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Abstract

Aim: To determine the association between total sleep time (TST) spent in increased respiratory 

effort (RE) and the prevalence of type 2 diabetes in a large cohort of individuals with suspected 

obstructive sleep apnoea (OSA) referred for in-laboratory polysomnography (PSG).

Materials and Methods: We conducted a retrospective cross-sectional study using the clinical 

data of 1128 patients. Non-invasive measurements of RE were derived from the sleep mandibular 

jaw movements (MJM) bio-signal. An explainable machine-learning model was built to predict 
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prevalent type 2 diabetes from clinical data, standard PSG indices, and MJM-derived parameters 

(including the proportion of TST spent with increased respiratory effort [REMOV [%TST]).

Results: Original data were randomly assigned to training (n = 853) and validation (n = 275) 

subsets. The classification model based on 18 input features including REMOV showed good 

performance for predicting prevalent type 2 diabetes (sensitivity = 0.81, specificity = 0.89). 

Post hoc interpretation using the Shapley additive explanation method found that a high value 

of REMOV was the most important risk factor associated with type 2 diabetes after traditional 

clinical variables (age, sex, body mass index), and ahead of standard PSG metrics including the 

apnoea-hypopnea and oxygen desaturation indices.

Conclusions: These findings show for the first time that the proportion of sleep time spent in 

increased RE (assessed through MJM measurements) is an important predictor of the association 

with type 2 diabetes in individuals with OSA.

Keywords

mandibular jaw movements; obstructive sleep apnoea; respiratory effort; type 2 diabetes

1 ∣ INTRODUCTION

Obstructive sleep apnoea (OSA) is a common chronic condition. It has been estimated that 

nearly 1 billion adults aged 30 to 69 years have at least mild OSA, with more than half of 

the population affected in some countries.1 Repetitive complete or partial collapse of the 

upper airway during sleep in individuals with OSA and the associated increased respiratory 

effort (RE) and arousals have a number of physiological consequences. These include 

intermittent hypoxia and marked changes in intrathoracic pressure,2 which contribute to a 

variety of adverse clinical consequences, such as excessive daytime sleepiness,3 cognitive 

dysfunction,4 and cardiovascular disease.5,6

The presence of OSA has also consistently been shown to be independently associated 

with prevalent and incident type 2 diabetes mellitus.7-13 In addition, untreated OSA is 

associated with poor glycaemic control in individuals with type 2 diabetes and increases the 

risk of microvascular and macrovascular complications.13-16 Key intermediary mechanisms 

underlying the association between OSA, and type 2 diabetes include intermittent 

hypoxia (hypoxic burden) and sleep fragmentation leading to oxidative stress, low-grade 

inflammation and sympathetic overactivity.11

The severity of OSA has traditionally been defined using the apnoea-hypopnea index 

(AHI), which describes the number of respiratory events that occur per hour of sleep. 

However, this metric does not provide any information about the duration of obstructive 

events or the associated hypoxic burden, which have been shown to be associated with 

cardiometabolic outcomes and mortality in individuals with OSA.17,18 Therefore, there is 

increasing recognition of the fact that more comprehensive and/or combined metrics are 

needed to improve prediction of cardiometabolic disease risk in individuals with OSA.19,20

One such measure is RE, which is consistently increased in response to episodes of 

asphyxia, named obstructive apnoeas and hypopnoeas. Physiological data show that 
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intrathoracic pressure swings during respiratory events generate sympathetic nervous system 

overactivity,21-23 which may contribute to the development of insulin resistance and type 2 

diabetes. However, the role that increased RE might play in the metabolic consequences of 

OSA has been poorly studied to date. This lack of data may be due, at least in part, to the 

challenge of assessing and measuring RE clinically.

Measurement of mandibular jaw movements (MJM) during sleep has been shown to provide 

powerful information about RE and the proportion of sleep time spent with high RE.24 

During normal sleep, the mandibular jaw only moves by a few tenths of a millimetre at 

the breathing frequency around a fixed position and the mouth is almost closed. Changes 

in MJM characteristics therefore reflect the level of respiratory drive and RE that occur 

due to the variations in upper airway resistance that typically occur during abnormal 

respiratory events.24 Essentially, MJM yields information about respiratory drive initiated by 

the motor trigeminal nucleus which is transmitted to the mandibular jaw musculature a few 

tenths of a millisecond before diaphragmatic contraction. The technique leverages discrete 

movements which help stiffen the pharyngeal walls to maintain or restore local airway 

patency. This study evaluated the association between sleep time spent in increased RE 

derived from measurements of MJM (REMOV, % total sleep time [TST]) and the prevalence 

of type 2 diabetes mellitus in individuals referred for investigation of suspected OSA. It 

was hypothesized that increased MJM amplitudes during sleep (reflecting increased RE) 

would be independently associated with prevalent type 2 diabetes, over and above traditional 

measures of hypoxic load and sleep fragmentation.

