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Abstract

Objective—We introduce a method for analyzing dynamically changing fMRI brain network 

connectivity estimates as they vary within and between broad functional domains. The method 

captures evidence of intertemporal directionality in cross joint functional domain influence, and 

extends standard whole-brain dynamic network connectivity approaches into additional 

functionally meaningful dimensions by evaluating transition probabilities between clustered intra-

domain and inter-domain connectivity patterns.

Results—In applying this method to a large (N=314) multisite resting-state fMRI dataset 

balanced between schizophrenia patients and healthy controls, we find evidence of joint functional 

domains that are global catalyzers, broadly shaping downstream functional relationships 

throughout the brain. Multiple interesting differences between patients and controls in both time-

varying joint functional domain connectivity patterns and in cross joint functional domain 

intertemporal information flow were identified.

Conclusion and Significance—Our proposed approach thus unifies the concepts of brain 

connectivity and inter-domain connectivity and provides a powerful new way to evaluate 

functional connectivity data in the context of both the healthy and diseased brain.

Index Terms

Brain imaging; brain networks; fMRI; dynamic connectivity; functional connectivity; 
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I. Introduction

While interest in dynamically varying properties of resting state brain connectivity has 

grown considerably in recent years [1, 2], the tools applied in these studies still limit the 

scope and power of potential findings. To be sure, there are various conceptual approaches to 

connectivity within the functional imaging community, each with strengths and weaknesses. 

Among these are very detailed, highly-parametrized, nonlinear regional models that tend to 

assume the same response to each stimulus and are applied to only a few regions at a time 

due to the parametric burden [3, 4], linear models of lagged nodal or voxelwise relationships 

[5] and a very extensive literature in whole-brain functional network (or region-of-interest 

(ROI)) connectivity, typically based on covariance between the timecourses of spatially 

distributed networks (or ROIs) that cover all voxels in the brain [6]. Our proposed 

framework extends and reconceives the dynamic variants of this latter approach that are 

based on clustered time-varying measures of functional network connectivity computed over 

sliding windows through network timecourses [7–9]. The existing sliding-window whole-

brain functional-network connectivity (WinFNC) approaches have several limitations that 

our framework mitigates: (1) WinFNC approaches yield very low-dimensional 

representations of intricate dynamics. Although often operating on the whole-brain level, 

computing 1000+ dimensional FNC matrices for each window, the dynamic dimension, i.e., 

the dimension of the state space, in these analyses is typically very low, not infrequently as 

low as 1-dimension. (2) WinFNC approaches ignore the temporal directionality of network 

interactions. Based on covariance, the window-wise computed FNC matrices are indeed 

symmetric, but the fact that they are computed on many time windows can be leveraged to 

obtain notions of directional influence that have to date been underexpelored. (3) WinFNC 

approaches have focused on the whole the whole brain, yielding limited insight into 

specialized dynamical behavior within and between particular functional domains. In this 

paper we introduce a straightforward intuitive approach to analyzing dynamic directional 
functional domain connectivity (ddFDC). This method extends and refines the WinFNC 

approach, operating at a dimensional scale sufficient to capture multiplexed dynamical 

relationships within and between functional domains and capturing directional intertemporal 

influence between functional domains. In an application to resting fMRI data from a large 

balanced schizophrenia study, we find that relationships involving cognitive control (CC) 

networks, subcortical (SC) networks, and the default mode networks (DMN) play unusually 

large roles in shaping subsequent functional behavior throughout the brain. We also find 

significant differences in directional functional information flow between controls (HC) and 

schizophrenia patients (SZ), as well as distinct directional asymmetries among patients.

II. Methods

Our method builds on the common sliding-window approach to studying dynamic brain 

network connectivity [7, 8]. Functional MRI data are preprocessed and, using group ICA 

(GICA) [9], decomposed into a set of functionally meaningful, temporally coherent 

distributed networks that are maximally spatially independent. Subject-specific network 

timecourses (TCs) are also produced. Using a sliding-window though the network TCs, 

time-varying snapshots of whole-brain functional network connectivity (FNC) are produced 

by computing the pairwise correlations between networks on successive windows. Suppose 
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there are N subjects, T windows and M networks. This yields an ordered set of T windowed 

FNCs (wFNCs) for each subject. The networks whose time-varying relationships are 

captured in the wFNCs can be grouped into broad functional categories, or functional 
domains (FDs) (Fig. 1).

Assume there are D functional domains. Typically, this grouping is done before the FNCs 

are computed to allow for more visually interpretable FNC images, in which networks are 

organized by domain along the axes of the matrix image (Fig. 2). Organized in this way, 

FNCs become a disjoint union of D2 rectangles (of which only  are distinct, due to 

symmetry of the FNC matrix) that feature the connections between networks in a specific 

pair of FDs, or joint functional domains (JFDs). These specialized domain-to-domain 

patterns of connectivity (JFDCs), are the main focus of our work. We are interested in the 

time-varying windowed connectivity (wJFDCs) between networks in each JFD, and more 

specifically in the intertemporal influence of JFDCs upon each other.

