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ABSTRACT 

 

Face Perception: The Interaction of Eye Movements with Internal Face Representations 

 

Face perception is a ubiquitous perceptual task that most people easily perform many 

times a day, beginning in early childhood. The process of extracting meaningful information 

from a face for tasks such as face identification, gender discrimination, or emotion 

discrimination, involves making eye movements to different parts of a face. It is known that 

most of the information for such tasks can be extracted after just a single initial eye 

movement. However, the efficiency with which that information can be used may be 

modulated by the internal representation of faces that are stored in our brains for specific 

tasks. This dissertation explores several aspects of the interaction of the initial eye movement 

to a face with internal face representations. One aspect is the evaluation of configural 

processing of faces in the context of a foveated visual system. Another aspect is the effect of 

natural statistics of facial expressions on the availability of task-relevant information that 

may be extracted with an initial eye movement to a face. A third aspect is how individual 

differences in the initial eye movement may shape the development of internal fixation-

specific face representations. All of these aspects are investigated using a combination of 

human psychophysics studies and computational modeling of face perception and eye 

movements. The data obtained supports a view of the initial eye movement to a face as a 

highly practiced and consistent behavior that depends on the statistics of the faces that 

humans are exposed to during different face discrimination tasks. In turn, this behavior may 

also shape the internal representations of faces in our brains.    
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1 Overview 

1.1 Introduction 

This dissertation is focused on increasing our understanding of the interaction of the 

initial eye movement to a face with the internal representations of faces that are stored in 

higher-level brain areas. In the following section, we present a general background of the 

literature on eye movements to faces. Then we present a summary of three projects that are 

described in detail in the following chapters: The first project focuses on the effects of having 

a foveated visual system on configural processing of faces, using a more ecologically valid 

stimulus set with dynamic facial expressions. The second project focuses on the effects of 

natural statistics of facial expressions on the initial eye movement to a face. Finally, the third 

project focuses on how individual differences in the initial eye movement may shape the 

development of internal fixation-specific face representations.  
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1.2 Background: Eye Movements to Faces 

 Face perception and categorization is an important visual ability that humans use 

many times a day. Most people find it very easy to quickly extract meaningful information 

from a face to use for a number of possible tasks. These tasks vary in their complexity, 

ranging from simple gender discrimination to the correct identification of complex emotions 

such as surprise or anger. All of these tasks, however, require the correct perception of 

multiple features of the face, with certain features being more important for specific tasks.  

Many of these tasks are performed at a conversational distance where the face takes 

up a large part of an observer's visual field. Due to the variable density of photoreceptors in 

our retinas and corresponding cortical magnification of more dense regions, humans are 

unable to process an entire face at a high resolution at this distance. As a result, they must 

make eye movements in order to focus the high processing power of the foveal region, which 

is contained in the center of the retina, to specific parts of the face. In order to extract 

information correctly, saccades must be made to areas of the face that are relevant for the 

task at hand.  

A considerable amount of research has been done on face perception, including 

research on which parts of a face are used for specific tasks, which parts of a face are 

targeted by eye movements, and which brain areas are involved in face-related processing 

(Tsao & Livingstone, 2008). Very little research, however, deals with the functional 

importance of eye movements to faces and their neural correlates. In addition, most face 

research involves the use of static face images with a fixed facial expression. Until recently 

there was little understanding of why humans fixate specific parts of faces when making eye 

movements. However, recent efforts have concentrated on the functional importance of the 
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initial fixation to a face (Peterson and Eckstein, 2012).  

As a result of the foveation of their visual systems, humans move their eyes in order 

to focus the high processing power of their fovea onto parts of the visual environment that 

contain the necessary information for a specific task. In a face discrimination task, those parts 

of the environment are different features of a face. Previous studies have shown which areas 

of the face are used by human observers to complete various face discrimination tasks (i.e. 

gender discrimination vs identity) (Schyns, Bonnar, & Gosselin, 2002; Smith, Cottrell, 

Gosselin, & Schyns, 2005). For identification, for example, the eyes are the most informative 

features, followed by the nose and mouth. Although these studies were important in showing 

which information in a face may be used for different tasks, they did not answer the question 

of how it was gathered with eye movements.  

Many studies have, however, directly recorded the spatial distributions of eye 

movements to faces for various tasks using static images of faces. One of those studies 

showed that eye movement behavior in face discrimination tasks was related to different face 

stimuli in a meaningful way with an “eye-movement based memory-effect,” where several 

saccade characteristics varied between famous and non-famous face stimuli (Althoff & 

Cohen, 1999). Another study went further in showing that eye-movements are functional and 

related to performance in face discrimination tasks by showing that there were deficits in 

performance of recognizing learned faces when fixations were restricted as opposed to being 

allowed to make eye movements during a learning stage (Henderson, Williams, & Falk, 

2005). Several studies, including the two mentioned above had also found that the spatial 

distribution of eye movements to faces followed a ubiquitous “T” pattern when averaged 

across observers, with most fixations being made between the eyes and nose, followed by the 



4 

 

mouth, which implied that internal face features were important in various face 

discrimination tasks (Althoff & Cohen, 1999; Barton, Radcliffe, Cherkasova, Edelman, & 

Intriligator, 2006; Henderson et al., 2005; Walker-Smith, Gale, & Findlay, 1977).  

Although there are many similarities in the overall spatial distribution of eye 

movements to faces for various tasks when averaging across them, other studies have 

observed differences in saccade behavior between different populations, individuals, and 

different tasks as well as stimuli. One study found that those with ASD (Autism Spectrum 

Disorder) looked at the eyes less than control individuals, but only when viewing complex 

emotions (Rutherford & Towns, 2008). Since ASD individuals are known to be less 

perceptive of complex emotions, it is fitting that they would fixate less on the eye region, 

which is most informative for many complex emotion discrimination tasks (M. F. Peterson & 

Eckstein, 2012; Schyns et al., 2002). Other studies found individual differences in the spatial 

distribution of eye movements between healthy individuals when viewing the same set of 

stimuli (Kanan, Bseiso, Ray, Hsiao, & Cottrell, 2015; Mehoudar, Arizpe, Baker, & Yovel, 

2014a; M. F. Peterson & Eckstein, 2013). These individual-specific eye movements 

remained consistent over time periods that spanned months, suggesting the programming of 

scanpaths to faces that may be a function of differences in the visual system or encoding of 

faces between observers. Taken together, these results suggest that that eye movements are 

made to some internal representation of a face template, which supports an large body of 

literature on holistic processing in faces (Farah, Wilson, Drain, & Tanaka, 1998). 

Studies that have focused on identification performance have found that it only takes 

as little as one to two fixations to a face to get a high degree of accuracy (Hsiao & Cottrell, 

2008; M. F. Peterson & Eckstein, 2012). The study by (M. F. Peterson & Eckstein, 2012) 
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was the first to rigorously study the critical first eye movement to a face using an ideal 

observer analysis. Depending on the level of noise or uncertainty that exists, both in the 

environment and inside the observer, the first eye movement can be sufficient to extract a 

large amount of information from a face. In the projects presented in this dissertation, we 

expand on this research of functional eye movements to understand how different fixation 

positions interact with internal face representations in the visual cortex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

1.3 Project Summaries  



6 

 

The role of eye movements and configural representations in face 

processing. 

Previous research has shown that performance in human face discrimination tasks can 

be degraded by manipulating the position of features (i.e. eyes, nose, mouth) within a face 

stimulus (Civile et al., 2018; Collishaw & Hole, 2000; Tanaka & Farah, 1993). This 

performance difference is typically attributed to a disruption of face mechanisms in higher-

order visual areas of the brain involving feature configurations. In this project, we investigate 

the possibility of the limitation of foveated processing contributing to this performance 

difference by partitioning performance differences resulting from scrambling face features, 

into different causes: 1) The proximity of informative features to an optimal point of fixation; 

2) Suboptimal fixation strategies; 3) Configural representations in the brain. We use 

computational models to isolate different aspects of face perception along the visual stream 

and compare the behavior of the models with those isolated aspects to human fixation 

behavior and performance in an emotion discrimination ask. We conclude that the vast 

majority of the magnitude of performance differences across different face configurations 

may be attributed to configural face mechanisms. 

 

Eye movements during gender discrimination of faces are adapted to the 

naturally occurring statistics of emotional expressions.  

The human visual system programs eye movements for specific tasks by taking into 

account both the varying resolution of the retina and the distribution of visual task-relevant 

statistical regularities. Face perception tasks are heavily practiced and involve a very 

consistent location of important face features, which direct the first eye movement to a 
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performance-maximizing optimal point of fixation below the eyes (M. F. Peterson & 

Eckstein, 2012). However, it is unknown to what extent humans use even more fine-tuned 

statistical properties, like facial expression frequencies during specific face discrimination 

tasks to adapt their initial eye movement accordingly. In this project, we run a face 

perception task with an unusual statistical frequency of facial expressions that contain extra 

information at new spatial locations for specific tasks. However, we show that humans are 

unable to take advantage of this new information, even when forced to fixate at a new 

theoretical optimal point of fixation, and do not adjust their initial eye movement. Our results 

suggest that observers learn an optimal point of fixation to faces using the natural statistics of 

occurrence of facial expressions for specific tasks and are inflexible to greatly altered facial 

expression statistics. 

 

The development of internal fixation-specific face representations.  

Previous research has shown that humans have a preferred initial fixation position to 

faces during common face discrimination tasks. However, there are individual differences in 

the location of this preferred point across observers (M. F. Peterson & Eckstein, 2013). In 

addition, there are differences in observers’ empirical optimal points of fixation, such that 

observes maximize their performance in a face identification task when forced to fixate 

closest to their individual preferred fixation location. In this project, we divide a set of 

observers into two groups based on their preferred fixation location: “eye-lookers” and 

“nose-lookers.” We then test two hypotheses that attempt to explain what causes the 

individual differences between these two groups of observers. The first hypothesis involves 

differences in general low-level vision, between eye-lookers and nose-lookers. The second 
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hypothesis involves differences in internal fixation-specific face representations between 

eye-lookers and nose-lookers. We implement these internal representations with 

computational models that are able to represent important differences in human performance 

between eye-lookers and nose-lookers, when they are forced to fixate different locations 

along the vertical midline of the face. Our results suggest that individual differences in 

fixation position between observers are face-specific rather than a more general difference in 

low-level vision. Our modeling efforts provide evidence that these face-specific differences 

involve fixation-specific representations in the brain.  
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2 The Role of Eye Movements and 

Configural Representations in Face 

Processing 

2.1 Introduction 

Face perception is a ubiquitous task that most humans perform many times a day. 

Many studies have focused on an aspect of face processing that is thought to involve holistic 

or configural representations of face stimuli in higher-order visual areas. The umbrella terms 

“holistic” or “configural” processing refer to information that is encoded about the 

relationship between face features, such as the angles, relative distances, and relative sizes of 

the features to each other. This is different from information contained in individual features 

themselves, like the shape and details within the eyes, mouth, nose, etc. This aspect of face 

processing is thought to be unique to faces and either does not exist at all, or exists to a much 

lesser extent, in the processing of other complex objects. There have been several extensively 

used paradigms to study holistic processing, that involve manipulating either the position, or 

orientation of features of a face (Farah, Tanaka, & Drain, 1995; Farah, Wilson, Drain, & 

Tanaka, 1998; Tanaka & Farah, 1993; R. K. Yin, 1969; Young, Hellawell, & Hay, 1987). 

Such manipulations generally affect human performance in various face discrimination tasks 

under time constraints, or affect reaction times when the response time is unlimited. There is 

also disagreement about what exactly holistic face processing means, whether it is a different 
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concept than configural processing, which task to use when studying it (see (Richler, 

Palmeri, & Gauthier, 2012) for a review), and what causes differences in processing between 

faces and objects in the first place (Bukach, Bub, Gauthier, & Tarr, 2006; McKone, 

Kanwisher, & Duchaine, 2007). Regardless of the disagreement in what mechanisms may 

explain differences in performance that are observed when face features are manipulated in 

some way, all current theories involve different aspects of processing in higher-order visual 

areas (Farah et al., 1998; Richler, Gauthier, Wenger, & Palmeri, 2008). However, there may 

also be other low-level aspects of the visual system early in the visual processing stream that 

affect performance in face discrimination tasks with altered face features.  

One such low-level visual aspect is an interaction between the spatial configuration of 

the facial features and the varying quality of spatial processing across the human visual field 

imposed by the foveated visual system. The brain programs eye movements by taking into 

account the foveated properties of the visual system (G. E. Legge, Klitz, & Tjan, 1997; 

Gordon E. Legge, Hooven, Klitz, Stephen Mansfield, & Tjan, 2002) in conjunction with the 

distribution of task-relevant information in the environment (Hayhoe & Ballard, 2005, 2014) 

to maximize the acquisition of information during basic perceptual tasks using optimal 

(Najemnik & Geisler, 2005) or heuristic (Morvan & Maloney, 2012; Najemnik & Geisler, 

2009; Paulun, Schütz, Michel, Geisler, & Gegenfurtner, 2015) oculomotor strategies. In the 

context of face perception, humans direct their initial gaze towards a featureless point just 

below the eyes (Or, Peterson, & Eckstein, 2015; Peterson & Eckstein, 2012, 2013; Peterson, 

Lin, Zaun, & Kanwisher, 2016; Tsank & Eckstein, 2017). This allows them to 

simultaneously extract relatively high quality information from the various critical features of 

a face, such as the eyes, nose, and mouth (see Figure 1a for an example of simulated fixation 
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positions at two different locations). These preferred initial points of fixation are consistent 

across time within the same observer. Critically, these preferred points of fixation also 

optimize face identification accuracy. When observers are instructed to fixate away from 

their preferred point of fixation, their accuracy in identifying faces diminishes (Or et al., 

2015; Peterson & Eckstein, 2012, 2013). Furthermore, the initial optimal point of fixation to 

a face can be theoretically predicted with a computational model that takes into account the 

varying quality of visual processing across the visual field and the distribution of information 

across facial features (Foveated Ideal Observer, FIO; (Peterson & Eckstein, 2012)).  

The previous research on the initial eye movement to a face shows that it has 

functional importance in face perception tasks. This motivates the examination of eye 

movements and foveated vision for their possible contribution to the variation of perceptual 

performance across altered face configurations. Previous studies have considered the role of 

eye movements in configural face processing. Several studies focused on the role of eye 

movements in the Face Inversion Effect, where performance in face tasks is known to drop 

when a face stimulus is inverted compared to being presented in an upright orientation. One 

of those studies (Van Belle, De Graef, Verfaillie, Rossion, & Lefèvre, 2010) focused on 

separating the effects of holistic vs. featural processing by using a gaze-contingent visibility 

window that allowed participants to use either the center or periphery of their visual field 

during the task. That study showed that the Face Inversion Effect can be modulated by 

restricting participants’ visibility to only the center of their visual field. Two other studies 

(Hills, Cooper, & Pake, 2013; Xu & Tanaka, 2013) also showed that there are differences in 

both the initial eye movement and gaze behavior in general, between viewing upright face 

stimuli vs. inverted face stimuli, and that the location of gaze can modulate the Face 
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Inversion Effect. Another study (Bombari, Mast, & Lobmaier, 2009) found differences in 

scanpaths and gaze duration between disruptions in configural vs. featural representations. 

Finally, one study (Heering, Rossion, Turati, & Simion, 2008) controlled for gaze behavior 

during a composite face experiment, which is another common way to measure disruptions in 

configural processing. In contrast to the studies mentioned above, this study found that gaze 

behavior is similar during configural manipulations in a composite face experiment and does 

not contribute to differences in performance. All of the studies mentioned above used some 

version of a face-matching or face-recognition task and most focused on discerning 

mechanisms of specific aspects of higher-level configural processing. Here we focus on the 

contribution of the limitation of a foveated visual system on differences in performance 

during the disruption of configural face processing in multiple face configurations. We do 

this while carefully controlling for the possible changes in the amount of information 

available to observers during a face emotion discrimination task after various configural 

manipulations. We propose a detailed investigation of possible variations in task-accuracy 

arising from interactions between the spatial location of features, eye movements, and 

foveated vision. We use the framework of the foveated Bayesian ideal observer to generate 

theoretical predictions. These predictions focus on the influences on task-accuracy arising 

from the interaction between foveated vision and the locations of features in different face 

configurations. We make empirical measurements of eye movements and task accuracy as a 

function of fixation to assess the role of eye movements, foveation, and high-level configural 

representations (often referred to as holistic processing) in performance differences between 

different face configurations. 

 There are several sources of information loss related to foveated visual processing 
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that may contribute to performance differences in face discrimination tasks with altered 

spatial positions of face features relative to the same tasks with an intact upright face:    

1.  Variations in foveated task information related to spatial distance of informative facial 

features:  

One possible source of performance variations is that the location of the important 

features for the task has changed such that they are closer together or further apart from each 

other relative to where they would be in an intact upright face (Figure 1b.1). In this case, the 

possible level of performance obtained at the optimal point may be changed. It may either be 

limited by the inability to simultaneously extract high quality information from important 

features if they are further apart, or improved by a better ability to do so if they are closer 

together. The foveated Bayesian ideal observer allows us to make quantitative predictions of 

the impact on task-accuracy of the variations of spatial distance of informative facial features 

when face configurations are manipulated.  

2.  Inability of humans to adapt to new optimal eye movement strategies with unusual face 

configurations: 

A second possible source of performance variation is that there is a change in the 

optimal point of fixation, but observers are not able to adapt their eye movement strategy to 

fixate it. In this second scenario, a new unusual face configuration may allow an observer to 

attain a comparable task accuracy to an intact-face configuration, but requires the observer to 

learn to fixate the atypical face configuration in a new way. Failure to learn a new optimal 

point of fixation may result in performance degradation (Figure 1b.2). Previous studies have 

shown that humans have difficulty adapting to a new optimal fixation position with an 

unusual set of faces where the only discriminating information between them is a single 
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feature (Peterson & Eckstein, 2014), or when there is a major change in the visual system 

(Tsank & Eckstein, 2017). These findings motivate the investigation of an inability to learn 

new optimal fixation points as a possible source of performance degradation when face 

configurations are altered.  

3.  Configural processing disruptions: 

The two possible sources of performance variations discussed above, relate low-level 

disruptions of visual processing. However, another explanation (Figure 1b.3), which is the 

most common in studies investigating configural effects, is that there is a less efficient 

extraction of information from altered face features due to either a quantitative or qualitative 

disruption of face representations stored in higher-level face-specific brain areas (Farah et al., 

1998; McKone et al., 2007; Rossion, 2008; Sekuler, Gaspar, Gold, & Bennett, 2004); see 

(Tsao & Livingstone, 2008) for a review of proposed different stages of face processing. For 

example, in the qualitative view of the disruption of face processing in the Face Inversion 

Effect, there is only a small disruption in the processing of featural information (i.e. 

information contained within a feature, such as the details of an eye), while there is a large 

disruption in configural information (i.e. information about distances and locations of 

features relative to each other) (Rossion, 2008). In the quantitative view, however, there is a 

similar disruption of processing of both featural and configural information (Sekuler et al., 

2004). In addition to behavioral studies, there is recent evidence from neurophysiology 

studies that the location of face features in specific parts of the visual field affects how they 

are processed. There is evidence for increased neural activity in the posterior lateral face 

patch in monkeys (Issa & DiCarlo, 2012) and increased separation of activity patterns to 

major face features in the right inferior occipital gyrus in humans (de Haas et al., 2016), 
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when the facial features appear at the typical retinal positions relative to a preferred point of 

fixation, compared to atypical locations. Here, we use comparisons of human and 

computational models across face configurations as one test for configural representations of 

faces. The evaluated FIO model has representations of the faces that match any face 

configuration in the stimuli. As a result, the FIO does not capture any pre-determined 

preference for any spatial configuration of features. If humans observers have some 

constraints on the spatial relationships across representations of features, we might expect 

large divergences in performance between humans and predictions by the FIO. However, in 

addition to the FIO, we use another computational model that is meant to simulate some of 

the configural representations that might arise from exposure to the statistical distribution of 

face configurations through early development. We use a Convolutional Neural Network 

(CNN) trained from the beginning (i.e. starting with random parameters, rather than a 

pretrained model) on a face stimuli set with a majority of upright intact faces to simulate this 

exposure. We then test the model with the different face configurations that we also use for 

human participants. 

  To test the hypotheses described above, we measure human eye movements and 

performance at different fixation vertical positions along presented faces during an emotion 

discrimination task. We use short movies of faces rather than static images in order to add 

ecological validity to the stimuli. The task consists of movies of the onset of three possible 

facial expressions (happiness, sadness, and fear) and five possible face feature 

configurations, four of which have features that have been rotated or shifted relative to an 

intact upright face. We ask whether human observers show a performance difference in the 

task between different face configurations. We use the FIO and a CNN to test the various 
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hypotheses related to variations in visual information accessible by a foveated visual system, 

inability of humans to learn how to optimally look at unusual face configurations, and 

configural representations of faces.  

 

Figure 1: a) A standard upright face is shown in the middle with two foveation filters, 

corresponding to simulated fixation positions at the eyes (top image) and nose (bottom 

image). b) A sketch of three possible causes of performance disruptions in a face emotion 

discrimination task are shown. b.1) Here the same face is shown as in part (a), except the 

position of the eyes and nose has been switched. Now the eyes are closer to the mouth and 

the nose is further away from the mouth, relative to the original intact face. A simulated 

fixation position, which is optimal for this task, and is in between all of the internal face 

features (eyes, nose and mouth), is shown. Performance may change because certain features 

are closer or further away from the fixation position and a processed with higher or lower 

resolution, respectively. Depending on which features are important for a particular task, if 
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they are processed with lower resolution, this may lead to a decrease in performance. b.2) 

Here, the same scrambled face stimulus is shown, except with a different simulated fixation 

position, which is suboptimal. There may be decrease in performance when processing this 

face stimulus at this fixation position relative to the fixation position shown above. This may 

happen because the mouth, and partially the eyes, are now processed with lower resolution 

than before. b.3) Any differences in performance between scrambled faces that cannot be 

explained by the effects of foveation, will be attributed to a disruption of configural 

processing in higher-order brain areas. Here, a change in the distance and angle between 

the eyes and mouth are shown as an example of a difference in configural information 

between an upright, intact face configuration compared to a face configuration with a 

switched position of the eyes and nose.  
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2.2 Materials and Methods 

Human Psychophysics Studies. 

Participants.  

Experiment 1. The first experiment was a free-viewing condition with multiple face 

configurations and a set presentation time and was completed with a group of eleven 

undergraduate students of either sex, who participated in the study for course credit. 

Informed consent was obtained from all subjects and guidelines provided by the institutional 

review board of the University of California, Santa Barbara were followed.  

Experiment 2. The second experiment was a free eye movement and forced-fixation 

condition with 8 participants. Data from one of the participants was not used because they 

were found to have a first-fixation strategy (mouth-looker) that is significantly different from 

the others. Informed consent was obtained from all subjects and guidelines provided by the 

institutional review board of the University of California, Santa Barbara were followed.  

 Apparatus and Materials.  

MATLAB Psychtoolbox and Eyelinktoolbox software were used to run the eyetracker 

from a display computer as well as present visual stimuli on the display screen. The display 

used was a Barco MDRC 1119 monitor set to a 1280x1024 pixel resolution and was located 

76.5cm away from the observer’s eyes. The display was linearly calibrated with a minimum 

luminance of .05 cd/m² and a maximum luminance of 126 cd/m².  

 Eye-tracking.  

The left eye of each participant was tracked using an SR Research Eyelink 1000 

Tower Mount eye tracker sampling at 250 Hz. A nine-point calibration and validation were 

run before each 125-trial session, with a mean error of no more than 0.5º of visual angle. 
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Saccades were classified as events in which eye velocity was greater than 35º and eye 

acceleration exceeded 9,500º per square second. The recommended thresholds by SR for 

cognitive research are an eye velocity of 30º and an eye acceleration of 8,000º per square 

second. The minor increase of the velocity and acceleration thresholds in our parameter 

settings allowed us to better control the number of “broken fixations” during the initial 

fixation stage at the beginning of every trial prior to the presentation of the stimulus.   

 Stimuli.  

 In these experiments, observers completed an emotion identification task with three 

emotions: happiness, sadness, and fear. As shown in Figure 2a, the task was done for intact, 

upright faces, as well as four other configurations of faces where major face features (eyes, 

nose, mouth) were moved or inverted. As shown in Figure 2b, sixty movies of facial 

expressions were used for each face configuration, exhibiting the three emotions for each of 

the same twenty different identities (each identity had a happy, sad, and fearful stimulus). 

The identities consisted of fifteen female faces and five male Caucasian faces. Each movie 

contained 1400ms (35 frames with 40ms per frame) of a specific identity starting from a 

neutral expression and unfolding into one of the three emotions mentioned above. All of the 

stimuli were originally obtained from (L. Yin, Chen, Sun, Worm, & Reale, 2008), who 

recorded them from undergraduates at Binghamton University using a 3D face scanner.  

 Preprocessing. The original set of videos contained 100 frames (4000ms) of six 

expressions (happiness, disgust, fear, anger, surprise and sadness) from 101 subjects at a 

resolution of 1040x1329 with front-view poses. The videos were first manually filtered such 

that those that didn’t start with a neutral expression or had too much movement or eye 

blinking were discarded. We used a subset of twenty subjects and three expressions 
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(happiness, sadness, and fear) for each subject, after having twenty-five undergraduate 

participants rate all of the remaining movies for authenticity and intensity of the expression 

being shown. We chose the subset based on the highest combination of authenticity across 

the three expressions with a constraint that the same twenty identities be present for all three 

expressions. The stimuli were first spatially aligned such that the face in the first frame of 

each movie was positioned with center of the eyes at 2/5 of the image height below the top of 

the image and with the chin 1/50 of the image height above the bottom of the image. This 

was done by extracting facial landmarks around the eyes and mouth using the Python dlib 

library and then rotating, resizing, and cropping the images using the first frame as a 

reference, and doing the same operations to the rest of the frames that were done to the first 

frame. The stimuli were then temporally aligned such that the beginning of the facial 

expression in each set of frames started at approximately the same time. The temporal 

alignment was done using a normalized cross correlation between the first frame, which 

contained a neutral facial expression, to each frame in the movie until a threshold was 

reached at which there was a large enough change in the current frame relative to the first 

one to signal the start of the facial expression. The frame before the one that crossed the 

threshold was then chosen as the first frame and contained a neutral facial expression.   

 Creating Different Face Configurations. In order to create the four face 

configurations that were used along with the original face configuration, we used a Poisson 

blending procedure. This was done in order to create blended faces that were as natural-

looking as possible. First, individual masks for the eyes, nose, and mouth in each upright, 

intact face movie were created such that all facial features were inside the boundary of a 

mask polygon throughout all frames. Then, for each face configuration, a blank facial frame 
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was created using photoshop, with designated new positions of features. Poisson blending 

(Pérez, Gangnet, & Blake, 2003) was used to blend facial features from the original face 

(source) onto the blank facial frame (target for each configuration) by using the 

corresponding masks for each individual frame of the video. 

 Stimulus Presentation on Screen. Each frame of each movie was luminance-mean 

normalized to 62 cd/m² and shown to participants at a Root Mean Square (RMS) contrast 

of .1517, where part of that contrast variation came from added Gaussian white noise with a 

standard deviation of 6.83 cd/m² (corresponding to a noise RMS contrast of .11). Participants 

viewed the face stimuli 76.5cm away from the display resulting in a square stimulus (face 

and mask) that subtended 18 º (~15 º for the part of the face that is not covered with the 

mask) in width and height. The large size of the faces, more typical of conversational 

distance, was chosen: (1) to allow measurements of larger variations of perceptual 

performance with fixation position (for small faces perceptual performance is less sensitive 

to fixation position within the face); (2) to allow more precise measurements of fixation 

positions relative to facial features. In addition, the large faces (10 deg. width, 15 deg. height) 

have been shown to be the face size that optimizes face identification (Yang, Shafai, & Oruc, 

2014).   

 Procedure.  

 Experiment 1. Observers performed a free-eye movement emotion identification task 

with 20 total blocks consisting of five different face configurations. Each block consisted of 

125 trials. The configurations varied with different positions of features and were presented 

with two blocks each in the following order: an original intact face, an inverted face, a face 

with inverted features, a face with the eyes and mouth switched, and a face with the eyes and 
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nose switched (Figure 1). After a total 10 blocks, the entire presentation order of the five 

different configurations was repeated again for a total of 20 blocks. The contrast (described 

in the Stimulus Presentation on Screen section above) and stimulus presentation time of 

1400ms remained the same for all the blocks. 

  Experiment 2. Observers performed both a free-eye movement emotion identification 

task followed by a forced-fixation emotion identification task with 37-39 total blocks 

consisting of three of the five face configurations from Experiment 1. The configurations 

included an original intact face, an inverted face, and a face with the eyes and mouth 

switched. They were presented in separate blocks in the order described and then this block 

order was repeated 12-13 times. The first three blocks were a free eye-movement condition 

with a presentation time of 1000ms, while the rest of the blocks were a forced-fixation 

condition with a presentation time of 200ms. Each block consisted of 125 trials. The contrast 

(described in the Stimulus Presentation on Screen section above) remained the same for all 

the blocks.  
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Figure 2: a) Averages across face images foreach of the three different emotions and each of 

the five different configurations. An average image was computed by taking the mean of the 

grayscale luminance values across 20 individual face images in each configuration and 
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emotion category. This was done for illustration purposes. The experiment presented 

individual faces of each individual. b) The stimuli contents of a single configuration are 

shown in more detail (here the upright face configuration is used as an example). Each 

configuration contains three emotions, with the same 20 identities represented for each 

emotion. Each identity has an associated 1400ms (35 frame) long movie. Only parts of each 

movie are shown in different experiments and conditions. c) A trial time line is shown. In the 

free-viewing condition of Experiment 1, observers made saccades to the centrally presented 

face from a fixation cross in one of eight randomly chosen locations. A stimulus presentation 

time of 1400ms consisting of 35 frames was used in the free-viewing condition. Separate 

blocks were used for each of the five different configurations, with the three emotions equally 

intermixed in each block. In the forced-fixation condition of Experiment 2, observers fixated 

one of four locations on the vertical midline of the face stimuli (approximately corresponding 

to the forehead, eyes, nose, and mouth ). A stimulus presentation time of 200ms was used for 

the forced-fixation condition. Here an average happy stimulus from the upright face 

configuration is shown without noise and high contrast for illustration purposes (in the 

actual experiment contrast was substantially lower and white noise was added). At the end of 

each trial, participants had unlimited time to select with the mouse one of three emotions that 

were displayed on the screen. 

  

Experimental Conditions.  

Experiment 1.  

Starting Fixation. As shown in the lower left box of Figure 2c, during free-viewing 

blocks, participants started a trial by pressing the space bar while fixating a cross (.44 º x .44 

º) in one of eight randomly chosen locations located on average 13.94º from the center of the 

stimulus. The fixation cross was displayed for a random period of time between 500ms and 

1500ms to prevent anticipatory eye movements. If participants moved their eyes more than 1º 

from the center of the fixation cross before the stimulus was displayed or while the stimulus 

was present during the forced fixation condition, the trial would abort and restart with a new 

stimulus.  

Trial Timing. As shown in the middle of Figure 2c, the stimulus was presented after 

an initial fixation cross. The stimulus was shown for 1400ms in the free-viewing condition of 

Experiment 1. At the end of each trial, participants had unlimited time to select with the 
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mouse one of three emotions that were displayed on the screen. No feedback was given.   

Experiment 2.  

 Starting Fixation. As shown in the lower right box of Figure 2c, during forced-

fixation blocks, the cross was located in one of 4 locations, which corresponded to the 

forehead, eyes, nose, and mouth every 5.07 º downward respectively. The fixation cross was 

displayed for a random period of time between 500ms and 1500ms to prevent anticipatory 

eye movements. If participants moved their eyes more than 1º from the center of the fixation 

cross before the stimulus was displayed or while the stimulus was present during the forced 

fixation condition, the trial would abort and restart with a new stimulus.  

Trial Timing. As shown in the middle of Figure 2c, the stimulus was presented after 

an initial fixation cross. The stimulus presentation time was 200ms in the forced-fixation 

condition of Experiment 2. The short presentation time for the forced-fixation condition was 

used in order to account for the fact that participants did not need time to make an eye-

movement from the periphery of the screen, as they did in the free-viewing condition, as well 

as to make the task more difficult in order to avoid ceiling effects. In addition, the stimulus in 

the forced fixation condition was started from the 5th frame (200ms) in order to account for 

the amount of time it would take to make an eye movement inside the stimulus. At the end of 

each trial, participants had unlimited time to select with the mouse one of three emotions that 

were displayed on the screen. No feedback was given.  
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Ideal Observer Models. 

 In the following sections, we briefly describe several Ideal Observers that we use to 

model the face perception task presented in this paper and explain the rest of the algorithmic 

details in the Appendix. Ideal observer models are not meant to be a biologically realistic 

representation of face perception. Instead, they measure the overall information available in 

stimuli that are used in a particular task, when the statistics of the task are fully known. These 

kinds of models have been used extensively in visual perception research (M. P. Eckstein, 

Schoonveld, Zhang, Mack, & Akbas, 2015a; Gold et al., 2013; Gold, Mundy, & Tjan, 2012; 

Najemnik & Geisler, 2005; Sekuler et al., 2004) and are very useful in explaining the 

mechanisms involved in the way that humans perform specific tasks; see (Geisler, 2011) for 

a thorough review of what Ideal Observers are and how they are used in different areas of 

vision research. A standard Ideal Observer acts as a benchmark for the maximum possible 

performance that can be achieved in a particular task, when optimally using all available 

information for a task under a specific level of uncertainty. In visual tasks, the uncertainty 

generally comes from pixel noise added to the stimuli shown, which we call “external noise”, 

because it is external to an observer. Generally, human performance in most tasks is very far 

from this benchmark because of various sources of suboptimalities in the human visual 

system, including noise (uncertainty) in neural firing, suboptimal integration of information 

across spatial locations, suboptimal encoding of information at various levels in the visual 

stream, suboptimal biases in the decision stage for particular stimuli, and many more. To 

explain human performance, specific aspects or a single aspect of a source of suboptimality 

in the human visual system are added to an ideal observer. If a simulation of an added aspect 

alone is enough to explain important differences in human behavior and performance, then it 
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can provide important insight into the mechanisms that are responsible for those differences. 

