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21
Understanding and Predicting
Geomagnetic Secular Variation via
Data Assimilation

Weijia Kuang, Kyle Gwirtz, Andrew Tangborn, and Matthias Morzfeld

Abstract: Geomagnetic data assimilation is a recently
established research discipline in geomagnetism. It aims
to optimally combine geomagnetic observations and
numerical geodynamo models to better estimate the
dynamic state of the Earth’s outer core, and to predict
geomagnetic secular variation. Over the past decade,
rapid advances have been made in geomagnetic data
assimilation on various fronts by several research groups
around the globe, such as using geomagnetic data assimi-
lation to understand and interpret the observed geomag-
netic secular variation, estimating part of the core state
that is not observable on the Earth’s surface, and making
geomagnetic forecasts on multi-year time scales. In paral-
lel, efforts have also been made on proxy systems for
understanding fundamental statistical properties of geo-
magnetic data assimilation, and for developing algorithms
tailored specifically for geomagnetic data assimilation. In
this chapter, we provide a comprehensive overview of these
advances, as well as some of the immediate challenges of
geomagnetic data assimilation, and possible solutions and
pathways to move forward.

21.1 Introduction

The observed Earth’s magnetic field, measured on the
ground and in orbits, is the sum of contributions from
various magnetic sources, both within the Earth and exter-
nal to it. Among them is the field originating in the Earth’s
fluid outer core, which accounts for more than 99% of the
observed magnetic energy as described by theMausberger–
Lowes power spectra (Langel and Estes, 1982). This part
of the field, called the ‘core field’ and the ‘geomagnetic
field’ interchangeably in this chapter, is generated and
maintained by turbulent convection in the outer core via
dynamo action (Larmor, 1919), and was first modelled
numerically a quarter century ago (e.g. Glatzmaier and
Roberts, 1995; Kageyama and Sato, 1997; Kuang and
Bloxham, 1997). Thus, geomagnetic observations and geo-
dynamo simulations are powerful tools for understanding
the dynamical processes in the Earth’s outer core, the

thermo-chemical properties in the deep Earth, and the
interactions between the outer core and other components
of the Earth system.

Both geomagnetic observations and geodynamo models
can provide independent glimpses of the core dynamic
state. Surface and orbital measurements can determine
the geomagnetic field up to degree Lobs ≤ 14 in spherical
harmonic expansion (Langel and Estes, 1982), and its slow-
time variation, called the secular variation (SV), at higher
degrees with the data collected from the current Swarm
satellite constellations (e.g. Finlay et al., 2020; Sabaka
et al., 2020). The observed SV can be used to infer core
flow beneath the core–mantle boundary (CMB) via the
‘frozen flux’ approximation (Roberts and Scott, 1965)
and additional constraints on the core flow properties
(e.g. Holme, 2007). The observed field and the inferred
flow provide (observational) pieces of the core dynamics
puzzle (Schaeffer et al., 2016; Aubert and Finlay, 2019;
Kloss and Finlay, 2019), but the dominant part of the
core state remains opaque.

On the other hand, numerical geodynamo simulations
can provide self-consistent approximations of the core
dynamic state, by numerically solving the dynamo equa-
tions with given boundary and initial conditions. These
dynamo equations are the non-linear partial differential
equations derived from first principles with various
simplifications (Braginsky and Roberts, 1995). Due to
computational constraints, numerical geodynamo simu-
lations could not be made with arbitrarily high spatial
temporal resolutions, and are thus limited to the param-
eter regimes far from those appropriate to the Earth’s
outer core (e.g. Roberts and King, 2013; Wicht and
Sanchez, 2019). But estimates of the core state are still
attempted by the asymptotic limits (scaling laws) derived
from numerical simulations with (computationally
permitted) broad ranges of parameter values (e.g.
Christensen, 2010; Yadav et al., 2013; Aubert et al.,
2017; Kuang et al., 2017). Still the differences between
the ‘true’ core state and the numerical asymptotic limits
remain uncertain.
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The capabilities and limitations of geomagnetic obser-
vations and of geodynamo simulations led to the birth
and growth of geomagnetic data assimilation (GDA) for
making optimal estimates of the core dynamic state, and
interpreting and predicting SV, using available geomag-
netic data and numerical geodynamo models (Fournier
et al., 2010). The first ‘proof-of-concept’ studies were
carried out using simplified magnetohydrodynamic
(MHD) systems (Fournier et al., 2007; Sun et al., 2007;
Morzfeld and Chorin, 2012), or numerical dynamo
models (Liu et al., 2007). These ignited subsequent
efforts in GDA for understanding observational con-
straints on core dynamics (e.g. Kuang et al., 2009;
Aubert and Fournier, 2011; Fournier et al., 2011;
Aubert, 2014; Kuang and Tangborn, 2015); GDA error
statistics and model developments (e.g. Kuang et al.,
2008; Canet et al., 2009; Hulot et al., 2010; Fournier
et al., 2011; Li et al., 2011, 2014; Sun and Kuang, 2015;
Tangborn and Kuang, 2015, 2018; Sanchez et al., 2016,
2019; Gwirtz et al., 2021); and geomagnetic predictions
(Kuang et al., 2010; Fournier et al., 2015, 2021b;
Morzfeld et al., 2017; Minami et al., 2020; Sanchez
et al., 2020; Tangborn et al., 2021). Despite these
advancements, many fundamental questions still remain
on geodynamic approximations, assimilation algorithms
and model/observation error statistics, such as model
and observation bias corrections, forecast covariance
matrix convergences, and non-linear assimilation algo-
rithms. However, it is expected that GDA will continue
to rapidly advance and will be broadly used in geody-
namo and geomagnetic field modelling, and in studies of
the Earth’s deep interior.

The goal of this chapter is to present the reader with an
overview of GDA which is easy to comprehend and can
provide a first step into geomagnetic data assimilation
research. This chapter is organised as follows: the geomag-
netic field and geodynamo modelling are reviewed in
Section 21.2; the assimilation algorithm is given in
Section 21.3. The current research results are presented
in Section 21.4, followed by the challenges and future devel-
opment in Section 21.5. Conclusions and Discussions are in
Section 21.6.

