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Abstract 

Improving the extremely low temperature operation of rechargeable batteries is vital to the 

operation of electronics in extreme environments, where systems capable of high-rate discharge 

are in short supply. Herein, we demonstrate the holistic design of dual-graphite batteries, which 

circumvent the sluggish ion desolvation process found in typical lithium-ion batteries during 

discharge. These batteries were enabled by a novel electrolyte, which simultaneously provided 

high electrochemical stability and ionic conductivity at low temperature. The dual-graphite cells, 

when compared to industry-type graphite || LiCoO2 full-cells demonstrated an 11 times increased 

capacity retention at -60 oC for a 10 C discharge rate, indicative of the superior kinetics of the 

“dual-ion” storage mechanism. These trends are further supported by GITT and EIS measurements 

at reduced temperature. This work provides a new design strategy for extreme low-temperature 

batteries. 
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Introduction 

The advent of lithium-ion batteries (LIBs) has enabled the rapid development of portable 

electronics and electric vehicles due to their relatively high specific energy and long cycle life 

under mild operating conditions.[1] However, typical LIBs encounter severe performance loss at 

sub-zero temperatures primarily due to the liquid electrolyte, which hinders the deployment of 

high altitude drones and advanced electronics in space.[2] In particular, power density suffers 

severely, where early studies observed that a commercial LIB retaining 5% of its energy density 

at -40oC only retained 1.25 % of its power density.[3] 

External battery warming systems are typically applied to circumvent this issue, where device 

charging in harsh environments can be aided by additional components that have recently been 

demonstrated with minimal impact to total cell mass.[4] However, these heating systems are 

untenable for discharge as a standalone system due to their non-negligible startup times, requiring 

a source of high current for initial activation. Furthermore, many devices requiring low 

temperature discharge do not require warming systems for charging due to the nature of their 

operation (e.g. high-altitude drones are charged at low altitudes). For these reasons, the field has 

traditionally focused on performance retention at low-temperature during discharge after charging 

under mild conditions.[2,3] 

Approaches to improve low-temperature discharge performance generally focus on the battery 

electrolyte, which facilitates the transport of ions between electrodes and governs a set of discrete 

cell impedance contributors. For a typical discharging LIB, these contributions are generally 

summarized as: 1) migration through the solid-electrolyte-interface (SEI), 2) bulk ionic transport, 

and 3) charge-transfer, which is dominated by Li+ de-solvation at the positive electrode interface.[5]  
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These resistances are all significantly exacerbated at temperatures < -20oC and at high discharge 

rate, where Li+ de-solvation in particular has been observed to dominate the capacity fade.[5] In 

general, these resistances have been minimized by employing  low melting-point solvents[6], and 

novel salt additives.[7] Though much progress has been made, it is crucial to note that these 

advancements have been largely been applied conventional LIBs containing transition-metal oxide 

electrodes. These electrodes operate via the “rocking chair” mechanism, where Li+ diffuses from 

negative electrode to positive electrode during discharge, undergoing solvation at the negative 

electrode interface and de-solvation at the positive electrode interface. As a consequence of such 

a mechanism, sluggish Li+ desolvation is completely unavoidable during both charge and discharge 

of LIBs. This is not the case for dual-ion batteries (DIBs), however. DIBs store both cations and 

anions during charge, which migrate back into the electrolyte during discharge. This “salt-

splitting” mechanism intrinsically decouples solvation and desolvation, where ions undergo 

desolvation on both electrodes during charge and solvation on both electrodes during discharge, 

theoretically circumventing the desolvation barrier.[8] Furthermore, the weak solvation of anions 

suggests that the de-solvation barrier would have little effect on the positive electrode kinetics.[9] 

These factors indicate that DIBs have the potential to kinetically outperform LIBs at extremely 

low temperature.  

Anion-storing DIB positive electrodes typically fall into the following categories: anion doping in 

polymers[10], anion insertion in metal-organic frameworks (MOFs)[11], halogen conversion in 

graphite[12], and anion intercalation in graphite.[13] Polymers have recently shown promise for low 

temperature devices[6a,b], however the poor volumetric energy density and low electronic 

conductivity of polymer electrodes hinders their widespread adoption. Furthermore, halogen 

conversion has yet to be realized in organic electrolytes, and the unclear solvation/desolvation 
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mechanics at the electrode interface of polymers and MOFs overcomplicates a direct comparison 

between DIB and LIB mechanisms.[10-12] The well-known intercalation based graphite positive 

electrode is the ideal candidate to make such a comparison, however until now an electrolyte 

system with adequate oxidative stability and low temperature ionic conductivity has not been 

demonstrated. 