In the context of eye movements to faces, a Foveated Ideal Observer (FIO), which we 

describe below, has previously been used to simulate the foveation of the visual system. 

Foveation is a suboptimality, relative to a regular Ideal Observer that processes the entire 

visual field with equally high resolution, and in essence introduces eye movements to an 

ideal observer. Simulating eye movements in this way, can help determine if the limitation of 

having a foveated visual system is enough to explain certain important eye movement 

behaviors. All other suboptimalities in the visual system are added to the FIO model in the 

form of “internal noise”, which brings down performance of the FIO without modeling in 

detail all of the sources of suboptimality that are meant to be represented by this. The noise is 

“internal” because it is meant to represent suboptimalities further down the visual pathway 

and is added to the model after the addition of “external noise as well as after a foveation 

filter, which processes the noisy incoming stimuli. 

 

Bayesian Ideal Observer.  

Here, we run several different variants of an ideal observer model, starting with a 

standard ideal observer, which utilizes image information to achieve the highest possible 

performance and does not simulate the foveation of the visual system like the FIO described 

below. We run a face emotion identification task with a set of 60 (20 of the same identities 

for each of 3 emotions) front-view facial expression movies that are normalized for the 

position of the eyes and chin as well as for contrast (see the Stimuli subsection of Human 

Psychophysics Studies above for details). Each face movie for the ideal observer simulations 

consists of 5 frames, which matches a 200ms presentation time that was used in the forced-
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fixation condition of Experiment 2 (see Trial Timing section of Experimental Conditions 

above for details). An ideal observer optimally integrates information over time, so for each 

movie, the 5 frames are concatenated into a single large frame, which effectively treats the 

time dimension as a spatial dimension. The frames at corresponding times for each face 

movie now spatially align with frames from the same time period in other movies. On each 

trial of the simulation, the face movies 1 60{ , , }f f  are sampled uniformly at random and a 

template, is , is chosen. The same contrast and additive white noise that was used for humans 

is then added to a chosen template, i. The input data, g , to the ideal observer on each 

simulated trial is then the sum of a random (1 of 60) face template, is , and external noise, 

exn . 

      xi e= +g s n      (2.1.1) 

Using Bayes rule, the ideal observer finds a set of posterior probabilities, one for each 

hypothesis,
,e fH  ,that face f  from emotion e (happy, sad, or afraid) was shown, given the 

image data, g . Here we use the index, f, to represent a calculated posterior probability for a 

particular face being shown, in contrast to the index, i, which represents the actual ground 

truth signal that was shown on a particular trial.  

The posterior probability, ,( | )e fP H g , is calculated using the prior probabilities,  

,( )e fP H , and the likelihood, ,( | )e fP Hg  , of the image data, g , given the presence of each 

face, f  from emotion e: 
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Then to find the posterior probability, ( | )eP H g , of the presence of a specific emotion, the 

sum is found across the posterior probabilities of individual faces belonging to that emotion:  

 

 ,( | ) ( | )e e f

f

P H P H=g g   (2.1.3) 

 

The normalizing factor, ( )P g , in equation (2.1.2) is the same for all posterior 

probabilities, so it can be ignored without changing the result. The likelihood, ,( | )e fP Hg , of 

the signal having come from a particular face is calculated from a known distribution that 

comes from a product of distributions of individual pixel noise (see Appendix for details).  

The maximum posterior probability is then chosen as the answer at the end of a simulated 

trial: 

 argmax( ( | ))e
e

decision P H= g   (2.1.4) 

Region of Interest Bayesian Ideal Observer. 

In order to understand which regions of a face are important for this particular task we 

also run a Region of Interest Ideal Observer (ROI), which is a Bayesian Ideal Observer that is 

separately run using small sections of the face stimuli image at a time. We run the ROI for 

each frame of all the movies separately (i.e. we simulate the emotion discrimination task 

using only first frame of each movie, then separately the second frame, and so on)  in order to 

see how discriminative information may change as a facial expression develops The 

calculations are the same as for the ideal observer, except that in contrast to equation (2.1.1), 

the data, sg , is now the sum of a random (1 of 60) face template, ,i ss , and external noise, 
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exn , where s indexes the section of the face for which performance is separately calculated: 

 ,s exi s= +g s n    (2.2.1) 

The signal ,i ss on each simulated trial is now taken from a specific 30x30 pixel 

section from a randomly chosen face template, i. Figure 3a and 3b show how small sections 

of a face are processed at a time and likelihoods are found for each section. Figure 3c shows 

a performance map that is created by sampling different sections across the face stimulus. 

Here, we run a simulation with 30,000 trials. Due to computational constraints, we only 

sample the sections every 10th pixel rather than every adjacent pixel, which results in a 47x47 

performance map (it is not 50x50 because of the 30px section size). This map is then resized 

using bilinear interpolation to a 500x500 pixel performance map to match the size of the face 

images.  

 

Figure 3: A flow chart for a Region of Interest Ideal Observer. (a) An Ideal Observer is 

separately run for each small 30x30px section of a face image corresponding to a center 

point that is sampled every 10px. The ROI is run on a face emotion discrimination task 
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separately on individual frames of each movie (i.e. we simulate the task using only first frame 

of each movie, then separately the second frame, and so on). (b) On each simulated trial, 

likelihoods are found for a chosen face to be a particular emotion, which are found from 

sums of likelihoods of individual identities representing that emotion. (c) The maximum 

likelihood principle is used to find performance in the task for each separate face section and 

output a performance map that shows which parts of a face are the most informative for this 

task. 

 

Foveated Ideal Observer (FIO) Model.  

A spatially variant contrast sensitivity function (SVCSF) was used to model the 

degradation of the quality of information obtained in the periphery of a foveated visual 

system (M. F. Peterson & Eckstein, 2012):  

 0 0

0 0 0( , , ) exp( ( ) )
a n

SVCSF f r c f b f d r f = − −   (2.3.1) 

where f is spatial frequency in cycles per degree of visual angle. The terms 0a , 
0b , and 

0c , 

were chosen constants set to 1.2, 0.3, and 0.625 respectively, to set the maximum contrast at 

1 and the peak at 4 cycles per degree of visual angle at fixation. The polar coordinates r and θ 

specify the distance in visual angle and direction from fixation. 
0d  specifies the eccentricity 

factor as a function of direction, which represents how quickly information is degraded in the 

periphery. 
0n  specifies the steep eccentricity roll off factor. In the model simulations, 

different parameters are used for 
0d  for the vertical up, du, vertical down, dd, and horizontal, 

dh, directions. The parameters  du, dd , dh, and 
0n  are fit to the forced-fixation condition in 

Experiment 2 in order to match human performance (proportion correct) as a function of 

fixation position (4 different fixations down the vertical midline of the face) of an emotion 

discrimination task using upright faces. The values used for parameters du, dd, dh, and 
0n  

respectively, are 2E-6, 9E-6, 1E-6, and 5. The Akaike Information Criterion (Akaike, 1974), 
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which takes into account the variance for each data point, is used as a distance measure. The 

same parameters are used for the emotion discrimination with all other face configurations 

(see Stimuli section of Human Psychophysics Studies above). Figure 4 shows a flowchart of 

the algorithmic details of the FIO. The circular plots between Figure 4b.1 and 4b.2 show 

examples of 2d contrast 

 

Figure 4: A summary of the process of the computations in the FIO for two fixation positions. 

The top panels show a fixation point that is below the eyes, which is suboptimal in an 

emotion discrimination task with upright faces. The bottom panels show a fixation that is 

above the tip of the nose, which is optimal for this task. a) Many trials are simulated where 

on each trial, a face template is chosen as a signal. Here, the signal selection is shown for an 

emotion discrimination task for one of 60 face templates, each of which contains 5 frames 

(because the model was fit to the short-presentation forced-fixation task of Experiment 2). 

(b.1-b.3), The filtering operation for a noiseless template. The filtering operation is done for 

each frame separately, after which the frames are concatenated together. (b.1), A face image 

is conceptually divided into bins that correspond to specific CSFs as a function of retinal 

eccentricity. Contrast sensitivity functions that correspond to the center of fixation preserve 

the higher spatial frequencies (seen as a higher contrast in red in the CSF plots), while 

contrast sensitivity functions that are far from the fixation position act as low-pass filters and 

mostly leave the low spatial frequencies (seen as a low-contrast blue in the CSF plots). (b.2), 

The image is transformed into the frequency domain, filtered separately by each possible 

CSF (here only two are shown), and then transformed back into the spatial domain, resulting 

in a set of differently filtered images corresponding to each bin. (b.3), Corresponding bins 

are then extracted from the filtered images and input into a composite image that simulates 

foveation. The procedures in b.1–b.3 are then repeated for each of the frames.  c) A set of 

response variables are then calculated, from which a set of likelihoods is found of each face 

movie given the noisy image input. d), A decision of which face was shown is made by taking 

the maximum likelihood. Across many trials, a set of proportion correct (PC) values is found, 

one for each fixation point, and then combined into a heatmap. iFFT, Inverse FFT. 
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sensitivity functions at 2 different locations with respect to the fixation position. Contrast 

sensitivity functions that correspond to the center of fixation preserve the higher spatial 

frequencies (seen as a higher contrast in red in the plots), while contrast sensitivity functions 

that are far from the fixation position act as low-pass filters and mostly leave the low spatial 

frequencies (seen as a low contrast in blue in the plots). 

  Here, we run a face emotion discrimination task using movies of faces (5 frames 

long) that start with a neutral expression and develop into one of 3 possible expressions that 

correspond to happiness, sadness, or fear. We separately run several different conditions 

where the features of the face stimuli are moved or rotated. We simulate many trials of each 

condition of each task. On each trial of the simulation, the face templates 1{ , , }nf f  are 

sampled uniformly at random and a template, 
is , is chosen, where n is 60 for the face 

emotion discrimination task (20 identities, with 3 emotions for each identity). Each face 

template,
if , consists of 5 changing frames, which is the length of time that was used for 

stimulus presentation in the forced-fixation condition of Experiment 2. The 5 frames were 

taken from frames 6-10 out of 35 frames, in order to account for the average amount of time 

it took human participants to make the first saccade from the periphery of the screen into the 

face stimulus. The same contrast and additive white noise that was used for psychophysics 

experiments in humans is then added to a chosen template, i, before being linearly filtered 

with the SVCSF and corrupted with additional internal white noise to become the input data, 

kg  , to the ideal observer:  

 ( )k k i ex in= + +g E s n n   (2.3.2) 
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where k, indexes a specific fixation position, exn  is the external Gaussian white noise, 

inn  is the internal Gaussian white noise, and kE is the linear operator that simulates the 

fixation dependent foveation of the input.  This foveated signal is compared (by taking a dot 

product) to similarly foveated noiseless templates (original face images) to arrive at a set of 

responses, ,f kr  , which come from a multivariate Gaussian distribution with a known mean, 

,f kμ  , and covariance matrix, k  (see Appendix for details on how they are calculated): 

 , , )~ ( ,f kk f kMVN r μ   (2.3.3) 

Using Bayes rule, the FIO finds a set of posterior probabilities, one for each 

hypothesis that face f  from emotion e was shown, ,e fH , given a set of responses ,f kr . The 

posterior probability, , ,( | )e f f kP H r ,  is calculated using the prior probabilities, ,( )e fP H , and 

the likelihood, , ,( | )f k e fP Hr  , of the set of responses given the presence of each face,  f, and 

the observer’s fixation at spatial location, k: 
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r
  (2.3.4) 

Then to find the posterior probability, ,( | )ke fP H r , of the presence of a specific 

emotion, the sum is found across the posterior probabilities of individual faces belonging to 

that emotion:  

 , ,,( | ) ( | )f ke k fe

f

fP H P H=r r   (2.3.5) 

The maximum posterior probability is then chosen as the answer: 

 ,argmax( ( | ))e f k
e

decision P H= r   (2.3.6) 
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Convolutional Neural Network Model with Fixation-Specific Training and 

Testing. 

 Stimuli. 

Simulating the statistical distribution of foveated inputs for network training. 

 The training stimulus set was taken from a combination of the Multimedia 

Understanding Group (MUG) faces database (Aifanti, Papachristou, & Delopoulos, 2010) 

and the Cohn-Kanade (CKPlus) faces database (Kanade, Cohn, & Yingli Tian, 2000; Lucey 

et al., 2010), with permission. Both databases contain movies of facial expressions starting 

from a neutral expression and unfolding into one of several different emotions, all of which 

were discarded, except for happiness, sadness, and fear, which were used in the human 

psychophysics studies, explained above. The databases were combined into a single dataset 

with movies of 175 male and female participants of various ethnicities that acted out these 

emotional expressions. Each movie for each emotion was manually trimmed by removing 

frames from the beginning and end that contain a neutral expression. The frames of each 

movie were then treated as separate images and were spatially aligned and mean luminance 

normalized in the same way as the stimuli for the psychophysics studies (see Stimuli section 

in Human Psychophysics Studies) above, resulting in 1576, 2229, and 1646 individual 

training images for fearful, happy, and sad expressions, respectively. Multiple copies of the 

frames were then made by adding a simulation of the foveation of the visual system centered 

at different fixation positions as shown in Figure 5a below. The fixation positions that were 

used as the center of foveation (bottom left image of Figure 5a ) were taken from empirical 

fixation positions for upright faces measured in humans in Experiment 1. However, creating 

a set of face stimuli that were foveated at every possible position in the image would have 
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required making thousands of copies of the base dataset. This would have made such an 

implementation intractable with our limited computational resources, both in terms of the 

amount of time it would take to produce those multiple foveated copies and in the amount of 

time it would take to train a CNN on all of them. Instead, the empirical fixation positions 

were binned by assigning them to the closest position every 1.85 º (7x7 grid) in the ~15x15 º 

portion of the face that was not covered by a mask (bottom right image of Figure 5a). The 

bins with a fixation frequency smaller than .02 were discarded, after which the other bin 

frequencies were renormalized to add up to 1. A random subset of the foveated copies made 

for each particular fixation position were then used proportional to the relative frequency of 

fixations at that position (top row of Figure 5a) compared to the fixation position with the 

highest frequency of fixations.  The same binning and frequency normalizing procedure was 

also done for inverted faces (Figure 5b), using empirical human fixation positions in for 

inverted faces measured in humans in Experiment 1. Arguably, humans occasionally 

recognize faces from different orientations. For example, while lying down, the face of an 

upright person will present itself in an unusual orientation (rotated by 90 or 180 degrees). 

Similarly, recognizing somebody in an usual position both in real life and in media (such as 

when looking at a phone), requires processing faces at an angle that is not upright. To capture 

this small exposure to unusual orientations, we trained the CNN for all runs with a small 

proportion (0.5%) of the foveated inverted faces. 

Testing.  

The same testing stimuli sets were used for all runs of all models. Here, we use the 

word “model” to refer to the same CNN network with a specific set of parameters (learned 

weights between different neuron-like nodes). A difference between trained models can 
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occur if they are either trained with different stimulus sets, or they are retrained with the 

same stimulus set starting with a random set of parameters from the beginning. The testing 

face stimuli were different from the training stimuli used. The testing stimuli were taken 

from the last 30 (of 35) individual frames from a subset of the same face stimuli that were 

shown in movies of facial expressions to human participants in Experiment 1. This subset 

included the same 3 face configurations that were used as a subset for Experiment 2 (upright 

faces, inverted faces, and faces with a switched eyes, mouth). For each configuration 1800 

individual frames (20 identities, 3 emotions per identity, 30 frames per identity and emotion) 

were used as a base set that was then foveated at 4 different positions. In the end, the testing 

stimuli consisted of 12 different stimulus sets that included the three different configurations, 

each of which included 4 subsets that were foveated at different positions along the vertical 

midline of the face, roughly corresponding to the forehead, eyes, nose, and mouth (Figure 

5c).  
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Figure 5: A summary of the simulated foveation operations done to create the training and 

testing stimuli sets for the CNN. a) The bottom left image shows an example of initial fixation 

positions to an upright face stimulus from a single participant in the free-viewing condition 

of Experiment 1. Fixations from a single participant are only shown for illustration purposes. 

However, initial fixations from all participants were combined in order to create a training 

set with foveated faces that more accurately correspond to empirical fixation positions. The 

empirical fixation positions were binned into 49 assigned positions using a Euclidian 

distance measure. The grid of points in the bottom right image show the assigned positions, 

which cover the face. The frequency of fixations at each position was then calculated, and all 

positions that had a frequency of less than 2% were discarded, after which the remaining 
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frequencies were normalized to sum to 1. The top left and top right images show simulated 

foveations centered at a frequent and infrequent fixation position, respectively, with the 

frequencies assigned to those positions, above each image. A training stimulus set of upright 

faces was then created with the number of images foveated at different fixation positions that 

corresponded to their empirical frequencies. b) The same process was used to create a 

training stimulus set of foveated inverted faces. Small random subsets of the foveated 

inverted faces stimulus were then used during training of certain iterations of the CNN. c) 

After training on a foveated stimulus set with different proportions of inverted faces, each 

CNN model was then tested on 12 different stimulus sets that included 3 different 

configurations (an upright face, inverted face, and a face with switched eyes, mouth), each of 

which included 4 subsets that were foveated at different positions along the vertical midline 

of the face, roughly corresponding to the forehead, eyes, nose, and mouth. 

 

Architecture and Settings. 

Original resnet-18. 

 We use an 18-layer resnet-18 (K. He, Zhang, Ren, & Sun, 2015) architecture to run a 

3-class emotion discrimination task with single frames of faces (taken from movies). The 

network is made up of 4 “residual blocks,” each of which contain 2 pairs (this number is 

higher for other variants of this network structure) of the same layer structure (same size and 

depth of feature maps) (Figure 6a). In cases where it is more advantageous to do so, the 

network is able to learn an identity mapping between consecutive layers of the same size 

within a residual block, which in essence allows the network to skip layers if needed, and 

tune itself to a network size that is optimal for a specific classification problem.  

We use mini-batch (200 images per batch) stochastic gradient descent (SGD) along 

with a cross-entropy loss function to optimize the parameters in the model. We use 

hyperparameter settings of 5e-4 for the learning rate and .9 for momentum. Although this 

network can theoretically be run with any input image size, here we run it with an image size 

of 112x112 pixels due to a limitation of the resolution of the training images we used. 

Upscaling the training images would only increase computation time without improving 
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performance.  

 Estimating Featural information of the CNN via Class-Specific Activations 

Visualizations.  

In addition to the original resnet-18 network, we use also the methodology of (Zhou, 

Khosla, Lapedriza, Oliva, & Torralba, 2015) and run a modified version of the same network 

in order to be able to construct a visualization of the important features in the input stimuli 

that are used by the network to do the emotion classification task. This visualization allows 

us to observe possible limitations in the ability to use the internal face representations that the 

CNN learns from (99.5% upright face and .05% inverted faces) when it is tested on face 

configurations that deviate significantly from the training set. The visualizations are found by 

mapping a weighted linear combination of the 14x14 feature maps of the last convolutional 

layer of the network onto the original 112x112 input images. The weights used to combine 

the feature maps come from the learned connections between the Global Average Pooling 

(GAP) layer, which acts as a unidimensional representation of the 14x14 feature maps 

preceding it, and the class scores output by the network. For each of the three classes, a 

specific Class Activation Map (CAM) is found by using the weights connecting the GAP 

layer to a specific class. Although (Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2015) used 

this method for localization of objects in complex classification tasks with a large number of 

classes, it is still useful for our purpose of visualizing the features of faces that are most 

discriminative for the network during this task. Since the faces are aligned during both the 

training and testing phases, the discriminative features should be located in specific areas 

across CAMs. We average the visualizations across CAMs to get a single visualization map 

for each testing set to get an overall representations of which face features the network is able 
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to use the most during this task.  

  Figure 6b shows the modified version of the resnet-18 network, where the feature 

maps (height and width, but not depth) of the third and fourth residual block are larger. 

Implementing the change relative to the original resnet-18 network only involves lowering 

the stride from 2 to 1 during the convolution operation before the last 2 residual blocks. The 

difference in the modified network is outlined in red.  

 

Figure 6: A flowchart of the operations and outputs involved in the CNN network that we 

use. a) The top flowchart shows the structure and operations involved in the original resnet-

18 network (K. He et al., 2015). Although this network can theoretically be run with any 

input image size, here we run it with an image size of 112x112 pixels and show the sizes of 

feature map outputs after max pooling and convolution operations along with the chosen 

depths of the feature maps at each layer, which are fixed parameter settings. Similarly, 

although the network is able to learn to classify an arbitrary number of classes, here we 

show an output of class scores for a 3-class emotion discrimination ask. One aspect of the 

resnet network that isn’t explicitly shown in the flowchart is the “skip-connections” between 

layers of the same size. The network is made up of 4 “residual blocks,” each of which 

contain 2 pairs of the same layer structure (same size and depth of feature maps). In cases 

where it is more advantageous to do so, the network is able to learn an identity mapping 

between consecutive layers of the same size within a residual block, which in essence allows 

the network to skip layers if needed, and tune itself to a network size that is optimal for a 

specific classification problem. b) The bottom flowchart shows a modified version of the 

resnet-18 network, where the feature maps (height and width, but not depth) of the third and 
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fourth residual block are larger. Implementing the change relative to the original resnet-18 

network only involves lowering the stride from 2 to 1 during the convolution operation before 

the last 2 residual blocks. The difference in the modified network is outlined in red. We 

implement this modification in order to output a set of 14x14 pixel feature maps instead of 

4x4 pixel feature maps. This allows us to use the methodology of (Zhou, Khosla, Lapedriza, 

Oliva, & Torralba, 2015) to construct a visualization of the important features in the input 

stimuli that are used by the network to do the emotion classification task. This is done by 

mapping a linear combination of the 14x14 feature maps onto the original 112x112 input 

images.  
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2.3 Results 

Performance variations across face configurations cannot be solely 

predicted by the influences of feature proximity to an optimal point of 

fixation 
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Figure 7: a) The results of the ROI analysis are shown for every 6th frame of each 

configuration. The ROI analysis was done for each frame separately (i.e, the task was 

simulated with only frame n from each of 60 face expression movies and then repeated for all 

n). For all configurations, most of the information for the task is contained in the eyes and 

mouth. The information content for the emotion discrimination task increases across roughly 

the first third of each movie and then remains stable for the rest of the movie. The only 

difference between the configurations is the location of the informative features, rather than 
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changes in the overall information content of the faces. b) The results of the FIO model for 

the first fixation are shown for each configuration. Despite the mouth being an important 

feature, the theoretical optimal initial fixation position for different configurations is located 

near the eyes, even for those configurations where the mouth is located far from the eyes, 

because they are two important features. c) Performance (proportion correct) in the emotion 

discrimination task with 5 different face configurations is shown for the free-viewing 

condition in Experiment 2 in blue, the theoretical optimal points of the FIO in green, and for 

an ideal observer in red. Noise was added to both the ideal observer and the FIO in order to 

fit the human performance for the upright faces and compare how performance changes 

across the different configurations. The stimuli were manipulated such that the overall 

information content for each configuration would be roughly equal, which is reflected in the 

steady performance of the ideal observer. The FIO, however, shows some changes in 

performance, especially an increase at the fifth configuration, where there are two important 

features (eyes and mouth) for this task located close together. However, human performance 

shifts much more considerably between configurations.   

 

In Experiment 1, we ran 11 observers in an emotion discrimination task with a free 

eye movement condition with 5 different blocked face configurations (Figure 2a) and 

compared their preferred fixation positions to theoretical optimal fixation positions predicted 

by the FIO model. First, in order to determine which features are important for the emotion 

discrimination task and how their importance changes over time in all 5 of the face feature 

configurations, we run an ROI model frame by frame for each configuration. The ROI model 

outputs a performance map that shows how an ideal observer performs using only small 

windows at a time centered at different parts of the stimulus. Figure 7a shows the results of 

the ROI analysis for every 6th frame of each configuration during the 1400ms (35 frame) 

presentation period in the free eye movement condition. For all configurations, most of the 

information for the task is contained in the eyes and mouth. The information content for the 

emotion discrimination task increases across roughly the first third of each movie and then 

remains stable for the rest of the movie. The only difference between the configurations is the 

location of the informative features, rather than changes in the overall information content of 

the faces. We then run an FIO model and output a performance map for possible fixation 
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positions to the stimulus, for each configuration, as shown in Figure 7b. The FIO model 

predicts a change in the theoretical optimal point of initial fixation in face configurations that 

depends on the positions of the important features for the task (eyes and mouth). When the 

eyes and mouth are positioned relatively close together, as in the upright face configuration, 

the inverted face configuration, and especially the configuration with a switched position of 

the eyes and nose, the theoretical optimal point is located between them but a bit closer to the 

eyes. However, when the eyes and mouth are positioned far apart from each other, the 

theoretical optimal point is much closer to the eyes because even though the mouth contains 

a large amount of information, there is more information contained in the combination of the 

two eyes together.  

Humans show large differences in performance between different face configurations, 

as shown in Figure 7c. Figure 7c also shows performance in the task for a standard Ideal 

Observer model, as well as for an FIO at the theoretical optimal points. For both the ideal 

observer and the FIO, the level of contrast used to run the stimuli is matched to the level used 

in the human experiments. However, a large amount of noise is added to the Ideal Observer, 

and a smaller amount of noise added to the FIO in order to match performance in both 

models with human performance for upright face configuration. This is done in order to use it 

as a reference point when comparing performance differences across configurations in 

humans vs performance differences across configurations in each of the models. The face 

stimuli were manipulated such that the overall information content for each configuration 

would be roughly equal, which is reflected in the steady performance of the ideal observer. 

The FIO, however, shows some changes in performance between configurations, especially 

an increase at the fifth configuration, where there are two important features (eyes and 



48 

 

mouth) for this task located close together. However, human performance shifts much more 

considerably between configurations. In addition, even though for the fifth configuration, 

where an FIO shows an increase in performance, human performance is still significantly 

lower compared to the upright face configuration, t(10) = 3.79, p = 4.3E-3, one-tailed. This 

suggests that the interaction of the foveated visual system with the location of important 

features for the task, does not explain much of the differences in performance seen when 

humans are presented with faces that have shifted features.  
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Performance variations across face configurations cannot be explained 

solely by inability to learn theoretical optimal eye movements. 

The analysis above assumes that human eye movements are programmed to the 

theoretical optimal location for each configuration at which the most information can be 

extracted. It is known that humans, on average, direct their first eye movement to the 

theoretically optimal spot for intact, upright faces. However, there is a possibility that 

humans might not learn to make saccades to the new optimal locations that are predicted by 

the FIO for other face configurations. This may lead to further degradation of performance 

with unusual face configurations. As seen in Figure 8a, although the FIO model predicts a 

change in the position of the theoretical optimal point of fixation, most of the human 

participants do not fixate this point in at least two of the four face configurations, besides the 

upright one, that were run in Experiment 1. One possibility is that due to the face mask that 

we use (to cover the external face features like ears and hair), observers simply keep their 

preferred initial point of fixation in other configurations the same as in the upright face 

configuration. However, there is a statistically significant effect that shows an interaction of 

face configuration and preferred vertical fixation position, F(4) = 7.21, p = 9.67E-5.  

To take into account the suboptimal initial fixation strategies of humans, we 

implemented a version of the FIO, a Fixation-Weighted FIO (FW-FIO), that models eye 

movements to each configuration based on the empirical distribution of human initial 

fixations. Figure 8b shows a flowchart for the procedure of calculating performance with the 

FW-FIO. Figure 8c shows that the FW-FIO is able to model larger differences in 

performance between face configurations relative to the FIO, but those differences are still 

much smaller relative to human performance.  
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Figure 8: a) The results of the FIO model for the first fixation are shown for each 

configuration, with averages of empirical initial fixation positions from observers overlaid in 

blue, as well as an average across observers shown as a white point. Despite the mouth 

being an important feature, the theoretical optimal initial fixation position for different 

configurations is located near the eyes, even for those configurations where the mouth is 

located far from the eyes, because they are two important features. Observers’ empirical 

initial fixation positions differ from the theoretical optimal initial fixation positions to 

varying degrees in different configurations. b) A flowchart is shown for how a performance 

score for the FW-FIO models is calculated for each face configuration. Here, an intact, 

upright face configuration is shown as an example. An empirical fixation distribution is 

compiled from all observers for a specific face configuration. A fixation density map is then 

calculated by binning fixation positions into discrete locations on the face image and 

normalizing such that the fixation frequencies across the face image sum to 1. Here, a 
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smooth fixation density map with every possible fixation location is shown for illustration 

purposes. An FIO performance map is then used such that a weighted sum is taken from 

different locations of the performance maps to output a single scalar value. The locations of 

the performance maps correspond to the locations of the bins that were used to bin the 

empirical fixation positions. The weights at those locations correspond to the normalized 

fixation frequency values. c) Performance (proportion correct) in the emotion discrimination 

task with 5 different face configurations is shown for the free-viewing condition in 

Experiment 2 in blue, the theoretical optimal points of the FIO in solid green, for an FW-FIO 

in dashed green, and for an ideal observer in red. Noise was added to the ideal observer, the 

FIO, and the FW-FIO in order to fit the human performance for the upright faces and 

compare how performance changes across the different configurations. The stimuli were 

manipulated such that the overall information content for each configuration would be 

roughly equal, which is reflected in the steady performance of the ideal observer. The FIO, 

however, shows some changes in performance, especially an increase at the fifth 

configuration, where there are two important features (eyes and mouth) for this task located 

close together. The FW-FIO, which takes human empirical fixation positions into account 

shows larger differences in performance relative to the FIO. However, human performance 

shifts much more considerably between configurations compared to all of the models.   
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Evaluating configural representations through comparisons against the 

FIO. 

Our analysis of the preferred initial fixation positions of humans suggests that they do 

not seem to adapt their initial eye movement for most of the unusual face configurations to 

the theoretically optimal fixation points found with the FIO. However, another possibility is 

that the empirically optimal eye movements for humans do not correspond to those predicted 

by the FIO. The FIO assumes a perfect representation of face features, regardless their spatial 

configuration in a face template, as long as the distance of those features to a specific fixation 

position remains the same. In contrast, humans might have additional constraints and 

inefficiencies in how they extract information from different features in different 

configurations. If this is the case, then we would expect that human performance as a 

function of fixation position might depart from that predicted by the FIO. Furthermore, the 

human empirical optimal point of fixation might not be predicted by the FIO. Below, we 

describe results of measuring human performance as a function of fixation position and 

comparing it to the FIO performance profile for different configurations.  

Intact, Upright Face Stimulus. 

In Experiment 2, we run 7 observers on both a free eye movement and a forced-

fixation condition with a subset of 3 of the 5 configurations used in Experiment 1. The 

configurations used are an intact upright face, an inverted face, and a face with a switched 

position of the eyes and mouth. We measure human performance when forced to fixate at 4 

positions, corresponding to the forehead, eyes, nose, and mouth, down the vertical midline of 

the face for each configuration. We then compare the human performance profile to the 

performance of an FIO. As seen in Figure 9a, for intact upright faces there is an area of 
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relatively flat performance in the lower part of the face across the eyes, nose, and mouth (t(6) 

= 2.08, p=.08, one-tailed for eyes vs. nose; t(6) = 1.37, p=.22, one-tailed for nose vs. mouth) 

and significant drop in performance at the forehead (t(6) = 5.89, p=1E-3, one-tailed for eyes 

vs. forehead). This performance profile is more flat (has smaller differences in performance 

between points) but is consistent with an empirical optimal fixation position around the tip of 

the nose previously found in a 1 of 7 emotion discrimination task with static images of faces 

(Peterson & Eckstein, 2012). In addition, participants fixate close to this point on average, as 

seen with the blue bar in Figure 9a. Since the performance profile is more flat, rather than 

using FIO parameters that were originally fit to a face identification task (Peterson & 

Eckstein, 2012), we fit the parameters of the FIO to the current emotion discrimination task 

with dynamic faces in the upright intact face configuration. We then use the same parameters 

to run the FIO model with the inverted face configuration and the face configuration with a 

switched eyes and mouth to see if the model is able to predict human empirical optimal 

fixation positions.  

Inverted Face Stimulus. 

For clarity, in the description of feature locations for face configurations that aren’t 

upright, we will refer to features that have been moved relative to an upright face as “new.” 

As seen in Figure 9a, for inverted faces, there is better performance at the top of the stimulus, 

which corresponds to the new tip of the nose and new mouth on an inverted face stimulus 

(t(6) = 2.96, p=.025, one-tailed for nose vs. eyes; t(6) = 6.43, p = 6.67E-4, one-tailed for eyes 

vs. forehead) (the labels in the Figure 9a are shown relative to an upright face stimulus). In 

addition, the overall performance level at all points is lower relative to an upright face 

stimulus. However, the performance profile of the FIO with an inverted face stimulus does 
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not exhibit this drop in performance, especially in the lower part of the stimulus, and predicts 

a theoretically optimal point in the new eye and new forehead region of inverted faces, which 

does not match the location of the empirically optimal point in the new nose and new mouth 

region. In addition, in the free eye movement condition, human participants fixate 

significantly closer to the empirically optimal region of inverted faces relative to the 

theoretically optimal region found with the FIO, as seen in the location of the green bar in 

Figure 9a. We also fit an FIO model with the same parameters except with higher noise to 

see if it is better able to capture the human performance curve when is in a closer 

performance range compared to humans, as seen in Figure 9b. However, although the shape 

of the new FIO performance curve for inverted faces is a bit flatter, it still predicts the same 

region for the theoretically optimal point compared to the model with a lower noise level, 

which does not represent the human performance profile well.  