To probe these questions, we separately cluster the NT observed wJFDCs associated with 

each JFD. This produces a (study-wide) collection of D sets of cluster centroids, and D 
corresponding length-T JFDC cluster-occupancy timeseries for each subject. At each 

timestep, each subject occupies exactly one cluster in each of the D JFDCs. The fundamental 

question of interest is whether the time t network connectivity structure within certain JFDs 

present evidence of informing the time t + Δt connectivity structure within other JFDs. To 

this end, for each subject in the study we induce a complete weighted directed graph 

between pairs of JFDs based on the degree to which cluster occupancies in a target JFDC are 

conditioned upon cluster occupancies in a source JFDC at the immediately preceding 

timestep. The dimension of the FNC the source and target JFDCs are usually different, but 

one strength of our method is that it captures pairwise intertemporal directional information 

flow between data sources and targets of arbitrary dimension. The functional form of the 

measured relationships is also unconstrained, and certainly need not be linear as is so often 

assumed in functional connectivity studies (Fig. 3).

A. Study Participants and Early Data Processing

1) Subjects and Imaging Parameters—Our fMRI data comes from a large (N=314; 

231 male (M), 83 female (F)) multisite study, balanced between schizophrenia patients (151 

SZ) and healthy controls (163 HC) [9]. The subjects were instructed to keep their eyes 

closed during the scan and were not engaged in any specified task. The ages of participants 

ranged between 18 and 60 (mean 37.9). Informed consent was obtained from all subjects 

according to the institutional guidelines the seven participating data collection sites. Imaging 

from six of the sites was performed on a 3T Siemens Trio scanner; the seventh site used a 3T 

GE MR750. A total of 162 volumes of resting fMRI data was acquired for each subject 

using a gradient-echo planar imaging paradigm: FOV of 220×220 mm (64×64 matrix), 

TR=2 s TE = 30 ms, flip angle = 77°, slice thickness = 4 mm, slice gap = 1 mm, voxel size = 

3 mm3. A combination of toolboxes (AFNI1, SPM2, GIFT3) and custom code written in 

Matlab was employed in the pre-processing pipeline. Rigid body motion correction was 

performed with the INRIAlign toolbox in SPM to correct for subject head motion, followed 
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by slice-timing correction to account for timing differences in slice acquisition. Additional 

details can be found in [9].

2) Group ICA and Time-Varying Network Connectivity—Group ICA (http://

mialab.mrn.org/software/gift) was applied to all subjects’ fMRI data with initial model order 

100, from which 47 components were eventually identified as meaningful resting state 

networks (RSNs) [9, 10]. Subject-specific spatial maps and time courses were obtained 

using spatio-temporal regression. The subject RSN time courses were detrended, 

orthogonalized with respect to motion parameters, despiked by replacing outlier time points 

with 3rd order spline fit to cleaner neighboring points, and filtered using a 5th order 

Butterworth filter with a passband of 0.01 to 0.15 Hz.

3) Windowed Functional Connectivity Matrices—Whole brain windowed functional 

network connectivity (wFNC) was evaluated by computing pairwise correlations between all 

47 RSNs on windowed segments of network timecourses using a tapered rectangular 

window of length of 22 TRs (44 seconds), advancing 1 TR at each step. To improve 

correlation estimates on timecourses of shorter length, we impose an L1 constraint on the 

inverse covariance matrix using the G-LASSO framework, with regularization parameter 

optimized subject-wise by evaluating the log-likelihood of each subject’s unseen data in a 

cross-validation framework, yielding 136 47×47 windowed functional network connectivity 

matrices (wFNCs) for each subject [9].

B. Joint Functional Domains (JFDs) and Windowed Joint Functional Domain Connectivity 
(wJFDC)

The 47 identified RSNs were initially organized into seven broad functional domains (FDs) 

[9], which we further consolidated into five: auditory-visual-sensorimotor networks (AVSN), 

cognitive control (CC), cerebellar (CR), default mode network (DMN) and subcortical (SC). 

Networks are arranged along axes of each wFNC matrix image according to domain 

membership, allowing wFNCs to be decomposed into a disjoint union of 25 rectanglular 

blocks determined by domain boundaries (Fig. 4) along each axis.

The domain-pairs bounding these rectangles are called joint functional domains (JFDs), and 

the rectangular blocks of the wFNC corresponding to any particular JFD are called JFDCs 
(or wJFDCs in the windowed case). They consist only of connectivity measures between 

networks in the bounding FDs. Since the wFNCs are symmetric, only 15 of the 25 JFDCs 

contain distinct data (Fig. 4).

C. Clustering of wJFDCs and JFD-Specific Dynamic Connectivity States

At a study-wide level there are NT = (314)(136) = 42,704 observations of each of the D = 15 

JFDCs (N = #of subjects, T = #of windows). Kmeans clustering (squared Euclidean 

distance, 500 replicates, 1500 iterates, number of clusters chosen with the silhouette 

criterion) was applied separately to the 42,704 observations of each JFDC, producing 15 sets 

of JFDC-specific cluster centroids and occupancy measurements (Fig. 5). Every subject has 

15 length-136 cluster occupancy timeseries, the dth of which contains elements in 

{1,2,..,nd}, where nd = #of clusters in the dth JFDC, d = 1,2, …,15. In the current study, nd ∈ 
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{2,..,7}. This yields 15 sets of cluster occupancy rates  for each subject. 

