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Improving Representation of Deforestation Effects
on Evapotranspiration in the E3SM Land Model
Xitian Cai1 , William J. Riley1 , Qing Zhu1 , Jinyun Tang1 , Zhenzhong Zeng2,3 ,
Gautam Bisht1 , and James T. Randerson4

1Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 2School of
Environment Science and Engineering, Southern University of Science and Technology, Shenzhen, China, 3Department
of Civil and Environmental Engineering, PrincetonUniversity, Princeton, NJ, USA, 4Department of Earth System Science,
University of California, Irvine, CA, USA

Abstract Evapotranspiration (ET) plays an important role in land‐atmosphere coupling of energy, water,
and carbon cycles. Following deforestation, ET is typically observed to decrease substantially as a
consequence of decreases in leaf area and roots and increases in runoff. Changes in ET (latent heat flux)
revise the surface energy and water budgets, which further affects large‐scale atmospheric dynamics and
feeds back positively or negatively to long‐term forest sustainability. In this study, we used observations from
a recent synthesis of 29 pairs of adjacent intact and deforested FLUXNET sites to improve model
parameterization of stomatal characteristics, photosynthesis, and soil water dynamics in version 1 of the
Energy Exascale Earth System Model (E3SM) Land Model (ELMv1). We found that default ELMv1 predicts
an increase in ET after deforestation, likely leading to incorrect estimates of the effects of deforestation on
land‐atmosphere coupling. The calibrated model accurately represented the FLUXNET observed
deforestation effects on ET. Importantly, the search for global optimal parameters converged at values
consistent with recent observational syntheses, confirming the reliability of the calibrated physical
parameters. Applying this improved model parameterization to the globe scale reduced the bias of annual
ET simulation by up to ~600 mm/year. Analysis on the roles of parameters suggested that future model
development to improve ET simulation should focus on stomatal resistance and soil water‐related
parameterizations. Finally, our predicted differences in seasonal ET changes from deforestation are large
enough to substantially affect land‐atmosphere coupling and should be considered in such studies.

Plain Language Summary Deforestation changes Earth's surface characteristics and affects the
water cycle and climate. Although Earth system modeling is an important tool to understand the effects of
deforestation, current models have large uncertainties. Here we used FLUXNET‐based observations to
identify biases in representing deforestation effects on evapotranspiration (ET) in the Energy Exascale Earth
System Model (E3SM). Results showed these biases are mostly associated with the representation of trees,
not with smaller vegetation types (e.g., grasses). We then used the observations to optimize model
parameters and improved simulations of ET and sensible heat fluxes following deforestation. Globally, these
improvements led to a reduction in ET bias of 600 mm/year. This improved model allows improved
estimates of the effects of deforestation on the water cycle and climate and could benefit forest management
and climate adaptation strategies.

1. Introduction

Evapotranspiration (ET) moves water from land to atmosphere and is an important part of the water
cycle. ET includes plant transpiration and evaporation from soil, leaf, and water surfaces. By changing
water from liquid or solid state to gaseous state, ET consumes a substantial amount of energy (net radia-
tion) absorbed by the land surface. The thermal energy used to drive ET (i.e., latent heat flux, LE) effec-
tively cools the land surface (evaporative cooling, Bonan, 2008; Katul et al., 2012). For this reason, ET is
also an important part of the terrestrial energy cycle (Fisher et al., 2011) and land‐atmosphere coupling
(Koster et al., 2006; Seneviratne et al., 2006; Zeng et al., 2017). The strength of land‐atmosphere coupling
has been quantified by the evaporative fraction (i.e., the ratio of LE to the sum of LE and sensible heat
fluxe, SH), which is affected by transpiration, soil evaporation, and canopy evaporation partitioning
(Lawrence et al., 2007).
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Different mechanisms drive transpiration and evaporation. Evaporation is determined by surface moist-
ure supply, atmospheric water demand, and surface resistance. Through the opening and closing of their
stomata, plants adjust transpiration to regulate temperature, water use, and CO2 assimilation. Since
different plants are associated with different stomata behavior, xylem regulation, and plant hydraulics,
transpiration varies dramatically among vegetation types (Dai et al., 2004; Kelliher et al., 1995; Konings &
Gentine, 2016).

Human activities have dramatically altered land use and land cover (LULC) over much of the Earth's sur-
face, and these changes are projected to persist. Because of the close relationship between plants and ET,
LULC changes are expected to exert large impacts on ET and thus hydrological and biogeochemical cycles
and climate (Alkama & Cescatti, 2016; Bonan, 2008; Dirmeyer et al., 2010; Lawrence et al., 2016; Li et al.,
2018; Teuling et al., 2010).

Deforestation is one of the most important forms of LULC change (Davin & de Noblet‐Ducoudré, 2010;
Lawrence & Vandecar, 2015; Lee et al., 2011; Li et al., 2016). The impacts of deforestation on hydrology
are relatively well studied at paired catchments at small scale, with a general conclusion that deforestation
decreases annual ET and increases land water yields (Brown et al., 2005; Cheng et al., 2017; Yurtseven et al.,
2018; Zhang et al., 2001). At large scale, Earth system modeling is an important tool to study the climate
effects of deforestation. In the Amazon, for example, a previous study using an Earth System Model
(ESM) suggested that a loss of about 40% forest cover of the entire basin might trigger a tipping point
(Davidson et al., 2012; Sampaio et al., 2007). Large‐scale deforestation beyond this tipping point heavily
decreased energy and water released to the atmosphere, which reduced convection and precipitation. In
turn, this could lead to a new, drier stable state that makes it difficult to reestablish forests. However, this
estimated tipping point is highly uncertain due to the deficiencies in the structure of ESMs (Davidson
et al., 2012).

