
UC Irvine
UC Irvine Previously Published Works

Title
Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network 
Cloud Classification System

Permalink
https://escholarship.org/uc/item/2x4152rx

Journal
Journal of Applied Meteorology, 43(12)

ISSN
1520-0450 0894-8763

Authors
Hong, Yang
Hsu, Kuo-Lin
Sorooshian, Soroosh
et al.

Publication Date
2004-12-01

DOI
10.1175/JAM2173.1
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2x4152rx
https://escholarship.org/uc/item/2x4152rx#author
https://escholarship.org
http://www.cdlib.org/


1834 VOLUME 43J O U R N A L O F A P P L I E D M E T E O R O L O G Y

q 2004 American Meteorological Society

Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural
Network Cloud Classification System

YANG HONG

Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona, and Department of Civil and Environmental
Engineering, University of California, Irvine, Irvine, California

KUO-LIN HSU

Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

SOROOSH SOROOSHIAN

Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona, and Department of Civil and Environmental
Engineering, University of California, Irvine, Irvine, California

XIAOGANG GAO

Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

(Manuscript received 16 September 2003, in final form 17 June 2004)

ABSTRACT

A satellite-based rainfall estimation algorithm, Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN) Cloud Classification System (CCS), is described. This algorithm
extracts local and regional cloud features from infrared (10.7 mm) geostationary satellite imagery in estimating
finescale (0.048 3 0.048 every 30 min) rainfall distribution. This algorithm processes satellite cloud images into
pixel rain rates by 1) separating cloud images into distinctive cloud patches; 2) extracting cloud features, including
coldness, geometry, and texture; 3) clustering cloud patches into well-organized subgroups; and 4) calibrating
cloud-top temperature and rainfall (Tb–R) relationships for the classified cloud groups using gauge-corrected
radar hourly rainfall data. Several cloud-patch categories with unique cloud-patch features and Tb–R curves were
identified and explained. Radar and gauge rainfall measurements were both used to evaluate the PERSIANN
CCS rainfall estimates at a range of temporal (hourly and daily) and spatial (0.048, 0.128, and 0.258) scales.
Hourly evaluation shows that the correlation coefficient (CC) is 0.45 (0.59) at a 0.048 (0.258) grid scale. The
averaged CC of daily rainfall is 0.57 (0.63) for the winter (summer) season.

1. Introduction

Reliable observation of precipitation is an important
task to the hydrologic and climate research communi-
ties. Because ground observation from gauge and radar
suffers from spatial and temporal gaps, rainfall mea-
surements derived from meteorological satellites be-
come an attractive option because of their high spatial
and temporal sampling frequencies.

In our earlier reported work, we developed the Pre-
cipitation Estimation from Remotely Sensed Informa-
tion using Artificial Neural Networks (PERSIANN) al-
gorithm, using satellite longwave infrared (IR) images
(Hsu et al. 1997, 1999; Sorooshian et al. 2000). The
PERSIANN algorithm fits the pixel brightness temper-
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ature and its neighbor temperature textures, in terms of
means and standard deviations, to the calculated pixel
rain rates based on an Artificial Neural Network (ANN)
model. The PERSIANN algorithm is operated at a spa-
tial resolution of 0.258 latitude 3 0.258 longitude, with
model parameters routinely adjusted by other low-or-
bital satellite microwave rainfall estimates (Sorooshian
et al. 2000).

Improvement of the PERSIANN system for estimat-
ing rainfall rates at higher spatial and temporal reso-
lution is ongoing. In this paper, the development of the
PERSIANN Cloud Classification System (CCS) is in-
troduced. Instead of direct pixel-to-pixel fitting of in-
frared cloud images to the rain rate, the PERSIANN
CCS takes into account image segmentation and objec-
tive classification methods to process cloud images into
a set of disjointed cloud-patch regions; informative fea-
tures are extracted from cloud patches and classified into
a number of patch groups based on the similarity of
selected features, such as the patch size and texture.
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FIG. 1. The PERSIANN CCS model structure: (a) image preprocessing through a cloud segmentation procedure, (b) input feature extraction
of the cloud patch, (c) cloud-patch feature classification (20 3 20 clusters), and (d) nonlinear temperature and rainfall (Tb–R) fitting for the
20 3 20 classified cloud clusters, with one fitting curve per cluster. Note that W and V are the connection weights for the SOFM layer and
multiparameter nonlinear fitting layer, respectively. The final output of this network is the calibrated Tb–R for every classified cloud cluster.

Pixel rain rates under the cloud-patch coverage are as-
signed using the histogram-matching method and ex-
ponential regression fitting of pixel brightness temper-
atures Tb and rainfall rates R. Each classified cloud-patch
group is specified a unique temperature–rainfall (Tb–R)
curve, and the parameters of the Tb–R curve are cali-
brated based on rain estimates of the Next-Generation
Weather Radar (NEXRAD) network.

The scope of this paper is as follows. Section 2 de-
scribes algorithms in rainfall estimation using infrared
imagery. The structure of PERSIANN CCS is presented
in section 3, followed by the network training and some
insights provided by PERSIANN CCS calibration in
section 4. Section 5 presents validation results, and sec-
tion 6 discusses conclusions and suggestions for further
improvements to PERSIANN CCS.

2. Background

Satellite IR-based rainfall estimation algorithms offer
unique advantages of extensive global coverage at rel-
atively high temporal sampling rates (Ebert and Manton
1998). The algorithms developed to date may be clas-
sified into three groups, depending on the level of in-
formation extracted from the infrared cloud images.
There are

1) cloud-pixel-based algorithms,
2) cloud-local-texture-based algorithms, and
3) cloud-patch-based algorithms.

An example of the cloud-pixel-based algorithm is the

Geostationary Operational Environmental Satellite
(GOES) precipitation index (GPI; Arkin and Meisner
1987), which assigns a constant conditional rain rate of
3 mm h21 to pixels with a Tb lower than 235 K and
zero rain rates otherwise. The adjusted GPI (AGPI; Ad-
ler and Negri 1993) adjusts rain rate by time- and space-
matched GPI and Special Sensor Microwave Imager
(SSM/I)–based rain estimates accumulated for a month.
Xu et al. (1999a) proposed a universal AGPI that is
similar to AGPI but allows both the rain rate and tem-
perature threshold to vary. Another pixel-based fitting
is the autoestimator (AE) algorithm (Vicente et al.
1998). The AE algorithm utilizes a power-law function
to fit the Tb–R relationship. Pixel rainfall values are
further adjusted using several correction factors, such
as relative humidity and precipitable water.