The vector of cluster occupancy rates in each domain always sums to 1 for each subject. The 

JFDC clusters always contain many observations. However, since clustering was done at a 

study-wide level not every subject visits every cluster of every JFDC, ie some occupancy 

rates are zero. The number of clusters that a subject occupies at least once in the dth JFDC is 

denoted by ; the associated non-zero vectors of cluster occupancy rates for each JFDC are 

given as .

D. Conditional Probabilities Between JFDCs

For each subject and each ordered pair Fi, Fj of JFDCs i, j ∈ {1,2,…,15}, we compute

the probabilities

of that subject being in the cth, c ∈ {1,..,nj} cluster of Fj at time t + 1 conditional on the 

subject having been in the rth, r ∈ {1,.., ni} cluster of Fi (i ≠ j) at time t. These conditional 

probability matrices, referred to as transition probabilities, row-sum to one and act like 

Markov transition matrices between JFDC cluster structures (Fig. 6, Fig. 7).

E. Information Flow Between JFDCs

We consider a source JFDC Fi to be informative about a target JFDC Fj if the probabilities of 

occupying clusters in the target at time t + 1 depend heavily on which cluster in the source 

JFDC at time t is being conditioned upon. There are two criteria we require for the metric 

 of intertemporal information flow from Fi to Fj: (i) it should increase in how dissimilar 

the full distribution over target clusters from different originating source clusters, and (ii) 

should also increase in how well clusters of the target separate over clusters of the source. To 

this end, we introduce two informational measures, each tuned to one of the objectives: 

 for the degree of broad distributional dissimilarity and  for the 

degree to which source clusters map preferentially to some specific target cluster. The 

overall information metric  is the average of  and  (Fig. 3, Fig. 8).

Although cluster occupancy rates are of significant stand-alone interest, non-occupied 

source clusters (resp. target clusters) do not distribute over target clusters (resp. are not 

distributed over by source clusters) and do not map preferentially to target clusters (resp. are 

not mapped preferentially into by source clusters) and thus are not relevant inputs to the 

cross-JFDC (xJFDC) information metric. Instead, when there are non-occupied clusters in 

source or target JFDCs we use a reduced probability matrix
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as input to the xJFDC information computations, where  and  are the number 

of source and target clusters the subject has occupied at least once. The L2 distances 

between rows of  capture (pairwise) distributional dissimilarity of source clusters over 

target clusters. Since rows of  sum to 1, the L2 distances between them are bounded in 

. When  we simply average the distances between different rows of  and 

rescale by  to obtain a quantity in [0,1]:

where

,  is the maximum achievable value of 

 for probability transition matrices 

with  rows and  columns. The minimum  occurs when the distribution over 

clusters in Fj is independent of the cluster occupancies in Fi at the preceding timestep. And, 

subject to application of the matrix size correction factor vi,j, the metric peaks at 

when clusters of Fj perfectly separate over clusters of Fi. Note that away from the extreme 

upper and lower bounds of  one can readily find cases in which the full distributions of 

different source clusters over target clusters are pointwise quite dissimilar, even when none 

of the source clusters map with extremely high probability to specific target clusters. 

Conversely, distinct source clusters with very pointwise similar full distributions over the 

target clusters can each strongly separate the target clusters (for example 

. A fair assessment of cluster-level source-target preferential mapping 

specificity requires balanced consideration of both the raw maximum values along each row 

of  and the magnitude of these row-maxima relative to population-level (non-conditional) 

Miller et al. Page 6

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



target cluster occupancy probabilities  of occupied, ie , clusters in Fj. The 

specificity metric, , we employ represents a balance of these considerations:

where

is negative when  and otherwise represents the proportion of the interval between 

the population-wide cluster occupancy probability, , and 1 that is filled by . 

Thus,  is identically 1 when  identically 0 when  and otherwise 

approaches 1 linearly in  with slope, , dependent on . A large value of 

indicates that the average source cluster maps very preferentially to a target cluster, with 

linear correction for the overall occupancy rate of the target cluster.

Finally, we take  to be a convex combination, in our case the mean of  and :

Although clearly , there are many very different ways to produce the 

same level of information flow from one JFDC to another, i.e., . for 

example, if  and , the transition probabilities are completely 

different and yet . The metric is a high-level summary of the degree to which a 

target JFDC at time t + 1 is conditioned upon a source at time t without regard to how this 

conditioning manifests at the more granular level of cluster-to-cluster transition 

probabilities.