2 ∣ METHODS

2.1 ∣ Study design and population

This cross-sectional study included subjects aged ≥18 years who were referred to a 

sleep laboratory for assessment of suspected OSA. The study protocol was approved 

by the Comité d'Ethique Hospitalo-Facultaire-Universitaire de Liège (IRB-00004890-

NB707201523388) and written informed consent was obtained from all participants prior 

to their enrolment in the study.

2.2 ∣ Polysomnographic data acquisition and scoring

In-laboratory polysomnography (PSG) recording was performed using standard 

equipment (Somnoscreen Plus; Somnomedics). The system collected the following 

data: electroencephalogram (EEG); right and left electro-oculogram (EOG); submental 

electromyogram (EMG); tibial EMG; motion of the chest and abdomen based on respiratory 

inductance plethysmography (RIP; SleepSense S.L.P. Inc.); oral and nasal airflow using a 

thermistor and pressure transducer, respectively; and oxygen saturation (SpO2) based on data 

from a digital pulse oximeter (Nonin; Nonin Medical).

Manual scoring of PSG recordings was performed by two experienced investigators who 

were unaware of participant demographic details, MJM data and diabetes diagnosis. Sleep 

stages, EEG arousals and sleep-related respiratory events were visually scored according to 

the latest American Academy of Sleep Medicine criteria.25 Interobserver agreement for PSG 
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scoring was evaluated by intra-class correlation coefficient using two-way random model for 

single measure (ICC 2.1) and was found to be 92.1% (95% confidence interval 0.891-0.942; 

P < 0.001).

Individuals with overlap syndrome (sleep apnoea and chronic obstructive pulmonary 

disease), obesity hypoventilation syndrome, or central apnoea syndrome, as defined in the 

International Classification of Sleep Disorders 3rd edition,25 were excluded.

2.3 ∣ Recording and analysis of MJM

MJM bio–signals were acquired using the Sunrise system. This system includes a coin-sized 

tri-axial sensor including a gyroscope and an accelerometer that is attached to the patient's 

chin and positioned between the inferior labial sulcus and the pogonion. MJM are recorded 

via an embedded inertial measurement unit that is controlled externally by a smartphone 

application. Mandibular displacement is calculated from the integration of the rotational 

speed measured by the gyroscope. The accelerometer is used to determine the position of the 

mandible resulting from elevation or depression.

At the end of the night, all data were automatically transferred to a cloud-based 

infrastructure and analysed using a dedicated machine-learning algorithm that has been 

previously validated in a large clinical dataset.26 This algorithm is designed to automatically 

identify obstructive and mixed apnoea/hypopnoea events as well as RE-related arousals 

(RERAs) based on stereotypical MJM patterns. It is also able to identify specific MJM 

patterns to determine whether the subject is awake, asleep, or experiencing an arousal.

2.4 ∣ Assessment of RE by the Sunrise system

Accurate detection of RE during sleep is critical for correct classification of sleep breathing 

disturbances and to inform appropriate therapeutic decisions. Oesophageal manometry is the 

“gold standard” for measuring RE but is invasive, causes sleep disturbance, and is rarely 

used in routine daily practice. The most widely used signals, such as RIP abdominal and 

thoracic belts and nasal pressure, provide important information but have limitations in some 

clinical scenarios (eg, obesity or mouth breathing). This issue can lead to misclassification 

of a significant percentage of respiratory events, particularly hypopnoeas. MJM have 

been shown to correlate strongly with oesophageal pressure, providing an efficient and 

reliable way to differentiate between central and obstructive events, and identify mixed 

episodes.24,28

Periods of increased RE were identified based on the presence of MJM of increased and 

variable amplitudes oscillating at the breathing frequency compared to normal breathing24 

(Figure S1). The intensity of RE during sleep captured on MJM bisignals can be 

quantitatively assessed via two metrics:

i. Sr_ORDI: the Sunrise obstructive respiratory disturbance index (Sr_ORDI) 

measures the hourly frequency of respiratory disturbance accompanied by 

RE events (including obstructive and mixed apnoeas/hypopnoeas or RERAs); 

the magnitude of the Sr_ORDI has the same physiological meaning as the 

obstructive respiratory disturbance index (ORDI) derived from PSG.26
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ii. RE burden (REMOV, %TST): this metric provides an indication of the 

proportion of sleep time spent in increased RE assessed through MJM; it is 

determined based on the cumulative duration of periods with increased RE 

divided by TST.

2.5 ∣ Prevalent type 2 diabetes

The presence of type 2 diabetes was determined by a sleep specialist based on values for 

fasting blood glucose and glycated haemoglobin (HbA1c) in the electronic medical history 

report (according to the criteria established by the American Diabetes Association27), and 

documented treatment including at least one antidiabetic drug.