The large uncertainty in ESMs is a long‐standing challenge due to the lack of reliable measurements to con-
strain models. To examine the climate effects of large‐scale deforestation, however, deforestation effects on
land surface fluxes (particularly ET) need to be correctly parameterized. A new data set of paired FLUXNET
(Baldocchi et al., 2001) sites compiled by Chen et al. (2018) allows direct evaluation of the representation of
deforestation effects on ET in ESMs. That study paired forest towers with nearby open canopy (e.g., grass and
crop) towers and showed that differences in surface fluxes were mostly due to the LULC differences (i.e.,
deforestation in this case) and that deforestation led to a decrease in annual ET, with large seasonal varia-
bility. They also showed that the Community Land Model (CLM, the land component of the Community
Earth System Model [CESM]; Oleson et al., 2013) had large ET biases, as has been shown in other studies
(Oleson et al., 2004; Swenson & Lawrence, 2014; Tang & Riley, 2013; Wang et al., 2015). These biases led
to a poor representation of deforestation effects on ET (Chen et al., 2018). This problem also exists in other
ESMs (Pitman et al., 2009).

Since the Energy Exascale Earth SystemModel (E3SM) was developed based on CESM, we show below that
the default E3SM landmodel (ELMv1) has similarly poor predicted ET responses to deforestation. Therefore,
we combined these paired FLUXNET site data with atmospheric forcing data to improve ELMv1 and eval-
uate biophysical effects of deforestation. Our objectives of this study are to (1) evaluate the representation of
deforestation effects on ET in ELMv1; (2) provide a simple solution to improve this misrepresentation by
calibrating model parameters; and (3) evaluate implications of this model misrepresentation at site and glo-
bal scales and recommend next steps for model development.

2. Methodology
2.1. Model Description

E3SM is a new Earth system model supported by the U.S. Department of Energy. It branched from CESM in
2014, with specific version tag 1_3_beta10. The land component ELMv1 branched from the Community
Land Model version 4.5 (CLM4.5; Oleson et al., 2013) with specific version tag 4_5_71. Version 1 of E3SM
(E3SMv1; Golaz et al., 2019) was released to the public on 23 April 2018. Development in E3SMv1 focused
on the water cycles (river flow and water management), biogeochemical cycles, and cryosphere‐ocean sys-
tem (Golaz et al., 2019). In this study, we use the satellite phenology mode of ELMv1, which uses very
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similar parameterizations to the biophysical processes in CLM4.5; thus, the performance of ELMv1 analyzed
here may also be relevant to CLM.

Here we only describe the equation for calculating stomatal resistance, as we include in‐depth analysis of
parameter uncertainly associated with the minimum stomatal conductance. Stomatal resistance is calcu-
lated using the Ball‐Berry conductance model:

1
rs

¼ gs ¼ m
An

cs
hsPatm þ b (1)

where rs is leaf stomatal resistance (s·m2·μmol−1),m is a fitted parameter (s·m2·μmol−1),An is leaf net photo-
synthesis (μmol CO2·m

−2·s−1), cs is the CO2 partial pressure at the leaf surface (Pa), Patm is the atmospheric
pressure (Pa), hs is relative humidity at leaf surface (dimensionless), and b is the minimum stomatal conduc-
tance (μmol·m−2·s−1).

2.2. FLUXNET Data

We used observations from the paired FLUXNET sites compiled by Chen et al. (2018). In each pair, one flux
tower is located in a forest (broadleaf or needleleaf; deciduous, evergreen, or mixed; tropical, temperate, or
boreal) and the other is in an adjacent land cover type with open canopy (C3/C4 grassland, cropland, or open
shrub). Due to its important regulation of the global climate, many studies have focused on rapid tropical
forest deforestation. However, there were no sites located in the tropics in the original list of paired sites
in Chen et al. (2018). Therefore, we added one more pair in the tropics: Sardinilla‐Pasture (PA‐SPs, an open
site) and Sardinilla‐Plantation (PA‐SPn, a forest site) in Panama (Wolf et al., 2011). In total, our study
includes 44 flux towers that make up 29 pairs (Table 1).

Over the list of studied sites, the median straight‐line distance between the two sites within each pair is
19.9 km; the median difference in elevation is 20.0 m. Because of their close proximities, the two towers
within each pair share very similar atmospheric conditions. However, they are not identical and each tower
has their own meteorological measurements (Chen & Dirmeyer, 2016). Chen et al. (2018) demonstrated that
the differences in meteorology within each pair, which are generally small, are not the main contributor to
the simulated surface flux differences for most of the pairs. Therefore, the differences (open canopy tower
minus forest tower) in the observed surface fluxes can be considered largely the effects of deforestation.

Observed eddy covariance meteorological forcing data were used to drive the offline ELMv1. The forcing
fields include surface air temperature, precipitation, wind speed, relative humidity, surface pressure, incom-
ing solar radiation, and incoming longwave radiation. All forcing fields were gap‐filled by the FLUXNET
team using the marginal distribution sampling method. Because this study focuses on surface fluxes, parti-
cularly ET (LE) and SH, we used the FLUXNET observed ET for calibration and SH for model evaluation.
For evaluation of global simulation of ET, we used the global gridded ET data at 0.5° × 0.5° resolution that
was upscaled from site level FLUXNET data (Jung et al., 2009).