F. Cross-JFDC Information Flow Asymmetry

The metric  of cross-JFDC intertemporal information flow is not symmetric in the 

JFDCs: . The signed informational asymmetry between JFDC Fi and JFDC Fj is 

defined as . The absolute informational asymmetry is 

.
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G. Intra-JFDC Dynamism

One concrete situation that can lead to zero intertemporal xJFDC information flow is the 

“degenerate occupancy condition” in which a subject occupies only one cluster in either the 

target or the source JFDC. Although degenerate occupancy leads to identically zero 

information flow, near-stasis in one or both JFDCs, i.e., when a subject spends very long 

contiguous stretches of time in particular source or target JFDC clusters can also constrain 

xJFDC information flow. Negligible xJFDC information flow resulting from subject stasis in 

the source and/or target JFDC is an important phenomenon in its own right. Having a rough 

summary measure of intra-JFDC dynamism however can provide useful context for 

interpreting intertemporal xJFDC information flow. The intra-JFDC dynamism measure di 

for JFD Fi is computed from the square intertemporal Fi-to-Fi transition probability matrix 

,  as the sum of the off-diagonal elements, 

rescaled by 1/ni:

Since all rows of Pi,i sum to one, the maximal possible value for  is ni, and 

rescaling by 1/ni ensures that di ∈ [01]. Diagonal elements of Pi,l contain probabilities that 

the subject has not changed cluster from time t to time t + 1. Off-diagonal elements contain 

the probabilities of switching from one cluster at time t to a different cluster at time t + 1, 

which is a good proxy for the subject’s temporal dynamism (lack of stasis) in JFDC Fi.

H. Null Model for Significance

We computed a null distribution for  by simulating 10,000 pairs of length T = 136 JFDC 

cluster occupancy timeseries, each with occupancies generated according to the cluster 

occupancy probabilities exhibited by two randomly chosen JFDCs from our data. The 

median of the resulting null distribution was ; the 95th percentile significance cutoff 

was  and 99th percentile cutoff was and . The percentile cutoffs decay in T, 

with median = 0.11 for T = 200, median = 0.08 for T = 400 and median=0.06 for T = 800.

I. Diagnosis Effects

Our diagnosis effects are derived from a linear regression model that includes age and 

gender as nuisance covariates. The diagnosis variable is binary with schizophrenia patients 

coded as ‘1’ and controls as ‘0’, so βdiagnosis < 0 represents a negative correlation with SZ. 

We generally report or display the value of βdiagnosis only when its false discovery rate 

(FDR) corrected p-value is less than 0.05.

J. Concise Methods Summary

In addition to standard pre-processing and network decomposition, the framework we have 

proposed requires several additional processing steps and also produces multiple outputs of 

interest. We are therefore provide a concise summary of the chain of methods detailed 
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above. In short, our framework separates domain-level blocks of time-varying FNC matrices 

and identifies, for each, a set of recurrent domain-level “dynamic states” through clustering. 

This enables us to study several measures of domain-scale functional connectivity dynamics. 

First, there is basic cluster occupancy rate information split out over the dynamic states 

associated with different pairs of functional domains (Sections II.B and II.C). We also can 

assess the degree of domain-level connectivity dynamism or dynamic variability (Section 

II.G). Most centrally, the method produces evidence that connectivity between networks in 

certain domains is dynamically shaped by connectivity between networks in other domains 

(Section II.E). Finally, the method allows us to assess the degree of symmetry evident in this 

shaping role of domain pairs upon each other (Section II.F).

III. Results

A. Dynamic Occupancy of wJFDC Clusters

The fifteen JFDCs ranged in dimensionality from 2 (CR-CR) to 247 (AVSN-CC), and the 

42,704 windowed observations of each JFDC split into clusters numbering between 2 

(AVSN-AVSN and CR-CR) and 7 (CC-DMN). The average subject realized 81% of the 

available clusters from each JFDC (Table 1). Our findings regarding schizophrenia and 

JFDC cluster occupancy are consistent with observations at the lower-dimensional whole-

brain level [9, 11–17]. The multiplexing of whole-brain FNCs into multiple JFDCs, 

however, allows identification of more specialized recurring functional relationships that are 

relatively blurred out in whole-brain wFNCs Schizophrenia has broad and significant effects 

on JFDC cluster occupancy (Fig. 9). Whole-brain static and time-varying FNC findings of 

reduced connectivity [9, 12, 18, 19] in schizophrenia are evident at the JFDC level: among 

the clusters that have significantly elevated occupancy levels in schizophrenics are those 

with relatively low magnitude inter-network connectivity (i.e., Cluster 2 of AVSN-AVSN, 

Cluster 1 of AVSN-DMN, Cluster 5 of CC-SC from Fig. 9). Higher-level findings of 

generally reduced connectivity dynamism [14, 17] in schizophrenia at the whole-brain scale 

are also echoed in JFDCs: the number of clusters visited at least once is lower in 

schizophrenia patients for six of fifteen JFDCs (Table 1). The intra-JFDC intertemporal 

dynamism measure is also lower in most JFDCs, significantly so for AVSN-AVSN, AVSN-

CR, ACSN-CC and CC-SC (Fig. 10).

B. Cross-JFDC Information Flow

Cross-JFDC information flow between most pairs of JFDCs is significant relative to a null 

hypothesis of independence (Fig. 11). This degree of interdependence is unsurprising for 

measurements taken on a functionally interconnected brain in which much activation is at 

least somewhat temporally conditioned on other functional connections on the t, t + 1TR 

(1TR = 2sec) timescale. Directional patterns in  means (Fig. 11) indicate that while 

some JFDCs (CC-DMN, CC-CC, SC-SC, CC-SC, AVSN-DMN) broadly influence 

subsequent functional connections throughout the brain. We will call this class of JFDCs 

global catalyzers. In terms of sensitivity to input, most JFDCs are dominantly tuned to the 

global catalyzers. There are some exceptions, for example CC-DMN is quite influenced by 

within-DMN connectivity (DMN-DMN), a JFDC which is not a global catalyzer. Tracing 

this influence forward, we can see DMN-DMN acts as a second-order catalyzer by strongly 
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influencing CC-DMN, the strongest of the global catalyzers. Although not a focus of this 

paper, the second-order influence of intra-DMN connectivity highlights the potential for 

fruitful application of directed graph theory on xJFDC information measures.

