr.edu/


METHOD DETAILS

Plant material and genotyping/phenotyping:

Plants expressing CFP-ß-TUBULIN and/or TAN1-YFP (Mohanty et al., 2009; Wu et al.,

2013) were genotyped with CFP-TUBULIN forward primer GFP5FOR

(5’-GCGACGTAAACGGCCACAAGTTCAG-3’) and the reverse primer

TubB3433R (5’-CGGAAGCAGATGTCGTAGAGC-3’) and the TAN1-YFP forward primer

TAN LSP1 (5’-ACGACCGTTAGCACAGAACC-3’) and the reverse primer GFP5Rev

(5’-CTGAACTTGTGGCCGTTTACGTCGC-3’) or identified by painting leaves with 4 g/L

glufosinate (Finale, Bayer) in 0.1% Tween 20 (Sigma). Resistance to glufosinate was

assessed after 2–5 d.

The dcd1 add1 and dcd1 mutants were a kind gift from Dr. Amanda Wright. The

dcd1-mu1 and add1 alleles were genotyped according to Wright et al. 2009 (Wright,

Gallagher and Smith, 2009) using the forward MuE2 (5’-TCCATAATGGCAATTATCTC-3’)

and the reverse 55862nrev (5’-GGTGCTACATATACGCTAAAG-3’) for dcd1-mu1 and the

forward 3dCAPbfor (5’-GTTGTTTTCCCCCTTGGATT-3’) and the reverse 3dCAPbrev

(5’-CTTGAGTTCTTGTTTGCTCAG-3’) for add1. To distinguish between wild type and

add1 mutant alleles, PCR products were digested with the restriction enzyme KpnI

overnight and then run on a 4% agarose gel for 90 minutes at 110V. dcd1 mutant plants

were also identified by phenotype using glue impressions of epidermal leaf cells

(Allsman, Dieffenbacher and Rasmussen, 2019). The opaque1/dcd2 mutants were a

kind gift from Dr. Michelle Facette. o1-N1242A mutants were identified by phenotype

using a lightbox and/or glue impressions.
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Leaves were dissected for imaging after 3-5 weeks of growth from the whorl until the

ligule was 2 mm from the base and the abaxial epidermal cells were placed into a Rose

chamber as described (Rasmussen, 2016) to observe dividing cells. For live imaging of

wild-type and dcd1 add1 double mutant embryos, maize plants were grown in the

greenhouse or in the field under standard conditions. Ears were harvested 21-23 days

after pollination. Embryos were dissected from kernels and loaded onto a Rose chamber

with the flat plumule face down (Kiesselbach, 1949).

Chemical treatments

1 M CIPC (CAS 101-21-3 from TCI, #C2555) was dissolved in DMSO. Leaf samples

were loaded in 0.7 µM or 1 µM CIPC or the respective 0.07% or 0.1% DMSO control in a

rose chamber and imaged after 1 to 2 hours of treatment. Samples were loaded into 25

µM Lat B (Fisher Scientific, #2182-1) or the respective DMSO control. Z stacks were

acquired 2 hours after treatment. For time lapse imaging, samples were loaded directly

into 40 µl of 25 µM Lat B and a time lapse was started with 10-minute time points. To

identify what concentration of Lat B was required to depolymerize actin filaments, leaf

tissue samples were treated with 0.0025 µM, 0.25 µM, or 25 µM Lat B for 1 hour, fixed,

and stained with Alexa Fluor 488 Phalloidin (Fisher Scientific, #A12379) following Nan et

al. 2019 (Nan, Mendoza and Facette, 2019).

Confocal Microscopy:

Micrographs and time-lapse data were acquired using a Yokogawa W1 spinning disk

microscope with an EM-CCD camera (Hamamatsu 9100c) on a Nikon Eclipse TE

inverted stand. Solid-state Obis lasers with power ranging from 40 to 100 mW were used

in combination with standard emission filters (Chroma Technology). For
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TANGLED1-YFP, a 514 nm laser with emission filter 540/30 nm was used. For

CFP-TUBULIN, a 445 nm laser with emission filter 480/40 nm was used. Oil or water

immersion objectives (60X/1.2 NA, 100X/1.45 NA) were used. Images and time-lapses

were taken with Micromanager-1.4 using a 3-axis DC servo motor controller and ASI

Piezo Z stage. For time-lapse, 10 or 12 minute time intervals were used as specified with

Z-intervals ranging from 3 to 5 µm. For Z-stacks acquired with no timelapse, 0.5 µm

steps were used.

Images were also acquired using a Zeiss LSM 880 confocal laser scanning microscope

(100X oil objective immersion lens, NA = 1.46) with Airyscan super resolution mode and

Z-intervals of 0.25 µm or 3 µm. The 0.25 µm Z-intervals were used to generate the X-Z

projection in Supplemental Figure S3.1C. A 514 nm-excitation laser with bandpass filters

465-505 with long-pass 525 filter was used. Images were processed using default

Airyscan settings with Zen software (Zeiss).

Figure Preparation

Figures were made using Gnu Image Manipulation Program (Gimp, version 2.10.32,

https://www.gimp.org/). Image levels were only adjusted linearly and images were

enlarged or rotated with no interpolation.

