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How do brain maps affect novices in a simplified scientific investigation task?
Marina Dubova (mdubova@iu.edu)

Cognitive Science Program
Bloomington, IN 47405 USA

Robert L. Goldstone (rgoldsto@iu.edu)
Cognitive Science Program

Bloomington, IN 47405 USA

Abstract

This study explores how scientific conceptualizations, such as
partitioning of the brain into distinct regions, shape investi-
gation. One hundred fifty-six undergraduate psychology stu-
dents (novices) completed a science learning task in which
they explored the behavioral functions of a fictional brain seg-
ment by conducting simplified neuroimaging and lesioning
experiments on it. We investigated how the partitioning of
the segment into regions influenced participants’ experimen-
tal choices and learning outcomes by randomly seeding the
brain regions for each participant. The participants exhibited
conceptual influences on their experimentation: they preferred
to explore the boundaries and prototypical–or “skeletal”–
locations of the delineated regions. These conceptual biases
significantly shaped learning outcomes; for example, partici-
pants were more successful at identifying signals near region
boundaries. Additionally, participants demonstrated concep-
tual expectations that led them to associate a discovered sig-
nal with locations within one region rather than locations that
straddled region boundaries. This research contributes to our
understanding of how the scientific concepts affect scientific
investigation.

Keywords: experimentation strategies; scientific concepts;
ontologies; neuroimaging; scientific reasoning; brain mapping

Introduction
While science is often regarded as objective, it is increas-
ingly recognized that scientific evidence is not a neutral re-
flection of reality. Instead, it involves a contextualized in-
terpretation of phenomena, influenced by scientists’ social,
historical, and cognitive backgrounds (Longino, 2002; Das-
ton & Galison, 2021; Chang, 2022). Scientific theories and
concepts–such as the periodic table in chemistry, the taxon-
omy of species in biology, or the DSM manual of mental dis-
orders in psychiatry–influence how scientists measure, ana-
lyze, interpret, and communicate the phenomena they study
(Dubova & Goldstone, 2023). For example, scientists tend to
interpret and communicate their results in the ways that sup-
port their conceptualizations, and develop specialized instru-
ments to measure entities indicated by their concepts (Bloch,
2012; Chang, 2004). This concept-laden nature of evidence
poses challenges in reassessing a field’s theoretical founda-
tions based on accumulated evidence, such as searching for
better classifications of mental disorders (Cuthbert & Insel,
2013; Kotov et al., 2017). Therefore, ensuring steady scien-
tific progress requires empirical understanding of the specific
ways in which concepts influence evidence accumulation in a
given scientific discipline.

Examining scientists’ investigation strategies could involve
engaging participants with systems whose internal workings
are already understood, such as microprocessors (Jonas &
Kording, 2017), radios (Lazebnik, 2002), or simulated sys-
tems, such as microworlds with different physical properties
(Bramley, Gerstenberg, Tenenbaum, & Gureckis, 2018; Ull-
man, Stuhlmüller, Goodman, & Tenenbaum, 2018). Explor-
ing the simulated systems provides an opportunity to gain
insights onto the general or specific assumptions that might
influence the scientific process, by designing systems that ei-
ther adhere to or deviate from these assumptions. However, a
significant drawback of utilizing such simplified, microworld
scenarios is their potential lack of resemblance to the actual
real-worlds systems scientists study and a limited ability to
replicate the exact scientific practices. Therefore, any effects
observed in such studies could reflect cognitive strategies or
guiding assumptions which may or may not play a role in the
actual scientific process.

Here, we present a scientific reasoning study with psy-
chology undergraduate students. We investigate how min-
imal conceptual assumptions about a fictional brain seg-
ment—such as the way it is divided into different re-
gions—affect how participants conduct experiments to learn
about this segment. In the experiment, participants were play-
ing the role of a neuroscientist studying the fictional brain
segment through imaging and lesioning experiments. Each
participant aimed to learn as much as possible about the
brain-behavioral associations of the neural segment assigned
to them by conducting imaging and lesioning experiments
on it. For each participant, the segment map was randomly
generated to manipulate how their fictional brain segment
was divided into regions (Baribault et al., 2018; Dubova,
Moskvichev, & Zollman, 2022).

Importantly, our study is not testing whether the actual
brain maps are used or are useful in neuroscience. Instead,
we are merely probing whether and how partitioning a brain
into regions affects novices’ exploration of it.