21.2 Geomagnetic Field and Geodynamo Modelling

The world (global) magnetic maps can be constructed from
observatory and satellite magnetic measurements, historical
navigation data, and archeo- and paleomagnetic data (e.g.
Jackson et al., 2000; Lesur et al., 2010; Panovska et al., 2019;
Finlay et al., 2020; Huder et al., 2020; Sabaka et al., 2020;
Alken et al., 2021b; Brown et al., 2021). For details of
geomagnetic observations and field models, see, for
example, Mandea and Korte (2011) and Sanchez (this vol-
ume). Despite subtle differences in the algorithms utilised to

produce these field models, they all share the same objective:
optimally separating the different sources that contribute to
the magnetic measurements. Among those contributions is
the magnetic field originated from the Earth’s core, called
the Earth’s intrinsic magnetic field or simply the core field.
In this section, this field is also called the geomagnetic field,
and the corresponding models are called geomagnetic field
models. These models provide descriptions of the spatial
and temporal variations of the modern field, as well as
lower-accuracy descriptions going as far as 100k years
back in time. In a geomagnetic field model, the observed
geomagnetic field B(o) is approximated as a potential field
and is described mathematically by the following spherical
harmonic expansion

BðoÞ ¼ �rV ;

V ¼ a
XLobs

0 ≤m ≤ l

a
r

� �lþ1
ðgml cos mϕþ hml sin mϕÞPm

l ðθÞ; ð21:1Þ

where ðgml ; hml Þ are called the Gauss coefficients; Pm
l are the

Schmidt normalised associated Legendre polynomials of
degree l and order m; Lobs is the highest degree resolved
with the data; a is the mean radius of the Earth’s surface; θ
and φ are the co-latitude and longitude, respectively. The
highest degree Lobs in (21.1) depends on the quality of the
data available, and thus varies over time. By (21.1), BðoÞ can
be continued downward from the surface to any location r�

in the interior, as long as the region r� ≤ r ≤ a is electrically
insulating. In a GDA system, r� is typically the mean radius
rc of the CMB if the entire mantle is assumed electrically
insulating in the geodynamomodel; or, if there is an electric-
ally conducting D″-layer at the base of the mantle, it is the
mean radius rd of the top of the layer. For example, the top
row of Fig. 21.1 are the mean observed radial component Br

and its SV _Br Br in 2010–15 at rd = 3,520 km (i.e. assuming
a 20 km thickD″-layer). Notice thatBr reverses its sign in the
areas around the tip of South America and south of Africa,
which coincide with the South Atlantic Anomaly (SAA),
a region with exceptionally low field intensity (see Fig. 21.2).

The working of the geodynamo can be described simply
as follows. The secular cooling and differentiation through
the Earth’s evolution have provided the buoyancy force
which drives convection in the outer core. Since the core
fluid is an iron-rich liquid alloy and is therefore highly
electrically conducting (e.g. Nimmo, 2007; Hirose et al.,
2013), an additional magnetic field is generated by the core
convection given any seed (background) magnetic field.
A self-consistent dynamo is achieved if the generated mag-
netic field can be maintained without the presence of the
seed field (Larmor, 1919). Braginsky and Roberts (1995)
provide the full set of the partial differential equations for
the geodynamo. But the earliest dynamo models, first by
Glatzmaier and Roberts (1995), and later by Kageyama and
Sato (1997) and Kuang and Bloxham (1997), were
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developed with simplified versions of the Braginsky–
Roberts equations. Since then, many more dynamo models
have been developed with different physics and/or numer-
ical algorithms implemented. Details of these dynamo
models can be found in the past community dynamo bench-
mark efforts (Christensen et al., 2001; Jones et al., 2011;
Matsui et al., 2016).

To better explain the core state defined in geodynamo
models and its correlation to geomagnetic observations,
we use the MoSST core dynamics model (Kuang and
Bloxham, 1999; Kuang and Chao, 2003; Jiang and Kuang,
2008) as an example. Formulations can be easily adapted to
other dynamo models. In MoSST, the core fluid is assumed
Boussinesq; and the core state is described by the velocity
field v, the magnetic field B, and the temperature anomaly Θ
(from the background conducting state). Since v and B are

solenoidal (divergence-free), they are decomposed into the
poloidal and the toroidal components, for example,

B ¼ r� ðTBr̂Þ þ r �r� ðPBr̂Þ; ð21:2Þ

where r̂ is the unit radial vector, and TB and PB are the
toroidal and poloidal scalars, respectively. In MoSST, all
scalar fields are described by spherical harmonic expan-
sions, with the spectral coefficients discretised in radius,
for example,

PB ¼
XLd

0 ≤m ≤ l

bml ðriÞYm
l ðθ; ϕÞ þ C:C:;  for  i ¼ 0; 1; . . .  Nr;

ð21:3Þ

where Ld is the highest degree,Nr is the number of the radial
grid points ri, Ym

l are the orthonormal spherical harmonic
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Figure 21.1 Snapshots of the mean radial component Br of the geomagnetic field (left column) and its mean SV _Br (right column)
at the top of the D″-layer for 2010–15. The top row are downward continued from that of CM6 field model at the mean surface (Sabaka
et al., 2020), the centre row are from NASA GEMS assimilation solutions (Sun and Kuang, 2015; Tangborn et al., 2021), and the bottom
row are from MoSST geodynamo simulation solutions (Kuang and Chao, 2003; Jiang and Kuang, 2008).
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functions, and C.C. stands for the complex conjugate. With
these definitions, the core state vector is

x ¼ ½fbml ðriÞg; fjml ðriÞg; fvml ðriÞg; fωm
l ðriÞg; fζml ðriÞg�

T ;