Accessions

CFP-TUBULIN and TAN1-YFP lines were generated by the Maize Cell Genomics Group

(Mohanty et al., 2009). Gene sequences can be found at MaizeGDB

(https://www.maizegdb.org/gbrowse) using the following accession numbers (B73, v4):

DISCORDIA 1 (Zm00001d024857), ALTERNATIVE DISCORDIA 1 (Zm00001d010862),

and TANGLED 1 (Zm00001d038060).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Time lapse images, X-Z projections, and Z-projections were generated using Fiji

(ImageJ, http://rsb.info.nih.gov/ij/, RRID:SCR_003070). Mean fluorescence intensity was

measured using the “straight” or “oval” tool. X-Y drift in time lapses was corrected using

the translation function in the StackReg plug-in in ImageJ (Thévenaz, 1998) or the

Fast4DReg plugin (Laine et al., 2019). Analysis of TAN1-YFP localization and/or

intensity measurements was done by separating the CFP-TUBULIN channel from the

TAN1-YFP channel and using the CFP-TUBULIN channel to identify the stage of cell

division and location at the midplane or the cell cortex.

For Figure 3.1, TAN1-YFP localization to the division site was described as

“Normal”, “Faint”, “Uneven”, or “Single” based on the presence or absence of localization

and TAN1-YFP intensity at the cell midplane. “Normal” intensity describes wild type

TAN1-YFP localization– two bright accumulations in the subsidiary mother cell that flank

the guard mother cell. “Faint” describes two accumulations that are less intense than

“normal”. “Uneven” describes two accumulations, one that is more intense than the

other. Finally, “Single” describes cells with TAN1-YFP accumulation at one division site

and absence from the other. Because there was no statistical difference between the

proportion of faint classes between WT and dcd1, “Faint” was merged with the “Normal”

class.

In Figure 3.2E and F, the fluorescence intensity of TAN1-YFP was measured

using a line ROI at the cell midplane, bisecting the region of TAN1-YFP accumulation at

the division site. The number of division sites is always twice the number of cells, as at

the midplane, the division sites of the subsidiary mother cell flank the guard mother cell.

For cells in prophase, the same ROI was used to measure CFP-TUBULIN accumulation
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in the preprophase band at the division site (Figure 3.2E). When TAN1-YFP or

CFP-TUBULIN accumulation was below detection as frequently observed in dcd1

subsidiary mother cell divisions, the ROI was selected at the expected division site

location for a subsidiary mother cell division.

When analyzing de novo TAN1-YFP localization in dcd1, dcd1 add1, or the CIPC

treated cells in Figure 3E, phragmoplasts were categorized as normal or aberrant, where

aberrant includes misoriented phragmoplasts and split phragmoplasts in the CIPC

treatments (Figure 3E). TAN1-YFP localization was determined to be “normal” if

TAN1-YFP was only observed to localize to the division site, and “de novo” if TAN1-YFP

was observed to accumulate at de novo cell plate fusion sites, which were identified by

observing the phragmoplast and the cell cortex.

For cortical TAN1-YFP intensity measurements in Figure 3.4B and D, mean intensity

was measured using a 2 µm line ROI. For misoriented phragmoplasts, ROIs were drawn

starting from the leading edge of the phragmoplast along the phragmoplast midline.

Graphs, tables, and statistics were generated using R(R Core Team, 2023) and

Rstudio (Posit team, 2023) using the following packages: tidyr, ggplot2, ggprism, ggpubr

(Wickham, 2016; Dawson, 2022; Kassambara, 2023; Wickham et al., 2023; Wickham,

Vaughan and Girlich, 2023). Statistical details of experiments can be found in the main

text and/or figure legends. Significance was defined as P < 0.05 and parametric tests

were used unless data distribution was non-normal, whereupon an equivalent

non-parametric test was used instead. In Figure 3.4B, the One-way ANOVA was

followed by a Tukey’s HSD multiple comparison test. For the comparison of categorical

variables in Figure 3.1C and Figure 3E, a Fisher’s Exact Test was used.
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RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Chemicals, peptides, and recombinant proteins
Chlorpropham (CIPC); TCI Cat#C2555; CAS:101-21-3
Latrunculin B (Lat B) Fisher Scientific Cat#2182-1; CAS:

76343-94-7
Dimethyl sulfoxide (DMSO) Fisher Scientific Cat#D128-4; CAS: 67-68-5
Alexa Fluor 488 Phalloidin Fisher Scientific Cat#A12379
KpnI New England Biolabs Cat#R3142S
Glufosinate (Finale) Bayer Cat#4193473
Tween 20 Fisher Scientific Cat#BP337-500; CAS:

9005-64-5
Experimental models: Organisms/strains
CFP-TUBULIN maize fluorescent
protein tagged line

Maize Cell Genomics
Group(Mohanty et al.,
2009); Maize Genetics
Cooperation Stock Center
(http://maizecoop.cropsci.uiu
c.edu)

Stock #UWYO-FP019

TAN1-YFP maize fluorescent
protein tagged line

Maize Cell Genomics
Group(Mohanty et al.,
2009); Maize Genetics
Cooperation Stock Center
(http://maizecoop.cropsci.uiu
c.edu)

Zm00001d038060
(Zm-B73
REFERENCE-GRAMENE-
4.0) or Zm00001eb286860
(Zm-B73-REFERENCE-N
AM-5.0); Stock
#UWYO-FP017

discordia 1 Gallagher and Smith; Wright
et al. 2009 (Gallagher and
Smith, 1999; Wright,
Gallagher and Smith, 2009)

Zm00001d024857
(Zm-B73
REFERENCE-GRAMENE-
4.0) or
Zm00001eb418170
(Zm-B73-REFERENCE-N
AM-5.0)

alternative discordia 1 Wright et al. 2009 (Wright,
Gallagher and Smith, 2009)

Zm00001d010862
(Zm-B73
REFERENCE-GRAMENE-
4.0) or Zm00001eb354190
(Zm-B73-REFERENCE-N
AM-5.0)

opaque 1 Nan et al. 2023 (Nan, Liang,
et al., 2023)