Method
Participants
156 undergraduate psychology students from Indiana Univer-
sity took part in the study for course credit. The participants
remotely completed the experiment on their own laptops.
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Stimuli
Each participant explored one fictional brain segment. The
brain segment was a square-shaped patch that had four dif-
ferent areas indicated with different colors. Participants were
told that the fictional brain segment belonged to a fictional
subject on which they could conduct experiments. To avoid
confusions, we use ‘participants’ to refer to the people per-
forming our experiment, and ‘subjects’ to refer to the fictional
people that our participants were tasked with studying.

Participants had five types of tasks which they could give
their subjects: “Visual”, “Auditory”, “Olfactory”, “Balance”,
and “Tactile”. For each participant, the partitioning of their
subject’s brain segment into areas (“regions”) and the ground
truth connecting brain activation to behavioral outcomes
(“signals”) were randomly created when they started the ex-
periment (Yarkoni, 2022; Baribault et al., 2018; Dubova et
al., 2022; Musslick et al., 2023).

Ground Truth The ground truth that participants had to un-
cover was created using a simple mapping—there was a lo-
cation in the brain responsible for each behavioral function.
For each participant, the x and y coordinates of four locations
on the brain segment were randomly selected1 to serve as sig-
nals responsible for the subject’s brain activation and behav-
ioral performance. Each type of task was randomly assigned
to one signal; one signal corresponded to two tasks.

Brain Segment Map The partitioning of the brain segment
into regions was also randomized across participants. For
this, four more locations on the brain segment were chosen
by randomly generating their x and y coordinates. These four
locations served as the seeds for the brain segments’ regions.
The regions were generated by creating a Voronoi parcella-
tion using the produced seeds. We used Minkowski distance
with a power of 6 as a distance formula for the parcellation2.

Procedure
The experiment consisted of a short demographic survey, in-
structions, training, and testing phases. At the end, partici-
pants had a debriefing revealing the goals and main idea of
the experiment. See the demo of the procedure.

Instructions
The instructions introduced participants to the experiment
and the different types of trials they would be encountering.
We introduced participants to their goal in the following way:
“In this experiment, you will be exploring the function of a
small segment of the brain. Your objective is to understand
the relationship between this brain region and specific behav-
iors or activities”. We introduced participants to the fact that
the segment was split into colored regions in the following
way: “To help you in your investigation, the brain segment
visualizations will be divided into four distinct regions, each

1With a constraint that each signal has to be at least 25 pixels
(Euclidean) away from every other signal

2This formula was chosen by trial and error to produce the most
natural-looking regions.

Figure 1: A. Example brain imaging training trial: the ma-
genta arrow indicates a prompt for choosing the task type
(chosen task: “tactile”), the blue arrow shows the resulting
brain segment activity plot. B. Example brain lesioning train-
ing trial: the magenta arrow indicates a prompt for choosing
the task type (chosen task: “tactile”), the purple arrow shows
the lesion location, the black arrow shows the resulting per-
formance of the subject on the chosen task after the lesion.

filled with a different color. These colors depict the regions
characterized by different types of neural transmitters used by
the cells, as documented by the scientific literature. That is,
each of the four colored regions has its own distinct distribu-
tion of neural transmitters. Note that these previously doc-
umented regions may or may not be related to the cognitive
functions you are trying to investigate.” Then, we instructed
participants as to the structure and goals of each type of trial,
letting them practice one example trial of each type.

Types of trials

Training consisted of imaging and lesioning trials (Figure 1).
The testing involved predict-from-image and lesion predic-
tion trials with and without the colored map of the segment.

Neuroimaging During neuroimaging trials, participants se-
lected the properties of the task for their subject to com-
plete and observed the subject’s task-induced brain activity
plot (Figure 1A). The plot was created by summing a Gaus-
sian distribution centered on the task’s associated signal (vari-
ance=50) with Perlin noise of amplitude 0.3 at three spatial
scales. Perlin noise was used to make the neural activity maps
appear more natural and to make the detection of the signals
more challenging.

Lesioning On lesioning trials, participants saw the brain
segment as a square patch with colored regions. Participants
chose the type of task for their subject to engage in. Then,
they chose a location on the segment to inhibit by mouse-
clicking on it. Participants observed their subject’s perfor-
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mance from 0 (minimum) to 100 (maximum) – on the chosen
task after the chosen segment’s location was deactivated (Fig-
ure 1B). The closer the placed lesion was to the signal, the
worse the performance of the subject on the chosen task. Per-
formance was calculated by measuring the distance between
the signal and the lesion.