ð21:4Þ

where jml , v
m
l , w

m
l and ζml are the complex spectral coefficients

of the toroidal magnetic scalar, the poloidal and toroidal
velocity scalars, and the temperature anomaly, respectively.
Thus the dimension of x isNx ¼ 5ðNr þ 1ÞLdðLd þ 2Þ, which
can be very large, for example, Nx ≈ 106 if Nr;Ld ∼ 100. The
time evolution of x is evaluated via given discretised
schemes, which are of the form

xkþ1 ¼ Lxk þ fðxkÞ; ð21:5Þ

where L is the linear matrix describing, for example, the
dissipative effects; f is the vector describing the quadratic
interactions among the fields, for example, motional induc-
tion; and the superscripts k and k þ 1 indicate the state
vector at the time steps tk and tk+1, respectively. In
MoSST, the entire dynamo system is non-dimensionalised,
and is therefore defined with a set of non-dimensional
parameters, namely the Rayleigh number Rth (for the buoy-
ancy force), the magnetic Rossby number Ro (for the fluid
inertia), the Ekman number E (for the fluid viscosity), and

the modified Prandtl number qκ (ratio of the thermal con-
ductivity to the magnetic diffusivity). They are referred to as
the dynamo parameters in this chapter, and are embedded in
L and f of (21.5). It should be pointed out that the mathem-
atical description (21.5) applies to all dynamo models,
though the state vector and the dynamo parameters may
differ. It should also be noted that most of the currently
available dynamo models are non-dimensional (e.g.
Christensen et al., 2001; Jones et al., 2011; Matsui et al.,
2016), thus requiring appropriate rescaling to compare with
the observed geomagnetic field.

Geodynamo simulations, which are also called the ‘free-
running models’ in data assimilation as they are not
constrained by observations, can provide axial-
dipolar–dominant magnetic fields that change in both
space and time. But they are also expected to differ from
observations, mainly because the dynamo parameter values
used in numerical simulation are far from those appropriate
for the Earth’s core (see Section 21.5 for more discussions).
For example, in the bottom row of Fig. 21.1, are the typical
mean Br and mean SV at the top of the D″-layer over
a 100-year period from MoSST dynamo simulation results
with the parameters Ro ¼ E ¼ 1:25� 10�6 and qκ ¼ 1.
Compared to the observations (the top row in Fig. 21.1),
the axial dipole component of the simulated field is too

3

4

5

Observed Field Intensity (nT) at CMB in 2019

Observed Field Intensity (nT) at Surface in 2019 Predicted Field Intensity (nT) at Surface in 2025

Predicted Field Intensity (nT) at CMB in 2025

6

×104

0.5

1

1.5

2

×106

3

4

5

6

×104

0.5

1

1.5

2

×106

Figure 21.2 The South Atlantic Anomaly observed in 2019 (left column) and predicted in 2025 (right column). The top are the magnetic
intensity at the Earth’s mean surface, and the bottom are those at the top of the D″-layer. The intensity levels decrease from the outermost
contour (30,000 nT on the surface) to the innermost contour (22,800 nT on the surface). The observations are from CM6 (Sabaka et al.,
2020), and the forecasts are made by Tangborn et al. (2021).
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strong, and the simulated SV is too weak. These significant
differences show that geodynamo simulations cannot pro-
vide accurate estimates of the core state on their own.

Aiming at improving core state estimates, one may attempt
to constrain geodynamo simulations with observations, and
data assimilation is an optimal choice. The observational
constraints can be made through connections between the
Gauss coefficients defined in (21.1), and the poloidal field
spectral coefficients defined in (21.3). In MoSST, an electric-
ally conducting D″-layer at the base of the mantle is imple-
mented in the model. With this feature, the connection is
made at the top of the D″-layer r ¼ rd :

bml ¼ bmðoÞl ≡
ð�1Þm

lB
a
rd

� �lþ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1þ δm0Þ

2l þ 1

r
ðgml � ihml Þ

ð21:6Þ

for l ≤Lobs. In (21.6), δm0 is the Kronecker delta (δm0 = 1 if
m ¼ 0, and 0 otherwise), and B is a magnetic scaling factor
used to match the dimensional Gauss coefficients (from
geomagnetic field models) and the non-dimensional pol-
oidal spectral coefficients (from geodynamo models). The
matching condition (21.6) shows also that only part of the
poloidal magnetic field can be observed, leaving the rest of
the core state unobserved. It also defines the projection of x
onto the observational subspace:

y ¼ Hx; ð21:7Þ

where y [of the dimensionNy = Lobs(Lobs + 2)] is the observed
part of the core state, andH is an Ny × Nx matrix, called the
observation operator in data assimilation (see Section 21.3).
Since the observation y is defined only at rd (the top of theD″-
layer),H is very simple: each row ofH contains a single non-
zero entry of 1 corresponding to the observed bmðoÞl . The
relations (21.6) and (21.7) are needed for GDA. It should be
noted that the methodology is applicable to other geody-
namo models, though the state vector x and therefore the
relation (21.6) may need to be modified accordingly.

21.3 Mathematics of Data Assimilation

In this section, we provide a brief review of data assimilation
(DA) while highlighting details relevant to geomagnetism.
We begin with a short introduction to the fundamental
framework ofDA. Specificmethods ofDA are then outlined
and the computational limitations they are subject to in
practice are briefly discussed.

21.3.1 The Basic Framework of Data Assimilation
Data assimilationmerges a computationalmodel of a process
with observations, in order to produce an improved estimate
of the state of a system. Methods of DA are typically

constructed within a Bayesian framework as follows. Let xt

be a vector of Nx elements representing the true state of
a system at a particular time (the geodynamo in GDA).
Knowledge of the system state is recorded in y, a vector of
Ny observations which is related to xt according to

y ¼ Hxt þ ε; ð21:8Þ

whereH is the observation operator and ε is the observation
noise which is frequently assumed to beGaussian with mean
zero and covariance R. In GDA, xt and y may consist of
spherical harmonic coefficients defining the state of the
geodynamo and knowledge of the poloidal magnetic field
near the CMB, respectively (see Section 21.2), in which case
the observation operator is theNy × Nx matrixH. Equation
(21.8) defines the likelihood pðyjxtÞ, that is, the probability
distribution of the observations given a system state. In
sequential DA systems, numerical simulations can be used
to define a prior distribution p0ðxtÞ(see Section 21.3.2 for
details) and by Bayes’ rule, a posterior distribution

pðxtjyÞ∝ p0ðxtÞpðyjxtÞ; ð21:9Þ

is defined by the product of the likelihood and the prior. The
ultimate objective of various approaches to DA is the
approximation of this posterior distribution.

