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ABSTRACT With growing awareness that what we put in and on our bodies affects our
health and wellbeing, little is still known about the impact of textiles on the human skin.
Athletic wear often uses silver threading to improve hygiene, but little is known about its
effect on the body’s largest organ. In this study, we investigated the impact of such cloth-
ing on the skin’s chemistry and microbiome. Samples were collected from different body
sites of a dozen volunteers over the course of 12 weeks. The changes induced by the anti-
bacterial clothing were specific for individuals, but more so defined by gender and body
site. Unexpectedly, the microbial biomass on skin increased in the majority of the volun-
teers when wearing silver-threaded T-shirts. Although the most abundant taxa remained
unaffected, silver caused an increase in diversity and richness of low-abundant bacteria and
a decrease in chemical diversity. Both effects were mainly observed for women. The hall-
mark of the induced changes was an increase in the abundance of various monounsatu-
rated fatty acids (MUFAs), especially in the upper back. Several microbe-metabolite associa-
tions were uncovered, including Cutibacterium, detected in the upper back area, which was
correlated with the distribution of MUFAs, and Anaerococcus spp. found in the underarms,
which were associated with a series of different bile acids. Overall, these findings point to a
notable impact of the silver-threaded material on the skin microbiome and chemistry. We
observed that relatively subtle changes in the microbiome result in pronounced shifts in
molecular composition.

IMPORTANCE The impact of silver-threaded material on human skin chemistry and micro-
biome is largely unknown. Although the most abundant taxa remained unaffected, silver
caused an increase in diversity and richness of low-abundant bacteria and a decrease in
chemical diversity. The major change was an increase in the abundance of various monoun-
saturated fatty acids that were also correlated with Cutibacterium. Additionally, Anaerococcus
spp., found in the underarms, were associated with different bile acids in the armpit samples.
Overall, the impact of the silver-threaded clothing was gender and body site specific.
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In recent years, there has been a fundamental shift in our understanding of the innate
chemistry of the body and the role the microbiome plays in shaping it. Individual

chemistries, the molecular makeup of our bodies, are influenced by a multitude of
genetic and environmental factors. Some are known to have a profound influence (in
particular, diet), while the roles of other factors such as the clothing and products we
wear on our skin are less well explored (1–3). The skin is home to an estimated 1012

microorganisms that live and feed on the skin secretions (4). These billions of microor-
ganisms, including bacteria, fungi, protists, and viruses, form the so-called skin micro-
biome (5, 6). The role of the microbiome, in particular, has been uncovered, time and
time again, as a key factor in a number of pathologies (7, 8). A community of microor-
ganisms creates an environment that enables the skin to be less susceptible to dis-
eases and pathogenic invasion, and therefore, microbial diversity and a healthy
immune system are inherently linked (3, 6, 7).

There has been an appreciation for the role of skin microbes and their interaction
with clothing for aspects such as body malodor (2). Yet, the ways and effects of altering
skin microbiota with clothing and the corresponding effects on health and wellbeing
are not known but are a growing subject of research (9). In large part due to the activ-
ity of the microbiome, the skin contains various low-molecular-weight compounds
(metabolites). Some of these compounds are by-products of either endogenous or mi-
crobial metabolism, and others are implemented as part of the skin’s physiological role
(10). The metabolome along with the microbiome represents the body’s first barrier to
external and environmental substances. Through these metabolic pathways the skin
transfers topical signals to determine the body’s physiological activities and regulate
homeostasis. Thereby, these processes are adapted to various external factors, such as
cosmetics, clothing, or other environmental influences. Many of the same enzymes
which operate in the liver also inhabit the skin, and as such, the skin is an important
metabolically active organ (11, 12). The skin surface can be sampled to detect and
quantify skin metabolites related to diseases, through secreted sweat. Through techni-
ques such as chromatography-mass spectrometry (MS) and other methods, broad-
spectrum skin metabolite specimens can be characterized (10). These biomarkers are
an important tool for the diagnosis and treatment of skin diseases and how environ-
mental factors may be of influence (13, 14).

Consequently, skin metabolome and microbiome analysis can be a useful indicator in
the investigation of the effects of various external stimuli. One of these external stimuli is
the incorporation of antibacterial agents into a fabric, for example, the use of metallic and
synthetic antimicrobial biocides for odor control in textiles. The increase of antimicrobial
agents in our everyday products including our clothing has made it difficult to reestablish
or maintain the beneficial bacteria that the body would regularly be exposed to in a more
natural environment (15). One of the most common antimicrobial additives is the incorpo-
ration of silver ions or nanoparticles. Silver has broad-spectrum antibacterial properties
against Gram-positive and -negative bacteria. In particular, X-Static textiles, silver-coated-
yarn-threaded fabrics, are currently used in sports clothing for odor control, hygiene, and
social comfort, which can thereby enhance product performance. Overall, there has been
an increased demand for the antibacterial effects of metal ions, such as silver in the textiles
industry (16–19).