2.6 ∣ Data analysis

Data analysis included inputs for 19 demographic and physiological metrics that can be 

categorized into five distinct groups:

i. PSG indices: measures of sleep-related breathing events per hour, including 

AHI, obstructive apnea-hypopnea index (OAHI), respiratory disturbance index 

(RDI), ORDI and arousal index (ArI). These indices were closely correlated with 

each other and characterized by a positively skewed distribution, with a clear 

difference between patients with and without type 2 diabetes (those with type 2 

diabetes had a significantly higher AHI, ORDI, ArI versus those without type 2 

diabetes).

ii. Metrics related to TST: values for TST were consistent between PSG- and 

MJM-based methods. TST and the Epworth Sleepiness Scale (ESS) showed a 

random distribution and did not differ significantly between individuals with or 

without type 2 diabetes.

iii. Demographic and anthropometric measurements: including age, body mass 

index (BMI) and neck circumference. These metrics were characterized by a 

normal distribution and were slightly (but statistically significantly) higher in 

individuals with versus without type 2 diabetes.

iv. Measures related ito oxygen saturation: including minimum and average SpO2 

values. These metrics were characterized by a negatively skewed distribution and 

a clear difference between the subgroups with or without type 2 diabetes (being 

significantly lower in those who had type 2 diabetes).

v. Oxygen desaturation metrics: related to both the hourly rate and cumulative 

duration of oxygen desaturation (Desat_dt <90%, Desat_dt <95% and ODI); 

these metrics were correlated with each other and showed clear differences 

between individuals with and without type 2 diabetes.

Data analysis was carried out using Python programming language. Overall, key 

components of the data analysis procedure (Figure S2) were as follows:
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i. Exploratory data analysis: Descriptive statistics and principal component analysis (PCA) 

were performed to compare the distribution characteristics of clinical features between 

patients with and without type 2 diabetes.

ii. Data preparation for machine-learning experiment: the original dataset was randomly 

divided into two subsets; a training subset (76%) was used to benchmark the performance of 

machine-learning models using a 10-fold cross-validation procedure, and for optimizing the 

model configuration. A smaller test subset (24%) was used for independent validation. The 

size of the training sample was estimated to satisfy two criteria: to achieve a proportion of 

at least 10% of positive label (having type 2 diabetes) and to optimize the performance of 

a binary classifier using the XGBoost algorithm and chosen input features. The input data 

represent a multidimensional structure of co-expression and interactions between metrics 

of physical body status, sleep quality, and magnitude of RE and oxygen desaturation. This 

complex interaction is compatible with the operating mechanism of tree-based ensemble 

machine-learning algorithms such as Random Forest (RF) and eXtremeGradientBoosting 

(XGB).

iii. and v. Optimization and selection of the machine-learning model: RF and XGB 

algorithms were evaluated as potential solutions for the binary classification task of type 

2 diabetes prediction. RF uses bootstrap-aggregating techniques and XGB uses gradient-

boosting techniques to improve model performance by assembling the prediction of multiple 

tree-based classification rules. Performances were compared between the two models using 

a 10-fold cross-validation procedure, which utilized multiple data splitting and random 

resampling, thus allowing unbiased evaluation of model performance on 10% of unseen 

data. Final models were then trained on the whole training set using the optimized parameter 

values and validated on unseen data in the testing subset. The following evaluations were 

conducted for both repeated k-folds cross-validation and independent validation: normalized 

confusion matrix (to evaluate model accuracy [rows represent the true observation, columns 

indicate the classification by model]); and conventional metrics for evaluating the accuracy 

of binary classification and the efficiency of diagnosis (sensitivity, specificity, balanced 

accuracy [BAC], positive/negative likelihood ratios [LR+, LR−], positive predictive value 

[PPV], negative predictive value [NPV] and area under the receiver-operating characteristic 

curve [ROC-AUC]). A sensitivity analysis was performed that created specific models for 

respiratory events occurring specifically in non-rapid eye movement (REM) and REM sleep.

v. Post hoc model interpretation: the Lundberg's Shapley additive explanation (SHAP) 

method28 was applied to the best-performing model to identify the most important risk 

factors from the original set of features.

3 ∣ RESULTS

3.1 ∣ Study population

The study included 1128 subjects who were randomly allocated to the training subset (n = 

853, 75.6%) or the test subset (n = 275, 24.4%; Table 1). The prevalence of type 2 diabetes 

was 10.3%. At baseline, mean ± standard deviation fasting blood glucose was 126.8 ± 49.7 

mg/dL and HbA1c was 48.9 ± 13.1 mmol/mol (7.9 ± 9.7%) in patients with a confirmed 
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diagnosis of type 2 diabetes (n = 116). Antidiabetic medications in individuals with type 

2 diabetes included oral biguanides in 77.6%, insulin-related therapy in 20.7%, and other 

anti-diabetics in 24.1% of patients.