Cloud-local-texture-based approaches retrieve pixel
rain rates by extending the mapping from one single
pixel to a range of the neighborhood pixel coverage.
Wu et al. (1985) used 24 brightness temperature texture
features to retrieve rainfall within a neighborhood size
of 20 km 3 20 km. Hsu et al. (1997) developed the
PERSIANN system, which calculates rain rate at 0.258
latitude 3 0.258 longitude resolution, based on the
brightness temperature variations in the neighboring
coverage of 1.258 3 1.258.

Cloud-patch-based approaches estimate rainfall based
on the cloud coverage under a specified temperature
threshold, such as 253 K. The Griffith–Woodley Tech-
nique (Griffith et al. 1978; Woodley et al. 1980) tracked
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FIG. 2. (a) The IR cloud image, (b) segmentation of the cloud image, using the fixed threshold of 253 K, and
(c)–(h) the cloud-patch segmentation process using the ITT algorithm in this study.

TABLE 1. Input features extracted from cloud patches.

Coldness features of cloud patch
1) Min temperature of a cloud patch (Tmin)
2) Mean temperature of a cloud patch (Tmean)

Geometric features
3) Cloud-patch area (AREA)
4) Cloud-patch shape index (SI)

Texture features (referring to the brightness temperature texture)
5) Std dev of cloud-patch temperature (STD)
6) Mean value of local std dev of cloud temperature (MSTD5)
7) Std dev of local std dev of cloud Tb (STD )5

std

8) Gradient of cloud-top brightness temperature (TOPG)
9) Gray-image texture (maximum angular second moment)

a cloud through its lifetime. The total rain volume of
the cloud patch is determined based on the ratios of
satellite cloud area to its maximum coverage. The Con-
vective–Stratiform Technique (Adler and Negri 1988)
is another example of the cloud-patch-based approach.
It screens convective cells based on the local minimum
of infrared temperature and assigns different rainfall
amounts to convective and stratiform components sep-
arately. Pixel rain rates are proportionally distributed
starting from the coldest pixel to higher-temperature
pixels. Xu et al. (1999b) proposed another approach,
which determines different temperature thresholds by
separating the rain/no-rain pixels in a cloud patch using
SSM/I microwave rainfall estimates.

With respect to the use of information, both pixel-
and local-texture-based approaches only utilize limited
attributes of the cloud patches. Rain rates retrieved from
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FIG. 3. Cloud-patch features of Tmin, AREA, TOPG, and STD vs patch rainfall and patch rain
probability. Note that not all of the selected features are shown here. (left) Values of cloud-patch
features vs cloud-patch rainfall, and (right) interval-averaged values of cloud-patch features vs
patch rain probability.

these methods tend to be nonunique and may be insuf-
ficient to identify the relationships between cloud types
and surface rain rates. Cloud-patch-based approaches,
on the other hand, attempt to include more information
from the cloud images and are likely to provide a more
reliable rainfall retrieval system than do the pixel-based
approaches. Therefore, successful characterization of
cloud patches can be one step toward better estimation
of rainfall. However, developing a desirable cloud-
patch-based algorithm depends on many factors, in-
cluding 1) how effectively the cloud image may be sep-
arated into distinct cloud systems or cells; 2) how our
knowledge of the cloud systems may be converted into
a set of measurable numerical feature vectors, in terms
of patch temperature, size, and texture; 3) how these
feature vectors may be effectively clustered into a set
of separable cloud-patch ‘‘classes’’ or ‘‘groups;’’ and 4)

how the cloud-patch groups are associated with the rain-
fall distributions under the cloud coverage. Following
the above requirements, the PERSIANN CCS is devel-
oped. A description of the algorithm is listed in the
following section.

3. Method
The PERSIANN CCS establishes different Tb–R re-

lationships, calibrated by collocated cloud images and
gauge-corrected radar rainfall data, for every classified
cloud group by implementing a sequence of four steps
(Fig. 1). The steps are described as follows.

a. Segmentation of satellite infrared cloud images

A cloud image is shown in Fig. 2a, and cloud-patch
segmentation of this image, using a fixed threshold (253
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FIG. 4. Cloud-patch features calculated at three separate temperature levels (220, 235, and 253 K).

K), is shown in Fig. 2b. Note that even though the cloud
image contains several convective cells, the single
threshold cannot separate them effectively.

Our proposed approach, called the incremental tem-
perature threshold (ITT), achieves segmentation by
gradually increasing threshold temperatures (Figs. 2c–
h). The algorithm (for a complete description of ITT,
please see appendix A) locates the local minimum tem-
perature Tmin and places the first set of seeds (illustrated
as cross markers in Fig. 2). Next, the threshold tem-
perature is raised and extended to the neighboring areas
from the seeded points until the border of other seeded
regions or cloud-free regions is reached.

b. Extraction of cloud-patch features

Fully developed convective clouds have distinguish-
able overshooting tops, tight temperature gradients, and
higher local pixel temperature variations. Stratiform
clouds, on the other hand, show more gradual temper-
ature gradients and lower temperature variations. The
three categories used to discriminate between cloud
types are coldness, geometry, and texture. A further
breakdown of measurable features is provided in Table
1, and a detailed explanation of these features is listed
in appendix B.

As one might expect, there is a potential interrela-
tionship between the selected cloud-patch features and

the amounts of patch rainfall. Figure 3 illustrates the
scatterplots of the four selected features with respect to
hourly patch rainfall (millimeters per patch) and patch
rain probability, based on 1-month (June 1999) GOES
images and gauge-corrected radar-rainfall data over the
region of 308–408N and 1208–1008W. Note that the rain
probability is the ratio of the rain patches ($10 milli-
meters per patch) to the total number of patches within
a small interval of displayed feature. The left-hand pan-
els show a negative correlation trend with respect to the
minimum temperature (Fig. 3a) and positive correlation
for the remaining three features (Figs. 3b–d). The wide-
scattering samples in the figures are partly due to the
interaction among the patch features. In the case of Fig.
3a, for example, the amount of patch rainfall is not only
determined by Tmin, but is also influenced by other fac-
tors, such as the patch size and texture. In the case of
the rain probability plots depicted in the right-hand pan-
els of Fig. 3, we witness a monotonically decreasing
trend in the case of Tmin (i.e., a lower patch minimum
temperature is related to a higher probability of rain in
the patch) and increasing trends for the other three features.

c. Classification of cloud patches

A clustering algorithm, the self-organizing feature
map (SOFM), is used to classify the cloud-patch features
into a number of groups (Kohonen 1982). This approach
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FIG. 5. (a) The SOFM classified 20 3 20 nodes (groups) of cloud patches and (b)–(g) their associated feature maps
and rainfall by training using the Jun 1999 GOES IR and radar rainfall data.