2.3. Model Simulations

We conducted two types of model simulations to calibrate and assess the performance of ELMv1 in simulat-
ing the biophysical effects of deforestation. The designs of these simulations are described below.
2.3.1. Single‐Point Simulations
We ran ELMv1 in the offline mode driven with satellite phenology, which (1) deactivated the prognostic bio-
geochemical module and (2) prescribed vegetation phenology (i.e., leaf and stem area indices) using the leaf
area index data stream created by the CESM model development team and was derived from Moderate‐
Resolution Imaging Spectroradiometer satellite instrument at 0.5° resolution for each of 15 plant functional
types (PFTs, see Table 2 for the PFT numbers, definitions, and their acronyms). The data cover the period
from 2001 to 2013, which overlaps with the majority of the data availability of the FLUXNET2015 database.
Using this time varyingModerate‐Resolution Imaging Spectroradiometer‐derived LAI leads tomore realistic
seasonal and interannual variabilities in ET than from using a static monthly leaf area index (LAI) data set.

We used site level observed atmospheric forcing data to drive the model. The domain (latitude and longitude
information of the model grids) and surface data set (vegetation, soil, and other land compositions and their
associated properties) were first extracted from the global surface data set (in the predefined model input
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Table 1
The Paired Flux Towers Used in This Study

Land cover transition Pair ID Site name Latitude (°N) Longitude (°E) Elevation (m) PFT Distance (km) Period

Evergreen needleleaf boreal
forests → open shrublands

1 CA‐NS2 55.9058 −98.5247 260 2 27.43 2001–2005
CA‐NS6 55.9167 −98.9644 244 11

2 CA‐NS1 55.8792 −98.4839 260 2 30.25 2001–2005
CA‐NS6 55.9167 −98.9644 244 11

3 CA‐NS5 55.8631 −98.485 260 2 30.48 2001–2005
CA‐NS6 55.9167 −98.9644 244 11

4 CA‐NS3 55.9117 −98.3822 260 2 36.29 2001–2005
CA‐NS6 55.9167 −98.9644 244 11

5 CA‐SF2 54.2539 −105.8775 520 2 19.87 2001–2005
CA‐SF3 54.0916 −106.0053 540 11

6 CA‐SF1 54.485 −105.8176 536 2 45.41 2003–2006
CA‐SF3 54.0916 −106.0053 540 11

Evergreen needleleaf boreal
forests → croplands

7 DE‐Tha 50.9636 13.5669 380 2 8.46 2004–2014
DE‐Kli 50.8929 13.5225 480 15

8 DE‐Obe 50.7836 13.7196 735 2 18.42 2008–2014
DE‐Kli 50.8929 13.5225 480 15

Evergreen needleleaf boreal
forests → grasslands

9 DE‐Tha 50.9636 13.5669 380 2 4.12 2004–2010
DE‐Gri 50.9495 13.5125 385 13

10 DE‐Obe 50.7836 13.7196 735 2 23.49 2008–2010
DE‐Gri 50.9495 13.5125 385 13

11 IT‐Ren 46.5869 11.4337 1730 2 59.57 2002–2012
AT‐Neu 47.1167 11.3175 970 13

Mixed forests → croplandsa 12 BE‐Vie 50.305 5.998 491 2/8 92.82 2004–2014
BE‐Lon 50.5515 4.7461 165 15