Predict-from-image On predict-from-image trials, partic-
ipants saw the image of the segment’s activity and had to
choose one of five task types that they thought was associ-
ated with the provided image.

Lesion prediction On lesion prediction trials, participants
saw the type of task that their fictional subject was completing
and had to choose the segment’s location which they thought
would impair their subject’s performance the most.

Training
The training phase includes 50 imaging and 50 lesioning tri-
als. The imaging and lesioning trials were interleaved, so that
each imaging trial was followed by a lesioning trial. At each
point of the training phase, one of four (randomly selected)
testing trials was added with a 20% probability. The testing
trials incorporated into the training phase showed participants
the correct answers after they submitted the guesses.

Testing
The testing phase consisted of 60 randomly shuffled testing
trials. Each participant was tested on predict-from-image and
lesion prediction trials with and without the colored regions
for each type of task. The task type and the brain activation
image were randomly selected. Each unique testing trial was
repeated three times throughout the testing phase. The testing
trials provided no feedback.

Results
Each participant worked with their own unique brain seg-
ment; therefore, all our analyses involve customized, rela-
tive metrics. All of the analyses are exploratory and do not
test a specific theory (Scheel, Tiokhin, Isager, & Lakens,
2021). The analyses reported in different subsections test
different hypotheses that are not theoretically exchangeable
(and, again, are exploratory), and so they do not entail family-
wise inflation of type-1 error (Wilson, 1962; Rubin, 2021).

For all analyses, we split the lesioning data into exploratory
(far from the probed signal) and exploitative (close to the
probed signal) trials using a data-driven threshold based on
the bimodal distribution of lesion distances from the signals.

Participants preferred to explore regions’
boundaries
Some of the most perceptually noticeable aspects of the brain
segment images are the boundaries between the regions. The
edges between visual regions not only attract attention but
are also efficiently processed by specialized neural mecha-
nisms, such as the second-order difference detectors (Marr
& Poggio, 1976), which emphasize the transitions between

Figure 2: Left: example partitioning of the brain segment into
regions investigated by one of the participants. Middle: the
heatmap of boringness scores of this segment (darker–higher
boringness). Right: the heatmap of skeleton scores of this
segment (lighter–higher skeleton score).

different visual regions. The perceptual importance of the
object boundaries is underscored by findings like those of
(Davidenko, 2007), who demonstrated that humans can rec-
ognize faces from mere silhouettes. Despite their visibility,
the boundaries might be considered as the least useful targets
for experiments because they are only peripherally, not cen-
trally, related to conceptually-defined regions. Therefore, we
wondered whether participants would be influenced by such
boundaries in their experimentation–for example, by prefer-
entially testing the boundaries between the regions or by in-
stead avoiding these boundaries when exploring the cognitive
functions of regions of the brain segment. To test this, we
computed the perceptual boringness score for each location
of each participant’s brain map (Figure 2). Perceptual bor-
ingness represents how close a location is to the boundaries
between two, three, and all four regions. We formalized per-
ceptual boringness as a sum of the absolute differences be-
tween the Minkowski (r=6) distances of the pixel to its clos-
est, second closest, and least closest region seeds, preferen-
tially weighting the distances to the closer seeds. If a location
is equally close to multiple region seeds, then this location is
right at the boundary between these seeds. Therefore, a lower
boringness score indicates that a location is near a boundary
or several boundaries; a higher boringness score of the loca-
tion indicates that it is far away from the boundaries.

For each participant, we computed mean boringness score
for the locations of the exploratory (far from the signals) le-
sions they placed during the training phase. As a baseline, we
simulated the same number of random lesion locations and
calculated their respective mean boringness score for each
participant’s map. A paired Wilcoxon test revealed a signif-
icant difference between the mean boringness scores of the
empirical and simulated data V = 4607, p = 0.01), indicating
that participants’ lesion placement was significantly closer to
the boundaries between the regions than the random baseline
(Figure 3).