has already been described in our earlier work (Hsu et
al. 1997), and therefore only a brief description is pro-
vided here. SOFM projects patterns of high-dimensional
space to lower-dimensional space. The projection en-
ables the classification of input patterns of many vari-
ables into a number of clusters arranged in a two-di-
mensional coordinate (Fig. 1c). The two main steps in-
volved are

1) calculating the distance between patch features and
the SOFM cluster center using

1/2n1

2d 5 (x 2 w ) , j 5 1, . . . , n, (1)Oj i i j[ ]i51

where xi is the cloud-patch input feature i, and wij

is the connection parameter of SOFM from input
feature i to the specified cluster center (node) j, and

2) finding the best matching SOFM cluster center c,
from the minimum distance between the input fea-
ture vector and the SOFM connection weights wij:

d 5 min(d ), where j 5 1, . . . , n.c j (2)

d. Estimation of patch and pixel rainfall

The relationship of pixel temperature Tb and surface
rainfall R of a cloud patch is likely to vary in different
stages of its life cycle. Therefore, we assign different
Tb–R relationships to various cloud patches based on
the classification resulting from the previous clustering
stage.
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FIG. 6. (a) The calibrated cloud–rainfall relationships (400 Tb–R
curves) from the PERSIANN CCS algorithm using IR and radar data,
with each curve referring to a cloud cluster in the SOFM classification
map (Fig. 5a.). (b) Several typical Tb–R curves from clusters in (a).
Note that the curve of cluster 0 does not show in (b) because it is
short and flat.

TABLE 2. Input features and precipitation characteristics of selected clusters on SOFM.

Category Tmin (K) Area (pixel) TOPG MSTD5 STD

Pixel rain rate
(millimeters
per pixel)

Patch rainfall
(millimeters
per patch)

C0
C1
C2
C3
C4
C5
C6

.245
235–245
235–245
215–235
215–235

,215
,215

,100
100–1000
100–1000
500–4000
500–4000

1500–5000
1000–3500

,0.5
;1
;3
;1
;3.5
;1.5
;4.5

,0.5
1
3.5
2.5
4
3
5

,2
,4

4–8
6–8
8–10

.10
8–14

,0.1
0–0.5

0.5–0.1
0.1–0.5

1–1.5
0.5–1.5
1.5–4.5

,10
,100

,1000
500–2000

1000–2500
3000–6000
2000–3500

In each classified cloud-patch group, the Tb–R pixel
pairs are first redistributed using the probability match-
ing method (Atlas et al. 1990). This method matches
histograms of Tb and R observations such that the pro-
portion of the R distribution above a given rain rate is
equal to the proportion of the Tb distribution below the

associated Tb threshold value. The redistributed pixels
are fitted with a nonlinear exponential function for each
patch group. Given SOFM-classified patch group j, the
Tb–R relationship is specified as

jj j j j j y
5R 5 y 1 y exp[y (T 1 y ) ],1 2 3 b 4 (3)

where R is the rainfall rate (mm h21), Tb is the cloud-
top brightness temperature (K), and , , , , andj j j jy y y y1 2 3 4

are parameters with respect to patch group j. Thejy 5

parameters of the Tb–R functions in each patch group
are calibrated using a large number of GOES infrared
images and their collocated gauge-corrected radar rainfall.

4. PERSIANN CCS calibration

a. System architecture and calibration

To implement the PERSIANN CCS, we first need to
specify the number of cloud-patch groups. There is a
trade-off between the number of cloud-patch groups and
the accuracy and efficiency of the calibrated model. To
ensure good accuracy, a large number of classified cloud
groups are required, but the computational requirements
for model training and testing increase dramatically. Hsu
et al. (2002) show that, given an objective function
(root-mean-square error, e.g.), an optimal group size can
be found by progressively testing the size of groups. In
this study, a group size (20 3 20) was determined in
the SOFM classification layer.

The nine input features listed in Table 1, except Tmin

and the gradient of the cloud-top brightness tempera-
ture TOPG, are calculated at three separate temperature
levels (220, 235, and 253 K) for every cloud patch.
Figure 4 is a demonstration of cloud feature extraction
for two adjacent patches (shown as m1 and m 2). Cloud
m1 depicts the situation of a patch in its mature stage
with extensive vertical growth and an overshooting top,
and patch m 2 is still in the towering stage with its top
temperature not yet at the 220-K level. Features ex-
tracted at the 220-K level are related to the cold core
of the taller cloud patch, while features extracted at
the warmer 235-K level represent information of larger
extent. Patch features extracted from the threshold 253-
K level give information of the entire cloud patch rang-
ing from Tmin to 253 K. However, not every cloud patch
contains temperatures ranging up to the colder levels,
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TABLE 3. Statistics for PERSIANN CCS and PERSIANN estimates of hourly rain rates under a range of spatial resolutions when compared
with radar observation—a case study. Note: zero-rain-rate grids were included to compute the statistical information. Sample size for
comparison is 1890 at 0.258 grid resolution over the entire storm.

Resolution

PERSIANN CCS

Rmse CORR Ratio CSI

PERSIANN

Rmse CORR Ratio CSI

0.048 3 0.048
0.128 3 0.128
0.258 3 0.258

2.72
2.01
1.27

0.45
0.54
0.59

1.12
1.09
1.07

0.53
0.64
0.67

—
—

2.67

—
—

0.47

—
—

1.17

—
—

0.55

FIG. 7. Time series of statistics of hourly rain rates derived from
PERSIANN CCS and PERSIANN over the Las Vegas, NV, vicinity
flash-flooding storm from 1400 through 1900 UTC 8 Jul 1999. (The
results were calculated at 0.258 3 0.258 grid resolution.)

such as 235 or 220 K, where default values are as-
signed. For example, in the case of cloud-patch area,
a zero is assigned for Tmin at the 220-K level for patch
m 2 , and it has a nonzero value for temperature levels
of 235 and 253 K.

After completing the cloud-patch feature extraction,
the system is calibrated using GOES infrared images
and radar-rainfall maps for June 1999 over the region
of 258–458N and 1008–1308W (both datasets are mapped
to 0.048 latitude 3 0.048 longitude scale). The hourly
rainfall used for calibration is a rain gauge–corrected
multisensor precipitation dataset, developed by the Na-
tional Oceanic and Atmospheric Administration Na-
tional Centers for Environmental Prediction (NCEP)
(NCEP 2003).