C. Cross-JFDC Information Flow Asymmetry

Relatively non-influential JFDCs can either be sensitive to input from the rest of the brain 

(AVSN-SC, CC-CR and CR-CR), i.e., merely shy, or truly insular (AVSN-AVSN), 

exhibiting limited sensitivity to other JFDCs as well as absence of influence. Although there 

tends to be strong intra-domain coordination among auditory-visual-sensorimotor networks 

(Fig. 4, Fig. 9), the particular form this within-domain connectivity takes has very limited 

impact on wider functional relationships in the brain – including JFDCs that in which 

AVSNs are a constituent FD, at least under eyes-closed, resting conditions. Although at the 

full population level, AVSN-AVSN is a relatively insular JFDC, there is evident directional 

asymmetry: AVSN-AVSN connectivity conditions somewhat less weakly on input from 

other JFDCs than the other way around. This asymmetry is even more pronounced for intra-

cerebellar connectivity (CR-CR) which is of almost no interest to other parts of the brain but 

quite responsive to input (Fig. 11).

D. Cross-JFDC Information Flow: Schizophrenia Effects

The most significant effects of schizophrenia on xJFDC intertemporal information (Fig. 12, 

bottom row) flow are negative, and focused in the AVSN-AVSN, AVSN-CC, AVSN-CR, and 

CC-SC. Significant (α < 0.05, without correction for multiple comparisons) negative effects 

of SZ also apply to AVSN-SC, SC-CR, SC-SC and DMN-DMN. This is consistent with 

results from static and dynamic FNC pointing to diminished connectivity in SZ [9, 12, 18–

20], but addresses a higher “supra-network” level of information flow dysfunction that also 

has directional elements. The sensitivity of intra-AVSN connectivity to inputs from broader 

brain connectivity patterns is much higher in healthy individuals (Fig. 12, top row). So much 

so that AVSN-AVSN is a non-insular JFDC in the healthy population. The influence of intra-

AVSN connectivity on the connectivity of other JFDCs is also higher in controls, though 

very limited relative to other JFDCs in both patients and controls.

In both populations the information inflow from other JFDCs into AVSN-AVSN is highly 

variable (Fig. 13, top row), and there is a general trend, consistent with recent results in the 

area of network spatial maps [21], of higher variability in xJFDC information flow among 

patients (Fig. 13, bottom row).

As is visually evident in figures (Fig. 11, Fig. 12) displaying , direct computation of 

cross-JFDC information asymmetry points to asymmetry strongly favoring information 

inflow for AVSN-AVSN and CR-CR in both patients and controls (Fig. 14, top row). The 

magnitude of the AVSN-AVSN directional information flow asymmetries are, however, 

significantly reduced in schizophrenia patients (Fig. 14, bottom right).

IV. Discussion

We have introduced a novel approach to study intertemporally directed information flow 

within and between broad functional brain domains using probability transition matrices 
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between separately clustered time-varying estimates of inter-domain and intra-domain 

connectivity. The framework yields various measures of interest, including the cluster 

centroids for each joint functional domain and the occupancy rates, a within-joint domain 

dynamism measure di evaluated on Pi,i, the high-level non-symmetric cross-JFDC 

information metric , and measures of signed  and absolute  information flow 

directional asymmetry. There are also the more granular cluster-level transition probabilities 

 in each Pi,j which were not reported upon here, but are themselves objects of interest 

that displayed significant group differences (patient vs. control) in our subject pool.

We applied the new framework to a large multisite resting fMRI study which was balanced 

between schizophrenia patients and controls, finding highly significant patient/control 

differences in all measures, generally indicative of reduced information flow, reduced 

dynamism, and attenuated intra-JFD connectivity. The general reduction among patients for 

measures related to connectivity strength and dynamism is consistent with results from other 

studies, and the reduced intra-JFD connectivity and cross-JFDC information flow can be 

viewed as a higher-level analogue of earlier findings, yet another layer of evidence for 

pervasive suppression of potentially informative brain activation among schizophrenia 

patients. We also identified several JFDs shared by both patients and controls, referred to as 

global catalyzers, that play an outsized role in shaping subsequent functional relationships 

throughout the brain. Shy or insular JFDCs, relatively cut off from the chain of cross-JFDC 

influence in one or both directions, were identified as well, although this characteristic was 

not always stable between patients and controls. Global catalyzers (CC-CC), shy (AVSN-

AVSN, for healthy) and insular (AVSN-AVSN for patients) JFDCs, however, feature 

strongly among those whose xJFDC information flow is significantly affected by 

schizophrenia.