3.2 ∣ Clinical characteristics and RE burden

There were clear differences in the distribution of a variety of demographic and 

anthropometric characteristics and some sleep-related breathing features based on the 

presence or absence of type 2 diabetes (Table 1 and Figure S3). The distribution of 

PSG-derived ORDI and ArI and the corresponding Sunrise system (MJM)-derived indices 

were similarly distributed between the groups with and without type 2 diabetes. RE burden 

(REMOV, %TST) was higher in patients with versus without type 2 diabetes. On PCA, TST 

and ESS score did not contribute to the risk of prevalent type 2 diabetes, whereas other 

respiratory measures and demographic/clinical features were associated with the presence of 

type 2 diabetes (Figure 1).

3.3 ∣ Machine-learning model for predicting prevalent type 2 diabetes

The results of both cross-validation and independent validation indicated that the XGB 

classifier outperformed the RF model for predicting the presence of type 2 diabetes (Table 2, 

Figure S4). In cross-validation, the average accuracy of the XGB and RF models was 85% 

and 80%, respectively. The XGB model also performed better than the RF model in terms of 

sensitivity (0.81 vs. 0.80), specificity (0.89 vs. 0.80) and ROC-AUC (0.93 vs. 0.88).

When validated on unseen data, the XGB classification rule allowed the detection of 

individuals with type 2 diabetes with a sensitivity of 77%, specificity of 85% and a BAC of 

81%. The XGB model also showed a better ROC AUC of 0.92 (vs. 0.88 for the RF model; P 
< 0.001).

The results of the sensitivity analysis were consistent with the main analysis, whereby 

the relationship between RE and prevalent type 2 diabetes was preserved, with slight and 

nonsignificant improvements in model performance (Table S1).

3.4 ∣ Model explanation by the SHAP method

Adding SHAP to the XGB model that included all clinical features allowed to determine the 

independent effect of each feature value to predict the risk of having type 2 diabetes. As 

summarized in Figure 2 and Figure S5, this analysis revealed the 10 most important factors 

that contribute significantly to the risk of prevalent type 2 diabetes in patients referred to the 

sleep laboratory for OSA suspicion (in order of importance): low average nocturnal SpO2, 

being female, high BMI (≥30 kg/m2), long periods under RE (≥60% of TST), long duration 

of O2 desaturation at thresholds of 95% or 90% (≥10% and 5% of TST, respectively), 

age greater than 45 years, high ODI score (≥15 events/h), high neck circumference (≥ 40 

cm) and high ORDI score (≥20 events/h) determined by MJM analysis (Sr_ORDI). In a 

subgroup analysis of patients without significant oxygen desaturation (ODI <5 events/h) and 

limited sleep fragmentation, the presence of RE for >60% of the night remained a significant 

independent predictor of prevalent type 2 diabetes (Figure S6).
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4 ∣ DISCUSSION

To the best of our knowledge, this is the first study to investigate the association between 

sleep time spent with increased RE and the prevalence of type 2 diabetes in individuals with 

OSA. These findings show that RE detected by MJM analysis is strongly and independently 

associated with type 2 diabetes in this large clinical cohort. In addition, RE burden is a 

stronger predictor of type 2 diabetes than common PSG-derived metrics such as the AHI.

The AHI is the conventional metric that has traditionally been used to diagnose and 

classify OSA despite an increasing recognition that this index may not fully capture the 

pathophysiology and impact of OSA.29 Nevertheless, most previous studies investigating 

the contribution of OSA to the development or presence of type 2 diabetes used the 

AHI to assess OSA severity.7,9,13 Relatively few studies have evaluated the relevance 

of other metrics, such as the proportion of sleep time spent with an oxygen saturation 

below 90%.8,13 Increased RE in individuals with OSA has recently been associated with 

an increased prevalence of hypertension30 but has otherwise been poorly studied and is 

probably underestimated as a risk factor for the cardiovascular and metabolic consequences 

of OSA.

The current findings showed that RE burden was an independent predictor of type 2 diabetes 

in OSA, over and above the risk associated with intermittent hypoxia. This is a new 

finding because previous epidemiological studies in general populations10,31 and clinical 

cohorts32 have only reported a direct linear relationship between hypoxic load and prevalent 

or incident diabetes (as reviewed by Kent et al. 201514). However, an association with 

type 2 diabetes has been found even for mild OSA with limited oxygen desaturation.10 

The findings of the current study suggest that RE could be the missing information to 

help explain this relationship. Specifically, our subgroup analysis (Figure S6) identified a 

significant association between OSA and prevalent type 2 diabetes when RE burden was 

>60% of TST even in individuals with a low hypoxic load (ODI <5 events/h).

Studies show that there is a specific link between sleep-related breathing events occurring 

during REM sleep and the presence of diabetes.35,36 The results of our sensitivity analysis 

showed that RE is a determinant of the relationship between prevalent type 2 diabetes for 

respiratory events occurring in both non-REM and REM sleep.

There is a sound pathophysiological rationale for the observed association between greater 

proportions of time spent in increased RE during sleep and prevalent type 2 diabetes. 