Switched Eyes, Mouth Face Stimulus. 

As seen in Figure 9a, for the third configuration (switched eyes and mouth) 

performance is relatively flat across all points, with a small decrease at the nose only relative 

to the new mouth (t(6) = 2.68, p= .037, one-tailed for nose vs. new mouth; t(6) = 1.29, p 

= .24, one-tailed for nose vs. new eyes). In addition, the overall performance level at all 

points is lower relative to both an upright face stimulus and an inverted face stimulus. 

However, the performance profile of the FIO with a switched eyes, mouth face stimulus only 

exhibits a drop in performance at the top of the stimulus, which is still significantly smaller 

than what is seen in humans, and predicts a theoretically optimal point in the nose and new 

eyes region, which does not match the flat performance profile of humans. In the free eye 

movement condition with a switched eyes, mouth face stimulus, human participants fixate 
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significantly far from the theoretically optimal region found with the FIO, as seen in the 

location of the red bar in Figure 9a. Similar to what is done with the FIO with inverted faces, 

we also fit an FIO model with the same parameters except with higher noise to see if it is 

better able to capture the human performance curve when is in a closer performance range 

compared to humans, as seen in Figure 9b. However, although the shape of the new FIO 

performance curve for a face stimulus with switches eyes, mouth is a bit flatter, it still 

predicts the same region for the theoretically optimal point compared to the model with a 

lower noise level, which does not represent the human performance profile well.  

 

Figure 9: (a) Human performance down the vertical midline of the face in the forced-fixation 

condition of Experiment 2 is shown for the 3 configurations that were tested, with blue points 

for upright faces, green points for inverted faces, and red points for faces with a switched 

eyes, mouth. The x-axis labels represent fixation positions relative to an upright face, so the 

performance for the other two configurations at those points does not actually correspond to 

the labels, but instead corresponds to relative locations down the vertical midline of the 

images. The preferred fixation positions from the free-viewing condition of Experiment 2, 

along with a standard error of the mean on each side are shown in corresponding colors. 

Performance of the FIO at fixation positions down the vertical midline of the face, run with 

the same noise level for all configurations, is also shown in corresponding colors. This noise 

level was fit to the human data for the upright configuration. The FIO does not predict the 

sharp drop in performance that is seen when humans do the emotion discrimination task with 

face configurations that are not upright. In addition, the theoretical optimal fixation position 

for inverted faces (in green) does not predict the empirical optimal fixation position for 
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humans. For this configuration, the human preferred point of fixation is much closer to the 

empirical optimal point than the theoretical optimal point predicted by the FIO. The 

theoretical optimal fixation position found by the FIO for the face configuration with a 

switched eyes and mouth does not predict the lack of an empirical optimal fixation position 

(differences in performance across fixation positions are not statistically significant for this 

configuration) in humans. (b) The same data is shown as in the previous plot, except that the 

noise level of the FIO is now fit separately to the human data for each individual 

configuration. Although the FIO is now fit to the overall performance level for each 

configuration, it is still unable to predict it is still not able to predict the location of the 

empirically optimal fixation positions in humans for face configurations that are not upright.    
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Capturing the learning of configural representations using a Convolutional 

Neural Network (CNN). 

As seen above, the FIO is does not provide a strong fit to the forced-fixation human 

data for inverted faces or for faces with a switched position of the eyes and mouth. An FIO is 

only limited by a simulation of a foveation visual system, but otherwise has a perfect internal 

representation of the faces of each configuration that it is run on. Humans, however, are 

overwhelmingly exposed to intact upright faces and likely have an internal representation of 

faces that is tuned to the kinds of face stimuli that they are exposed to. Face stimuli that are 

not intact and upright may be difficult for humans to process efficiently because of a 

mismatch between the stimuli being shown compared to an internal representation of upright 

face stimuli stored in the human brain. This is an important limitation that the FIO does not 

capture. To stimulate this limitation, we use a CNN model where we train it on 99.5% intact, 

upright faces, and on 0.5% inverted faces. The training stimuli contain copies of the same 

faces that are processed differently based on a foveation simulation at different fixation 

locations. Those fixation locations are taken from human empirical fixation distributions to 

upright and inverted faces during the free-fixation conditions (see Methods for details). 

Figure 10a shows the results of a CNN model (resnet-18) for a human emotion 

discrimination task that is tested on stimuli from each of the three face configurations used in 

the human forced-fixation condition. Each configuration is then separately “foveated” and 

tested at the same 4 locations that humans were tested on in the forced-fixation condition. 

Performance is highest overall for tested upright faces, then inverted faces, and finally faces 

with a switched eyes and mouth. Both the performance order across the 3 testing sets, and the 

relative order of performance at different fixation points, within each testing set, is a much 
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better representation of human differences in forced-fixation performance relative to the 

predictions of the FIO. In Figure 10b, the same type of plot is shown as in (a), except for a 

model, whose network architecture has been modified from a regular resnet-18, to one where 

the last several convolutional layers have larger dimensions of feature maps. This was done 

in order to be able to use the enlarged features maps from the last layer of the modified 

model to visualize which parts of a face stimulus the network used the most during the 

classification task. Enlarging the feature maps of the last several convolutional layers relative 

to the original CNN network results in differences in the performance profile for each 

configuration. In Figure 10c, a visualization is shown of the parts of the face stimuli that the 

CNN model trained on a face emotion discrimination task uses the most. The 3 rows 

represent three different face configurations that were used during testing: upright faces, 

inverted faces, and faces with a switched eyes and mouth, respectively. The 4 columns 

represent different simulated fixation positions at the forehead, eyes, nose, and mouth, 

respectively. The scale used to show the importance of different face features is relative only 

within each image because each visualization has been normalized such that the features with 

the highest weights are mapped to the highest values. The visualizations show that the mouth 

is an important region that the CNN uses to do the classification task. However, the extent to 

which the mouth is used by the network, depends on both the configuration being used 

during testing, as well as the fixation position at which at which a foveation simulation is 

applied. 
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Figure 10: a) The results of a CNN model are shown for a human emotion discrimination 

task. During the testing phase, the same sets of stimuli are used as the ones used to run the 

FIO model and to run the human forced-fixation psychophysics experiments, except they are 

separated into individual frames and are run as images instead of movies. The differently 

colored lines represent performance profiles for a renset-18 CNN model, separately tested 

with different stimulus sets, corresponding to upright faces, inverted faces, and faces with a 

switched eyes and mouth. Each of the testing stimuli sets were also foveated at 4 different 
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positions, where the center of foveation was at the forehead, eyes, nose, and mouth, shown on 

the x-axis. The error bars represent standard error of the mean across 5 different training 

runs (i.e. a network trained from a random weight parameter setting 5 separate times). 

Performance is highest overall for upright faces, then inverted faces, and finally faces with a 

switched eyes and mouth. Both the performance order across the 3 testing sets, and the 

relative order of performance at different fixation points, within each testing set, is a much 

better representation of human differences in forced-fixation performance relative to the 

predictions of the FIO. b) The same type of plot is shown as in (a), except for a model, whose 

network architecture has been modified from a regular resnet-18, to one where the last 

several convolutional layers have larger dimensions of feature maps. This was done in order 

to be able to use the enlarged features maps from the last layer of the modified model to 

visualize which parts of a face stimulus the network used the most during the classification 

task. Enlarging the feature maps of the last several convolutional layers relative to the 

original CNN network results in differences in the performance profile for each 

configuration.  c) A visualization is shown of the parts of the face stimuli that the CNN model 

trained on a face emotion discrimination task uses the most. The 3 rows represent three 

different face configurations that were used during testing: upright faces, inverted faces, and 

faces with a switched eyes and mouth, respectively. The 4 columns represent different 

simulated fixation positions at the forehead, eyes, nose, and mouth, respectively. The scale 

used to show the importance of different face features is relative only within each image 

because each visualization has been normalized such that the features with the highest 

weights are mapped to the highest values. The visualizations show that the mouth is an 

important region that the CNN uses to do the classification task. However, the extent to 

which the mouth is used by the network, depends on both the configuration being used during 

testing, as well as the fixation position at which at which a foveation simulation is applied.  

 

 

 

 

 

 

 

 

 

 

2.4 Discussion 
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Previous studies have shown that there is a decrease in performance during various 

face discrimination tasks when face features have been shifted, rotated, or altered in some 

way relative to an intact upright face (Farah et al., 1995, 1998; Tanaka & Farah, 1993; R. K. 

Yin, 1969; Young et al., 1987). This performance difference has generally been attributed to 

a disruption of the use a face template represented in higher-order face-specific brain areas 

(Farah et al., 1998; Tsao & Livingstone, 2008), but see (Richler, Cheung, & Gauthier, 2011; 

Richler et al., 2012) for an alternative explanation based on a disruption of a practiced 

attentional strategy. However, few previous studies of holistic face processing (Bombari et 

al., 2009; Heering et al., 2008; Hills et al., 2013; Van Belle et al., 2010; Xu & Tanaka, 2013) 

have controlled for an important low-level aspect of the visual system that is known to affect 

performance in upright faces. This aspect is a foveated visual system, which has been shown 

to guide the initial eye movement during various face discrimination tasks to a specific 

optimal (performance-maximizing) location on a face. In previous studies with intact, upright 

face stimuli, performance has been shown to decrease in upright faces when observers were 

forced to fixate locations other than their empirical optimal spot. Here, we asked whether the 

performance differences previously found between the use of intact upright face stimuli and 

altered face stimuli may be partly explained by an altered interaction of a foveated visual 

system with the altered face features. We reproduced large differences in performance in a 

face discrimination task between an upright face stimulus and four other face stimuli with 

altered features. However, we found that very little of these differences in performance could 

be explained purely by disruptions in foveated processing. 

We found that when humans freely fixate different face configurations, they are 

unable to take advantage of the same information contained in important face features for this 
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task, when the features are shifted, but remain the same or even a shorter relative distance 

away from each other. This contrasts with ideal observers and foveated ideal observers, 

which are only affected by the overall information content in an image, or different distances 

of important features to each other, respectively. The most informative example of this was 

the result obtained with the fifth configuration, where the most important features for this 

task, the eyes and mouth were located close to each other. The FIO showed a significant 

increase in performance at the theoretical optimal spot for this configuration relative to the 

intact upright face. Human participants, however, showed a decrease in performance despite 

fixating the theoretical optimal spot in the free eye movement condition. It should be noted 

though that human performance in this configuration was significantly higher than in the 

other altered configurations. This suggests that the relative locations of informative features 

to each other may be an important consideration when interpreting the cause of the 

magnitude of performance differences between different face configurations. However, the 

fact that even with a location advantage of the features, human performance still suffered, 

points to a significant contribution of a disruption in higher-order face processing 

mechanisms.  

We assessed another possible contribution of foveated visual processing to 

performance differences in different face configurations: suboptimal initial fixation positions. 

We found with a large number of participants, that the initial fixation was enough to achieve 

asymptotic performance in this task with upright faces. Previous studies have also shown the 

initial fixation position in upright faces is made to a consistent location that is similar across 

people and is resistant to change when it becomes suboptimal because of a change in the type 

of face stimuli that are shown or a change in the visual system.  In relation to this, we asked 
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if humans make suboptimal initial fixation positions to face configurations that they don’t 

have prior experience with. However, suboptimality can be defined relative to a theoretical 

optimal position found with an FIO, or relative to an empirical optimal position found in 

humans when forced to fixate different locations on the face. Previous studies have shown 

that for upright faces, the empirical optimal initial fixation position is predicted well by a 

theoretical optimal position found with the FIO and observers fixate this location in a free 

eye movement condition. In contrast, we found that in three of the four altered face 

configurations, observers did not fixate the theoretical optimal spot. Using further analysis in 

a forced-fixation condition with two of those three configurations, we found that the FIO did 

not correctly predict the location of an empirical optimal fixation position. In one of those 

configurations (switched position of eyes and mouth), an empirical optimal point did not 

exist at all, since performance was relatively flat at different fixation positions down the 

vertical midline of the face. However, in the other tested configuration (inverted face), an 

empirical optimal fixation position did exist and observers fixated close to it when they were 

allowed to freely fixate. These results again suggest that suboptimal fixation positions may 

only play a minor role in performance differences between different configurations. The fact 

that the FIO is unable to predict empirical optimal fixation positions for human observers 

points to a decreased efficiency of integrating information from features when they are not 

located in their expected positions in an upright face. In addition, the fact that human 

observers fixate close to their empirically optimal spot in the inverted-face configuration, a 

commonly used one in studying holistic processing, shows that even detriments relative to 

their own optimal performance are only a minor factor in the overall performance differences 

observed between different configurations. 
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In order to help explain the failure of the FIO to predict human performance 

differences between different face configurations, we use a CNN model to simulate the 

higher-level aspects of the visual system. Although they are only a rudimentary 

approximation of human cortical processing, CNNs are starting to be used in the study of 

human vision and face processing (see  (O’Toole, Castillo, Parde, Hill, & Chellappa, 2018) 

for a review) after successful implementations of various face classification tasks in 

computer vision (Li, Lin, Shen, Brandt, & Hua, 2015; Schroff, Kalenichenko, & Philbin, 

2015; Taigman, Yang, Ranzato, & Wolf, 2014) , some of which have achieved close to 

human performance. CNNs are known to have certain useful properties that may be able to 

represent aspects of the human visual system. One of those aspects is a feedforward 

multilayer structure that represents progressively more complex features starting from edge 

detection and ending with complex shapes, textures, colors, and the relationships between 

them. Another important aspect is the ability to learn feature detectors that are adapted to the 

complex statistical properties of the features in the images that the model is being trained on. 

CNNs are also able to represent objects with some degree of spatial location invariance due 

to pooling operations between different layers. However, a large part of classification 

performance on new test stimuli depends on their similarity in multiple feature dimensions, 

including feature location, to the training stimuli that the CNN was exposed to. In the context 

of face processing, humans are overwhelmingly exposed to upright intact faces that are 

foveated through retinal processing before more complex features are extracted further in the 

visual stream and eventually in cortical areas. In order for the CNN model to represent faces 

as accurately as possible relative to human experiences with them, we use empirical fixation 

data with an overwhelming majority of upright faces to create foveated training stimuli. As a 
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result, the CNN model that we train is likely able to represent something similar to a 

configural representation, where the location of important features for this task is an 

important feature that degrades performance when it is disrupted. We show that a CNN 

model is much better able to predict human empirical optimal points of fixation as well as 

overall performance profiles (performances at different points of fixation along the midline 

of the face in a forced-fixation condition), compared to an FIO for the three configurations 

that were tested in the forced-fixation condition. When processing faces, the performance of 

an FIO is only limited by a simulation of foveation, because it then makes optimal decisions 

further up in the processing stream. In contrast, the performance of the CNN model that we 

use is limited both by a simulation of foveation (because of pre-foveated input images) as 

well as a complex representation of face features that are learned during training.  
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2.5 Supplementary Materials 

Here we describe the methods and details of a third experiment that we ran, which informed 

our use of the Bayesian Ideal Observer and Foveated Ideal Observer models.  

 

Materials and Methods. 

 Participants.  

 The third experiment was a free viewing condition with a gaze contingent stimulus 

presentation time and a single upright face configuration and was completed by a separate 

group of 91 students. Data from 26 of those students was discarded because they performed 

either at chance level, or below chance level by consistently misclassifying one of the 3 

emotions. Informed consent was obtained from all subjects and guidelines provided by the 

institutional review board of the University of California, Santa Barbara were followed.  

 Apparatus and Materials.  

The same eyetracking and monitor setup was used as for the two experiments 

presented in the main text.   

 Stimuli.  

 In this experiment, only a subset containing upright face configurations was used 

from the stimuli set in the two experiments presented in the main text. 

 Stimulus Presentation on Screen. 

Each frame of each movie was luminance-mean normalized to 62 cd/m² and shown to 

participants at a Root Mean Square (RMS) contrast of .1441, where part of that contrast 

variation came from added Gaussian white noise with a standard deviation of 6.83 cd/m² 

(corresponding to a noise RMS contrast of .11). Participants viewed the face stimuli 76.5cm 
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away from the display resulting in a square stimulus (face and mask) that subtended 18 º 

(~15 º for the part of the face that is not covered with the mask) in width and height. The 

large size of the faces, more typical of conversational distance, was chosen: (1) to allow 

measurements of larger variations of perceptual performance with fixation position (for small 

faces perceptual performance is less sensitive to fixation position within the face); (2) to 

allow more precise measurements of fixation positions relative to facial features. In addition, 

the large faces (10 deg. width, 15 deg. height) have been shown to be the face size that 

optimizes face identification (Yang et al., 2014).   

 Procedure.  

 Observers performed a gaze-contingent free-eye movement emotion identification 

task with 3 total blocks consisting of a single upright face configuration. Each block 

consisted of 125 trials. The contrast (described in the Stimulus Presentation on Screen 

section above) remained the same for all the blocks. However the stimulus presentation time 

varied randomly from trial to trial, with stimulus presentation ending after the start of a 

second, third, or fourth saccade with equal probability. All trials ended after a maximum 

presentation time of 1400ms if a participant did not have time to start the saccade number 

that was randomly chosen for that trial.  

 Experimental Conditions.  

Starting Fixation. 

During free-viewing blocks, participants started a trial by pressing the space bar while 

fixating a cross (.44 º x .44 º) in one of eight randomly chosen locations located on average 

13.94º from the center of the stimulus. The fixation cross was displayed for a random period 

of time between 500ms and 1500ms to prevent anticipatory eye movements. If participants 



68 

 

moved their eyes more than 1º from the center of the fixation cross before the stimulus was 

displayed or while the stimulus was present during the forced fixation condition, the trial 

would abort and restart with a new stimulus.  

Trial Timing. 

The stimulus was presented after an initial fixation cross. The stimulus presentation 

time varied randomly from trial to trial in the free eye movement condition of this 

experiment, with stimulus presentation ending after the start of a second, third, or fourth 

saccade with equal probability. All trials ended after a maximum presentation time of 

1400ms if a participant did not have time to start the saccade number that was randomly 

chosen for that trial. At the end of each trial, participants had unlimited time to select with 

the mouse one of three emotions that were displayed on the screen. No feedback was given.  

Results. 

Performance saturates after a single eye movement in the dynamic emotion 

discrimination task.   

For all experiments presented in this paper, we used a dynamic stimulus set (movies 

of faces) to realistically represent the temporal dynamics of the unfolding of a facial 

expression. In Experiment 3 we use a gaze-contingent free eye movement paradigm where 

the stimulus presentation is randomly interrupted after either one, two, or three eye 

movements.  The experimental manipulation allowed to assess the role of increasing number 

of eye movements and presentation times on perceptual performance. For this experiment we 

only used an upright face configuration as the stimulus set. Figure S.1 shows that there is not 

a statistically significant improvement in performance after the first eye movement, t(64) = 

1.3902, p = 0.085, one-tailed for performance after one eye movement vs. after two eye 
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movements, and t(64) = 0.917, p = 0.181 for performance after one eye movement vs. after 

three eye movements.   The result suggests that the majority of the visual information 

supporting the perceptual task is extracted during the first fixation.   

This result informs the use of a short presentation time and the representation of a 

single eye movement when running the FIO model in order to more accurately represent the 

use of only a small time frame to extract most of the information for the task. Although we 

use a simulated short presentation time (only 5 frames) for the FIO model, we still use a 

longer presentation time (20-35 frames) in the free eye movement conditions of Experiment 

1 and Experiment 2, in order to provide enough time for participants to make an initial eye 

movement as well as to provide a more ecologically valid facial expression viewing time 

when making free eye movements.  

 

 

 

Figure S.1: The results from Experiment 3 are shown. Performance in the emotion 
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discrimination task is plotted as a function of the number of fixations that were allowed in a 

trial. Differences in performance between trials where one, two, or three saccades were 

made are not statistically significant, showing that the vast majority of information for this 

task is gathered before the second fixation. 
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3 Eye movements during gender 

discrimination of faces are adapted to 

the naturally occurring statistics of 

emotional expressions 

3.1 Introduction 

Face perception is a ubiquitous task that most humans perform many times a day. Eye 

movements, which point the high acuity foveola during exploration of the environment, are 

critical for accomplishing this evolutionary important task.  For a variety of visual tasks, 

ranging from visual search to reading, the human brain programs eye movements by taking 

into account the foveated properties of the visual system in conjunction with the distribution 

of task-relevant information in the environment (M. P. Eckstein, Schoonveld, Zhang, Mack, 

& Akbas, 2015a; G. E. Legge, Klitz, & Tjan, 1997; Gordon E. Legge, Hooven, Klitz, 

Stephen Mansfield, & Tjan, 2002; Najemnik & Geisler, 2005, 2009; Paulun, Schütz, Michel, 

Geisler, & Gegenfurtner, 2015; M. F. Peterson & Eckstein, 2012) to maximize the 

acquisition of information during basic perceptual tasks (optimal or near-optimal oculomotor 

strategies; but see (Morvan & Maloney, 2012; Verghese, 2012) for suboptimal strategies).  

During face discrimination tasks, humans exhibit high levels of accuracy with even a 

single saccade (Hsiao & Cottrell, 2008; Or, Peterson, & Eckstein, 2015). The majority of 
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humans direct their first fixation to a featureless point, just below the eyes, that maximizes 

accuracy in evolutionarily important perceptual tasks such as face identification, gender 

discrimination, and emotion discrimination (M. F. Peterson & Eckstein, 2012). There is also 

evidence for increased neural activity in the posterior lateral face patch in monkeys (Issa & 

DiCarlo, 2012) and increased separation of activity patterns to major face features in the right 

inferior occipital gyrus in humans (de Haas et al., 2016), when the facial features appear at 

the typical retinal positions relative to the preferred point of fixation compared to atypical 

locations.    

Furthermore, the preferred point of initial fixation to a face varies moderately across 

tasks and is predicted by a theoretical model (the Foveated Bayesian Ideal Observer; FIO) 

that takes into account the relevant information in the faces for a given perceptual task as 

well as the foveated characteristics of the visual system and integrates information across the 

visual field.  For example, for an emotion identification task, which contains more 

information in the mouth area, the human initial fixation to the face is directed to a lower 

point along the face than for an identification task. In addition to differences in the initial 

fixation position between tasks, there are also individual differences across observers that 

correspond to observer-specific optimal fixation positions (M. F. Peterson & Eckstein, 2013) 

that are consistent across time. Beyond the initial eye movement, scanpaths involving 

multiple eye movements are also known to be idiosyncratic both for individual participants 

and specific tasks, and are consistent across time (Kanan, Bseiso, Ray, Hsiao, & Cottrell, 

2015; Mehoudar, Arizpe, Baker, & Yovel, 2014). These findings support the idea of an 

oculomotor planning system highly tuned to different tasks. However, it is unknown to what 

degree the human brain can adapt its eye movement plans to the particular properties of the 
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faces presented in a task. Does the brain have access to a wide set of optimal eye movement 

plans to faces that it can utilize for specific facial states and tasks? Or instead, does it use a 

simplified set of plans matched to the more prevalent facial states encountered during 

everyday life? One possibility is that a simpler and less flexible heuristic strategy is used to 

process faces. Such a strategy might reflect the naturally occurring statistics of face stimuli 

that humans encounter in everyday life. In early and mid-level vision, the spatiotemporal 

sensitivity in the retina and early cortical areas are tuned to statistical regularities of visual 

information in the environment (Geisler & Ringach, 2009; Simoncelli & Olshausen, 2001).  

In high-level vision, the processing of the inverted faces is distinct from upright faces and 

related to their significantly lower statistical occurrence on human retinas through 

development (Belle, Graef, Verfaillie, Rossion, & Lefèvre, 2010; Farah, Tanaka, & Drain, 

1995; Guo, Oruç, & Barton, 2009; Jacques, d’Arripe, & Rossion, 2007; Sekuler, Gaspar, 

Gold, & Bennett, 2004). 

Here, we measure human eye movements during a gender identification task and 

investigate how the theoretical optimal and human empirical fixation strategies vary with the 

emotional expression of the faces. We ask whether the informative features and optimal point 

of fixation for gender identification vary across emotional expressions and whether the 

human brain takes into account this information to optimize eye movements for the task. We 

use the framework of a Bayesian Ideal Observer (BIO) that processes sub-regions of faces 

(Region of Interest Ideal Observer; ROI) to quantify the discriminatory information within 

each facial feature. In addition, we use a BIO that is constrained by a foveated visual input 

(Foveated Ideal Observer; FIO, Peterson & Eckstein, 2012) to assess how the theoretical 

optimal point of initial fixation for gender is influenced by the emotional expression of the 
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faces. Finally, we use convolutional neural network (CNN) model to simulate differences in 

human exposure to different statistics of facial expressions. We investigate whether these 

differences in exposure affect the performance of the CNN in the gender discrimination task 

with a different frequency of facial expressions compared to what it was exposed to.  

The analysis with the ROI and FIO models shows that there is an increase in 

information in the mouth region in happy-expression faces for a gender identification task 

compared to neutral-expression faces. This leads to a shift downward in the FIO’s theoretical 

optimal point of initial fixation as well as an increase in performance at the new optimal spot. 

However, our results show that humans are unable to fully take advantage of this 

information. We propose that observers’ strategy not to use mouth expression information for 

gender discrimination may be related to the statistical distributions of occurrence of neutral 

and happy facial expressions when we first encounter an individual in an ecologically valid 

environment. We simulate this strategy with a CNN model and present measurements of 

frequencies of emotions of faces encountered in the wild captured with eyewear-embedded 

cameras. We propose a computational model that discounts mouth information to a large 

degree to account for human performance.  
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3.2 Materials and Methods 

Human Psychophysics Studies. 

 Participants.  

 The first experimental condition, the free-viewing study, (see Procedure section 

below for details) was completed with a group of eighteen undergraduate students (11 female 

and 7 male, aged 18-22), who participated in the study for course credit. Data from three of 

the participants (2 female and 1 male) was not used due to them being identified as 

individuals who belong to a group of about 10% of the population that make the initial 

fixation to lower features (tip of the nose and mouth) than the other 90% of the population 

(M. F. Peterson & Eckstein, 2013). This left data from fifteen participants in the free-viewing 

condition. All of the fifteen remaining students participated in the subsequent forced-fixation 

experimental condition (see Procedure section below for details). Informed consent was 

obtained from all subjects and guidelines provided by the institutional review board of the 

University of California, Santa Barbara were followed.  

Power Analysis.  

 We use a small number of participants relative to many studies in psychology. The 

main reason we do this is because of the time limitation of the forced-fixation condition 

(described below in Experimental Conditions), which requires around 300-500 trials per 

fixation (we use 5 fixation locations) per stimulus set (we have 2: happy and neutral faces) in 

order to get reliable results. However, we show using a sampling method, that the number of 

participants that we use is also enough to discern very small differences in preferred fixation 

positions, in a free-fixation condition (described below in Experimental Conditions). The 

reason for this is that there is a tradeoff between the variability in preferred fixation position 
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within a collection of trials taken from fewer participants but with lots of trials per 

participant, relative to more participants and fewer trials per participant.  

We use a database of 285 participants who completed a free-fixation human face 

identification task to randomly sample with replacement the mean vertical fixation positions 

of 5, 15, and 30 participants and with replacement different numbers of trials per participant. 

For each data point we calculate the standard error of the vertical fixation position where the 

number of samples is the product of the number of participants and the number of trials per 

participant (i.e. (number of participants)x(number of trials per participant) and plot this in 

Figure 1 below. We repeat this procedure 100 times for each data point and plot error bars 

that represent the standard error of the standard errors that were found for the preferred 

vertical fixation position. The plot shows that a similar standard error of the mean of the 

preferred vertical fixation position can be achieved with fewer participants and lots of trials 

per participant, relative to having more participants and fewer trials per participant.  
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Figure 3: This plot shows the tradeoff in standard error of the mean of the preferred vertical 

fixation position found with different combinations of participant sample sizes and trial 

sample sizes per participant. We use a database of 285 participants who completed a free-

fixation human face identification task to randomly sample with replacement the mean 

vertical fixation positions of 5, 15, and 30 participants and with replacement different 

numbers of trials per participant. For each data point we calculate the standard error of the 

vertical fixation position where the number of samples is the product of the number of 

participants and the number of trials per participant. The dashed line shows that a similar 

standard error can be achieved with 15 participants with 100 trials per participant, relative 

to 30 participants with 50 trials per participant.  
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 Apparatus and Materials.  

MATLAB Psychtoolbox and Eyelinktoolbox software were used to run the eyetracker 

from a display computer as well present visual stimuli on the display screen. The display 

used was a Barco MDRC 1119 monitor set to a 1280x1024 pixel resolution and was located 

76.5cm away from the observer’s eyes. The display was linearly calibrated with a minimum 

luminance of .05 cd/m² and a maximum luminance of 126 cd/m².  

 Eye-tracking. The left eye of each participant was tracked using an SR Research 

Eyelink 1000 Tower Mount eye tracker sampling at 250 Hz. A nine-point calibration and 

validation were run before each 125-trial session, with a mean error of no more than 0.5º of 

visual angle. Saccades were classified as events in which eye velocity was greater than 35º 

and eye acceleration exceeded 9,500º per square second. The recommended thresholds by SR 

for cognitive research are an eye velocity of 30º and an eye acceleration of 8,000º per square 

second. The minor increase of the velocity and acceleration thresholds in our parameter 

settings allowed us to better control the number of “broken fixations” during the initial 

fixation stage at the beginning of every trial prior to the presentation of the stimulus.   

 Stimuli.  

 In this experiment, observers completed a gender identification task. Eighty face 

images were used. The images consisted of forty identities, with two images; a neutral and 

happy expression for each identity. Half of the identities were male and half were female 

(Figure 2a). All of the images were taken with constant diffuse lighting, distance, and camera 

settings. A Canon digital camera was used. The digital pixel value was a non-linear 

saturating function of luminance (a standard Canon log-cine transfer function). The images 

were normalized by scaling and cropping, such that the center of the eyes was 2/5 of the 
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image height below the top of the image and the chin was 1/50 of the image height above the 

bottom of the image. The faces were luminance-mean normalized to 25 cd/m² and shown to 

participants at a contrast of .032 (RMS contrast of .134) and 0.044 (RMS contrast of .143) for 

the practice blocks), where part of that contrast variation came from added Gaussian white 

noise with a standard deviation of 2.75 cd/m² (corresponding to a noise RMS contrast of .11). 

Participants viewed the face stimuli 76.5cm away from the display resulting in a square 

stimulus (face and mask) that subtended 18 º (~15 º for the part of the face that is not covered 

with the mask) in width and height. The large size of the faces, more typical of 

conversational distance, was chosen: (1) to allow measurements of larger variations of 

perceptual performance with fixation position (for small faces perceptual performance is less 

sensitive to fixation position within the face); (2) to allow more precise measurements of 

fixation positions relative to facial features. In addition, the large faces (e.g., 10 deg. width, 

15 deg. height) have been shown to optimize face identification (Yang, Shafai, & Oruc, 

2014).   

 Procedure.  

 Observers performed a gender identification task with 45 total blocks consisting of 

several different conditions. Each block consisted of 125 trials. The conditions varied 

depending on whether subjects were allowed to freely make saccades (free-viewing) or were 

forced to fixate specific locations (forced-fixation). Participants were first run through two 

free-viewing practice blocks with higher contrast, during which they could get familiarized 

with the task. Three free viewing blocks were then run with mixed happy and neutral faces 

(50% probability of each), neutral faces separately, and happy faces separately. The free-

viewing condition was followed by a forced-fixation condition of 40 blocks with intermixed 
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happy and neutral faces (50% probability of each). The participants were given instructions 

to maximize their accuracy in the task by trying to choose the correct gender on each trial. 

They were also told the order of the conditions when they got to each one and received 

instructions on the differences between them. All 15 observers completed the free viewing 

blocks prior to the forced fixation conditions.  

 

Figure 4: a) Averages of the 4 stimuli categories are shown with happy female, neutral 

female, happy male, and neutral male categories from top to bottom, respectively. An 

average image was created by taking the mean of the grayscale luminance values across 20 

individual face images in each category. (b) A trial time line is shown. In the free-viewing 

condition, observers made saccades to the centrally presented face from a fixation cross in 

one of eight randomly chosen locations. A stimulus presentation time of 350ms was used in 

the free-viewing condition. Separate blocks were used for happy-expression faces and 

neutral-expression faces in addition to one intermixed block. In the forced-fixation condition, 

observers fixated one of five locations (with four of the locations corresponding to the top of 
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the forehead, the eyes, the nose, and the chin, and the fifth one corresponding to an 

individual preferred point of fixation taken from the free-eye-movement condition). A 

stimulus presentation time of 200ms was used for the forced-fixation condition. Here an 

average happy female stimulus is shown without noise and high contrast for illustration 

purposes (in the actual experiment contrast was substantially lower and white noise was 

added). At the end of each trial, participants had unlimited time to select with the mouse 1 of 

2 possible genders displayed on the screen. As soon as a decision was made, feedback was 

given by outlining the correct gender. (c) The eyewear-embedded camera and the attached 

external battery used to collect data for expression frequencies in the natural world are 

shown.  

 Experimental Conditions.  

 During free-viewing blocks, participants started a trial by pressing the space bar while 

fixating a cross (.44 º x .44 º) in one of eight randomly chosen locations located on average 

13.94º from the center of the stimulus. During forced-fixation blocks, the cross was located 

in one of 5 locations. Four of these fixation cross locations roughly corresponded to the 

forehead, eyes, nose, and mouth, and were placed at 5.07 º intervals along the vertical 

midline of the face. The fifth location was taken from each participant’s individual preferred 

point of initial fixation in the free-viewing condition and was also restricted to the vertical 

midline of the face. The fixation cross was displayed for a random period of time between 

500ms and 1500ms to prevent anticipatory eye movements. If participants moved their eyes 

more than 1º from the center of the fixation cross before the stimulus was displayed or while 

the stimulus was present during the forced fixation condition, the trial would abort and restart 

with a new stimulus. The stimulus was then shown for 350ms in the free-viewing condition, 

and 200ms in the forced-fixation condition. The shorter presentation time for the forced-

fixation condition was used in order to account for the fact that participants did not need time 

to make an eye-movement from the periphery of the screen, as they did in the free-viewing 

condition. At the end of each trial, participants had unlimited time to select with the mouse 

one of two genders that were displayed on the screen without noise. As soon as a decision 
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was made, feedback was given by outlining the correct face. Figure 2b shows a timeline of a 

single trial.  