Zm00001d052110
(Zm-B73
REFERENCE-GRAMENE-
4.0) or Zm00001eb193160
(Zm-B73-REFERENCE-N
AM-5.0)

Oligonucleotides
Primer: CFP-TUBULIN Forward
Primer (GFP5FOR)

Integrated DNA
Technologies

N/A
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5’-GCGACGTAAACGGCCACAAG
TTCAG-3’
Primer: CFP-TUBULIN Reverse
Primer (TubB3433R)
5’-CGGAAGCAGATGTCGTAGAG
C-3’

Integrated DNA
Technologies

N/A

Primer: TAN1-YFP Forward Primer
(TAN LSP1)
5’-ACGACCGTTAGCACAGAACC-
3’

Integrated DNA
Technologies

N/A

Primer: TAN1-YFP Reverse Primer
(GFP5Rev)
5’-CTGAACTTGTGGCCGTTTACG
TCGC-3’

Integrated DNA
Technologies

N/A

Primer: dcd1-mu1 Forward Primer
(muE2)
5’-TCCATAATGGCAATTATCTC-3’

Integrated DNA
Technologies

N/A

Primer: dcd1-mu1 Reverse Primer
(55862nrev)
5’-GGTGCTACATATACGCTAAAG-
3’

Integrated DNA
Technologies

N/A

Primer: add1 Foward Primer
(3dCAPbfor)
5’-GTTGTTTTCCCCCTTGGATT-3’

Integrated DNA
Technologies

N/A

Primer: add1 Reverse Primer
(3dCAPbrev)
5’-CTTGAGTTCTTGTTTGCTCAG-
3

Integrated DNA
Technologies

N/A

Software and algorithms
Fiji Schindelin et al. 2012

(Schindelin et al., 2012)
https://fiji.sc/

GNU Image Manipulation Program
(GIMP)

https://www.gimp.org/

R R Core Team 2023 (R Core
Team, 2023)

https://www.r-project.org/

RStudio Posit Team 2023 (Posit
team, 2023)

https://posit.co/products/op
en-source/rstudio/
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CHAPTER 4:

OTHER MOLECULAR PLAYERS INVOLVED WITH MAIZE DIVISION PLANE

ORIENTATION AND CYTOKINESIS

Keywords: bulked segregant analysis, maize, cytokinesis
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ABSTRACT

Cell division is key to proper growth and development in multicellular organisms.

In plants, the division plane is established early in the cell cycle and is marked by

proteins that remain at the division site until the new cell wall is built. The final steps of

cell division are executed in cytokinesis by the phragmoplast, a cytoskeletal and

vesicular structure, that lays down the new cell wall. While key players important to

cytokinesis have been reported, many more remain to be identified. Severe defects in

cytokinesis often result in embryo lethality, making this a difficult process to study. Here, I

describe cytokinesis3 (cyto3), a recessive cytokinesis maize mutant generated through

an ethyl methanesulfonate (EMS) mutagenesis forward genetics screen. cyto3 is a

mutant with minor cytokinesis defects characterized by incomplete cell walls and no

misoriented divisions. I used whole genome resequencing and bulked segregant

analysis to identify a 2 Mb region on Chromosome 9 that likely contains the causative

variant. To validate our candidate, new alleles generated through pollen EMS

mutagenesis will be Sanger sequenced. Additionally, the bioinformatics pipeline will be

applied to additional mutants that were generated through this screen.
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INTRODUCTION

While much progress has been made towards understanding the mechanisms

controlling plant division plane orientation, many unanswered questions remain

regarding the interactions between division site proteins and their functions in the stages

of division. Experiments in Arabidopsis examining the redundant functions of the proteins

TANGLED1 and AUXIN INDUCED IN ROOT CULTURES 9 (AIR9) in maintaining

division plane orientation suggest that an additional protein is important for mediating

interactions that promote TANGLED1 maintenance at the division site (Mills et al., 2022).

Mutants identified can be divided into classes that describe the section of division plane

orientation that is affected: division plane establishment, division plane maintenance,

phragmoplast guidance, and cytokinesis (Müller et al., 2016; Rasmussen et al., 2018;

Uyehara et al., 2023). These mutants are involved in processes such as cytoskeletal

organization and dynamics, membrane trafficking, and cell signaling, and have proven to

be useful genetic tools to investigate cell division (Uyehara et al., 2023).

To identify new molecular players involved with controlling division plane

orientation or cytokinesis in maize, a forward genetics ethyl methanesulfonate (EMS)

screen was done in maize. EMS induces GC→AT transition mutations randomly across

the genome which will lead to occasional changes in phenotype. Previously,

EMS-treated B73 was planted, open pollinated, and screened for cellular phenotypes by

glue impression (Figure 4.1) (Allsman et al., 2019). Mutants with clear recessive division

plane orientation or cytokinesis phenotypes were further backcrossed into the inbred

B73. The first mutant chosen for sequencing was cytokinesis 3 (cyto3), a mutant with

mild, but obvious epidermal cytokinesis defects such as incomplete cell walls, otherwise

called cell wall stubs, and enlarged nuclei (Figure 4.2). Plant cytokinesis begins at the
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center of the cell with the formation of the phragmoplast, a microtubule and actin

structure that facilitates the formation of the cell plate (Müller et al., 2016; Smertenko et

al., 2017). Vesicles containing cell plate materials accumulate at the phragmoplast

midline as the phragmoplast expands, eventually reaching the mother cell plasma

membrane where the cell plate fuses (Müller et al., 2016; Murata et al., 2005, 2013;

Smertenko, 2018). Failures in cytokinesis result when defects occur in the processes

regulating phragmoplast reorganization (Hiwatashi et al., 2008; Kosetsu et al., 2013; Li

et al., 2017; Sasabe et al., 2011), or tethering and fusion of the cell plate (Assaad et al.,

1996; Lukowitz et al., 1996; Söllner et al., 2002; Waizenegger et al., 2000).