21.3.2 The Ensemble Kalman Filter
The ensemble Kalman filter (EnKF), is a widely used method
that has been employed in multiple GDA systems (see, e.g.,
Fournier et al., 2013; Sun and Kuang, 2015; Sanchez et al.,
2020; Tangborn et al., 2021). It approximates the posterior
distribution of (21.9) by combining a Monte Carlo approach
with the Kalman filter (see, e.g., Evensen, 2006). Specifically,
the distributions in Section 21.3.1 are estimated by sampling
them through multiple, simultaneous runs of a numerical
model. In an EnKF, a forecast ensemble of Ne unique fore-
castsXf ¼ fx f

1;…; x f
Ne
g is produced at a time when observa-

tions are to be assimilated. This ensemble is taken to be
a sample of the prior distribution p0ðxtÞ. The purpose of the
EnKF is to adjust these forecasts by merging them with
information contained in the observations y. This collection
of ‘adjusted’ forecasts forms an analysis ensemble which is
taken to be the desired sampling of the posterior distribution
pðxtjyÞ. Typically, the mean of the analysis ensemble is used
as an estimate of the true state of the system, with the ensem-
ble variance indicating the estimate’s uncertainty.

An EnKF can be implemented in the following way.
The initial collection of forecasts are used to determine
the forecast covariance

Pf ¼ 1

Ne � 1

XNe

i¼1
ðx f

i � xÞðx f
i � xÞT ; ð21:10Þ

where x ¼ ð1=NeÞΣNe
i¼1x

f
i . An analysis ensemble can then be

determined by
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xai ¼ x f
i þK½y� ðHx f

i þ εiÞ�; ð21:11Þ

for i = 1, . . . Ne, where εi ∼Nð0;RÞ, and

K ¼ PfHTðHPfHT þ RÞ�1 ð21:12Þ

is the estimate of the Kalman gain. Under appropriate
conditions, the analysis ensemble is a sampling of the pos-
terior and thus provides the desired approximation of
(21.9). The analysis ensemble members can then be propa-
gated forward in time by the numerical model, to the next
instance when observations are available for assimilation
and the process is repeated. The particular EnKF algorithm
outlined here is known as the stochastic EnKF. Other imple-
mentations exist (see, e.g., Tippett et al., 2003; Hunt et al.,
2007; Buehner et al., 2017) and differ in their details; how-
ever, all rely on a Monte Carlo approximation of the
Kalman gain and are designed such that, under certain
conditions, the analysis ensemble they produce is distrib-
uted according to the posterior.

21.3.3 Variational and Hybrid Methods
Variational methods produce an estimate of the system state
by seeking themaximumof the posterior distribution of (21.9).
This approach effectively transforms the assimilation of obser-
vations to an optimisation problem. Assume that m is the
numerical model for advancing the state vector in time

xðtkÞ ¼ m½xðtk�1Þ�; ð21:13Þ

where xðtkÞ is the state vector of a numerical simulation at
time tk. Assume also that at tk, the observations yðtkÞ are
made with error covariance R. For simplicity, we denote
xk ¼ xðtkÞ and yk ¼ yðtkÞ in the rest of the discussion. With
this notation, the posterior distribution of the true initial
state xt0 at time t0, given observations y1 at time t1 is

pðxt0jy1Þ∝ pðxt0Þpðy1jxt0Þ: ð21:14Þ

Under the assumption that the prior and likelihood are
Gaussian, maximising (21.14) is equivalent to minimising

Jðx0Þ ¼ ðx0 � μÞTB�1ðx0 � μÞ þ ½Hmðx0Þ � y1�
TR�1

½Hmðx0Þ � y1�; ð21:15Þ

where μ and B are the mean and background covariance of
the prior distribution, respectively. This particular
approach to variational DA is referred to as 4D-Var (see,
e.g., Courtier, 1997). Determining the minimiser of the cost
function Jðx0Þ is an iterative process that can be computa-
tionally challenging, in part because optimization requires
computation of the gradient of the cost function. Note the
dependence of Eq. (21.15) on mðx0Þ, indicating that evalu-
ations of Jðx0Þ require runs of the numerical model.
Methods for improving the efficiency of the optimisation
process are known, however, many require code for

a tangent linear model M of the full numerical
model m (see, e.g., Talagrand and Courtier, 1987), that is,
approximating x1 as Mx0. But constructing M for large,
non-linear, numerical models can be a significant challenge.

Hybrid techniques have been developed which combine
variational and ensemble-based approaches to DA. For
example, one may run an ensemble of 4D-Var systems
(Bonavita et al., 2012) or couple an EnKF to a 4D-Var
setup (Zhang and Zhang, 2012), and use the ensemble
mean and covariance to define μ and B, the statistics of the
prior distribution appearing in Eq. (21.15). Recently, for the
first time, a hybrid method (4DEnVar) was employed in
GDA to propose an SV candidate model for IGRF-13
(Minami et al., 2020).

21.3.4 The Role of Ensemble Size
Under appropriate conditions, approximations of the pos-
terior distribution produced by EnKF implementations or
hybrid methods will converge as Ne ! ∞. But in practice,
one aims to use sufficiently large, but finite ensemble sizes.
However, what constitutes a ‘sufficiently large’ ensemble
depends on individual models. It depends, among other
things, on the dimension Nx of the state space x, and the
quality and extent of the observations y (Chorin and
Morzfeld, 2013). Typically, the larger the state space and
the sparser the observations, the larger the ensemble
size required. In GDA, a typical 3-D geodynamo model
with modest numerical resolutions has a dimension
Nx ∼ 106, while observations are limited to Ny ∼ 102 on
a 2-D spherical surface (e.g. the outer boundary of
a geodynamo model). In many DA applications, the com-
putational expense of the numerical model limits the ensem-
ble size with which it is practical to implement EnKF/hybrid
methods. This is the case in GDA where the computational
demands of numerical geodynamos have typically restricted
ensemble sizes to the hundreds. Efforts towards making
GDA with ensembles of limited size more effective are
discussed in Sections 21.4.3 and 21.5.

