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Qin, C. and Carreira-Perpiñán, M. Á. (2007): ”An empirical investigation of the nonuniqueness in the
acoustic-to-articulatory mapping”. Interspeech 2007, p. 74-77. Best student paper award.
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Can you hear the shape of your mouth? Can this be done without any intrusive or invasive recording

device? Imagine you have collected a set of simultaneous audio and mouth movement recordings for a

human subject. Is it possible to recover movements of the vocal tract shape of the subject from arbitrary

but normal speech acoustics? This problem is formally known as acoustic-to-articulatory mapping or

articulatory inversion. A successful solution to this long standing and unsolved problem can facilitate

useful applications in vocal tract visualization, language learning, speech therapy, and improve state-of-

art recognition, speech synthesis, speech coding. It is known as the signature problem in articulatory

speech processing, which aims to integrate explicitly human speech production knowledge into acoustics

based speech technologies.

The main challenges in articulatory speech processing are attributed to (1) ambiguity or nonunique-

ness in articulatory inversion, i.e., multiple vocal tract shapes could produce a very similar sound, which

makes the inverse mapping one-to-many; (2) speaker variability, e.g., the size and shape of the vocal

xiv



tract vary among subjects; (3) missing data in articulatory data measurements.

In this thesis, I address these challenges in a data-driven approach by using real speech production

data. Firstly, I will present an empirical study of nonuniqueness in articulatory inversion using normal

speech production data and show the nonuniqueness may not be very critical. I will show that a machine

learning algorithm that addresses the nonuniqueness directly is useful for articulatory inversion for

American English rhotic consonant /ô/. Secondly, I will discuss reconstruction of the entire tongue shape

by predictive models and several strategies of adapting such subject-dependent models automatically.

I will show it is possible to reconstruct the entire midsagittal tongue contour realistically from the

locations of just 3 or 4 points on it with submillimetric accuracy. Furthermore, given only a few full

tongue contour or even just portions of them from the new subject, the adapted model can maintain the

submillimetric accuracy and is nearly as good as retraining from scratch using abundant data collected

for the new subject. These successful adaptations using few data avoids time-consuming recording,

segmenting and labeling thousands of ultrasound or MRI images. Thirdly, I will extend a machine

learning algorithm to reconstruct missing articulatory channels from the present ones. Finally, I will

apply our algorithms developed for articulatory inversion to the related problem, inverse kinematics, in

robotics and graphics and show some promising results.
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Chapter 1

Introduction

1.1 Why articulatory speech processing?

Speech is the most natural, convenient, and ubiquitous way of communications. This motivates the study

of automatic speech recognition (ASR) that decodes spoken words into text by computer to facilitate

interaction between human and computer. In mid-70s, Itakura, Rabiner and Levinson proposed the basic

ideas of applying statistical pattern recognition techniques to ASR. Frederick Jelinek and his colleagues

in IBM were the first to apply Hidden Markov Model (HMM) to ASR in early-80s, which quickly became

popular. By 90s, HMM-based ASR started to dominate the field (See [68] for a historical review). Today,

most ASR systems are based on the statistical framework and results developed in the 80s though

significant improvements (e.g. discriminative training, pronunciation model, decoding algorithms, etc.)

were achieved over the past two decades thanks to emerging computing resources and data. However,

the state-of-the-art ASR is still at least an order of magnitude worse than human listeners, especially

when speech is corrupted by noises or free style conversion is allowed, i.e., spontaneous speech.

Mainstream speech technology based on HMM have solely used features derived from the acoustic

signal. This is because acoustics encode all linguistic information and is very easy to collect. However,

the acoustic signal has important limitations, e.g. sensitivity to noises, high variability, etc. In fact,

it is not the only possible representation for speech. Articulatory representation offers an alternative.

Loosely speaking, articulatory features refer to states of articulators, e.g. tongue, lips, jaw, velum, in

the human vocal tract system. There are many different ways to represent articulatory features. In this

thesis, we focus on real, dynamic measurements of articulators that characterize the shape of the mouth

(or the vocal tract). Other representations include vocal tract variables, articulatory gestures, hand-

crafted articulatory features, each has its own strength and limitations (cf. [72] for detailed comparisons).

Articulatory features are inherently related to acoustics. Informally speaking, they offer alternative

1
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Figure 1.1: Human speech production system.

perspective to view speech. To understand why, we need to describe human speech production, i.e., the

process to produce speech using various articulatory organs (see fig. 1.1). Basically, speech production

is a physiological process that generates speech by the motion of loosely synchronized articulators. Take

speech production of a vowel as an example. First, air is expelled from the lung and its pressure triggers

the vibrating mode of the elastic vocal folds. As a result, the air is chopped up into a sequence of puffs,

which are further modulated by the transfer function determined by the shape of vocal tract and result

in a quasi-periodic sound wave. Finally, the acoustic wave radiates from the lips and are picked up

by human ears. Therefore, acoustics are causally related to articulatory features. More crucially, the

physical nature of human speech production endows articulatory representation with several attractive

properties:

1. Articulatory features are useful to classify sounds. First, in articulatory phonetics [78],

vowels can be classified by height, backness of the tongue and degree of lip rounding and consonants

by state of vocal cords, place and manner of articulation, and velum height. Second, according

to acoustic theory of speech production [44], vocal tract shape determines directly the spectral

shape of a sound while the resulting acoustics is often blended with source information encoding

speaker characteristics. In principle, articulatory features provide more discriminative power for

phoneme recognition. 1

1Note one of the biggest challenges in acoustics feature extraction is how to separate the spectral shape from the source
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2. Articulatory features are less variable and more robust. They reflect directly the physical

states of the vocal tract (VT). Acoustics can be viewed as the outcome of simulating a highly

sophisticated physical process consisting of several stages. Modification in any stage could signif-

icantly alter the original signal, e.g. noise. In contrast, articulatory features do not suffer from

any external interference and behave stably especially for critical articulation [104].

3. Articulatory movements are slower and smoother due to physical constraints. This is

an appealing property for statistical modeling and low bit-rate speech coding. For example, they

are quite suitable for modeling with the hidden Markov model, which assumes a quasi-stationary

stochastic process.

4. Articulatory features are more interpretable for speech characteristics. For example,

movement of the second formant from high to low is easily interpreted in terms of articulatory

domain (i.e., tongue moving from the front of the mouth to the back) but more complicated to

explain in acoustic domain, e.g. changes in line spectral frequencies [89].

Despite its appealing property, a fundamental question is how to obtain articulatory information

in the first place. Unlike acoustics which can be easily collected by a high-quality microphone, ac-

quiring articulatory states is much more expensive because most of articulators are not visible, i.e.,

located inside the mouth. Today, various articulatory imaging techniques enable us to record the move-

ment of these articulators, e.g. X-ray microbeam (XRMB), electromagnetic articulography (EMA),

ultrasound, and magnetic resonance imaging (MRI) (see detailed comparisons of these techniques in

section 1.3). However, in practical scenarios, these acquisition equipments can not be assumed available.

A pragmatic solution is to estimate articulatory states from audio. This is the well-known problem of

acoustic-to-articulatory mapping, a.k.a. articulatory inversion. It is one of the most important prob-

lems in articulatory speech processing, i.e., analyzing, modeling, processing speech in the articulatory

domain. There are also some active researches that use visual modality to constraint the mapping, i.e.,

audiovisual-to-articulatory inversion [92]. In this thesis, we assume input from audio only.

Another important question is that can we replace acoustics entirely with articulatory features? The

answer is generally no, at least with articulatory features currently in use. It is true that articulatory

gestures are very important for speech perception. Human can recognize articulatory gestures through

”inverting” acoustics in some unknown way. However, the practical bottleneck is how to obtain the

accurate and reliable articulatory gestures from measured acoustics. Reliable estimation of articulatory

gesture from acoustics is still an open question and the state-of-the-art articulatory inversion system still

can not deliver the satisfactory inversion results. On the other hand, acoustics based speech technology,

information, which is assumed to contain little linguistic information but speaker characteristics.
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e.g. speech recognizers and synthesizers, perform far better than articulatory counterparts as of current

technology, even using the ground-truth articulatory measurements. Besides, acquisition of acoustic

data is far easier and cheaper than that of articulatory data. However, articulatory information has

been proven to be useful to complement acoustics, e.g. integrating articulatory features into existing

acoustic HMM based systems has been proven to reduce recognition errors [166, 73, 72] and increase

flexibility of text-to-speech synthesis [89]. Beyond improving conventional speech technology (e.g. cod-

ing, recognition, synthesis), articulatory features can find very useful applications in speech animation

(e.g. visualizing vocal tract, animated talking head), language learning (e.g. pronunciation training) and

speech therapy (e.g. diagnosis of dysarthria through estimation of the velum height without invasive

and obtrusive articulatory measurements).

1.2 Why data-driven approaches?

As shown in the previous section, speech production is a highly sophisticated physical process. It is

very difficult to develop a comprehensive and accurate mathematical model for such a process that

is characterized by nonlinear dynamics and noise effects. Traditionally, there were many attempts to

modeling speech production mathematically, e.g. Webster’s horn equation, a second-order linear partial

differential equation describing sound propagation in the human vocal tract. However, such model is

often built upon many assumptions, which make it very coarse and difficult to simulate complex speech

production events, e.g. turbulence effects in producing fricative sounds.

Today, it is possible to collect large-scale, simultaneous recordings of articulatory and audio data with

many advanced articulatory imaging techniques. With these real speech production data, data-driven

techniques become convenient and inexpensive tools to explore statistical relationship among

articulators and between acoustics and articulation.

On the other hand, difficult problems in articulatory speech processing can serve as test benches to

examine existing algorithms (e.g. for sequential data learning, missing data reconstruction, dimension-

ality reduction) and inspire new ones.

1.3 Articulatory data acquisition

Data-driven articulatory speech processing requires measured articulatory and acoustic data. Most of

articulatory acquisition techniques available today can be used along with audio acquisition except MRI

(see fig. 1.2–1.3). Representative techniques are briefly reviewed here (see [143, 126, 21] for detailed

reviews).
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Figure 1.2: An X-ray image of midsagittal vocal tract shapes. Note that X-ray does not image soft
tissues very well. X-ray computed tomography is a better alternative because it consists of multiple
X-ray scans.

X-ray. It images dynamic movements of the entire 2D (and possibly 3D) vocal tract shape with high

spatial and temporal resolutions (see fig. 1.2). Thus, it seems to be an “ideal” technique to capture

vocal tract shaping. However, it is rarely used in speech research because long-term exposure to X-ray

radiation is highly dangerous.

X-ray microbeam. It radiates the subject with a narrow, high-energy X-ray beam to track 2D posi-

tions of gold receiver coils attached to key articulators, e.g. lips, tongue, jaw. It can offer high temporal

resolution up to 100 Hz that is sufficient to capture rapid movements of articulators during sound pro-

duction. However, it only provides spatially sparse information — a few fleshpoint measurements about

shape of upper vocal tract. Also, XRMB equipment is expensive, which limits its popularity.

Electromagnetic articulography. It tracks locations of EMA sensors attached to articulators with

electromagnetic field and thus has no risk of radiation poison. It is often used in speech production

studies and is a principal alternative to XRMB. 3D EMA systems become available recently to measure

lateral information of the VT.

Ultrasound. It can image the entire 2D tongue shape very well except the anterior tongue tip with

high temporal resolution (up to 100 Hz). It is noninvasive and safe. But it does not image any other
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important articulator, e.g. lips. jaw, velum, and parts of the tongue can be hard to see. Besides,

ultrasound images typically contain speckle noises, making it difficult to extract tongue contours from

them.

Magnetic resonance imaging. It is also a safe and noninvasive technique. It can provide high spatial

solution to capture the entire VT including pharyngeal structures by a powerful magnetic field. However,

its temporal resolution is very poor and thus it is unable to record dynamics of speech articulation though

real-time MRI is under development [21] and might be a promising technique. The biggest problem of

MRI is the difficulty to record with audio simultaneously due to scanner noises. Also, MRI recording is

very expensive.

Unfortunately, no state-of-the-art articulatory imaging technique provides “ideal” articulatory mea-

surements (high temporal and spatial resolution, entire 3D VT shape, cheap, noninvasive, unobtrusive,

and easy to use). This poses significant challenges in data-driven articulatory modeling and processing.

1.4 Challenges and our efforts

In this section, we list several major challenges in articulatory speech processing in particular for artic-

ulatory inversion and our efforts to address them.

Challenges.

• Nonuniqueness Conventionally, this refers to nonuniqueness of the instantaneous acoustic-to-

articulatory mapping. It means certain sounds may be produced in very different ways in the

articulatory space. This is the signature problem of articulatory inversion that plagues many

inversion algorithms.

• Variability It is a general challenge to all speech research. It consists of intra-speaker and inter-

speaker variability. Sources of variability include age, accent, health, social status, etc. Even the

same utterance repeated by the same speaker in the same recording session could result in different

acoustics and possibly different vocal tract shapes. In articulatory speech processing, many works

carry out experiments on data from a single speaker and thus disregard inter-speaker variability.

Therefore, an important question is how to generalize the mapping estimated from one speaker

to another one. This is the problem of speaker adaptation.

• Missing data There are two types of missing data in articulatory measurements. The first

missing data refers to incomplete measurements of the VT shape by many articulatory acquisition

techniques (e.g. EMA/XRMB only provides sparse measurements of upper vocal tract shapes;
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Figure 1.3: State-of-the-art articulatory acquisition technique. Top left : X-Ray microbeam (picture
from University of Wisconsin). Top right : EMA (picture from University of Edinburgh); Bottom left :
Ultrasound. Bottom right : MRI (picture from SAIL, University of Southern California).
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ultrasound only images the outline of the tongue but not any other articulator). The second

missing data is attributed to articulatory tracking errors (e.g. in EMA/XRMB, some pellets

could fall off or displace, or could be mistracked over long-term recordings; in ultrasound, apex of

tongue are often poorly imaged and so are other parts of tongue occasionally).

• Coarticulation It refers to the assimilation of the place of articulation of one speech sound to

that of an adjacent speech sound. This increases significantly the variability of speech articulation

because physical realizations of vocal tract shapes and acoustics for one sound depend on its

phonetic context whose combination could be enormous. On the other hand, this may be a blessing

to the algorithm design because this introduces another constraint — temporal smoothness for us

to leverage, which hopefully can resolve or alleviate the instantaneous nonuniqueness.

• High-dimensionality Measurements of the vocal tract shape in various key articulators result in

high-dimensional articulatory vectors in particular when incorporating 3D information. However,

normal speech articulation is highly constrained and many articulators (e.g. lower lip and jaw)

are physically coupled. Consider producing the syllable /sa/. The jaw typically rotates around

some axis and traces a 1D curve despite the 2D Cartesian measurements of the jaw. Therefore,

speech articulation may be characterized by many fewer variables and hence ambient articulatory

features can be assumed to lie in a low-dimensional speech manifold.