Maize has an extensive amount of sequenced genetic resources that make it an

ideal model crop system to use in genetic screens (Cannon et al., 2024). The maize

haploid genome size is 2.2 Gb with a haploid chromosome number of 10 (Hufford et al.,

2021; Schnable et al., 2009). B73 was the first sequenced maize inbred line and is used

as a standard genetic background (Schnable et al., 2009). We used bulked segregant

analysis (BSA)-seq to identify candidate genes for our mutants. BSA was developed to

identify genomic markers in linkage disequilibrium with genes of interest through

genotypic analysis of individuals pooled by a phenotype (Michelmore et al. 1991). BSA is

now coupled with whole genome sequencing to generate thousands of genetic markers

from pools of recombinants to map mutations (Michelmore et al., 1991; Schneeberger et

al., 2009). In maize, BSA-seq has been used to clone genes from mutant populations

with 101 or as little as 9 mutant individuals (Klein et al., 2018).

Here we describe the initial characterization and sequencing of a maize

cytokinesis mutant, cyto3.
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METHODS

EMS seed treatment

About 7000 B73 maize inbred seeds were treated with 25 mM EMS in 10 mM KH2PO4

(pH 7.0) and incubated for about 6 hours with manual stirring (Cliff Weil, personal

communication and (Gnanamurthy et al., 2011)). Seeds were rinsed 10X with water with

at least 2X changes in volume and planted the next morning.

Plant Cultivation

All plants were grown at Agricultural Operations (https://agops.ucr.edu/, Riverside, CA,

USA) at the University of California, Riverside using standard field conditions during the

summer (April - July) or the fall (August - December) field seasons.

Bulked Segregant Analysis (BSA) Material

The first bulked segregant analysis experiment sent for sequencing was a population

segregating for cytokinesis3 (Figure 4.2) that had been backcrossed once into B73. Due

to the complex nature of the cyto3, B73(1) background, cyto3 was outcrossed to the

maize inbred W22 (seeds courtesy of Patricia Springer) and the resulting F1 population

was selfed and crossed to W22 two additional times to create a BC3F2 population. Two

sibling packets (K573-5 and K573-10) were planted to reach the desired number of

mutants for the experiment.

The second mutant used for bulked segregant analysis was the mutant tangled64

(tan64) which was backcrossed into B73 twice. tan64 was planted and collected for

bulked segregant analysis during the Summer of 2020.
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DNA Extractions and Whole Genome Resequencing

Populations segregating for the mutant and wild type phenotype were planted in the field

and screened by glue impression. Tissue was collected and bulked by phenotype and

stored in the -80˚C. DNA was extracted in 2% cetyltrimethylammonium bromide (CTAB)

and washed with 24:1 chloroform:iso amyl alcohol, followed by isoporopanol, 95%

ethanol, and 75% ethanol, then resuspended in water with RNAse (protocol courtesy of

Daniel Koenig). Libraries were made in collaboration with Keely Brown (Koenig Lab) or

the UCR Genomics Core (see Table 4.1). Libraries were sent for 150 bp paired end

whole genome resequencing on the NovaSeq 6000 at the University of California,

Berkeley with a target coverage of 20X.

Table 4.1. Overview of sequencing experiments for cyto3 and tan64.

Number of
individuals

(WT,
mutant)

Year Library Sequencing

cyto3, B73 (49, 49) 2019 SeqOnce Kit Illumina NovaSeq 6000
2 X 150 PE at UCSF

cyto3, B73 Same DNA May
2019 Neb UltraII Kit Illumina NovaSeq 6000

2 X 150 PE at UCSF

cyto3, W22 (228, 66) 2023
NEBNext® Ultra™ II
FS DNA Library Prep

Kit for Illumina

Illumina NovaSeq 6000
2 X 150 PE at UCB

tan64, B73 (106, 106) 2020 IlluminaNextEra Illumina NovaSeq 6000
2 X 150 PE at UCSF

tan64, B73 Same DNA 2023
NEBNext® Ultra™ II
FS DNA Library Prep

Kit for Illumina

Illumina NovaSeq 6000
2 X 150 PE at UCB

155



Bulked segregant analysis bioinformatics pipeline for cyto3

Sequencing data was analyzed with a custom pipeline adapted from Klein et al. 2018

(Klein et al., 2018)) on UCR’s HPCC. Initial sequence quality was assessed using

FastQC version 0.11.9 (Andrews, 2010). Because some sequences had 5% adapter

content, sequences were trimmed using Trimmomatic (Bolger et al., 2014). After

trimming, 93%-94% of read pairs remained and were mapped to either the B73 v5 or the

W reference genome using BWA-MEM (Vasimuddin et al., 2019). For all sequences,

about 99% of reads mapped to the W22 v2 genome (Table 4.2). Mean coverage was

15.4X for the wild-type pool and 20.3X for the cyto3 pool. Variants were called using

VarScan2 with the settings -min-coverage 2 \ -min-reads2 2 \

-min-avg-qual 15 \ -min-var-freq 0.01 \ -minfreq-for-hom 0.99

(Koboldt et al., 2013). Allele frequencies were plotted in R using windowscanR

(Tavares, 2024) to identify a region of fixed variants unique to the mutant pool. Once the

region was identified, variant effects were predicted using variant effect predictor. Reads

were viewed using the Integrative Genomics Viewer(IGV) (Robinson et al., 2011) to

confirm mutation against the genome.