Participants preferred to explore prototypical
locations (skeletons)
Brain regions have prototypical locations, such as their cen-
ters, which might also attract experimentation. Recent work
on human visual perception has identified that when simply
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Figure 3: Left: Example participant who was influenced by
the boundaries. Filled regions indicate the regions of the
subject-specific brain maps; stars indicate the underlying sig-
nal locations (not visible to participants), and the dots show
chosen lesion locations throughout the whole experiment.
Right: Distribution of boringness scores as compared to ran-
dom baseline.

perceiving shapes humans are attracted to their “skeletons”–
which represent medial axes capturing the shape structures
invariant to bending, stretching, and other deformations
(Firestone & Scholl, 2014). We hypothesized that regions’
skeletons might serve as prototypical axes that would attract
participants’ experimentation, either because they attract par-
ticipants’ attention or because of the assumption that these
more prototypical locations will lead to more informative re-
sults. We mapped how “skeletal” each point on the region
is by computing its normalized Euclidean distance from the
nearest boundary (edges included) within its respective re-
gion (Figure 2). In this way, the skeletons are locally most
distant from the boundaries, while all the other points are
counted as less skeletal the closer they are to the bound-
aries. Then, we computed the average skeleton scores of
exploratory lesion experiments chosen by participants. As
a baseline, we simulated the same amount of random lesion
locations per each participant and calculated their respective
skeleton score. Note that the skeleton score is not the the
same as perceptual boringness–boringness is high for the pix-
els in the corners and outer edges of the brain segment image,
whereas skeleton score treats every region as an individual
unit and considers these outer edges as having low score.

We compared the average skeleton scores of partici-
pants’ exploratory lesions and random lesions with a paired
Wilcoxon test. The test revealed a significant difference
V = 9460, p < 0.001), suggesting that novices’ exploratory
lesion placement was closer to the skeletons of the regions
than the random baseline (Figure 4).

Participants overexplored smaller regions
Brain regions do not only have locations and boundaries,
but also vary in size. Here, we test whether participants
tend to disproportionately explore the small (or large) re-
gions, perceiving size as an indication of functional impor-
tance. For this, we compared the proportion of lesions partic-

Figure 4: Left: Example participant who preferred to explore
the prototypical locations of the regions. Filled regions indi-
cate the regions of the subject-specific brain maps; stars in-
dicate the underlying signal locations (not visible to partici-
pants), and the dots show chosen lesion locations throughout
the whole experiment. Right: Distribution of skeleton scores
of the lesions compared to random baseline.

ipants placed in each region during the training phase against
a baseline in which testing proportions mirror each region’s
size proportion (Fretwell & Calver, 1969; Stephens & Krebs,
1986). According to this baseline, a region occupying 40% of
the brain segment should receive 40% of lesions, while one
with 10% area should receive 10% of lesions.

Our first analysis involved calculating the residual between
the actual proportion of exploratory lesions in a region and
the region’s size proportion. We then used linear analy-
sis to predict these residuals for each participant based on
the size proportion. The direction of the size proportion ef-
fect coefficients indicates participant biases: positive coeffi-
cients suggest a tendency to undersample smaller regions and
oversample larger ones, and vice versa for negative coeffi-
cients. The between-participant coefficient distribution was
unimodal with the negative median, supported by a Wilcoxon
signed rank test indicating that the median coefficient was
significantly less than zero (V = 4711, p = 0.01).

Subsequently, we examined the ratios of size proportions
vs. exploratory lesion proportions. Here, coefficients greater
than 1 indicate a preference for lesioning larger areas more
and smaller areas less, while coefficients less than 1 suggest
the opposite trend. Most participants had coefficients under
1, and the overall distribution of coefficients was unimodal.
However, a Wilcoxon signed rank test did not find a statisti-
cally significant difference to suggest that the median coeffi-
cient value was less than 1 (V = 5352, p = 0.13), indicating
that the preference towards lesioning smaller areas more fre-
quently may not be very pronounced.

Once they have found a signal, participants assume
it is restricted to one region
Next, we were interested in whether participants, upon de-
tecting a signal, showed a tendency to confine their subse-
quent lesioning of this signal to the same region (Figure 5).
Such tendency would indicate an assumption that signals are
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restricted to one region only. For this, we filtered our data
to consider only the exploitative trials where the lesions were
sufficiently close to the probed signal. For each relevant le-
sion, we established a baseline – the proportion of hypothet-
ical lesions within the same Euclidean distance from the sig-
nal, that would fall within the signal’s region. This baseline
helps us discern if participants exhibit a bias towards lesion-
ing within or outside the signal’s region, beyond the simple
likelihood of targeting any nearby region. In scenarios where
a participant’s lesion was extremely close to the signal (e.g.,
99% of all hypothetical lesions within that distance would
also be in the same region), the lesion’s location within the
same region as the signal is statistically unremarkable. Con-
versely, if the lesion was in a different region than the signal,
this would strongly suggest a preference for lesioning out-
side the signal’s region. We excluded lesions from this anal-
ysis where the baseline was 1 (all hypothetical lesions within
the same distance are in the same region as the signal) or 0
(none are in the same region), as these cases are not diagnos-
tic data for our analysis. We focused on two key variables:
1) sameRegion – a boolean indicating whether the lesion is
in the same region as the signal (0 for false, 1 for true), and
2) proportion – the proportion of pixels, within the same dis-
tance from the signal, that are in the same region as the signal
(ranging from 0 to 1). For each lesioning trial, we calculated
the residual sameRegion− proportion. A positive residual
suggests a preference for lesioning within the same region as
the signal, with a higher residual indicating a stronger pref-
erence. Conversely, a negative residual implies a tendency
to lesion in a different region than the signal, with a lower
residual suggesting a stronger preference for this behavior.