In summary, to date articulatory speech processing is still an open area. A lot of open research

questions are yet to be answered. Research in this direction is promising because human seems to

be able to solve inversion effortless (at least for sounds relevant to speech). For example, infants are

able to learn their mother tongue through babbling. Or, in voice mimicry, a foreign speaker is able

to mimic the voice of a reference speaker without visualizing the tongue movement of the reference

speaker. Another similar example is the Million Dollar Recovery Machine [127]. These evidence implies

good “code breaking” algorithm exists but yet to be discovered.

Our efforts. We address several challenges in this thesis: nonuniqueness, variability, missing data.

1.5 Structure of thesis

The thesis consists of four parts.

Part I (chapters 2–4) is dedicated to articulatory inversion. Chapter 2 presents empirical study on

nonuniqueness. Chapter 3 compares acoustic features and parameterization for articulatory inversion.

Chapter 4 presents a machine learning algorithm to articulatory inversion.
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Part II (chapters 5–6) is dedicated to tongue reconstruction. Chapter 5 describes predictive modeling

of tongue shapes. Chapter 6 presents algorithms to adapt the predictive models of tongue shapes.

Part III (chapter 7) is dedicated to missing data reconstruction. Chapter 7 describes our probabilistic

approaches to fill in XRMB mistracks for articulatory databases

Appendix C is dedicated to trajectory inverse kinematics in robot arms, a problem related to artic-

ulatory inversion.



Chapter 2

Empirical study of nonuniqueness in

articulatory inversion

2.1 Introduction

The acoustic-to-articulatory mapping problem, or articulatory inversion, consists of recovering the se-

quence of vocal tract shapes that produce a given acoustic speech signal [132]. The forward articulatory-

to-acoustic mapping transforms a vocal tract (VT) shape or the articulatory configuration into an acous-

tic signal. It can be implemented computationally in various ways based on the acoustic theory of speech

production [44]. For example, the VT can be modeled as a concatenation of several straight acoustic

tubes with time-varying cross-sectional area function A(x) extending from the glottis (x = 0) to the

lips (x = L), where L is the length of the VT. Sound wave propagation in the VT can be described by

Webster’s horn equation, a second-order linear partial differential equation governing the relationship

between the pressure (and volume velocity) as a function of x and a given A(x). One can use this

equation to compute the acoustic signal resulting from a given A(x) for some glottal excitations. It

can be shown that for lossless vocal tracts with fixed boundary conditions, the area functions A(x) and

1/A(L − x) (where L is the length of the vocal tract) produce the same acoustics. Thus, in theory the

forward mapping is not only highly nonlinear but also many-to-one, i.e., different VTs can produce the

same acoustics (as evidenced by ventriloquists). This makes its inverse not only highly nonlinear but

also one-to-many or multi-valued (See fig. 2.1).

A solution (even partial) of this problem would have important applications in speech recognition,

synthesis and coding, and language learning and speech therapy. For example, in speech coding, one

This chapter is mainly based on references [108, 112]

10
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Figure 2.1: The acoustic-to-articulatory mapping problem: one VT configuration produces a unique
acoustic signal, but certain acoustic signals may be produced by multiple VT configurations. (After
[24])

can replace spectral parameters with slow-varying articulatory parameters [131]. In automatic speech

recognition (ASR), articulatory features could be used to augment the existing acoustic features to fur-

ther improve recognition performance [166, 46]. In articulatory speech synthesis [129], the articulatory

model converts a set of VT shape controlling parameters to a VT area function, which is then used to

generate a voicing signal by filtering the source signal as often seen in a voice mimic system [45]. Finally,

knowledge of speech sound articulations can provide visual aids for language learning and therapy [13].

Articulatory inversion is a long-standing problem and remains unsolved, in particular for unvoiced

sounds. The problem is hard because the inverse mapping is strongly nonlinear and multi-valued, i.e.,

multiple vocal tract (VT) shapes can produce the same acoustics—unlike the forward, or articulatory-to-

acoustic, mapping, which though nonlinear is uni-valued. Many techniques have been proposed over the

years to solve it (see [132, 24, 122] and also chapter 4 for reviews), some using mapping approximators

(e.g. neural nets), while others try to address the multi-valued nature of the mapping directly (e.g.

codebooks or density models).

In this chapter, we perform a systematic study of the nonuniqueness of the inverse mapping using real

human speech production data (for a single speaker). The traditional evidence for the nonuniqueness

of the inverse mapping can be summarized as follows.

Articulatory compensation. One example is the bite-block experiment, where a speaker is capable

of producing acoustic signals perceptually close to the intended sounds even when the jaw is fixed in an

unnatural position by a bite-block [88]. Another example are ventriloquists, who can produce intelligible

speech without moving their lips.
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Theoretical or modeling studies. Use of Webster’s horn equation shows nonuniqueness. Com-

putational studies based on articulatory models also indicate nonuniqueness, e.g. Atal et al. [9, 132]

manipulated an articulatory model to demonstrate how very different VT shapes could produce acous-

tics with nearly identical values of the first three formants. Note that tongue shapes produced by the

articulatory model Atal used in [9] could be unrealistic.

The American English /ô/. Speakers of rhotic dialects of American English use many different

articulatory configurations for the approximant consonant /ô/ (the ‘r’ as in ‘perk’ or ‘rod’), which are

all acoustically characterized by an extremely low frequency of the third formant (often close to that of

the second formant). These configurations differ most in the palatal constriction and have traditionally

been divided into contrasting categories of retroflex (tongue tip raised, tongue dorsum lowered) and

bunched (tongue dorsum raised, tongue tip lowered), though there really seems to exist a continuum

between them [155, 43]. These different configurations occur both within and across speakers: some

speakers may use one type of configuration exclusively while others switch between two or three different

types in different phonetic contexts and according to prosodic variations.

However, it is known that human articulation is highly constrained, particularly for the tongue. For

example, as shown by Stone and others [144, 145, 146], the shapes that the tongue typically adopt

during speech production are sufficiently constrained.

There also exist some arguments for the uniqueness of the inverse mapping. For example,

Ladeforged et al. [79] stated “Whenever a speaker produced the vowel /i:/ as in ‘heed’, the body of

the tongue always raised up towards the hard palate. Whenever anyone produces the vowel /A:/ as in

‘father’ the tongue is always low and somewhat retracted. In fact, with a few exceptions, the articulatory

positions used by different speakers producing a given speech sound are always very similar to one

another.” Another indirect evidence is that many different computational approaches perform similarly.

For example, most techniques for articulatory inversion yields similar reconstruction errors (around 2

mm), whether they use methods for uni-valued mappings (e.g. neural networks) or for multi-valued

mappings (e.g. codebooks or density models).

Therefore, the question of to what extent does nonuniqueness occur in normal human speech re-

mains unclear, because (1) articulatory models are only crude approximations to the geometry of the

human VT, (2) the vocal acrobatics of ventriloquists and bite-block experiments are not representative

of the typical behavior of the human VT, and (3) the /ô/ remains an isolated, exceptional case. The

only way to answer the question is by studying large amounts of human articulatory data, which have

become available in recent years (Wisconsin X-ray microbeam database [154], Multichannel Articula-

tory database [161]— though none of these two databases provide information about the lower VT).
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We approach the problem by analyzing simultaneously recorded articulatory and acoustic data using

statistical machine learning techniques. The goal of this chapter is to report such a study. It is worth

noting that our work on nonuniqueness has been extended by others [98, 3].

2.2 Nonuniqueness in the full 16D articulatory space

2.2.1 Methodological setup

Wisconsin X-ray microbeam database (XRMB) provides pairs (x,y) for articulatory vectors x and

acoustic vectors y (see appendix A for details about this database). Our basic idea is to fix one

acoustic vector yn and search the database for articulatory vectors {xm} that approximately map to

yn (inversion); we call this the inverse set for yn. Then, a clustering algorithm determines whether the

point cloud {xm} is unimodal or not. Repeating this for every acoustic vector y allows exploration of

the nonuniqueness of the inverse mapping for a full range of sounds. Let us consider each step in detail.

Inversion. This requires a distance between acoustic vectors y. We use linear predictive coding

(LPC) coefficients because they are closely related to the vocal tract spectral envelope, which allows

direct visualization of spectral differences and formant structures; and because they have been shown to

perform well with articulatory inversion techniques (see details about acoustic features in chapter 3 and

appendix B). As for acoustic distance d(y,y′) we use the Itakura distance [118] 1, which emphasizes

the role of the formants and is a reasonable approximation to a perceptual distance (see appendix B

for more details about Itakura distance). In practice, we found that use of Itakura distance reliably

returns a set of ambiguity frames that sound very similar to the target frame. One alternative to Itakura

distance is the Itakura-Saito distance [65], which is a measure of the perceptual difference between an

original spectrum and an approximation of that spectrum. This distance is empirically found to be

highly correlated with human perception [14]. In our experiments, we found the inverse sets returned

by using these two distances differed insignificantly. Therefore, we fixed the Itakura distance in this

chapter. The VT shape representation is simpler: each component of the articulatory vector x is the

horizontal or vertical coordinate (in mm) of a pellet. Next, we fix a reference distance r for which

we consider two acoustic vectors to be roughly the same sound. r = 0.1 guarantees that the inverse

set returned belong to the same sound category. This is validated by observing that feature vectors

for consecutive frames in an utterance are a distance 0.06–0.1 apart. On the other hand, very big r

would return the entire dataset as its inverses and cluster structures would be obscured. In practice, we

found r = 0.1 would lead to an excessively small inverse set for majority of acoustic frames and hence

1We used the routine distitar.m in the Matlab package VOICEBOX to calculate the Itakura spectral distances between
two sets of LPC coefficients.
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make the subsequent clustering unreliable. In practice, we found 0.2 ≤ r ≥ 0.4 is valid by trial and

error. In this section, we chose r = 0.4. While the specific set {xm} of articulatory vectors returned

for an acoustic vector y depends on r, the output of the clustering algorithm does not as long as r is

neither too small (too few x are returned, erasing clusters) nor too large (too many x are returned,

obscuring clusters). An approximate inversion of this type is unavoidable given the discrete nature of

the data. The search strategy goes back to the use of articulatory codebooks. Roweis [127] proposed

a similar search strategy using a Mahalanobis distance but returning a fixed number K of neighbors,

which is much harder to estimate since K depends on the particular acoustic vector y. Fixing K nearest

neighbors for each acoustic frame is very likely to introduce some outliers (frames with different phone

identity to the reference one) and biases in clustering analysis. The assumption of our method is to

collect all frames produced under various contexts and in the different utterances but correspond to the

same or similar sound to the reference frame. Also, it is hard to set K, i.e., K that is appropriate for

vowels may be inappropriate for consonants. On the other hand, ǫ-ball is more suitable since it uses

the direct acoustic distance measure (Itakura distance) to differentiate frames. Frames with the same

or similar phone identity will causally have small distance and otherwise large distance (for different

phone). In summary, the inversion for an acoustic vector y returns a set {xm : d(ym,y) ≤ r}.

Clustering. The large size of the database requires an automatic procedure to determine whether the

resulting point cloud {xm} is multimodal. The complex shape of the cloud and the fact that we do

not know how many clusters it contains prevents us from using parametric models such as a Gaussian

mixture. Instead, we use a nonparametric kernel density estimate with Gaussian kernel and bandwidth

σ, i.e., we define a density p(x) ∝ ∑

m G
(

x−xm

σ

)

. Inspection of many point clouds suggested using

σ = 6 mm (again, this number is chosen by trail and error to ensure the approximated density is neither

too spiky or too smooth. We found empirically that the results were not sensitive to small variations of

σ). Finally, we find the modes of p(x) using a mean-shift algorithm [23], which iterates a hill-climbing

algorithm initialized at every xm and collects all the resulting, distinct modes (see section 4.3 for details

on derivation and iteration). Strongly unimodal clouds {xm} yield a single mode while clustered or

elongated clouds yield several modes.

2.2.2 Experimental results

Dataset. We use the XRMB [154], which records, simultaneously with the acoustic wave, the positions

of 8 pellets in the midsagittal plane of the VT (see fig. 2.2), sampled at 146 Hz, for various types of speech

(isolated words, prose, etc.). The XRMB measurement error for the pellets is 0.7 mm (see appendix A

for more details about this database). We use LPC of order 20 to obtain an accurate formant structure



15

(for order 12, F3 is smoothed out in e.g. /ô/). The acoustic feature vectors use a window and step size

to yield 146 Hz as well; we removed silent frames by endpoint detection, a procedure to detect and

remove silence from an utterance. There are many algorithms developed for endpoint detection, e.g.

zero-crossing rate [118]. In this chapter, we adopt a simple but effective strategy that discriminates

silent and nonsilent speech frames by vector quantization on frame energy (see appendix B for more

details). More accurate decisions can be obtained through the time-aligned phone level transcription

for an utterance if available. We use a single speaker (jw11, male with Midland dialect of American

English, 90 utterances including isolated words, prose passages, etc.), resulting in a dataset of 45 000+

vectors (x,y) with x ∈ R
16 and y ∈ R

20.

Figure 2.2: Wisconsin X-ray microbeam database. Left : pellet locations in the XRMB. Right : plot of
the entire dataset for speaker jw11; each pellet’s data uses a different color and shows a contour line of
one standard deviation centered at its mean.

Fig. 2.3 shows the result of inverting an acoustic vector y corresponding to the sound /T/. The cloud

{ym} of acoustic vectors at distance ≤ r = 0.4 is strongly unimodal but the corresponding cloud of

articulatory vectors {xm} is clearly multimodal, and our mode-finding algorithm detects this (modes in

green). The LPC spectral envelope confirms the acoustic similarity of the cloud and the VT representa-

tion shows the corresponding VT shapes to be significantly different. Thus, widely different VT shapes

produce approximately the same acoustic sound /T/, indicating nonuniqueness of the instantaneous

inverse mapping in this particular case. It is known that use of neighboring acoustic frames may help to

reduce nonuniqueness. We verifie this by running same experiments with dynamic features (∆, ∆2) 2.

2Use of dynamic features is a common and useful practice in speech processing. Basically, the dynamic features can be
computed by a linear regression on the static features. More details can be found in appendix B and [118].
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These dynamic features did not separate the acoustic cloud (if they did, this might have disambiguated

the VT shape). We did not find significant difference to using static features.

Fig. 2.4 shows several other sounds for which we find multimodality (/ô/, /l/, /w/), again clearly

showing similar spectral envelopes (with Itakura distances < 0.1) but qualitatively different VT shapes,

in particular the tongue. In contrast, fig. 2.5 shows several sounds for which the mapping is unimodal

(/æ/, /u:/, /y/): the VT shapes are essentially the same for a given acoustic vector (with Itakura

distances up to 0.5). In each sound, the acoustic vectors shown come from different utterances and

different contexts, i.e., they are not just consecutive frames in the same utterance.

While this demonstrates the use of multiple VT shapes to produce the same acoustic sound for

certain sounds, how frequently does nonuniqueness occur overall? We found that around 20% of the

acoustic vectors yield a multimodal cloud in articulatory space. This suggests that, while nonuniqueness

does happen, by and large it is an infrequent situation.