21.4 Geomagnetic Data Assimilation: Current
Results

The geomagnetic field varies on timescales ranging from
sub-annual to geological time scales, as found from paleo-
magnetic data (e.g. Panovska et al., 2019), historical mag-
netic navigation data (e.g. Jackson et al., 2000), and ground
observatory and satellite magnetic measurements (e.g.
Finlay et al., 2020; Huder et al., 2020; Sabaka et al., 2020).
Over the past century, details of small-scale (high spherical
harmonic degree) changes in the geomagnetic field morph-
ology have been discovered with observatory and satellite
magnetic measurements, such as persistent localised
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magnetic fluxes (e.g. Jackson, 2003; Finlay and Jackson,
2003); geomagnetic acceleration and geomagnetic jerks
(e.g. Mandea et al., 2010; Chulliat and Maus, 2014); high-
degree geomagnetic variations (e.g. Hulot et al., 2002; Olsen
and Mandea, 2008; Kloss and Finlay, 2019); and the South
Atlantic Anomaly (SAA), a localised region of extra low
magnetic field intensity at the Earth’s mean surface (e.g.
Finlay et al., 2020). Historical, archaeo- and paleomagnetic
data can provide information on large-scale (low spherical
harmonic degree) geomagnetic field variations, such as the
strong decay of the axial dipole moment in the past century
(e.g. Brown et al., 2018; Jackson et al., 2000), persistent
westward drift in the northern hemisphere over millennial
time scales (e.g. Nilsson et al., 2020), and the well-known
polarity reversals of the geomagnetic field over the last 150
Myr (Cande and Kent, 1995; Lowrie and Kent, 2004; Ogg,
2012).

These observations provide the data used in GDA and
highlight the primary purposes of GDA: forecasting, hind-
casting, and interpreting geomagnetic SV. The GDA-based
SV studies provide one of the few windows we have into the
dynamics of Earth’s deep interior. Additionally, geomag-
netic forecasts have broad scientific and societal applica-
tions, such as their contributions to time-varying global
geomagnetic models which are widely used in various scien-
tific communities (e.g. Doglioni et al., 2016), for navigation
and survey applications (e.g. Kaji et al., 2019), and for space
exploration (e.g. Heirtzler et al., 2002).

In this section, we provide a brief overview of some of
the current results in using GDA to understand and predict
SV. The discussion is organised according to the types of
the dynamic models used in the assimilation system. We
begin with a review of GDA relying on self-consistent
3-D dynamomodels, followed by a discussion of alternative
physical and statistical models, and finally, simplified models
used in, for example, GDA algorithm development and the
prediction of very long-term geomagnetic variations.

21.4.1 GDA with Self-consistent Dynamo Models
The first attempt to predict SV through GDA was carried
out a little more than a decade ago (Kuang et al., 2010)
and made use of a 3-D numerical geodynamo model. The
resulting forecast contributed as a candidate SV model to
the 11th generation International Geomagnetic Reference
Field (IGRF-11, Finlay et al., 2010). While this demon-
strated clearly the value of GDA using Gauss coefficients
from geomagnetic field models (not direct geomagnetic
measurements) and geodynamo models (with non ‘Earth-
like’ dynamo parameters, see Section 21.5), it was also
limited in estimating model uncertainties and biases. For
example, the forecast errors in the study by Kuang et al.
(2010) are approximated by a simple, time-invariant
mathematical description (analogous to the Optimal
Interpolation scheme in data assimilation), not by the

covariance matrix of a forecast ensemble (as in an
EnKF scheme). Fournier et al. (2015) continued the effort
to make GDA-based SV forecasts as a candidate model
for IGRF-12, with a major improvement in utilising the
dynamo solution covariances for the model error statis-
tics. However, the covariances in their assimilation were
based only on free-running models, not updates from
assimilations (Aubert, 2014).

In the most recent IGRF release (IGRF-13, Alken
et al., 2021a), of the fourteen candidate SV models
included, four are products of GDA systems using
3-D numerical geodynamos (Minami et al., 2020;
Sanchez et al., 2020; Fournier et al., 2021b; Tangborn
et al., 2021). Each of these systems make use of an ensem-
ble-based method for assimilation, including the first-ever
use of a hybrid variational method (Minami et al., 2020).
In addition, observations over the past decades (Minami
et al., 2020) and longer (Sanchez et al., 2020; Tangborn
et al., 2021) were assimilated. These help produce assimi-
lation solutions which are dynamically consistent over
time, as suggested by earlier work with sequential GDA
systems (Tangborn and Kuang, 2018; Sanchez et al.,
2019). For a more recent description of SV forecasts
made by GDA using full dynamo models, we refer the
reader to, for example, Fournier et al. (2021a).

The quality of geomagnetic data decreases rapidly when
looking back in time, and thus may present the ultimate
limitation to the forecast accuracy and dynamic consistency
of assimilation solutions from sequential data assimilation
systems. But the variational approach by Minami et al.
(2020) has the potential to reduce such limitations, as it
provides an opportunity to improve earlier geomagnetic
data with much more accurate satellite magnetic measure-
ments. All GDA systems face astronomical computational
expense if they are to assimilate all available geomagnetic
and paleomagnetic data (see Section 21.5 for further
discussion).

GDA with self-consistent geodynamo models presents an
opportunity to predict the future geomagnetic field over
several decades – much longer than the five-year IGRF
period. For example, Aubert (2015) showed that forecasts
using the dynamic models of GDA systems can outperform
linear extrapolations on decadal time scales. This is possible
because the estimated ‘unobserved’ part of the core state is
utilised by the dynamic models to predict the future mag-
netic field. Such forecasts currently predict a continuation of
the weakening of the axial dipole, and the expansion and
weakening of the SAA over the coming 50–100 years
(Aubert, 2015; Sanchez et al., 2020). In particular, as
shown in Fig. 21.2, the forecasts predict that a second min-
imum will grow to split the SAA region in 2025. This high-
lights a significant contribution of GDA besides simply
forecasting the magnetic field: GDA systems are powerful
tools for obtaining insight into Earth’s deep interior and the
origins of SV.
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21.4.2 GDA with Alternative Dynamic Models
While the use of full numerical dynamo models in GDA has
grown over the last decade, approaches employing alterna-
tive models based on various physical, mathematical, and
statistical descriptions of the magnetic field continue to be
successfully developed and employed. These models are, in
general, much simpler than the full dynamo models in both
mathematical formulation and numerical simulation.
However, they have unique advantages in, for example,
allowing for assimilation runs on million-year time scales
that would be prohibitively expensive with GDA systems
using a full dynamo model. Alternative models can also be
useful in testing and validating specific physical and/or
mathematical approximations which are applicable to geo-
dynamo models. Such models can be particularly useful as
testbeds for advancing GDA methods.