These findings provide compelling evidence that schizophrenia not only disrupts 

connectivity at the individual network level, but also significantly distorts directional 

patterns of organizational influence at the broader domain-scale of functional integration. A 

better understanding of healthy information flow and directional influence roles at this wider 

scale is particularly important as it could help clarify the levels at which other variables such 

as cognition and symptoms are more reflective of the disease, and help decouple some of the 

challenges highlighted in the recent research domain criteria (RDoC) initiative of the 

National Institutes of Health [22]. For example, although undirected network-level static and 

dynamic connectivity analyses have not yet yielded biomarkers for specific categories of 

hallucinatory experience (auditory, visual, somatosensory), by tuning domain and network 

resolution (network resolution can be refined or coarsened by adjusting the ICA model 

order), directional domain-scale information flows seem promising candidates for capturing 

distortions – possibly only evident directionally or at the scale of whole domains – that are 

strongly associated with particular psychotic symptomology. We are in fact intending to 

probe this possibility in the near future, initially by disaggregating the auditory, visual and 

sensorimotor domains but also by developing methods of tuning network and domain 

scaling in ways that optimize the analytic power of a method that deals with network 

aggregates in directional ways.
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Although promising, there are of course some limitations to the framework as presently 

implemented. As with any high-level method, ours is only as good as its inputs; all the usual 

caveats apply in regard to preprocessing, network-extraction, window-length and the validity 

of correlation as a metric of network connectivity. The method however, is also distinctively 

sensitive to the initial assignment of networks to functional domains and to choices made at 

the clustering stage. The value and scope of the method would be enhanced by extensions 

such as those enumerated above, and also by further refinements of both the null model and 

the information metric.

In addition to opening up a new line of investigation in brain imaging data as proposed, there 

are a number of areas within the scope of the method itself that we are actively working on 

or have slated for future work. These areas include, but are not limited to:

1. Nonstationarity. Although the inputs to this method are windowed connectivity 

estimates, in this work we use all available measurements to compute the 

transition probabilities Pi,j. Certainly there is no a priori reason to believe that the 

Pi,j’s themselves are stationary, and a dynamical version of this analysis in which 

Pi,j(w)’s are computed separately on sliding windows through the windowed 

JFDC observations seems likely to yield novel insights.

2. Memory Length and Breadth. In this paper we assume that the dependency 

relations between two JFDCs, Fi and Fj, are Markovian: the probability of being 

in cluster c of JFDC Fj at time t + 1 conditional on behavior of Fi requires only 

knowledge of the cluster occupied in Fi at time t. Probing this assumption, 

developing ways to determine the optimal breadth and duration of memory 

(appropriate computation of occupancy probabilities in Fj conditional on Fi 

might require going further back than t − 1, and considering other JFDCs in 

addition to Fi as part of the memory process) and then building longer/broader 

probabilistic memory into the method would constitute an important extension of 

the current framework

3. Directed Graph Theory. As pointed out briefly in III.B, the matrix 

can be viewed as a complete weighted directed graph  with nodes labeled by 

JFDCs. Since intertemporal directionality is embedded in the ’s structure, any 

network or graph metrics computed on  will be straightforwardly interpretable 

(applications of network theory in brain imaging contexts can present 

interpretational challenges as the graphs tend to consist of non-directed, 

temporally static snapshots of nodal connections) and we expect, would produce 

both interesting immediate results and also intriguing new questions.

4. Data. This framework easily accommodates measurements of all types taken 

simultaneously on the same windowed time intervals, allowing potentially 

powerful integration of multiple modalities [23] and multiple time-varying 

features taken from the same imaging modality: the relationships between 

characteristic states drawn from any imaging modality or measurement at time t 
+ 1 can condition, or fail to condition on characteristic states of any other at time 

t. Extending the kind of analysis introduced here into multiple modalities (e.g., 
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simultaneous fMRI-EEG) or types of measurement (windowed spectral 

measurements from fMRI and windowed network connectivity from fMRI) 

seems a promising direction for future research. Also, incorporating task data as 

an augmentation to resting state for the same set of subjects might expose 

important informational roles for JFDCs that appear shy or even insular under 

resting conditions.

5. Statistical Robustness and Null Models. This is a multilayered approach with 

many stages where choices are made upon which results will be dependent to 

some degree. A clearer understanding of the ways in which results are sensitive 

to choices made in early processing stages will be important in applications. The 

null model for significance of the information flow metric can also be refined in 

ways that would allow for more interesting interpretation of the information flow 

results.

V. Conclusion

We have introduced an intuitive, flexible and highly extensible new method of investigating 

brain connectivity that captures information flow and directional patterns of organizational 

influence at the scale of broad functionally integrated domains. This method has allowed us 

to identify domain-pairs whose time-varying connectivity structures play distinguished roles 

in shaping functional relationships throughout the brain, so-called global catalyzers. We 

have also found, conversely, that temporal changes in intra-domain connectivity between 

auditory, visual and sensorimotor networks (AVSNs) – a set of networks that tend to be 

highly inter-correlated even under eyes-closed resting conditions – play a very limited role 

in organizing behavior in the remainder of the resting brain, including behavior that involves 

AVSN connections to other functional domains. The degree of sensitivity that intra-AVSN 

connectivity exhibits to broader functional brain interactions depends on subject clinical 

status: in healthy subjects, intra-AVSN connectivity patterns respond are responsive to 

variations exhibited the relationships of networks in other domain-pairs; in schizophrenia 

intra-AVSN connectivity is insular, it neither influences nor responds to changes in network 

relationships in domain-pairs in which at least one constituent functional domain is non-