13 BE‐Vie 50.3051 5.9981 493 2/8 69.96 2011–2014
DE‐RuS 50.8659 6.4472 102.76 15

Evergreen needleleaf temperate
forests → open shrublands

14 US‐Wi4 46.7393 −91.1663 352 1 16.22 2002–2003
US‐Wi6 46.6249 −91.2982 371 10

15 US‐Wi0 46.6188 −91.0814 349 1 16.57 2002
US‐Wi6 46.6249 −91.2982 371 10

16 US‐NC2 35.803 −76.6685 5 1 4.03 2005–2009
US‐NC1 35.8118 −76.7119 5 10

Deciduous broadleaf temperate
forests → open shrublands

17 US‐Wi3 46.6347 −91.0987 411 7 15.27 2002–2003
US‐Wi6 46.6249 −91.2982 371 10

Evergreen needleleaf temperate
forests → grasslands

18 NL‐Loo 52.1666 5.7436 25 1 46.55 2004–2011
NL‐Hor 52.2404 5.0713 2.2 13

19 CZ‐BK1 49.5021 18.5369 875 1 0.96 2004–2006
CZ‐BK2 49.4944 18.5429 855 13

20 US‐Blo 38.8953 −120.6328 1315 1 60.29 2000–2007
US‐Var 38.4133 −120.9507 129 13

21 US‐Dk3 35.9782 −79.0942 163 1 0.78 2004–2008
US‐Dk1 35.9712 −79.0934 168 13

22 US‐Fmf 35.1426 −111.7273 546 1 33.91 2006–2010
US‐Fwf 35.4454 −111.7718 2270 13

Deciduous broadleaf temperate
forests → croplands

23 FR‐Fon 48.4764 2.7801 90 7 73.3 2005–2013
FR‐Gri 48.8442 1.9519 125 15

24 IT‐Ro2 42.3903 11.9209 160 7 8.75 2011–2012
IT‐CA2 42.3772 12.026 200 15

25 IT‐CA1 42.3804 12.0266 200 7 0.36 2011–2013
IT‐CA2 42.3772 12.026 200 15

26 IT‐CA3 42.38 12.0222 197 7 0.44 2011–2013
IT‐CA2 42.3772 12.026 200 15

Deciduous broadleaf temperate
forests → grasslands

27 US‐Dk2 35.9736 −79.1004 168 7 0.68 2003–2008
US‐Dk1 35.9712 −79.0934 168 13

Evergreen broadleaf temperate
forests → grasslands

28 AU‐Whr −36.6732 145.0294 165 5 48.82 2011–2013
AU‐Rig −36.6499 145.5759 152 13

Deciduous broadleaf tropical
forests → C4 grasslands

29 PA‐SPn 9.3181 −79.6346 78 6 0.59 2007–2009
PA‐SPs 9.3138 −79.6314 68 14

Note. Six towers are from AmeriFlux: US‐Dk1, US‐Dk2, US‐Dk3, US‐Fmf, US‐Fwf, US‐NC1, US‐NC2; all other towers are from the FLUXNET2015 data set. PFT
= plant functional type.
aWe did not plot out this transition group in Figure 3. Instead, we applied 50% each to the transition groups from needleleaf evergreen boreal forests to croplands
and from broadleaf deciduous boreal trees to croplands, respectively.
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data) based on tower location. Then the PFT compositions were set based
on site‐specific characterization (Table 1).

For each simulation, ELMv1 was run for 72 years by cycling through the
time series of available atmospheric forcings, which varied from 1 to 11
years. We analyzed the model outputs from the last cycle of the available
period for analysis, which leaves more than 55 years for the model to
reach equilibrium, which is sufficient for hydrological equilibrium in glo-
bal land models (Cai, Yang, Xia, et al., 2014).
2.3.2. Global Simulations
To demonstrate the impact of model calibration using site level observa-
tions on the simulated global ET, we conducted the following experi-
ments: (1) global simulation using default model parameters with
present (2010) land use data; (2) global simulation using default model
parameters with historical (1960) land use data; (3) global simulation
using calibrated model parameters with present land use data; and (4) glo-
bal simulation using calibrated model parameters with historical land use
data. As two examples, we showed the LULC changes between 1960 and

2010 for 8 major PFTs (e.g., tropical broadleaf deciduous tree and C3 crop) in Figure S1 in the
supporting information.

Because five of ELM PFTs were not present in the paired‐tower observational synthesis, we extracted
additional site data from the FLUXNET2015 data set for those PFTs (Table S1). These sites were used in
the calibration for the eight parameters in a similar method (OPT) as for the sites in the paired‐tower data
set. With these additional PFT calibrations, parameters for all PFTs used in the global ELM simulations were
optimized against FLUXNET observations.

All global simulations used the atmospheric forcing data from the Global Soil Wetness Project Phase 3 (Kim,
2017). Each experiment includes 50 simulation years, and the average of last 10 years (2001–2010) was used
for analysis.

2.4. Model Calibration

Before model calibration, we first identified influential parameters for ET simulation based on previous stu-
dies (Cuntz et al., 2016; Gohler et al., 2013; Jefferson et al., 2017; Ricciuto et al., 2018; Tang et al., 2015). We
down selected from this list by changing one parameter at a time and keeping all other parameters at their
default values to evaluate impacts on ET simulations (one‐at‐a‐time approach). After these steps, we cali-
brated the following parameters (Table 3):m (Ball‐Berry slope parameter), b (Ball‐Berry intercept parameter
or minimum stomatal conductance), fnr (fraction of leaf nitrogen in RuBisco), rC:N (leaf carbon/nitrogen [C:
N] ratio), θsat (saturated volumetric soil moisture), Ksat (saturated hydraulic conductivity), and Ψo and Ψc

(soil water potential when stomata are fully open or fully closed, respectively). Parameters m and b control

Table 2
Plant Functional Type (PFT) Numbers, Definitions, and Their Acronyms

Code Plant functional type Acronym

1 Needleleaf evergreen temperate tree NET Tmp
2 Needleleaf evergreen boreal tree NET Brl
3 Needleleaf deciduous boreal tree NDT Brl
4 Broadleaf evergreen tropical tree BET Trp
5 Broadleaf evergreen temperate tree BET Tmp
6 Broadleaf deciduous tropical tree BDT Trp
7 Broadleaf deciduous temperate tree BDT Tmp
8 Broadleaf deciduous boreal tree BDT Brl
9 Broadleaf evergreen shrub BES
10 Broadleaf deciduous temperate shrub BDS Tmp
11 Broadleaf deciduous boreal shrub BDS Brl
12 C3 arctic grass C3G Arc
13 C3 grass C3 Grass
14 C4 grass C4 Grass
15 C3 crop C3 Crop

Table 3
Description of Parameters Calibrated in This Study

Parameter Description Units Min Max Source

m Ball‐Berry slope parameter ‐ 4.5 13.5 1
b Ball‐Berry intercept parameter mmol H2O·m−2·s−1 0 275 1
fnr Fraction of leaf nitrogen in RuBisco gN in Rubisco gN−1 0.0231 0.264 1
rC:N Leaf carbon/nitrogen (C:N) ratio gC/gN 12.5 70 1
θsat Saturated volumetric soil moisture ‐ 0.363 0.489 2
Ψo Soil water potential at full stomatal opening mm −83,000 −35,000 3
Ψc Soil water potential at full stomatal closure mm −428,000 −224,000 3
Ksat Saturated hydraulic conductivity mm/s 9.22E−4 0.031 4

Note. The source column defines the ranges of the parameters for calibration: (1) physically constrained (parameter values cannot exceed the bounds defined by
the Min and Max columns); (2) ±25% of default values; (3) ±50% of default values; and (4) 1/50 to 50 times of the default values. Since the default parameter
values vary by PFT or by site, they are not included here but can be found in Oleson et al. (2013). PFT = plant functional type.
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stomatal resistance; fnr and rC:N control photosynthesis; θsat and Ksat con-
trol soil moisture content; and Ψo and Ψc control plant water stress.