Calibration of the algorithm is a two-stage process.
The first stage is an unsupervised clustering of input

features. In this stage, all of the segmented cloud patches
are classified into 400 groups based on the similarity of
cloud features using the SOFM clustering technique. In
the next stage, the rainfall data are coregistered and are
assigned into the classified patch groups. The concurrent
infrared images and rainfall data in each classified patch
group are further sorted, based on a probability matching
method. Last, the parameters of the nonlinear fitting
function [Eq. (3)] are calculated, based on the sorted
pixel infrared and rainfall data. The PERSIANN CCS
eventually includes 23 cloud features in the input layer
and 400 cloud groups arranged in a 20 3 20 matrix in
the classification layer, with each group being assigned
its unique Tb–R function.

b. Insights provided by the calibration results

The SOFM clustering technique allows exploration
of the classified cloud-patch features through its two-
dimensional feature map. Figure 5a shows the 20 3 20
groups arranged in two-dimensional coordinates. Each
classified group is described by a set of input patch
features. The status of the cloud patch can be explained
by listing the input features on each classified group
(see Figs. 5b–d). Figure 5b, for instance, shows the con-
tour map of cloud-patch minimum temperatures (Tmin)
on 20 3 20 groups. Cloud-patch groups in the upper-
right corner are associated with warmer clouds where
cloud-patch Tmin are higher than 235 K. Following the
arrow, the cloud patch’s Tmin are gradually reduced, and
the patches in the lower-right corner are associated with
cold clouds, where their Tmin are lower than 205 K.

The contour plot of TOPG on 20 3 20 groups in Fig.
5c shows the cloud patch’s temperature gradient near
the coldest pixel. This index helps us to locate those
cloud-patch groups having strong upwelling movement
near the coldest convective core area. Heavy convective
clouds usually present tight temperature gradients near
the cold core area. They are marked with an ‘‘X’’ in
Fig. 5c. An interesting point that should be highlighted
is an observation that was made when Figs. 5c and 5b
were compared with respect to the location of the X
marks. Note that those high-TOPG patch groups cover
a wide range of temperatures, suggesting that convective
clouds are not exclusive to the cold cloud regions.

Next we examine the contour plot of the local texture
variation [the mean value of the local standard deviation
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TABLE 4. Comparison of daily rainfall estimates from PERSIANN CCS and radar observation on 8–9 Jul 1999.

Spatial scales No. pixels Rmse (mm) Ratio CORR SKILL POD FAR CSI

8 Jul 1999: 258–458N, 1008–1208W; mean observed rainfall 3.8 mm day21

0.048 3 0.048
0.128 3 0.128
0.248 3 0.248
0.508 3 0.508
1.008 3 1.008

166 190
17 921

4387
1045

210

6.93
5.32
4.44
3.26
2.25

1.09
1.07
1.06
1.03
1.015

0.613
0.676
0.721
0.794
0.880

0.655
0.690
0.710
0.719
0.750

0.850
0.865
0.896
0.942
1.000

0.154
0.109
0.080
0.040
0.010

0.769
0.821
0.854
0.898
0.970

9 Jul 1999: 258–458N, 1008–1208W; mean observed rainfall 4.7 mm day21

0.048 3 0.048
0.128 3 0.128
0.248 3 0.248
0.508 3 0.508
1.008 3 1.008

166 190
17 921

4387
1045

210

8.37
6.39
5.14
3.79
2.63

1.13
1.11
1.078
1.063
1.035

0.608
0.664
0.719
0.785
0.855

0.612
0.638
0.675
0.697
0.736

0.837
0.849
0.885
0.950
0.990

0.221
0.169
0.122
0.080
0.030

0.721
0.778
0.831
0.875
0.950

of the cloud temperature (MSTD5)] in 20 3 20 groups,
as shown in Fig. 5d. This feature indicates the average
of local standard deviation of pixel temperature in a
neighborhood of 5 3 5 pixels for all pixels under the
cloud-patch coverage. Again, the higher MSTD5 groups
are marked with an X. Note that patches with a higher
MSTD5 correspond very closely to a higher TOPG in
Fig. 5c. The averaged rain rate in the classified 20 3
20 groups shown in Fig. 5e is assigned based on 1-
month NCEP gauge-corrected radar data. Cloud patches
with higher average rain rates are similarly marked with
an X. Note that patches with higher rain rates correspond
well to the groups with higher TOPG and MSTD5 (Figs.
5c–e).

Last, we examine the two other feature maps. Figure
5f shows the contour map of cloud-patch size (AREA)
on 20 3 20 groups, and the total patch rainfall amounts
are depicted in Fig. 5g. Patch groups with AREA larger
than 3000 pixels are circled. When one compares Figs.
5f and 5g, it is evident that those circled large AREA
regions correspond to higher total patch rainfall. Inter-
esting to note is that, when we make a comparison with
Fig. 5e, the encircled patches with larger AREA groups
do not necessarily correspond to a high rainfall rate,
which indicates that a large portion of the cloud patch
generates little or no rain in those large AREA groups.

What remains to be done is the transformation of the
patch information to the pixel rainfall rate for the areas
under the patch coverage. Figure 6a is intended to pro-
vide a visualization of the calibrated Tb–R curves for
each of the 20 3 20 patch groups. Each Tb–R curve
represents the temperature and rainfall-rate relationship
at the pixel level for a classified cloud group. For closer
examination, seven categories of cloud groups (C0–C6)
are displayed. Note that the C0 category is associated
with warmer and no-rain cloud patches, whereas the
other categories (C1–C6) show significant variations of
slope and maximum rain rate for temperatures ranging
from Tmin . 235 K (in C1 and C2), 215 K . Tmin .
235 K (in C3 and C4), and Tmin , 215 K in (C5 and
C6). The Tb–R curves of C0–C6 are unique as shown
in Fig. 6b. Table 2 summarizes the input features with

respect to the seven highlighted categories, and they are
explained in appendix C.

5. Case study and validation

Several evaluation criteria were selected to validate
PERSIANN CCS. The quantitative accuracy of esti-
mates is evaluated using bias: correlation coefficient
(CORR), and root-mean-square error (rmse). The per-
formance of rain/no-rain detection is evaluated by the
probability of detection (POD), false-alarm ratio (FAR),
skill score (SKILL), and critical success index (CSI).
Definitions of these criteria are listed in the report of
the third Algorithm Intercomparison Project of the
Global Precipitation Climatology Project (Ebert 1996).
PERSIANN CCS rainfall estimates are validated on an
hourly and daily basis for different spatial (0.048, 0.128,
0.258, and 0.58) scales. Two rainfall observation datasets
were used in this validation: high-temporal-and-spatial-
resolution NCEP radar data in section 5a and high-qual-
ity daily rain gauge data for both the cold and warm
seasons in section 5b. PERSIANN CCS was also com-
pared with the PERSIANN product (Sorooshian et al.
2000). The PERSIANN estimates for 1999 were trained
using the instantaneous rain rate derived from the Trop-
ical Rainfall Measuring Mission Microwave Imager
(TMI). The PERSIANN products for 2002 were cali-
brated using the rain rates merged from the SSM/I and
TMI.

a. Two-day storm event near Las Vegas, Nevada

1) HOURLY RAINFALL EVALUATION

PERSIANN CCS estimates were compared with those
of PERSIANN for a flash-flood storm that occurred on
8 July 1999 in Las Vegas, Nevada, and its surrounding
area (approximately 300 km 3 300 km). This intense
storm, monitored form 1400 through 1900 UTC (0600–
1100 LST), reportedly caused the worst flooding of the
century in the Las Vegas vicinity, resulting in the loss
of two human lives and $20 million in property damage.
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FIG. 8. Scatterplots of radar measurements vs PERSIANN CCS–estimated daily rainfall at
four spatial scales for a region located at 258–458N, 1008–1208W on (left) 8 Jul and (right) 9
Jul 1999.