Measurement of Frequency of Facial Expressions in the real world. 

In order to determine adult observers’ exposure frequency to various facial 

expressions during the course of regular daily activities we re-analyzed the footage collected 

as part of a previous study (Oruc, Shafai, Murthy, Lages, & Ton, 2018). This footage was 

collected from thirty adult participants via eyewear-embedded cameras and had been 

previously analyzed to examine total exposure duration to faces and frequency of various 

attributes such as gender, ethnicity, pose, viewing distance and familiarity. Here, we examine 

the exposure frequency distribution across five expression categories: neutral, happy, sad, 

angry, and other. 

Eyewear-embedded camera. 

The footage was acquired using a high-resolution 75° field-of-view eyewear-

embedded camera, Pivothead Durango (http://www.pivothead.com/). The camera was set to 

time-lapse mode to capture still images at the rate of 1 shot / 30 s at 3-megapixel resolution. 

We replaced the shades with clear lenses and connected the glasses to a pocket-sized external 

battery (Pivothead Power Pro Refuel 8000), which the participants carried near or on their 

person (Figure 2c). 

Participants.  

Thirty adults (14 females; mean age = 31.9 ± 8.4 years, range 20-54) participated in 

the study. Out of the 30 participants: 28 were Caucasian, one was African and one was 

Asian; 18 participants recorded footage on a workday. The participants’ occupations included 

four researchers, five engineers, one youth leader, two teachers, eleven students, one 

http://www.pivothead.com/
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unemployed, one accountant, one administrative coordinator, one managing director, one 

customer services specialist, one bookkeeper, and one lab manager.  Average footage 

recorded per participant was just over 7 hours and 26 minutes (range: 2 h 35 m - 13 h 23 m) 

for a total duration of 209 hours and 57.5 minutes (25,195 frames).  

Procedure. 

Participants were asked to wear the recording glasses during waking hours of one 

day. They were instructed to turn on the camera upon waking and go about their daily 

activities as usual. The camera automatically captured a still image every 30 s throughout the 

day without any additional actions from the participants. At the end of the recording day, 

participants were given the option of connecting the glasses to their personal computer to 

review their footage in order to give them the opportunity to remove any images of a private 

nature (e.g. bathroom visits). Participants also completed a post-participation questionnaire 

where they indicated their gender, age, ethnicity, occupation, whether the recording was done 

on a work-day (vs. non-work day), whether they removed the glasses for any period of time, 

and any additional comments they had. The protocol was approved by the review boards of 

the University of British Columbia and Vancouver General Hospital, and informed consent 

was obtained in accordance with the principles in the Declaration of Helsinki.  

Data coding and analysis. 

The footage was pre-processed for automated detection of faces with custom Matlab 

scripts. A manual adjustment of automated detections was then applied, in which bounding 

boxes were drawn around faces that were missed by the automated process. In addition, false 

detections and redundant bounding boxes due to multiple automated detections of the same 

face were deleted such that there remained only one bounding box around every face that 
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was captured in the footage. Face images that appeared in media, (e.g., print, screen) were 

not coded. Each individual participant’s footage was manually annotated for facial 

expression by classifying each detected face into one of five expression categories: neutral, 

happy, sad, angry, and other. The footage was analyzed completely by two independent 

coders. The coders’ ability to interpret the images was improved by using the context of the 

situations depicted in the still images surrounding a particular detected face. Agreement 

between two coders was defined as the correlation coefficient between the two independent 

coders’ frequency estimates. There was high agreement between the expression annotations 

of the two coders as reflected by a high correlation of .98. We averaged the ratings of the two 

coders to obtain a single frequency estimate for each expression category.  
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Ideal Observer Models. 

 In the following sections, we briefly describe several Ideal Observers that we use to 

model the face perception task presented in this paper and explain the rest of the algorithmic 

details in the Appendix.  

Bayesian Ideal Observer.  

Here, we run several different variants of an ideal observer model, starting with a 

standard ideal observer, which utilizes image information to achieve the highest possible 

performance and does not simulate the foveation of the visual system like the FIO described 

below. We run a face gender identification task with a set of 80 (20 male neutral, 20 male 

happy, 20 female neutral, and 20 female happy; the same identities are used for neutral and 

happy faces) front-view face images that are normalized for the position of the eyes and chin 

as well as for contrast (see the Stimuli subsection of Human Psychophysics Studies above for 

details). On each trial of the simulation, the face images 1 80{ , , }f f  are sampled uniformly at 

random and a template, is , is chosen as a signal to be presented on that trial. The same 

contrast and additive white noise that was used for humans is then added to a chosen 

template, is . The input data, g , to the ideal observer on each simulated trial is then the sum 

of a random (1 of 80) face template, is , and external noise, exn . 

      xi e= +g s n      (3.1.1) 

The ideal observer does not have any sources of suboptimality such as internal noise or 

filtering operations on the face template, 
is , that models foveation. Using Bayes rule, the 

ideal observer finds a set of posterior probabilities, one for each hypothesis that face f  from 
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gender g and emotion e (happy or neutral) was shown, 
, ,g e fH , given the image data, g . Here 

we use the index, f, to represent a calculated posterior probability for a particular face being 

shown, in contrast to the index, i, which represents the actual ground truth signal that was 

shown on a particular trial.  

The posterior probability, , ,( | )g e fP H g , is calculated using the prior probabilities,  

, ,( )g e fP H , and the likelihood, , ,( | )g e fP Hg  , of the image data, g , given the presence of each 

face, f  from gender g and emotion e: 

 
, , , ,

, , , , , ,

( | ) ( )
( | ) ( ) ( | )

( )

g e f g e f

g e f g e f g e f f

P H P H
P H P H P H l

P
=  =

g
g g

g
  (3.1.2) 

Then to find the posterior probability, ( | )gP H g , of the presence of a specific gender, the 

sum is found across the posterior probabilities of individual faces and across two emotions 

belonging to that gender:  

 

 , ,( | ) ( | )
f

g g f

e

eP H P H=g g   (3.1.3) 

 

The normalizing factor, ( )P g , in equation (2.1.2) is the same for all posterior 

probabilities, so it can be ignored without changing the result. The likelihood, , ,( | )g e fP Hg , 

of the signal having come from a particular face is calculated from a known distribution that 

comes from a product of distributions of individual pixel noise (see Appendix for details).  

 

The maximum posterior probability is then chosen as the answer at the end of a simulated 

trial: 
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 argmax( ( | ))g
g

decision P H= g   (3.1.4) 

Region of Interest Bayesian Ideal Observer. 

In order to understand which regions of a face are important for this particular task we 

also run a Region of Interest Ideal Observer (ROI), which is a Bayesian Ideal Observer that is 

separately run using small sections of the face stimuli image at a time. The calculations are 

the same as for the ideal observer, except that in contrast to equation (3.1.1), the data, sg , is 

now the sum of a random (1 of 80) face template, ,i ss , and external noise, exn , where i 

indexes the face template and s indexes the section of the face for which performance is 

separately calculated: 

 ,s exi s= +g s n    (3.2.1) 

The signal ,i ss on each simulated trial is now taken from a specific 30x30 pixel 

section from a randomly chosen face template, i. Figure 3a.1 and 3a.2 shows how small 

sections of a face are processed at a time and likelihoods are found for each section. Figure 

3a.3 shows a performance map that is created by sampling different sections across the face 

stimulus. Here, we run a simulation with 30,000 trials. Due to computational constraints, we 

only sample the sections every 10th pixel rather than every adjacent pixel, which results in a 

47x47 performance map (it is not 50x50 because of the 30px section size). This map is then 

resized using bilinear interpolation to a 500x500 pixel performance map to match the size of 

the face images.  

 

Foveated Ideal Observer (FIO) Model. 

A spatially variant contrast sensitivity function (SVCSF) was used to model the 
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degradation of the quality of information obtained in the periphery of a foveated visual 

system (M. F. Peterson & Eckstein, 2012):  

 0 0

0 0 0( , , ) exp( ( ) )
a n

SVCSF f r c f b f d r f = − −   (3.3.1) 

where f is spatial frequency in cycles per degree of visual angle. The terms 0a , 
0b , and 

0c , 

were chosen constants set to 1.2, 0.3, and 0.625 respectively, to set the maximum contrast at 

1 and the peak at 4 cycles per degree of visual angle at fixation. The polar coordinates r and θ 

specify the distance in visual angle and direction from fixation. 
0d  specifies the eccentricity 

factor as a function of direction, which represents how quickly information is degraded in the 

periphery. 
0n  specifies the steep eccentricity roll off factor. In the model simulations, 

different parameters are used for 
0d  for the vertical up, du, vertical down, dd, and horizontal, 

dh, directions. The parameters  du, dd , dh, and 
0n  are used from a previous fit with the 

Foveated Ideal Observer (FIO) model to match human performance (proportion correct) as a 

function of fixation position (5 different fixations down the vertical midline of the face) of a 

face identification task with a set of 20 different observers that did not participate in the 

experiments of this study (M. F. Peterson & Eckstein, 2012).  The values used for parameters 

du, dd, dh, and 
0n  respectively, are 1E-4, 2.4E-4, 5E-5, and 5. The Akaike Information 

Criterion (Akaike, 1974), which takes into account the variance for each data point, is used as 

a distance measure. The same parameters are used for the gender identification task in this 

experiment, except for the internal noise parameter, which shifts the performance curve 

downwards or upwards but does not significantly alter the shape of the curve and the relative 

rank order of accuracies across fixation points. The circular plots between Figure 3b.1 and 
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2b.2 show examples of 2d contrast 

 

Figure 5: a) A flow chart for a Region of Interest Ideal Observer. (a.1) An Ideal Observer is 

separately run for each small 30x30px section of a face image corresponding to a center 

point that is sampled every 10px. (a.2) On each simulated trial, likelihoods are found for a 

chosen face to male be or female. The likelihoods are themselves sums of likelihoods of 

individual faces for each gender. (a.3) The maximum likelihood principle is used to find 

performance in the gender task for each separate face section and output a performance map 

that shows which parts of a face are the most informative for this task. b) A summary of the 

process of the computations in the FIO for two fixations. The top panels show a fixation point 

that is below the eyes, which is optimal in several different face discrimination tasks, 

including gender identification with neutral faces. The bottom panels show a fixation that is 

at the tip of the nose, which is the theoretical optimal fixation point when viewing happy 

faces in a gender identification task. (b.1-b.3), The filtering operation for a noiseless 

template. (b.1), A face image is conceptually divided into bins that correspond to specific 

CSFs as a function of retinal eccentricity. Contrast sensitivity functions that correspond to 



90 

 

the center of fixation preserve the higher spatial frequencies (seen as a higher contrast in red 

in the CSF plots), while contrast sensitivity functions that are far from the fixation position 

act as low-pass filters and mostly leave the low spatial frequencies (seen as a low-contrast 

blue in the CSF plots). (b.2), The image is transformed into the frequency domain, filtered 

separately by each possible CSF (here only two are shown), and then transformed back into 

the spatial domain, resulting in a set of differently filtered images corresponding to each bin. 

(b.3), Corresponding bins are then extracted from the filtered images and input into a 

composite image that simulates foveation. The procedures in b.1–b.3 are then repeated for 

each of the rest of the noiseless face images, as well as for the noisy input to the model on a 

particular trial. A set of response variables are then calculated, from which a set of 

likelihoods is found of each face given the noisy image input. (b.4), A decision of which face 

was shown is made by taking the maximum likelihood. Across many trials, a set of proportion 

correct (PC) values is found, one for each fixation point, and then combined into a heatmap. 

iFFT, Inverse FFT. 

 

sensitivity functions at 2 different locations with respect to the fixation position. Contrast 

sensitivity functions that correspond to the center of fixation preserve the higher spatial 

frequencies (seen as a higher contrast in red in the plots), while contrast sensitivity functions 

that are far from the fixation position act as low-pass filters and mostly leave the low spatial 

frequencies (seen as a low contrast in blue in the plots). 

  Here, we simulate the same face gender identification task with a set of 80 face 

images. On each trial of the simulation, the face images 1 80{ , , }f f  are sampled uniformly at 

random and a template, is , is chosen. The same contrast and additive white noise that was 

used for humans is then added to a chosen template, i. However, in contrast to equation 

(2.1.1), the noisy template is then linearly filtered with the SVCSF and corrupted with 

additional internal white noise to become the input data, kg  , to the foveated ideal observer:

  

 ( )k k i ex in= + +g E s n n   (3.3.2) 

where exn  is the external Gaussian white noise, inn  is the internal Gaussian white 
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noise, and kE is the linear operator that simulates the fixation dependent foveation of the 

input. This foveated signal is compared (by taking a dot product) to similarly foveated 

noiseless templates (original face images) to arrive at a set of responses, ,f kr  , which come 

from a multivariate Gaussian distribution with a known mean, ,f kμ  , and covariance matrix, 

k  (see Appendix for details on how they are calculated): 

 , , )~ ( ,f kk f kMVN r μ   (3.3.3) 

Using Bayes rule, the FIO finds a set of posterior probabilities, one for each hypothesis that 

face f  from gender g and emotion e (happy or neutral) was shown, , ,g e fH , given a set of 

responses ,f kr . The posterior probability, , , ,( | )g e f f kP H r ,  is calculated using the prior 

probabilities, , ,( )g e fP H , and the likelihood, , , ,( | )f k g e fP Hr  , of the set of responses given the 

presence of each face,  f, and the observer’s fixation at spatial location, k: 

  
, , , , ,

, , , , , , , ,

,

( | ) ( )
( | ) ( ) ( | )

( )

f k g e f g e f

g e f f k g e f f k g e f

f k

P H P H
P H P H P H

P
= 

r
r r

r
  (3.3.4) 

The normalizing factor, ,( )f kP r , in equation (2.3.4) is the same for all posterior 

probabilities, so it can be ignored without changing the result. Then to find the posterior 

probability, ,( | )g f kP H r
, of the presence of a specific gender, the sum is found across the 

posterior probabilities of individual faces and across two emotions belonging to that gender.  

 ,, ,,( | ) ( | )f k f kg

f

g e f

e

P H P H=r r   (3.3.5) 

The maximum posterior probability is then chosen: 

 ,argmax( ( | ))g f k
g

decision P H= r   (3.3.6) 
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Convolutional Neural Network Model. 

 Stimuli. 

Training.  

 The training stimulus set was taken, with permission, from a combination of the 

Multimedia Understanding Group (MUG) faces database (Aifanti, Papachristou, & 

Delopoulos, 2010), the Cohn-Kanade (CKPlus) faces database (Kanade & and, 2000; Lucey 

et al., 2010), a Binghamton University faces database (L. Yin, Chen, Sun, Worm, & Reale, 

2008), and an in-house faces database. The first three databases mentioned above contain 

movies of facial expressions starting from a neutral expression and unfolding into one of 

several different emotions, all of which were discarded, except for happiness. The remaining 

happy-expression movies were then used to manually extract a single frame of a neutral 

expression from the beginning of each movie and then a single frame of a happy expression 

from a later time point. This allowed for the creation of two datasets, one with a neutral-

expression, and another with a happy expression, with the same identities in each dataset. 

The datasets were then further manually trimmed to discard male identities that had 

excessive facial hair, which may have biased the CNN model to use that as a major feature in 

the gender discrimination task. This resulted in a set of 137 female faces and 84 male faces 

for each facial expression (neutral and happy), with the same identities. In order to avoid 

biasing the model toward female faces, a random subset of the male faces were oversampled 

without replacement to create an equal set of 137 faces for each gender (274 total for each 

facial expression). Due to the small number of faces in this set, a data augmentation step was 

then implemented, where 20 copies of each face in the dataset were created, with random 

Gaussian white noise added to each copy. This resulted in a set of 5080 faces for each facial 
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expression (2540 for each gender within a facial expression dataset), where none of the faces 

had the exact same pixel values due to the added noise. We trained the model separately in 

three different ways: 1) using a neutral-expression dataset; 2) using a happy-expression 

dataset; 3) using a combination of mostly (87%) neutral-expression faces and a small 

proportion (13%) of happy-expression faces. The expression proportions for the third training 

set were obtained from frequencies of facial expressions found in the real world (see 

Measurement of Frequency of Facial Expressions in the real world section of the Methods 

above).  

Testing.  

The base dataset used for the test stimuli were the same 80 faces (20 male happy, 20 

female happy, 20 male neutral, 20 female neutral) that were used to the run the main analyses 

with the ROI and FIO models as well as the human psychophysics experiments. This resulted 

in a dataset with an equal number of faces for each gender and facial expression, and the 

same identities across the two expressions. In order to get a large enough dataset to measure 

more precise performance differences between differently trained CNN models, a data 

augmentation step was then implemented, where 10 copies of each face in the dataset were 

created, with random Gaussian white noise added to each copy. This resulted in a set of 800 

faces (2 datasets with 400 faces for each facial expression). These two datasets were then 

separately used to test three differently trained models (described in the Training section 

above), resulting in 6 combinations of testing and training that we describe in the results 

section.  

Architecture and Settings. 

Original resnet-18. 
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 We use an 18-layer resnet-18 (He, Zhang, Ren, & Sun, 2015) architecture (Figure 4a) 

to run a 2-class gender discrimination task with the datasets described above. The network is 

made up of 4 “residual blocks,” each of which contain 2 pairs (this number is higher for other 

variants of this network structure) of the same layer structure (same size and depth of feature 

maps). In cases where it is more advantageous to do so, the network is able to learn an 

identity mapping between consecutive layers of the same size within a residual block, which 

in essence allows the network to skip layers if needed, and tune itself to a network size that is 

optimal for a specific classification problem.  

We use mini-batch (200 images per batch) stochastic gradient descent (SGD) along 

with a cross-entropy loss function to optimize the parameters in the model. We use 

hyperparameter settings of 5e-4 for the learning rate and .9 for momentum. Although this 

network can theoretically be run with any input image size, here we run it with an image size 

of 112x112 pixels due to a limitation of the resolution of the training images we used. 

Upscaling the training images would only increase computation time without improving 

performance.  

Modified resnet-18 and Class-Specific Activations Visualization.  

In addition to the original resnet-18 network, we use also the methodology of (Zhou, 

Khosla, Lapedriza, Oliva, & Torralba, 2015) and run a modified version of the same network 

in order to be able to construct a visualization of the important features in the input stimuli 

that are used by the network to do the gender classification task. This is done by mapping a 

weighted linear combination of the 14x14 feature maps of the last convolutional layer of the 

network onto the original 112x112 input images. The weights used to combine the feature 

maps come from the learned connections between the Global Average Pooling (GAP) layer, 
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which acts as a unidimensional representation of the 14x14 feature maps preceding it, and the 

class scores output by the network. For each of the 2 classes, a specific Class Activation Map 

(CAM) is found by using the weights connecting the GAP layer to a specific class. Although 

(Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2015) used this method for localization of 

objects in complex classification tasks with a large number of classes, it is still useful for our 

purpose of visualizing the features of faces that are most discriminative for the network 

during this task. Since the faces are aligned during both the training and testing phases, the 

discriminative features should be located in specific areas across CAMs. We average the 

visualizations across CAMs to get a single visualization map for each testing set to get an 

overall representations of which face features the network is able to use the most during this 

task.  

  Figure 4b shows the modified version of the resnet-18 network, where the feature 

maps (height and width, but not depth) of the third and fourth residual block are larger. 

Implementing the change relative to the original resnet-18 network only involves lowering 

the stride from 2 to 1 during the convolution operation before the last 2 residual blocks. The 

difference in the modified network is outlined in red.  
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Figure 4: A flowchart of the operations and outputs involved in the CNN network that we 

use. (a) The top flowchart shows the structure and operations involved in the original resnet-

18 network (He, Zhang, Ren, & Sun, 2015). Although this network can theoretically be run 

with any input image size, here we run it with an image size of 112x112 pixels and show the 

sizes of feature map outputs after max pooling and convolution operations along with the 

chosen depths of the feature maps at each layer, which are fixed parameter settings. 

Similarly, although the network is able to learn to classify an arbitrary number of classes, 

here we show an output of class scores for a 2-class gender discrimination ask. One aspect 

of the resnet network that isn’t explicitly shown in the flowchart is the “skip-connections” 

between layers of the same size. The network is made up of 4 “residual blocks,” each of 

which contain 2 pairs of the same layer structure (same size and depth of feature maps). In 

cases where it is more advantageous to do so, the network is able to learn an identity 

mapping between consecutive layers of the same size within a residual block, which in 

essence allows the network to skip layers if needed, and tune itself to a network size that is 

optimal for a specific classification problem. (b) The bottom flowchart shows a modified 

version of the resnet-18 network, where the feature maps (height and width, but not depth) of 

the third and fourth residual block are larger. Implementing the change relative to the 

original resnet-18 network only involves lowering the stride from 2 to 1 during the 

convolution operation before the last 2 residual blocks. The difference in the modified 

network is outlined in red. We implement this modification in order to output a set of 14x14 

pixel feature maps instead of 4x4 pixel feature maps. This allows us to use the methodology 

of (Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2015) to construct a visualization of the 

important features in the input stimuli that are used by the network to do the gender 

classification task. This is done by mapping a linear combination of the 14x14 feature maps 

onto the original 112x112 input images.  
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3.3 Results 

Region of Interest Ideal Observer and CNN Model show an increase of 

information in the mouth region of happy vs. neutral expression faces for a 

gender identification task. 

In order to understand if the distribution of discriminative information in the face 

stimuli for a gender identification task changes when using happy-expression vs. neutral-

expression faces, we first ran a Region of Interest Ideal Observer (ROI) analysis, which 

shows the most informative regions of a face for a particular task (see Methods and Figure 3a 

for details about the ROI). Figure 5a shows the results of the ROI separately for trials where 

neutral face stimuli were shown (left panel) vs trials where happy face stimuli were shown 

(right panel). Although the eyes are important features for both sets of face stimuli, there is 

an increase of information in the mouth region for happy faces, suggesting that there are 

gender differences in happy expressions that might arise from gender differences in 

expression of happiness. There is evidence that there are differences in muscle activation 

around the mouth region between men and women during positive expressions (smiling), 

with women having a greater activation and a more exaggerated smile (Soussignan et al., 

2013). Figure 5b shows the corresponding results of the performance of an Ideal Observer, 

which uses all of the information in the faces to do the gender discrimination ask. The Ideal 

Observer performs better with happy-expression faces relative to neutral-expression faces 

because of the extra gender information in the mouth region of happy-expression faces.  

 In addition to running ideal observer models, we also run a CNN model that is able 

to simulate the development of an internal face representation based on exposure to a specific 
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training set, which an Ideal Observer is not able to do. Unlike an Ideal Observer, which has a 

perfect pixel-level representation of each faces used in this task, a CNN model is able to 

learn a complex feature representation of the faces. We train the model on a gender 

discrimination task with a stimulus set of neutral-expression faces and then separately train 

another model on a stimulus set with happy-expression faces. Both sets have the same face 

identities. Then we test the models with a separate set of neutral-expression faces and a 

separate set of happy-expression faces, respectively, which are the same stimuli that were 

used in human psychophysics experiments above. In this way, we train and test a model on 

neutral-expression faces, and then separately train and test a model on happy-expression 

faces and compare the results to the output of the Ideal Observer and ROI. Figure 5c shows 

visualizations of which parts of a face a CNN model uses the most (in terms of magnitude of 

neuron-like node activations in the last convolutional layer) to do the gender discrimination 

task with a model trained and tested on neutral-expression faces, and a separate model 

trained and tested on happy-expression faces. The model trained and tested on happy-

expression faces has high activations across a large area of the face, including the eye and 

mouth region. In contrast, the model trained and tested on neutral-expression faces has high 

activations across a smaller area of the face that does not include the mouth region. These 

results are similar to the results of the ROI maps, which show that there is an increase in 

gender information in the mouth region of happy-expression faces. Figure 5d shows the 

corresponding results of the performance of each of the two CNN models. The model trained 

and tested with happy-expression faces performs better relative to one trained and tested with 

neutral-expression faces because of the extra gender information in the mouth region of 

happy-expression faces. Based on the visualizations, the model is able learn to use this 
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information when trained with happy-expression faces, and then is able to extract it when 

tested on happy-expression faces. However, model that is trained on only neutral-expression 

faces is unable to learn to extract this information.  

Foveated Ideal Observer predicts different optimal point of fixation for 

happy vs. neutral expression faces for a gender identification task.  

  We evaluated the theoretical predictions for an optimal point of fixation for an FIO 

model, which took into account the foveated nature of the visual system. The model 

incorporated a spatially variant filtering of the visual input and integrated the information in 

face images optimally to compute posterior probabilities and make trial to trial decisions 

about the gender of the face presented (see Figure 3b and Methods for mathematical details). 

The parameters for the eccentricity dependent contrast sensitivity function of the FIO were 

obtained by fitting the FIO model to an independent data set of 20 different observers 

participating in a forced-fixation experiment for a face identification task (M. F. Peterson & 

Eckstein, 2012). Given that there is more gender information in the mouth region for happy 

faces, as shown with an ROI and CNN model (Figure 5a-d), the FIO (Figure 5e) predicts a 

downward shift in the theoretical optimal point of fixation for trials with happy-expression 

faces (right panel) vs trials with neutral-expression faces (left panel).  

 The results show that using faces with a happy expression in a gender identification 

task, alters the original theoretical optimal point of fixation (just below the eyes) to one that 

is at the tip of the nose. In order to make sure that these differences can be generalized and 

are not simply a reflection of the specific set of 80 faces that we used for this task, we ran the 

FIO analysis on another set of 80 faces and found the same results (proportion correct values 

from the FIO were used at 50 equally spaced points between the forehead and the mouth on 
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the vertical midline of the face to find an RMS of .012 for a happy-expression faces 

comparison, with the largest difference between two points being .018,  and an RMS of .013 

for a neutral-expression faces comparison, with the largest difference between two points 

being .02). 

  

Figure 5: a) The top row shows the results of a Region of Interest Ideal Observer 

performance (proportion correct) map in a gender identification task for many simulated 

trials where the stimulus was a neutral face (left), or a happy face (right). The ROI map for 

happy faces shows that there is more discriminative information in the mouth region 

compared to the ROI map for neutral faces. b) The corresponding results of the performance 



102 

 

of an Ideal Observer, which uses all of the information in the faces to do the gender 

discrimination ask, are shown. The Ideal Observer performs better with happy-expression 

faces relative to neutral-expression faces because of the extra gender information in the 

mouth region of happy-expression faces. c) The middle row shows visualizations of which 

parts of a face a CNN model uses the most (in terms of magnitude of neuron-like node 

activations in the last convolutional layer) to do the gender discrimination task with a model 

trained and tested on neutral-expression faces, and a separate model trained and tested on 

happy-expression faces. The model trained and tested on happy-expression faces has high 

activations across a large area of the face, including the eye and mouth region. In contrast, 

the model trained and tested on neutral-expression faces has high activations across a 

smaller area of the face that does not include the mouth region. d) The corresponding results 

of the performance of each of the two CNN models are shown. The model trained and tested 

with happy-expression faces performs better relative to one trained and tested with neutral-

expression faces because of the extra gender information in the mouth region of happy-

expression faces. Based on the visualizations, the model is able learn to use this information 

with happy-expression faces. e) The bottom row shows a performance map of an FIO on 

trials where the stimulus was a neutral face (left), or a happy face (right).  The FIO for 

happy faces shows that there is a shift downward in the theoretical optimal point of fixation 

from one that is below the eyes for neutral faces to new point that is at that the tip of the 

nose. In addition, there is an increase in performance at the theoretical optimal point for 

happy faces vs neutral faces. Individual observers’ average (across trials and blocks) initial 

fixation positions from the free-viewing condition are overlaid in blue and the white point is 

the average across observers (average of blue points). Performance between the neutral and 

happy maps of the ROI can be directly compared, as well as performance between the 

neutral and happy maps of the FIO. However, performance cannot be directly compared 

between the FIO and ROI. A noise parameter was fit to each model separately because of 

large differences in efficiency between the two models compared to an ideal observer. Using 

the same value for both would result in ceiling or floor effects in performance.  

 

 

 

 

 

 

 

Human Perceptual Performance and Eye movements with Happy and 
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Neutral Expression Faces. 

Based on the theoretical modeling results, we hypothesize that if humans integrated 

all the information across the face optimally and adapted an optimal eye movement strategy 

to the specific emotional expression of the stimuli, they should also show a downward shift 

in their preferred point of fixation for faces with happy expressions.   

A group of 15 observers participated in a face gender identification task with two 

experiments. The first experiment was a free-viewing condition that was used to evaluate 

whether the facial expressions altered the human initial preferred point of fixation. The 

second experiment was a forced-fixation condition that was used to evaluate identification 

performance as a function of fixation position. The free-viewing experiment was run in the 

first 3 blocks (125 trials per block), followed by 40 blocks (125 trials per block) of the 

forced-fixation experiment. Many more blocks were used for the forced-fixation position 

compared to the free-viewing study due to the need to collect performance data for 5 fixation 

points. See Figure 2 for a task timeline.  

Free-Viewing. In the free viewing study, participants were able to make free eye 

movements to faces in three different experimental blocks that differed in the presentation of 

the happy or neutral facial expressions. In the first block, both happy and neutral-expression 

faces were intermixed across trials and randomly sampled with equal probability. In the 

second and third blocks, neutral-expression and happy-expression faces were presented 

separately, respectively, for 125 trials each. We used a short presentation time of 350ms to 

assess a preferred fixation location for a single initial saccade. The was no statistically 

significant difference between the preferred 1st vertical fixation position in the block where 

happy and neutral faces were intermixed across trials vs. the block with only neutral-
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expression faces, t(14) = 1.146, p = 0.267, one-tailed. When the facial expressions were 

blocked, there was a small but statistically significant difference in initial vertical fixation 

position between the block with neutral-expression stimuli vs. the block with happy-

expression stimuli, where the fixation for happy-expression stimuli was .254 degrees lower, 

t(14) = 3.016, p = 7.787E-3, one-tailed, corresponding to 17% of the distance between the 

theoretical optimal point for neutral-expression faces and the theoretical optimal point for 

happy-expression faces, as well as 8.6% of the distance between the eyes and nose.  

Figure 5e shows observers’ average initial fixation positions overlaid onto predictions 

of the FIO. On their first saccade, fifteen of the original eighteen observers tended to fixate a 

region slightly below the eyes which is consistent with the previous results from (M. F. 

Peterson & Eckstein, 2012), showing that this behavior is observed in about 85-90% of 

subjects. There was also no observed significant difference between the mean fixation 

position in the neutral-expression block and the theoretical optimal point of fixation for the 

FIO with neutral face stimuli, t(14) = 0.105, p = .918, two-tailed, corresponding to 0.026 

degrees. However, there was a significant difference between the mean fixation position in 

the happy-expression block and the theoretical optimal point of fixation for the FIO with 

happy face stimuli, t(14) = 5.376, p = 9.775E-5, two-tailed, corresponding to 1.252 degrees 

and 85% of the distance between the theoretical optimal point for neutral-expression faces 

and the theoretical optimal point for happy-expression faces, as well as 42% of the distance 

between the eyes and the nose. 

 Forced-Fixation Study. The free-viewing study showed a small effect of facial 

expression on the initial fixation position (0.254 degrees difference). However, the FIO 

showed a significant difference (1.48 degrees) between the theoretical optimal point with 
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neutral-expression faces (just below the eyes) and the happy-expression faces (nose tip). This 

discrepancy with the FIO model might suggest an inability of humans to learn the new 

optimal point of fixation. However, it may also be the case that the FIO does not accurately 

predict the human optimal point of fixation for happy faces. To test this possibility, we 

assessed whether there was a difference in identification accuracy with neutral and happy 

face stimuli at 5 different points of fixation down the vertical midline of the face (four of 

them roughly corresponding to the forehead, eyes, tip of the nose, and mouth; the fifth was 

an individual preferred point of fixation found during the free-viewing condition) by forcing 

observers to fixate each position during the duration of the trial using only the 200ms 

presentation time (with feedback). We found that the FIO model fit the human forced-

fixation data well for neutral stimuli. The theoretical optimal point of fixation predicted by 

the FIO matched the location of the empirically found optimal point in humans, which is 

their preferred point of fixation as seen in Figure 6a. The increase in performance at the 

preferred point was higher (by 1.2%) but not statistically different from performance at the 

eyes (t(14) = 1.694, p =0.112, one-tailed). However, performance at the preferred point was 

significantly higher than at the nose (t(14) = 3.45, p = 3.9E-3, one-tailed). In contrast to the 

ability of the FIO to predict human performance as a function of fixation point for the 

neutral-expression faces, we found that there was a disagreement between human forced-

fixation data and the FIO using happy-expression faces. Human performance with happy-

expression stimuli is relatively flat between the eyes, preferred point, and the nose (t(14) = 

1.915, p=.076, one-tailed, eyes vs. preferred point; t(14) = 1.105, p = 0.288, one-tailed, 

preferred point vs. nose), rather than having a shift downward of the optimal fixation point to 

the nose and a significant increase in performance at that point (4% difference), as predicted 
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by the FIO (Figure 6a).  

To quantitatively compare how human and FIO performance varied with fixation 

position, we varied the internal noise in the FIO model to degrade its performance in order to 

fit the human data (minimize the Akaike information criterion (AIC) (Akaike, 1974)). All 

parameters related to the contrast sensitivity function remained the same as in (M. F. 

Peterson & Eckstein, 2012), based on fitting an independent set of observers participating in 

a forced-fixation face identification study (see Methods). The continuous line in Figure 6a 

shows the predicted model performance of FIO for happy and neutral face stimuli separately. 