To assess the global sensitivity of ELMv1 simulations to these parameters,
we used the Sobol sequence sampling technic (Saltelli et al., 2010; Sobol,
2001) to generate parameter samples. The Sobol sequence technic identi-
fies evenly distributed samples from a multidimensional parameter space.
The total number of parameter samples (N) is

N ¼ n sDþ 2ð Þ (2)

where n is the number of samples to generate for each specific parameter,
s is either 2 if second‐order sampling is enabled or 1 otherwise, and D is
the number of parameters to be calibrated (eight in this case). Here we
used n = 200, yielding N = 2,000 without second‐order sampling, which
means we ran the model in a single column mode 2,000 times for each
tower.

We use the Nash‐Sutcliffe efficiency (NSE) coefficient (Nash & Sutcliffe,
1970) to evaluate the goodness of fit between simulations and
observations:

NSE ¼ 1−∑
N

i¼1
Mi−Oið Þ2=∑

N

i¼1
Oi−O
� �2

(3)

whereMi and Oi are the predicted and measured monthly values of the same variable, respectively, andO is
the mean of the measured values. NSE is minus infinity for a poor fit and 1 for a perfect fit.

We first calibrated parameters for each PFT by averaging the NSE values across different towers associated
with the same PFT; this calibration strategy is labeled here as OPT. Given measurement bias, which may be
similar for paired towers, and our goal of improving the model‐simulated deforestation effects on ET, we
added a second calibration strategy (labeled as OPT‐Dif) by optimizing the parameters to match the observed
difference between the open canopy tower and the forest tower for each pair. The OPT‐Dif calibration strat-
egy leverages the idea that differences in paired site measurements may reduce systematic instrument biases
present at individual sites. However, OPT‐Dif is not a commonly used calibration strategy but is still useful
for exploration.

3. Results

Below we first describe results for the paired FLUXNET sites from both observations and simulations and
then present results of global simulations.

3.1. Deforestation Effects on ET in Paired FLUXNET Sites

Before model calibration, the default model was unable to capture the deforestation effect at the paired
FLUXNET sites, confirming our hypothesis that ELMv1 is biased in handling LULC change, which was also
found in previous analyses with CLM4.5 (Figure 1 shows the integrated biases across all sites, Figure 2
shows biases grouped by PFT, and Figure 3 shows biases grouped by type of transition). Observations
showed that deforestation resulted in 73.7 mm/year decrease in annual ET, while the default model pre-
dicted a 32.9 mm/year increase. The largest observed monthly ET differences between forested and nonfor-
ested sites (−19.4 mm/mo) occurred in August, while the default model showed the highest ET difference
(+10.4 mm/mo) in May. Therefore, the default model failed to capture the magnitude, timing, and sign of
the observed deforestation effects on ET.

The default model relatively accurately simulated the actual ET for open canopy PFTs (on average, annual
ET were 411 and 421 mm/year in the default simulation and observations, respectively; Figures 2a–2f).
Monthly biases between simulated and observed ET in the open canopy systems were very small for the
broadleaf deciduous boreal shrub and C3 grass. Moderate biases were predicted by the default model for
the broadleaf deciduous temperate shrub from February through May, for the C4 grass, and for the C3 crop.

Figure 1. Observed and simulated seasonal cycles of the evapotranspiration
(ET) differences between open canopy and forest towers (open‐forest),
averaged across 29 pairs, showing the effects of deforestation on ET. Error
bars indicate the standard deviation among the pairs.
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Larger biases were found in the forest PFTs (Figures 2g–2l and S2). Simulated annual ET by the default
model was lower than observed for all forest PFTs. The largest underestimation is for the broadleaf decid-
uous tropical tree (610 mm/year vs 1106 mm/year), followed by the broadleaf deciduous temperate tree
(418 mm/year vs 594 mm/year), the needleleaf evergreen temperate tree (451 mm/year vs 591 mm/year),
and the broadleaf evergreen temperate tree (372 mm/year vs 482 mm/year). The needleleaf evergreen boreal
tree had relatively small underestimation (298 mm/year vs 344 mm/year). Overall, the higher the observed
annual ET for a particular PFT, the larger the default model bias is. The average of simulated ET across all
forest PFTs (Figure S2l) is lower than the average for all open canopy PFTs (Figure S2f), which leads to the
overall model bias in the sign of the effect of deforestation on ET (Figure 1).

After calibration with both approaches, model performance was greatly improved for the forest PFTs; while
improvements for open canopy PFTs were relatively small (Figure 2). This difference in the benefit of

Figure 2. Seasonal cycle of evapotranspiration (mm/mo) by PFTs observed by FLUXNET (black) and simulated by
ELMv1 using default parameters (blue), calibrated parameters based on the pair difference (red; OPT‐Dif), and cali-
brated parameters based on individual PFTs (OPT). The left column panels are for open vegetation PFTs, and the right
column panels are for forest PFTs. Figures 2f and 2l are the average of the open canopy and forest sites, respectively. The
annual mean values are shown on the left on each panel. PTFs = PTF = plant functional types.
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calibration occurred because some PFTs (in particular forest types) are very sensitive to changes in the
parameters we selected (e.g., deciduous broadleaf temperate forests) while some PFTs are insensitive (e.g.,
C3 grass, see the discussion in section 4.1).

With these improvements, the calibrated model simulations much better represented deforestation effects
on ET (Figure 1). The improvements are especially pronounced for summer months (particularly July and
August) when deforestation produces the largest reduction in ET. For winter months, discrepancies still

Figure 3. Same as Figure 1 but for each scenario of PFT transitions (changing from one forest PFT to one open canopy
PFT). PTF = PTF = plant functional type.
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exist in the OPT calibration approach, which is probably due to unidenti-
fied secondary influential parameters related to soil evaporation that were
not included in the calibration. Interestingly, the default model produced
acceptable results against observations for the winter months when the
open canopy vegetation and forests have small ET differences. The cali-
bration significantly increased ET reduction in summer months and
remained smaller ET reduction in winter months.