The first such approach to GDA with an alternative
model is the geomagnetic forecasts made with magnetic
induction via core surface flows (e.g. Maus et al., 2008;
Beggan and Whaler, 2009, 2010). The flows used for the
induction are also derived from geomagnetic observa-
tions. It has been shown that a steady core flow model
is capable of producing accurate SV forecasts over five-
year periods, and are, in principle, improved ‘linear
extrapolations’ of the SV from current and past geomag-
netic observations. These results agree also with studies of
Aubert (2015).

Improvement could be made if time-varying core flows
are considered, such as the quasi-geostrophic flows in the
studies of Pais and Jault (2008), Canet et al. (2009) and
Aubert (2015), and the ‘inertia-free’ core flow of Li et al.
(2014). In the former approach, the full dynamo model is
replaced by a quasi-geostrophic flow which can be deter-
mined without the Lorentz force (i.e. the magnetic field in
the outer core). In the latter, the momentum equation
becomes ‘diagnostic’, making it equally numerically stable
for both forecast and hindcast, a welcome simplification in,
for example, a variational data assimilation approach. In
summary, these models allow one to avoid solving the full
dynamo equations for GDA, greatly reducing computa-
tional demands.

Another approach relies on purely statistical models, such
as those of Barrois et al. (2018) and Bärenzung et al. (2020).
While these models may not capture the detailed physics of
a numerical dynamo, it makes the consideration of multiple
magnetic sources outside of the core (e.g. the lithosphere
and magnetosphere), computationally tractable, which, in
turn, allows for the direct assimilation of geomagnetic meas-
urements (as opposed to geomagnetic field models).
Computationally less demanding dynamic models can also
make ensemble sizes attainable which would otherwise be
impractical with numerical dynamos, resulting in more reli-
able uncertainty estimates. For example, the statistical
model of Bärenzung et al. (2018) permits an EnKF with an
ensemble size of Ne = 40,000, nearly two orders of

magnitude larger than those used in EnKFs with numerical
dynamos.

From long-term archeo- and paleomagnetic data, one can
find some persistent global scale magnetic features over very
long time periods (e.g. Amit et al., 2011; Constable et al.,
2016). Thus, an interesting approach is to use low-
dimensional models based on either stochastic PDEs (see,
e.g., Morzfeld and Buffett, 2019; Pétrélis et al., 2009) or
deterministic ODEs (Gissinger, 2012) for long-term SV,
such as the behaviour of the axial dipole component of
Earth’s magnetic field, and for the occurrence of reversals.
These models have been used to investigate the predictabil-
ity of reversals (see, e.g., Gwirtz et al., 2020) including an
effort involving the assimilation of paleomagnetic data
(Morzfeld et al., 2017). Results from the latter work indicate
that assimilations with simplified models of the axial dipole
may be useful for anticipating reversals within a window
of a few millennia. Limited paleomagnetic data however,
makes the validation of reversal prediction strategies
a challenge. But it is expected that, as more paleomagnetic
data and better low-degree models become available, GDA
will also become a powerful tool for predicting very slow
secular variations and geomagnetic reversals.

21.4.3 Proxy Models for GDA Development
Simplified models have also played a role in the develop-
ment of GDA outside of directly being used to make predic-
tions about the Earth. The earliest works concerning GDA
involved demonstrating its viability through observing sys-
tem simulation experiments (OSSEs) with simplified MHD
systems (Fournier et al., 2007; Sun et al., 2007;Morzfeld and
Chorin, 2012). The dynamic models of those works con-
sisted of 1-D scalar fields intended to represent the magnetic
field and fluid velocity of the outer core. While these ‘proxy
models’ were significantly simpler than the geodynamo,
they enabled extensive numerical studies of some of the
challenges of GDA. This approach of using proxy models
has been widely used in the successful development of
DA in other applications, such as numerical weather predic-
tion and oceanography. Surprisingly, the pursuit of proxy
models for GDA was discontinued until a two-dimensional
geomagnetic proxy system (TGPS) recently developed by
Gwirtz et al. (2021) was used to study assimilation strategies
for use with numerical dynamos.

The TGPS is a magnetoconvection system consisting of
2-D magnetic and velocity fields, on either a plane or spher-
ical surface, which are non-linearly coupled. The right side
of Fig. 21.3 shows a snapshot of a solution to the TGPS in
a spherical geometry.

The magnetic field and the velocity field are defined by the
scalar fields A and ω, respectively (shading in the image of the
fields), permitting a complete description of the system state
in spherical harmonics, similar to geodynamo models such as
MoSST (see Section 21.2). The TGPS was designed to mimic
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the scenario where spherical harmonics, determined from
geomagnetic field models, are assimilated into numerical geo-
dynamos. This is accomplished through OSSEs in which only
noisy ‘observations’ of the large length-scale spectral coeffi-
cients of A, which defines the magnetic field of the TGPS, are
assimilated. As with proxy models for other DA applications,
a major advantage of the TGPS is that its computational
simplicity allows for a large number of OSSEs which would
otherwise be impractical with numerical geodynamos.

Extensive OSSEs with the TGPS have been used to
explore and propose assimilation strategies for improving
accuracy and reducing the computational demands of oper-
ational GDA systems. The left panel of Fig. 21.3 shows the
average forecast errors with the TGPS during various
OSSEs, as a fraction of the average forecast error of a free-
running model using no assimilations. The OSSEs differ
only in the particular details of the EnKFs (labelled 1–4)
and the size of the ensemble (horizontal axis). The curve
determined by the black circles (EnKF-1) relies on the
standard stochastic EnKF described in Section 21.3.2,
while the others (EnKF 2–4) use various modifications gen-
erally known as localisation and inflation (see, e.g., Kotsuki
et al., 2017; Shlyaeva et al., 2019). It can be seen that while
the unmodified EnKF-1 requires an ensemble of Ne ¼ 500
to reduce forecast errors, similar results can be achieved at
reduced ensemble sizes when the modified EnKFs (2–4) are
used. These findings support the recent implementation of
‘localised’ EnKFs in GDA (Sanchez et al., 2019, 2020) and
suggest additional EnKFmodifications which might be use-
ful in reducing the necessary ensemble size, and therefore
computational demands, of GDA systems.