Fig. 2.6 gives further indirect evidence for nonuniqueness. For each acoustic vector we computed the

standard deviation per dimension of articulatory space (specifically, 1
16

√
λ where λ is the top eigenvalue

of the 16 × 16 covariance matrix of the articulatory cloud, i.e., the principal variance) and plotted

their distribution. If the articulatory clouds were strongly unimodal, we would expect a symmetric

distribution, but instead the distribution is skewed with a long right tail. This indicates that, while

most articulatory clouds have a standard deviation ≈ 7 mm, a small proportion has a larger std deviation

(up to 25 mm).

2.3 Nonuniqueness in individual 2D articulatory spaces

In this section, we use the similar approach as in section 2.2.1 to study the nonuniqueness of individual

articulators. As noted earlier, nonuniqueness of the entire VT shape does not imply nonuniqueness of

each articulator. Likewise, a Gaussian mixture in XY space with modes at (±1, 0) only has one mode

in Y space. We already noted from section 2.2 that the same sound could be produced by very different

tongue shapes but with almost the same upper lip position. As before, the basic idea is to fix one

acoustic vector yn and search the database for its inverse set, i.e., all articulatory vectors {xm} that

approximately map to yn (inversion). Then, we apply a clustering algorithm to determine whether the

inverse set {xm} in each articulator’s 2D space (e.g. ULx and ULy) is unimodal or not, and compute

shape statistics from the inverse set for each articulator. Repeating this for every acoustic vector yn

in the database allows an exploration of the nonuniqueness of the inverse mapping for a wide range of

sounds, and a characterization of the geometry of the inverse set. Let us consider each step in detail.
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Figure 2.3: An example of nonuniqueness in articulatory space for a reference acoustic vector y =
/T/ (red, utterance tp004 “things”). Top left : point cloud {ym} in acoustic space with d(ym,y) ≤ r
(containing ∼ 400 points), clearly unimodal. For further resolution, we show points at distances r, r/2,
r/4 in different colors (blue, cyan, magenta, respectively). Top right : corresponding point cloud {xm}
in articulatory space, clearly multimodal (modes in green). Bottom left : {ym} as spectral envelopes.
Bottom right : {xm} as VT shapes (we fit a spline to the 4 tongue pellets for visualization). The bottom
plots show a subset of the curves to avoid clutter.
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Figure 2.4: Examples of sounds showing multimodality. Spectral envelopes: magnitude (dB) vs
frequency (Hz); VT shapes: X (mm) vs Y (mm). Utterances: /ô/, tp009 “row”; /l/, tp037 “long”;
/w/, tp044 “work”. For /ô/, the well-known retroflex and bunched tongue shapes [155, 43] are evident.
We show only a very small subset of the curves and points in the cloud to avoid clutter; color scheme
as in fig. 2.3.
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Figure 2.5: Examples of sounds showing unimodality. Utterances: /æ/, tp001 “has”; /u:/, tp001
“school”; /y/, tp040 “you”.
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Figure 2.6: Histogram of the cloud width (standard deviation per dimension) for the inverse mapping.
The inset blows up the right tail.

2.3.1 Methodological setup

Searching for multimodality in the inverse set in each articulator’s space. We use same

acoustic distance metric and vocal tract shape representation as in section 2.2.2. Here, we fix an

acoustic reference distance r = 0.2 for which we consider two acoustic vectors to be roughly the same

sound. Recall that in section 2.2.2 we used r = 0.4, but further analyses indicate that this may be

a bit large and include some frames that have different phonetic identities in the inverse set, hence

affecting the mode search. We find that the size of the inverse set varies considerably depending on

the acoustic vector, so that searching for the K nearest vectors as in [127], instead of for those vectors

with d(y,y′) ≤ r, results in missing true inverses or including false inverses depending on the value of

K. We also discard those acoustic vectors whose inverse set contains less than 10 vectors 3 so as to

obtain meaningful statistics. An approximate inversion of this type is unavoidable given the discrete

nature of the data. As before, we use σ = 6 mm; we found this to be a reasonable value based on visual

inspection of the 2D inverse sets.

Shape statistics of the inverse set. The number of modes gives only partial information about the

geometry of the inverse set. For example, counting number of modes alone can not easily differentiate

multiple separated modes and a quantized representation of a ridge of density because both cases could

return comparable number of modes (see fig. 2.9). If the geometry of the inverse set is a manifold

3This number is determined empirically.
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of dimension zero, it can consist of one or more tight clusters (and so one or more modes). If it has

dimension one and is thus elongated, it may also consist of one or more modes along it. Therefore, we

report additional shape statistics for each inverse set {xm} (for a given acoustic vector) based on its

covariance matrix. By doing this, it is possible to further classify inverse sets into three cases bases on

the intrinsic dimensionality of inverse sets. Its eigenvalues λ1 ≥ λ2 of the covariance matrix measure

the spread of the inverse set along its principal axes. If λ2 ≈ λ1, the inverse set is usually distributed

as a round cloud. If both λ1 and λ2 are quite small, the inverse set is tightly concentrated and may be

considered a zero-dimensional manifold. If λ2 ≪ λ1, the inverse set has an elongated shape, perhaps

corresponding to a 1D manifold. These shape statistics only depend on the acoustic reference distance

r, but on no other parameters (e.g. σ, since they are not obtained from the kernel density estimate).

We also explore visually the inverse sets for many acoustic vectors to try to characterize their shape.

2.3.2 Experimental results

Dataset. We use the same dataset as in section 2.2.2. Due to the fact that LPC is not effective at

modeling unvoiced sounds, e.g. fricative and plosive, we eliminated those unvoiced frames (roughly 5%)

from the original dataset of 45 760 vectors, making the final dataset 43 260 vectors.

Exploratory analysis of the geometry and dimensionality of the inverse set. Fig. 2.7 shows

the distributions of the square-root of λ2 vs λ1 (in mm) for selected articulators and for the entire VT.

Each point corresponds to one acoustic vector and is colored according to the number of modes of its

inverse set. Points can lie roughly on the diagonal or below and to the right of it, corresponding to

circular and elongated shapes, resp. Table 2.1 lists the percentage of frames with 1, 2 or more modes

in each articulator space and in the entire VT space:

This shows that multimodality occurs in all articulators, i.e., for each articulator there are acoustic

vectors for which multiple VT shapes exist that differ in that articulator (and possibly others). As noted

in section 2.2.2, the percentage of multimodal frames in the entire VT shape is small (here, 21.9%).

Multimodality is very infrequent for UL, MNI, and MNM (upper lip, teeth), which mostly show circular,

tight inverse sets, that may be considered as 0D manifolds. Multimodality is more frequent for the

tongue (T1–T4, in particular the tip, T1) and the lower lip (LL).

Fig. 2.8 shows the histogram of each square-root eigenvalue for individual articulators and for the

entire VT. T1 to T4 and LL have higher variability than other articulators (UL, MNI, MNM). Many frames

satisfy
√

λ3 ≤ √
λ2 ≤ √

λ1 ≤ 4 mm and can be considered as tight inverse sets. The full-VT histogram

shows that λ1 is typically quite larger than λ2 and λ3, and that the latter are more comparable. Thus,

many inverse sets in the 14D space are somewhat or considerably elongated in 1D; this can also be seen
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Figure 2.7: Scatterplots of the eigenvalues (
√

λ2 vs
√

λ1) of the covariance matrix of the inverse set
for some articulators. The colors (blue, cyan, magenta) indicate the number of modes (1, 2, 3+, resp.)
for each inverse set.

modes UL LL MNI MNM T1 T2 T3 T4 all

1 99.6 93.1 99.5 99.8 78.3 88.3 89.1 91.4 78.1
2 0.4 6.7 0.5 0.2 17.6 10.2 9.6 7.9 16.7

3+ 0 0.2 0 0 4.1 1.5 1.3 0.7 5.2

Table 2.1: Nonuniqueness percentages for speaker jw11 in XRMB.



23

in the 2D projections in fig. 2.9. They are particularly common with the lips and teeth but also with the

tongue. We suspect this may be the result of rigid 1D motion (for example, the jaw can mostly rotate

around its axis, so the lower teeth track a circle) of an articulator that has little effect on the acoustics,

or more generally a coordinated motion of several articulators. Finally, as reported in section 2.2, we

also find clearly multimodal sets with two or more tight clusters (0D manifolds).
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Figure 2.8: Left, middle: histograms of
√

λ1 and
√

λ2 for each articulator. Right : histogram of
√

λ1,√
λ2,

√
λ3 for the entire vocal tract.

Fig. 2.9 shows inverse sets (in the tongue 2D spaces) representative of the variety of shapes we find:

compact unimodal (e.g. vowels), compact multimodal (e.g. “the” or /ô/ in “row” or “real”), or elongated

1D shapes (e.g. glides /l/, /w/) corresponding to quantized representation of a ridge of density. Other

sounds (e.g. /m/) seem to show very complex tongue shapes.

In summary, we find most inverse sets are compact unimodal, but among the remaining ones, we find

many that are elongated in a 1D shape (possibly indicating rigid motion of a non-critical articulator)

or that consist of two compact but separated clusters (distinct 0D manifolds). Beyond this, we find sets

with more complex shapes too.

2.4 Discussions

Relation with critical articulators. The issue of nonuniqueness of the vocal tract shape is related

but not identical to that of critical articulators [104]. The latter refers to the sensitivity of the acoustics

as a function of small changes in different articulators. For a given phoneme, a critical articulator is one

such that motions of it can strongly alter the sound, while motions of a non-critical articulator have a

small effect on the sound. For example, the lower lip is critical for producing /b/ (since slightly opening

the lips alters the acoustics strongly), but the tongue dorsum is not; this is reflected in a low variance

of the lower lip’s position over different realizations of /b/ sounds. In contrast, nonuniqueness (strictly
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Figure 2.9: Sample plots of the inverse sets (blue dots) for a given sound yn in the XRMB (speaker
jw11) in the space of T1 to T3, density contours, modes (green dot) and palate (black line). The red
mark is the articulatory vector xn corresponding to the sound.

defined) means entirely different vocal tract shapes produce exactly the same acoustics. Depending

on how loosely we define nonuniqueness (i.e., how much acoustic variation we tolerate), a non-critical

articulator may or may not result in nonuniqueness. More importantly, a critical articulator need

not be uniquely determined. For example, the tongue body in /ô/ has a bimodal distribution of two

tight clusters; thus, while small variations of the tongue can change the acoustics significantly, entirely

different tongue shapes result in almost the same acoustics.

2.5 Summary

We have presented the first systematic, large-scale studies of nonuniqueness using articulatory data for

normal speech from the XRMB. Empirical searching for nonuniqueness in the full articulatory space

gives direct, quantitative evidence of the presence of nonuniqueness of the inverse mapping in normal

human speech; but also suggest that, while some sounds are indeed produced in multiple ways, often

a unique VT shape is used. This is also consistent with the fact that most techniques for articulatory

inversion yield similar reconstruction errors (around 2 mm), whether they use methods for uni-valued

mappings (e.g. neural nets) or for multi-valued mappings (e.g. codebooks or density models). In addi-

tion, our results of refined searching for nonuniqueness in individual articulatory spaces suggests that
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nonuniqueness affects all the vocal tract articulators that we considered (in particular the tongue). How-

ever, for any given acoustic sound some or even all articulators may be strongly constrained. The set of

articulatory shapes that correspond to a given sound (within a small Itakura distance in acoustic space)

is usually tightly concentrated around a roughly spherical region in articulator space (dimension 0). We

do find many sounds that show more complex shapes: multimodality (dimension 0), very elongated in

a straight or curved path (dimension 1), or even more complex.

While we think our work is the first systematic, large-scale study of nonuniqueness, it is important

to note its limitations, which future studies may improve upon: (1) We considered a single speaker from

the XRMB, and did not study the relevance of the acoustic context for the cases where nonuniqueness

occurred. (2) The VT representation provided by the XRMB is incomplete, lacking data about the

lower VT. It is thus possible that sounds that are produced with the same upper VT shape do differ in

the lower VT, thus increasing the frequency of nonuniqueness. Techniques such as dynamic MRI may

offer a full representation of the VT in the future. (3) In this study, we consider the nonuniqueness in

instantaneous inverse mapping. It is interesting to investigate to what degree does nonuniqueness go

away when conditioned on immediately previous and following acoustic vectors.



Chapter 3

Comparison of acoustic features for

articulatory inversion

3.1 Introduction

Front-end parameterizations such as representations of articulatory and acoustic features are important

to the success of all computational approaches. Thanks to the technologies such as XRMB and EMA,

we can use as articulatory representations the measured locations of coils on different articulators such

as the tongue and the lips. For acoustic representations, it is well known that acoustic features and their

parameterizations such as the short-time window length are essential to ASR performance. The same

stands for the inverse mapping. To our knowledge, however, there was no work about the best acoustic

parameterizations for articulatory inversion. Most previous works simply chose one of the popular

acoustic features used in ASR such as Mel-frequency cepstral coefficients (MFCC) [37, 53], filterbanks

(FBANK) [123], linear predictive coding (LPC) coefficients in chapter 2, line spectral frequencies (LSF)

[127], and perceptual linear prediction (PLP) [22]. None of them compare laterally all the performance

of these acoustic parameterizations for the inversion task.

One major problem of existing acoustic features is the jaggedness of their temporal trajectories.

While this issue may not matter for ASR, it is a significant problem for articulatory inversion. This is

because, while the acoustic trajectory is very jagged, the articulatory one is very smooth. Thus, when

applying a mapping (e.g. a neural net) to the acoustic vectors, their output will also be jagged and cause

a large error with respect to the articulatory target because the mapping is typically smooth (Some

articulatory inversion work post-process the inverted trajectories with a low-pass filter). Fig. 3.1 shows

This chapter is mainly based on the reference [107]
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Figure 3.1: Smooth articulatory trajectories vs. jagged acoustic trajectories. All articulators move
smoothly over time (solid line: horizontal locations of articulators; dashed line: vertical locations of
articulators), while the acoustic trajectories are highly jagged over time (high-order acoustic features
are more jagged than low-order ones). This means that a mapping applied to the acoustic sequence
will yield a jagged articulatory sequence and thus a large inversion error. Note that for clarity, we only
show odd order MFCC trajectories.

such an example of corresponding smooth articulatory and jagged acoustic temporal trajectories.

The goals of this study are to find out the acoustic features and parameterizations that work best for

the inverse mapping, and to explore ways to alleviate the jaggedness of acoustic trajectories. Besides,

we also study the effect on inversion performance of a time delay between articulatory and acoustic

frames.