Herein, we demonstrate the holistic design of practical dual-graphite batteries for use at extremely 

low temperature, utilizing a novel electrolyte that simultaneously offers high low temperature ionic 

conductivity and electrochemical stability. While this electrolyte provides excellent performance 

to LIB chemistries at low temperature, we show that a DIB full cell far exceeds the LIB control in 

terms of kinetics, leading to an 11 times greater capacity retention at -60 oC at a 10 C discharge 

rate. These findings are further supported by impedance and GITT trends at different operating 

temperatures. This work offers a new mechanistic design criterion towards the development of 

practical low temperature batteries capable of high-power output. 

Results and Discussion 

Methyl propionate (MP), a common carboxylate ester was chosen as the primary solvent in our 

electrolyte for its sufficient dielectric constant and low melting point of -87.5 oC (Table S1). LiPF6 

was selected as the salt due to the established viability of PF6
- intercalation in graphite, and 2 M 

concentration was selected to satisfy the concentration requirements of DIBs without producing a 

high viscosity.[13]  As presented in Figure 1A, MP-based electrolytes remain in liquid phase at -

60oC, well past the freezing point of a typical electrolyte used in commercial batteries (1 M LiPF6 

in ethylene carbonate/diethyl carbonate or EC/DEC, 1:1 volume). While carboxylate esters has 

previously been applied in low-temperature batteries, their role has been limited to an additive to 
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typical EC and ethyl methyl carbonate (EMC) based systems.[6c,e] We suggest that their limitation 

in this regard likely stems from poor reductive stability, where cyclic voltammetry (CV) of 2 M 

LiPF6 in MP significant cathodic current beginning at 0.5 V vs. Li/Li+, and irreversible Li plating 

(Figure 1B). To solve this issue, fluoroethylene carbonate (FEC), which is known to stabilize 

negative electrode and positive electrode interfaces was applied to the MP system, where 2 M 

LiPF6 in MP with 10% (v/v) FEC (MP 10% FEC) additive shows the lowest anodic current at high 

voltage while enabling reversible Li plating at low voltage (Figure 1B).[14] The FEC additive also 

serves to build a solid-electrolyte interface (SEI) capable of enabling graphite negative electrodes, 

which is vital to the practicality of low temperature batteries until Li metal negative electrodes can 

be successfully enabled at high coulombic efficiency. However, the pure MP electrolyte without 

FEC fails to support charge/discharge of graphite negative electrodes (Figure 1C). While high 

FEC concentrations can likely achieve this, we determined that 10% (v/v) FEC was the minimum 

amount required to do so (Figure S2A), which was selected to maximize the MP composition for 

a low overall melting point and viscosity.  

The aforementioned electrolyte design principles are perhaps best exemplified in the measured 

ionic conductivity with decreasing temperature (Figure 1D). Using an incremental impedance 

measurement technique (Supporting Information), it was found that 2M LiPF6 in MP retained a 

remarkable ionic conductivity of 1.89 mS cm-1 at -60 oC, which was slightly reduced to 1.50 mS 

cm-1 with the addition of 10% FEC. This is in stark contrast to the commercial carbonate 

electrolyte, which falls to 0.0051 mS cm-1 at -60 oC (Figure 1D).  

To evaluate DIBs and LIBs at low temperature we applied the 2 M LiPF6 MP 10% of FEC 

electrolyte in graphite||graphite and graphite||LiCoO2 (LCO) full-cells. Their charge storage 

mechanisms are displayed in Figure 2A&B, respectively to illustrate the distinct 
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solvation/desolvation behavior. The graphite positive electrode was found to exhibit lower specific 

capacity of 80 mAh g-1 compared to the 138 mAh g-1 of LCO due to the greater size of PF6
- relative 

to Li+ (Figure S3). However, as displayed in Figure 2C, the storage of PF6
- (~ 4.6 – 5.2 V vs. 