Between the two calibration strategies, the OPT‐Dif strategy (i.e., calibrat-
ing the model using the differences in ET between forested and open
canopy sites) led to better model‐estimated ET between February and
April. Both calibration methods led to comparable improvements in the
estimated ET differences from May through October. The observations
indicate that deforestation decreased ET primarily and most strongly dur-
ing the growing season. Deforestation increased ET for about 2 to 3
months before the growing season.

We also evaluated paired site ET differences by grouping similar PFT tran-
sitions. ET differences are similar in seasonality with the 29‐pair average
for 9 out of the 10 groups (i.e., decrease in ET during the growing season,
(Figure 3). From observations, only one LULC transition group led to an
increase in annual ET (evergreen needleleaf boreal tree to C3 crop,
Figure 3b). Four LULC transition groups showed decreases in annual
ET larger than 100 mm/year: needleleaf evergreen temperate tree to open
shrub, needleleaf evergreen temperate tree to C3 grass, broadleaf decid-
uous tropical tree to C4 grass, and broadleaf deciduous temperate tree to
C3 crop. In addition to the transition from broadleaf evergreen temperate
tree to C3 grass, all three LULC transition groups that included needleleaf
evergreen boreal tree showed smaller decreases or increases due to the
low transpiration rate of needleleaf evergreen boreal tree. The two
LULC transition groups associated with broadleaf deciduous temperate
tree showed moderate ET decreases.

The default model predicted the correct signs of deforestation effects on
ET for 4 out of 10 transition groups (Figures 3a, 3b, 3d, and 3f), although
the predicted magnitudes of difference poorly match observations. Both
model calibration strategies led to the correct sign in ET differences and
much better agreement in magnitude and phase for all transition groups,
except for the needleleaf evergreen boreal forest to cropland transition

(Figure 3b). For that group, although the calibrated model incorrectly predicts the sign, its predictions are
closer to observations than the default model for the growing season months.

Between the two calibration strategies, OPT‐Dif is better than the OPT method for eight out of the 10 transi-
tion groups based on their NSE values that evaluate the fitness of both their means and seasonality, particu-
larly for LULC transition groups a, h, i, and j (Figure 3). But for the LULC transition groups b and c,
calibration based on pair differences gives a poorer fit than with the individual PFT calibration method.

3.2. Deforestation Effects on SH and Rn in Paired FLUXNET Sites

We next evaluated changes in the simulated SH due to ET calibration. We found that predicted SH responses
to deforestation were also improved (Figure 4a). Both the default and the calibrated models predicted a
decrease in SH after deforestation, as suggested by observations. However, the magnitude of decrease was
strongly overestimated in the default model, particularly during the summer months. The calibrated models
much better captured the magnitude of the observed differences. Between the two calibration methods,
OPT‐Dif performed better than OPT between March and May.

Similar to ET, calibration mainly improved the SH simulations for the forest PFTs (Figure S3). The default
model overestimated SH by 18.7 W/m2 (59%) for the average of all forest PFTs. The largest overestimation

Figure 4. Same as Figure 1 but for sensible heat flux (SH) and net radia-
tion (Rn).
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was for the tropical broadleaf deciduous tree by 29.7 W/m2 and for the temperate needleleaf evergreen tree
by 28.7 W/m2. Model calibration made large improvements for these two PFTs and for the temperate
broadleaf deciduous tree. Calibration did not substantially affect the open canopy PFT simulations.

In addition, as suggested by the paired tower observations, deforestation reduced the total energy absorbed
by land surface (i.e., net radiation, Figure 4b), which is associated with the increase in albedo when changing
forests to open canopy vegetation. All model experiments predicted the same sign of change in net radiation
as the observations. Overall, modeled changes predicted by the two experiments with calibrated parameters
are more consistent with the observation than the default experiment.

3.3. Global Implications

The improved ELMv1 surface ET representations led to large changes in simulated annual global ET, with
large latitudinal variation (averaged for 2001–2010; Figure 5). ET biases were reduced with the OPT
calibrated parameters, with the largest reduction in the tropical forest regions (Figure 5d). In these regions,
the bias reductions might reach 600 mm/year annually. To show a more complete comparison between the
default and calibrated (OPT) global simulations, we used the International Land Model Benchmarking sys-
tem (Collier et al., 2018), which also showed improvement in ET and runoff (Figure S5).

We also analyzed the effects of LULC changes between 1960 and 2010 on ET and the impacts of improve-
ments from model calibration (Figure 6). The default model suggested large annual ET increase for the tro-
pical rain forest regions over this period, with the highest grid cell increase by about 83mm/year. In contrast,
the calibrated model suggested large ET decrease for those regions, with the highest grid cell decrease by
about 78 mm/year. These differences led to up to 117 mm/year change in simulated runoff due to LULC
changes (Figure S4).

Since the calibrated model is very consistent with the paired FLUXNET observations, the difference between
the calibrated and default model simulations can be considered to be an improvement in representing

Figure 5. Comparison of global simulations of annual evapotranspiration (mm/year) with observation. (a) Benchmark, (b) bias of the default model, (c) bias of the
calibrated model, and (d) difference of absolute bias between calibrated and default model simulations (red: lower bias; blue: higher bias).
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deforestation effects on the surface energy budget. As expected, areas with large differences in predictions
are located in tropical rainforests, where LULC changes have been most severe.