3.2 Methodological setup

3.2.1 Acoustic features

In this chapter, we compare most popular acoustic features that are widely used in speech/speaker recog-

nition, speech synthesis, and speech perception. Although the acoustic waveform is a one-dimensional

signal in the time domain, it is generally not a good representation for statistical pattern recognition
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due to its high variability. Essentially, one seeks a reliable, invariant and robust feature representation

for acoustics. Conventionally, such a representation can be found in the frequency domain of the speech

signal. In fact, most of acoustic features described below can be viewed as a smooth representation or an

estimate of spectral envelop of the spectrogram [119, 118], a time-varying spectral representation that

shows how the spectral density of a speech signal varies with time. Since the speech signal is a nonsta-

tionary process, spectrogram is often computed by the short-time Fourier transform on the windowed

signal in the time domain. Given the spectrogram, the most salient acoustic features are formants, i.e.,

spectral peaks of the spectrogram. Formants are often used in early works for synthetic articulatory

and acoustic data. Their temporal trajectories are very smooth since formants change slowly with

time. However, formants only provide good characterizations for vowels and they are often difficult to

estimate reliably. Since we address all types of sounds in this study, we do not include formants as one

of the acoustic features to be compared, although one of the recent work on articulatory inversion uses

formant frequencies and their energies as acoustic features [103]. In the following, we describe briefly

several popular acoustic features used in our experiments (see appendix B for details). These acoustic

features are usually categorized into [118]:

Linear predictive analysis. LPC performs the short-time spectral analysis on speech frames with

an all-pole filter. It provides a good approximation to the vocal tract spectral envelope for voiced

speech and achieves a reasonable source-filter separation. It is less effective for unvoiced and transient

regions of speech. A variant of the LPC, LSF, is often known to be better behaved than the LPC while

containing exactly the same information as the LPC [139]. Another important extension of the LPC is

the LPC cepstral (LPCC) coefficients, a short-time cepstral representation. The cepstral analysis is used

to decorrelate dependences among variables of the acoustic features to facilitate the HMM modeling.

Filterbank and cepstral analysis. FBANK is essentially an estimation of the envelope of the

spectrum, which is obtained by applying Discrete Fourier Transform (DFT) on the windowed signal. It

is motivated by the fact that human ears resolve frequencies nonlinearly across the auditory spectrum. It

is therefore a popular alternative to the LPC since it provides a much more straightforward way to obtain

the desired nonlinear frequency resolution. MFCC is a smoothed short-time cepstrum calculated from

the log filterbank amplitude using the discrete cosine transformation. It is a robust feature containing

much information about the vocal tract regardless of the source of the glottal excitation and can be

used to represent all classes of speech sounds. It is the main choice for many ASR applications.

Auditory-inspired representations. Another robust variant, PLP, was originally proposed as a way

of warping the spectra to minimize the differences between speakers while preserving the important

speech information [58]. In addition, RASTA is a separate technique that applies a band-pass filter to



29

the energy in each frequency subband in order to smooth over short-term noise variations and to remove

any constant offset resulting from static spectral coloration in the speech channel [59].

3.2.2 Feature parameterization and post-processing

Integration of dynamic features. Instantaneous dynamic features, i.e., velocities and accelerations,

are known to improve the performance of speech/speaker recognition. Dynamic features are shown to

be useful to constraint and improve the inversion [149] (see reviews on articulatory inversion techniques

in chapter 4).

Variable window length. The short-time window length affects the smoothness of the acoustic

features. A longer window is expected to produce smoother acoustic trajectories because two consecutive

frames share more data points.

Smoothing acoustic features. Smoothing the acoustic trajectories is another way to alleviate their

jaggedness. It is important to keep discriminative information contained in the acoustic data as much

as possible while smoothing. In this study, we perform the smoothing using a double filtering routine

(implemented by filtfilt in Matlab Signal Processing Toolbox). First, the signal is filtered in the

forward direction using an FIR filter. Second, the filtered signal is reversed and run back through the

FIR filter. The cut-off frequency θ of this double filter determines the smoothing level. θ varies from

1 (no smoothing) to 0 (infinite smoothing removing all frequency components of acoustic trajectories).

We use θ = 1, 0.5, 0.25 respectively to denote different levels of smoothing. Fig. 3.2 shows an example

of smoothing on a single MFCC temporal trajectory.

3.2.3 Inversion method

In this study, we use the neural network approach to the inverse mapping. In particular, we choose the

multilayer perceptron (MLP) to map from acoustic features to articulatory ones. One appealing advan-

tage of the neural network is that once trained, it requires much less computational efforts compared to

other methods. Although this approach ignores the multi-valued nature of the inverse mapping (since

a neural net can only learn a uni-valued mapping), it is still a robust method and is useful to make fair

comparisons among all sets of acoustic features. We also confirmed some of our experiments with the

other inversion methods.
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Figure 3.2: Illustration of smoothing of acoustic temporal trajectories. We set the cut-off frequency
θ = 1, 0.5, 0.25 respectively in the ascending order of smoothing levels.

3.3 Experiments

3.3.1 Experimental setup

Dataset We used the Multichannel Articulatory (MOCHA) database developed by Queen Margaret

University [162]. Three speakers with different regional accents have been made available so far. Four

data streams are recorded synchronously for each speaker: the acoustic waves (16KHz sampling rate)

together with laryngograph, electropalatography (EPG) and EMA data. The EMA recorded the move-

ments of received coils in the midsagittal plane at 500Hz. Coils (pellets) are attached to the upper and

lower lips, lower incisor, tongue tip, tongue body, tongue dorsum, and velum. Each speaker records a

set of 460 British TIMIT sentences designed to be phonetically diverse. We use data from the female

speaker fsew0 with a northern English accent. Fig. 3.3 shows the distribution of EMA data from this

speaker. We divide the dataset into two parts. One part contains 10 000 frames (randomly selected from

366 utterances) and is used for training; the other part contains 2 000 frames (from 8 unseen utterances)

and is used for testing. We fix the frame shift of the short-time Hamming window to 10ms, which is

roughly the average duration of speech sounds. Articulatory trajectories are downsampled to match the

acoustic data. More details about this database can be found in appendix A.

Silence removal. Exclusion of silent frames from the training set is essential to the neural network

training. This is because during the silent periods, the vocal tract can in principle take any configuration.
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Figure 3.3: MOCHA-TIMIT articulatory database. Left : pellet locations in the MOCHA database.
Right : plot of the entire dataset for speaker fsew0; each pellet’s data uses a different color and shows
a contour line of one standard deviation centered at its mean.

During training, given an acoustic feature vector corresponding to silence, the network would try to

map it to a large range of possible articulatory vectors, and result in a poor mapping. We apply the

frame-energy based endpoint detection to remove silence, short pauses, and transient regions of speech.

Acoustic feature sets. Combinations of following sets are compared: (1) Acoustic features: LPC,

LSF, FBANK, MFCC, LPCC, PLP, RASTA-PLP. (2) Dynamic features: static features only and static

plus dynamic features. (3) Hamming window length: 25 ms, 35 ms, 45 ms, 64 ms, 80 ms, and 96 ms.

(4) Smoothing level: θ = 1, 0.5, 0.25.

Inversion method. We used a MLP with a single layer of 55 hidden units. The MLP was trained

with scaled conjugate gradients using the Netlab Toolbox for Matlab (http://www.ncrg.aston.ac.

uk/netlab).

Performance metric. We use Root-mean-square error (RMSE) and Pearson correlation as our per-

formance metric. Both are widely used in measuring performance of articulatory inversion. RMSE is

defined as: ej =
√

1
N

∑

n ‖a
(n)
j − b

(n)
j ‖2, where, j is articulator index, N is number of speech frames in

the utterance, a and b are true and reconstructed trajectories respectively. Pearson correlation quanti-

fies for a given articulator the similarity in shape between two trajectories regardless of magnitude, i.e.,

whether they rise and fall in synchrony: cj =
P

n (a
(n)
j −āj)(b

(n)
j −b̄j)

q

P

n (a
(n)
j −āj)2

P

n (b
(n)
j −b̄j)2

where ā and b̄ are the means

of the two sequences.
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Figure 3.4: Performance comparison of different acoustic features (dashed/solid lines: with/without
dynamic features, respectively), window size and smoothing level by MLP for fsew0. Errorbars for
standard errors of the means are not shown here to avoid clutters. They are roughly 10% of the means.

3.3.2 Comparison of acoustic features and parameterizations

Fig. 3.4 compares the performance of different acoustic feature sets. The results for RMSE and cor-

relation are essentially equivalent. Integrating dynamic features consistently outperforms using only

static features, except for PLP and RASTA-PLP. The smoother the acoustic features, the better the

performance. Relatively long windows (best at 64 to 80 ms) also improve the inversion accuracy. When

acoustic features are smooth enough (θ = 0.25), long windows make little difference. MFCC and LPCC

perform similarly. The performance of acoustic features roughly degrades in the decreasing order of

closeness to the vocal tract. Among all, LSF and PLP are the best acoustic features for articulatory

inversion and RASTA-PLP is (significantly) the worst. However, the overall difference is small, with all

methods achieving an RMSE of 1.65 to 2.00 mm and a correlation of 0.56 to 0.71.

It is interesting to note that our acoustic feature ranking in terms of correlation (i.e., MFCC performs

the best, which is consistent with the finding in [53] and is followed by LSF, LPCC etc) match well with

the finding in [53], although the latter uses mutual information to measure the statistical dependency

between the acoustic feature and the articulatory position.

We repeated the experiment with two other methods (results now shown): using a Gaussian-mixture

regression, and using a method based on representing multi-valued mappings with conditional density
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modes, i.e., cmode, as described in chapter 4. The results were largely the same, except that adding

dynamic features did not improve as much.

3.3.3 Effect of time delay

Up to now, we have attempted to recover the articulatory frame at time t from the acoustic frame

obtained by multiplying the acoustic wave by a short-time window centered at time t. However, it is

possible that a different alignment of the articulatory and acoustic streams could result in a smaller

RMSE; for example, the time spent by a wave traveling along the vocal tract may introduce a delay in

the resulting acoustic waveform. While this delay would likely depend on the particular sound produced,

for simplicity we consider a global delay. We conduct another empirical study to find out the best time

delay, using as acoustic parameterization the best one described above (LSF with dynamic features,

64 ms window, smoothing θ = 0.25). Fig. 3.5 shows that the best performance is achieved when the

short-time window is centered 15 ms after the articulatory frame. This finding is consistent with the

pilot study by Hodgen et al. [61] in which a 14.4 ms time delay was found to be optimal. But again,

while consistent over different experiments, the improvement over the baseline (i.e., no delay) is very

small.
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Figure 3.5: Effect of time delay between an acoustic frame and an articulatory frame. Errorbars for
standard errors of the means are not shown here to avoid clutters. They are roughly 10% of the means.

3.4 Summary

We have presented the first empirical study on the best acoustic parameterization for articulatory

inversion. Using a simple inversion method (a neural network) as a baseline, we have compared differ-

ent acoustic features, with varying lengths of the short-time Hamming window and different levels of

smoothing of the acoustic temporal trajectories. Relatively large windows and smoothing were shown
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to alleviate the jaggedness of acoustic features. We found that best results are generally obtained with

acoustic features that are more closely related to the vocal tract (in particular LSF, although PLP per-

formed just as well), using dynamic features, 64 to 80 ms short-time window, double-filtering smoothing

of cut-off frequency θ = 0.25, and a 15 ms time delay between articulatory and acoustic frames. How-

ever, the improvement over other combinations of features or smoothing was very small (around 0.3

mm, to yield an RMSE of around 1.65 mm). These results also held when using the other inversion

methods (different from the neural net).

It is important to note the limitations of our study. We used only one speaker from one database

(MOCHA), and specific choices of e.g. the smoothing method. However, while other choices may alter

the RMSE in absolute terms, we do not expect major changes to the relative ranking of the features

(which, from fig. 3.4, is quite consistent over different conditions).



Chapter 4

Articulatory inversion of American

English /ô/ by conditional density

modes

4.1 Introduction

Although many different approaches have been proposed for articulatory inversion, the problem is still

not generally solved. In this chapter, we focus on two aspects of the problem: we propose an algorithm

that directly addresses the multi-valued nature of the inverse mapping, and we demonstrate it with

real articulatory data for a well-known case that clearly displays multiple articulations, the American

English /ô/ (see [43] and references therein). As already noted in chapter 2, the American English /ô/

can adopt two canonical but contrasting tongue shapes: (1) retroflex (tongue tip raised, tongue dorsum

lowered). (2) bunched (tongue tip lowered, tongue dorsum raised).

Much of the early evidence on multiple articulations comes from synthetic models (e.g. [9]) or

unnatural conditions (e.g. bite-block experiments), with less actual evidence from normal, real speech.

In chapter 2 our experiments based on the large-scale articulatory database (XRMB), show that only

a small portion (around 15%) of all acoustic frames correspond to more than one vocal tract shape.

One such case is the American English /ô/. The performance of inversion algorithms has been often

evaluated with synthetic datasets [9], or with real datasets for which nonuniqueness is of lesser or no

importance (for example, with vowels). Other work (e.g. [125]) has used a large, real articulatory

dataset (MOCHA) but the performance with the small proportion of it that shows nonuniqueness was

This chapter is mainly based on the reference [113]
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not quantified. This chapter focuses exclusively on utterance subsequences containing /ô/, thus with a

large proportion of nonuniqueness.

This chapter is organized as follows. Section 4.2 briefly reviews major computational approaches

to articulatory inversion. Section 4.3 describes our inversion based on conditional density modes. Ex-

perimental results are presented in section 4.4. In this chapter, we notate articulatory and acoustic

variables as x and y, respectively.

4.2 Computational approaches to articulatory inversion

Articulatory inversion is a long standing problem in speech research. Various approaches to articulatory

inversion have been proposed over the past three decades. However, a satisfactory algorithm towards all

sounds is still missing. Many computational approaches can be classified in different ways, e.g. whether

they address nonuniqueness, whether they consider the temporal correlation among sequential data.

Schroeter and Sondhi [132] reviewed much of earlier work. Our review follows [24] and features some

new methods.

Methods based on forward modeling. Work by Flanagan et al. [45] and Levinson and Schmidt

[84] use analysis-by-synthesis (ABS), a close-loop optimization to retrieve the VT shape xt such that

its synthetic acoustics closely matches with the real one yt, i.e., x∗
t = arg min

xt

‖yt − f(xt)‖2, where the

forward or articulatory-to-acoustic mapping f is often provided by an articulatory synthesizer. ABS

is also used in the voice mimic system [121, 27] that allows automatic adjustment of parameters in

articulatory speech synthesizer to mimic arbitrary human speech. It is worth noting that the success of

the solution crucially depends on initial guess conventionally obtained from an articulatory codebook

(see below). In this forward modeling framework, the forward mapping f is the key. Over years, various

forward mappings have been proposed, e.g. area-function based acoustic tube approximation of vocal

tract [165, 147], data-driven approximation by a feed-forward neural networks [71], a mixture of linear

models [127, 60], self-organizing preduction models [19], etc. However, these approximations are either

crude (e.g. synthetic speech [165]) or inaccurate (due to the hard nature of direct mapping from a

smooth feature to a noisy one) or very specific to particular sound categories ([165]). An accurate,

reliable, robust forward mapping or speech production model is yet to be developed for general sounds.