Alterations in upper airway patency during obstructive respiratory events result in repetitive 

attempts to force inspiration against the obstructed upper airway, which causes substantial 

negative changes in intrathoracic pressures.33 These large intrathoracic pressure swings 

activate the sympathetic nervous system and, in turn, there is compelling mechanistic 

evidence that sympathetic activation negatively affects insulin secretion and sensitivity.34,35

Overall, there appears to be a role for a tool that can objectively measure sleep time spent 

in increased RE, as measured in the current study. Other options have important limitations, 

given that RE is not well documented by respiratory bands, and the number of central events 

is overestimated.36,37 In addition, while the presence of snoring indicates upper airway 
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resistance, and provides indirect and qualitative information about RE, the relationship 

between increasing RE and the flattening of the inspiratory curve is not linear.37

The benefits of early diagnosis and treatment of sleep apnoea in individuals with diabetes 

mellitus are increasingly being recognized,38 as of course are the benefits of treating 

diabetes. Furthermore, adherence to positive airway pressure therapy for the treatment of 

OSA has recently been shown to improve control of type 2 diabetes and to decrease health-

related costs.39 The current challenge in this large, minimally symptomatic population is 

to improve access to OSA diagnosis. The MJM diagnosis solution utilized in the current 

study has been validated against in-laboratory PSG and for use in the home as an ambulatory 

diagnostic tool over multiple nights of assessment.26 It could therefore be used to expand 

screening and diagnosis programmes, and to provide objective data on RE burden, a 

parameter that is increasingly being recognized as an important prognostic factor in OSA.

There is a growing agreement in the field that the AHI does not provide a good indication 

of several dimensions of sleep apnoea syndrome.20 The new concept is to complement 

the AHI with new metrics including hypoxic burden, acute cardiovascular responses to 

arousals and now, better characterization of RE. Our paper is clinically relevant because 

it demonstrates an independent association between burden of RE and prevalent diabetes 

beyond, and independently of, the classical AHI metric. We have previously reported that 

RE is also independently associated with prevalent hypertension even in individuals without 

significant hypoxic burden.30,40 Our data have clinical significance because some future 

therapeutic decisions for Continuous Positive Airway Press CPAP or alternative primary 

treatment for OSA will be based on high levels of RE during sleep and not only AHI, 

especially in individuals with hypertension and/or type 2 diabetes.

A key strength of this study is the large, prospective clinical dataset, which means that 

the study findings can be reliably generalized to other similar populations. However, 

additional validation of the data in other clinical cohorts would be appropriate. Another 

strength is the use of a validated tool for the direct measurement of RE during sleep. 

This measure was incorporated into two different models to determine the best approach to 

predict prevalent type 2 diabetes in individuals with OSA. One potential limitation of this 

analysis is that the presence of type 2 diabetes was determined only from patient's medical 

records without any indication of disease severity or control status. Therefore, the potential 

influence of these factors on RE metrics and whether measures of RE are affected by 

variables such as glucose levels, glucose level variability and duration of diabetes could 

not be determined in the current analysis. Additional studies are needed to determine 

these important relationships, facilitating evidence-based application of RE assessment in 

individuals with diabetes mellitus.

Another important point to note is that MJM data in the current study were validated 

against a single night of PSG only. There is increasing interest in the use of multiple night 

assessments of sleep apnoea to reduce misclassification that may occur with a single night 

of in–laboratory PSG.41 Therefore, using multiple night assessment would be appropriate in 

future studies to help determine whether night-to-night variability in sleep test results has 

any influence on the relationship between RE and prevalent diabetes.
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In conclusion, this study identified a significant association between RE burden during sleep 

measured from MJM analysis and prevalence of type 2 diabetes in individuals with OSA. 

This finding suggests that RE burden should be recognized as one of the intermediary 

mechanisms and factors contributing to the association between OSA and type 2 diabetes. 

It also highlights the importance of documenting the RE burden in individuals with type 2 

diabetes, especially in those with mild to moderate OSA.
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FIGURE 1. 
Results of principal component analysis (PCA) and features clustering analysis. The left 

panel shows a heatmap that visualizes the distribution of normalized scores for 19 features 

in the study population (n = 1128). Each row represents a feature; features are arranged 

based on a hierarchical clustering analysis. Columns indicate patient ID (observation units), 

stratified by the presence or absence of type 2 diabetes. A dendrogram groups the 19 

features into five clusters, based on measurement of similarity in distribution and of 

normalized score, and the inter-correlation between those features. The image in the right 

panel summarizes the PCA results. The graph consists of a bi-dimensional density layer, 

representing the joint distribution of two principal components, and coordinates of the 19 

original variables as vectors, including age, body mass index (BMI), neck circumference, 