The majority (71%) of participants exhibited a positive me-
dian residual, indicating a general preference for lesioning
within the same region as the signal (average median resid-
ual for this subgroup is 0.24). The between-participant me-
dian residual distribution is bimodal, with 29% of partici-
pants exhibiting a strong preference to make lesions outside
of the originating signal’s region (mean median residual for
this subgroup is −0.45). This may indicate cases when par-
ticipants associated a signal with an incorrect region.

Alignment between brain map and ground truth
does not predict learning success
One important function of scientific conceptualizations is
guiding experimentation towards more informative parts of
the design space. Hence, we hypothesized that the partici-
pants who were given segment maps that aligned well with
their signal distribution might end up learning the segments’
functions relatively more successfully. To explore this, we
tested whether participants’ learning success is influenced by
the degree to which brain segment regions match the signal
distribution. We evaluated this using two metrics: the iso-
morphism overlap score and the isomorphism discrete score.
The isomorphism overlap score assesses the similarity be-
tween two Voronoi diagrams: the original brain segment map
that a participant interacted with and a hypothetical map gen-

Figure 5: Example participant exhibiting same-region pref-
erence when lesioning the signals they found. Filled regions
indicate the regions of the subject-specific brain map; stars
indicate the underlying signal locations (not visible to the
participant), and the dots indicate lesion locations throughout
the experiment. Left: hypothetical lesioning data if the par-
ticipant placed their lesions uniformly with some amount of
noise around the signals; right: empirical data with the lesions
for the red and green tasks biased away from the boundary.

erated using the locations of signals as seeds. This score,
ranging from 0 to 1, measures the extent of overlap in region
assignments vs. signals, with 1 indicating perfect overlap (the
original map exactly matches a signal-centered hypothetical
map) and 0 indicating no similarity. The isomorphism dis-
crete score counts the number of unique regions containing at
least one signal. A maximum score of 4 occurs when each of
the four signals is located in a separate region, while a mini-
mum score of 1 indicates that all signals are contained within
the same region. We performed Kendall correlation tests to
examine the relationship between these isomorphism scores
and two outcomes: the average distance of participants’ le-
sions to the signals in lesion prediction testing trials, and ac-
curacy in predict-from-image testing trials.

The isomorphism overlap score did not significantly pre-
dict learning success, with an estimated correlation of 0.042
(p = 0.43) for the distance from signals in lesion predic-
tion trials, and 0.09 (p = 0.11) for correctness in predict-
from-image trials. Similarly, the isomorphism discrete score
showed an estimated correlation of 0.03 (p = 0.62) for the
distance from signals in lesion prediction trials, and 0.04
(p = 0.52) for correctness in predict-from-image trials.

More successful learning of signals that were close
to boundaries between regions

Earlier, we observed that novices tended to focus their lesion-
ing experiments near the boundaries of brain regions while
both experts and novices preferred to lesion the skeletal lo-
cations. Based on this, we hypothesized that novices’ ability
to identify and memorize signals near these boundaries might
be enhanced, given that the boundaries could serve as use-
ful landmarks. Hence, we tested whether the proximity of a
signal to the nearest region boundary could predict success
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on both lesion and predict-from-image testing trials. We em-
ployed a mixed effects regression analysis, using success in
lesioning and image prediction as the outcomes and random
intercepts for each participant.

Novices were more effective at lesioning signals located
closer to region boundaries, with a significant positive effect
of the distance of the signal from the nearest boundary on dis-
tance of the lesion from the signal (β = 0.2774, SE = 0.02,
t(13710) = 12.30, p < 0.001). Similarly, there was a sig-
nificant increase in participants’ success at making predic-
tions based on images for signals closer to these boundaries
(z = −1.982, p = 0.0475), though the effect size was small
(beta =−0.001, SE = 0.0006).