However, the influence of such antimicrobial clothing on the skin microbiome and,
especially, the metabolome is largely unknown. By learning about the resulting pertur-
bations of microbial communities or body chemistries, it may be possible to then
manipulate the effects, including those on health, by designing the composition of
clothing. In this study, we have analyzed skin metabolome and microbiome through-
out several weeks of wearing the silver-coated-yarn-threaded T-shirt to document the
changes caused by the antibacterial effect of silver. Several studies have analyzed the
microorganisms associated with body odor and the bacteria present on malodorous
textiles (20, 21). This is the first study to explore the influence of the antibacterial prop-
erties of silver-threaded textiles on the skin microbiome and metabolome and their
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subsequent influence on the textile microbiome and metabolome. The skin’s unique
microenvironments were also observed through multiple sample locations across the
body. This is an important area of research to determine how antimicrobial textiles
affect both the skin microbiome and chemistry and how these two environments are
interlinked.

RESULTS
Metabolome results. This study aimed to investigate the impact of antibacterial sil-

ver-threaded clothing material on the human skin metabolome and microbiome in a con-
trolled manner. The experiment took place over the course of 12 weeks for a total of 12
volunteers: six males and six females (see Fig. S1 in the supplemental material). Four body
sites, chest, upper back, lower back, and armpits, were chosen for sampling because of the
most immediate contact with the clothing material (Fig. S1b). As described in Materials
and Methods, the experiment longitudinally spanned a total of four phases: initial washout,
silver-threaded T-shirts, regular T-shirts, and silver-threaded T-shirts again (Fig. S1a). During
the study course, volunteers were prompted to use only the provided skin products to
minimize variability. The full sample set included samples from skin, clothing, and the skin
products that volunteers had been using.

We then conducted untargeted liquid chromatography-tandem mass spectrometry
(LC-MS/MS) analysis as described in Materials and Methods. The resultant data were sub-
jected to molecular networking on Global Natural Products Social Molecular Networking
(GNPS) (22). The molecular networking represents all unique compounds as network
nodes, and those with similar MS/MS spectra are connected by edges. Since structurally
similar compounds tend to also have similar fragmentation patterns, molecular networking
enables visualizing chemical relationships within the data set. Figure 1A and B shows mo-
lecular networks of all compounds that were detected in this study. Coloring the nodes
according to, for example, T-shirt phase (Fig. 1A) or different body parts (Fig. 1B), gives visu-
alizations of associated molecular distributions.

Our results indicate that silver-threaded fabric indeed induces changes of skin
chemistry that are detectable with an untargeted approach used in this study. Several
observations could be made: one interesting finding is a notable decrease in the chem-
ical diversity for samples of all volunteers except one during the silver shirt usage
phase (Fig. S2c). When combined, the differences in Shannon diversity of metabolites
were significant and were more pronounced for females (P = 1.9e205) than for males
(P = 0.0027) (Fig. S2a and Fig. S9). The amount of X-Static silver-threaded yarn was 5%
for the female shirt and 4% for the male shirt, mentioned below in Materials and
Methods. A persistent challenge in skin studies is the overwhelming signal contribu-
tion from skin products, especially deodorants (23). Since the application of deodor-
ants is mostly limited to armpits, we have further considered the body parts separately.
The highest impact on chemical diversity was observed for lower and upper back
(P = 1.1e204 and 0.0038, respectively), while no significant effect was found on chest
(P = 0.26) and armpit (P = 0.42) (Fig. S2b, Fig. S9 and S10).