The FIO does not successfully predict human performance with happy-expression stimuli. 

Note that the level of internal noise shifts the accuracy curve downwards or upwards but does 

not significantly alter the shape of the curve and the relative rank order of accuracies across 

fixation points.  

An additional discrepancy between the FIO and the measured human performance is 

that the model predicts higher performance with the happy-expression faces (see peak 

performances in Figure 6a) relative to neutral-expression faces, while human gender 

discrimination performance is similar for both sets of emotion expressions. We also 

measured the efficiency (see Methods for details of this metric) of human observers relative 

to both an Ideal Observer model and an FIO model for happy-expression and neutral-

expression trials separately. We used an average of human performance from their preferred 

points of fixation in the forced-fixation condition. For the FIO, the fixation position used to 

calculate performance was taken from the optimal point for happy-expression stimuli and 

neutral-expression stimuli separately. In addition, the internal noise parameter in the FIO was 

set to zero to have a more accurate comparison with the ideal observer. The efficiency of 
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humans relative to the ideal observer for neutral-expression faces and happy-expression faces 

is .0027 and .0022, respectively, which shows that humans are less efficient at using the extra 

gender information contained in happy-expression faces. Similarly, the efficiency of humans 

relative to the FIO for neutral-expression and happy-expression faces is .01 and .007, 

respectively, with humans again being less efficient in using the information in happy-

expression faces. For both sets of stimuli, human efficiency relative to the FIO is higher than 

the efficiency relative to the ideal observer because the FIO has a major source of 

suboptimality that limits its own use of the information contained in the original face images. 

These results suggest that the human strategy might depart in a fundamental way from the 

FIO for gender discrimination with happy-expression faces. The small differences between 

the eye movement strategies and perceptual performance in discriminating gender for happy-

expression faces vs. neutral-expression faces suggests that human observers might adapt a 

single strategy for both stimulus types. One possibility is that human strategy is optimized for 

the most frequent type of facial expression that occurs in the natural world when we first 

encounter or come across a person and make an initial eye movement to that person’s face. In 

the next section, we investigate this hypothesis with experimental measurements and 

computational modeling efforts.  
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Human eye movement strategy is adapted to the statistical occurrence of 

emotional expressions in the real world. 

To investigate the possibility that human eye movements and perceptual strategy 

might be related to the naturally occurring statistics of emotion expressions in the real world, 

we first analyzed the real-world facial expression frequency data collected with a mobile 

eyewear-embedded camera (see “Measurement of Frequency of Facial Expressions in the 

real world” part of Methods section). We then evaluated several computational models that 

implemented components that are conceptually consistent with the findings of the facial 

expression frequency data.  

Facial Expression Frequency Analysis Shows a Low Frequency of Happy vs. 

Neutral Expressions.  

A group of 30 participants wore a mobile eyewear-embedded camera as they went 

about their daily lives and came into contact with other people throughout the day. Out of a 

total of 25,195 frames collected, 7641 faces were detected in 4940 frames. An average of 

254.7 (SD=148.8) faces per participant were detected. As shown in Figure 6b, the results 

indicate that the overwhelming majority of face exposure is to neutral faces. A repeated-

measures ANOVA revealed a significant main effect of expression category (F (4, 112) = 

1804.27, p << .001). Post hoc pairwise comparisons showed that frequency of neutral 

expression (M = 85.52%, SD = 9.19) was significantly greater than that of happy (M = 

10.25% SD = 6.62), sad (M = .25% SD = .45), angry (M = .33% SD = .69) and other (M = 

3.67% SD = 3.68) expressions based on Tukey-Kramer Multiple-Comparison Tests (all p’s 

< .05). In addition, frequency of happy expression was significantly greater than those of sad, 

angry and other expression categories (all p’s < .05). Finally, the other category frequency 
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exceeded that of sad but not angry expressions. No differences were found between sad and 

angry expression categories (p > .05). Overall, the most frequently seen basic expression is 

happy, though, it accounts for only a small fraction (approx..10%) of total exposure. Sad and 

angry expressions are rarely encountered. The “other” category was an umbrella term that 

included all subtle expressions and un-coded basic expressions, such as surprise, yet 

accounted for only 4% of total exposure. Thus, our analysis revealed that in the naturalistic 

setting exposure to overtly expressive faces is infrequent. Rather, faces encountered on a 

daily basis predominantly display a neutral expression. 

Modification to the FIO that takes into account differences in neutral and happy 

expression frequencies.  

Here we implement various modifications of the FIO model trying to incorporate 

components related conceptually to the naturally occurring statistics of emotional 

expressions. We evaluate two different versions of the FIO model. In the first version, we use 

a model that applies prior probabilities to the representations of happy-expression faces and 

neutral-expression faces based on the measured statistics of the expressions. In the second 

version, we assume that the human perceptual strategy is adapted to neutral-expression faces 

and relies less on the mouth (relative to the optimal observer) during a gender discrimination 

task. Below, we describe and assess both models.  

FIO with prior probabilities of expressions. 

In the FIO model, the prior probabilities represent the proportion of time that either a 

happy or neutral facial expression appears on a particular trial. These probabilities are part of 

the calculation that the model uses to find which category a stimulus likely belonged to. 

Running a standard FIO with uniform priors (equal probabilities) for happy-expression and 
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neutral-expression faces leads to significant differences in performance as well as a change in 

the theoretical optimal point of fixation between them, neither of which we observe in 

humans (Figure 6a). We first attempt to explain this discrepancy by running the same FIO 

model, except with a significantly lower prior probability for happy expressions and a higher 

prior probability for neutral expressions. Although we change the priors in the calculation of 

the posterior probabilities, we still keep the actual frequency of happy and neutral faces 

presented to the model at 50%, and then separate out trials for each of the two expression 

categories. We use the data on facial expression frequencies, collected in naturalistic settings, 

to set priors for happy and neutral facial expressions. Due to the very low frequencies of 

facial expressions that are not happy or neutral, we ignore them and normalize the sum of 

happy and neutral frequencies to a probability of one. This gives us priors of .893 and .107 

for neutral and happy facial expressions, respectively. In this way, even though the actual 

probabilities of happy and neutral facial expressions that are shown to the model are the 

same, we simulate a change in the internal expectations of the probabilities in humans by 

changing the priors in the model and basing them on the empirically observed frequencies of 

the expression categories.  

Figure 6c shows the results of this model with the skewed priors (prior of .107 for 

happy expressions, and .893 for neutral expressions) compared to humans. Although this 

model results in an overall decrease in performance for happy-expression faces, this 

performance is now much lower than for neutral-expression faces, rather than being very 

close, as it is in humans. This 
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Figure 6:a) Performance in the gender identification task at locations down the vertical 

midline of the face is shown for the FIO model with uniform priors for happy face stimuli 

(blue) and neutral face stimuli (green). Corresponding human performance from the forced-

fixation condition is shown for happy face stimuli (blue circles) and neutral face stimuli 

(green squares). The middle point from the human data is misaligned between neutral and 

happy face stimuli because it is taken from a preferred fixation position in the free eye 

movement condition for each stimulus set individually. The noise in the FIO model is 

adjusted to best fit the model and human performance for the neutral stimuli. The FIO with 

happy stimuli using the same noise, shows an increase in performance and a shift downward 

in the theoretical optimal fixation position. b) We show the results of the frequency of facial 

expressions that were measured with eyewear-embedded cameras by multiple participants in 

the real world. c) Here, we adjust the priors for the FIO model in order to try to account for 

the differences in performance and the optimal point between the human data and the FIO 

with the happy stimuli. The noise in the FIO model is again adjusted to best fit the model and 

human performance for the neutral stimuli for each of the priors. When a very low prior for 

happy stimuli is used, performance drops substantially, but the theoretical optimal point 

remains unchanged. d) In order to account for the lack of movement in the theoretical 

optimal point of fixation for the happy stimuli in humans, we use a model that has a lower 

contrast representation of the mouth and nose region for all of the face. The damping 

parameters used for the mouth and nose were found with a search across 125 combinations 

of three contrast parameters for the eye region, nose region, and mouth region. The top 

panel shows the original stimuli and the middle panel shows how they are altered to lower 

the contrast of the mouth and nose region in this model. The bottom panel shows what the 

stimuli look like after foveation at two example positions, the eyes and nose. These 

visualizations show how the FIO model internally represents the dampened face stimuli at 

different fixation positions. For a foveation position at the eyes, the lower part of the face 
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that includes the nose and mouth is already processed with low resolution, so the dampened 

nose and mouth regions are not expected to affect performance with happy-expression faces. 

However, for a foveation position at the nose, where the nose and mouth are processed with 

high resolution, those regions are now less informative because they are dampened. e) Here 

the performance is shown for humans and the FIO model with uniform priors that uses 

altered internal face representations with a lower contrast mouth and nose region. The 

performance profile of the FIO with altered internal face representations during trials with 

happy stimuli is much closer to the human performance profile with happy stimuli compared 

to the original FIO model.  

 

model was fit to human neutral-expression data, with an AIC measure of .551. In 

comparison, the AIC for happy-expression human data compared to the corresponding results 

with the model is much higher at 22.962.  A possibility is that the ideal observer’s perfect 

representations of the set of faces as well as optimal integration of the facial features makes 

the FIO’s performance very sensitive to the priors. In comparison, humans have intrinsic 

uncertainty in the representations of the faces, as well as suboptimal integration of the 

features (Gold et al., 2012). In order to compensate for these effects, next we evaluated a 

model for which the priors were fit so that it would have the same peak performance for the 

happy-expression and neutral-expression face stimuli. Figure 6c shows the results of this 

model with the resulting priors (prior of .38 for happy expressions, and .62 for neutral 

expressions) compared to humans, along with the results of the original skewed priors (prior 

of .107 for happy expressions, and .893 for neutral expressions) for comparison. 

Note that the noise parameter for both of the models was fit to match human 

performance for the neutral-expression faces. Although the new model with the priors as free 

parameters results in the same peak performance for the happy-expression and neutral-

expression faces, the optimal point of fixation predicted by the model remains unchanged 

(relative to the more extreme priors) and a large discrepancy remains with the human 

accuracy as a function of point of fixation (forced-fixation performance). Although this 
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model is a better fit to the happy-expression data (AIC of 3.53 compared to 22.962 for the 

more skewed priors), the fit is still significantly worse than to the neutral-expression data 

(AIC of .381). 

Gender face representation that down-weights the lower part of the face. 

The second model we investigate assumes that for a gender discrimination task, 

humans adopt a feature strategy that is optimal for the most frequent emotion expressional 

(neutral) by down-weighting the use of the lower part of the face. This includes the mouth 

region and to a lesser extent, the nose region, which are not highly informative about gender 

for neutral-expression faces (see Figure 5a). In the implementation of this concept within the 

context of an FIO model, we use an altered internal representation of the face stimuli. As 

seen in Figure 6d, the internal face representations are altered by lowering the contrast of the 

mouth region by 80%, and the contrast of the nose region by 60%, which results in a 

diminished representation of those regions. Aside from this difference in internal 

representation, the FIO model remains unchanged.  As with previous iterations of the model, 

the internal noise was fit to the human data from neutral-expression stimuli. However, for 

this model, we did a damping parameter search across 125 combinations of three additional 

contrast parameters for the eye region, nose region, and mouth region. The parameter 

combinations were uniformly distributed across different values of contrast for each region, 

so that we also tested combinations where the eyes were dampened instead of the mouth and 

combinations where all features were dampened similarly. These parameters were fit to 

minimize the combined AIC for happy-expression and neutral-expression human data 

compared to the model. The results (Figure 6e) show that the model with a highly dampened 

representation of the mouth region, and a somewhat dampened representation of the nose 
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region, is able to better capture important aspects of the human performance curve. First, the 

model’s performance with happy-expression faces is now comparable to that with neutral-

expression faces, in agreement with the human results. In addition, the fit of this FIO model 

to the human forced fixation performance is improved compared to the previous models 

(AIC of .375 for neutral-expression faces and .16 for happy-expression faces).  

 

CNN model separately trained on happy and neutral faces supports the 

results of the IO and ROI models.   

In addition to running altered versions of the FIO, we also run a CNN model that is 

able to simulate the development of an internal face representation in humans based on 

exposure to a training set with real-world statistics of happy-expression and neutral-

expression faces. We use the statistics of facial expressions that we found with the eyewear 

embedded camera and train a CNN model on a gender discrimination task with a stimulus set 

of 89% neutral-expression faces and then 11% happy-expression faces. Then we test each of 

the models with a separate set of neutral-expression faces and a separate set of happy-

expression faces, which are the same stimuli that were used in human psychophysics 

experiments above. Figure 7a shows a visualization of the most important parts of the stimuli 

that the model uses to do the classification task. The visualizations of the model tested on 

happy-expression faces and neutral-expression faces look similar, with a large use of the eye 

region but not the mouth region. This suggests that a model trained mostly on neutral-

expression faces is unable to learn to use the extra gender information present in happy-

expression faces during testing. This is in contrast to a CNN model that was trained on only 

happy-expression faces (Figure 5c), that is able to use this extra information, which suggests 
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that these two models have different internal representations of faces. Figure 7b shows the 

corresponding performance of the model trained on mostly neutral-expression faces when it 

is separately tested on neutral-expression faces and happy-expression faces. Performance is 

highest when it is tested on neutral-expression faces, which suggests that the internal 

representations of the CNN model are sensitive to the statistical frequency of facial 

expressions that are used during the training phase.  

 

Figure 7: a) Visualizations are shown of the parts of the face stimuli that the CNN model 

uses the most when it is trained on a real-world frequency of happy-expression and neutral-

expression faces in a face gender discrimination task and then separately tested on neutral-

expression faces and happy-expression faces, respectively. The activation magnitude scale 

used to show the importance of different face features is relative only within each image 

because each visualization has been normalized such that the features with the highest 

activations are mapped to the highest values. The visualizations show that the eyes are an 

important region that the CNN uses to do the classification task, regardless of which stimuli 

were used for testing. Even though the CNN is trained on some happy-expression stimuli, it 

does not learn to use more information from the mouth region because the frequency of 

happy-expression stimuli during training is very low. b) Corresponding performance is 

shown for each of the two testing sets used to run this CNN model. Performance is highest 

when the model is tested on neutral-expression faces, relative to when it is tested on happy-

expression faces. The Error bars represent the standard error of the mean of 20 training runs 

for each model. 
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3.4 Discussion 

Previous studies have shown that the initial human eye movement to a face is critical 

and sufficient to achieve close to 90% of asymptotic performance in face discrimination tasks 

(Hsiao and Cottrell, 2008; Or et al., 2015). In addition, studies have shown that the brain 

plans initial eyes movements to locations within faces that maximize the acquisition of 

information to support evolutionarily important tasks (Or et al., 2015; M. F. Peterson & 

Eckstein, 2012).   

Here, we asked whether the human initial fixation strategy for a gender discrimination task is 

fixed or can adapt to specific distributions of information in faces. In laboratory search tasks, 

studies have shown varying degrees of adaptability of eye movements with changes in the 

prior probability or rewards associated with various stimuli and locations (Ackermann & 

Landy, 2010; Droll, Abbey, & Eckstein, 2009; M. P. Eckstein, Schoonveld, Zhang, Mack, & 

Akbas, 2015b; Liston & Stone, 2008; Navalpakkam, Koch, Rangel, & Perona, 2010; M. S. 

Peterson & Kramer, 2001; Stritzke, Trommershäuser, & Gegenfurtner, 2009; Walthew & 

Gilchrist, 2006). Unlike the flexible oculomotor plans in simpler synthetic tasks, we found 

that eye movement plans are less flexible to variations in the distribution of gender 

information across faces with different emotional expressions.  

We showed that humans, unlike ideal observers and foveated ideal observers, are 

unable to take full advantage of gender information in the mouths of happy-expression faces, 

related to differences in muscle activation during smiling (Soussignan et al., 2013). The 

increased gender information in the mouth region for happy faces leads to a downward shift 

in the theoretical optimal initial point of fixation. However, the empirically measured human 

optimal point remains unchanged, and humans show only a slight downward shift in their 



117 

 

initial fixation position during free-viewing. These findings are consistent with evidence that 

the information in the mouth region in general is only used by humans at a course spatial 

scale for gender discrimination (Schyns et al., 2002; Smith, Cottrell, Gosselin, & Schyns, 

2005). As a result, details that are represented by fine spatial frequencies such as teeth and 

corners of the mouth may be largely left unused. One possible explanation is that humans do 

not use much information from of the mouth region in general during face discrimination 

tasks, rather than only in gender discrimination with happy-expression faces. However there 

is evidence against this interpretation since (M. F. Peterson & Eckstein, 2012) showed that 

humans shifted their initial eye movement downward in a happy-expression vs. neutral-

expression discrimination task to take advantage of the crucial information in the mouth 

region. In addition (Schyns, Bonnar, & Gosselin, 2002) showed that observers use fine 

spatial frequency details in the mouth region both for face identification and expressive vs. 

neutral-expression face discrimination tasks.    

Here, we showed that there are scenarios, such as with happy-expression faces, where 

the human strategy to not utilize gender information in the mouth area is suboptimal. Why 

would humans show such suboptimal strategy? We hypothesized that our findings might 

reflect a strategy by humans that is adapted to the statistical occurrence of facial expressions 

in the natural world. If neutral expressions were more prevalent than happy ones, then we 

might expect the human eye movement and feature utilization strategy to be more adapted to 

faces with neutral expressions. Our findings are consistent with this interpretation. First, our 

measurements of the naturally occurring emotional expressions encountered by subjects with 

an eye-wear-mounted camera suggested a vastly more frequent appearance of neutral 

expressions compared to all other expression categories. It is possible that the expression 
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frequency measurements were partly influenced by the encountered people who realized that 

the participants were wearing an unusual eye-wear-mounted camera. However, if anything, 

we might expect that such a scenario would only increase the frequency of non-neutral 

expressions such as surprise and happiness. As a result, our measured frequency might be a 

lower limit of the frequency of neutral expressions.  Second, our psychophysical findings 

suggest a strategy that agrees quite well with the Foveated Ideal Observer for neutral face 

expressions. Third, our results with simulating differences in human development of face 

information extraction with a CNN model trained on neutral-expression stimuli, and 

separately trained on happy-expression stimuli, support our ideal observer analysis. We show 

that a model trained on neutral-expression faces and tested on happy-expression faces has 

lower performance and is unable to make use of additional gender information in the mouth 

region relative to a model trained and tested on happy-expression faces. Although they are 

only a rudimentary approximation of human cortical processing, CNNs are starting to be 

used in the study of human vision and face processing (see  (O’Toole, Castillo, Parde, Hill, & 

Chellappa, 2018) for a review) after successful implementations of various face classification 

tasks in computer vision (Li, Lin, Shen, Brandt, & Hua, 2015; Schroff, Kalenichenko, & 

Philbin, 2015; Taigman, Yang, Ranzato, & Wolf, 2014) , some of which have achieved close 

to human performance. CNNs are known to have certain useful properties that may be able to 

represent aspects of the human visual system. One of those aspects is a feedforward 

multilayer structure that represents progressively more complex features starting from edge 

detection and ending with complex shapes, textures, colors, and the relationships between 

them. Another important aspect is the ability to learn feature detectors that are adapted to the 

complex statistical properties of the features in the images that the model is being trained on. 
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In the context of the gender discrimination task presented here, along with the data on the 

frequency of human facial expressions, humans are overwhelmingly exposed to neutral-

expression face stimuli, rather than happy-face stimuli. We are able to represent these 

differences by training a CNN model on datasets with different statistics of facial expressions 

and showing corresponding differences in performance as well differences in the location of 

important information that is being used for the task. 

When taking the foveation of the visual system into account, we attempted to use an 

FIO model that incorporated the frequency of neutral and happy expressions in humans 

during everyday interactions, as prior probabilities. However, this model did not fit the 

human data well, and was very sensitive to changes in the prior probabilities. A model that 

used a diminished representation of the mouth provided the best fit to human data instead. It 

is important to note the difference between changing the priors of facial expressions vs. 

changing representations of the faces themselves and that the neural correlates of these 

manipulations may relate to different stages of face processing (see (Tsao & Livingstone, 

2008) for a review). Changing the priors is a manipulation that affects a decision variable that 

is formulated in late stages of processing. In humans this would correspond to processing the 

same face stimuli in a similar way for different tasks, until a late stage where there is a top-

down mechanism that affects a perceptual decision based on task demands. This mechanism 

would affect the perceptual decision by using prior perceptual experiences encoded in 

memory. For example, in this view, humans would process faces in a discrimination task 

between happy and neutral faces in the same way as in a gender identification task with 

happy faces, until a late decision-making stage that involves a low dimensional decision 

variable. In contrast, changing the representation of the mouth in the model would 
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correspond to an earlier effect of top-down task specific mechanisms. In this view, the same 

face stimuli would be processed differently, earlier in the face processing stream, depending 

on the current task. For a gender identification task, this model represents a mechanism 

where the more important parts of the face (eyes and nose) are extracted from the original 

face stimulus for further processing.  

In the larger context of vision science, our findings can be related to the increasing 

evidence of how the visual system is tuned to statistical regularities in the environment. This 

happens at multiple levels in the visual stream, including at a low-level of spatiotemporal 

sensitivity in the retina, in early cortical areas, in mid-level vision (Burge & Geisler, 2014, 

2015; Burge & Jaini, 2017; Geisler & Ringach, 2009; S. Zhang, Abbey, & Eckstein, 2009), 

as well as at higher level of object-recognition and use of scene context (Bar, 2004; M. 

Eckstein, 2017; M. P. Eckstein, Koehler, Welbourne, & Akbas, 2017; Hidalgo-Sotelo, Oliva, 

& Torralba, 2005; Koehler & Eckstein, 2017; Torralba, Oliva, Castelhano, & Henderson, 

2006). This tuning is thought to be driven by a combination of evolutionary development and 

direct experience with visual stimuli in the environment. Faces are thought to be the most 

complex of objects that humans are frequently exposed to and it is known that there are 

specialized areas of the brain responsible for specific aspects of face perception (Dachille, 

Gold, & James, 2012; Haxby, Hoffman, & Gobbini, 2000; Kanwisher, McDermott, & Chun, 

1997). A well-known result in face perception research is that performance in face 

discrimination tasks drops substantially when faces are inverted (upside-down) relative to 

upright faces (Farah et al., 1995; Sekuler et al., 2004). It is thought that due to the very 

infrequent prevalence of inverted faces in the experience of observers, they are not processed 

with the same efficiency by face-specific brain areas despite the fact that all of the lower 
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level properties of the stimuli themselves are the same as in upright faces. Given the 

specificity of face processing, it may be that information for specific tasks is extracted most 

efficiently for the most commonly seen facial expressions during those tasks. Our findings 

expand these results to eye movements and facial feature utilization for gender 

discrimination, suggesting that humans adopt a strategy that optimizes gender discrimination 

to the emotional expressions most frequently encountered in everyday life.    
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4 The development of internal fixation-

specific face representations  

4.1 Introduction 

 Face perception is an important ability that most people use many times a day in the 

context of various common tasks such as face identification, gender discrimination, and 

emotion discrimination. There is a large amount of research on the specificity of face 

processing in the brain in relation to how it differs from the processing of other complex 

objects (references). There are many aspects of this specificity, including, the specialization 

of face-processing areas in the brain, the encoding of task-specific information…., and the 

extraction of information from faces with eye movements to specific areas on the face. Here, 

we focus on the last aspect and how it may relate to individual-specific eye movement 

strategies to faces.  

 There is a diminished quality of visual processing by areas of the retina 

outside the foveal region, due to a lower density of photoreceptors. Eye movements, which 

point the high acuity foveola region of the retina during exploration of the environment, are 

critical for accomplishing evolutionarily important tasks. The brain programs eye movements 

by taking into account the foveated properties of the visual system in conjunction with the 

distribution of task-relevant information in the environment (G. E. Legge et al., 1997; 

Gordon E. Legge et al., 2002; Najemnik & Geisler, 2005, 2009; Paulun et al., 2015; M. F. 

Peterson & Eckstein, 2012) to maximize the acquisition of information during basic 
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perceptual tasks (optimal or near-optimal oculomotor strategies).  

During face discrimination tasks, humans exhibit high levels of accuracy with even 

just a single eye-movement (Hsiao & Cottrell, 2008; Or et al., 2015). It has been shown that 

there exists an empirically optimal point of initial fixation to a face located below the eyes 

that for most observers leads to the highest performance in various face discrimination tasks 

(M. F. Peterson & Eckstein, 2012). This fixation location is also theoretically optimal, as 

predicted by a computational model that incorporates a representation of the fovea, but 

otherwise makes optimal decisions under uncertainty. Furthermore, it has been shown that 

this initial optimal point is very consistent across observers, as well as across time within the 

same observer. In addition, this result has been reproduced outside of laboratory conditions 

with participants viewing faces while walking around in the real world with mobile 

eyetrackers (M. F. Peterson et al., 2016). In face discrimination tasks, an observer’s ability to 

make an eye movement to their empirical optimal point of fixation is an important 

determinant of their ability to maximize their performance in that task.  

Despite a strong consistency of the location of the initial fixation to faces across a 

large portion of observers to a position slightly below the eyes, there is a small percentage of 

observers (about 10%) that consistently fixate a position lower on the face, around the tip of 

the nose, and even more rarely around the mouth (M. F. Peterson & Eckstein, 2013). There is 

a distribution of vertical fixation positions to faces across observers, with the vast majority of 

initial fixations located around the eye region, with a long tail down toward the nose and 

mouth region. For simplicity, we call those that fixate closer to the eyes, “eye-lookers”, and 

those that fixate closer to the nose, “nose-lookers.” The (M. F. Peterson & Eckstein, 2013) 

study showed that the fixation location that is theoretically optimal, as shown with a 
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Foveated Ideal Observer (FIO) model, and empirically optimal for eye-lookers, as measured 

in performance at various fixation locations, was actually suboptimal for nose-lookers. 

Furthermore, the lower preferred point of initial fixation was shown to be empirically optimal 

for nose-lookers. However, it is unknown what mechanism causes these individual 

differences in observers.  

Here we build on the previous research in individual differences of the initial eye 

movement to faces and test two different theories to try to explain this effect. The first 

theory, which we refer to as the “altered-anisotropy theory,” involves possible differences in 

the anisotropy of the retina between eye-lookers and nose-lookers. It is known that the 

human retina has differences in the density of photoreceptors as well as retinal ganglion cells 

at different locations that correspond to different parts of the visual field. Besides a general 

loss of spatial acuity with increasing eccentricity from the center of the visual field (Golla, 

Ignashchenkova, Haarmeier, & Thier, 2004; Yeshurun & Carrasco, 1999), differences in the 

quality of representation of different parts of the visual environment are also known to exist 

both between the lower and upper visual field (vertical anisotropy) (Marisa Carrasco, Talgar, 

& Cameron, 2001; Corbett & Carrasco, 2011), as well as between the vertical and horizontal 

directions (horizontal-vertical anisotropy) (Cameron, Tai, & Carrasco, 2002; MARISA 

Carrasco & Frieder, 1997). Here we focus on the vertical anisotropy between the upper and 

lower visual field, which has been shown to result in higher performance when stimuli are 

presented in the lower visual field relative to when the same stimuli are presented in the 

upper visual field in both simple low-level visual tasks (Marisa Carrasco et al., 2001; Corbett 

& Carrasco, 2011) as well as in more complex higher-level (Marisa Carrasco, Marie 

Giordano, & McElree, 2004; S. He, Cavanagh, & Intriligator, 1996; Intriligator & Cavanagh, 
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2001; Kristjánsson & Sigurdardottir, 2008) visual tasks. In relation to faces, individual-

specific differences in vertical anisotropy may result in different vertical fixation behaviors to 

faces. More specifically, we investigate if nose-lookers have a ratio of acuity in their upper 

visual field relative to their lower visual field that is higher than the same ratio in eye-

lookers. For example, if nose-lookers have higher acuity in the upper visual field compared 

to eye-lookers, then nose-lookers may look lower on the face than eye-lookers because they 

are able to get a similar quality of input from the eyes even if they look further down. 

The second theory that we explore, which we refer to as the “matched-template” 

theory, does not involve differences in low-level visual processing that can be generalized to 

non-face tasks. Instead, this theory involves differences between eye-lookers and nose-

lookers that may be explained by a difference in the representation of a face template that is 

stored in higher-order brain areas. There is reason to believe that fixation-specific tuning may 

be present in human face-selective neurons based on the findings of several studies in 

humans and monkeys. There is evidence for increased neural activity in the posterior lateral 

face patch in monkeys (Issa & DiCarlo, 2012) and increased separation of activity patterns to 

major face features in the right inferior occipital gyrus in humans (de Haas et al., 2016), 

when the facial features appear at the typical retinal positions relative to a preferred point of 

fixation, compared to atypical locations. In addition, a “retinotopic protomap” has been 

proposed as an organizing principle for higher visual areas, such as the FFA and OFA 

(Hasson, Levy, Behrmann, Hendler, & Malach, 2002), where the exposure of the visual 

system to consistent locations of objects in certain ranges of eccentricity creates a bias such 

that neurons that are tuned to those objects are preferentially activated when those objects are 

presented at specific locations in the visual field. In relation to this theory, a more recent 
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study also found evidence of “faciotopy,” which refers to a cortical map that topographically 

represents features of a face itself, rather than just representing a part of the observers visual 

system, such as with retinotopy (Henriksson, Mur, & Kriegeskorte, 2015). In this study, it 

was found that the distances between the face-feature-selective patches of cortex reflected the 

physical distances between the actual features in a face stimulus. If representations of faces 

are organized in a fixation-specific way in the brain, then it may be possible that there are 

individual differences in those representations that are shaped by a long-term initial-fixation 

strategy to a specific part of the face.  

Here, we measure human eye movements and performance profiles (performance at 

different forced-fixation positions down the vertical midline of a stimulus) at different 

fixation positions during various tasks and compare results between groups of eye-lookers 

and nose-lookers. We measure the location of the initial eye movement during several 

different face discrimination tasks, including human identification, famous face 

identification, emotion identification, and gender identification to determine fixation 

consistency across these tasks and separate participants into eye-lookers and nose-lookers. 

We also measure the location of the initial eye movement in a chimp face identification task, 

a luggage bag identification task, and a sports/regular car identification task to compare eye 

movement behavior between human-face and non-human-face tasks. We then measure 

performance profiles for eye-lookers and nose-lookers during a human face identification 

task, a sports/regular car identification task, a gabor detection task, and a natural image 

matching task. We run the first three tasks in order to measure differences in the location of 

optimal (performance-maximizing) fixation positions between eye-lookers and nose-lookers 

and determine if those differences correlate with possible differences in vertical anisotropy 



127 

 

between the two participant groups. The sports/regular car identification task is run to see if 

the optimal fixation behavior that is observed with face stimuli can generalize to a non-face 

task. In addition to running experiments with human participants, we run two computational 

models to see if we can reproduce differences between eye-lookers and nose-lookers based 

on differences in a face template that is presented to the models. The first model is a 

Foveated Ideal Observer (FIO), which simulates the foveation of the visual system, but 

otherwise makes optimal decisions under uncertainty (pixel noise) in any classification task 

that it is run on. The second model is a convolutional neural network (CNN), which is 

suboptimal, but is used to represent a rudimentary version of human development with 

different face templates.  

 The analysis of the human eye movement tasks shows that there is a strong 

correlation in vertical fixation position between tasks that involve human faces, with a lower 

correlation to a chimp face discrimination task, and even lower correlation to a luggage bag 

discrimination task. The analysis of performance in the forced fixation tasks, comparing the 

human face identification task with the gabor detection and natural image matching task, 

shows there are no significant differences in vertical anisotropy between eye-lookers and 

nose-lookers, which provides evidence against the altered-anisotropy theory in favor of the 

matched-template theory. In addition, comparison of the forced-fixation human face 

identification task with the forced-fixation gender identification task and the forced-fixation 

sports/regular car identification task shows that the specificity of eye movements to human 

faces, as represented by the FIO, generalizes between human face tasks, but does not 

generalize to other stimuli. Finally, in support of the matched-template theory, the results of a 

modified FIO with fixed face templates (FT-FIO) along with CNN simulations show that 



128 

 

forced-fixation performance profile differences between eye-lookers and nose-lookers can be 

qualitatively reproduced by representing differences in a representation of a fixation-

dependent face template.  
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4.2 Materials and Methods 

Human Psychophysics Studies. 

 Many different tasks are presented in this paper, some of which were done several 

years apart and have used different monitor setups. For conceptual clarity, we describe the 

tasks in the order that they are presented in the results section of the paper rather than the 

order in which they were actually completed. For most of the methods sections below, we 

group the completed experiments into three groups with multiple tasks in each group and 

refer to them in the description of each section:  

 Experiment Group 1. 

This experiment group consisted of 7 different free-fixation tasks where participants 

were free to make eye movements to the presented stimuli.  

Task 1. Human Face Identification with 10 Caucasian male faces: Free-Fixation 

Task 2. Human Face Gender Discrimination: Free-Fixation 

Task 3. Human Famous Faces Identification: Free-Fixation 

Task 4. Human Emotion Discrimination: Free-Fixation 

Task 5. Human Face Identification with 4 Caucasian male faces: Free-Fixation 

Task 6. Chimp Face Identification: Free-Fixation 

Task 7. Luggage Bag Identification: Free-Fixation 

Experiment Group 2. 

This experiment group consisted of 2 different free-fixation tasks where participants 

were free to make eye movements to the presented stimuli, as well as 2 different forced-

fixation tasks where participants were forced to fixate certain points along the presented 

stimulus during the duration of a trial.  
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Task 1. Human Gender Discrimination: Free-Fixation 

Task 2. Human Gender Discrimination: Forced-Fixation 

Task 3. Regular/Sports Car Discrimination: Free-Fixation 

Task 4. Regular/Sports Car Discrimination: Forced-Fixation 

  

Experiment Group 3. 