Availability of such model could be a break-through in speech technology and be expected to improve

the state-of-the-art methods and enable new machine learning approaches. Another limitation of this

framework is attributed to its local nature: ABS only provides local optimal solutions, which are likely to

be invalid for the multi-valued inverse mapping. The local nature of ABS approaches depends crucially

on the initial solution, which is hard to obtain. Even if a good local optimum can be obtained by a
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good initial guess from a comprehensive articulatory codebook, it can only track one solution branch

and miss other valid solutions irreversibly. In these regards, ABS methods are much less preferable than

other methods that address the multi-value mapping.

Methods based on learning instantaneous inverse mapping. Work by Shirai and Kobayashi [135]

and Papcun et al. [104] use a neural network (NN), e.g. multi-layer perceptron (MLP) to approximate

the inverse or acoustic-to-articulatory mapping f−1. Papcun et al. [104] also propose to use the acoustic

context window rather than a single acoustic frame as input to the MLP, which is found to be effective in

resolving mapping ambiguity and improving inversion. However, use of NN ignores the nonuniqueness

because NN can not model the multi-value f−1. Moreover, it ignores the temporal correlation in the

sequential data since it treats highly correlated neighboring frames in the sequence independently during

training and testing phases 1. Despite these modeling deficits, NN performs robustly and produces

competitive inversion. Work by Richmond [125] and Toda et al. [149] derive x from the mean of a

conditional density p(x|y). However, this conditional mean approach should perform similarly to the

NN [16] in that, asymptotically on the number of parameters, they estimate the true conditional mean

of the data. Later, Richmond [124] and Toda et al. [149] improve the conditional mean by applying

the speech parameter generation algorithm [150] proposes for the HMM-based speech synthesis such

that the correlation among sequential data is enforced during inversion. This is done by explicitly

exploiting the constraints between dynamic and static articulatory features and inverting the entire

articulatory trajectory instead. Intuitively speaking, this amounts to using a trajectory-wide acoustic

context window to recover the instantaneous inverse. Another interpretation comes from the dual view

of the speech parameter generation algorithm as a smooth kernel that post-processes the trajectory [96].

Therefore, by construction the inverted articulatory trajectory often appears smoother and results in

smaller RMSE and higher correlation.

Methods based on codebook (obtained from a synthetic model) lookup and dynamic pro-

gramming. This method deals with the multi-value f−1 directly. Codebook lookup is another popular

framework for inversion. A typical articulatory codebook consists of 100, 000 entries of paired (x,y).

Designing a good codebook often trades off spatial resolution and time complexity. The codebook is

typically constructed by root-shape interpolation [102]. As a result, the codebook often contains signif-

icant number of unrealistic VT shapes even after post-pruning. Work by Atal et al. [9] and Larar et al.

[81] search for the single VT shape xt that matches the closest to the given acoustic key yt in the artic-

ulatory codebook. However, the resulting sequence of the VT shapes is often highly irregular because

only the constraint of acoustic match is considered. Schroeter and Sondhi [130, 132] improve this by

1In contrast, sequential data learning methods [17] such as hidden Markov model and linear dynamic system explicitly
explore these temporal correlation.
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relaxing the acoustic match to allow multiple candidate VT shapes and enforcing temporal continuity

in articulatory space. They applied dynamic programming (DP) to find an optimal path through the

candidate space. The time complexity of DP is quadratic on the averaged number of candidates. In

the hypercube codebook approach proposed by Ouni and Laprie [102], a codebook is constructed as a

hierarchy of hypercubes by densely sampling in articulatory space such that within each hypercube the

articulatory-to-acoustic mapping f can be approximately by a linear mapping. This method assumes

N = 7 articulatory parameters, M = 3 acoustic parameters (i.e., F1–F3) and a f given by Maeda’s

articulatory model [91]. Starting with a bounding-box hypercube for the whole articulatory domain,

they recursively subdivide each hypercube into 2N hypercubes until certain criterion holds. Within

each hypercube, f is approximated linearly by computing f exactly at its center and approximating

the Jacobian of f with finite differences. They also apply DP to retrieve the articulatory trajectory in

the candidate VT space given by a particular inverse solution and a nullspace at each time. To im-

prove the rough trajectory estimation due to the coarse nature of the codebook and the discontinuities

across hypercubes, they apply the a secondary smoothing step as [80], i.e., variationally minimizing an

objective that penalizes deviations from neutral positions. However, this study did not experiment on

real articulatory data neither compare with other codebook methods. It remains interested in these

quantitative comparisons. In ensemble neural networks [120], the articulatory codebook is split into

many articulatory-acoustic clusters such that f−1 can be well fitted by a MLP within each cluster. DP

is used to select the MLPs that ensure smoothly varying VT shapes while maintaining a good acoustic

match. However, splitting clusters can be very difficult and requires lots of heuristics. In conditional

modes, originally proposed for a more general problem of missing data reconstruction [22], DP search

is performed in the mode space where the conditional density modes derived from p(x|yt) represent

multiple inverses. p(x|yt) can be computed from a joint density p(x,yt) by e.g. a Gaussian mixture or

estimated directly by e.g. Mixture of Experts [66] using the real data. One may view the joint den-

sity p(x,yt) is an articulatory codebook with infinite number of codebook entries. The advantages of

conditional modes over Codebook are: faster, less storage, no quantization error.

This is the approach we are going to apply to articulatory inversion in this chapter.

Methods based on sequential data learning. These methods are based on sequential data learn-

ing, e.g. hidden Markov models, linear dynamic system [17]. They aim to leverage temporal correlation

among the sequential data. Work by Hiroya and Honda [60] proposed an HMM-based speech inversion

method. During training, an articulatory HMM is built for each phoneme 2 and within each state of the

2A phoneme is linguistically distinct speech sound. Formally, a phoneme is the smallest segmental unit of sound
employed to form meaningful contrasts between utterances [8]. For American English, there are about 42 phonemes
including vowels, diphthongs, semivowels and consonants [119].
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HMM a linear mapping is estimated to approximate f . During inversion, an HMM state sequence is de-

rived from acoustic signal via Viterbi decoding and then a smoothed articulatory trajectory is generated

through the speech parameter generation algorithm [150]. Zhang and Renals [164] propose a similar

method where the parameter generation algorithm was an integral part of trajectory HMM framework

to facilitate deriving smoothed output mean trajectories. There exist some methods considering the

inversion from a tracking perspective where x and y are treated as the hidden state and the observations

respectively. In this framework, two components are necessary: a dynamical model that characterizes

the relationship between xt and xt−1; a measurement model that depicts the nonlinear f . Work by

Shirai and Honda [134] apply extended Kalman filter (EKF) to estimate the articulatory trajectories

from speech. Their dynamical model is a second-order linear function that captures the elasticity and

damping of the articulators and their observation model is the third-order polynomial. All models are

phone-independent 3. The estimated articulatory trajectories are smooth but only for vowel sequences.

Dusan and Deng [37, 36] improve this by considering phone-dependent models. Dusan and Deng [38]

further generalize the above method by imposing phonetic and phonological constraints on the dynamic

and observation models. They define phonological units as speech segments between two consecutive

phonemes in a hope to account for coarticulation. At the inference stage, EKF is repetitively run over

the model parameters of all phonological units to identify the best phonological unit that gives the

highest likelihood. This repeated for all frames. Therefore, one disadvantage of this approach is the

excessive computational complexity in practice because of the enormous number of phonological units.

4.3 Inversion by conditional density modes

Our inversion algorithm specializes a more general approach proposed for reconstructing sequences

with missing data [22, 24]. It works as follows. Offline, assuming we are given a training set of

articulatory-acoustic vector pairs {(xn,yn)} (here obtained from the XRMB), estimate a joint density

model p(x,y), or directly a conditional density model p(x|y). At run time, to invert a given acoustic

sequence y1, . . . ,yT , we obtain the conditional density p(x|yt) and its modes for each frame t; the

latter explicitly represent the multiple inverse solutions at each yt. Then, we obtain the x-trajectory

by minimizing a constraint over the entire set of modes. Let us describe each step in detail.

Density model. The key property of the conditional distribution p(x|y) is that it will be peaked

around the inverse solutions for y (see fig. 4.1). Thus, its modes are representatives of the inverses. If

we represent the density with a Gaussian mixture, then we can approximate the true data density to

3A phone-independent model refers to a global model for all sounds and a phone-dependent model refer to a specific
model for each sound.
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arbitrary accuracy by using a sufficiently large number of components [16]. Thus, the modes can ap-

proximate the inverses as closely as desired (at a corresponding computational cost). A more interesting

issue is that the topology of the manifold of inverse branches can be very complex, where the number

of inverse branches may depend on the value of y; for example, at a singularity two different branches

intersect (fig. 4.1). The density can deal with these topology changes naturally in that e.g. two different

modes can merge into a single one, and vice versa. This is a useful property that frees us from having

to guess the number of inverses and fix it beforehand.
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Figure 4.1: Left : joint probability density p(x, y) (shaded area) and forward mapping f (thick black
line). Right : multi-valued mapping x = f−1(y0) = {x0, x1, x2} from the multimodal conditional distri-
bution p(x|y). Depending on the value of y0, there may be 3 modes (as shown), 2 or 1, and correspond-
ingly 3, 2 or 1 inverses for y0. (After [24])

We can estimate the conditional density with statistical machine learning techniques given the

dataset of pairs (x,y). One option is to learn a joint density model p(x,y) and then obtain from it the

conditional distribution

p(x|y) = p(x,y)/p(y) = p(x,y)/

∫

p(x,y) dx. (4.1)

A convenient density model for which computing conditional distributions is straightforward is a ho-

moscedastic, isotropic Gaussian mixture, p(z) =
∑M

m=1 πmp(z|m) where p(z|m) ∼ N (z;µm, σ2 I). The

Gaussian mixture parameters πm, µm and σ2 (proportion, mean and covariance) are estimated from

the training set by maximum likelihood with the EM algorithm [16]. Alternatively, one can use a

nonparametric Gaussian kernel density estimate [17] if the dataset is not large (e.g. our case for the

American English /ô/). Another option is to learn directly a conditional density model p(x|y); this is

more efficient and economical because it needs to model a density in fewer dimensions (only x, not x
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and y) and be estimated by Mixture of Experts [66], Mixture Density Networks [16]. We study the

joint density in section 4.4.

Mode finding. Assume we have a conditional density p(x|y) in the form of a Gaussian mixture,

i.e., p(x|y) =
∑M

m=1 πm(y)p(x|m,y), where the mixture component p(x|m,y) = N (x;µm(y),Σm(y))

is a Gaussian kernel. Efficient algorithms for finding all the modes of a Gaussian mixture exist [23]

that iterate a hill-climbing algorithm from every centroid of the Gaussian mixture. We provide a brief

derivation as follows (see the detailed treatment in [23]). Let g be the gradient of p(x|y)

g = ∇p(x|y) =
M
∑

m=1

πm(y)∇p(x|m,y) =
M
∑

m=1

p(x,m|y)Σ−1
m (y) (µm(y) − x) (4.2)

where ∇p(x|m,y) = p(x|m,y)Σ−1
m (y) (µm(y)−x). Equating (4.2) to zero, we can obtain a fixed-point

iteration

x(τ+1) = f(x(τ)) with f(x) =

(

M
∑

m=1

p(m|x;y)Σ−1
m (y)

)−1 M
∑

m=1

p(m|x;y)Σ−1
m (y)µm(y) (4.3)

In our case where we use the homoscedastic, isotropic Gaussian kernel (Σm = σ2 I for ∀m), the fixed-

point iteration reduces to a simplified form

x(τ+1) =

M
∑

m=1

p(m|x(τ);y)µm(y) (4.4)

where the posterior probability p(m|x(τ);y) is the normalized version of

πm(y) exp
(

− 1

2
‖(x(τ) − µm(y))/σ‖2 ) (4.5)

This fixed-point iteration is called the Gaussian mean-shift algorithm, where f(x)− x is the mean shift

(which is proportional to the gradient of p(x|y) for isotropic kernels). Our Matlab implementation of

Gaussian mean-shift algorithm is available at http://faculty.ucmerced.edu/mcarreira-perpinan/

software.html.

With isotropic components, Gaussian mean-shift does not require inverting matrices and takes

O(kM2) where M is the number of components in the Gaussian mixture and k the average number of

iterations per component. The computational time can be drastically reduced (at a small approxima-

tion error) by thresholding out mixture components far from the acoustic vector yt, and by accelerated

variations of mean-shift [25]. By the nature of Gaussian mixtures, the number of modes returned at

each frame is finite [23]. With redundant systems, in which excess degrees of freedom result in a con-

tinuous set of inverses, the modes will be a quantized version of this (see the redundant manipulator in

appendix C for example).
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Global optimization with dynamic programming. Assume we have collected for each time t in

the trajectory all the modes (candidate vocal tract shapes for the acoustic frame yt). In principle, each

of these modes represents a correct solution for step t (following a certain solution branch), but a given

branch that is valid for part of the trajectory may be invalid for another part because of forbidden

regions. To determine the solution, we minimize a global, trajectory-wide constraint over the set of

modes. Generally, we consider a constraint of the form C + λF (for λ ≥ 0), where:

• C(x1, . . . ,xT ) =
∑T−1

t=1 ‖xt+1 − xt‖ represents a continuity constraint (integrated 1st derivative)

4. This constraint is inspired by the fact that articulators move continuously and smoothly due

to physical constraints. It penalizes discontinuous jumps in x-space and encourages short trajec-

tories. Alternatively, we could use S(x1, . . . ,xT ) =
∑T−2

t=1 ‖xt+2 − 2xt+1 + xt‖, which represents

smoothness (integrated 2nd derivative).

• F(x1, . . . ,xT ) =
∑T

t=1 ‖yt − f(xt)‖ represents a forward constraint (integrated acoustic error),

and penalizes invalid inverses, i.e., modes xt that do not map near the desired yt. This helps to

eliminate spurious modes produced by ripple in the density model 5. Note that in this chapter,

since a reliable f is not available, the forward constraint is not imposed in the experiments.

Effectively, this is a form of planning in articulatory space. Global minimization of the constraint can be

obtained by dynamic programming in O(Nν2) where ν is the average number of modes per step (usually

very small), thus in linear time on the trajectory length N . Computationally, this is generally negligible

compared to the mode-finding step. The articulatory trajectory returned represents a minimum-energy

sequence of motions and represents the fact that physical articulators move slowly.

4.4 Experimental results

Dataset. We use data from the American English /ô/ from speaker jw11 in XRMB. /ô/ is a sound

with well-documented nonuniqueness both within and across speakers, where the tongue shapes have

traditionally been divided into contrasting categories of retroflex (tongue tip raised, tongue dorsum

lowered) and bunched (tongue dorsum raised, tongue tip lowered), though there really seem to exist

a continuum between them [43, 155] (see fig. 4.2). So, it is useful as a test bench for algorithms

that can deal with multi-valued mapping. Since there are no phonetic labels available in the XRMB,

4We did not empirically validate the effectiveness of the continuity constraint. Interested readers may refer to [132] for
details.