We have visualized the metabolome on a principal-coordinate analysis (PCoA) plot with
the Canberra dissimilarity metric using EMPeror software (24) (Fig. S3). The main factor driv-
ing differences is the sampled body part, which appears to be even more significant than
the sampled subject (Fig. S3a). Interestingly, armpit samples spanned the full PC1 space
and were separated into two distinct clusters along the PC2 and PC3 axes interpreted as
two armpits (Fig. S3b and c). The textile and the skin chemistries differ in the underarms
compared to the textile worn next to it (Fig. S3c). Notably, a clear separation of left and
right axillae was observed for 8 out of 12 volunteers (Fig. S3c). This discordance was also
confirmed by the diversity analysis—the higher chemical diversity in the left armpits of
these eight volunteers was observed for both males and females (P = 0.023) (Fig. S9d). It is
known that there exists a fraction of the population that has distinct microbiomes in
their left and right axillae (25). A number of compound classes that may be linked to
compounds of bacterial origin—such as acylcarnitines (organonitrogen compounds),
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FIG 1 Molecular networks for exploration of metabolome changes induced by silver fabric. (A and B) Global molecular networks of
metabolomics data color coded by T-shirt phase (A) and body part (B). (C) Plot showing the ratio of abundances of metabolites
during the silver versus nonsilver phases on upper and lower back. Ratios higher and lower than one (i.e., molecules that increased
and decreased in abundance) are highlighted in red and blue, respectively. Examples of some of the annotated molecules with the
corresponding clusters from the molecular network that contain them are shown: monounsaturated fatty acids, bile acids, and a
surfactant. Clusters are colored the same way as in panel A. Numbers inside cluster nodes denote m/z as measured by a mass
spectrometer, while the size of the nodes is determined by the peak area under the curve. The thickness of the edges connecting
nodes increases continuously with cosine similarity score increase. Consistent ratios of MUFAs’ abundances across the cluster are
suggestive of the same chemical forces responsible for the changes in their differences in silver versus nonsilver samples. The
depicted compounds are highlighted by square nodes.
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glycerophospholipids, and bile acids (steroids and steroid derivatives)—have been
found to have different abundances in the two armpits (Fig. S4). Using random forest
analysis, we have confirmed that antiperspirant constituents are more abundant in
the left armpits, possibly due to more vigorous application by dextral than sinistral
volunteers. This finding was corroborated by matched clothing armpit samples
(Fig. S3a). Based on our data, we hypothesized that the contribution to the discrep-
ancy in the chemical diversity is due to the chemical constituents of deodorant but
also to differences in microbial ecosystems. For both types of participants, with con-
cordant and discordant chemical signatures in axillae, the silver-threaded clothing
did not induce differences in axilla chemistries that could be observed with the
Canberra distance metric.

When considering body parts separately in unsupervised analysis, the effects of silver
cannot be clearly observed: Fig. 2A and B shows PCoA plots for the upper and lower back
samples with some separation of samples based on silver and nonsilver groups. Figure 2C
shows the volcano plot for these samples. Several features appeared to be significant in
discriminating silver and nonsilver sample groups The features were predominantly

FIG 2 Monounsaturated fatty acids are the key compounds on skin affected by silver. (A and B) PCoA plots
(Canberra distance) of metabolomics data for upper and lower back, respectively. (C) Volcano plot for upper
and lower back samples showing the most significant metabolites enriched by silver. The features for some
MUFAs are labeled (parent m/z_retention time). FC, fold change. (D) Box plots plotted over a time period of
sampling for several MUFAs in combined upper and lower back samples. Each box plot title on the top right
shows the detected feature with m/z_RT, where m/z is the mass as determined by a mass spectrometer and RT
is the retention time of the compound on the column during the reverse-phase separation (see Materials and
Methods for details). AUC, area under the curve.
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attributed to a single network cluster shown in Fig. 1C, indicating their structural similarity.
The annotations for these compounds were then established as a variety of monounsatu-
rated fatty acids (MUFAs). The key drivers of the differences include palmitoleic acid, myris-
toleic acid, and pentadecenoic acid. All of these compounds change in unison in response
to wearing silver-threaded T-shirts and were detected in similar abundances (Fig. 2D). The
relative abundance of pentadecenoic acid (C15 MUFA) increased during the silver T-shirt
phase, while its abundance decreased during nonsilver T-shirt phase (Fig. 3D). The pres-
ence of odd-carbon short-chain fatty acids (OCS-FAs) among these discriminating com-
pounds strongly suggests their microbial origin. From our data, it appears that silver fabric
alters the bacterial populations on skin in a way that results in accumulation of MUFAs.

Microbiome results. The paired microbiome analysis has yielded several observa-
tions that help to understand the metabolomics findings. Counterintuitively, the skin
and textile bacterial communities had a higher bacterial biomass when silver T-shirts
were worn than when nonsilver T-shirts were worn (P = 0.0011, Mann-Whitney U test)
(Fig. 3A and Fig. S5c and d). It was found that the left and right armpits had higher bac-
terial counts than all other samples and did not differ from each other (Fig. S5a). Yet,
the results were different for every individual, with 10 of the 12 volunteers showing
more skin bacteria during the silver phase, one volunteer showing no change, and one
showing fewer bacteria (Fig. S5b). This is unexpected, considering that the antibacterial
properties of silver ions have been widely reported (26). It has been shown that bacteria
are readily transferred onto the shirt material in the armpit region (2). Silver textiles can
manipulate the microbiome and metabolome of the skin but, importantly, do not reduce
microbial biomass. Additionally, it is known that resident microbial strains which cause
body odor are due to the presence of certain microbes rather than to biomass (20). The
high interindividual response in the skin microbiome was further backed by the initial indi-
vidual skin microbiome differences (Fig. S9).