Epworth Sleepiness Scale (ESS), four mandibular jaw movement–derived indices estimated 

by the Sunrise system (Sr_TST, Sr_ArI, Sr_ORDI, sleep time spent with increased 

respiratory effort [REMOV]), six polysomnography (PSG)-derived indices (total sleep 

time [TST], respiratory disturbance index [RDI], obstructive respiratory disturbance index 

[ORDI], apnoea-hypopnoea index [AHI], obstructive apnoea-hypopnoea index [OAHI] and 

arousal index [ArI]) and five metrics of oxygen desaturation (oxygen desaturation index 

[ODI], average oxygen saturation [SpO2], minSpO2, and time with oxygen desaturation 

[Desat_dt] 90% and 95%). Each vector represents a variable; its orientation with respect 

to a principal component axis and length indicates how much the variable contributes to 

that principal component. The angles between the vectors and direction allow evaluation of 

their correlation: small angles indicate strong positive correlation; opposite angles represent 

a negative correlation. REMOV is based on mandibular jaw movement measurement; “Sr” 

indicates variable derived from automatic analysis of mandibular jaw movements by the 

Sunrise system

Martinot et al. Page 13

Diabetes Obes Metab. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Contribution of the input features to the classification output, evaluated by the Shapley 

additive explanation (SHAP) method. This graph summarizes the result of post hoc 

interpretation using the SHAP method for the extreme gradient boost (XGB) model. The 

x-axis represents the SHAP value scale, which measures the effect of individual feature 

values on the predicted probability of having diabetes. The features on y-axis are arranged 

by descending order of importance, determined based on the average of absolute SHAP 

values for each feature. Each dot indicates the feature attribution value to the XGB model 

final output for a respective patient. The dots are coloured according to the relative value 

of a specific feature, in which blue (cooler) or red (warmer) dots represent lower or 

higher feature values, respectively. AHI, apnoea-hypopnoea index; ArI, arousal index; BMI, 

body mass index; Desat_dt <90 or <95, time with oxygen desaturation <90% or <95%; 

ESS, Epworth Sleepiness Scale; OAHI, obstructive apnoea-hypopnoea index; ODI, oxygen 

desaturation index; ORDI, obstructive respiratory disturbance index; PSG, derived from 

polysomnography; RDI, respiratory disturbance index; REMOV, proportion of total sleep 

time with increased respiratory effort (based on mandibular jaw movement measurement); 

Sr, derived from automatic analysis of mandibular jaw movements by the Sunrise system; 

TST, total sleep time

Martinot et al. Page 14

Diabetes Obes Metab. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martinot et al. Page 15

TA
B

L
E

 1

C
ha

ra
ct

er
is

tic
s 

of
 th

e 
st

ud
y 

po
pu

la
tio

n

T
ra

in
in

g 
su

bs
et

 (
n 

= 
85

3;
 7

6%
)

Te
st

 s
ub

se
t 

(n
 =

 2
75

; 
24

%
)

P
ar

am
et

er
s

W
it

h 
di

ab
et

es
(n

 =
 8

6;
 1

0%
)

W
it

ho
ut

 d
ia

be
te

s
(n

 =
 7

67
; 

90
%

)
W

it
h 

di
ab

et
es

(n
 =

 3
0;

 1
1%

)
W

it
ho

ut
 d

ia
be

te
s

(n
 =

 2
45

; 
89

%
)

 
M

al
e 

se
x,

 n
 (

%
)

37
 (

44
.0

%
)

42
3 

(5
5.

1%
)*

23
 (

76
.7

%
)

13
5 

(5
5.

1%
)*

 
A

ge
, y

ea
rs

55
.0

 (
15

.0
)

47
.5

 (
19

.8
)

51
.3

 (
20

.4
)

46
.6

 (
18

.5
)

 
N

ec
k 

ci
rc

um
fe

re
nc

e,
 c

m
41

.5
 (

5.
0)

39
.0

 (
4.

0)
41

.5
 (

5.
8)

40
.0

 (
5.

0)

 
B

od
y 

m
as

s 
in

de
x,

 k
g/

m
2

34
.6

 (
7.

0)
29

.7
 (

10
.5

)
35

.0
 (

9.
9)

28
.8

 (
10

.8
)

 
E

SS
 s

co
re

11
.0

 (
7.

8)
**

11
.0

 (
7.

0)
11

.0
 (

5.
8)

**
10

.0
 (

7.
0)

PS
G

 in
di

ce
s

 
T

ST
, m

in
42

4.
5 

(1
02

.1
)*

*
43

0.
5 

(9
7.

8)
39

5.
3 

(1
04

.5
)

44
1.