This experiment group consisted of 3 different forced-fixation tasks where 

participants were forced to fixate certain points along the presented stimulus during the 

duration of a trial.  

Task 1. Human Face Identification with 10 Caucasian male faces: Forced-Fixation 

Task 2. Natural Scenes Matching: Forced-Fixation 

Task 3. Single Gabor Detection: Forced-Fixation 

 Participants.  

 Set 1. A group of 25 undergraduate students of either sex participated for course 

credit. They completed Tasks 1-4 in Experiment Group 1, as well as all Tasks in Experiment 

Group 3.  

Set 2. A group of 78 undergraduate students of either sex participated for course 

credit. They completed Tasks 5-7 in Experiment Group 1.   

Set 3. A group of 6 undergraduate students of either sex, participated for course 

credit. They completed all Tasks in Experiment Group 2.  

Informed consent was obtained from all subjects and guidelines provided by the 

institutional review board of the University of California, Santa Barbara were followed.  

 Apparatus and Materials.  
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Setup 1.  

This setup was used for Tasks 1-4 in Experiment Group 1, as well as all Tasks in 

Experiment Group 3. MATLAB Psychtoolbox and Eyelinktoolbox software were used to run 

the eyetracker from a display computer as well as present visual stimuli on the display 

screen. The display was a CRT monitor set to a 800x600 pixel resolution and was located 

46.5cm away from the observer’s eyes. The display was linearly calibrated with a minimum 

luminance of .05 cd/m² and a maximum luminance of 50 cd/m².  

Setup 2.  

This setup was used for Tasks 5-7 in Experiment Group 1 as well as for all Tasks in 

Experiment Group 2. MATLAB Psychtoolbox and Eyelinktoolbox software were used to run 

the eyetracker from a display computer as well as present visual stimuli on the display 

screen.  The display used was a Barco MDRC 1119 monitor set to a 1280x1024 pixel 

resolution and was located 76.5cm away from the observer’s eyes. The display was linearly 

calibrated with a minimum luminance of .05 cd/m² and a maximum luminance of 126 cd/m².  

 Eye-tracking. The same eyetracker settings were used for all experiment groups and 

tasks. The left eye of each participant was tracked using an SR Research Eyelink 1000 Tower 

Mount eye tracker sampling at 250 Hz. A nine-point calibration and validation were run 

before each 125-trial session, with a mean error of no more than 0.5º of visual angle. 

Saccades were classified as events in which eye velocity was greater than 35º and eye 

acceleration exceeded 9,500º per square second. The recommended thresholds by SR for 

cognitive research are an eye velocity of 30º and an eye acceleration of 8,000º per square 

second. The minor increase of the velocity and acceleration thresholds in our parameter 

settings allowed us to better control the number of “broken fixations” during the initial 
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fixation stage at the beginning of every trial prior to the presentation of the stimulus.   

 Stimuli.  

 Experiment Group 1. 

 Human Face Identification Task with 10 Faces: As seen in Figure 1a, the stimuli for 

this task were used for both a free-fixation and forced-fixation condition (in Experiment 

Group 3). The stimuli consisted of 10 grayscale front-view Caucasian male faces. All of the 

images were taken with constant diffuse lighting, distance, and camera settings. A Canon 

digital camera was used. The digital pixel value was a non-linear saturating function of 

luminance (a standard Canon log-cine transfer function). The images were normalized by 

scaling and cropping, such that the center of the eyes was 2/5 of the image height below the 

top of the image and the chin was 1/50 of the image height above the bottom of the image. 

The faces were luminance-mean normalized to 25 cd/m² and shown to participants at a Root 

Mean Square (RMS) contrast of 0.13, where part of that contrast variation came from added 

Gaussian white noise with a standard deviation of 1.97 cd/m² (corresponding to a noise RMS 

contrast of 0.079). Participants viewed the face stimuli 46.5cm away from the display 

resulting in a square stimulus (face and mask) that subtended 18 º (~15 º for the part of the 

face that is not covered with the mask) in width and height. The large size of the faces, more 

typical of conversational distance, was chosen: (1) to allow measurements of larger 

variations of perceptual performance with fixation position (for small faces perceptual 

performance is less sensitive to fixation position within the face); (2) to allow more precise 

measurements of fixation positions relative to facial features. In addition, the large faces 

(e.g., 10 º width, 15 º height) have been shown to optimize face identification (Yang et al., 

2014).   
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 Human Gender Discrimination Task: As seen in Figure 1b, the stimuli for this task 

were used only in a free-fixation condition. The stimuli consisted of 80 (40 male and 40 

female) grayscale front-view Caucasian faces. All of the images were taken using the same 

camera and settings as in the Human Face Identification Task above. They were also 

spatially aligned and presented on screen with the same the same size and mean luminance 

level as in the Human Face Identification Task above. However, an RMS contrast of 0.226 

was used, where part of that contrast variation came from added Gaussian white noise with a 

standard deviation of 2.95 cd/m² (corresponding to a noise RMS contrast of 0.118).  

Human Emotion Discrimination Task: As seen in Figure 1c, the stimuli for this task 

were used only in a free-fixation condition. The stimuli consisted of 140 (70 male and 70 

female) grayscale front-view Caucasian faces with 7 emotions (10 images of each gender for 

each emotion): neutral, happy, sad, afraid, surprised, angry, and disgusted. All of the images 

were taken using the same camera and settings as in the Human Face Identification Task 

above. They were also spatially aligned and presented on screen with the same the same size 

and mean luminance level as in the Human Face Identification Task above. However, an 

RMS contrast of 0.224 was used, where part of that contrast variation came from added 

Gaussian white noise with a standard deviation of 2.95 cd/m² (corresponding to a noise RMS 

contrast of 0.118).  

Human Famous Face Identification Task: As seen in Figure 1d, the stimuli for this 

task were used only in a free-fixation condition. The stimuli consisted of 100 color front-

view Caucasian faces of either gender. All of the images were found from various sources of 

celebrity photos on the internet. They were also spatially aligned and presented on screen 

with the same the same size as in the Human Face Identification Task above. However, they 
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were shown in color, with full contrast and no noise, since this task did not measure 

performance.  

 Human Face Identification Task with 4 Faces: As seen in Figure 1e, the stimuli for 

this task were used only in a free-fixation condition and are a subset of 4 of the 10 spatially 

aligned face images used in the Human Face Identification Task of Experiment Group 1. 

Only 4 images were used in order to make it easier for participants to quickly learn the faces 

and complete a short task. participants viewed the face stimuli 76.5cm away from the display 

resulting in square stimuli (face and mask) that subtended 18 º (~15 º for the part of the face 

that is not covered with the mask) in width and height. They were luminance mean 

normalized to 64 cd/m².  An RMS contrast of 0.152 was used, where part of that contrast 

variation came from added Gaussian white noise with a standard deviation of 7.06 cd/m² 

(corresponding to a noise RMS contrast of 0.11). 

 Chimp Face Identification Task: As seen in Figure 1f, the stimuli for this task were 

used only in a free-fixation condition and consisted of 4 front-view male chimp faces. These 

images were taken from a larger set of front-view chimpanzee faces obtained from the lab of 

Lisa A. Parr and are similar to the front-view chimp faces seen in (Parr, Heintz, Lonsdorf, & 

Wroblewski, 2010). Only 4 images were used in order to make it easier for participants to 

quickly learn the chimp faces and complete a short task. The chimp faces were spatially 

aligned, using the position of the eyes and chin, the same way as with the stimuli in the 

Human Face Identification Task above.  Participants viewed the face stimuli 76.5cm away 

from the display resulting in square stimuli (face and mask) that subtended 18 º (~15 º for the 

part of the face that is not covered with the mask) in width and height. They were luminance 

mean normalized to 64 cd/m².  An RMS contrast of 0.173 was used, where part of that 
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contrast variation came from added Gaussian white noise with a standard deviation of 7.06 

cd/m² (corresponding to a noise RMS contrast of 0.11). 

  Luggage Bag Identification Task: As seen in Figure 1g, the stimuli for this task were 

used only in a free-fixation condition and consisted of 4 luggage bags. The background body 

of each of the 4 bags was the same image, but the bags were manipulated in Photoshop so 

that they differed only in three features along the body of the bag: a logo at the top, a logo in 

the middle, and the position of the wheels at the bottom. Each bag had a unique version of 

each of the three features, such that any of the features could be used to distinguish the bags. 

The bags were spatially aligned, vertically and horizontally. Participants viewed the face 

stimuli 76.5cm away from the display resulting in square stimuli that subtended 18 º in width 

and height. They were luminance mean normalized to 64 cd/m².  An RMS contrast of 0.22 

was used, where part of that contrast variation came from added Gaussian white noise with a 

standard deviation of 7.06 cd/m² (corresponding to a noise RMS contrast of 0.11). 
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Figure 6: (a) A trial timeline for a human face identification task with 10 faces is shown. This 

task had a free-fixation component (bottom left panel) and a forced-fixation component 

(bottom right panel). In the free-fixation component, participants started with a fixation at 

one of 8 points on the periphery of the screen and were then free to make eye movements to 

the stimulus when it was shown. In the forced-fixation component they were forced to keep 

their fixation at specific points on the vertical midline of the face corresponding to the 

forehead, eyes, nose, mouth, and an individual preferred point found during the free-fixation 

condition. The stimulus was followed by a noise mask to limit visual and cognitive 

aftereffects. Participants chose 1 of 10 faces with a mouse on a response screen at the end of 

the trial and immediately received feedback.  
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(b) A trial timeline of a free-fixation human face gender discrimination task is shown. At the 

end of a trial, participants selected with the mouse one of two genders written on the screen 

and then immediately received feedback. 

(c) A trial timeline of a free-fixation human famous face emotion discrimination task is 

shown. At the end of a trial, participants selected with the mouse one of seven emotion 

written on the screen and then immediately received feedback.  

(d) A trial timeline of a free-fixation human famous face identification task is shown. At the 

end of a trial, participants selected with the mouse either “yes” or “no” to answer whether 

they are familiar with the face being shown. No feedback was given since there was no 

correct answer.  

(e) A trial timeline of a free-fixation human face identification task with 4 faces is shown. The 

trial timeline is the same as for the free-fixation component shown in (a), except that only a 

subset of 4 of the original 10 faces were used in order for participants to be able to achieve a 

reasonable level of performance in a single sitting. At the end of a trial, participants selected 

with the mouse one of four faces shown on the screen and then immediately received 

feedback. 

(f) A trial timeline of a free-fixation chimp face identification task is shown. The trial timeline 

is the same as in (e), except that 4 chimps faces were used instead of 4 human faces.  

(g) A trial timeline of a free-fixation luggage bag identification task is shown. The trial 

timeline is the same as in (e), except that 4 images of luggage bags were used instead of 4 

human faces.  

(h) A trial timeline of a human face gender discrimination task is shown with a free-fixation 

(bottom left panel) and forced-fixation (bottom right panel) component. In the forced-fixation 

component, participants were forced to keep their fixation at specific points on the vertical 

midline of the face corresponding to the forehead, eyes, nose, mouth, and chin. At the end of 

a trial, participants selected with a right arrow left arrow keyboard press, one of two 

genders written on the screen. Arrows were also drawn on the response screen to remind 

participants which keyboard press corresponded to which gender. Participants did not 

receive feedback.  

(i) A trial timeline of a sports/regular discrimination task is shown with a free-fixation 

(bottom left panel) and forced-fixation (bottom right panel) component. In the forced-fixation 

component, participants were forced to keep their fixation at one of 5 specific points on the 

vertical midline of the car equally spaced from the roof down to the license plate. At the end 

of a trial, participants selected with a right arrow left arrow keyboard press, one of two car 

categories (sports or regular) written on the screen. Arrows were also drawn on the response 

screen to remind participants which keyboard press corresponded to car category. Two 

images on the right side show averages of the car images from each category. Participants 

did not receive feedback. 

(j) A trial timeline of a forced-fixation natural scenes matching task is shown. A trial began 

with a forced fixation at 1 of 7 specific points on the vertical midline of the screen equally 

spaced from the top to the bottom. A 5x5 grid of small squares with different natural scenes 

was then shown in the center of the screen. There was a 50% probability on each trial that 

the scene in the square at the top center of the grid was the same one as the scene in the 
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square at the bottom center of the grid. At the end of a trial, participants selected with the 

mouse whether the top and bottom squares in the vertical center of the grid were “matched” 

or “unmatched” and then immediately received feedback.  

(k) A trial timeline of a forced-fixation single gabor detection task is shown. A trial began 

with a forced fixation at 1 of 5 specific points on the vertical midline of the screen equally 

spaced from the top to the bottom. A cue was then briefly shown in the center of the screen to 

guide the participants’ attention to that location. A single gabor was then shown in the center 

of the screen with a 50% probability on each trial at the location of the cue. A noise mask 

followed after that to limit visual and cognitive aftereffects. At the end of a trial, participants 

selected with the mouse whether a gabor was “present” or “absent” in the center of the 

screen during the trial and then immediately received feedback. 

 

Experiment Group 2. 

 Human Gender Discrimination Task: As seen in Figure 1h, the stimuli for this task 

were used in both a free-fixation and a forced-fixation condition. The stimuli are the same 

images and were spatially aligned in the same way as in Human Gender Discrimination Task 

of Experiment Group 1. However, in this experiment a different setup was used where 

participants viewed the face stimuli 76.5cm away from the display resulting in square stimuli 

(face and mask) that subtended 18 º (~15 º for the part of the face that is not covered with the 

mask) in width and height. They were luminance mean normalized to 25 cd/m². An RMS 

contrast of 0.151 was used, where part of that contrast variation came from added Gaussian 

white noise with a standard deviation of 2.75 cd/m² (corresponding to a noise RMS contrast 

of 0.11). 

 Car Discrimination Task: As seen in Figure 1i, in this task, participants identified if a 

given car was a sports car or a regular car. The stimuli consisted of 20 regular cars and 20 

sports cars. The stimulus set was created by rendering frontal photographs of 3D models of 

cars available freely online from websites like TurboSquid and CGTrader. Using Autodesk 

3DsMax, these 3D models were placed in a standard scene with diffuse sky lighting. A 

camera was placed at a consistent distance, offset vertically above the mid plane of the car 
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pitching downwards by about 6°. This angle was necessary to occlude the wheels which are 

often very distinctive for sports cars. The right side of Figure 1i shows an average (mean of 

corresponding pixel values across the images) of all the regular car images compared to the 

average of all the sports car images. During the discrimination, a standardized mask was used 

to crop the images such that only internal features of the cars (head lamps, radiators, wind 

shield, hood and side mirrors) could be used for discriminating the cars. Participants viewed 

the car stimuli 76.5cm away from the display resulting in square stimuli (car and mask) that 

subtended 18 º (~15 º for the part of the car that is not covered with the mask) in width and 

height. They were luminance mean normalized to 25 cd/m². An RMS contrast of 0.266 was 

used, where part of that contrast variation came from added Gaussian white noise with a 

standard deviation of 2.75 cd/m² (corresponding to a noise RMS contrast of 0.11). 

 Experiment Group 3. 

 Human Face Identification Task with 10 Faces: This was a forced-fixation task. The 

same stimuli were used for this task as in the free-fixation Human Face Identification Task 

with 10 Faces described in Experiment Group 1, as seen in Figure 1a.  

 Natural Images Matching Task: As seen in Figure 1j, the stimuli for this task were 

used only in a forced-fixation condition. The stimulus consisted of a grid of 5x5 grid of small 

square images with a width and height of 10.84 º . The grid contained a random sample of 25 

images of natural scenes taken from a larger set of 1000 images. 2000 grids of 25 images 

were premade for quick stimulus presentation during the task, where 1000 of them contained 

the same “matched” image in the middle of the top row and the middle of the bottom row 

(see the stimulus example in the center box of Figure 1j), and the other 1000 did not contain 

a match. During presentation, the grids were luminance mean normalized to 25 cd/m² and 
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shown to participants at an RMS contrast of 0.125, where part of that contrast variation came 

from added Gaussian white noise with a standard deviation of 0.984 cd/m² (corresponding to 

a noise RMS contrast of 0.0394). 

Single Gabor Detection Task: As seen in Figure 1k, the stimuli for this task were used 

only in a forced-fixation condition. The stimuli consisted of a gabor patch with a frequency 

of 4 cycles/degree and a Gaussian envelope with a standard deviation of .75 º. The stimulus 

was mean luminance normalized to 25 cd/m² and shown to participants at a contrast level 

was determined individually for each participant using a staircase procedure set to a 

performance (percent correct) threshold of 85%. An additional contrast variation came from 

added Gaussian white noise with a standard deviation of 4.92 cd/m² (corresponding to a noise 

RMS contrast of 0.197). 

 Procedure.  

 The tasks described below are separated into different experiment groups for 

conceptual clarity and consistency with the Results section. However, Tasks 1-4 in 

Experiment Group 1 were completed by the same participants as all Tasks in Experiment 

Group 3. The combination of those tasks was completed in a random order for each 

participant. Tasks 5-7 in Experiment Group 1 were completed by a separate group of 

participants, each of whom did them in random order. In Experiment Group 2, the tasks were 

completed with a separate group of participants in alternating blocks with the Human Gender 

Discrimination Task assigned to odd-numbered blocks and the Car Discrimination Task 

assigned to even-numbered blocks.  

Tasks 5-7 in Experiment Group 1 were completed by each participant in a single 

sitting of no longer than 2 hours. For all other experiment groups and tasks, participants 
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completed the tasks in multiple eyetracking sessions, each of which lasted no longer than 2 

hours. 

 Experiment Group 1. 

 Human Face Identification Task with 10 Faces:  This task consisted of a free-fixation 

component which had to always be run before a forced-fixation component in order to obtain 

an observer-specific preferred fixation position, which was then used as one of the 5 forced-

fixation points in the forced-fixation component. The free-fixation component consisted of 2 

blocks, with 100 trials per block. This was followed by forced-fixation component (in 

Experiment Group 3), which consisted of 1 practice block with 12 trials, followed by 7 

experimental blocks with 150 trials each.   

Human Gender Discrimination Task: This task contained only a free-fixation 

component and consisted of 2 blocks, with 100 trials per block.  

Human Emotion Discrimination Task: This task contained only a free-fixation 

component and consisted of 2 blocks, with 100 trials per block.  

Human Famous Face Identification Task: This task contained only a free-fixation 

component and consisted of 2 blocks, with 100 trials per block.  

Human Face Identification Task with 4 Faces: This task contained only a free-

fixation component and was run for a single block of 140 trials.  

Chimp Face Identification Task: This task contained only a free-fixation component 

and was run for a single block of 140 trials.  

Luggage Bag Identification Task: This task contained only a free-fixation component 

and was run for a single block of 140 trials.  

 Experiment Group 2. 
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Human Gender Discrimination Task: This task consisted of a free-fixation component 

which was run for 2 blocks of 125 trials each, followed by a forced-fixation component 

which was run for 10 blocks of 200 trials each (~400 trials for each of 5 forced-fixation 

positions).  

Car Discrimination Task: This task consisted of a free-fixation component which was 

run for 2 blocks of 125 trials each, followed by a forced-fixation component which was run 

for 10 blocks of 200 trials each (~400 trials for each of 5 forced-fixation positions).  

  

 Experiment Group 3. 

Human Face Identification Task with 10 Faces:  The forced-fixation component of 

this task consisted of 1 practice block with 12 trials, followed by 7 experimental blocks with 

150 trials each. This was preceded by a free-fixation component (described in Experiment 

Group 1), which had to always be run before the forced-fixation component in order to obtain 

an observer-specific preferred fixation position, which was then used as one of the 5 forced-

fixation points in the forced-fixation component 

Single Gabor Detection Task: This task contained only a forced-fixation component. 

The first part of the task was a staircase procedure that consisted of 6 blocks of 80 trials each 

at a single fixation position centered on a gabor. The staircase procedure was done to find 

observer-specific contrast values for the gabor to set performance at an 85% threshold level. 

This was followed by the main experimental task, which consisted of 14 blocks, with 105 

trials per block (~15 trials for each of 7 forced-fixation positions). This resulted in ~ 210 

trials total for each of 7 forced-fixation positions.  

Natural Images Matching Task: This task contained only a forced-fixation component 
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and consisted of 1 practice block with 20 trials, followed by 14 experimental blocks, with 

105 trials per block (~15 trials for each of 7 forced-fixation positions). This resulted in ~ 210 

trials for each of 7 forced-fixation positions.  

 Experimental Conditions.  

 Here we explain aspects of a general trial timeline for free-fixation and forced-

fixation tasks because many of the tasks have very similar trial timelines. We then explain 

what is different about specific tasks that may deviate from the general trial setup.  

 Starting Fixation. 

Free-Fixation.  

As shown in the lower left boxes of Figure 1(a-i), during free-fixation tasks, 

participants started a trial by pressing the space bar while fixating a cross (.44 º x .44 º) in 

one of eight randomly chosen locations located on average 13.94º from the center of the 

stimulus. For all free-fixation tasks, the fixation cross was displayed for a random period of 

time between 500ms and 1500ms to prevent anticipatory eye movements. If participants 

moved their eyes more than 1º from the center of the fixation cross before the stimulus was 

displayed or while the stimulus was present during the forced fixation condition, the trial 

would abort and restart with a new stimulus.  

Forced-Fixation.  

As shown in the lower right boxes of Figure 1(a,h,i), during forced-fixation blocks of 

those tasks, the cross was located in one of 5 locations, which corresponded to the forehead, 

eyes, nose, and mouth every 5.07 º downward respectively, and a fifth point that 

corresponded to an individual-specific preferred fixation position that was found during a 



144 

 

free-fixation condition.  

For the natural scenes matching task shown in Figure 1j, the forced-fixation cross was 

located in one of 7 locations that included a location in the center of the screen and 3 

locations located every 1.705 º above and below the central location. 

 For the single gabor detection task shown in Figure 1k, the forced-fixation cross was 

located in one of 7 locations that included a location in the center of the screen and 3 

locations located every 3 º above and below the central location. For all forced-fixation tasks, 

the fixation cross was displayed for a random period of time between 500ms and 1500ms to 

prevent anticipatory eye movements. If participants moved their eyes more than 1º from the 

center of the fixation cross before the stimulus was displayed or while the stimulus was 

present during the forced fixation condition, the trial would abort and restart with a new 

stimulus.  

Trial Timing. 

Free-Fixation. 

As shown Figure 1(a-i), for free-fixation tasks, a stimulus was presented after an 

initial fixation cross and was shown for 350ms, followed by a noise mask for 500ms (Figure 

1(a-g)), or 250ms (Figure 1 (h-i)). For each task, on each trial the stimulus identity that was 

shown was taken from a uniform distribution (equal probability) of all stimulus identities. 

This was then followed by a response screen presented for an unlimited time until a 

participant response. Feedback was given in all free-fixation tasks, except the Gender 

Discrimination and Sports/Regular Car Discrimination tasks in Figure 1 (h-i). Feedback was 

not given in those two tasks because they were done by the same participants in an 

interleaved fashion and giving feedback in the Sports/Regular Car Discrimination may have 
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biased participants to start doing the task based on the identification of specific cars rather 

than car categories.  

Forced-Fixation.  

As shown Figure 1(a,h,i), for forced-fixation tasks, a stimulus was presented after an 

initial fixation cross and was shown for 200ms. For each task, on each trial the stimulus 

identity that was shown was taken from a uniform distribution (equal probability) of all 

stimulus identities. The rest of the trial timeline for these tasks was the same as described 

above for the free-fixation versions of them. The short presentation time for the forced-

fixation condition in the tasks referenced above was used in order to account for the fact that 

participants did not need time to make an eye-movement from the periphery of the screen, as 

they did in the free-fixationcondition, as well as to make the task more difficult in order to 

avoid ceiling effects.  

For the natural scenes matching task shown in Figure 1j, a 5x5 grid of small squares 

with different natural scenes was then shown in the center of the screen after a starting 

forced-fixation. There was a 50% probability on each trial that the scene in the square at the 

top center of the grid was the same one as the scene in the square at the bottom center of the 

grid. At the end of a trial, participants selected with the mouse whether the top and bottom 

squares in the vertical center of the grid were “matched” or “unmatched” and then 

immediately received feedback.   

For the single gabor detection task shown in Figure 1k, a cue was then briefly shown 

in the center of the screen after a starting forced-fixation to guide the participants’ attention 

to that location. A single gabor was then shown in the center of the screen with a 50% 

probability on each trial at the location of the cue. A noise mask followed after that to limit 
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visual and cognitive aftereffects. At the end of a trial, participants selected with the mouse 

whether a gabor was “present” or “absent” in the center of the screen during the trial and then 

immediately received feedback. 
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Ideal Observer Models.  

Foveated Ideal Observer (FIO) Model.  

Here we run several different variants of an Ideal Observer model. First, we describe 

the main model that we use, which is the FIO. We run the FIO model on three different tasks: 

a human face identification task, a human face gender discrimination task, and a 

sports/regular car discrimination task. Below, we briefly give an overview of the algorithmic 

procedures of running the model for a face identification task (see Appendix for details, as 

well as an explanation of how this model can be generalized to the two other tasks mentioned 

above). 

 A spatially variant contrast sensitivity function (SVCSF) was used to model the 

degradation of the quality of information obtained in the periphery of a foveated visual 

system (M. F. Peterson & Eckstein, 2012):  

 0 0

0 0 0( , , ) exp( ( ) )
a n

SVCSF f r c f b f d r f = − −   (4.1.1) 

where f is spatial frequency in cycles per degree of visual angle. The terms 0a , 
0b , and 

0c , 

were chosen constants set to 1.2, 0.3, and 0.625 respectively, to set the maximum contrast at 

1 and the peak at 4 cycles per degree of visual angle at fixation. The polar coordinates r and θ 

specify the distance in visual angle and direction from fixation. 
0d  specifies the eccentricity 

factor as a function of direction, which represents how quickly information is degraded in the 

periphery. 
0n  specifies the steep eccentricity roll off factor. In the model simulations, 

different parameters are used for 
0d  for the vertical up, du, vertical down, dd, and horizontal, 

dh, directions. The parameters  du, dd , dh, and 
0n  were previously fit to the forced-fixation 

condition in a face identification task with a group of 25 participants in (M. F. Peterson & 



148 

 

Eckstein, 2012) in order to match human performance (proportion correct) as a function of 

fixation position (4 different fixations down the vertical midline of the face). The values used 

for parameters du, dd, dh, and 
0n  respectively, are 2E-6, 9E-6, 1E-6, and 5. The Akaike 

Information Criterion (Akaike, 1974), which takes into account the variance for each data 

point, is used as a distance measure, which was minimized between human forced-fixation 

performance at the four points mentioned above and the model’s performance at the same 

four points. The same parameters are used for the gender discrimination task and 

regular/sports car discrimination task. (see Human Psychophysics Studies above). The 

circular plots between Figure 2a and Figure 2b show examples of 2d contrast  

 

Figure 2: A summary of the process of the computations in the FIO for two fixation positions. 

The top panels show a fixation point that is below the eyes, which is optimal in a human face 

identification task. The bottom panels show a fixation that is above the tip of the nose, which 

is suboptimal for a human face identification task. (a) Many trials are simulated where on 

each trial, a face template is chosen as a signal. The chosen face image on a particular trial 

is conceptually divided into bins that correspond to specific CSFs as a function of retinal 

eccentricity. Contrast sensitivity functions that correspond to the center of fixation preserve 

the higher spatial frequencies (seen as a higher contrast in red in the CSF plots), while 

contrast sensitivity functions that are far from the fixation position act as low-pass filters and 

mostly leave the low spatial frequencies (seen as a low-contrast blue in the CSF plots). (b), 
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The image is transformed into the frequency domain, filtered separately by each possible 

CSF (here only two are shown), and then transformed back into the spatial domain, resulting 

in a set of differently filtered images corresponding to each bin. (c), Corresponding bins are 

then extracted from the filtered images and input into a composite image that simulates 

foveation. (d) A set of response variables are then calculated, from which a set of likelihoods 

is found of each face identity given the noisy image input. A decision of which face was 

shown is made by taking the maximum likelihood. The FIO model is also run for the face 

gender discrimination task and sports/regular car discrimination task separately, where 

likelihoods are summed across exemplars within a class and then the maximum is taken 

across two summed class likelihoods, rather than across all individual exemplars. Across 

many trials, a set of proportion correct (PC) values is found, one for each fixation point, and 

then combined into a heatmap. iFFT, Inverse FFT. 

 

sensitivity functions at 2 different locations with respect to the fixation position. Contrast 

sensitivity functions that correspond to the center of fixation preserve the higher spatial 

frequencies (seen as a higher contrast in red in the plots), while contrast sensitivity functions 

that are far from the fixation position act as low-pass filters and mostly leave the low spatial 

frequencies (seen as a low contrast in blue in the plots). 

  Here, we first describe the algorithmic procedures of running a 1 of 10 face 

identification task. We simulate many trials of this task. On each trial of the simulation, the 

face templates 1{ , , }nf f  are sampled uniformly at random and a template, 
is , is chosen, 

where n is 10 for the face identification task. Each face template,
if , consists of a 500x500 

pixel face image that is normalized for the position of the eyes and chin as well as for 

contrast (see Stimuli section of Human Psychophysics Studies above). The same contrast and 

additive white noise that was used for psychophysics experiments in humans is then added to 

a chosen template, i, before being linearly filtered with the SVCSF and corrupted with 

additional internal white noise to become the input data, kg  , to the ideal observer:  

 ( )k k i ex in= + +g E s n n   (4.1.2) 
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where k indexes a specific fixation position that serves as the center of a foveation 

simulation, exn  is the external Gaussian white noise, inn  is the internal Gaussian white noise, 

and kE is the linear operator that simulates the fixation dependent foveation of the input. This 

foveated signal is compared (by taking a dot product) to similarly foveated noiseless 

templates (original face images) to arrive at a set of responses, ,f kr  , which come from a 

multivariate Gaussian distribution with a known mean, ,f kμ  , and covariance matrix, k  

(see Appendix for details on how they are calculated): 

 , , )~ ( ,f kk f kMVN r μ    (4.1.3) 

Using Bayes rule, the FIO finds a set of posterior probabilities, one for each 

hypothesis that face f  was shown, 
fH , given a set of responses 

,f kr . The posterior 

probability, ,( | )f f kP H r ,  is calculated using the prior probabilities, ( )fP H , and the 

likelihood, ,( | )f k fP Hr  , of the set of responses given the presence of each face,  f, and the 

observer’s fixation at spatial location, k: 

  
,

, ,

,

( | ) ( )
( | ) ( ) ( | )

( )

f k f f

f f k f f k f

f k

P H P H
P H P H P H

P
= 

r
r r

r
  (4.1.4) 

The maximum posterior probability is then chosen as the answer: 

 ,argmax( ( | ))f f k
f

decision P H= r   (4.1.5) 

Bayesian Ideal Observer.  

Here, we describe the computations involved for a basic Ideal Observer model, which 

utilizes image information to achieve the highest possible performance and does not simulate 

the foveation of the visual system like the FIO described below. Just like for the FIO, we run 
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a 1 of 10 face identification task with a set of 10 front-view Caucasian male face images that 

are normalized for the position of the eyes and chin as well as for contrast (see the Stimuli 

subsection of Human Psychophysics Studies above for details), as well as a face gender 

discrimination task and a sports/regular car discrimination task. Here we describe the 

algorithmic details for the face identification task, but the algorithm can be generalized to a 

2-class problem using marginalization just like with the FIO (see Generalization to a 2-Class 

Problem Using Marginalization section of the Foveated Ideal Observer Model description in 

the Appendix). 

 On each trial of the simulation, the face images 1 10{ , , }f f  are sampled uniformly at 

random and a face template, is , is chosen. The same contrast and additive white noise that 

was used for humans is then added to a chosen template, i. The input data, g , to the ideal 

observer on each simulated trial is then the sum of a random (1 of 10) face template, is , and 

external noise, exn . 

      xi e= +g s n      (4.2.1) 

The ideal observer does not have any sources of suboptimality such as internal noise or 

filtering operations on the face template, 
is , that models foveation. Using Bayes rule, the 

ideal observer finds a set of posterior probabilities, one for each hypothesis, 
fH , that face,  

f, was shown, given the image data, g . The posterior probability, ( | )fP H g , is calculated 

using the prior probabilities,  ( )fP H , and the likelihood, ( | )fP Hg  , of the image data, g , 

given the presence of each face, f : 
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( | ) ( )

( | ) ( ) ( | )
( )

f f

f f f f

P H P H
P H P H P H l

P
=  =

g
g g

g
  (4.2.2) 

 

The normalizing factor, ( )P g , in equation (4.2.2) is the same for all posterior probabilities, 

so it can be ignored without changing the result. The likelihood, 
( | )fP Hg

, of the signal 

having come from a particular face is calculated from a known distribution that comes from a 

product of distributions of individual pixel noise (see Appendix for details).  

The maximum posterior probability is then chosen as the answer: 

 argmax( ( | ))f
f

decision P H= g   (4.2.3) 
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Convolutional Neural Network (CNN) Model. 

 Stimuli. 

Training.  