Microbe-metabolite cooccurrences were explored using microbe-metabolite vector
cooccurrence analysis (mmvec) (Fig. 3), a neural network-based approach that aims to
predict metabolite abundances given the presence of a single microbe, and vice versa
(27). We detected a range of primary bile acids in the underarms of participants, includ-
ing glycocholic acid and glycochenodeoxycholic acid. Such bile acids were not
detected in other skin body sites. Bile acids were detected in the underarms of all par-
ticipants, although high interindividual differences were seen in bile acid concentra-
tion. The mmvec plot shows the cooccurrence of Anaerococcus spp. (Fig. S8a and c)
and these bile acids (Fig. 3E). All identified bile acids were significantly correlated with
relative abundance of Anaerococcus spp. (P = 4.903e205, Spearman correlation)
(Fig. 3C and Fig. S8a) and were more abundant in the armpits than on the back and
chest (Fig. S8d). Anaerococcus spp. were similarly more abundant on armpit skin than
on chest skin (P = 0.00027) and the back (Fig. S8c). Interestingly, the bile acids were
generally decreased in the silver phase (Fig. S8b).

As noted above, during the silver T-shirt phase, we have identified enrichment of a se-
ries of monounsaturated fatty acids (MUFAs), particularly on the skin of the chest, upper
back, and lower back, as a hallmark feature (Fig. 2), and the presence of odd-number car-
bon acids indicates that at least some of these compounds can originate only from food or
bacterial metabolism. From mmvec analysis, Corynebacterium spp. were found to be some
of the species that tend to cooccur with MUFAs (Fig. 3F). Other microbial species also
appear to play a role in the increase of MUFAs during the silver phase. For example, we
found a strong correlation of MUFA abundances (myristoleic acid) with the relative abun-
dance of Cutibacterium spp. (P , 2.2e216, Spearman test) (Fig. S6a and f), suggesting
these bacteria may also be involved in their biotransformation. Random forest regression
analysis showed the highest contribution coming from Cutibacterium, compared to all
other bacterial taxa (Fig. S6e). We found that Cutibacterium spp. were enriched with silver
T-shirts both on T-shirts (P = 0.04, Mann-Whitney U test) (Fig. 3B and Fig. S6c) and on the
skin itself (linear discriminant analysis [LDA] score increase = 2.7) (Fig. S6c). We also found a
correlation between C14 MUFA (P = 0.0124, Spearman test) and C17 MUFA (P = 2e204,
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FIG 3 Microbiome metabolome cooccurrence determined by mmvec. (A and B) qPCR (A) and bacterial Shannon diversity (B) results
of all samples combined and stratified by the T-shirt phase, respectively. (C) Cutibacterium species distribution by the T-shirt phase.
(D) mmvec biplot showing the metabolome, where each sphere is a metabolite feature that is color coded based on the enrichment
in the silver phase, and the microbiome, where each arrow represents a microbe. A proximity of both metabolites and microbes is
indicative of their cooccurrence. (E) Bile acids cooccur with Anaerococcus spp. Bile acids were generally decreased in the silver phase
(dark large spheres). (F) MUFAs tend to cooccur with Corynebacterium spp. MUFAs were all enriched in the silver phase (light large
spheres).
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Spearman test) and the bacterial biomass on the skin of the back, suggesting that bacteria
and their biomass are involved in the bioconversion of MUFAs.

The impact was the largest where the contact between silver clothes and skin was
the highest: the upper back and chest skin. During the silver phase, the skin of the
torso (chest and back) became enriched in Lactobacillus, Anaerococcus, Gemellaceae,
Cutibacterium, and Lactococcus (P , 0.05, Mann-Whitney U test). The silver shirts them-
selves were enriched in Cutibacterium spp. (Fig. 3B), among some other taxa.
Anecdotally, volunteer 11 mentioned incident upper back acne when the silver shirts
were worn, which might suggest intermittent increases in the relative abundance of
Cutibacterium spp. on the upper back.

When looking at the log abundance ratios, we noticed particular bacterial genera that
were enriched on skin when wearing silver-threaded clothing, compared to nonsilver cloth-
ing. Bacterial genera that were consistently more abundant on the chest, upper back, and
lower back when silver clothing was worn were Bacteroides, Acinetobacter, Peptoniphilus,
Akkermansia, Facklamia, Haemophilus, Helcococcus, Rothia, Lactococcus, and Erwinia spp.
(Songbird/Qurro results not shown). These small changes in microbial diversity have led to
much more significant changes in the skin metabolome, discussed above.