0 
(9

7.
0)

 
A

rI
, n

/h
29

.1
 (

21
.9

)
24

.2
 (

19
.6

)
30

.8
 (

22
.3

)
23

.0
 (

16
.9

)

 
A

H
I,

 n
/h

23
.9

 (
29

.3
)

16
.9

 (
26

.0
)

27
.5

 (
29

.9
)

17
.1

 (
23

.0
)

 
O

A
H

I,
 n

/h
20

.0
 (

22
.2

)
11

.2
 (

21
.1

)
24

.9
 (

29
.5

)
11

.5
 (

20
.4

)

 
R

D
I,

 n
/h

36
.2

 (
28

.9
)

23
.7

 (
27

.7
)

36
.7

 (
25

.8
)

22
.9

 (
22

.4
)

 
O

R
D

I,
 n

/h
28

.8
 (

24
.2

)
18

.0
 (

22
.4

)
35

.0
 (

28
.6

)
18

.0
0 

(2
1.

2)

D
es

at
ur

at
io

n

 
O

D
I,

 n
/h

27
.3

 (
27

.2
)

12
.3

 (
27

.5
)

18
.6

 (
16

.1
)

10
.6

 (
16

.8
)

 
M

in
im

um
 S

pO
2,

 %
82

.5
 (

10
.5

)
86

.0
 (

9.
0)

83
.0

 (
10

.5
)

86
.0

 (
10

.0
)

 
A

ve
ra

ge
 S

pO
2,

 %
93

.0
 (

2.
0)

95
.0

 (
3.

0)
93

.0
 (

1.
8)

95
.0

 (
3.

0)

 
T

im
e 

w
ith

 S
pO

2 
<

90
%

, %
 T

ST
5.

0 
(1

2.
1)

0.
6 

(4
.6

)
6.

4 
(1

1.
7)

0.
7 

(4
.7

)

 
T

im
e 

w
ith

 S
pO

2 
<

95
%

, %
 T

ST
20

.8
 (

20
.9

)
9.

3 
(1

8.
7)

18
.6

 (
16

.1
)

10
.6

 (
16

.8
)

Su
nr

is
e 

in
di

ce
s

 
T

ST
, m

in
44

3.
3 

(7
5.

8)
**

43
7.

0 
(7

6.
01

)
45

7.
0 

(1
00

.9
)*

*
44

8.
0 

(6
9.

0)

 
O

R
D

I,
 n

/h
19

.9
 (

15
.8

)
15

.0
 (

15
.4

1)
23

.5
 (

13
.2

)
15

.5
 (

14
.0

)

 
A

rI
, n

/h
19

.9
 (

17
.1

)
18

.9
 (

14
.6

0)
22

.8
 (

17
.2

)
18

.8
 (

12
.7

)

 
R

E
M

O
V

, %
 T

ST
81

.1
 (

20
.9

)
59

.9
 (

43
.3

0)
79

.1
 (

21
.9

)
64

.4
 (

42
.0

)

N
ot

e:
 V

al
ue

s 
ar

e 
m

ed
ia

n 
(i

nt
er

qu
ar

til
e 

ra
ng

e)
 f

or
 n

um
er

ic
 d

at
a 

or
 n

um
be

r 
of

 p
at

ie
nt

s 
(%

) 
fo

r 
ca

te
go

ri
ca

l d
at

a.

Diabetes Obes Metab. Author manuscript; available in PMC 2024 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martinot et al. Page 16
A

bb
re

vi
at

io
ns

: A
H

I,
 a

pn
oe

a-
hy

po
pn

oe
a 

in
de

x;
 A

rI
, a

ro
us

al
 in

de
x;

 E
SS

, E
pw

or
th

 S
le

ep
in

es
s 

Sc
al

e;
 O

A
H

I,
 o

bs
tr

uc
tiv

e 
ap

no
ea

-h
yp

op
no

ea
 in

de
x;

 O
D

I,
 o

xy
ge

n 
de

sa
tu

ra
tio

n 
in

de
x;

 O
R

D
I,

 o
bs

tr
uc

tiv
e 

re
sp

ir
at

or
y 

di
st

ur
ba

nc
e 

in
de

x;
 P

SG
, p

ol
ys

om
no

gr
ap

hy
; R

D
I,

 r
es

pi
ra

to
ry

 d
is

tu
rb

an
ce

 in
de

x;
 R

E
M

O
V

, s
le

ep
 ti

m
e 

sp
en

t w
ith

 in
cr

ea
se

d 
re

sp
ir

at
or

y 
ef

fo
rt

 (
ba

se
d 

on
 m

an
di

bu
la

r 
m

ov
em

en
t m

ea
su

re
m

en
t)

; 
Sp

O
2,

 o
xy

ge
n 

sa
tu

ra
tio

n;
 T

ST
, t

ot
al

 s
le

ep
 ti

m
e.

* Si
gn

if
ic

an
t a

ss
oc

ia
tio

n 
be

tw
ee

n 
m

al
e 

se
x 

an
d 

pr
es

en
ce

 o
f 

di
ab

et
es

 w
as

 d
et

er
m

in
ed

 u
si

ng
 P

ea
rs

on
's

 χ
2  

te
st

 (
P 

<
 0

.0
01

).