In parallel, Easymap2 (Lup et al., 2023) was also used to identify candidate genes using

the experimental design arguments --ed ref_bc_f2wt and --ed noref_bc_f2wt.

Table 4.2. Percent mapping and mean coverage of bulked segregant analysis populations.

% Mapped Mean coverage

WT-c3_L219 99.76% 6.1X
WT-c3_L266 99.76% 9.3X
cyto3_L219 99.82% 9.9X
cyto3_L266 99.79% 10.4X
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EMS pollen mutagenesis

A non-complementation screen was done using EMS to generate new alleles for cyto3

and tan64. A segregating population of cyto3 or tan64 was grown in the field and

phenotypes screened by glue impression. Wild-type plants were killed and remaining

mutant individuals were detasseled to prevent recovery of the original allele. Pollen was

collected from B73 individuals and about 2 ml of pollen was added to 20 ml of 5 mM

EMS in paraffin oil. Pollen was incubated in EMS-paraffin mixture for 30 minutes with

mixing every five minutes. 1 ml of pollen-EMS-paraffin solution was applied to mutant

ears that had cut back the day before. Pollinated ears were covered with a shoot bag

and a tassel bag and grown until harvest.

Toluidine Blue O Staining

Toluidine Blue O staining was done following Bellinger et al 2019 (Bellinger et al., 2019).

Briefly, leaf tissue fixed in a 4% formaldehyde solution was incubated in a 0.1%

pectolyase solution until the leaf epidermis could be gently peeled away with tweezers

(1-3 hrs). The epidermal peel was then stained with Toluidine Blue O, rinsed with dH20,

then imaged with a compound light microscope.
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RESULTS

cytokinesis 3 (cyto3) is a maize mutant with defects in cytokinesis

The cyto3 mutant in maize was generated through a forward genetics EMS

screen and has a recessive cytokinetic defect with mendelian segregation consistent

with a single locus (Figure 4.1). At the seedling stage, cyto3 plants do not have an

obvious macroscopic phenotype compared to their wild-type sibling. However, at

tasseling, cyto3 plants tend to be shorter with thinner stems. Cytokinetic defects such as

incomplete cell walls (cell wall stubs) in cyto3 can be observed using epidermal glue

impressions (Figure 4.2 A-B). Cell wall stubs were observed in both transverse and

longitudinal divisions (Figure 4.2). In addition to cell wall stubs, cyto3 nuclei as visualized

through TBO stains are stretched and deformed compared to wild type (Figure 4.2 C-D).

This is consistent with cytokinetic defects observed in cytokinesis mutants in Arabidopsis

(Nacry et al., 2000).
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Figure 4.1. Overview of generation of EMS population.
B73 seeds were treated with EMS, open pollinated, then selfed to generate lines
segregating for cellular phenotypes. Individuals with interesting phenotypes were
backcrossed to B73 and selfed to generate segregating populations for analysis or for
continued backcrossing.
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Figure 4.2. cyto3 epidermal cells have defects in cytokinesis.
(A-B) Glue impressions of wild type (A) and cyto3 (B) epidermal cells. (C-D) Toludine Blue O
stains of wild type (C) and cyto3 (D) epidermal peels. Scale bar for all is 100 µm. Black carats
point to incomplete cell walls.

160



Resequencing of cyto3, B73 and cyto3, W22(3)

Initial sequencing and mapping of cyto3, B73(1) and wild-type pools revealed

large blocks of fixed variants across the genome that indicated the genetic background

of cyto3 was not purely B73. Because we bulked mutant phenotypes together in the

mutant pool and the phenotypically wild-type siblings in the wild-type pool, we expected

the allele frequency of the causative mutation to be 100% and 33% in the mutant and

wild-type pools respectively. The majority of fixed alleles occurred on chromosome 9,

suggesting that the candidate gene was somewhere on chromosome 9. However, the

millions of fixed differences in both the wild-type and mutant pools made it impossible to

identify a candidate region for cyto3.

To address this problem, cyto3 was outcrossed to W22, a different inbred

background. We expected that with continued backcrossing into W22 and chromosomal

recombination, the cyto3 background would become more W22-like except in the

candidate region, allowing us to identify it. The new bulked segregant analysis

population was backcrossed into W22 three times, bulked by phenotype, and sent for

sequencing.

Mapping and candidate region identification

Wild-type and cyto3 pools were mapped against the W22 version 2 genome

using BWA-MEM2 and variants called using Varscan2. Allele frequencies were

calculated by dividing the alternate allele depth (AD) by the total read depth (DP) and

plotted in R using WindowscanR. In parallel, trimmed FASTQ files were also input into

Easymap v.2, which takes into account the experiment design and uses linkage analysis

to output a candidate region and list of candidates.
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After importing the variant calls into R, it was clear that the candidate region

occurred on chromosome 9 based on the elevated number of fixed variants unique to

the cyto3 pool (Table 4.3).