Our results indicate that the skin microbiome is strongly determined by individuality,
body site, and gender, as reported earlier (28, 29). Staphylococcus and Corynebacterium
were the main bacterial groups in armpit, chest, and upper and lower back skin (Fig. S7).
Females had a higher relative abundance of Staphylococcus while males had a higher rela-
tive abundance of Corynebacterium, as documented before (25). These bacterial groups
were not significantly impacted by the silver-threaded textiles, and the proportions of the
most abundant skin taxa did not change (Fig. S7a and b). The impact of silver-threaded
shirts on the bacterial composition was subtle but noticeable. Silver increased the female
skin microbial Shannon diversity significantly (P = 0.036, Mann-Whitney U test) (Fig. S1c),
but the diversity was less so affected on the chest and upper back (P = 0.05, Mann-
Whitney U test). This diversity difference was not seen on male skin (P = 0.99, Mann-
Whitney U test) and is likely outweighed by the more abundant Corynebacterium (and
Staphylococcus) spp. present on male skin (Fig. S7a). Notably, this increase in microbial di-
versity also corresponds to a decrease in the chemical diversity.

DISCUSSION

Silver is the most commonly used antimicrobial agent for textile application, and sil-
ver nanoparticles (AgNP) are the most used nanoparticles in consumer products (30).
However, there has been limited research on the physiological responses to such tex-
tiles by the skin microbiome and metabolome. In this study, we have found that the
material used in clothing can cause changes in the chemistry and microbial community
of the skin surface. The impact of clothing on skin chemistry and microbiome is highly
individualized and differs for genders and body sites (28, 29). This also corresponds
with findings from a study on the T-shirt microbiome which found the textile to be
highly individual in microbial composition, diversity, and biomass (29). Although in this
study, the abundant genera remained unaffected (Fig. S7a and b), low-abundant taxa
were perturbed (Fig. S1d) and the use of antibacterial T-shirts also resulted in higher
bacterial biomass on skin. Silver textiles can manipulate the microbiome and metabo-
lome of the skin but do not reduce microbial biomass.

Silver-coated-yarn-threaded T-shirts had a small but significant impact on the skin
microbiome (mainly for females), leading to a higher richness and diversity, including
higher abundance of some odor-causing species, such as Anaerococcus. This difference
between males and females could have been due to the slightly higher content of sil-
ver in the females’ T-shirts. The amount of X-Static silver-threaded yarn was 5% for the
female shirt and 4% for the male shirt. During the silver phase in male participants, a
higher bacterial biomass was found, with Staphylococcus and Corynebacterium being
the most dominant (Fig. S5d and Fig. S7). These results are counterintuitive and sur-
prising, since the primary reason for incorporating silver ions into garments is to
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manage or reduce the bacterial load and to control odor formation. This study shows
the opposite outcome from the intended primary reason for including silver particles,
as a higher bacterial load on skin was found, and particular malodor-associated taxa
were increased on skin.

The altered skin microbiome corresponded with a large impact on the skin metabo-
lome. The microbiome and metabolome data suggest that silver textiles alter the bac-
terial populations on the skin in a way that, most notably, results in the accumulation
of monounsaturated fatty acids (MUFAs). These MUFAs were the key compounds on
skin affected by the silver textiles (Fig. 2). All of these compounds changed in unison
with the silver phase and were detected in similar abundances (Fig. 2D). The presence
of odd-carbon short-chain fatty acids (OCS-FAs) among these discriminating com-
pounds strongly suggests a microbial origin. Bacteria can produce odd-chain fatty
acids related to the production of propionic acid (31–33). A multi-omics analysis sug-
gested a link between the abundance of MUFAs, e.g., myristoleic acid, and certain
microbes, such as Corynebacterium and Cutibacterium spp. (Fig. 3F and Fig. S6e). We
hypothesize that the silver-threaded shirts led to a higher sebum production on the
skin, which led to higher bacterial biomass and to certain species being enriched dur-
ing the silver phase (Fig. S6b to d). Interestingly, this increase in microbial diversity also
corresponds to a decrease in the chemical diversity (Fig. S7a). Yet, in other studies the
impact of skin cosmetics and antimicrobial ingredients has led to both an increase in
chemical diversity and an increase in microbial diversity (23).