**
A

ll 
m

et
ri

cs
, e

xc
ep

t f
or

 T
ST

 (
PS

G
 o

r 
Su

nr
is

e)
 a

nd
 E

SS
 s

co
re

 s
ho

w
ed

 a
 s

ta
tis

tic
al

ly
 s

ig
ni

fi
ca

nt
 d

if
fe

re
nc

e 
in

 d
is

tr
ib

ut
io

n 
be

tw
ee

n 
th

e 
tw

o 
ou

tc
om

e 
su

bg
ro

up
s,

 b
as

ed
 o

n 
a 

M
an

n-
W

hi
tn

ey
 te

st
 a

t s
ig

ni
fi

ca
nc

e 
th

re
sh

ol
d 

of
 0

.0
5.

Diabetes Obes Metab. Author manuscript; available in PMC 2024 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martinot et al. Page 17

TA
B

L
E

 2

Pe
rf

or
m

an
ce

 o
f 

tw
o 

cl
as

si
fi

ca
tio

n 
ru

le
s

R
an

do
m

 F
or

es
t 

cl
as

si
fi

er
X

G
bo

os
t 

cl
as

si
fi

er

M
et

ri
cs

10
 ×

 1
0 

C
V

 o
n 

tr
ai

ni
ng

 s
et

V
al

id
at

io
n 

on
 t

es
t 

se
t

10
 ×

 1
0 

C
V

 o
n 

tr
ai

ni
ng

 s
et

V
al

id
at

io
n 

on
 t

es
t 

se
t

B
al

an
ce

d 
ac

cu
ra

cy
0.

80
 ±

 0
.0

8
0.

73
 ±

 0
.0

4
0.

85
 ±

 0
.0

7
0.

81
 ±

 0
.0

4

Se
ns

iti
vi

ty
0.

80
 ±

 0
.1

4
0.

67
 ±

 0
.0

9
0.

81
 ±

 0
.1

4
0.

77
 ±

 0
.0

8

Sp
ec

if
ic

ity
0.

80
 ±

 0
.0

4
0.

79
 ±

 0
.0

3
0.

89
 ±

 0
.0

3
0.

85
 ±

 0
.0

2

Fa
ls

e-
po

si
tiv

e 
ra

te
0.

20
 ±

 0
.0

4
0.

21
 ±

 0
.0

3
0.

11
 ±

 0
.0

3
0.

15
 ±

 0
.0

2

Fa
ls

e-
ne

ga
tiv

e 
ra

te
0.

20
 ±

 0
.1

4
0.

33
 ±

 0
.0

9
0.

19
 ±

 0
.1

4
0.

23
 ±

 0
.0

8

L
R

+
4.

26
 ±

 1
.3

3
3.

25
 ±

 0
.6

0
7.

88
 ±

 3
.3

3
5.

21
 ±

 1
.0

1

L
R

−
0.

25
 ±

 0
.1

8
0.

42
 ±

 0
.1

1
0.

21
 ±

 0
.1

6
0.

27
 ±

 0
.0

9

PP
V

0.
31

 ±
 0

.0
9

0.
28

 ±
 0

.0
5

0.
44

 ±
 0

.1
2

0.
38

 ±
 0

.0
6

N
PV

0.
97

 ±
 0

.0
2

0.
95

 ±
 0

.0
1

0.
98

 ±
 0

.0
2

0.
97

 ±
 0

.0
1

R
O

C
-A

U
C

0.
88

 ±
 0

.0
5

0.
87

 ±
 0

.0
2

0.
93

 ±
 0

.0
4

0.
92

 ±
 0

.0
1

A
bb

re
vi

at
io

ns
: C

V
, c

ro
ss

-v
al

id
at

io
n;

 L
R

+
, p

os
iti

ve
 li

ke
lih

oo
d 

ra
tio

; L
R

−
, n

eg
at

iv
e 

lik
el

ih
oo

d 
ra

tio
; N

PV
, n

eg
at

iv
e 

pr
ed

ic
tiv

e 
va

lu
e;

 P
PV

, p
os

iti
ve

 p
re

di
ct

iv
e 

va
lu

e;
 R

O
C

-A
U

C
, a

re
a 

un
de

r 
th

e 
re

ce
iv

er
-

op
er

at
or

 c
ha

ra
ct

er
is

tic
 c

ur
ve

.

Diabetes Obes Metab. Author manuscript; available in PMC 2024 April 01.


	Abstract
	INTRODUCTION
	METHODS
	Study design and population
	Polysomnographic data acquisition and scoring
	Recording and analysis of MJM
	Assessment of RE by the Sunrise system
	Prevalent type 2 diabetes
	Data analysis

	RESULTS
	Study population
	Clinical characteristics and RE burden
	Machine-learning model for predicting prevalent type 2 diabetes
	Model explanation by the SHAP method

	DISCUSSION
	References
	FIGURE 1
	FIGURE 2
	TABLE 1
	TABLE 2