5This refers to the nonsmooth density estimate in low-probability areas. This phenomenon is well-known in kernel
density estimation with fixed-kernels [137] and is particularly noticeable in the tails of the distribution being approximated
[24].
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we manually choose frames corresponding to /ô/ from the entire database containing 45 760 paired

articulatory-acoustic frames (as in chapter 2, we use 20-order LPC as acoustic features). Specifically,

we manually identify frames of /ô/ that have typical retroflex and bunched tongue shapes. For each of

these frames, we search in the original database its nearest neighbors in articulatory and acoustic spaces

respectively. Then, the frames in the intersection of the two nearest neighbor sets are considered as

frames of /ô/. We validate them by listening to the acoustics. Noisy frames are removed manually. Most

frames in this dataset correspond to initial /ô/, e.g. “right” and “row”; some correspond to middle /ô/,

e.g. “program” and “problem”, and some to final /ô/, e.g. “never” and “order”, all of which last shortly.

The final dataset of /ô/ (fig. 4.2 shows the various tongue shapes it can adopt) contains a training set

of 402 frames and 71 frames from 6 test trajectories from different utterances. Among the latter, 3 are

retroflex (e.g. “right” in tp099, “roll” in tp096) and the other 3 are bunched (e.g. “rag” in tp017, “row”

in tp050). Each trajectory contains a small stretch of /ô/ and possibly its neighboring sounds. Given

the low relative frequency of /ô/ among all sounds, our dataset must necessarily be small. The dataset

is available from the authors. Note that (see fig. 4.2) there seem to be more than 2 canonical tongue

shapes for /ô/, i.e., there are big variability within groups of the bunched (e.g. the other bunched-like

shapes belong to “row” in tp050) and retroflex tongue shapes. Such variability could be caused by

coarticulation, which makes inversion harder. Also, the tongue coils T1,T2,T3,T4 and LL show more

variability than other articulators.
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Figure 4.2: Left : datasets in the articulatory space (2D position in mm of each coil, with tongue coils
T1 to T4 connected by line segments). Right : datasets in the acoustic space (spectral envelopes). Only
a subset of frames shown to avoid clutter. The variablity of articulatory frames are due to different
acoustic context, coarticulation, etc.

Methods. We refer to our algorithm as dpmode, and compare it to: (1) conditional mean cmean of

p(x|yt) (which reconstructs xt with E {x|yt} independently for each frame); (2) a radial basis function

network (rbf), which is asymptotically equivalent to cmean; (3) an oracle method cmode which picks
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the optimal mode at each frame (i.e., the one closest to the true xt); this provides a lower bound in

the error achievable by dpmode. However, notes that cmode is sometimes slightly worse than dpmode for

certain trajectories because of different performance metric, i.e., cmode is chosen based on L2 norm in

the entire articulatory space.

Conditional density. We derive the conditional density p(x|y) from the joint density p(x,y), which

is estimated by a Gaussian kernel density estimate (KDE) on the training set. So, in our case p(x|y)

contains 402 Gaussian components. The bandwidth σ was set to σ = 11 by validation.

Feature normalization. The dynamic ranges of acoustic x and articulatory y are very different, i.e.,

σx = 5 − 20, σy = 0.1 − 0.3. We found empirically rescaling the articulatory data by s = 8 helped to

smooth p(x|yt) and reduce spurious modes.

Performance metric. We use RMSE and Pearson correlation as defined in chapter 3.

Modes of the conditional density. Figs. 4.3–4.4 show the conditional modes over time for all testing

trajectories. The middle frames in each test trajectory clearly show a multimodal conditional density,

and the modes reliably identify both retroflex and bunched shapes, though occasionally additional, spu-

rious modes exist (when number of modes is more than 3). In these middle frames, cmean is the average

of the two canonical shapes, which is generally an invalid shape. The start and end frames tend to

show a unimodal distribution, which implies the neighboring sounds have little nonuniqueness. In these

cases, the conditional modes still identify the correct shape, but cmean performs well. This demonstrates

that the density method is effective at identifying the multiple articulations that correspond to a given

acoustics. On average, there are 3 or 4 conditional modes per testing frame depending on the scale s.

In some cases (not shown here), dpmode would favor the alternative global trajectory instead of the true

one, very similar to the case in robot arm inverse kinematics (see details in appendix C).

Inversion results. Figs. 4.3–4.4 show the reconstructions at each frame. dpmode significantly outper-

forms cmean and rbf and picks the correct shapes (either retroflex or bunched but not in between).

The best inversion by dpmode is attained in the utterance tp050 “row”, i.e., 0.65mm compared with

1.48mm by cmean (see fig. 4.5 for the trajectory reconstruction). The worst inversion by dpmode occurs

in the utterance tp096 “roll”, i.e., 1.59mm compared with 1.98mm by cmean.

Fig. 4.6 plots the aggregated inversion errors on all test trajectories with each methods. On average,

dpmode achieves an RMSE of less than 1.3 mm while cmean or rbf have an RMSE of over 1.9 mm. The

advantage of dpmode is strongest in reconstructing the tongue coils. The RMSE values by dpmode in

the presence of pervasive nonuniqueness are comparable with other methods that achieved RMSE of

1.5 to 1.9 mm in tasks with little nonuniqueness (see chapter 3 and [125]). However, the correlation
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Figure 4.3: Sequence of reconstructions for the retroflex /ô/ in utterance tp096 “roll”. Top panels:
plots of the conditional modes (cyan; number of modes above each plot), cmean (magenta) and true
value (blue) of all articulators. Tongue coils T1–T4 are connected by segments. Bottom panels: plots
of the reconstructions by all methods at each time frame: dpmode (red), cmean (magenta), rbf (green),
and true (blue).

values for some articulators (UL, MNI, MNM) are misleadingly low for all methods, i.e., dpmode typically

achieves less than 0.5 and likewise for cmean and rbf (see fig. 4.6 for details); the reason is that in our

short utterances those articulators barely move (e.g. MNMx in fig. 4.4). The average RMSE (correlation)

for the tongue and all coils are listed in table 4.1.

rbf cmean cmode dpmode

Tongue 2.66 (0.67) 3.08 (0.55) 1.19 (0.94) 1.20 (0.94)
All 2.07 (0.52) 2.26 (0.48) 1.27 (0.72) 1.30 (0.71)

Table 4.1: The average RMSE and correlation for tongue and all coils of articulatory inversion of
American English /ô/ by various methods.

Although our dataset is small, the results are consistent and show dpmode is very good for dealing

with nonuniqueness. We are yet to test the methods on a a comprehensive and accurate dataset of

/ô/ segments, which could be obtained, e.g. by adding data from more speakers and possibly by use of
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Figure 4.4: Like fig. 4.3 but for the bunched /ô/ in the utterance tp040 “rag”.

time-aligned phonetic labels if available, which contains starting and ending time of sounds and hence

can be used to segment acoustic frames.

4.5 Summary

We have proposed an articulatory inversion algorithm that uses a density model learned on real measured

articulatory data to predict (possibly multiple) feasible, typical vocal tract shapes for a given acoustics,

and disambiguates a sequence by choosing the smoothest path among these shapes. The algorithm

correctly recovers either a retroflex or a bunched shape for the American English /ô/, while a neural

network recovers an incorrect average of both. Since the algorithm is computationally more costly than

a neural network, but nonunique articulations are overall infrequent in speech, a practical strategy may

be to apply the algorithm selectively by detecting first the presence of nonuniqueness from the acoustics.

For example, given one frame (or a short sequence of frames), one could perform nonuniqueness analysis.

If the analysis returns positive (i.e., the target frame is determined empirically to be associated with

multimodality), one may consider applying our conditional modes to resolve ambiguity.
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Figure 4.5: Temporal true trajectories (blue) and their reconstructions with dpmode (red) and cmean

(magenta) for the bunched /ô/ in utterance tp050 “row” (for coils T1 to T4). rbf (not shown to avoid
clutter) performs similarly to cmean.
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Chapter 5

Predictive modeling of tongue shapes

5.1 Can we predict the entire tongue shape from a few landmarks?

Visualizing the entire tongue shape is the key to animated talking head and vocal tract visualization

and also helps speech perception [41, 159, 158, 42]. However, the two large-scale articulatory databases

(Fig. 5.1) using fleshpoint measurements, the Wisconsin XRMB (using XRMB) [154] and MOCHA

(using EMA) [161] give only the 2D locations of 3 or 4 metal pellets attached to the tongue tip and

dorsum (as well as the locations of the lips and other articulators, and the acoustic wave). While being

real and dynamic measurements, these sparse representations are insufficient and could miss crucial

speech production information, e.g. back of tongue is missing, and in principle could introduce extra

ambiguity while inverting speech. Given the location of these pellets at a given time, what does the

entire tongue shape look like? Do 3 or 4 pellets encode crucial information from the tongue for speech

production? Are they enough to characterize the tongue shape accurately at all? Where do we place

them optimally along the tongue?

To answer these questions, we consider the problem of reconstructing the shape of the tongue given

the location of a few landmarks on its surface from XRMB/MOCHA. The ability to derive the full

tongue shape from a few pellets would allow to animate the tongue shape for visualization purposes,

and could be used as an input to methods for articulatory speech synthesis and inversion. This study

would also help to determine the optimal number and placement of pellets during EMA or XRMB

recording. The challenge is that XRMB/MOCHA only provide landmarks but not even one full contour

as ground truth, which makes predictive modeling infeasible. Fortunately, as shown in chapter 1, it is

possible to obtain more complete representations of the tongue shape through other articulatory imaging

techniques, e.g. ultrasound or MRI, though they have their limitations . Therefore, the question becomes

This chapter is mainly based on the reference [117]
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Figure 5.1: Locations of pellets in articulatory databases: XRMB (left, 4 tongue pellets located from
the extreme end of the tongue tip), MOCHA (right, 3 tongue pellets located from the extreme end of
the tongue tip).

whether one could leverage both articulatory imaging modalities (data fusion perspective). We propose

our two-step approach: (1) predictive modeling of tongue shapes, i.e., derive a functional relationship

between landmarks and full tongue shapes using ultrasound data from one speaker; (2) adapting the

speaker-dependent predictive model, i.e., reconstruct the tongue for XRMB/MOCHA using the adapted

model.

In this chapter, we address the problem of predictive modeling of tongue shapes. Here, we focus

on reconstructing the midsagittal contour of the tongue rather than its full 3D shape, because our

ultrasound data is limited to 2D images. Our approach can also be extended to the 3D case in a

straightforward way. A simple reconstruction approach (that we and others have used) is to fit a smooth

contour (e.g. a cubic or even piecewise linear spline) to the landmarks, justified by the observation that

the tongue body is continuous and reasonably smooth during speech. However, smoothness is not

enough to characterize the real behavior of the tongue, which can display very complex shapes during

normal speech. For example, its midsagittal contour can show humps or valleys between landmarks or

bend significantly in the tip or root (Figs. 5.2 and 5.7); and the tongue cannot go through the palate or

teeth. It is possible to try to model the tongue shape by having a function with many control parameters

and to model compression against the palate or teeth by assuming constant volume, as done in the Baldi

talking head [28]. However, setting these parameters is difficult and time-consuming even for an expert,

and even under the best settings the predicted shape may not look realistic enough. A similar problem

arises in computer animation of the human body, where a combination of motion-capture and machine
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learning are able to reproduce realistic motion.

We follow a machine learning approach, where we estimate a nonlinear mapping from the landmark

locations to the tongue contour using ultrasound data recorded for a subject during normal continuous

speech. With this ground truth, estimating the optimal parameters can be done by numerical mini-

mization of the reconstruction error, and we find that the predicted tongue contours look very realistic.

In addition, we can also estimate the optimal location of the landmarks on the tongue, and the number

of landmarks we need to achieve a given error. Section 5.2 discusses some previous work, section 5.3

describes the data collection, section 5.4 the predictive model and section 5.5 the experimental results.

5.2 Previous work

In this section, we review representative computational approaches to tongue reconstruction.

Spline interpolation. It reconstructs the tongue shapes by cubic spline interpolation of sparse rep-

resentations of a tongue, e.g. a few tongue pellets (or landmarks) in 2D tongue shape reconstruction or

a few 2D coronal contours or landmarks in 3D tongue reconstruction. Its advantage is that spline is

scale and rotational invariant to placement of landmarks. By construction, it offers smooth reconstruc-

tion. However, it is unsupervised – reconstructing a given tongue contour independently of all other

contours based on only a smoothness assumption. As a result, reliable and realistic interpolation by

spline crucially depends on sufficient and proper placement of landmarks. Unfortunately, in practice,

e.g. EMA recordings, placing too many tongue pellets (e.g. > 5) is restrictive because they might induce

electromagnetic interference and affect normal speech production as well. On the other hand, sufficient

but improperly placed landmarks would trigger erratic behaviors of spline, e.g. oscillating between land-

marks and beyond end landmarks. From our own experience, spline interpolation would provide often

shapes that are unrealistic and penetrate the palate, velum or teeth, in particular when extrapolating

beyond landmarks. Indeed, note in fig. 2.3–2.5 (which were constructed using a spline interpolation)

how the predicted tongue contour penetrates the palate, and gives a contour between the first and last

landmark only. Stone and Lundberg [145] show that sixty ultrasound slices were needed to reconstruct

3D tongue shapes well for various English vowels and consonant by cubic B-spline interpolation. Lund-

berg and Stone [90] show the possibility to reconstruct the midsagittal contour from 6 landmarks with

submillimetric accuracy only if they were placed optimally.

Linear regression. It formulates tongue reconstruction as a supervised regression problem: fit a linear

predictive mapping (from landmarks to full contours) using full contours extracted from ultrasound

recordings. The ground truth tongue contours are often acquired through ultrasound recordings (See
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[142] for comprehensive reviews on ultrasound recordings of tongue shapes). It can reconstruct the

tongue shape from locations of 3 or 4 pellets attached to the tongue in the midsagittal plane with

submillimetric accuracy. This significantly improve spline interpolation, because variations of tongue

shapes are “memorized” during the training phase. Lindau-Webb and Ladefoged [87] investigated the

optimal placement of 2 tongue pellets used in XRMB recordings via linear regression analysis. But the

optimal locations they found seem not reliable because the dataset they use was too small. Kaburagi and

Honda [69] reported the average RMSE error of 0.48 mm in reconstructing the 2D ultrasound tongue

contours from 4 optimally placed XRMB coils. Whalen et al. [156] considered inferring midsagittal

pharynx shapes from the tongue shape via linear regression using MRI data of only 11 vowels. They

reported the reconstruction error of less than 2 mm.

Articulatory model. It reconstructs the entire VT shape through sampling an articulatory model,

which is a geometrical model that describes VT shapes in terms of a small set of articulatory parameters.

The articulatory model is often estimated through factor analysis on measurements of the entire VT [57].