Monounsaturated fatty acids are the major fatty acids that are present in human
sebum (34, 35). Corynebacteria are lipophilic bacteria that rely primarily on fatty acids
as a food source (27, 36, 37). A cooccurrence between MUFAs and corynebacteria could
be due to the ability of the latter to produce FadD enzymes, which is the first step to
break down fatty acids in the beta-oxidation pathway (38). In another example,
Cutibacterium acnes, a Gram-positive skin commensal, has been identified to be a con-
tributing factor to acne on a strain level (39). These species also have the enzymatic
capacity to manipulate the MUFAs on the skin (40). Cutibacterium spp. were enriched
on the skin of the torso, which corresponded with an increase in the production of me-
dium-chain fatty acids, including odd-carbon ones (Fig. S6b). The silver textile shirts
themselves were similarly enriched in Cutibacterium spp. (Fig. S6f) and contained fewer
staphylococci. Further exploration of microbial involvement in the bioconversion of
sebum into MUFAs is warranted. The results further showed a separation of textiles
and skin metabolomes and showed that clothes differ in this respect from the skin sites
(Fig. S3). Other studies have shown composition differences in axillary and textile
microbiomes, and similarly, we saw that the skin and textile metabolomes are behav-
ing independently of each other (2).

This study also identified a range of different primary bile acids, which were solely
found in the armpits of participants. The mmvec analysis established a clustering of the
bile acids in both the silver and nonsilver phases. Bile acids may help in solubilizing under-
arm lipids, which can help reduce friction in the underarm. In our study, these bile acids
were associated and correlated with Anaerococcus species (Fig. 3e). Anaerococcus is a low-
abundant species in the underarm and associated with higher malodor scores (21). Bile
acids are host produced by the apocrine sweat glands (41) and were detected only in the
underarms (23). Bile acids have an important role in lipid metabolism in the gut to manage
the microbial community; therefore, they have a therapeutic role against pathogens (42–
44). However, the function of bile acids on the skin remains largely unknown (42). The
results of a study found certain probiotic bacteria, including Lactobacillus, Bifidobacterium,
and Bacillus, to be resistant to bile acids, thus reducing bile acids’ relative antimicrobial
activity (45, 46). This suggests the selective capabilities of bile acids on certain strains of
bacteria. In this paper, the silver textile has caused slight distortion in the microbial com-
munity, which has led to these larger changes in metabolism on the skin. This highlights
the importance of this kind of microbiome/metabolome study when developing a func-
tional textile.
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Conclusion. In this study, we investigated the impact of clothes with antimicrobial
properties on the skin by studying induced changes of the microbiome and metabolome.
The main changes to the skin microbiome and metabolome include an increase of bacte-
rial biomass and an increase of monounsaturated fatty acids in the silver phase. The obser-
vation of bile acids on the skin was found in the silver and nonsilver phases. Bile acids have
an important role in lipid metabolism in the gut, but their function on the skin remains
unknown. This study indicates that the microbiome and metabolome are interlinked, and
the textiles did indeed cause changes on the skin microbiome which drove significant
chemical changes on the skin due to silver antimicrobials. Textile and its active ingredients
do have an impact on human skin biology and chemistry and may provide a direct way to
manipulate skin chemistry for health and wellbeing. However, more extensive research is
needed on more volunteers into the strain significance of the microbiome changes and
the exact origin of the chemical changes on the skin.

MATERIALS ANDMETHODS
Study design. Healthy volunteers were enrolled in this study with one visit every week for 11 weeks.

Personal care products and laundry detergent were provided to all volunteers used in the study.
Showering during the 11-week study was allowed only with the shampoo, soap, and deodorant that
were provided. During the washout period, the first 2 weeks, participants asked to wear the non-X-Static
shirt. During the first 3 weeks, post-washout period, participants were asked to wear the X-Static shirt,
followed by wearing the non-X-Static shirt from week 4 to week 6, and finishing with the X-Static yarn-
threaded T-shirt again. X-Static yarn is treated with silver to inhibit the growth of bacteria on fabrics,
eliminating human-based odor (https://noblebiomaterials.com/x-static/). The amount of X-Static yarn
was 5% for the female shirt and 4% for the male shirt. Non-X-Static shirts were not treated with silver.
Participants were asked to take no shower 24 h before sample collection. Participants all lived in the
temperate climate and region of San Diego, CA, during the time of study (April to June 2017). The study
was reviewed and approved by the University of California San Diego (UCSD) Institutional Review Board
under the identifier (ID) 161694 on 3 November 2016. Sample collection, preparation, and data acquisi-
tion were performed in the Skaggs School of Pharmacy of UCSD for metabolomics samples and in the
Department of Pediatrics and Computer Science & Engineering of UCSD for microbiome samples.

Sample collection. A sterile swab, either with alcohol solution or with saline solution, was used to collect
samples from small skin areas (2 by 2 in.) by swabbing the skin surface for approximately 10 s. Two samples
from 5 body sites were collected for a total of 10 samples per volunteer per week. The samples were collected
from the right armpit, left armpit, upper back, lower back, and chest. After collection, the swabs were put in a
96-well plate (one for metabolite and one for sequencing), containing the appropriate extraction buffer.