TABLE 5. Intercomparison of GPI, PERISANN, and CCS estimation vs gauge–radar data. Note that the sample size for this
comparison is 2925.

Daily 0.258 3 0.258

8 Jul 1999: 258–458N, 1008–1208W

Rmse (mm) Ratio CORR

9 Jul 1999: 258–458N, 1008–1208W

Rmse (mm) Ratio CORR

GPI
PERSIANN
PERSIANN CCS

14.54
6.89
4.35

0.53
1.17
1.02

0.355
0.540
0.754

15.78
7.27
5.06

0.65
1.21
1.05

0.459
0.605
0.725
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FIG. 9. Comparison of daily rainfall from radar, PERSIANN, and
PERSIANN CCS estimates at 0.258 3 0.258 on 9 Jul 1999.

At the instantaneous time scale (at 0.258 3 0.258 spatial
resolution), PERSIANN CCS estimates show a substan-
tial improvement in accuracy and the detection of rain/
no-rain pixels and compared with PERSIANN for this
storm (Table 3). A time series of rain-rate and evaluation
indices from satellite and radar data is shown in Fig. 7.
This result illustrates the advantage of PERSIANN CCS
in capturing the high variability in short-term rainfall.

2) DAILY RAINFALL EVALUATION

(i) Daily comparison of PERSIANN CCS and radar
rainfall

Hourly rainfall on 8–9 July 1999 was simulated over
a relatively large area (258–458N, 1008–1308W) and
then was accumulated to daily rainfall for model eval-
uation. PERSIANN CCS was evaluated at 0.048, 0.128,
0.248, 0.58, and 18 resolution. Table 4 shows that the
PERSIANN CCS’s performance improved as the grid
resolution changed from high (0.048 3 0.048) to low
(18 3 18). The estimates show a good fit at the resolution
of 0.128 and lower, with CORR (including 0.0 rainfall
grids) of approximately 0.6–0.8, rmse of 3–7 mm day21,
POD of 0.8–0.9, and FAR of 0.08–0.17. The bias ratio
was approximately 1.11–1.02 for the estimates at a res-
olution of 0.048–1.08, indicating a minor bias.

Figure 8 shows the scatterplots of PERSIANN CCS
estimates against radar observations. The PERSIANN
CCS tends to underestimate high rainfall at a small spatial
scale (0.048). When the resolution is reduced to 0.128
and 0.248, the underestimation of high rainfall is im-
proved.

(ii) Daily comparison of PERSIANN CCS with
PERSIANN

A comparison of PERSIANN CCS with GPI (the
widely used) and PERSIANN results, after remapping
at a daily 0.258 3 0.258 scale, is shown in Table 5.
PERSIANN CCS outperformed PERSIANN on both
test days, especially for CORR, which improves from
0.54 to 0.75 on 8 July and from 0.605 to 0.72 on 9 July.
Figure 9 shows that PERSIANN estimates were less
varied in spatial distribution than those of PERSIANN
CCS. Part of the reason for this result is that radar rain-
fall and PERSIANN CCS are computed at the 0.048 grid
scale but are remapped to a PERSIANN elemental res-
olution of 0.258 for comparison. Both PERSIANN CCS
and PERSIANN show statistically significant improve-
ment over GPI, particularly in the correlation and bias
ratio.

3) PATCH RAINFALL VALIDATION

PERSIANN CCS is a patch-based approach, which
starts with patch segmentation and classification, fol-
lowed by the probability matching of the Tb–R data
distribution and subsequent derivation of an optimized
nonlinear Tb–R data relationship for each classified
cloud patch. During the evolution of a convective cloud,
the Tb–R distribution varies greatly from the initial stage
to the dissipated stage of the cloud patch. Figure 10a
illustrates the evolution of a convective cloud patch
from 1430 through 2345 UTC 9 July 1999. Figure 10b
shows a good fit between the Tb–R curves generated
from the PERSIANN CCS model and the data dots av-
eraged from infrared images and radar rainfall at each
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time step. Figure 10c shows the time series of the coldest
temperature (Tmin) and cloud-area coverage of the cloud
patch. Patch-averaged pixel rain rate and patch rainfall
derived from PERSIANN CCS are compared with radar
(Fig. 10d). As shown in Fig. 10c, this convective cloud
has one major growing stage that peaked at the sixth
time step, resulting in maximum rain intensity. As
shown in Figs. 10c,d, the time step of maximum patch
rain intensity matches well with the time step of min-
imum cloud-patch temperature. Likewise, the time step
of maximum patch rainfall volume associates well with
the time step of maximum patch area. The case dem-
onstrated in Fig. 10 is unique, with the cloud patches
clearly separable. For cases in which multiple convec-
tive storms are mixed together (not shown here), the
time evolution of the patch-averaged pixel rain intensity
and patch rainfall to the selected features may be more
complicated.

Figure 10a shows the evolution of the cloud patch
from the beginning (small, warm), through the pre-ma-
ture (midsized, cold), mature (maximum sized, coldest),
dissipating (midsized, cold), and disappearing life stag-
es. Note that the corresponding Tb–R functions in Fig.
6a also change, in sequence, from cluster 2, through
clusters 4, 6, 3, 1, and 0 for each life stage, respectively.
This result clearly shows the temporal correspondence
between cloud features (coldness, geometry, and tex-
ture) and precipitation characteristics (rainfall volume
and intensity) at every life stage of the cloud patch.

As shown in Fig. 10d, the correlation coefficients of
the observed and estimated patch intensity and volume
time series are 0.96 and 0.93, respectively. The bias
ratios are around 1.0, showing that the biases of the
estimates are low. The fitting curves, as shown in Figs.
10a,b, imply that the Tb–R distribution varies with re-
spect to the cloud patch in different stages and cannot
fit well if using a single fixed Tb–R function.