AVSN. Intra-cerebellar connectivity (CR-CR, a joint domain consisting of only two 

networks) was shown to be responsive to input but non-influential (a shy joint domain) but 

for CR-CR this property did not vary by subject clinical status. The ability to characterize 

functional domains in terms of both their role in shaping overall time-varying functional 

brain relationships and also their degree of responsiveness to the ambient time-varying 

connectivity environment is a distinctive feature of the method introduced here. We believe 

that, in combination with joint-domain-specific representations of dynamic connectivity, it 

significantly augments the information landscape on which complex brain disorders and 

associated cognitive/behavioral abnormalities can be studied.
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Fig. 1. 
Composite maps displaying focal regions of resting state networks, grouped by functional 

domain [9];
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Fig. 2. 
Population average of connectivity between networks, grouped along axes according to 

broad functional domain. Gridlines bound functional domains along each axis.
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Fig. 3. 
Stylized non-biological toy example of asymmetric intertemporal information flow between 

source and target data computed using the ddFDC methodology introduced here. In this 

example, there are 100 seasonal observations of rainfall and export revenues from a grain 

whose yield suffers when conditions are either too dry or too wet. The grain is stored for a 

period prior to export, so the effect of rainfall on export revenue is lagged. We make many 

simplifying assumptions to increase the clarity of the example: i.e, grain exports are only 

affected by rainfall, margins are very narrow so growers profit only when rainfall is in a 

fixed range, etc. Formal definitions of ,  and  can be found in II.E. (A, top left) 

Forward time mapping from rainfall clusters to export revenue clusters; (A, top right) PR,E 

computed directly from (A, top left); the clusters of rainfall distribute as differently as 

possible over the clusters of grain revenue ( ) and each rainfall cluster maps with 

maximal specificity to some cluster in export revenue ( ). Thus, the intertemporal 

information  from rainfall to grain export revenue is as large as 

possible: . (A, bottom right) On the other hand, the same computation done from 
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export revenue to rainfall yields . Rainfall is indifferent to the previous season’s 

export revenue. The clusters of export revenue distribute identically in forward time over the 

clusters of rainfall, and none maps more preferentially to a given rainfall target than would 

be expected based on the raw distribution of rainfall data. (B) The conditional relationship of 

export revenue on the previous season’s rainfall is designed to have a positive max for 

typical rainfall levels, and to be negative whenever rainfall is below/above fixed thresholds. 

The relationship is very strong and captured easily with our method while methods assuming 

a specific functional form, certainly those assuming a linear relationship would miss it 

completely.
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Fig. 4. 
Population average of static whole-brain functional network connectivity, i.e., using all 162 

timepoints (no windowing) for all 47 functional networks obtained from a GICA 

decomposition of our data. Grid lines bound the original 7 functional domains identified in 

earlier treatments of functional network connectivity in this dataset [9]. Rectangular pull-

outs are the 15 JFDCs arising from the reduced set of 5 functional domains employed here 

(in this study, to modestly reduce overall dimensionality of the analysis, we combined the 

highly interconnected auditory, visual and sensorimotor networks into one larger auditory-

visual-sensorimotor (AVSN) domain.
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Fig. 5. 
Schematic illustration of early-stage processing of our data from fMRI scans to windowed 

FNC estimates (top left); to windowed JFDCs (top right), to JFD-specific dynamic 

connectivity “states” summarizing recurring patterns of connectivity between networks in 

the corrsponding JFDs (bottom right); to information about subjects’ time-varying 

connectivity at a JFD-specific level of resolution.
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Fig. 6. 
Schematic illustration of how intertemporal cross-JFDC probability transition matrices are 

produced, starting with the extraction of dynamic JFD-specific connectivity states from 

windowed JFDCs (top); to computation of the probability, for a given pair of JFDs, that each 

target cluster is realized at time t + 1 given occupancy of each source cluster at time t 
(bottom).
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Fig. 7. 
Array exhibiting one subject’s (56 y.o. female schizophrenia patient) cross-JFDC transition 

probabilities matrices. The rows of the array are labeled by source JFDs. The columns of the 

array are labeled by target JFDs. The colormap is normalized on columns of the array, i.e., 

over target JFDs.
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Fig. 8. 
Information flow from a source with two clusters (at time t) to a target with three clusters (at 

time t + 1). In the zero-information case (left) occupancy of target clusters is independent of 

source cluster identity at the preceding timestep. Here, the source cluster structure provides 

no information about subsequent properties of the target feature:  and , so 

. In a high-information case (right) the occupancy rate of target clusters depends 

heavily on source cluster identity at the immediately preceding timestep. Each of the two 

source clusters distributes differently over the target clusters ( ) and each source 

cluster maps with very high probability to a particular target cluster ( ), 

inducing a high overall measure ( ) of intertemporal information flow from 

source to target.
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Fig. 9. 
(A) Mean occupancy rates of clusters in each JFDC; (B) Significant (FDR-corrected at α = 