DNA extraction and sequencing. 16S rRNA gene amplicon sequencing was performed following the
Earth Microbiome Project protocols (47), as described before (42). Briefly, DNA was extracted using the MoBio
PowerMag Soil DNA isolation kit, and the V4 region of the 16S rRNA gene was amplified using barcoded
primers (48). PCR was performed in triplicate for each sample, and V4 paired-end sequencing (48) was
performed using Illumina HiSeq (La Jolla, CA, USA). Raw sequence reads were demultiplexed and quality
controlled using the defaults, as provided by QIIME 1.9.1 (49). The primary operational taxonomic unit
(OTU) table was generated using Qiita (https://qiita.ucsd.edu/), using the UCLUST (50) closed-reference
OTU picking method against the Greengenes 13.5 database (51). Sequences can be found in EBI under
accession number EBI ERP138010 or in Qiita (https://qiita.ucsd.edu) under study ID 11272.

qPCR.We analyzed the absolute quantity of bacteria on a subset of the samples, using quantitative PCR
(qPCR). A total of 192 samples were processed for qPCR 16S rRNA gene quantitation which included 168 pri-
mary samples and 24 DNA extraction blanks as reference. Specifically, 1 mL of neat genomic DNA (gDNA)
from each of the 12 volunteers at week 8 (nonsilver phase) and week 11 (silver T-shirt phase) along with each
sample site including right armpit, left armpit, chest, lower back, upper back, left armpit clothing, and right
armpit clothing was amplified in a 10-mL PCR mixture with DyNAmo HS SYBR green master mix
(ThermoFisher catalog no. F410L) in triplicate for qPCR analysis on the Roche LightCycler 480 using the same
amplification conditions and primers (16S primers 515f and 806rb) as described for the microbiome analysis.
An isolate of Vibrio fischeri ES114 with known genome size and gDNA concentration, determined with a
Qubit fluorometer (ThermoFisher), was 10-fold serially diluted six times (135,000 to 1.35 genome copies) and
used as a positive control. The qPCR amplification efficiency was 95.68% and 93.34% for the two qPCR runs.
The conservative level of detection was 135 copies for each run with the R2 being 0.99749 and 0.99724 for
the two runs. Reported values are in 16S rRNA gene copies per microliter. Since each gDNA extraction was
100 mL, one could multiply by 100 to indicate total 16S RNA gene copies per DNA extraction, but we have
chosen to leave this in the original form of copies per microliter.

Metabolite extraction and UPLC-quadrupole time of flight MS/MS analysis. Skin swabs were
extracted and analyzed using a previously validated workflow described in reference 52. All samples
were extracted in 200 mL of 50:50 ethanol-water solution for 2 h on ice and then overnight at 220°C.
Swab sample extractions were dried down in a centrifugal evaporator and then resuspended by vortex-
ing and sonication in a 100-mL 50:50 ethanol-water solution containing two internal standards (ISTDs).
The ethanol-water extracts were then analyzed using an ultraperformance liquid chromatography
(UPLC)-MS/MS method described in reference 42. A ThermoScientific Dionex 3000 UPLC for liquid
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chromatography and a Maxis Impact II mass spectrometer (Bruker Daltonics), controlled by the software
packages (Bruker Daltonics) and equipped with an electrospray ionization (ESI) source, were used. UPLC
conditions of analysis were an 1.7-mm C18 (50- by 2.1-mm) ultrahigh-performance liquid chromatogra-
phy (UHPLC) column (Phenomenex), column temperature of 40°C, flow rate of 0.5 mL/min, mobile phase
A of 99.9 water-0.1 formic acid (vol/vol), and mobile phase B of 99.9 acetonitrile-0.1 formic acid (vol/vol).
A linear gradient was used for the chromatographic separation: 0 to 2 min, 0 to 20% B; 2 to 8 min, 20 to
99% B; 8 to 9 min, 99 to 99% B; 9 to 10 min, 0% B. Full-scan MS spectra (m/z 80 to 2,000) were acquired
in a data-dependent positive ion mode. Instrument parameters were set as follows: nebulizer gas (nitro-
gen) pressure, 2 � 105 Pa; capillary voltage, 4,500 V; ion source temperature, 180°C; dry gas flow, 9 L/
min; and spectrum rate acquisition, 10 spectra/s. MS/MS fragmentation of the 10 most intense selected
ions per spectrum was performed using ramped collision-induced dissociation energy, ranging from 10
to 50 eV to get diverse fragmentation patterns. MS/MS active exclusion was set after 4 spectra and
released after 30 s. Mass spectrometry data for this study can be found at MSV000081379.