Figure 11 shows the curve fitting of the Tb–R distri-
bution using PERSIANN CCS and several other ap-
proaches. The pixel-to-pixel Tb–R relationship is plotted
in Fig. 11a and shows a large variation between the
cloud-top temperature and surface rainfall at the small
scale (hourly measurements at 0.048 grids). Note that
only 10% of the data were randomly selected from the
whole training domain samples for this scatterplot,
which could represent the distribution of the total da-
taset. It is evident that the Tb–R relationship cannot be
fitted well by a single function. Figure 11b shows that
the testing data are fitted by multiple (400) Tb–R curves
from the PERSIANN CCS model. Figure 11c illustrates
the fitted curves using threshold, linear, or nonlinear
regression curves. The PERSIANN CCS model dis-
patches the Tb–R curves based on the specific cloud-
patch properties, whereas threshold/linear/nonlinear ap-
proaches produce rainfall estimates with only one
unique fitting function. For the improvement of the sin-
gle-function approaches, applications are made to spa-
tial/temporal accumulation of rainfall to lower resolu-

tions, such as 18 3 18 daily/monthly, or are made to
rely on temporal adjustment of the Tb–R function from
other sources of rainfall observations, such as low-or-
biting satellite microwave rainfall estimates or surface
radar/gauge measurements.

b. Seasonal validation with U.S. daily gauge analyses

The PERSIANN CCS estimates were validated using
gauge data over the southwestern United States for both
the cold and warm seasons. The source of the data is
the Climate Prediction Center Real-Time Daily Gauge
Analysis (Higgins et al. 2000), which is composed of
5000 National Weather Service stations and several hun-
dred stations per day from the Climate Anomaly Data
Base. This dataset has undergone quality control (du-
plicate station check, buddy check, and standard devi-
ation check against climatological mean) and has been
objectively analyzed at a 0.258 grid scale. The validation
of PERSIANN CCS was conducted over the continental
United States within 258–458N, 1008–1258W during a
cold month (February 2002) and a warm season (June–
August 2002). All datasets were gridded into the same
resolution (daily 0.258). To ensure quality control, only
days with more than 500 effective grids are considered;
otherwise, no statistical comparison is made.

1) TIME SERIES OF STATISTICAL COMPARISONS FOR

BOTH THE COLD AND WARM SEASONS

Time series of statistical comparisons of daily U.S.
rain gauge analyses with PERSIANN and PERSIANN
CCS estimates are illustrated in Fig. 12. PERSIANN
CCS compares more favorably than PERSIANN with
the gauge analyses in all statistics during both the cold
(Fig. 12a) and the warm (Fig. 12b) seasons. Both al-
gorithms exhibit similar variability in the time series of
the statistics in the two seasons; however, the flatter
curves of statistics indicate that PERSIANN CCS per-
forms in a more stable manner, particularly for CORR,
SKILL, POD, and FAR.

As shown in Table 6, both algorithms perform better
in the warm season than in the cold season, possibly
because of the absence of snow cover–screening pro-
cedures in the two algorithms or the contamination of
cold cirrus clouds during the cold season.

2) HISTOGRAM OF RAIN RATES FOR THE COLD AND

WARM SEASONS

The distributions of rain rates among the rain gauge,
PERSIANN, and PERSIANN CCS during the two sea-
sons are depicted in Figs. 13a and 13b, respectively.
During the cold season (Fig. 13a), both algorithms ov-
erdetect areas at low rainfall intensities. PERSIANN
CCS slightly underdetects areas starting at 22 mm
day21 and upward; PERSIANN starts to converge with
gauge analyses at 32 mm day21 and substantially un-
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FIG. 10. Cloud-patch rainfall event from 1430 to 2345 UTC 9 Jul 1999 over a region centered at 378N, 1048W: (a)
cloud evolution from beginning to end (only partial stages are shown), (b) the corresponding rainfall estimation curves
along with the cloud development (dots are the Tb–rain rate data pairs after being averaged at every 0.5-K interval;
curves are the nonlinear functions regressed from the data pairs), (c) time series of cloud-patch minimum pixel temperature
and patch size, and (d) time series of patch-averaged pixel rain rate and patch total rainfall estimated from PERSIANN
CCS and radar.

derestimates rain rates at 45 mm day21 and beyond.
As shown in Fig. 13b, during the summer season both
algorithms detect more areas with rainfall when com-
pared with the gauge analyses. PERSIANN CCS in-
crementally converges with gauge analyses at high rain
rates over 30 mm day21 ; PERSIANN overdetects areas

with high rainfall intensity. Note that both algorithms
share a very similar distribution in the summer season
and exhibit higher variation in February, possibly due
to many fewer counting samples in 1-month data sam-
ples. The distributions of both satellite rainfall esti-
mates in the summer season more closely correlate with
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FIG. 10. (Continued )

FIG. 11. Multiple-curve-fitting model (PERSIANN CCS) vs single-
curve-fitting models: (a) the scatterplots of cloud-top pixel temper-
ature and radar rain rates from a set of training data, (b) the Tb–R
curves fitted by the PERSIANN CCS model, and (c) the Tb–R curves
from several fixed function models (constant threshold, linear, or
nonlinear fitting functions).

gauge data than in the cold season. When compared
with PERSIANN, PERSIANN CCS demonstrates bet-
ter agreement with the rain gauge data in the plot of
rainfall rates, especially in high–rainfall intensity re-
gions (above 22 mm day21).

c. The t test for ‘‘correlated correlations’’ between
PERSIANN and CCS

As shown in Tables 3, 5, and 6, PERSIANN CCS has
higher correlations than PERSIANN when compared
with gauge/radar observations. The question is whether
the difference between the correlations is statistically
significant or is just sampling variation. A t test for
correlated correlations is needed because the two cor-
relations being compared share a variable (rainfall ob-
servation, in this case). The long-time standard t test
for correlated correlations is Hotelling’s t test (Meng et
al. 1992).

Given three datasets 1, 2, and 3, R12 indicates the
correlation coefficient between data 1 and 2, and the
same for R13 and R23. Hotelling’s t test is used to show
whether R12 is significantly different from R13. The
test statistic is as follows:

(R12 2 R13) 3 sqrt[(N 2 3) 3 (1 1 R23)]
t 5 , (4)

2 2 2sqrt{2 3 [1 2 (R23) 2 (R12) 2 (R13) 1 (2 3 R12 3 R13 3 R23)]}
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FIG. 12. Time series of selected statistics evaluated at daily 0.258 scale over 258–458N, 1008–1258W
during (a) Feb 2002 and (b) Jun–Aug 2002.

TABLE 6. Averaged time series of statistical comparisons of daily rain gauge data with PERSIANN and PERSIANN CCS estimates for
both cold and warm seasons.