Li/Li+) in graphite occurs at a much higher potential than Li+ in LCO (~ 3.9 – 4.2 V vs. Li/Li+), 

indicating its viability in terms of energy output. These positive electrode chemistries were then 

applied in full cells with graphite negative electrodes with voltage profiles shown in Figure 2D&E. 

The detailed design of these full cells can be found in the supporting information. The cycling 

performance of these cells are shown in Figure 2F, where stable performance was exhibited for 

both cells after a commonly applied initial pre-lithiation process for the DIB (Supporting 

Information). The capacity fading of such cycling has been recently studied by Heidrich et al., 

indicating that the irreversibility of the graphite positive electrode can potentially result in Li metal 

plating on the negative electrode.[15] While this was not explored in this work, a focus of future 

studies will be to address these with more stable electrolyte chemistries and optimized N/P ratios. 

To simulate low temperature device operation, the assembled full-cells were then subjected to 

testing using a method similar to previous studies (Supporting Information).[5,6] At -40oC with a 1 

C discharge rate the graphite||LCO LIB was found to retain 72.4% of its room temperature 

capacity, which decreased to 63.2% at -60oC (Figure 3A). It is worth noting that due to the 

adoption of the new electrolyte the graphite||LCO control cell ranks among the best capacity 

retention for this temperature, as displayed by the performance comparison in Figure S5.[6] Despite 

the high-performing control, the graphite||graphite DIB was found to far exceed the LIB capacity 

retention, retaining 93.1% and 84.4% of its room temperature capacity at -40 oC and -60 oC, 

respectively (Figure 3B). The low temperature improvement of the DIB mechanism was further 

investigated at -60oC under different discharge rates, which provided perhaps the most salient 
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deviation of performance metrics (Figure 3C&D). At -60 oC and a 0.1 C discharge rate, the 

graphite||LCO LIB and the graphite||graphite DIB displayed 78.1% and 87.3% capacity retentions, 

respectively. However, when the rate was increased to 10 C, the DIB still exhibited 61.7%, whereas 

the LIB was unable to provide any significant capacity (5.5%) under the same conditions. The 

room temperature capacity retention trend is displayed in Figure S6C in its entirety, and can be 

compared to the same trends at room temperature (Figure S6A& B), where little deviation can be 

observed between the two cells. These trends withstanding, DIBs typically struggle to match LIBs 

in specific energy at a cell level due to the higher electrolyte volume demanded (Table S2&3).[16] 

However, DIBs could be ideal for applications requiring high power output at extremely low 

temperature due to the sluggish kinetics of LIBs.[2,6]    

To better understand the remarkable kinetic performance of the DIB at extremely low temperature, 

further electrochemical characterization was performed on the graphite and LCO positive 

electrodes to isolate the source of the two storage mechanisms. First, the galvanostatic intermittent 

titration technique (GITT) was applied to the two positive electrodes at room temperature and -

60oC (Figure 4A&B), a technique which has previously applied to study other positive electrodes 

at low temperature.[17] The data obtained from the tests were used to calculate the diffusion 

coefficients for Li+ and PF6
- in the LCO and graphite positive electrodes, respectively using a 

spherical particle model applied in previous literature (Figure 4C).[18] At 23 oC the average 

diffusion coefficient was determined to be 2.5 𝑥 10ି଼, and 2.1 𝑥 10ିଵ𝑐𝑚ଶ 𝑠ିଵ for the graphite 

and LCO positive electrodes, respectively. The graphite positive electrode values vary from 

previous studies, which may be related to a previously established self-activation process that 

occurs during our GITT preparation (Supporting Information).[13a,13f,19] When the same analysis 

was applied at -60 oC, these values decreased to 4.1 𝑥 10ିଵ𝑐𝑚ଶ 𝑠ିଵ and 7.6 𝑥 10ିଵସ𝑐𝑚ଶ 𝑠ିଵ, 
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where the LCO declined by almost double the orders of magnitude compared to the graphite 

positive electrode. Such a decrease in the LCO GITT is likely due to the combined effects of solid-

state diffusion and de-solvation, whereas the graphite positive electrode only experiences the 

former. This trend was further investigated by electrochemical impedance spectroscopy (EIS) 

applied to 50 % state of charge (SOC) symmetric positive electrode cells to eliminate any 

contribution of the shared graphite negative electrode to the charge transfer impedance (Figure 

4D&E). It can be observed that with decreasing temperature the graphite positive electrode 

exhibits consistently lower charge transfer impedance (RCT) than LCO, which was measured to be 

7.26 Ω and 94.1 Ω, respectively at -60 oC (Figure 4F). In agreement with the GITT results, we 

attribute this trend to the elimination of desolvation in the anion storing positive electrodes. The 

summary of equivalent circuit element values can be found in Tables S4 &5.  