Therefore, articulatory models are built in an unsupervised fashion. For example, Maeda’s articulatory

model [91] is derived from a factor analysis on 1000 X-ray images of two female French speakers. This

model describes the 2D midsagittal VT shape using 7 articulatory parameters (1 for jaw, 3 for tongue,

2 for lips, 1 for larynx) and 3 speaker-specific grid parameters (width of grid d, the increment β, polar

grids θ) for the semi-polar grid coordinate system. Basically, each VT profile is computed as a linear

combination of basis vectors spanning the VT space. The model also computes cross-sectional areas

of acoustic tubes, which are often used as input to articulatory speech synthesizer to generate speech.

Popular articulatory models include Maeda’s [91], Mermelstein’s [95], ASY [129] and some 3D tongue

models [39, 10, 12]. Articulatory models are often restricted to certain speakers because of expensive

collection of articulatory data. Also, they are often very coarse and sampling articulation models could

produce unrealistic VT shapes.

5.3 Tongue data acquisition

In order to map landmarks to a full tongue contour, we need ground-truth data for tongue contours.

Specifically, we consider a dataset consisting (for a given speaker) of N contours {yn}N
n=1, where each

contour y ∈ R
2P is a vector giving the 2D coordinates of each of P points along the tongue. We collected

such a dataset from ultrasound recordings.

Tongue contour recording. Unlike EMA and XRMB, ultrasound technology can image real-time,

dynamic movement of the entire midsagittal tongue contour during speech in a noninvasive and unob-
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trusive way. Other advantages, such as high temporal resolution, portability and low cost make it very

appealing in speech research. Ultrasound has disadvantages as well: the images contain speckle noise

and unrelated edges; it only images the tongue but not any other articulator; the only visible imaged

area is between the thyroid cartilage and the front of the mandible because of shadows; see [142] for a

guide on using ultrasound to analyze tongue motion. One well known issue is data loss at tongue tip and

root. For example, the extreme end of tongue tip is often invisible on ultrasound images for production

of front vowels and dental consonants because the air in the sublingual cavity block the ultrasound

propagation. It is possible to localizing the tongue tip by attaching a sensor on it [6]. But our recorded

data did not use any reference sensor. Fig. 5.2 shows two typical midsagittal ultrasound images of our

tongue in a 120-degree wedge-shaped scan. To create such images, the transducer is placed below the

chin and the beam passes upwards through a thick section of the tongue. Once the sound wave reaches

the air at the surfaces of the tongue, it reflects back and creates a highlighted line. The black region

immediately below is the tongue body. The tongue surface is the lower edge of the highlighted line. One

may notice that the tongue tip is not imaged but some highlighted lines in the ultrasound images that

can not be part of the tongue (e.g. those edges next to the teeth shadow in the left image of fig. 5.2).

These so called unrelated edges are actually the floor of the mouth which reflects the ultrasound beam

and prevent it from entering the tongue tip (hence no image for tongue tip). Occasionally, unrelated

edges also happen on tongue dorsum because the reflection there is typically not perpendicular to the

beam. Then, sound waves are refracted in multiple directions and thus either never received by the

transducer or spending more time traveling backing. Consequently, the tongue dorsum is either invisible

or imaged as an unrelated edge somewhere on top of the tongue.

Tongue contour tracking. Given a set of 2D ultrasound images of a tongue (e.g. fig. 5.2), our goal

is to extract the tongue contour (the lower edge of the highlighted strip) from each image. Manual

tracking of the tongue contours suffers from several drawbacks well known in biomedical image analysis,

including user bias, user fatigue, and not being able to achieve reproducible results. Also, it becomes

infeasible for a large number of ultrasound images. Therefore, it is crucial to have an automated system

for tongue movement analysis. However, the noisy nature of ultrasound images makes it very difficult

at present to track tongue shapes reliably and automatically (see [100] for a comprehensive survey on

ultrasound image segmentation), and this is compounded when dealing with multiple utterances and

speakers. There are many algorithms developed specifically for tongue contour tracking [138, 85, 7, 148]

(see [63] for a survey in tongue contour tracking in ultrasound images). We used EdgeTrak [85] for

which a software implementation is available. Its algorithm is essentially based on the active contour

[70], which iteratively minimizes an energy function designed to detect contours of the object in the
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Teeth shadow
(front)

(back)
Hyoid bone shadow

Midsagittal tongue contour

Figure 5.2: Typical ultrasound tongue images in our contour dataset. Artifacts such as noise, invisi-
bility of tongue parts, bone shadows, sound reflection and interlacing video coding present difficulties
for automatic tongue contour tracking.

image. However, none of these techniques can provide reliable tracking over time. For example, we

observed in practice that EdgeTrak could get stuck at a local minimum and lose track, hence the

need for manual corrections. Since in our study it was important to obtain high-quality ground-truth

contours, we adopted a semi-automatic approach: we used EdgeTrak to provide a reasonable tongue

contour at each frame, and then we adjusted the contours manually if necessary. It is worth mentioning

one issue in contour tracking: loss of point correspondence over time. This makes it difficult to specify

the location of landmarks. The fundamental reason traces back to volume preservation of tongue [105]:

tongue stretches or compresses to preserve it volume. One possible way to enforce correspondence

is to recording ultrasound and XRMB/EMA simultaneously as in [141, 69, 6], although it is difficult

due to interference between the two channels. As shown in chapter 6, this problem does affect our

reconstruction but it is mitigated effectively by use of regularization.

Tongue contour dataset. Following the procedure described above, we have created an ultrasound

database at Queen Margaret University. It contains two speakers (one male, maaw0, and one female,

feal0) with different Scottish accents. Two data streams were recorded synchronously for each speaker:

acoustic waves (which we did not use in this study) and ultrasound videos. The ultrasound recorded

the movements of the tongue in the midsagittal plane at 100 Hz. Each speaker recorded a set of British

TIMIT sentences designed to be phonetically balanced. We also recorded two utterances containing

two repetitions of three isolated words, “heed had whod”, with ascending and descending pitches,

respectively. After discarding unreliably tracked contours, we obtained the following contour datasets.
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• maaw0: dataset of 8671 contours, which were recorded in two sessions. Specifically, the first session

S1 consists of 3727 contours from 10 utterances and the second session S2 consists of 4944 contours

from 12 utterances.

• feal0: dataset of 7272 contours from 19 utterances.

More details on the tongue contour dataset can be found in Appendix A.

5.4 Predictive modeling of tongue shapes

We define the tongue reconstruction problem as follows. Of the P points along the contour, we choose

K (say, 3) to represent the landmarks, or pellets affixed to the tongue (call this vector x ∈ R
2K). We

then want to predict all P points (or rather, the remaining P − K) using a mapping f(x) = y that

we estimate from a training set {xn,yn}N
n=1 (see fig. 5.3). The predictive mapping f is fitted by least

squares:

min
f

E(f) =

N
∑

n=1

‖yn − f(xn)‖2 + λR(f) (5.1)

where E is the predictive square error and R(f) denotes the quadratic regularization with parameter

λ ≥ 0. We consider two predictive mappings for f :

fr
on

t

b
ac

k

landmarks x = (xT
1 , . . . ,xT

K)T ∈ R
2K (K = 3)

full contour y = (yT
1 , . . . ,yT

P )T ∈ R
2P (P = 24)

Figure 5.3: The prediction problem: given the 2D locations of K landmarks located on the tongue
midsagittal contour (x), reconstruct the entire contour (y), represented by P 2D points.

RBF predictive mapping. We represent f using a radial basis function (RBF) network [16]. Specif-

ically, we consider M Gaussian basis functions of width σ and a bias term w:

f(x) = WΦ(x) + w =
∑M

m=1 wmφm(x) + w (5.2)

where φm(x) = exp (−1
2 ‖(x − µm)/σ‖2), m = 1, . . . ,M , with centers µm, and W is a 2P × M weight

matrix. The reason for choosing a RBF network is that, besides being able to approximate many
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mappings accurately given sufficient number of basis centers [16], it also simplifies considerably our

computations. In this experiment, where we need to fit a large number of mappings. However, in a

practical situation where one simply needs to fit a single predictive mapping, one would get about equal

good results with other nonlinear mappings, such as neural nets or Gaussian processes, provided a good

model selection is achieved. We use R(f) = tr
(

WGxxW
T
)

for regularization (on W only, not w)

where Gxx of M × M with elements φm(µm). The solution for the weights is unique and given by:

min
W,w

∥

∥Y − WGxy − w1T
∥

∥

2

F
+ λ tr

(

WGxxW
T
)

⇒ (5.3)

W(GxyG
T
xy + λGxx) = (Y − w1T )GT

xy (5.4)

w = 1
N (Y − WGxy)1 (5.5)

where we use a regularization term (on W only, not w since w does not operate on X) with user

parameter λ ≥ 0, 1 is a column vector of N ones, and with the matrices Gxy of M × N with elements

φm(xn); Gxx of M × M with elements φm(µm); Y of D × N (outputs) and X of L × N (inputs); W

of D × M (weights) and w of D × 1 (biases). The equation for w shows it captures the average error

not accounted for by W. Substituting it in the equation for W, the explicit solution for W is given by

the M × M positive definite linear system (positive semidefinite in non-generic cases):

W
(

GxyG
T
xy + λGxx − 1

N (Gxy1)(Gxy1)T
)

= Y
(

I − 1
N 11T

)

GT
xy. (5.6)

Linear predictive mapping. We can also represent f using a linear function (linf) as in [69]. For

f(x) = Wx + w (where W is of D × L and w is of D × 1 dimension), minimizing E over W and w

yields the normal equations:

W
(

XXT − 1
N (X1)(X1)T

)

= Y
(

I − 1
N 11T

)

XT (5.7)

w =
1

N
(Y − WX)1 (5.8)

where 1 is a column vector of of N ones. We do not regularize f as it is not necessarily to obtain a good

mapping.

Both RBF and linear predictive mapping are implemented by our Matlab package, available at

http://faculty.ucmerced.edu/mcarreira-perpinan/software.html. In addition, we use spline in-

terpolation as a baseline since it is a popular tongue reconstruction method [145, 90, 163]. We choose

the cubic spline interpolation (implemented by the Matlab function interp1(X,Y,‘spline’)).
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5.5 Experimental results

In this section, we study performance of our predictive models of tongue shapes. In particular, we

investigate following open questions: (1) How well can the RBF model predictive the entire tongue

shape and how does it compare with linear model and spline interpolation? (2) Where to place K

landmarks optimally?

5.5.1 Experimental setup

40 60 80 100 120

40

50

60

70

80

90

100

Figure 5.4: Contour dataset for speaker maaw0. Only a subset of contours plotted to avoid clutter.

Dataset. We use the contour dataset from maaw0 and group datasets S1 andS2 together in the following

experiments since we found the session mismatch affect predictive modeling very little (see details in

chapter 6). Thus, the dataset consists of 8671 tongue contours with P = 24 points. For cross-validation,

we select 30% (2601) frames randomly from the dataset for testing and the rest 70% for training set,

among which 80% (4856) for learning and 20% (1214) for validation. Fig. 5.4 shows a subset of contour

datasets for maaw0.

Comparison methods. We compare our RBF predictive mapping with (1) linear predictive mapping

and (2) spline interpolation, for which we predict the contour y by considering a uniform grid of P

locations along the X axis (with known Y values for K points) and applying to it the spline function.

Predictive performance measure. We report the root-mean-square error (RMSE) in mm for each

contour point i = 1, . . . , P : ( 1
N

∑N
n=1 (y

(n)
i − ŷ

(n)
i )2)1/2, where n is the index of the contour in the

dataset, and yn and ŷn are the true and reconstructed tongue contours, respectively.
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5.5.2 Predicting tongue contours from a few landmarks

RBF model estimations. In practice, training an RBF network is usually done in a suboptimal but

efficient way. Rather than using a full-blown nonlinear optimization over all the parameters (centers,

widths, weights), prone to local optima, one first estimates the centers of the BFs based only on the

inputs x (using k-means, trying a few random initializations), and then estimates the weights based

on the inputs x and outputs y (a linear least-squares problem with a unique solution given by a linear

system). The number of BFs, the BF width and the regularization parameter l are obtained by cross-

validation or perhaps fixed to a single value by a rule of thumb. The assumption, which works well in

practice, is that if the BFs span well the input data then the weights will be able to achieve a good

mapping no matter the outputs. Running k-means and cross-validating is much more costly than solving

a single linear system, and in our case has to be repeated for every single combination of landmarks.

We can limit the computation significantly, again in a suboptimal way, by separating the training into

two steps. The goal of the first step is to fix once and for all the BF centers and widths and the

regularization parameter l. We do this by solving the problem of estimating a RBF network that maps

a contour using K = P landmarks (i.e., the full contour) to itself. Thus, we force the RBF network

to approximate the identity mapping and so the BFs span as well as possible the full input space (of

2.K dimensions). By cross-validating, this gives us the BF centers (M = 600) and width (σ = 30), the

regularization parameter (l = 10−3), and the weights (which we discard). Note that appropriate choices

of σ and λ are important. Fig. 5.5 illustrates their effects on predictive and generalization performance

of our RBF model with M = 600 basis functions as measured by RMSE predictive error and Frobenius

norm of the weight matrix ‖W‖F
1, respectively. In the second step, given a specific choice of K < P

landmarks, we simply solve a linear system to obtain the corresponding weights in a unique way (no

local optima). We repeat this for each desired combination of landmarks.

Our approximation is based on the same assumption used in regular RBF training, that the BF

parameters are essentially determined by the inputs. Besides, we checked that it is close to optimal by

estimating separately a few of the desired mappings; the resulting accuracy was very similar as shown

in fig. 5.6.

Prediction comparison. Fig. 5.7 compares in selected frames the true tongue contour and the contours

estimated by spline interpolation, linf and RBF prediction (trained by the optimal parameters), given

K = 3 fixed landmarks (representing 3 EMA pellets). Fig. 5.7 also illustrates the rather complex shapes

that the tongue can adopt, with significant changes in curvature, in particular when retracting the tip.

1A RBF model with large ‖W‖F would likely fail the prediction and adaptation because it will be very sensitive to
variation on locations of input landmarks (landmark specification).
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Figure 5.5: Generalization performance of RBF predictive mapping f (estimated by the RMSE on the
test set and ‖W‖F ) from K = 24 landmarks to the P = 24 tongue contour (for M = 600). Each color
denotes a different λ. The jagged graphs for high values of σ are due to the unstable linear system
characterized by enormous ‖W‖F .
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Figure 5.6: Comparison of fast and conventional training for RBF as a function of number of landmarks
K (equidistantly placed along the contours). Normal training here refers to the suboptimal way of RBF
training. The legend “normal train” refers to the conventional RBF training.
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The contour predicted by the RBF overlaps almost perfectly with the true contour, so the latter is

barely visible. Linear predictive mapping performs similarly though it is consistently outperformed by

RBF. The spline contour often deviates significantly from the true one in particular. For example, since

the spline behaves like an elastic bar, it is impossible for it to predict a sharp valley or hump between

two adjacent landmarks (e.g. frames 2,4,9,12). When the landmarks are aligned (e.g. frames 2,6) the

spline naturally adopts almost a straight line shape, which is physically infeasible for the tongue, and

different indeed from the true contour. Spine performs extremely poorly when extrapolating tongue

tip and root (e.g. frames 7,9,12). Though not shown here, spline interpolation is also very sensitive to

the locations of landmarks. For example, when any two landmarks are aligned horizontally, it would

produce big oscillations among and beyond these landmarks. In all these situations the RBF prediction

works very well. The advantage of the prediction based on a training set is largest when extrapolating

beyond the end landmarks, near the root or the tip of the tongue. Thus, in the following experiments on

determining optimal locations of landmarks, such landmark configurations are not included in computing

RMSE error.