21.5 Geomagnetic Data Assimilation: Challenges
and Developments

GDA has advanced greatly in the past decade by utilising
knowledge accumulated in other Earth sciences, in particu-
lar in numerical weather prediction (NWP), and has been

recognised as a unique tool for geomagnetic forecasting and
core-state estimation. But many challenges still remain in
areas ranging from observations and physics to mathemat-
ical and computational techniques. Future progress inGDA
will rely on overcoming these hurdles. Some could be
addressed by leveraging knowledge from, for example,
NWP; but many others are unique to geomagnetism, the
geodynamo, and core dynamics. Among these challenges
are GDA system spin-up given the limited availability of
high resolution geomagnetic observations from the past; the
astronomical computational requirements of GDA systems;
and the systematic errors (model biases) arising from large
gaps between the dynamo parameter values used in numer-
ical dynamo simulations and those appropriate to the
Earth’s core.

A major challenge in GDA is the differences between the
observed geomagnetic field and the magnetic field from
dynamo simulations. EnKF-type assimilation algorithms
such as (21.11) assume that forecast errors are random
with the zero mean, that is, no systematic error (bias). It
also requires that the observations y and the forecasts x f in
(21.11) are defined in the same units. But both are difficult to
implement in current GDA systems. First, model biases
exist because of the large parameter gaps between the par-
ameter values used in numerical dynamo simulation and
those appropriate for the Earth’s outer core. The dynamo
parameters described in Section 21.2, such as the magnetic
Rossby number Ro, the Ekman number E, and the modified
Prandtl number qκ, are very small: Ro ∼ 10�9, E∼ 10�15,
and qκ ∼ 10�6 in the outer core if the molecular fluid viscos-
ity, magnetic diffusivity and thermal conductivity are used
(e.g. Braginsky and Roberts, 1995). In numerical simula-
tions, they are at least two orders of magnitude larger (e.g.
Wicht and Sanchez, 2019), simply due to computational
limitations. Numerical dynamo solutions with such large
parameter gaps certainly differ from the (unknown) true
core dynamic state. This is particularly significant in dynam-
ical processes that are directly related to these small param-
eters, such as torsional oscillations (waves) in the outer
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Figure 21.3 A 2-D proxy model for studying GDA.On
the left are average forecast errors during OSSEs as
a function of ensemble size, for the TGPS in a square
geometry when using EnKFs with various
modifications (labelled 1–4). The errors are scaled by
the average forecast error of a free-running model
assimilating no data. On the top right is a snapshot of
the 2-D velocity field (vectors) and the normal
component of vorticity (ω, shading) for the TGPS on
a sphere. On the bottom right is a snapshot of the
2-Dmagnetic field (vectors) and the magnetic scalar (A,
shading) for the TGPS on a sphere.
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core. These waves are excited to leading order by the balance
between the fluid inertia and the Lorentz force (e.g.
Braginsky, 1970; Wicht and Christensen, 2010). Thus their
typical frequencies are ∼OðR�1=2o Þ, implying that two
orders of magnitude differences in Ro result in one order
of magnitude differences in the wave frequencies (and thus
the time scales). Since these waves are conjectured to play
a major role in explaining the observed sub-decadal geo-
magnetic SV (e.g. Bloxham et al., 2002; Cox et al., 2016;
Aubert and Finlay, 2019), the impacts of the large param-
eter gaps must be properly addressed for accurate geomag-
netic forecasts. Although continuous efforts are made to
narrow the parameter gap (Aubert et al., 2017; Aubert and
Gillet, 2021), numerical dynamos which are practical for
GDA will continue to use parameters which differ signifi-
cantly from those representative of the Earth in near future.

Model biases also arise from uncertainties in the thermo-
chemical properties of the deep Earth, such as the adiabatic
and the total heat fluxes across the CMB (e.g. Nimmo, 2007;
Nakagawa, 2020), and the heterogeneity in the inner core
and the lower mantle (e.g. Garnero, 2000; Deuss, 2014). The
former directly affects the Rayleigh numbers Rth, and the
latter affects the boundary conditions at the CMB and
the inner core boundary (ICB) for numerical dynamo
models. It is expected that the parameter gaps will be nar-
rowed and the thermo-chemical uncertainties will be
reduced in the coming decades, but will not vanish. The
model biases in GDA systems will therefore remain in the
foreseeable future.

One possible approach is to estimate the model biases
with the asymptotic limits (scaling laws) derived from sys-
tematic numerical dynamo simulations with wide ranges of
parameter values (e.g. Christensen, 2010; Yadav et al., 2013;
Kuang et al., 2017; Petitdemange, 2018). But this could be
very difficult, since the numerical asymptotes may not agree
with the core state, and since the computational needs for
acquiring such asymptotes could be comparable or even
higher than those for GDA runs with large ensembles.

Another approach is to rescale y (or equivalently x f)
based on the properties of the observed field and of the
dynamo model used in GDA (e.g. Kuang et al., 2010;
Aubert, 2014; Fournier et al., 2015, 2021b; Tangborn
et al., 2021). This is perhaps more pragmatic since such
rescaling is needed if non-dimensional numerical dynamo
models are used in GDA, and since the canonical scaling
rules employed in dynamo modelling are inappropriate due
to non-‘Earth-like’ dynamo parameters in simulation. In the
approach of Kuang et al. (2010) and Tangborn et al. (2021),
the numerical and the observed axial dipole moments are
used for the magnetic field rescaling, but the time rescaling
remains the same as the canonical time scale of the numer-
ical dynamo model. In the approach of Aubert (2014) and
Fournier et al. (2015), the typical time scales of the numer-
ical dynamo solutions and of the observed SV are used for
the time rescaling, but the magnetic rescaling relies on the

asymptotic properties derived from independent numerical
dynamo simulations. As such, both approaches may lead to
inconsistencies between the magnetic rescaling and the time
rescaling since, as shown in Fig. 21.4, the typical time scales
and the typical intensities of the numerical magnetic fields
vary with the dynamo parameters. An immediate develop-
ment could be to select both the magnetic rescaling and the
time rescaling to match the observed and the modelled field
intensities and time scales. Consistencies of the scalings and
their potential improvements may be tested and validated
with various OSSEs.