LC-MS data processing and analysis. LC-MS raw data files were converted to mzXML format using
msConvert (ProteoWizard). MS1 features were selected for all LC-MS data sets collected using the open-
source software MZmine 2 (53) with the following parameters: mass detection noise level was 1,000
counts, chromatograms were built over a 0.01-min minimum time span, with 3,000-count minimum
peak height and 20-ppm mass tolerance, features were deisotoped and aligned with 20-ppm tolerance
and 0.1-min retention time tolerance, and aligned features were filtered based on a minimum 3-peak
presence in samples and based on containing at least 2 isotopes. Subsequent blank filtering, total ion
current, and internal standard normalization were performed for representation of relative abundance
of molecular features and for principal-coordinate analysis (PCoA). A Kruskal-Wallis test was used to find
differentially abundant metabolites across left and right armpits, and P values were adjusted for multiple
hypothesis testing using the false-discovery rate (FDR) method. To visualize different distributions of
metabolites across left and right armpits, a heat map of the differentially abundant metabolites (FDR-
adjusted P value of ,0.05) was created using the Complex Heatmap package version 2.8.0 (54) in R (55).
Rows and columns were clustered using the Euclidean distance and complete clustering method. Only
differentially abundant metabolites with a putative class annotation were displayed in the heat map.

Metabolite annotation. MZmine-preprocessed MS/MS fragmentation spectra were submitted to feature-
based mass spectral molecular networking through the Global Natural Products Social Molecular Networking
Platform (GNPS) (22) and searched against all GNPS spectral libraries. The exact mass and MS/MS spectral matching
are equivalent to the level 2 identification according to paragraph 2.9 of “Proposed minimum reporting standards
for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)” (56).
To further enhance chemical structural information, we performed in silico structure annotation using Network
Annotation Propagation and created consensus chemical classes per molecular family using the GNPS MolNet
Enhancer workflow (https://ccms-ucsd.github.io/GNPSDocumentation/molnetenhancer/) (57) with chemical class
annotations retrieved from the ClassyFire chemical ontology (57, 58). The GNPS molecular networking job can be
accessed at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=dd4ed24be55b4e0c96d542a12b7b464e; in silico
Network Annotation Propagation results can be accessed at https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp
?task=4cd9cd5b7f94463abc8edd4aca94c415, (59), and MolNetEnhancer results can be accessed at https://gnps
.ucsd.edu/ProteoSAFe/status.jsp?task=d341e23d0aa8489d9776118c48db5a67.

Microbiome data analysis. All sequence data were quality filtered to discard sequences with a
quality score of ,20. OTUs were assigned taxonomy using the Greengenes (v13_8) reference data-
base. Samples were rarefied to 2,580 sequences per sample, and alpha diversity for each sample
and distances between samples were calculated using QIIME v1.9.1 (49). Pairwise differences in
alpha diversity were tested using the nonparametric Wilcoxon tests. Taxonomy abundance log-fold
differentials were calculated through QIIME2 using the Songbird plug-in (60) with visualization
using Qurro (60, 61).

Random forest analysis. A random forest classification model (62) was used to identify microbes
and metabolites that separated the textile phases. This model was run using the randomForest package
in R with 5,000 trees and 59 variables tried at each split and with stratification due to differential sample
numbers in each disease class.

LEfSe.We used the linear discriminant analysis (LDA) effect size (LEfSe) method (http://huttenhower
.sph.harvard.edu/lefse/) (63) for microbe and metabolite biomarker discovery, which performs a com-
bined assessment of statistical significance and biological relevance. The tool utilizes a nonparametric
Kruskal-Wallis test to investigate group differences, using a sample-wise normalized matrix of relative
abundances, and determines the effect size of a given taxon using LDA. We performed this analysis
using the default settings (alpha = 0.05, effect-size threshold of 2).

mmvec. Microbe-metabolite cooccurrence probabilities were calculated using mmvec, a neural net-
work approach trained to predict metabolite abundances given the presence of a single microbe (27).
This model was trained using three principal axes with a batch size of 10,000 and 10,000 epochs. mmvec
performs cross-validation by evaluating how well the metabolites can be predicted solely from the
microbe abundances in the samples.

qPCR statistics. Sample sites were compared using a nonparametric Kruskal-Wallis test with mul-
tiple comparisons applying the Benjamini-Hochberg FDR. To compare the specific body sites from
the effects of silver T-shirt wear, a one-tailed Wilcoxon matched-pair signed-rank test was used to
compare statistical differences between uses of a silver T-shirt across body sites (paired data per
individual).
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