Algorithms CORR SKILL Rmse Bias POD FAR

Cold season

Warm season

PERSIANN
PERSIANN CCS
PERSIANN
PERSIANN CCS

0.46
0.57
0.55
0.63

0.54
0.65
0.59
0.67

3.59
2.78
6.74
5.30

0.72
0.24
1.59
1.09

0.52
0.63
0.59
0.65

0.44
0.35
0.35
0.28
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FIG. 13. Plots of rain rates (mm day21) during (a) Feb 2002 and (b) Jun–Aug 2002 for (left) rain rates
from 0 to 20 mm day21 and (right) rain rates from 20 to 60 mm day21, both in 2 mm day21 increments.
Numbers on the x axis represent rain-rate boundaries, and numbers on the y axis are the number of rain-
rate occurrences. The validation region is the same as in Fig. 12.

where N is the sample size; t has a Student’s t distri-
bution with degree of freedom N 2 3.

Given significant level a 5 0.05 and N $ 120, R12
is significantly different from R13 if | t | . ta, where
ta (51.65) is a critical value from the t table. This test
was applied in the comparison cases in Tables 3, 5, and
6, respectively. The results (Table 7) reveal that the
correlations of PERSIANN CCS are significantly im-
proved from the correlations of PERSIANN when com-
pared with gauge/radar rainfall.

6. Summary, conclusions, and future work

To date, numerous applications of artificial neural net-
works to solve large-scale problems have been reported
in the literature and have provided impressive perfor-
mances over conventional techniques (Govindaraju et
al. 2000). In the case of precipitation, an ANN model,
the PERSIANN system, was developed (Hsu et al. 1997,
1999), using the modified counter propagation network,
which consists of an SOFM layer and a linear output
layer to fit the pixel cloud-top temperature to rain rates.
The PERSIANN system estimates surface rainfall at a
0.258 latitude 3 0.258 longitude grid every 30 min and
can accommodate a resolution of 18 3 18 on a daily
scale in various applications (Sorooshian et al. 2000).

One of the limitations of the PERSIANN architecture
is that it estimates rainfall based on local pixel infor-
mation. To overcome this limitation and to extend PER-
SIANN’s ability to utilize additional satellite imagery
information from the local pixel scale to cloud-patch
scale, PERSIANN CCS is developed. The structural and
functional improvements of PERSIANN CCS over
PERSIANN are

1) a cloud segmentation procedure that is designed to
preprocess IR imagery into a large number of sep-
arated cloud patches through an incremental tem-
perature threshold algorithm, as shown in Fig. 1 and
appendix A;

2) a feature extraction scheme that retrieves both local
pixel temperature textures and regional cloud-patch
features instead of only local pixel features as in
PERSIANN;

3) a cloud classification algorithm (SOFM) that clusters
cloud patches into 400 (20 3 20 matrix) groups,
based on the cloud-patch features extracted from
230-, 235-, and 253-K temperature levels, respec-
tively; and

4) a cloud-rainfall fitting scheme that calibrates differ-
ent Tb–R functions for each classified cloud cluster
instead of a single mapping function in PERSIANN.
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TABLE 7. The significance test of correlation between PERSIANN and PERSIANN CCS in comparison with gauge/radar observation.
Given significance level a 5 0.05, ta (51.65) , t.

Case

Table 3

Storm

Table 5 (1999)

8 Jul 9 Jul

Table 6 (2002)

Cold season (Feb)
Warm season

(Jun–Aug)

N
t

1890
7.46

2925
23.15

2925
14.67

15 724
18.05

45 943
27.73

Another significant feature of the new version is its
improved spatial resolution, in which the PERSIANN
CCS computation pixel is at 0.048 3 0.048 as compared
with that of PERSIANN at 0.258 3 0.258.

The performance of the algorithm was evaluated us-
ing daily gauge and hourly radar rainfall at various spa-
tial scales (0.048, 0.128, 0.248, 0.258, and 0.58). The
results show that PERSIANN CCS, because of its com-
prehensive cloud-patch features and its ability to address
the variability of rainfall distributions in different cloud
clusters, outperforms PERSIANN. In addition, PER-
SIANN CCS offers insights in explaining the classified
patch features with respect to their pixel rainfall distri-
butions. PERSIANN CCS can be used not only as a
finescale rainfall estimation scheme, but also as an ex-
planatory tool to analyze the cloud–rainfall system.

Our evaluation of PERSIANN CCS so far has focused
on rainfall estimation over land, where ground-based
radar/gauge measurements are available to quantify the
rainfall distribution. We are currently extending this
work to evaluate PERSIANN CCS’s performance over
the ocean.
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APPENDIX A

The Processing Steps of the ITT Algorithm

The incremental temperature threshold algorithm seg-
ments cloud IR images starting from the coldest pixels
to warmer thresholds, controlled by the following steps.

Step 1: Locate pixels with the coldest temperature
Tmin and local minimum temperatures (initializing
seeds). Compute the incremental thresholds using
the following:

THT 5 T 1 DTi, i 5 1,2, . . . , M,m min

where

M 5 {(T 2 T )/DT} . (A1)u min int

Here Tmin is the pixel temperature minimum, Tu is
the temperature that discriminates between a
cloudy and clear sky, DT is temperature interval
equal to 3 K, and {}int takes the integer values.

Step 2: Grow seeded regions from THTm to THTm11.
Assuming that at step m there are n1 seeded regions
covered by temperatures lower than THTm (the
seeded region Ai is numerically labeled as i 5 1,
2, . . . , n1):

m m m m mA 5 {A , A , . . . , A , . . . , A }.1 2 i n1 (A2)

The coldest top temperature for each cloud region is

CT 5 min [g(x, y)], (A3)i
m(x,y)∈Ai

where g(x, y) is the temperature of the pixel (x, y).
At each step, the algorithm grows first by labeling
new seed(s), then by expanding the existing regions
Am until reaching the threshold THTm11. The ex-
ternal boundary EB of the existing regions is

EB 5

n n
m m(x, y) ¸ w A and NB(x, y) ù w A ± f ,i i5 6i51 i51

(A4)

where NB(x, y) is the set of eight immediate neigh-
bors of the pixel (x, y). If NB(x, y) connects only
to one existing region ( ), the pixel (x, y) ismAi

merged to region ; if NB(x, y) connects to moremAi

than one existing region, then this pixel (x, y) is
merged to the region ( ) that has a minimum tem-mAj

perature difference to the coldest pixel in the region:

j 5 arg min d (x, y)i i

5 arg min | g(x, y) 2 CT | .i i (A5)

Repeat the process until the current THTm11 is
reached.