Discussion

We have studied how psychology undergraduate students ex-
plore a fictional brain segment when learning about its be-
havioral functions in a scientific reasoning task. Rather than
studying the value of actual brains’ partitions into regions
or testing ideas about the actual brains’ functional-structural
mappings (e.g., network vs. localizationist view, etc), in this
study we were interested in whether adding region-based in-
formation about the brain segment under investigation would
influence novices’ explorations of it.

Our findings reveal a nuanced relationship between par-
ticipants’ experimentation and the regions of the brain seg-
ment. When exploring the segment, novices were drawn to
the boundaries between regions, possibly perceiving them as
more informative or perhaps because they were simply more
perceptually salient. Interestingly, novices’ exploration was
also attracted by the skeletons—or the medial axes—of the
regions. This could be associated with the assumption that
“prototypical” locations within regions might be more infor-
mative or representative, or, again, to the fact that these skele-
tons are more perceptually attractive (Firestone & Scholl,
2014; Reed, 1972). Finally, we found marginal evidence that
novices overexplored smaller regions and underexplored big-
ger regions. This could be driven by the perceptual charac-
teristics of the regions of different sizes, or perhaps by the
assumption that smaller areas, despite their size, might be as
functionally significant as the larger areas (Poldrack, 2006).

However, once having identified a signal, participants pre-
ferred to confine their targeted lesions to the region of the
inferred signal’s location. This shift from boundary attrac-
tion to aversion highlights a possible difference between the
participants’ assumptions about the informative parts of the
experimental design space and their ideas about the proper-
ties of the signals that have been found (i.e., that they must
be contained within one conceptual region). This result is
also consistent with the idea that participants might code the
signals with respect to the conceptual regions (Sadalla, Bur-
roughs, & Staplin, 1980; Huttenlocher, Hedges, & Duncan,
1991). For instance, a participant might memorize their find-
ings by thinking: “The tactile task is in the red region.”

“Good” vs. “bad” concepts
We did not find evidence that a closer match between the con-
ceptual map of the brain segment and its functional structure
directly aids participants’ learning. This could be attributed
to a lack of experimental power since the full randomization
of the brain map and ground truth generation prevented us
from enforcing a uniform distribution of isomorphism scores
in these maps.

While isomorphism in its strictest sense did not prove in-
fluential, the boundaries of the regions still played a crucial
role in the success of participants’ learning. Since novices
showed a clear tendency to explore the conceptual bound-
aries of the brain segment, this attraction proved beneficial
when the underlying signals happened to be located near
these boundaries–participants were more likely to success-
fully identify such signals. Therefore, participants were more
successful at making predictions for and lesioning the signals
which were close to the boundary.

Limitations
Our study presents an initial attempt to empirically study
conceptual effects on scientific experimentation, and so it
is subject to several limitations. The study’s focus is nar-
rowly confined to neuroscience, limiting its applicability to
other scientific domains. This specialization, while valuable
for understanding concept-ladenness of neuroscientific evi-
dence (Gershman, 2021), restricts the broader generalizabil-
ity of our findings to different fields of scientific inquiry. Im-
portantly, our experimental paradigm is too simple to faith-
fully capture the full range of actual investigation practices
in neuroscience. Specifically, the “lesioning” and “imaging”
experiments available to our participants are simplified and
constitute only a small subset of neuroscientist’s rich exper-
imental toolkit. Moreover, the region partitioning presented
to our participants is not typically present when most neuro-
scientists make their lesioning choices or interpret imaging
results. Thus, our experiment’s relevance to actual neurosci-
entific investigation should be interpreted with caution. Fi-
nally, our participant pool did not include expert neuroscien-
tists, also impacting the nature of the insights we can draw
from this study. We expect to see many differences between
how students and experts approach the task. For example,
the boundaries between the regions, which served as explo-
ration magnets for the students, might rather repel the ex-
perts. Moreover, the localizationist reasoning exhibited by
the novices might not be shared by many expert neurosci-
entists who are moving beyond the localizationist paradigm
(Anderson, 2014; Sporns, 2016; McCaffrey, 2023; Westlin
et al., 2023; Pessoa, 2022). We are currently collecting data
from expert neuroscientists, hoping to gain a more nuanced
understanding of the conceptual biases in neuroscientific re-
search. The potential differences identified in future studies
could also point at the discrepancies in laypeople’s and ex-
perts’ interpretations of neuroscientific evidence (e.g., neu-
roimaging plots).
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