Slight increases in ET were simulated for some regions, particularly in Western Europe and Eastern Unites
States. This ET increase is due to transitions from croplands to forests that occurred during this period

Figure 6. The changes in annual evapotranspiration due to land use and land cover change between 1960 and 2010, as
simulated by using the default parameters (a), the calibrated parameters (b), and their difference (calibrate‐default) (c).
Both simulations are performed with 2001–2010 atmospheric forcings to isolate the effects of the model calibration.
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(Figure S1). These transitions have been reported to change local ET and hence affect the overall energy and
water exchanges (Bright et al., 2017; Findell et al., 2017; Teuling et al., 2010). Afforestation in these regions
was observed to reduce surface temperature due to the enhanced evaporative cooling effects (Li et al., 2015;
Wickham et al., 2012).

4. Discussion

Chen et al. (2018) demonstrated that differences in atmospheric forcings did not substantially affect simu-
lated differences in ET between paired forested and open canopy sites. Therefore, in this section, we discuss
other uncertainties and how this study compares to previous studies.

4.1. Parameter Uncertainties

We showed large improvement in representing deforestation effects on ET and SH through calibrating
model parameters. We here discuss the meanings of these calibrated parameter values and whether they
are physically reasonable. The Ball‐Berry intercept (b; i.e., minimum stomatal conductance) is a very influ-
ential parameter (Findell et al., 2007; van Heerwaarden & Teuling, 2014) and is the only parameter for which
observations are available for comparison. In our sensitivity analysis, bmade the largest contribution to the
optimization for 12 out of the 15 PFTs (Table S2). Lombardozzi et al. (2017, hereafter DL2017) compiled
observations of b for 13 PFTs from 204 data records in previously published studies. We use b as an example
to analyze uncertainties associated with calibrated parameter values. We note that the Ball‐Berry equation
wasmainly intended to calculate daytime stomatal conductance, while these synthesized values weremostly
observed at night. Therefore, we emphasize here the relative values among PFTs.

Our calibrated parameter values are very close to those synthesized by DL2017 for needleleaf evergreen bor-
eal tree (PFT 2), broadleaf evergreen temperate tree (PFT 5), broadleaf deciduous temperate tree (PFT 7), C4

grass (PFT 14), and C3 crop (PFT 15), well within the observed standard deviations (Table 4). The optimal
values are outside the synthesis uncertainty bounds for needleleaf evergreen temperate tree (PFT 1) and
broadleaf deciduous tropical tree (PFT 6). However, their optimal values are not too far from the synthesis
uncertainty bounds. Among all PFTs, the calibrated b value is the highest for broadleaf deciduous tropical
tree (PFT 6); while the synthesized value is the second highest. In addition, there were only two data records
for this vegetation type (PFT 6), which is far fewer than for the other vegetation types, implying larger obser-
vational uncertainty due to small sample size. Considering the difference in the definition between the
model and the synthesis for this parameter, these calibrated values can be considered reasonable for
these PFTs.

For broadleaf deciduous temperate shrubs (PFT 10), even though it is within the synthesis uncertainty
bound, the optimal b value is about 1 order of magnitude smaller than the mean synthesis value. The differ-
ence for C3 grass (PFT 13) is even higher. We found that the discrepancies for these two PFTs are due to the
divergent relationships between parameter values and the NSE coefficients among different flux towers cate-
gorized as the same PFT. For example, two flux towers are dominated by broadleaf deciduous temperate
shrubs: US‐NC1 and US‐Wi6. In the US‐Wi6 tower, across the parameter ensembles, NSE increases with
higher b values, whereas the opposite pattern occurs in the US‐NC1 site (Figure 7). With this contrasting
behavior, it is challenging to find parameter values that work well for both flux towers. For this reason,
the calibrated model may not appear better than the default model for these two PFTs (Figure 2a), even
though the cost function (which weights both towers equally) suggested they were optimal values. We note
that the default simulation compared reasonably well with the FLUXNET measurements for this vegetation

Table 4
A Comparison of the Ball‐Berry Minimum Stomatal Conductance b Among the Default Values Used in ELMv1, Synthesized Values by Lombardozzi et al. (2017,
DL2017), and the Optimal Values

Parameter PFT 1 PFT 2 PFT 5 PFT 6 PFT 7 PFT 10 PFT 11 PFT 13 PFT 14 PFT 15

Default 10 10 10 10 10 10 10 10 40 10
DL2017 17 (21) 8 (‐) 34 (28) 129 (41) 73 (84) 130 (146) − 158 (67) 94 (126) 61 (61)
Calibrated 42 7 45 193 42 19 5 16 188 16

Note. For the synthesized values, the standard deviations are included in the parentheses. PTF = plant functional type.
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type. We found the same problem (i.e., disparate effects of b on NSE for
same‐PFT towers) for the C3 grass towers. For other PFTs, the relation-
ships between b values and NSE are consistent among towers within
each PFT.

Bearing in mind parameter uncertainties, we regard these optimal values
as reasonable. However, we recognize that the influential parameters
used here are not exhaustive. Some other parameters (e.g., rooting depth)
may also be influential but have not been identified in either this or pre-
vious studies. In addition, 55 FLUXNET sites (44 paired and 11 additional)
may not be enough to constraint a global model. Additional sites or
other observations may be useful to better constraint such models.
Furthermore, calibration may not be the only way to improve the repre-
sentation of deforestation effects on ET.