 The CNN model is separately trained on two different face tasks: a human face 

identification task and a human face gender discrimination task. The training stimulus set for 

the face identification task is created from a base set of 10 face images that are used in the 

face identification task of the human psychophysics experiments (see Stimuli section of 

Human Psychophysics Experiments above). A base training set of 4000 face images was 

created by making 400 copies with added Gaussian white noise of each of the 10 original 

face images. Multiple copies of the 4000 training face images were then made by adding a 

simulation of the foveation of the visual system centered at different fixation positions as 

shown in Figure 3a below. The fixation positions correspond to the forehead, eyes, nose, and 

mouth. These are the same fixation positions that are used in the human forced-fixation 

condition of the face identification task. To create the training stimulus set for the gender 

discrimination task, a set of ~3500 face photos were first scraped from the Humane project 

website (http://humanae.tumblr.com/) of photographer Angelica Dass. This stimulus set has 

been previously used to train generative models of photorealistic faces (Suchow, Peterson, & 

Griffiths, 2018) because the faces are all front-facing, with controlled lighting, and come 

from a variety of ages and ethnicities. After scraping the faces from the Humane project 

website, they were then spatially aligned such that the face was positioned with center of the 

eyes at 2/5 of the image height below the top of the image and with the chin 1/50 of the 

image height above the bottom of the image. This was done by extracting facial landmarks 

around the eyes and mouth using the Python dlib library and then rotating, resizing, and 
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cropping the images to a size of 224x224 pixels. The face images were then manually labeled 

for gender as well as filtered for age, facial hair, and excessive head hair. Faces that looked 

like they were younger than age 18 were discarded as well as faces of either gender that had 

one or more major face features covered with head hair. Male faces with more than a mild 

amount of facial hair were also discarded in order to not bias the CNN model during training, 

to avoid facial hair becoming an important feature in the gender discrimination task. This 

resulted in a disproportionate number of male face images being discarded because of 

excessive facial hair, leaving 1541 female faces and 616 male faces. 80% of the female and 

male faces were then randomly selected for a training set. However, due to a disproportionate 

number of female faces remaining relative to the number of male faces, the male faces were 

randomly oversampled such that two copies were made of each male face and then random 

subset of the original male faces were chosen for a third copy to create a total number of 

male images equal to the total number of female images for training. This resulted in a total 

of 1233 male and 1233 female face images. Four different sets of the training images were 

then created by foveating them in the same was as the face images in the face identification 

task.      

Testing.  

The testing stimuli sets for the face identification task were created in the same way 

as the training stimuli sets, except a total of 1000 face images were used, with 100 noisy 

copies for each of 10 face identities. Four sets of the 1000 face images were also created by 

simulating foveation at the same locations as described for the training sets above. The 

testing sets for the face gender discrimination task were created from the remaining 20% of 

the face images that were not used for the training set, resulting in 308 female and 308 male 
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images, after doing the same oversampling procedure for the male images, as described for 

the training set above. Four sets of the 1000 face images were also created by simulating 

foveation at the same locations as  

Architecture and Settings. 

Original resnet-18. 

 We use an 18-layer resnet-18 (K. He et al., 2015) architecture to separately run both a 

10-class human face identification task and a 2-class human face gender discrimination task. 

The network is made up of 4 “residual blocks,” each of which contain 2 pairs (this number is 

higher for other variants of this network structure) of the same layer structure (same size and 

depth of feature maps) (Figure 3b). In cases where it is more advantageous to do so, the 

network is able to learn an identity mapping between consecutive layers of the same size 

within a residual block, which in essence allows the network to skip layers if needed, and 

tune itself to a network size that is optimal for a specific classification problem.  

We use mini-batch (200 images per batch) stochastic gradient descent (SGD) along 

with a cross-entropy loss function to optimize the parameters in the model. We use 

hyperparameter settings of 5e-4 for the learning rate and .9 for momentum. Although this 

network can theoretically be run with any input image size, here we run it with an image size 

of 224x224 pixels which is a standard image size that is used to train common CNN 

architectures.   

Modified resnet-18 and Class-Specific Activations Visualization.  

In addition to the original resnet-18 network, we use also the methodology of (Zhou, 

Khosla, Lapedriza, Oliva, & Torralba, 2015) and run a modified version of the same network 

in order to be able to construct a visualization of the important features in the input stimuli 
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that are used by the network to do the emotion classification task. This is done by mapping a 

weighted linear combination of the 14x14 feature maps of the last convolutional layer of the 

network onto the original 224x224 input images. The weights used to combine the feature 

maps come from the learned connections between the Global Average Pooling (GAP) layer, 

which acts as a unidimensional representation of the 14x14 feature maps preceding it, and the 

class scores output by the network. For each of the three classes, a specific Class Activation 

Map (CAM) is found by using the weights connecting the GAP layer to a specific class. 

Although (Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2015) used this method for 

localization of objects in complex classification tasks with a large number of classes, it is still 

useful for our purpose of visualizing the features of faces that are most discriminative for the 

network during this task. Since the faces are aligned during both the training and testing 

phases, the discriminative features should be located in specific areas across CAMs. For the 

same reason, the CAM’s can be averaged across classes to get a single CAM for a specific 

combination of training and testing sets and specific task.  

  Figure 3c shows the modified version of the resnet-18 network, where the feature 

maps (height and width, but not depth) of the fourth residual block are larger. Implementing 

the change relative to the original resnet-18 network only involves lowering the stride from 2 

to 1 during the convolution operation before the last residual block. The difference in the 

modified network is outlined in red.  
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Figure 3: (a) An example of a face image being processed with spatial filtering operations 

that simulate foveation at four different positions along the vertical midline of a face. Four 

“foveated” versions of each of the training and testing sets were created to simulate possible 

differences in human development of an internal face template representation. (b) The top 

flowchart shows the structure and operations involved in the original resnet-18 network (K. 

He et al., 2015). Although this network can theoretically be run with any input image size, 

here we run it with an image size of 224x224 pixels and show the sizes of feature map outputs 

after max pooling and convolution operations along with the chosen depths of the feature 

maps at each layer, which are fixed parameter settings. Similarly, although the network is 

able to learn to classify an arbitrary number of classes, here we show an output of class 

scores for a 10-class face identification task. One aspect of the resnet network that isn’t 

explicitly shown in the flowchart is the “skip-connections” between layers of the same size. 

The network is made up of 4 “residual blocks,” each of which contain 2 pairs of the same 

layer structure (same size and depth of feature maps). In cases where it is more 

advantageous to do so, the network is able to learn an identity mapping between consecutive 

layers of the same size within a residual block, which in essence allows the network to skip 

layers if needed, and tune itself to a network size that is optimal for a specific classification 

problem. (c) The bottom flowhart shows a modified version of the resnet-18 network, where 

the feature maps (height and width, but not depth) of the fourth residual block are larger. 

Implementing the change relative to the original resnet-18 network only involves lowering 
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the stride from 2 to 1 during the convolution operation before the last residual block. The 

difference in the modified network is outlined in red. We implement this modification in order 

to output a set of 14x14 pixel feature maps instead of 7x7 pixel feature maps. This allows us 

to use the methodology of (Zhou et al., 2015) to construct a visualization of the important 

features in the input stimuli that are used by the network to do the emotion classification 

task. This is done by mapping a linear combination of the 14x14 feature maps onto the 

original 224x224 input images.  

 

  



159 

 

4.3 Results 

Individual Differences in Initial Fixation Position Exist Across Human 

Population. 

First, in order to identify individual differences in initial fixation position to faces 

between participants, we show a histogram with locations and frequencies of average vertical 

initial fixation positions to a face during a face identification task from a database of 285 

observers in Figure 4a. The database of observers was compiled from initial fixation location 

data presented in this paper as well as data previously presented in (Or et al., 2015; M. F. 

Peterson & Eckstein, 2012, 2014; M. F. Peterson et al., 2016). The mode of the vertical 

fixation distribution is at a point that is a bit below the eyes, and there is a long tail going 

down toward the mouth region. For most observers, the variability of the initial fixation 

position across trials is fairly small. In Figure 4b, an example of fixation positions for three 

different observers that we classify as eye-lookers, nose-lookers, and mouth-lookers, 

respectively, is shown with fixation positions from individual trials overlaid onto an average 

of the face stimuli used for a face identification task. Although the vertical fixation 

distribution in Figure 4a is unimodal, we choose a boundary of separation of observers into 

eye-lookers and nose-lookers based on the distance of their average vertical fixation position 

from the location of the eyes in the spatially aligned face stimuli. We set that distance to be 

50% of the distance from the eyes to the tip of the nose, which corresponds to 1.776 degrees 

below the eyes, in a face stimulus that is 17.8 degrees in height (not including the portion of 

the stimulus that is covered by a mask in order to hide the hairline, ears, and neck). Due to 

the small number of mouth-lookers, we group them under nose-lookers and focus only on 
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differences between two groups: eye-lookers and everyone else, who we group under nose-

lookers. This allows us to then compare performance profiles in both human-face and non-

human-face tasks between the two groups of participants in order to determine what may be 

the cause of the observed individual differences.  

 

Figure 4: a) Here a histogram is shown with locations and frequencies of average vertical 

initial fixation positions to a face during a face identification task from a database of 285 

observers. The mode of the vertical fixation distribution is at a point that is a bit below the 

eyes, and there is a long tail going down toward the mouth region. b) An example of fixation 

positions for three different observers that we classify as eye-lookers, nose-lookers, and 

mouth-lookers, respectively, is shown with fixation positions overlaid onto an average of the 

face stimuli used for a face identification task. The blue points represent fixation positions 

from individual trials and the green points represent averages of the blue points. Although 

the vertical fixation distribution in (a) is unimodal, we choose a boundary of separation of 
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observers into eye-lookers and nose-lookers based on the distance of their average vertical 

fixation position from the location of the eyes in the spatially aligned face stimuli. Due to the 

small number of mouth-lookers, we group them under nose-lookers and focus only on 

differences between two groups: eye-lookers and everyone else, who we group under nose-

lookers. 
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Comparison of Free-Fixation Metrics across Human-Face and non-

Human-Face Tasks Show Higher Consistency in Fixation Strategies in 

Human-Face Tasks. 

 In order to determine human initial fixation consistency across human face 

discrimination tasks, we ran participants in a free-fixation condition in a human face 

identification task, a human face gender identification task, a famous faces identification 

task, and an emotion identification task.  Figure 5a shows that there is a high correlation in 

the initial vertical fixation position between the human face identification task compared to 

each of the tasks mentioned above. The correlation values for the vertical fixation position 

between the human identification task compared to the gender identification, famous faces 

identification, and emotion identification task, respectively are 0.84, 0.72, and 0.85. All 

correlation values are significant and show a high consistency in fixation behavior between 

different face identification tasks (t(23) = 7.51, p = 1.24E-7; t(23)= 4.96, p = 5.17E-5; t(23) = 

7.74, p = 7.56E-8) for the human identification task compared to the gender identification, 

famous faces identification, and emotion identification task, respectively. In addition to 

participants completing a free-fixation task with human faces, a different set of participants 

completed a free-fixation condition in a human face identification task, a chimp face 

identification task, and a luggage bag identification task. Figure 5b shows correlation values 

for the vertical fixation position in the human identification task compared to the chimp face 

identification task and luggage bag identification task, which are 0.71 and .50, respectively. 

Both correlation values listed above are significant (t(76) = 8.79, p = 3.04E-11; t(76) = 5.06, 

p = 7.96E-6), but the correlation for luggage bag identification is significantly lower than for 

chimp face identification (z(78) = 2.07, p = 0.0385, two-tailed, using the Fisher z-
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transformation). In addition to comparing vertical fixation positions between a human face 

identification task, a chimp face identification task, and a luggage bag identification task, we 

also measure differences in the variance of the vertical fixation positions across tasks. Figure 

5c shows box and whisker plots of variance distributions of the vertical initial fixation 

position in the human face identification, chimp face identification, and luggage bag 

identification task are shown, respectively. The variances are significantly different across 

the three tasks, with higher variance in the chimp face identification task compared to the 

human face identification task (p< 1E-4), and higher variance in the luggage bag 

identification task compared to both the human face (p< 1E-4) and chimp face identification 

tasks (p<1E-4). The statistical test used to find the differences in variances was done with a 

bootstrap procedure by creating 10,000 samples from each of the three original variance 

samples (humans, chimps, and bags) and making pairwise comparisons of empirical 

distributions of variance means using 10,000 percentile values. Figure 5d also shows 

example fixation positions for the same single observer performing a human face 

identification task, a chimp face identification task, and a luggage bag identification task, 

respectively.  
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Figure 5: a) Correlation values are shown for the vertical fixation position between the 

human identification task compared to the gender identification, famous faces identification, 

and emotion identification task, respectively. All correlation values are significant and show 

a high consistency in fixation behavior between different face identification tasks. b) 

Correlation values are shown for the vertical fixation position between the human 

identification task compared to the chimp face identification task and luggage bag 

identification task. Correlations values are significant for both tasks being compared to 

human face identification, but the correlation for luggage bag identification is significantly 

lower than for chimp face identification. c) Box and whisker plots of variance distributions of 

the vertical initial fixation position in the human face identification, chimp face 

identification, and luggage bag identification task are shown, respectively. The red 

horizontal lines in the center of each plot denote the mean variances for each task, and the 

blue horizontal lines below and above the red lines denote the 25th and 75th percentiles of the 

variance distributions for each task. The differences in the variances are significantly 

different across the three tasks, with higher variance in the chimp face identification task 

compared to the human face identification task, and higher variance in the luggage bag 

identification task compared to both the human face and chimp face identification tasks. The 

statistical test used to find the differences in variances was done with a bootstrap procedure. 

d) Example fixation positions are shown for the same observer performing a human face 

identification task, a chimp face identification task, and a luggage bag identification task, 

respectively. The blue points are fixations from a single trial and the green points are 

averages of the blue points.  
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Lack of Generalizability of Fixation Strategies and Lack of Efficient 

Information Use in non-Face Tasks.  

 Here we compare human preferred points of initial fixation during a free-fixation 

condition in a human gender discrimination task vs. a sports/regular car discrimination task. 

In addition, we measure performance profiles of participants in a forced-fixation condition 

for both tasks to determine the existence and location of empirical optimal points of fixation. 

We then compare the human performance data to performance profiles found with an FIO 

model, which also determines the location of theoretically optimal points of initial fixation 

for both tasks. Figure 6a shows an FIO performance map, which contains proportion correct 

values for every possible fixation position to an image, for a gender identification task. The 

part of the performance map that is the darkest red, represents the highest performance, 

which is a theoretically optimal point of initial fixation for the gender identification task. The 

average human preferred point of initial fixation, shown in green, is very close to the 

theoretical optimal point. In Figure 6b, the performance of the FIO model down the vertical 

midline of the face image is shown for a gender identification task. Human performance data 

from the forced-fixation condition of the same task at different points down the vertical 

midline of the face image is also shown. The model’s parameters were previously fit to a 

human face identification task with a different set of observers. Here only the internal noise 

parameter was fit to the human forced-fixation performance data. The human preferred point 

of fixation is close to the human empirically optimal point of fixation, which is predicted 

well by the theoretically optimal point found with the FIO model. The overall human forced-

fixation performance profile is also predicted relatively well by the model, with an Akaike 

Information Criterion (AIC) score of 2.83. 
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In contrast to the ability of the FIO model to generalize between face tasks, having 

been originally fit to human data in a face identification task, and predicting the human 

performance profile well in a gender discrimination task, the FIO does not generalize well to 

non-face tasks. The same parameters of the FIO model were used in the sports/regular car 

identification task as in the gender identification task, except the internal noise value, which 

was fit to the human forced-fixation performance data. As shown in Figure 6c and Figure 6d, 

the although the FIO performance profile is able to provide a relatively close fit to human 

data for a sports/regular car discrimination task, with an AIC score of 2.09, the average 

human preferred fixation position is far from the location of the theoretical optimal point.  



167 

 

 

Figure 6: a) An FIO performance map, which contains proportion correct values for every 

possible fixation position to an image, is shown for a gender identification task and is 

overlaid on top of a face image. Average fixation positions from six observers for the same 

task are overlaid as blue points, along with an average across observers in green. The part 

of the performance map that is the darkest red, represents the highest performance, which is 

a theoretically optimal point of initial fixation for the gender identification task. The average 

human preferred point of initial fixation is very close to the theoretical optimal point. b) The 

performance of the FIO model down the vertical midline of the face image is shown in blue 

for a gender identification task. Human performance data from the forced-fixation gender 

identification task at different points down the vertical midline of the face image is shown in 

orange, with error bars representing one standard error above and below the mean. The 

green bar shows the location of the preferred vertical fixation position to a face averaged 
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across observers (same point shown in green in (a)) for this task, with the width representing 

one standard error above and below the mean. The model’s parameters were previously fit to 

a human face identification task with a different set of observers. Here only the internal noise 

parameter was fit to the human forced-fixation performance data. The human preferred point 

of fixation is close to the human empirically optimal point of fixation, which is predicted well 

by the theoretically optimal point found with the FIO model. The overall human forced-

fixation performance profile is also predicted well by the model. c) Similar to (a), a 

performance map of the FIO model is shown, except for a regular/sports car identification 

task, along with preferred fixation positions from the same set of observers who did the 

gender identification task. d) Similar to (b), the performance of the FIO model as well as 

performance of human observers down the vertical midline of the car image in the forced-

fixation car identification task is shown. A green bar representing one standard error above 

and below the average preferred vertical fixation position in this task is also shown. The 

same parameters of the FIO model were used in the sports/regular car identification task as 

in the gender identification task, except the internal noise value, which was fit to the human 

forced-fixation performance data. Unlike in the gender identification task, the FIO does not 

predict the human forced-fixation performance profile well and the average human preferred 

fixation position is far from the location of the theoretical optimal point.  
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Differences in Performance and Preferred Point of Fixation Between Eye-

lookers and Nose-Lookers Cannot Be Explained By Differences in Visual 

Field Anisotropy.  

 In order to test the altered-anisotropy theory, we compare forced-fixation 

performance profiles in a human face identification task between eye-lookers and nose-

lookers, to forced-fixation performance profiles of the same participants in a natural scene 

matching task and a single gabor detection task. The latter two tasks are run in order to 

determine whether there are any significant differences in vertical anisotropy between eye-

lookers and nose-lookers in simpler non-face tasks. In Figure 7a, we show a sketch of the 

altered vertical anisotropy hypothesis, which illustrates differences in contrast sensitivity 

between eye-lookers and nose-lookers relative to the center of fixation. Here a higher 

contrast sensitivity is shown for eye-lookers in the lower visual field and a lower contrast 

sensitivity in the upper visual field, relative to nose-lookers. Under this hypothesis, if nose 

lookers fixate the eyes, they get lower quality information from the lower part of the face and 

higher quality information from the upper part of the face relative to when eye-lookers fixate 

the eyes. If nose-lookers fixate the nose, they are able to get a similar quality of information 

from both the upper and lower parts of the face relative to when eye-lookers fixate the eyes. 

If this hypothesis is true, we also expect to see significant differences in performance 

between eye-lookers and nose-lookers in non-face tasks when comparing use of the upper 

visual field vs. the lower visual field to extract task-relevant information. Figure 7b shows a 

forced-fixation performance profile down the vertical midline of a face stimulus for separate 

groups of eye-lookers in blue, and nose-lookers in red, in a human face identification task. 

For each group, performance at 5 points is shown, with 4 of them corresponding to the 
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forehead, eyes, nose, and mouth. The fifth point corresponds to the average vertical fixation 

position, within each group, taken from individual preferred points of fixation in the free-

fixation condition of each task. Eye-lookers perform better, but not statistically significantly 

so, at the eyes vs. the nose (t(12) = 1.73, p = 0.11, one-tailed), while nose-lookers perform 

significantly better at the nose vs. the eyes (t(11) = 5.64, p = 1.5E-4, one-tailed). This result 

is similar to what was reported in (M. F. Peterson & Eckstein, 2013), where participants in a 

face identification task were first classified as eye-lookers and nose-lookers. Despite different 

forced-fixation performance profiles in eye-lookers and nose-lookers in a face identification 

task, there are no significant performance differences between the two groups when 

comparing average performance using the upper vs. lower visual fields in a natural scene 

matching task and a single gabor detection task, as shown in Figure 7c and Figure 7d, 

respectively. First, as found in previous studies of vertical anisotropy, we find that humans 

perform better when using their lower visual field to process task-relevant stimuli in both the 

natural scene-matching task (t(20)=6.34, p = 1.4E-3, for performance averaged across 

fixation points in the upper visual field vs. performance averaged across fixation points in the 

upper visual field for all participants) and the single gabor detection task (t(24) = 2.195, p = 

1.67E-9, for performance averaged across fixation points in the upper visual field vs. 

performance averaged across fixation points in the upper visual field for all participants). 

However, in both the natural scene matching task and single gabor detection task, we find no 

significant differences between eye-lookers and nose-lookers when comparing a difference in 

the average performance at the upper visual field fixations vs lower visual field fixations 

(t(19) = 0.724, p = 0.478, for the natural scene matching task; t(23) = 1.205, p = 0.24, for the 

single gabor detection task). 
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In Figures 7e-g, we also show correlation plots for the preferred free-fixation position 

in the human face tasks vs. a magnitude of performance differences between the upper and 

lower visual field in the forced-fixation condition of the human face identification task, the 

natural image matching task, and the single gabor detection task, respectively. The preferred 

free-fixation position for each participant is taken from an average of the preferred vertical 

fixation positions in the human face identification task, famous face identification task, and 

gender identification task. The correlation is high and significant (t(23) = 5.05, p = 4.08E-5) 

only when comparing the the average preferred vertical fixation position to the average 

vertical visual field performance differences in the forced-fixation condition of the human 

face identification task, but is insignificant when comparing it to the natural scene matching 

task (t(19) = 0.702, p = 0.49) and the single gabor detection task (t(23) = 1.03, p = 0.315).   
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Figure 7: a) A sketch is shown of the altered vertical anisotropy hypothesis, which illustrates 

differences in contrast sensitivity between eye-lookers and nose-lookers relative to the center 

of fixation. Here a higher contrast sensitivity is shown for eye-lookers in the lower visual 

field and a lower contrast sensitivity in the upper visual field, relative to nose-lookers. Under 

this hypothesis, if nose lookers fixate the eyes, they get lower quality information from the 

lower part of the face and higher quality information from the upper part of the face relative 

to when eye-lookers fixate the eyes. If nose-lookers fixate the nose, they are able to get a 

similar quality of information from both the upper and lower parts of the face relative to 

when eye-lookers fixate the eyes. b) A forced-fixation performance profile down the vertical 

midline of a face stimulus is shown for separate groups of eye-lookers in blue, and nose-

lookers in red, in a human face identification task. For each group, performance at 5 points 

is shown, with 4 of them corresponding to the forehead, eyes, nose, and mouth. The fifth 
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point corresponds to the average vertical fixation position, within each group, taken from 

individual preferred points of fixation in the free-fixation condition of each task. Although an 

average position is shown for the preferred point, one close to the eyes for the eye-lookers 

and one close to the nose for the nose-lookers, the actual point used in the forced-fixation 

task was observer specific. Eye-lookers perform higher, but not statistically significantly at 

the eyes vs. the nose, while nose-lookers perform significantly better at the nose vs. the eyes. 

c) Forced-fixation performance in the natural scenes matching task is shown at different 

fixation positions down the vertical midline of the screen relative to the vertical center. 

Performance is better on average in both groups when the lower visual field is used more to 

process task-relevant information, which corresponds to fixation positions in the upper visual 

field and negative values on x-axis of the plot. However, the ratio of performance when using 

the upper visual field relative to the lower visual field is not significantly different between 

eye-lookers and nose-lookers. This task contains less participants because several were 

removed due to the performing at chance level. d) Similar to the natural scenes matching 

task, results of the single gabor detection task are shown for eye-lookers and nose-lookers. 

Vertical fixation positions that were above the center presentation of the gabor stimulus 

correspond to negative values on the x-axis of the plot, and use of the lower visual field to 

process the stimulus. The ratio of performance when using the upper visual field relative to 

the lower visual field is not significantly different between eye-lookers and nose-lookers in 

this task. e-g) Correlation plots are shown for the preferred free-fixation position in the 

human face tasks vs. a magnitude of performance differences between the upper and lower 

visual field in the forced-fixation condition of the human face identification task, the natural 

image matching task, and the single gabor detection task, respectively. The preferred free-

fixation position for each participant was taken from an average of the preferred vertical 

fixation positions in the human face identification task, famous face identification task, and 

gender identification task. The correlation is high and significant only between the average 

preferred vertical fixation position and the magnitude of performance difference between the 

upper and lower visual field in the forced-fixation condition of the human face identification 

task. The error bars represent one standard error above and below the mean.  
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Differences in Performance and Preferred Point of Fixation Between Eye-

lookers and Nose-Lookers Can Be Explained By Computational Models of 

Differences in Internal Face Template Representations.  

In order to test the altered face template theory, we run two computational models 

that are able to represent differences in an internal face template between eye-lookers and 

nose-lookers and compare them human performance profile data from the forced-fixation 

condition of the face identification task. The first model that we use is a modified FIO model 

(FT-FIO; see Methods section for details), where the internal representation of a face is fixed 

at a specific simulated fixation position. Figure 8a shows the performance profile down the 

midline of the face for forced-fixation positions at the forehead, eyes, nose, and mouth is 

shown for eye-lookers and nose-lookers. The performance profile of an FT-FIO model is also 

shown when the fixed template is at a point below the eyes (blue line) and a separate 

performance profile for when the fixed template is at the nose (green line). Here, the location 

of the fixed template represents the internal representation of the foveated face stimuli that 

the model uses to compare an incoming face stimulus to on each simulated trial. In the FT-

FIO model, although the internal representation of the faces is fixed at a specific simulated 

fixation position, different fixation positions for incoming face stimuli are still tested, which 

allows us to find a performance profile at different fixation positions. Here, the same 

parameters are used for the original FIO model, except the internal noise parameters, which 

is adjusted to best fit the human data for eye-lookers and nose-lookers individually. The FIO 

model with fixed templates provides a reasonably strong fit (AIC of 1.37 for eye-lookers, and 

AIC of 0.95 for nose-lookers) to the human data and shows the expected differences in the 

theoretically optimal points of fixation, which match the location of human preferred points 
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of fixation and empirically optimal points of fixation. Figure 8b shows the same plot is 

shown as in Figure 8a, except now all of the parameters of the FIO with a fixed template 

position below the eyes are fit to the eye-looker human data to provide a slightly better fit 

(AIC of 0.17 for eye-lookers, and AIC of 0.46 for nose-lookers). The same parameters, 

except for the internal noise, are then used to run the FIO with a fixed template position at 

the nose. Similar to the FIO model with the original parameters, the FIO with new 

parameters also shows the expected differences in the theoretically optimal points of fixation, 

which match the location of human preferred points of fixation and empirically optimal 

points of fixation. 

 The second model that we use to represent differences in an internal face template 

representation is a CNN model. This model supplements the results of the FT-FIO because 

we are also able to simulate possible differences in human development that may have led to 

the different internal face representations. In Figure 8c, the results of a CNN model are 

shown for a human face identification task, using the same face stimuli as the ones used to 

run the FIO model and to run the human psychophysics experiments. We simulate 

differences in human development by using different training sets where the simulated center 

of foveation is at the forehead, eyes, nose, or mouth. We then test each of the differently 

trained CNN models with four separate stimulus sets that are again foveated at the four 

different fixation positions mentioned above. For all four models, performance is highest at 

the test fixation position that matches the training fixation position. When there is a 

mismatch in training and testing fixation positions, there is a steep drop in performance, 

proportional to how far away the training fixation position is from the testing fixation 

position. Figure 8d shows similar results as in Figure 8c, except these results are now for a 
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CNN model trained on a face gender discrimination task instead of a face identification task. 

We run this model in order to show that the matched-template principle of performance being 

maximized when the training fixation position matches the testing fixation position, 

generalizes to a different face task with different face stimuli. Since gender discrimination is 

a two-class problem, the performance profiles for each of the trained models are much less 

steep than for a face identification task, and chance performance is at a proportion correct 

value of 0.5 instead of at 0.1. In Figure 8e, visualizations are shown of the parts of the face 

stimuli that the CNN model trained on a face identification task uses the most, for training 

fixation positions at the eyes and nose, and testing fixation positions at the forehead, eyes, 

nose, and mouth. We use the method of (Zhou et al., 2015) to find class activations maps 

(CAMs), and then average across them to create each of the images seen in Figure 8e. The 

visualizations show that the eyes are an important region that the CNN uses to do the 

classification task, regardless of which fixation position was used in the training stimuli. 

However, when the test fixation location is very far from the training fixation location, the 

model makes use of other features besides the eyes, and this varies depending on the training 

fixation location. 
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Figure 8: a) The performance profile down the midline of the face for forced-fixation 

positions at the forehead, eyes, nose, and mouth is shown for eye-lookers (blue points) and 

nose-lookers (green points). The blue and green bars show the location of the preferred 

vertical fixation position to a face averaged across eye-lookers and nose-lookers, 

respectively, with the width of the bars corresponding to one standard error above and below 

the mean. The performance profile of a modified FIO model with fixed templates is also 

shown when the fixed template is at a point below the eyes (blue line) and a separate 

performance profile for when the fixed template is at the nose (green line). Here, the location 

of the fixed template represents the internal representation of the foveated face stimuli that 

the model uses to compare an incoming face stimulus to on each simulated trial. In the 
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modified FIO model, although the internal representation of the faces is fixed at a specific 

simulated fixation position, different fixation positions for incoming face stimuli are still 

tested, which allows us to find a performance profile at different fixation positions. Here, the 

same parameters are used for the original FIO model, except the internal noise parameters, 

which is adjusted to best fit the human data for eye-lookers and nose-lookers individually. 

The FIO model with fixed templates provides a reasonably strong fit to the human data and 

shows the expected differences in the theoretically optimal points of fixation, which match the 

location of human preferred points of fixation and empirically optimal points of fixation. b) 

The same plot is shown as in (a), except now all of the parameters of the FIO with a fixed 

template position below the eyes are fit to the eye-looker human data to provide a slightly 

better fit. The same parameters, except for the internal noise, are then used to run the FIO 

with a fixed template position at the nose. Similar to (a), the FIO with new parameters shows 

the expected differences in the theoretically optimal points of fixation, which match the 

location of human preferred points of fixation and empirically optimal points of fixation. c) 

The results of a CNN model are shown for a human face identification task, using the same 

face stimuli as the ones used to run the FIO model and to run the human psychophysics 

experiments. The differently colored dashed lines represent performance profiles for CNN 

models separately trained with different stimulus sets where the center of foveation was at 

the forehead (orange), eyes(blue), nose (green), and mouth (purple). Performance is shown 

for each of those models being tested with separate stimuli sets that were foveated at the four 

different fixation positions shown on the x-axis. For all four models, performance is highest 

at the test fixation position that matches the training fixation position. When there is a 

mismatch in training and testing fixation positions, there is a steep drop in performance 

proportional to how far away the training fixation position is form the testing fixation 

position. d) The same type of plot is shown as in (c), except for the results of a CNN model 

trained on a face gender discrimination task instead of a face identification task. We ran this 

model in order to show that the matched-template principle of performance being maximized 

when the training fixation position matches the testing fixation position, generalizes to a 

different face task with different face stimuli. Since gender discrimination is a two-class 

problem, the performance profiles for each of the trained models are much less steep than for 

a face identification task, and chance performance is at a proportion correct value of 0.5 

instead of at 0.1. e) A visualization is shown of the parts of the face stimuli that the CNN 

model trained on a face identification task uses the most. The top and bottom rows represent 

a model that was trained at a fixation location at the eyes and nose, respectively. The 

columns represent four test fixation locations for each of the two models shown. The scale 

used to show the importance of different face features is relative only within each image 

because each visualization has been normalized such that the features with the highest 

weights are mapped to the highest values. The visualizations show that the eyes are an 

important region that the CNN uses to do the classification task, regardless of which fixation 

position was used in the training stimuli. However, when the test fixation location is very far 

from the training fixation location, the model makes use of other features besides the eyes, 

and this varies depending on the training fixation location. 
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4.4 Discussion 

 Previous research has shown that there are individual differences between observers 

in the preferred location of their first eye movement to a face during a face identification task 

(M. F. Peterson & Eckstein, 2013), with a large portion of the population fixating just below 

the eyes (“eye-lookers”), and a gradual drop-off in fixation frequency toward the nose 

(“nose-lookers”). Within observers, their preferred first eye movement locations have also 

been shown to be consistent across time and optimal in maximizing performance in a face 

identification task relative to non-preferred fixation positions. Here, we reproduced fixation 

behaviors and forced-fixation performance profile differences between eye-lookers and nose-

lookers. Then we explored two different theories to explain why these individual differences 

may occur along with two computational models to help explain the aspects of visual 

processing that may differ between these two groups.  

 The first theory that we explored, which we refer to as the “altered-anisotropy 

theory,” involves possible differences in the anisotropy of the retina between eye-lookers and 

nose-lookers. It is known that differences in the quality of representation of different parts of 

the visual environment are known to exist between the lower and upper visual field (vertical 

anisotropy) and have been shown to result in higher performance when stimuli are presented 

in the lower visual field relative to when the same stimuli are presented in the upper visual 

field in both simple low-level visual tasks (Marisa Carrasco et al., 2001; Corbett & Carrasco, 

2011) as well as in more complex higher-level (Marisa Carrasco et al., 2004; S. He et al., 

1996; Intriligator & Cavanagh, 2001; Kristjánsson & Sigurdardottir, 2008) visual tasks. In 

relation to faces, we investigated if nose-lookers have a ratio of acuity in their upper visual 

field relative to their lower visual field that is higher than the same ratio in eye-lookers. After 
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separating observers into groups of eye-lookers and nose-lookers based on averages of 

preferred vertical initial fixation positions to faces in several face discrimination tasks, we 

measured the anisotropy of their visual fields with two different tasks: a gabor detection task 

and a natural image matching task. Similar to previous results with other tasks, we found 

higher performance, on average, when task-relevant information was presented in the lower 

visual field relative to the upper visual field, within individual participants. However, we did 

not find significant differences in the performance ratio comparing visual fields, between 

groups of eye-lookers and nose-lookers. This provides evidence against the altered-

anisotropy theory.  

 The second theory that we explored, which we refer to as the “matched-template” 

theory, involves differences in face-specific mechanisms between eye-lookers and nose-

lookers, which do not carry over to tasks that do not involve human faces. First, we had 

participants do a free-fixation chimp face discrimination task, a free-fixation luggage bag 

discrimination task, and a sports/regular car discrimination task, in order to establish the 

specificity of eye movements to human faces relative to other stimuli. Although we found 

significant correlations in vertical fixation position across participants in the human face 

identification task vs. the chimp face identification task, and in the human face identification 

task vs. the luggage bag identification task, the correlation in the latter was much lower. The 

variability in the vertical fixation position in both the chimp face identification task and 

luggage bag identification tasks was also significantly higher relative to the variability in the 

human face identification task. In addition, the forced-fixation gender identification task 

results showed that the FIO model, which was trained on different human data from a face 

identification task, can generalize well to other human face tasks in the sense of predicting 
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the forced-fixation performance profile as well as the location of the empirical optimal initial 

fixation position. This result as well as a generalization of the FIO model to other face tasks 

has been shown previously (M. F. Peterson & Eckstein, 2012; Tsank & Eckstein, 2017). 