Table 4.3 Number of fixed variants per chromosome

Chromosome Chromosome
size (bp)

Number of Raw
Homozygous

Variants

Number of
variants after

filtering
1 310925244 2,446,783 28,086
2 244237062 1,461,261 8,442
3 241278614 1,588,040 9,803
4 254269898 1,545,755 6,370
5 222590201 1,494,894 8,605
6 171602414 1,241,427 8,792
7 181422836 1,282,899 5,749
8 182570339 1,490,140 26,501
9 163066665 1,476,105 294,424
10 149450367 997,265 8,817

To identify a narrower region, allele frequencies were averaged over

chromosome 9 using a sliding window in R starting with 20 kb windows and 10 kb steps

and moving up to 1 Mb windows with 0.5 Mb steps. Averaging with the sliding window

revealed a peak in allele frequencies towards the beginning of chromosome 9 that

neared 1 which was absent from the wild type pool (Figure 4.3). The output of Easymap

v2 also identified a similar albeit larger region of 20 Mb (that contained 165 gene models

with amino acid changes (Figure 4.4).
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Figure 4.3. cyto3 is on chromosome 9.
Sliding window means of wild type and cyto3 allele frequencies. (A-B) Allele frequency means
across all ten chromosomes in (A) wild type and (B) cyto3. (C-D) Allele frequency of chromosome
9 in (C) wild type and (D) cyto3. Black arrow points to the mapping region. Red lines indicate
window means and gray points are raw allele frequencies. Plot generated with the R package
WindowScanR.
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Figure 4.4. Mapping analysis overview from Easymap v2 output.
Plot shows the allele frequency of the non-reference allele on the y axis by genomic position on
the x axis.The candidate region is highlighted in pink. Blue dots represent polymorphisms from
the mutant pool, and orange dots represent polymorphisms from the wild-type pool.

To narrow the list of candidate genes, we mapped the original wild type and

cyto3, B73 (1) pools to the W22 genome and called variants. Variants with an alternate

allele frequency of 1 were first removed if they were shared with the wild-type pools from

the B73 or W22 populations. Next, variants were removed if they were not shared

between the cyto3, W22 (3) and the cyto3, B73 (1) mutant pools. These positions were

then used to pull out gene models from the W22 general feature format (GFF) file,

resulting in a candidate list of 18 genes (Table 4.4). In total three lists of genes were

generated: (1) Gene models from within a 4.5 Mb region that includes the peak of allele

frequencies, (2) Gene models that overlap with variant positions specific to the cyto3

pools, and (3) Gene models from the Easymap output.
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Table 4.4. List of candidates specific to cyto3, W22(3) and cyto3, B73(1) pools.
Gene Identifier Predicted Function

Zm00004b031849 zmm3 - Zea mays MADS3; transcription factor; regulation of meristem
development

Zm00004b031923 Predicted cellular component

Zm00004b031946 Predicted acyltransferase, lyase, and dioxygenase activity

Zm00004b031984 fat2 - fatty acyl-ACP thioesterase2; fatty acid biosynthesis

Zm00004b031986 bub3 - budding inhibited by benzimidazoles homolog3; mitotic checkpoint

Zm00004b031993 Predicted mRNA binding, nucleotidyltransferase activity, metal ion binding

Zm00004b032019 Predicted similarity to Arabidopsis ATP-dependent Clp protease

Zm00004b032064
Predicted protein peptidyl-prolyl isomerization, nucleosome, DNA binding,
peptidyl-prolyl cis-trans isomerase activity, protein folding, protein
heterodimerization activity

Zm00004b032065 bbr4 - BBR/BPC-transcription factor 4; transcription factor, response to
ethylene

Zm00004b032104 No prediction; protein BLAST results in hypothetical or uncharacterized
proteins

Zm00004b032430 Integral component of membrane

Zm00004b032459 Xaxt1 - xylan arabinosyl 2- O-xylosyltransferase 1; golgi membrane, integral
component of membrane

Zm00004b032462 pub36 - a plant U-box type E3 ubiquitin ligase; protein ubiquitination

Zm00004b032483 Uncharacterized protein

Zm00004b032659 Putative glucuronosyltransferase (by BLAST)

Zm00004b032675 mads71 - MADS-transcription factor 71

Zm00004b032770 Uncharacterized protein

Zm00004b032791 3-hydroxyisobutyryl-CoA hydrolase activity; valine catabolic process, plastid
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In R, these three lists were compared and a Venn diagram was used to find gene

model(s) in common (Figure 4.5, Table 4.5-4.7). Only one gene model was shared

between all three lists Zm00004b031986 (W22 v2), also known as Zm00001d045389

(B73 v4) or Zm00001eb377380 (B73 v5), a putative BUDDING INHIBITED BY

BENZIMIDAZOLES HOMOLOG3. Zm00004b031986 has a cytosine to thymine

transition mutation in exon 7 that results in an amino acid change from a glycine to

aspartate.
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Figure 4.5. Venn diagram of candidate gene models generated with different methods.
Region of interest (pink) represents the gene models within a 4.5 Mb region on chromosome 9 of
W22. The manual filter (orange) represents gene models with variants that were shared between
the cyto3, B73 and the cyto3, W22 pools. Easymap (blue) are the gene models that were output
by Easymap.
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Table 4.5 Gene candidates shared between Easymap and Region of Interest

Gene Identifier Predicted Function

Zm00004b031969 No prediction; protein BLAST results in hAT transposon superfamily
protein

Zm00004b031951 DNA replication checkpoint, DNA binding, nucleus

Zm00004b031973 Helicase activity

Zm00004b031974 No information; BLAST results in TORTIFOLIA1-like protein 3-like

Zm00004b031978
Golgi membrane, structural molecular activity, intracellular protein
transport, vesicle-mediated transport, membrane coat, COP1-coated
vesicle membrane

Zm00004b031979 Single strand break repair, damaged DNA binding

Zm00004b031980 mRNA splicing, response to salt stress, response to lithium ion,
precatalytic spliceosome

Zm00004b031981 NADH dehydrogenase activity, electron transport chain, carbohydrate
biosynthetic process

Zm00004b031982 sod16- superoxide dismutase16; superoxide dismutase activity, removal
of superoxide radicals, chloroplast nucleoid, metal ion binding