4.2. The Role of Soil Property and Soil Water Stress Parameters

We evaluated the stomatal resistance and photosynthesis‐related para-
meters (m, b, fnr, and rC:N) known to be important to simulated ET.
Calibrating the model using the paired site differences using only these
4 parameters (OPT‐4PlantParm) improved the magnitude of simulated
ET reduction across all 29 sites compared to the default model
(Figure 8). However, the simulated seasonal cycle of ET differences
remained biased. Observations suggest the highest ET reduction from
deforestation during July and August, while the OPT‐4PlantParm
calibrated model predicts a maximum in June. Furthermore, the
OPT‐4PlantParm ET reduction has lower intrayear variability than
the observations.

ET depends on plant and soil properties and water availability. Some pre-
vious studies found that soil‐related parameters are very influential for ET
simulations (Cai, Yang, David, et al., 2014; Cuntz et al., 2016). In ELMv1,
soil properties are aggregated to global grid cell resolution. Due to the high
heterogeneity of soil, it is possible that these properties (i.e., Ψo, Ψc, θsat,
and Ksat) are not representative of the tower locations. By including the
soil water‐related parameters, the model better captured water availability
for ET and thus better represented the ET decrease as a result of defores-
tation. However, if we only calibrate these four parameters (OPT‐
4SoilParm), the model was unable to predict a sufficient reduction in ET
resulting from deforestation.

4.3. ET Parameterizations in ESMs

ET parameterization plays an important role in climate and ESMs.
However, ESMs have large uncertainties in simulating ET, particularly
in partitioning ET into its components (e.g., soil evaporation, canopy eva-
poration, transpiration, and open water body evaporation; Lian et al.,
2018; Zeng et al., 2017). Several previous studies proposed to improve soil
evaporation estimates in CLM by adding a surface litter layer (Sakaguchi
& Zeng, 2009), introducing a new bare‐soil evaporation formulation (Tang
& Riley, 2013), or replacing the empirical soil resistance parameterization
with a dry surface layer (Swenson & Lawrence, 2014). Others proposed to
improve vegetation‐related processes (Lombardozzi et al., 2017; Tang
et al., 2015; Williams et al., 2016). The proposed model changes from these
studies all attempted to decrease simulated soil evaporation and increase
transpiration. Our calibration also led to higher transpiration to total eva-
potranspiration ratios (T/ET) for the forested site towers (Figure 9),

Figure 7. The relationship between Ball‐Berry intercept parameter b and
the coefficient NSE for (a) the US‐NC1 tower and (b) the US‐Wi6 tower.
Both towers are broadleaf deciduous temperate shrub (PFT 10). PFT = plant
functional type.

Figure 8. Same as Figure 1 but for the other experiments that only cali-
brated the four plant parameters (m, b, fnr, and rC:N) and the four soil
water parameters (θsat, Ksat, Ψo, and Ψc), respectively.
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increasing the annual mean ratio from 0.46 to 0.58. This value is closer to
the global average of 64 ± 13% estimated by Good et al. (2015). While tran-
spiration is increased, soil evaporation and canopy evaporation stay about
the same (Figure S6). For open canopy towers, the changes in T/ET asso-
ciated with our new calibration are minor. Our calibration results are
therefore consistent with efforts to increase the T/ET ratio in ESMs
(Lian et al., 2018).

If models are capable of accurately simulating ET for each PFT, they can
represent deforestation effects on ET, which is determined by the simu-
lated difference between open canopy land use type and forest land cover
type. This study showed that the default ELMv1 misrepresentation of ET
differences between forested and open canopy sites was caused primarily
by biases in forest land cover type simulations. Therefore, special atten-
tion should be paid to systematic biases for different LULC types, particu-
larly for the forest LULC types. For example, even though models can
perform satisfactorily for different PFTs, small overestimation for open
canopy systems and small underestimation for forest systems may lead
to larger errors in their differences compared to observations. This pro-
blem makes it challenging to represent the response of deforestation in
ESMs. We recommend that models be tested for their responses to pertur-

bations before they are used for relevant scenario analyses, whenever observation allows. As demonstrated
in Lawrence et al. (2007) andWilliams et al. (2016), improvement for ET simulations involved modifications
to a wide range of processes. We show here that model development to improve predicted deforestation
effects on ET should focus on characterizing tree stomatal resistance and soil water stress‐related processes.

5. Conclusions

Based on previous studies and paired forest and open canopy FLUXNET site data (Chen et al., 2018), defor-
estation generally decreases ET. We show here that the default ELMv1 has large biases (both in sign and
magnitude) in representing these deforestation effects on ET, primarily because of large systematic under-
estimation of ET for forest land cover types. These biases would likely lead to incorrect inferences of how
LULC changes affect surface energy budgets and atmospheric responses. We successfully reduced these
biases by calibrating four plant‐related and four soil water‐related model parameters.

We show that the improved parameterization has significant implications for global surface energy budgets,
especially for tropical rainforest regions that have experienced substantial deforestation. Compared to the
global observation, the calibrated model reduced the bias of ET simulation by as much as 600 mm/year.
Furthermore, the default model‐predicted deforestation might cause up to 83 mm/year increase in ET for
these regions, while the calibrated model predicted up to a 78 mm/year decrease. The improved model will
be useful for better understanding the impacts of human perturbations to the Earth system.

The parameter values from this calibration are reasonable and consistent with previous studies, particularly
for minimum stomatal conductance of the Ball‐Berry equation. The calibrated parameters increased simu-
lated transpiration for forest land cover types. As a result, the ratio of transpiration to total ET was increased,
consistent with recent observation‐based assessments and efforts to increase simulated transpiration in
ESMs. We recommend stomatal resistance and soil water stress‐related processes as foci for future model
development to improve ET simulations.
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