However, in contrast to other face tasks, the FIO does not generalize well to the forced-

fixation data from the sports/regular car discrimination task. The FIO predicts a performance 

profile where the theoretically optimal point of fixation is located toward the very bottom of 

the car images, where the important features of the task are. In contrast, the human data 

shows that humans do not have an empirical optimal initial fixation position to cars for this 

task and their preferred initial fixation position is far from the theoretical optimal point of 

fixation predicted by the FIO.   

 In order to further explore the matched-template theory and how it may explain 

differences in fixation behavior between eye-lookers and nose-lookers, we simulated 

differences in face processing based on different fixation-specific representations in the FIO 

model and separately in a CNN model. In the original FIO model, the internal representation 

of all face stimuli are dynamic, in terms of the center of the simulation of foveation, and 

differ based on the current fixation position that is being processed by the model. In contrast 

to this, we ran two different versions of the FT-FIO model, where the internal representation 

of a face was fixed by simulating foveation at either a point below the eyes, corresponding to 

a possible eye-looker representation, or at a point at the nose, corresponding to a possible 

nose-looker representation. The results of the FT-FIO model predicted the differences in the 

performance profiles of eye-lookers and nose-lookers well.  

 In addition to the FIO model, we also ran a CNN model with different inputs of 

fixation-specific face representations. The FIO model simulates the foveation of the visual 
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system, but otherwise makes optimal classification decisions and has a perfect pixel-level 

representation of the stimuli that are being discriminated. In contrast, a CNN model learns its 

own internal representations of stimuli based on the stimuli sets that are used to train the 

CNN, which allows it to simulate differences in human visual development. Although they 

are only a rudimentary approximation of human cortical processing, CNNs are starting to be 

used in the study of human vision and face processing (see  (O’Toole et al., 2018) for a 

review) after successful implementations of various face classification tasks in computer 

vision (Li et al., 2015; Schroff et al., 2015; Taigman et al., 2014), some of which have 

achieved close to human performance. CNNs are known to have certain useful properties that 

may be able to represent aspects of the human visual system. One of those aspects is a 

feedforward multilayer structure that represents progressively more complex features starting 

from edge detection and ending with complex shapes, textures, colors, and the relationships 

between them. Another important aspect is the ability to learn feature detectors that are 

adapted to the complex statistical properties of the features in the images that the model is 

being trained on. Although CNNs are able to learn complex feature representations, the CNN 

that we used in our simulations does not have an explicit representation of the variable 

density of photoreceptors and ganglion cells in the human retina, which would allow for the 

representation of foveation at different fixation positions. Instead, we used different training 

sets that were “pre-foveated” at four different locations, corresponding to the forehead, eyes, 

nose, and mouth on the face stimuli. The spatial filtering operations and parameters of the 

spatially variant contrast sensitivity function (see Methods second for details) that we used to 

simulate the foveations were the same as those that were used in the FIO. After training the 

CNN with four different training sets, corresponding to four different fixation-specific face 
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representations, we then tested the models with all combinations (4x4) of fixation-specific 

representations. We showed that the CNN was able to qualitatively reproduce the forced-

fixation performance profile difference between eye-lookers and nose-lookers. More 

specifically, the results of the CNN simulations showed that the highest performance for a 

CNN model trained with a particular fixation-specific training set were achieved with a 

testing set that was processed in the same fixation-specific manner.  
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5 Conclusion 

5.1 Overview of Eye Movements to Faces  

Face perception is an important ability that most humans use multiple times a day. A 

large amount of information can be extracted from a face in a very short period of time. This 

crucial information contains both social signals as well as signals about our surroundings. 

Social information that can be extracted from a face, such as someone’s identity, gender, and 

emotional state, allows us to function efficiently with others. Signals about our environment 

that attract attention with eye gaze or elicit an emotional response, such as an expression of 

disgust from noxious stimuli, can also be extracted from a face. These environmental signals 

from others’ faces may act as a warning and allow us to quickly direct our own attention to 

something important in our surroundings. However, the way in which we extract this 

information depends on making efficient eye movements to specific task-relevant locations 

on a face. We make eye movements in order to point the foveal region of our retinas toward 

objects or features that require the highest resolution of visual processing for particular tasks.   

It is known that large amount of the information described above can be extracted 

with just a single eye movement made to a location on a face in between several important 

features. The three projects presented in this dissertation dealt with the interaction of the 

initial eye movement to a face with internal face representations. The first project examined 

the role of the limitation of having a foveated visual system on configural processing of 

faces, using a more ecologically valid stimulus set with dynamic facial expressions. The 

second project examined the effects of natural statistics of facial expressions on the initial 
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eye movement to a face. The third project examined how individual differences in the initial 

eye movement to a face may shape the development of internal fixation-specific face 

representations.  
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5.2 Contributions to the Face Perception Field  

The role of eye movements and configural representations in face 

processing. 

Previous research has shown that performance in human face discrimination tasks can 

be degraded by manipulating the position of features (i.e. eyes, nose, mouth) within a face 

stimulus (Civile et al., 2018; Collishaw & Hole, 2000; Tanaka & Farah, 1993). This 

performance difference is typically attributed to a disruption of face mechanisms in higher-

order visual areas of the brain involving feature configurations. In this project, we 

investigated the possibility of the limitation of foveated processing contributing to this 

performance difference by performance differences resulting from scrambling face features, 

into different causes: 1) The proximity of informative features to an optimal point of fixation; 

2) Suboptimal fixation strategies; 3) Configural representations in the brain. We used a 

computational Bayesian model that represents the limitation of a foveated visual system to 

study changes in the optimal point of fixation across different face configurations. We then 

use a convolutional neural network (CNN) model, which represents additional limitations of 

the visual system that may be present in higher-order visual areas, to study configural 

representations. We found that a CNN model was much better able to represent human 

performance differences across different face configurations as well as across different 

fixation positions. We concluded that the vast majority of the magnitude of performance 

differences across different face configurations may be attributed to configural face 

mechanisms. 
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Eye movements during gender discrimination of faces are adapted to the 

naturally occurring statistics of emotional expressions.  

The human visual system programs eye movements for specific tasks by taking into 

account both the varying resolution of the retina and the distribution of visual task-relevant 

statistical regularities. Face perception tasks are heavily practiced and involve a very 

consistent location of important face features, which direct the first eye movement to a 

performance-maximizing optimal point of fixation below the eyes (M. F. Peterson & 

Eckstein, 2012). However, it is unknown to what extent humans use even more fine-tuned 

statistical properties, like facial expression frequencies during specific face discrimination 

tasks to adapt their initial eye movement accordingly. In this project, we ran a face gender 

discrimination task with an unusually high frequency of happy expressions (50%), which we 

measured with an eyewear-embedded camera in the real world to have a much lower 

incidence of 10%. We showed, using ideal observer analysis and convolutional neural 

network (CNN) analysis, that there is additional information in the mouth region for happy-

expression faces, which leads to an increase in performance and a shift downward of the 

theoretical optimal point of fixation relative to neutral-expression faces. However, we 

showed that humans are unable to take advantage of this new information, even when forced 

to fixate at the new theoretical optimal point of fixation, and do not adjust their initial eye 

movement. We found that a foveated ideal observer model that has a diminished 

representation of the mouth and region best predicted the human data. Our results suggest 

that observers learn an optimal point of fixation to faces using the statistics of occurrence of 

facial expressions for specific tasks and are inflexible to greatly altered facial expression 

statistics. 
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The development of internal fixation-specific face representations.  

Previous research has shown that humans have a preferred initial fixation position to 

faces during common face discrimination tasks. This preferred point is consistent within 

observers such that they fixate the same point even when tested months apart. However, there 

are individual differences in the location of this preferred point across observers (M. F. 

Peterson & Eckstein, 2013). The preferred fixation locations belong to a distribution that 

shows a majority of observers fixating the eye region, with a continuous and decreasing 

frequency going down toward the mouth region. In addition, there are differences in 

observers’ empirical optimal points of fixation, such that observes maximize their 

performance in a face identification task when forced to fixate closest to their individual 

preferred fixation location. In this project, we divided a set of observers into two groups 

based on their preferred fixation location: “eye-lookers” and “nose-lookers.” We then test 

two hypotheses that attempted to explain what causes the individual differences between 

these two groups of observers. The first hypothesis involves differences in contrast 

sensitivity across the upper and lower visual fields, between eye-lookers and nose-lookers. 

We tested this hypothesis by measuring the performance of both groups of observers in two 

lower-level visual tasks that do not involve face stimuli. We ran observers in a forced-

fixation condition where they use different parts of their visual fields to do the task. The 

results showed that there are no significant differences between eye-lookers and nose-lookers 

when using their lower visual field vs. using their upper visual field to process the stimuli in 

these tasks. The second hypothesis involved modeling possible differences in internal 

fixation-specific face representations between eye-lookers and nose-lookers. We 
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implemented these internal representations in both a foveated ideal observer model as well as 

a convolutional neural network (CNN) model, and showed that both models were able to 

represent important differences in human forced-fixation data between eye-lookers and nose-

lookers. Our results suggest that individual differences in fixation position between observers 

are face-specific rather than a more general difference in low-level vision. Our modeling 

efforts provide evidence that these face-specific differences involve fixation-specific 

representations in the brain.  

 

Overall Contributions.  

Taken together, the results we obtained from these projects added to the growing 

knowledge that eye movement strategies to face stimuli are a highly practiced and consistent 

behavior. This behavior can be thought of in the context of the specificity of face processing 

in the brain, relative to the less specialized processing of other complex objects. We have 

presented evidence that it is a behavior that depends on the statistics of the faces that humans 

are exposed to during different face discrimination tasks. In turn, this behavior may also 

shape the internal representations of faces in our brain, such that those representations are 

fixation-specific. These results suggest that our internal representations of faces may be 

closely tied to the way in which our visual system interacts with our visual environment. This 

allows for an efficient use of our neural resources for the evolutionarily important ability of 

perceiving faces and extracting meaningful information from them.  
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7 Appendix 

7.1 Appendix: Chapter 2 

Bayesian Ideal Observer.  

Here, we run several different variants of an ideal observer model, starting with a 

standard ideal observer, which utilizes image information to achieve the highest possible 

performance and does not simulate the foveation of the visual system like the FIO described 

below. We run a face emotion identification task with a set of 60 (20 of the same identities 

for each of 3 emotions) front-view facial expression movies that are normalized for the 

position of the eyes and chin as well as for contrast (see the Stimuli subsection of Human 

Psychophysics Studies above for details). Each face movie for the ideal observer simulations 

consists of 5 frames, which matches a 200ms presentation time that was used in the forced-

fixation condition of Experiment 2 (see Trial Timing section of Experimental Conditions in 

of Chapter 2 for details). An ideal observer optimally integrates information over time, so for 

each movie, the 5 frames are concatenated into a single large frame, which effectively treats 

the time dimension as a spatial dimension. The frames at corresponding times for each face 

movie now spatially align with frames from the same time period in other movies. On each 

trial of the simulation, the face movies 1 60{ , , }f f  are sampled uniformly at random and a 

template, is , is chosen. The same contrast and additive white noise that was used for humans 

is then added to a chosen template, i. The input data, g , to the ideal observer on each 

simulated trial is then the sum of a random (1 of 60) face template, is , and external noise, 
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exn . 

      xi e= +g s n      (2.1.1) 

The ideal observer does not have any sources of suboptimality such as internal noise or 

filtering operations on the face template, 
is , that models foveation. Using Bayes rule, the 

ideal observer finds a set of posterior probabilities, one for each hypothesis that face f  from 

emotion e (happy, said, or afraid) was shown, 
,e fH , given the image data, g . Here we use 

the index, f, to represent a calculated posterior probability for a particular face being shown, 

in contrast to the index, i, which represents the actual ground truth signal that was shown on 

a particular trial.  

The posterior probability, ,( | )e fP H g , is calculated using the prior probabilities,  

,( )e fP H , and the likelihood, ,( | )e fP Hg  , of the image data, g , given the presence of each 

face, f  from emotion e: 

 
, ,

, , ,

( | ) ( )
( | ) ( ) ( | )

( )

e f e f

e f e f e f f

P H P H
P H P H P H l

P
=  =

g
g g

g
  (2.1.2) 

Then to find the posterior probability, ( | )eP H g , of the presence of a specific emotion, the 

sum is found across the posterior probabilities of individual faces belonging to that emotion:  

 

 ,( | ) ( | )e e f

f

P H P H=g g   (2.1.3) 

 

The normalizing factor, ( )P g , in equation (2.1.2) is the same for all posterior 

probabilities, so it can be ignored without changing the result.  
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The maximum posterior probability is then chosen as the answer at the end of a simulated 

trial: 

 argmax( ( | ))e
e

decision P H= g   (2.1.4) 

The prior probabilities are uniform constants that are set by the experimenter and do not vary 

from trial to trial. However, calculating the likelihood requires knowing the statistical 

distribution of noise that is added to each pixel. On each trial, independent Gaussian noise 

ex  is added to each pixel 
,i ps  , of a random face template, 

is , where p indexes 1 to n 

(5002) pixels in the 500x500 image, resulting in a noisy image g . At the pixel level, the 

likelihood, 
, ,e f pl , of an individual pixel, 

pg of the data coming from pixel, 
, ,e f ps , in face 

template, f, from emotion, e, is: 

 

2

, ,

, , 22

(1
ex )

)
p(

22

p e f p

e f p

exex

g s
l
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−
= −   (2.1.5) 

As a result of the statistical independence of the image noise, the likelihood, ,e fl , of 

the data, g , given the presence of the fth face, from emotion, e, can be written as a product of 

the likelihoods of individual pixels, which reduces to a simpler expression involving the 

original signal template, ,e fs , the image data , g , and the external noise standard deviation 

ex : 
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Region of Interest Bayesian Ideal Observer. 

In order to understand which regions of a face are important for this particular task we 

also run a Region of Interest Ideal Observer (ROI), which is a Bayesian Ideal Observer that is 

separately run using small sections of the face stimuli image at a time. We run the ROI for 

each frame of all the movies separately (i.e. we simulate the emotion discrimination task 

using only first frame of each movie, then separately the second frame, and so on)  in order to 

see how discriminative information may change as a facial expression develops The 

calculations are the same as for the ideal observer, except that in contrast to equation (2.1.1), 

the data, sg , is now the sum of a random (1 of 60) face template, ,i ss , and external noise, 

exn , where s indexes the section of the face for which performance is separately calculated: 

 ,s exi s= +g s n     (2.2.1) 

The signal ,i ss on each simulated trial is now taken from a specific 30x30 pixel 

section from a randomly chosen face template, i. Figure 2a and 2b show how small sections 

of a face are processed at a time and likelihoods are found for each section. Figure 2c shows 

a performance map that is created by sampling different sections across the face stimulus. 

Here, we run a simulation with 30,000 trials. Due to computational constraints, we only 

sample the sections every 10th pixel rather than every adjacent pixel, which results in a 47x47 

performance map (it is not 50x50 because of the 30px section size). This map is then resized 

using bilinear interpolation to a 500x500 pixel performance map to match the size of the face 

images.  
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Figure 2: A flow chart for a Region of Interest Ideal Observer. (a) An Ideal Observer is 

separately run for each small 30x30px section of a face image corresponding to a center 

point that is sampled every 10px. The ROI is run on a face emotion discrimination task 

separately on individual frames of each movie (i.e. we simulate the task using only first frame 

of each movie, then separately the second frame, and so on). (b) On each simulated trial, 

likelihoods are found for a chosen face to be a particular emotion, which are found from 

sums of likelihoods of individual identities representing that emotion. (c) The maximum 

likelihood principle is used to find performance in the task for each separate face section and 

output a performance map that shows which parts of a face are the most informative for this 

task. 
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Foveated Ideal Observer (FIO) Model.  

A spatially variant contrast sensitivity function (SVCSF) was used to model the 

degradation of the quality of information obtained in the periphery of a foveated visual 

system (M. F. Peterson & Eckstein, 2012):  

 0 0

0 0 0( , , ) exp( ( ) )
a n

SVCSF f r c f b f d r f = − −    (2.3.1) 

where f is spatial frequency in cycles per degree of visual angle. The terms 0a , 
0b , and 

0c , 

were chosen constants set to 1.2, 0.3, and 0.625 respectively, to set the maximum contrast at 

1 and the peak at 4 cycles per degree of visual angle at fixation. The polar coordinates r and θ 

specify the distance in visual angle and direction from fixation. 
0d  specifies the eccentricity 

factor as a function of direction, which represents how quickly information is degraded in the 

periphery. 
0n  specifies the steep eccentricity roll off factor. In the model simulations, 

different parameters are used for 
0d  for the vertical up, du, vertical down, dd, and horizontal, 

dh, directions. The parameters  du, dd , dh, and 
0n  are fit to the forced-fixation condition in 

Experiment 2 in order to match human performance (proportion correct) as a function of 

fixation position (4 different fixations down the vertical midline of the face) of an emotion 

discrimination task using upright faces. The values used for parameters du, dd, dh, and 
0n  

respectively, are 2E-6, 9E-6, 1E-6, and 5. The Akaike Information Criterion (Akaike, 1974), 

which takes into account the variance for each data point, is used as a distance measure. The 

same parameters are used for the emotion discrimination with all other face configurations 

(see Stimuli section of Human Psychophysics Studies above). The circular plots between 

Figure 3b.1 and 3b.2 show examples of 2d contrast 
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Figure 3: A summary of the process of the computations in the FIO for two fixation positions. 

The top panels show a fixation point that is below the eyes, which is suboptimal in an 

emotion discrimination task with upright faces. The bottom panels show a fixation that is 

above the tip of the nose, which is optimal for this task. (a) Many trials are simulated where 

on each trial, a face template is chosen as a signal. Here, the signal selection is shown for an 

emotion discrimination task for one of 60 face templates, each of which contains 5 frames 

(because the model was fit to the short-presentation forced-fixation task of Experiment 2). 

(b.1-b.3), The filtering operation for a noiseless template. The filtering operation is done for 

each frame separately, after which the frames are concatenated together. (b.1), A face image 

is conceptually divided into bins that correspond to specific CSFs as a function of retinal 

eccentricity. Contrast sensitivity functions that correspond to the center of fixation preserve 

the higher spatial frequencies (seen as a higher contrast in red in the CSF plots), while 

contrast sensitivity functions that are far from the fixation position act as low-pass filters and 

mostly leave the low spatial frequencies (seen as a low-contrast blue in the CSF plots). (b.2), 

The image is transformed into the frequency domain, filtered separately by each possible 

CSF (here only two are shown), and then transformed back into the spatial domain, resulting 

in a set of differently filtered images corresponding to each bin. (b.3), Corresponding bins 

are then extracted from the filtered images and input into a composite image that simulates 

foveation. The procedures in b.1–b.3 are then repeated for each of the frames.  (c) A set of 

response variables are then calculated, from which a set of likelihoods is found of each face 

movie given the noisy image input. (d), A decision of which face was shown is made by taking 

the maximum likelihood. Across many trials, a set of proportion correct (PC) values is found, 

one for each fixation point, and then combined into a heatmap. iFFT, Inverse FFT. 

 

sensitivity functions at 2 different locations with respect to the fixation position. Contrast 

sensitivity functions that correspond to the center of fixation preserve the higher spatial 

frequencies (seen as a higher contrast in red in the plots), while contrast sensitivity functions 

that are far from the fixation position act as low-pass filters and mostly leave the low spatial 
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frequencies (seen as a low contrast in blue in the plots). 

  Here, we run a face emotion discrimination task using movies of faces (5 frames 

long) that start with a neutral expression and develop into one of 3 possible expressions that 

correspond to happiness, sadness, or fear. We separately run several different conditions 

where the features of the face stimuli are moved or rotated. We simulate many trials of each 

condition of each task. On each trial of the simulation, the face templates 1{ , , }nf f  are 

sampled uniformly at random and a template, 
is , is chosen, where n is 60 for the face 

emotion discrimination task (20 identities, with 3 emotions for each identity). Each face 

template,
if , consists of 5 changing frames, which is the length of time that was used for 

stimulus presentation in the forced-fixation condition of Experiment 2. The 5 frames were 

taken from frames 6-10 out of 35 frames, in order to account for the average amount of time 

it took human participants to make the first saccade from the periphery of the screen into the 

face stimulus. The same contrast and additive white noise that was used for psychophysics 

experiments in humans is then added to a chosen template, i, before being linearly filtered 

with the SVCSF and corrupted with additional internal white noise to become the input data, 

kg  , to the ideal observer:  

 ( )k k i ex in= + +g E s n n   (2.3.2) 

where exn  is the external Gaussian white noise, inn  is the internal Gaussian white noise, and 

kE is the linear operator that simulates the fixation dependent foveation of the input. kE  

describes a set of filtering operations, followed by extraction and recombining parts of the 

filtered noisy templates in the following way: Here, for ease of notation we will describe kE
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as it acts on a random noise free template, is , rather than a signal with noise present. 

However, the computations are the same for a chosen template with added noise. Each 

combination of eccentricity (r) and direction (θ) from fixation defines its own CSF. The 

complete set of CSFs can be described in one equation, which we refer to as the SVCSF, 

where (r) and (θ) remain variables. Due to computational constraints, each image is divided 

into small bins with a single CSF assigned to each bin. For the emotion discrimination task, 

each frame ,i js  of each template, is , is separately filtered 480 times (30 eccentricities and 16 

directions) corresponding to the different CSF functions (and bins) to produce a set of noisy 

filtered signals. Figure 3b.1 shows an example of two fixations (one at the eyes, and another 

at the nose) where each face image is conceptually divided into the 480 bins that correspond 

to different CSF functions relative to the fixation position. Each signal is filtered by taking its 

fast Fourier transform (FFT), multiplying it on an element by element basis with the 

corresponding contrast sensitivity function, bCSF  , and then transforming it back into the 

spatial domain using the inverse FFT (IFFT), resulting in a noisy filtered image , ,i j bs  , where 

j represents the frame being processed and b represents the spatial parameters that correspond 

to bin b (examples of filtered images corresponding to 2 different CSFs are shown between 

Figure 3b.2 and 3b.3 : 

 , ))( (i b i bIFFT FFT=s s CSF   (2.3.3) 

 A composite foveated image ,i ks  , is then formed by extracting the regions of each ,i bs  image 

for the corresponding angle and eccentricity and placing them into ,i ks  (Figure 3b.3). 

Due to the foveation procedure using the kE operator, spatial correlations are formed on the 
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additive white noise field. In general, it is optimal (maximizes decision accuracy) to utilize 

templates that undo the spatial correlation through a process known as pre-whitening 

(Barrett, Yao, Rolland, & Myers, 1993; Burgess, 1994; M. P. Eckstein, Abbey, Bochud, & 

others, 2000). When using the prewhitening process, correlations are usually corrected by 

applying various transformations or incorporated into the templates. However, when 

modeling humans, a common model used is one in which the observer uses templates that 

match the filtering operations of the visual system (Burgess, 1994; M. F. Peterson & 

Eckstein, 2012; Y. Zhang, Pham, & Eckstein, 2004). This modeling approach is known as the 

non-prewhitening with an eye filter (NPWE) and uses templates that match each possible 

signal with the filtering by the human visual system. This results in a calculation of a set of 

template responses, 1, , 60, ,{ , , }f k f kr r , where f indexes the internal responses to a particular 

face that was possibly shown during a trial, and k indexes different fixation positions to a 

face image. For a specific fixation position, k, and possible input signal, fs , the template 

responses are a vector that represents the internal responses of all 60 “face detectors” to that 

particular input. Here we use the index, f, to represent an internal response used to calculate a 

posterior probability for a particular face being shown, in contrast to the index, i, which 

represents the actual ground truth signal that was shown on a particular trial. Below, we show 

how to calculate the internal template responses and find the covariance matrix relating them 

to each other. This is done by first filtering both the original face template, is , and the input 

signal, fs , plus noise, f ex+s n , and then taking the dot product between them as follows: 

 

, 1, , 60, ,

1 60

1 60

{ , , }

{( ) ( ( ) ), , ( ) ( ( ) )}

{ , , } ( ( ) )

f k f k f k

T T

k k f ex in k k f ex in

T

k k k f ex in

r r= 

= + +  + +

=  + +

r

E s E s n n E s E s n n

E s E s E s n n

  (2.3.4) 
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Using Bayes rule, the FIO finds a set of posterior probabilities, one for each 

hypothesis that face f  from emotion e was shown, ,e fH , given a set of responses ,f kr . The 

posterior probability, , ,( | )e f f kP H r ,  is calculated using the prior probabilities, ,( )e fP H , and 

the likelihood, , ,( | )f k e fP Hr  , of the set of responses given the presence of each face,  f, and 

the observer’s fixation at spatial location, k: 

  
, , ,

, , , , ,

,

( | ) ( )
( | ) ( ) ( | )

( )

f k e f e f

e f f k e f f k e f

f k

P H P H
P H P H P H

P
= 

r
r r

r
  (2.3.5) 

Then to find the posterior probability, ,( | )ke fP H r , of the presence of a specific 

emotion, the sum is found across the posterior probabilities of individual faces belonging to 

that emotion:  

 , ,,( | ) ( | )f ke k fe

f

fP H P H=r r   (2.3.6) 

The maximum posterior probability is then chosen: 

 ,argmax( ( | ))e f k
e

decision P H= r   (2.3.7) 

The normalizing factor, 
,( )f kP r

, in equation (2.3.4) is the same for all posterior probabilities, 

so it can be ignored without changing the result. The prior probabilities are uniform constants 

that are set by the experimenter and do not change from trial to trial. However, calculating 

the likelihood on each trial requires knowing the statistical distribution (means, variances, 

and covariances) of the template response (
,f kr ).   Noting that 

kE  is a linear operator, we 

will write the distribution of the response, 
, ,i f kr ,  of template, i, given face,  f, using simpler 

notation. We will denote a single filtered template 
,i ks , as 

,i ks and a double filtered template as 
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,i ks : 

 

, ,

2

, , ,

( ) ( ( ))

( ) ( ) ( )

T

i f k k i k f ex

T T

k i f ex k f in

T T T

i k f i k ex f k in

r = +

= + +

= + +

E s E s n

E s s n E s n

s s s n s n

  (2.3.8) 

 By using zero mean white noise, we are able to write a simple one term expression for the 

mean of the , ,i f kr distribution:  

 
, , , , , , , ,

, , , , , ,

[ [

[ [ [

] ]

] ] ]

T T T

i f k i f k i k f k i k ex f k in

T T T T

i k f k i k ex f k in i k f k

E r E

E E E



=

= = + +

= + +

s s s n s n

s s s n s n s s
   (2.3.9) 

where [ ]E  is the expectation operator. The mean of ,f kr  when face f is chosen is then the 

vector , 1, , 60, , } { , ,f k f k f k = μ . We are now able to find the covariance between each set of 

ith and jth responses that is independent of the presented face, f:  

 

, , , , , , , , , , , , , ,

, , , , , , , ,

2

, , , , , ,

( , ) [( [ ])( [ ])]

[( )( )]

[ ] (

i j k i f k j f k i f k i f k j f k j f k

T T T T T T T T

i k f i k ex f k in i k f j k f j k ex f k in j k f

T T T

i k j k ex i k j k i k j

cov r r E r E r r E r

E

E

= = − −

= + + − + + −
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
s s s n s n s s s s s n s n s s

s s n s s s s
2

, ,) [ ] [ ]T T

k ex in i k j k inE E+n n s s n

  (2.3.10) 

 Using the property of the expectation of independent random variables, 

[ ] [ ] [ ]E XY E X E Y= , and the fact that [ ]exE n  and [ ]inE n are both equal to zero, we reduce 

the middle expression in equation (2.3.9): 

 , , , ,( ) [ ] 0T T T

i k j k i k j k ex inE+ =s s s s n n   (2.3.11) 

  Then using the property, 
2 2( ) [ ] ( [ ])Var X E X E X= −  , we reduce the first term in equation 

(2.3.9): 
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2 2

, , , ,
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, ,

[ ] ( ( ) ( [ ]) )T T

i k j k ex i k j k ex ex

T

ex i k j k

E Var E



= +

=

s s n s s n n

s s
  (2.3.12) 

where 
2

ex  is the variance chosen for the external noise. Similarly, the third term in equation 

1.9 is reduced: 

 

2 2

, , , ,

2

, ,

[ ] ( ( ) ( [ ]) )in in in

in

T T

i k j k i k j k

T

i k j k

E Var E



= +

=

s s n s s n n

s s
  (2.3.13) 

This results in a simple expression for the covariance that consists of double filtered 

templates, single filtered templates, and the variances for the external and internal noise: 

 
2 2

, , , , , ,

T T

i j k ex i k j k in i k j k = + s s s s   (2.3.14) 

Due to the use of Gaussian external noise, the response vector ,f kr  for a trial given a 

face f comes from a multivariate normal distribution for which we know the mean and 

covariance matrix: 

 , ,( , )f k f k kMVN r μ   (2.3.15) 

Knowing ,f kr , ,f kμ  , and k allows us to find the likelihood ,f kl  of the responses 

using the multivariate Gaussian probability density function: 

 
1

, , , , ,

1
exp( ( ) ( ))

2

T

f k f k f k k f k f kl
−

= − − −r μ r μ   (2.3.16) 

 Here, we run a simulation with 100,000 trials. Due to computational constraints, we 

only run the simulation for fixations corresponding to every 10th pixel, which results in a 

50x50 performance map. This map is then resized using bilinear interpolation to a 500x500 

pixel performance map to match the size of the face images (Figure 3b.4).  
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7.2 Appendix: Chapter 3 

Ideal Observer.  

 See equations (2.1.5) and (2.1.6) in the Appendix of Chapter 2 above for details on 

how class likelihoods are found for an Ideal Observer model.  

Foveated Ideal Observer (FIO).  

See equations (2.3.8) to (2.3.16) in the Appendix of Chapter 2 above for details of 

how the means and covariances of a multivariate Gaussian distribution relating template 

responses for an FIO are calculated to find class likelihoods.  

 

FIO Model With Dampened Features in Internal Face Template. 

 We run an additional version of the FIO model where we alter the internal 

representation of face templates that the model uses to compare face signals to on each trial. 

In this implementation of the FIO, in contrast to equation (2.3.4) in the Appendix of Chapter 

1, the calculation of each template response for each possible input signal plus noise, 

f ex+s n , is: 
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d d
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d
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  (3.1.1) 

where each id is a dampened version of a face template is  that has been altered by lowering 

the contrast of specific features, such as the mouth or the eyes. This is done by doing an 

element-by-element multiplication of is  with a weight matrix, featurew , which contains values 

ranging between 0 and 1, with values less than one in the location of the feature whose 
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contrast is being lowered: 

 i i feature= wd s   (3.1.2) 

It is important to note that only the internal representation of the faces are changed, but not 

the ground truth input signals, is , that are chosen on each trial, or each possible input signal 

plus noise, f ex+s n , which the model tries in order to calculate posterior probabilities.  

Efficiency Calculation.  

It is often useful to assess how well a human performs relative to the upper bound of 

performance by calculating the absolute efficiency. This is calculated by taking the squared 

contrast thresholds of humans relative to the ideal observer to achieve a given performance 

(e.g., experimental accuracy achieved by the human observer (Barlow, 1980; Burgess, 

Wagner, Jennings, & Barlow, 1981; Pelli, Burns, Farell, & Moore-Page, 2006; Tjan, Braje, 

Legge, & Kersten, 1995): 

 

2

2

idea

u

l

h man

C
Efficiency

C
=   (3.2.1) 

For example, if comparing the efficiency between a human observer and an ideal 

observer, an ideal observer requires much lower signal contrast, idealC   than humans, humanC , 

in order to match the experimentally measured human performance.  

In addition, the relative efficiency of the human observer relative to the FIO (M. F. 

Peterson & Eckstein, 2014) is similarly defined as: 

 

2

2

FIO

human

C
Efficiency

C
=   (3.2.2) 

7.3 Appendix: Chapter 4  
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Ideal Observer.  

 See equations (2.1.5) and (2.1.6) in the Appendix of Chapter 1 above for details on 

how class likelihoods are found for an Ideal Observer model.  

Foveated Ideal Observer (FIO).  

See equations (2.3.8) to (2.3.16) in the Appendix of Chapter 1 above for details of 

how the means and covariances of a multivariate Gaussian distribution relating template 

responses for an FIO are calculated to find class likelihoods.  

Fixed Template Foveated Ideal Observer (FT-FIO) Model.  

In addition to running the FIO model for several different classification tasks, we also 

run a modified version of the model, which has a fixed internal face template representation. 

We run it for a face identification task in order to represent possible differences in internal 

face templates between eye-lookers and nose-lookers. The algorithmic differences between 

the FIO model and FT-FIO model can be seen in the way that the template responses are 

calculated relative to equation (2.3.4):  
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The only difference between equation (2.3.4) and equation (4.1.1) (besides this task 

involving 10 face exemplars, with one for each of 10 classes, rather than 60 examplars spread 

across 3 classes) is that the kE operator described above, which simulates foveation at a 

specific fixation position, k, now becomes pE  , but only when it is applied to the internal 

representations of each of 10 face templates 101{ , , }s s . Here, p, denotes the position of a 

center of fixation that is fixed at a particular point and is independent of the fixation position, 
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k, which separately determines how a face stimulus, fs , chosen on a particular trial is 

foveated at that fixation position. We separately run the FT-FIO model for a fixed position, p, 

at a point below the eyes as well as at a point at the tip of the nose.  