Zm00004b031996 pub76 - plant U-box type E3 ubiquitin ligase76; acid phosphatase
activity, protein kinase activity, protein ubiquitination

Zm00004b032001
Threonine-type endopeptidase activity, nucleus, cytoplasm, proteasome
core complex, response to zinc ion, regulation of plant-type
hypersensitive response, proteolysis of cellular protein catabolic process

Zm00004b032004 Cytoplasm, methyltransferase activity, membrane, methylation,
intracellular membrane-bounded organelle

Table 4.6 Gene candidates shared between the Region of Interest and the Manual Filter

Gene Identifier Predicted Function

Zm00004b031984 Fatty acid biosynthetic process, chloroplast, ACP phosphopantetheine
attachment site binding

Zm00004b031993 mRNA binding, nucleotidyltransferase activity, metal ion binding
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Table 4.7 Gene candidates shared between the Manual Filter and Easymap

Gene Identifier Predicted Function

Zm00004b032019

ATP-dependent peptidase activity; serine-type endopeptidase activity,
proteolysis, plastid envelope, chloroplast thylakoid, chloroplast
organization, chloroplast endopeptidase Clp complex, integral component
of membrane, cellular protein catabolic process ATPase

Zm00004b032430 Integral component of membrane

Zm00004b032462 pub36 - a plant U-box type E3 ubiquitin ligase; protein ubiquitination

Generation of new cyto3 alleles using pollen EMS mutagenesis

To generate new alleles of cyto3, cyto3 plants were pollinated with EMS

mutagenized B73 pollen. Because cyto3 is a recessive mutant, crossing with B73 should

result in complementation, i.e. wild-type plants, while crossing with mutagenized B73

pollen could result in noncomplementation, i.e. the presence of cytokinetic defects in

glue impressions due to an independent mutation in the same gene. A total of 58 cyto3

ears were used for pollination with EMS treated B73. Of the resulting F1s two plants were

recovered that exhibited cytokinesis defects: H949-14 and H1016-15 (Figure 4.6).

Unfortunately the H949-14 individual was not crossable and tissue was collected for

DNA extraction (Figure 4.6).

The biallelic H1016-15 was backcrossed to B73 to make BC1 plants that

segregate fifty percent of the time as heterozygous for the original cyto3 allele or

heterozygous for the new cyto3 allele, hereby referred to as cyto3-2. BC1 plants were

selfed to create a BC1F1 population. Four BC1F1 populations were randomly selected for

planting in the greenhouse and screened for the cytokinesis phenotype. Homozygous

mutants were sent for light (2-5X) whole genome resequencing and mapped to the B73
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genome. Unfortunately all individuals have the C to T mutation in our top candidate

Zm00004b031986/Zm00001d045389/Zm00001eb377380 suggesting that 1)

Zm00004b031986 is the wrong gene, 2) there was contamination with the original allele

during the pollen mutagenesis, or 3) we were unlucky in the BC1F1 populations we chose

to sequence (Figure 4.7A). Based on the pattern of allele frequency means, it seems that

three of the four individuals chosen are the original cyto3 allele due to the blocks of high

allele frequencies that indicate cyto3’s original mixed background (Figure 4.7B). The

pattern of IGH76-1 is perplexing because of the blocks of average allele frequencies at

about 0.25 and may represent a heterozygous individual. However, low sequencing

coverage limits the interpretation of these plots. Additional high and moderate effect

variants are listed in Tables 4.8 and 4.9 respectively.
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Figure 4.6. Noncomplementation of cyto3 resulted in the identification of two potential new
alleles.
Glue impressions of (A) wild type and (B) two noncomplemented mutants generated from pollen
EMS mutagenesis of cyto3. Scale bar is 100 µm and black carets point to cytokinesis defects. (C)
Macroscopic phenotype of the uncrossable H494-14 in the field. May it rest in peace. Scale bar is
2 cm.
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Figure 4.7. Sequencing of potential new alleles of cyto3.
(A) IGV view of putative SNP position in the four BC1F1 individuals with cytokinesis defects. (B)
Sliding window means of BC1F1 allele frequencies. Red lines indicate 1 Mb window means with a
step of 0.5 Mb and gray points are raw allele frequencies. Plot generated with the R package
WindowScanR.
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Table 4.8. High effect variants as predicted by Variant Effect Predictor (VEP) for the 2 Mb
candidate region spanning Chr9:19000000-21000000.
CHROM POS REF ALT Consequence Gene model Predicted function

chr9 19060315 C T 3' UTR variant Zm00004b031923 BLAST: Putative sugar phosphate/
phosphate translocator

chr9 19061588 G A intron variant Zm00004b031923 BLAST: Putative sugar phosphate/
phosphate translocator

chr9 19127889 A C splice acceptor variant Zm00004b031927 BLAST: Putative transcription elongation
factor 1

chr9 20411336 T G stop gained Zm00004b031982

sod16 - superoxide dismutase16;
superoxide dismutase activity, removal of
superoxide radicals, chloroplast nucleoid,

metal ion binding
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Table 4.9. Moderate effect variants from Chr9:19000000-21000000. For variants that had a
similar predicted impact on the same gene model, the top variant was given.
CHROM POS REF ALT Consequence Gene Model Predicted Function
chr9 19011849 A G missense_variant Zm00004b031921 BLAST: F-box protein MAX2

chr9 19061074 T C intron_variant Zm00004b031923 BLAST: Putative sugar phosphate/ phosphate
translocator