0.05 level) SZ effects (red is positive correlation with SZ; blue is negative correlation with 

SZ) on cluster occupancy rates. With the exception of DMN-CR and DMN-DMN, a large 

proportion of clusters in most JFDCs are significantly affected by diagnosis. Actual 

centroids of clusters in four JFDCs (AVSN-AVSN, AVSN-DMN, CC-SC and SC-SC) whose 

occupancy rates are significantly affected by SZ diagnosis are displayed in boxes, with 

arrows from the row containing relevant occupancy rate diagnosis effects. In three of the 

four displayed JFDCs, we see at least one under-connected (low magnitude connectivity 

between many constituent network pairs) cluster centroid with significantly higher 

occupancy among patients (AVSN-AVSN, Cluster 2; AVSN-DMN, Cluster 1; CC-SC, 

Cluster 5). This is consistent with previous findings of diminished whole-brain functional 

network connectivity in SZ patients from both static and dynamic FNC studies. There are 

also novel characteristics of time-varying connectivity evidenced even in the handful of 

JFDC cluster centroids displayed above: AVSN-DMN, Cluster 2 exhibiting strong positive 

connections between AVSNs and most DMN networks is not seen either in the static FNC 

from this data (Fig. 4) or among the whole-brain dynamic connectivity states reported in an 

earlier study [9] that were obtained from clustering the whole-brain wFNCs from which our 

wJFDCs were drawn; CC-SC, Cluster 3 with many strong positive connections between CC 

and SC networks is another recurring pattern of cross-JFDC connectivity that is neither 

evident in static FNC nor in the dynamic connectivity states from [9].
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Fig. 10. 
(Bottom) The distributions (HC blue, SZ red, medians marked with green boxes) of the 

intra-JFDC dynamism measure di; (Top) Schizophrenia regression effects on di for each 

JFDC (bars outlined in red are significant at α = 0.05 level, solid red bars survive FDR 

correction for multiple comparisons at this level). AVSN-AVSN and CR-CR have the lowest 

mean intra-JFDC dynamism. Schizophrenia most strongly suppresses intra-JFDC dynamism 

in AVSN-AVSN and AVSN-CR.
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Fig. 11. 

Population means of xJFDC (row JFDC to column JFDC) information flow , displayed 

where values exceed the 0.05-level null distribution significance threshold: most xJFDCs 

pass this threshold since much activation within the brain is temporally conditioned to some 

extent on other parts of the same brain on the t, t + 1TR timescale. Although some JFDCs 

have broad effects on connectivity throughout the brain, the sensitivity of JFDCs to 

connectivity between other functional units is generally more narrowly tuned: note that most 

columns feature a small number of isolated “hot spots”, while there is a rough uniformity of 

magnitude evident along certain rows Connectivity dynamics, for example, between 

networks involved with cognitive control (CC) and those in the default mode (DMN) play an 

unusually large role in shaping subsequent functional connectivity throughout the brain. 

Other JFDCs to which subsequent connectivity through much of the brain is highly sensitive 

include CC-CC, AVSN-DMN. SC-SC and CC-SC. Intra-domain connectivity between 

auditory-visual-sensorimotor networks (AVSN) and between cerebellar networks (CR), at 

least under eyes-closed resting conditions, show very little effect on subsequent connectivity 

even in the JFDCs in which they are a constituent FD. There is directional asymmetry in 

evidence here, with AVSN-AVSN connectivity conditioning somewhat less weakly on input 

from other JFDCs than the other way around, and intra-cerebellar connectivity much more 

sensitive to broader brain connectivity patterns than it is influential.
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Fig. 12. 
Schizophrenia exerts highly significant negative effects on xJFDC intertemporal information 

flow, applying particularly to AVSN-AVSN and to information outflow from AVSN-CC and 

CC-SC. The sensitivity of intra-AVSN connectivity to inputs from broader brain 

connectivity patterns is much higher in healthy individuals, actually rendering this JFDC 

non-insular in the healthy population. Negative SZ effects falling slightly below the FDR 

cutoff for significance at the 0.05-level apply to information flow both into and out of 

AVSN-SC, and for information flow into DMN-DMN. Displayed patient and control means 

have been corrected for confounding effects of age and gender. Only regression effects that 

survive FDR correction for multiple comparisons at 0.05-level are displayed.
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Fig. 13. 
Cross-JFDC information flow into AVSN-AVSN exhibits the highest inter-subject variability 

in both patients and controls. Patient variability in information both into and out of AVSN-

SC and involving AVSN-CC is somewhat higher than other xJFDCs. Patients, as a group, 

exhibited significantly more variability in xJFDC information flow than did controls (F-

statistic displayed for FDR-corrected α = 0.05 significance level).
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Fig. 14. 
The direction of the higher-magnitude signed information flow asymmetries (top row) is 

relatively stable between patients and controls, but strength is often more pronounced in 

controls. Inflow of information from other JFDCs to AVSN-AVSN strongly exceeds outflow 

in controls, while this imbalance is weaker in patients. This observation also applies to 

several JFDCs with a cerebellar component. Among the JFDCs that show evidence of 

information asymmetry going the other direction: more information outflow to other JFDs 

than inflow from other functional units are CC-CC, CC-DMN and SC-SC.
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