Despite this, it is also important to note the limitations of electrochemical characterization 

techniques. Specifically, the EIS equivalent circuit and GITT diffusion coefficient model may be 

insufficient to quantitatively differentiate the effects of solid-state and desolvation effects during 

charge-transfer. Furthermore, the assumptions inherent in GITT such as negligible volume change, 

and dominant solid-state diffusion are problematic. While these factors may undermine the 

quantitative precision of these techniques, the qualitative comparison between the graphite and 

LCO positive electrodes clearly supports the performance data presented in this work, 

demonstrating the superiority of the DIB mechanism for low temperature applications.  

Conclusion 

To summarize, we demonstrated the comprehensive design of extremely low temperature batteries 

in order to confirm the kinetic superiority of the salt-splitting charge-transfer mechanism found in 
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DIBs . First, using MP as the primary solvent with a modest addition of 10% FEC, we formulated 

a novel electrolyte providing exceptional ionic conductivity at low temperature and high oxidative 

stability without compromising graphite negative electrode performance. This electrolyte was then 

applied in practical dual-graphite and graphite||LCO full-cells, which were subjected to testing at 

the extremely low temperature of -60 oC, where the dual-graphite DIBs provided consistently 

greater capacity retention compared to the LIBs for moderate and high discharge rates despite 

being comparable in this regard at room temperature.  These trends were further justified by GITT 

and AC impedance measurements, which measured a significantly smaller increase in the ion 

diffusion barrier and the charge transfer impedance for the graphite positive electrode compared 

to LCO when operating at -60 oC. Looking ahead, new electrolytes in support of more stable 

graphite positive electrodes, novel anion-storing positive electrodes, and more precise 

electrochemical techniques for low temperature analysis will be vital to the development of next-

generation DIBs for use at extremely low temperature. 
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Figure 1. Electrolyte characteristics. A) Image of selected electrolytes at -60oC. B) CV profiles of 

stainless-steel electrodes in selected electrolytes at 1 mV s-1. C) Half-cell charge/discharge profiles 

of graphite negative electrodes in selected electrolytes at 0.1 C. D) Ionic conductivity of selected 

electrolytes measured at different temperatures. 
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Figure 2. Operational schematics of A) Graphite||LCO, and B) Graphite||graphite full-cells. C) 

CV profiles of the selected electrode half-cells in 2 M LiPF6 in MP 10% FEC at 1 mV s-1. Room 

temperature charge/discharge profiles of D) Graphite||LCO and E) Graphite||graphite full-cells at 

1C (based on 140 mAh g-1 and 80 mAh g-1, respectively). F) Room temperature full-cell cycling 

performance at 1C. Dashed lines represent error bars. 
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Figure 3. Discharge profiles of A) Graphite||LCO, and B) Graphite||Graphite full-cells at different 

temperatures and 1 C rate. -60 oC discharge profiles of C) Graphite||LCO, and D) 

Graphite||graphite full-cells in 2 M LiPF6 in MP 10 % FEC at different rates compared to room 

temperature (23oC). Retention was based on the measured room temperature discharge capacity at 

1 C.  
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Figure 4. GITT Discharge curves of A) LCO and B) Graphite half-cells in 2 M LiPF6 in MP 10 

% FEC at 1 C for room temperature and -60oC. C) Measured ion diffusion coefficient during 

discharge in the selected positive electrodes at room temperature and -60oC.  Nyquist impedance 

and equivalent circuit fitting of D) LCO||LCO and E) Graphite positive electrode||graphite positive 

electrode coin cells at various temperatures in a 50% SOC condition. F) Summarized charge 

transfer resistance vs. temperature.  
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Graphical Abstract 

 

The field of low temperature batteries has been historically dominated by the study of Li-ion cells 
operating under the “rocking-chair” mechanism. This design choice is challenged via the rational 
design of “salt-splitting” dual-graphite batteries which exploit cation and anion storage mechanics 
to circumvent sluggish desolvation during discharge. 
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