Step 3: Find new seeds. A new seed is assigned if a
pixel is colder than THTm11 but isolated from any
existing region Am:

mSeed 5new

n
mg(x, y) , THT and NB(x, y) ù w A 5 f .m11 i5 6i51

(A6)
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New seeds are numerically labeled as n 1 1, n 1
2, . . . , n2. After completing the m 1 1 iterations,
the cloud segments are

m11 m11 m11 m11A 5 {A , A , . . . , A ,1 2 i

m11 m11. . . , A , . . . , A }.n1 n2

(A7)

Step 4: Repeat steps 2 and 3 until THTm $ Tu.

APPENDIX B

Cloud-Patch Feature Description

Given a cloud patch with a size of Ak, total pixel
count N, and pixel brightness temperature of g(x, y),
those patch features listed in Table 1 are described as
follows.

1) Minimum temperature of a cloud patch (Tmin) is

T 5 min [g(x, y)]. (B1)min
(x,y)∈Ak

2) Mean temperature of a cloud patch (Tmean) is

T 5 [g(x, y)]/N. (B2)Omean
(x,y)∈Ak

3) Cloud-patch area (Ak) is

A 5 N 3 pixel resolution.k (B3)

4) Shape index (SI) is defined as the ratio of the geo-
metric eccentricity of a cloud patch (I) to that of a
round patch with the same size (I0):

SI 5 I/I ,0 (B4)

where

N

2 2I 5 [(x 2 G ) 1 (y 2 G ) ], (B5)O i x i y
i51

(xi, yi) is the coordinate of pixel i, (Gx, Gy) is the
geometric center of the cloud patch, with

N N1 1
G 5 x and G 5 y ,O Ox i y iN Ni51 i51

and I0 is the geometric inertia of a round patch with
the same area. Given a certain size of cloud patch,
the rounder-shaped patches give a smaller shape in-
dex. A perfectly circular cloud patch has the smallest
SI value of 1.

5) Standard deviation of cloud-patch top temperature
(STD) is

1/2

2STD 5 [g(x, y) 2 T ] /(N 2 1) . (B6)O mean5 6(x,y)∈Ak

6) Mean value of the local standard deviation of cloud-
patch top temperature (MSTD5) is

N 5STDi5MSTD 5 , (B7)O
Ni51

where is the standard deviation of cloud-top5STDi

temperature with a window size of 5 3 5 centered
on pixel i.

7) Standard deviation of local standard deviation of
cloud-top temperature ( ) is5STDstd

1/2
5 5(STD 2 MSTD )i5STD 5 . (B8)Ostd [ ](N 2 1)i

8) Temperature gradient of cloud cold core (TOPG)
measures the cloud-patch average pixel temperature
gradient around the cold core pixel (Tmin) and serves
a similar purpose as a temperature slope parameter
addressed in Negri et al. (2002) to determine con-
vective cores in order to eliminate nonprecipitating
cirrus. The threshold of 15 K above the coldest pixel
Tmin is empirically chosen to calculate TOPG from
the Tmin to the surrounding pixels having a temper-
ature of Tmin 1 15 K:

N 15
TOPG 5 N, (B9)O @m(i)i51

where N is the number of pixels along the border of
Tmin 1 15 K and m( i) is the distance from the border
pixel i to the coldest pixel.

9) Gray-image texture [maximum angular second mo-
ment (MASM)] information is characterized by a set
of gray-level co-occurrence matrices Hd,f, with the
element h(i, j)d,f as the estimate of the probability
that gray level i and gray level j are located at a
distance d and angle f, with a fixed direction (Har-
alick et al. 1973). The co-occurrence matrices Hd,f

delineate the texture information of an image on var-
ious scales and directions. The angular second mo-
ment (ASM) of the co-occurence matrix located at
various distances and directions is

2ASM 5 [h(i, j ) ] . (B10)O Od,f d,f
i j

The ASM features computed at various directions are
usually redundant. In our case, only the maximum ASM
was selected:

max
MASM 5 {ASM | f 5 08, 458, 908, 1358}.ff

(B11)
APPENDIX C

Explanation of the Seven Highlighted
Cloud Categories

The calibrated 20 3 20 Tb–R curves (Fig. 6a) form
seven highlighted categories (Fig. 6b) noted as C0–C6,
and they are explained as follows.

C0: Cloud minimum temperature (Tmin) is higher
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than 245 K, and there is a small cloud-patch size
(,100 pixels), a low temperature gradient near
Tmin , and mostly no rain. The slope of Tb–R is
approximately 0. This category is related to warm,
no-rain clouds.

C1: The range of the coldest patch pixel temperatures
is 235–245 K, and the texture indices are low
(TOPG ; 1; MSTD5 ; 1; STD , 4). Cloud-patch
size is relatively small, and the slope of the Tb–R
curve is flat. The cloud-patch average pixel rain
rate is less than 0.5 mm h21, and the cloud-patch
rainfall is less than 100 mm h21.

C2: The coldest pixel temperature of a cloud patch
is similar to that of the C1 category, but the texture
indices are much higher (TOPG ; 3; MSTD5 ;
3.5; STD ; 4–8). The slope of the Tb–R curve is
high, with an average pixel rain rate of around 0.5–
1.0 mm h21 and a total rainfall per patch of about
1000 mm h21, which is about 10 times that of the
C1 category.

C3: The coldest patch pixel temperature is around
215–235 K, and the texture indices are low (TOPG
; 1; MSTD5 ; 2.5; STD ; 6–8). The average
pixel rain rate is around 0.1–0.5 mm h21, and the
accumulated rainfall per patch is around 500–2000
mm h21. As shown in Fig. 6b, the slope of the Tb–
R curve is flat.

C4: The coldest patch pixel temperature is around
215–235 K, and the texture indices are relatively
high (TOPG ; 3.5; MSTD5 ; 4; STD ; 8–10).
The average pixel rain rate is around 0.5–1.0 mm
h21, and the accumulated rainfall per patch is
around 1000–2500 mm h21. The maximum pixel
rain rate can be as high as 60 mm h21.

C5: This category is associated with cold cloud
patches with Tmin , 215 K and low texture indices
(TOPG ; 1.5; MSTD5 ; 3). The average pixel
rain rate is around 0.5–1.5 mm h21 , and the ac-
cumulated patch rainfall is around 3000–6000 mm
h21 . The Tb–R curve is long and mildly steep.

C6: The coldest patch pixel temperature is lower than
215 K, and the texture indices are relatively high
(TOPG ; 4.5; MSTD5 ; 5). The average pixel
rain rate is around 1.5–4.5 mm h21, and the ac-
cumulated patch rainfall is around 2000–3500 mm
h21. This type of cloud patch has a Tb–R curve
with a steep slope. Maximum pixel rainfall could
reach 100 mm h21.
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