The GDA forecast spin-up has always been a concern
because, as discussed in Section 21.2, the geomagnetic
observations are very sparse (the dimension of y is more
than four orders of magnitudes less than that of x f ), and are
not ‘in-situ’ as in many other Earth systems (y is determined
by downward continuing the surface observations to the
outer boundary of the dynamo system). The spin-up can
be measured by the time evolution of the forecast accuracy
ð O-F ÞB ≡ y−Hx f : for an EnKF GDA system, it is expected
to decrease in time as more data are assimilated, until it
reaches some minimum level (thus the system is fully spun-
up). Reaching the minimum level is critical for minimising
the SV forecast error which, by definition, can be deter-
mined by the field forecast errors at different times:
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Figure 21.4 The typical intensity (x-axis) and the typical time
scale (y-axis) of the ensembles of numerical poloidal magnetic
fields with (1) Rth ¼ 1811, Ro ¼ E ¼ 1:25� 10�6 (squares);
(2) Rth ¼ 1811, Ro ¼ E ¼ 6:25� 10�7 (stars); (3) Rth ¼ 905,
Ro ¼ E ¼ 6:25� 10�7 (triangles). The dark bold-face symbols are
the ensemble mean values. The intensities are for the poloidal
magnetic field at the top ofD″-layer for spherical harmonic degrees
l ≤ 13. Each of the three ensembles consist of 512 snapshots of
numerical dynamos selected from large pools of well-developed
free-running dynamo solutions obtained with the MoSST core
dynamics model (e.g. Jiang and Kuang, 2008).
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ð O-F ÞSV ≡ _y �H _xf ¼ 1

Δt
½ð O-F ÞBtþΔ t � ð O-F Þ

B
t �: ð21:16Þ

However, previous studies suggest that ð O-F ÞB may not
always decay monotonically in time (e.g. Tangborn and
Kuang, 2015, 2018). Though SV forecasts can be
improved by some additional calibration of ð O-F ÞB
(Kuang et al., 2010; Tangborn et al., 2021), or by careful
selection of the initial ensembles of the inverse dynamo
solutions matching earlier geomagnetic observations
(Aubert, 2014; Fournier et al., 2015), better solutions
could be found by improved assimilation algorithms,
such as the rescaling approach discussed in the previous
paragraph, and by assimilating other geodynamic obser-
vables, such as the length of day variation on decadal time
scales which is likely due to angular momentum exchange
between the solid Earth and the fluid core (e.g. Jault et al.,
1988). It should be noted that the angular momentum Moc

of the outer core (relative to the solid mantle) is the
volume integral Moc ¼

Ð
ρocr� vdV (where ρoc is the core

fluid density).
Development and validation of new assimilation algo-

rithms needed to address the issues outlined here will add
to the already very challenging computational needs of
GDA. Take a Boussinesq dynamo model for an illustra-
tion. As shown in Section 21.2, there are five independent
scalar fields in the state vector x of the dimension 5N1N2N3

(where N1;2;3 are the numerical resolutions in
a 3-D dynamo domain). In the MoSST core dynamics
model (e.g. Kuang and Bloxham, 1999; Jiang and Kuang,
2008), for example, the resolution is defined by the radial
grid points Nx and the truncation order Lx of the spherical
harmonic expansions. Thus, in one time step, there are
∼Oð50NxL3

x ln LxÞ floating point operations (with spher-
ical harmonic transforms). For a modest resolution
Nx ¼ Lx ¼ Oð102Þ and time step Δ t∼ 10�6(typical for
dynamo simulations with Ro;E∼ 10�6) a total of ∼1016

floating point operations are needed for a dynamo simula-
tion over a magnetic free-decay time. This amounts to∼3 h
on a tera floating point operations per second (teraflops)
computing system (excluding the communication time
across computing nodes). The computing needs will be Ne -
fold more for GDA runs using ensembles of size Ne.
Therefore, there is a need for more efficient assimilation
algorithms to make the GDA computing needs bearable,
such as those aiming at reducing the necessary ensemble size
for EnKF based GDA systems (e.g. Sanchez et al., 2019;
Gwirtz et al., 2021). Development of proxy models, such as
those of Canet et al. (2009) and Gwirtz et al. (2021), are
of particular importance for advancing GDA, as they
can provide dynamically complex, but computationally
economical platforms for at least early stage proof-of-
concept studies of assimilation algorithms and physical
approximations.

21.6 Discussion

In this chapter, we have provided an overview of geomag-
netic data assimilation (GDA), including some basics of
geomagnetic observations, geodynamo models, and assimi-
lation methodologies. We have also presented a wide range
of GDA results in understanding core dynamical processes,
interpreting observed SV, and geomagnetic forecasting. In
addition, we have elaborated on some of the challenges in
GDA and possible pathways to move forward. As such, this
chapter serves as a quick and comprehensive introduction
for those who wish to learn GDA and/or work on GDA-
related research and applications.

We would like to point out a particular useful application
of the proxy models described in Section 21.4. Since these
models are mathematically simple and computationally
affordable, they are very handy for teaching/learning
GDA. Compared to any full geodynamo model, these
models are easy to analyse. In particular, simulation and
assimilation (with these models) can be completed quickly
on desktops and laptops, thus making them ideal in, for
example, student projects.

While we have made an effort to include representative
GDA results and developments, this chapter does not cover
all GDAactivities, in part due to the page limit and the rapid
development of GDA in recent years. For example, the
description of variational geomagnetic data assimilation is
very brief in this chapter, and we refer the reader to relevant
references for more details. Regardless, this should not
affect the main purpose of this chapter, which is to provide
a comprehensive understanding of geomagnetic data
assimilation.
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