chr9 19104343 T C missense_variant Zm00004b031925 BLAST: Hypothetical protein
chr9 19128068 T C missense_variant Zm00004b031927 BLAST: Putative transcription elongation factor 1
chr9 19143685 A G missense_variant Zm00004b031928 BLAST: cold-shock protein, dehydrin
chr9 19166515 T C upstream_gene_variant Zm00004b031930 dbb11- double B-box zinc finger protein 11
chr9 19174214 T C upstream_gene_variant Zm00004b031931 GO: protein tyrosine phosphatase
chr9 19178448 G A missense_variant Zm00004b031932 BLAST: 6-phosphofructokinasechr9 19181726 G T downstream_gene_variant Zm00004b031932
chr9 19267146 G A upstream_gene_variant Zm00004b031938 BLAST: PIF4
chr9 19273181 C T missense_variant Zm00004b031939 BLAST: hypothetical protein

chr9 19281090 C T upstream_gene_variant Zm00004b031940 BLAST: putative disease resistance RPP13-like
protein 1

chr9 19366895 T C upstream_gene_variant Zm00004b031944 BLAST: trafficking protein particle complex
subunit 4

chr9 19370699 G T missense_variant Zm00004b031945 cys6 - cysteine synthase6
chr9 19382481 C T missense_variant Zm00004b031946 BLAST: glyoxalase/bleomycin resistance protein
chr9 19524437 C T missense_variant Zm00004b031950 BLAST: hypothetical proteinchr9 19545461 C G downstream_gene_variant Zm00004b031950
chr9 19549399 G C downstream_gene_variant Zm00004b031951 DNA replication checkpoint signaling
chr9 19605033 T C missense_variant Zm00004b031953 BLAST: Nuclear speckle RNA-binding proteinchr9 19610888 G A downstream_gene_variant Zm00004b031953
chr9 19634263 T C missense_variant Zm00004b031956 BLAST: hypothetical protein
chr9 19777572 G C missense_variant Zm00004b031959 BLAST: Putative cyclin-dependent kinasechr9 19781200 A G downstream_gene_variant Zm00004b031959
chr9 19806214 G C missense_variant Zm00004b031961 BLAST: hypothetical protein
chr9 19876157 A G missense_variant Zm00004b031962 BLAST: COBRA-like protein 4 precursor

chr9 19913176 T C missense_variant Zm00004b031967 BLAST: anthranilate synthase alpha subunit 1,
chloroplastic

chr9 20052491 T C missense_variant Zm00004b031969 BLAST: hAT transposon superfamily
chr9 20215969 A G missense_variant Zm00004b031973 BLAST: Hypothetical protein
chr9 20238059 G A missense_variant Zm00004b031974 BLAST: TORTIFOLIA1-like protein 3
chr9 20360692 A C missense_variant Zm00004b031978 COP1 coated vesicle membranechr9 20370669 A G upstream_gene_variant Zm00004b031978
chr9 20375834 G A missense_variant Zm00004b031979 BLAST: DNA-repair protein XRCC1chr9 20379169 G A downstream_gene_variant Zm00004b031979
chr9 20391169 C A missense_variant Zm00004b031981 dxs3 - deoxy xylulose synthase3
chr9 20411308 G T missense_variant Zm00004b031982 sod16 - superoxide dismutase16
chr9 20419863 T C missense_variant Zm00004b031983 BLAST: LRR repeat protein
chr9 20485592 T C missense_variant Zm00004b031984 Fatty acid biosynthesis

chr9 20532227 T G missense_variant Zm00004b031985 BLAST: Putative D-mannose binding lectin
receptor-like protein kinase

chr9 20538661 C T missense_variant Zm00004b031986 bub3 - budding inhibited by benzimidazoles
homolog3chr9 20543103 A G upstream_gene_variant Zm00004b031986

chr9 20618103 C T missense_variant Zm00004b031992 BLAST: ankyrin repeat-containing protein
chr9 20650529 C T downstream_gene_variant Zm00004b031993 BLAST: Ran BP2/NZF zinc finger-like protein
chr9 20655580 A G downstream_gene_variant Zm00004b031994 BLAST: hydrolase, NUDIX family protein

chr9 20725335 T G missense_variant Zm00004b031996 BLAST: U-box domain-containing protein 35
isoform X1

chr9 20774330 G C missense_variant Zm00004b031999 hb4 - homeobox-transcription factor 4

chr9 20793964 C G missense_variant Zm00004b032000 BLAST: L-type lectin-domain containing receptor
kinase IX.1

chr9 20858008 T G missense_variant Zm00004b032001 BLAST: proteasome subunit beta type-6chr9 20859892 C T downstream_gene_variant Zm00004b032001

chr9 20977027 A G missense_variant Zm00004b032004 BLAST: S-adenosyl-L-methionine-dependent
methyltransferase superfamily protein
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CONCLUSIONS AND FUTURE DIRECTIONS

Despite the mixed genetic background of cyto3, we have been able to identify a

1-2 Mb region on chromosome 9 that likely contains the causative SNP. Our top gene

candidate is Zm00004b031986, a homolog of BUB3;1 and BUB3;2 in Arabidopsis which,

in Arabidopsis, localize to the phragmoplast midline and have cytokinetic defects when

double mutants are challenged with caffeine (Zhang et al., 2018). To validate, we will

Sanger sequence the Zm00004b031986 locus from the two biallelic

noncomplementation individuals in addition to developing primers for genotyping.

Additionally, light sequencing (2-5X) of other mutants identified from the EMS

population suggests that the genetic background is purely B73. This will likely make

cloning of additional mutants much easier. Currently, two additional mutants, tangled64

(tan64) and cytokinesis5 (cyto5) have been sequenced and mapped to the B73 version

5 genome. All of these mutants will provide important insight to the cellular processes

important for plant growth in maize, an agriculturally significant crop plant.
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