Sufficient contours for training good predictive models. It is interesting to estimate how many

contours are sufficient for training good predictive models. To investigate this, we fix number of land-

marks and their placements, and vary choice of training contours. Fig. 5.8 plots the predictive errors as

a function of the number of training contours N (using K = 3, 4 landmarks) for both RBF and linear

predictive mapping. In general, the predictive error decreases with N and eventually almost reaches

the optimal value (training with abundant data). For K = 3, training RBF using N < 10 contours has

an enormous (several mm) error. Using 50 contours yields an optimal error less than 1 mm, while using

400 yields less than 0.4 mm. Using more contours can yields diminishing returns. Results are similar

for K = 4 and linear predictive mapping except the latter requires less training contours and reaches

the diminishing return much earlier than RBF. Both RBF and linear predictive mapping are robust to

choice of training contours (note the tight error bars). These findings imply that tongue may actually

adopt limited shape repository for various sounds in normal speech production and agree with [145].

5.5.3 Predictive performance as a function of choice of landmarks

In this section, we investigate optimal number of landmarks and their optimal placements. This study

will be useful as a guide on how to place EMA tongue pellets optimally in EMA recordings.

Coincidental placement of landmarks. One interest question would be what if we place two

landmarks identically on the tongue surface. Intuitively, this would reduce effective number of landmarks
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Figure 5.7: Selected frames comparing the true contour (cyan) and the contours estimated by the
spline interpolation (green) and our RBF prediction (red), for K = 3 landmarks (yellow dots).

by one. For example, landmarks [6 6 18 18] 2 chosen out of the 24-point contour is equivalent to [6 18].

This intuition is validated through experiments on RBF prediction: [6 6 18 18] produces RMSE of 0.87

mm while [6 18] produces 0.88 mm (as representatives for many cases we tested). However, such choices

of landmarks are impractical and hence we did not experiment them. We also tested the quasi-extreme

case, i.e., [6 7 18 19], which produces 0.49 mm. The significant reduction in RMSE is attributed to

the increased number of landmarks and their relatively separated placement. This indicates that it is

useful to place more landmarks on the tongue even if two of them are placed closely. It is also evident

in Fig. 5.9 that the worst placement for K = 3 is still better than the best placement for K = 2 for

RBF and linf predictions.

Optimal number and locations of the landmarks. In order to determine the optimal location of

2Each number inside the bracket represents the local index of contour points. For example, [6 6 18 18] means we choose
6th, 6th, 18th, 18th points out of P = 24 contour points as our K = 4 landmarks.
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Figure 5.8: Predictive errors (RMSE) as a function of number of training contours for K = 3 (left)
and K = 4 (right). Ground truths are computed with abundant training data (N = 4000). Landmarks
for RBF and linf are placed at their respective optimal locations found in section 5.5.3. Errorbars are
over 10 random choices of the N training contours (among which 30% are used for validation)

.

K landmarks, we would need to test each of the
(

P
K

)

combinations. We limit the computational cost

involved as follows: (1) We use the fast RBF training as described earlier, which makes it feasible to

test large K. (2) We ignore unreasonable arrangements of landmarks by dividing the contour into K

consecutive segments and constraining each landmark to select points from one; for example, for K = 3,

landmarks 1, 2 and 3 can only select points 1–8, 9–16 and 17–24, respectively. This prevents landmarks

from being all very close, or very far from each other, which illustrated in the previous paragraph would

lead to a much worse prediction. This resulted in 145, 513, 1297, 2501, 4097, 5187, 6562, 5833, 5185

combinations for K = 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively.

Fig. 5.9 (bottom row, right) reports the RMSE averaged over the P contour points using RBF.

For optimal placements, we also plot the error standard deviations over the test set. Fig. 5.9 (bottom

row, left) shows that the prediction errors at each contour point are roughly quasi-symmetric around

the fixed landmarks, with the lowest error on the landmarks themselves and the highest errors at

midpoints between landmarks, or at the ends of the contour. With only K = 2 landmarks, RBF yields

an optimal error of 0.80mm, while using 3 yields less than 0.4 mm and 4 yields 0.3mm. Using more

landmarks yields diminishing returns; it is also practically harder to attach that many pellets (K > 5)

to the tongue as it will introduce interference and affect normal speech production. The line labeled

“worst” produces roughly twice an error than the “optimal”. However, even those “worst” placement

can produce reasonable predictions. In fact, they are the worse not among all placements, because we

have ruled out impractical pellet arrangement that would indeed yield a far larger error (e.g. having all
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Figure 5.9: Error (RMSE) incurred by the RBF prediction (bottom row) and linf prediction (middle
row) and spline interpolation (top row) of the tongue contour w.r.t. the ground-truth contour. Error
bars plotted on optimal placement for K = 3 (to avoid clutter) are over the entire testing set. Left :
RMSE (mm) for each contour point (averaged over all contours in the dataset) for different numbers
K of landmarks, for the optimal landmark placement. Right : RMSE (mm) for each contour (averaged
over all contours in the dataset and over all points in the contour), as a function of the number of
landmarks K, for: the worst placement of the landmarks over the combinations we considered (solid
line), the average over all combinations (dashed), and the optimal placement (dotted, corresponding to
the left panel).
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pellets next to each other).

Overall, linf produces similar predictions as RBF with some performance degradation. As shown in

fig. 5.9 (middle row, right), using 2 landmarks yields an optimal error of 0.91 mm, while using 3 yields

0.5mm and 4 yields less than 0.4mm. This result is consistent with [69] where error of 0.48 mm was

reported. Using RBF can achieve 25% − 50% reduction in RMSE except for K = 2 and 30% − 50%

reduction on error standard deviation on top of linf prediction. The improvement is very consistent. linf

produces symmetric predictive errors w.r.t. tip/dorsum/root, while RBF produces better predictions

on tip and dorsum than root. On both ends of tongue, the two predictors perform closely.

Consistent with the previous section, the spline interpolation shown in fig. 5.9 (top row) is away

much worse (by 5 times) than RBF prediction. The significant errors occur mostly around two end

landmarks. Also, note that the error does not decrease consistently as K increases. This is because

spline interpolation is quite sensitive to the placement of landmarks. In case any two landmarks are

aligned roughly horizontally, the spline interpolation yields significant oscillation between them.

Fig. 5.10 shows the optimal location of the landmarks for K = 2 to 10 for three prediction methods.

For all, the landmarks are roughly equidistant along the tongue contour except for small K, but some-

what closer to each other near the tongue tip, consistent with the fact that the tongue tip shows more

complex movements than the rest of the tongue. For RBF, the end landmarks are close to the contour

ends (tip and back). The scale bar allows to determine the positions in mm, and (after rescaling by the

total tongue length) one can determine the approximately optimal placement for a different speaker.

The approximate locations of the 3 pellets that were used in the MOCHA database are quite close to

the optimal ones. From Fig. 5.9 we then estimate that the tongue contours may be reconstructed from

the 3 MOCHA pellets with an error of around 0.4 mm at each point on the tongue contour. The fact

that the “worst” and “average” lines in Fig. 5.9 (right) increase the error by only about 0.3 mm means

that, if we cannot place the landmarks optimally as given by Fig. 5.10, the following recipe will yield

reasonable results: place two pellets 2 to 4 mm from the tongue ends (tip and root, i.e., as far forward

and backward as possible), and place the remaining K − 2 pellets so all K pellets are regularly spaced.

Results are similar for linf and spline interpolation except they prefer to have end landmarks right at

ends of contours. Optimal landmarks placement for K = 4 by RBF and linf are slightly different. linf’s

is roughly equidistant while RBF’s has landmarks shifted towards the tongue tip.

5.6 Summary

We have shown that realistic tongue contours (with errors below 0.4 mm) may be predicted from as few

as 3 or 4 landmarks (optimally located on the tongue) using a nonlinear mapping learned from ultrasound
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spline interpolation linf RBF

Figure 5.10: Optimal placement of K landmarks for spline interpolation (left), linf (middle), and RBF
(right) depicted on a sample tongue contour (the tip is to the right and the root to the left). The blue
dots in K = 3 and K = 4 show the approximate locations of tongue pellets in the MOCHA and XRMB
databases respectively.

data. This information may be used to determine the optimal number and locations of pellets for EMA

and X-ray microbeam technology. Our experiments demonstrate this nonlinear approach is much more

successful than spline interpolation and also outperform the linear mapping. This quantifies the extent

to which the EMA/X-ray data is a good representation of the tongue. The method is also applicable

to predicting the 3D shape from landmarks if 3D ground truth is available.



Chapter 6

Adaptation of a predictive model of

tongue shapes

6.1 Why adapt the predictive model?

In chapter 5, we have shown that it is possible to recover the full midsagittal contour of the tongue with

submillimetric accuracy from the location of just 3–4 landmarks on it. This involves fitting a predictive

mapping from the landmarks to the contour using a training set consisting of contours extracted from

ultrasound recordings. However, extracting sufficient contours is a slow and costly process. In this

chapter, we consider adapting a predictive mapping obtained for one condition (such as a given recording

session, recording modality, speaker or speaking style) to a new condition, given only a few new contours

and no phonetic correspondences between new and old conditions. There are several reasons why we

may want to adapt an existing predictive model.

One obvious reason lies in recording and extracting ultrasound tongue contours. Firstly, recording

with ultrasound several utterances from a given speaker often involves separate sessions because of

subject fatigue, and removing and wearing again the stabilizing helmet and reattaching the ultrasound

probe introduces misalignments. Secondly, although the imaging process itself is relatively straightfor-

ward given the ultrasound equipment and stabilizing helmet (as in chapter 5), extracting the contours

from the ultrasound images is problematic. This is because the large amount of noise, false edges,

shadows and other disturbances make automatic tracking systems unreliable, and their results must be

corrected by hand. At an ultrasound recording rate of 100 Hz, a few utterances result in thousands of

contours and require a considerable manual effort. Another practical problem is that ultrasound does

This chapter is mainly based on references [111, 115, 116]
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not image well tongues of many speakers in the first place, with the tongue surface boundary being

incomplete and unclear in most frames (see fig. 6.1), leaving few contours usable to train the model.

Figure 6.1: Examples of incomplete and unclear ultrasound images of tongue surfaces

Other reasons for adaptation comes from the need of data fusions — leveraging different articulatory

acquisition techniques. Firstly, it is known that many techniques are complementary to each other, e.g.

EMA and ultrasound, though none of them is perfect. It becomes increasingly interesting to couple

these complementary techniques to obtain a more complete picture of dynamic movements of articulators

(e.g. [6, 5]) 1. Hence, registering different imaging modalities (or adapting one imaging modality from

another) becomes necessary, because they are often measured in different coordinate systems. Secondly,

in practice we may obtain contours for a new speaker from a different imaging modality (e.g. MRI)

recorded separately. Finally, these new contours could even be partial measurements (e.g. XRMB,

EMA). For example, a practical scenario is to reconstruct through the adapted predictive models of

tongue shapes the full contours from locations of 3 or 4 tongue pellets in MOCHA/X-ray microbeam

databases where not even a single full contour is available 2.

Successful adaptation can mitigate recording burdens and enable useful applications in articulatory

models, articulatory inversion, visualization, speech production studies. Quick, automatic adaptation

of an existing well-trained model for a reference speaker given a small number of segmented contours

from the new speaker becomes attractive.

Formally, we formulate the adaptation problem as follows: given a predictive mapping f for

1Recording different imaging modalities simultaneously could be difficult due to interference between two channels.
2As demonstrated in chapter 5, reconstruction by predictive models far outperforms interpolation methods based on

splines in particular for extrapolating beyond the end landmarks.
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speaker 1 and a new, small training set S2 = {(xn,yn)}N
n=1 with N contours from speaker 2, estimate

a new predictive mapping for speaker 2. In this chapter, we focus on speaker adaptation using full or

partial contours from the new speaker although the adaptation framework could be extended to other

tasks such as session alignment and modality registration.

With only a small dataset for the new speaker, it becomes difficult to estimate an accurate, complex

predictive mapping. More critically, these limited new data makes it infeasible to perform generic model

adaptation (as reviewed in section 6.2) explicitly because adaptation could easily lead to overfitting.

Therefore, we propose adaptation by feature normalization — estimating feature transformation g that

maps new data to old data. The new predictive mapping will be obtained as the composition g−1 ◦ f ◦g.

We propose two types of transformations: (1) global feature adaptation. (2) local feature adaptation. The

fundamental difference is that the latter considers a separate linear, invertible feature transformation

at each landmark and each contour point. More crucially, this generalization eliminates the bias and

mitigates the stagnation issues. Note both adaptations assume no correspondence, i.e., adaptation data

does not necessarily to contain the same phonetic transcription as the training data.

In summary, the need to obtain models for new conditions (such as a new recording session, recording

modality, speaker or speaking style) and the difficulty of extracting quality contours make it a necessity

to adapt an existing predictive model given only few full or even partial contours from ultrasound

recordings or other imaging modality. We propose to adapt the predictive model automatically by

feature normalization that does not require correspondences. The resulting methods are very robust

and achieve high accuracy with just a few contours. We review some related work in section 6.2, describe

the predictive model in section 6.3 and the adaptation methods in sections 6.4–6.5 respectively, and

show experimental results in section 6.6.

6.2 Related work

Speaker adaptation is an important topic in speech science and has been researched for years. In the

following, I organize representative work in different contexts.

Adapting acoustics HMMs for speech recognition. These methods (reviewed in [160]) can be

further classified in the following types. Maximum-a-posteriori methods (e.g. [51]) apply Bayes’ rule

using as prior the trained model. This converges to the true maximum-likelihood (ML) estimate with

infinite data, but performs poorly with little data because only a few parameters are updated. Parameter

tying methods (e.g. MLLR, maximum likelihood linear regression [83, 50, 48]) aim to avoid overfitting

problems (as there are enormous number of parameters in HMMs with respect to the limited data for

adaptation) by applying shared and usually linear transformations to the HMM means and covariances.
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They do not converge to the ML estimate and so do worse than MAP with abundant data, but with little

data they do update all parameters and reduce the error much more. Hiroya and Honda [60] presented a

similar method but in the context of acoustic-to-articulatory mapping. It indirectly adapts the acoustic

parameters to compensate geometrical difference of vocal tract shapes by adjusting the linear acoustic-

to-articulatory model in each HMM state. Feature normalization methods transform the features instead

of the model parameters so the new speech better matches the one used to train the original HMM.

They are closest in spirit to our adaptation work. This is done by arbitrary linear transformations

(constrained MLLR for HMMs [33] or HMM-ANNs [99]) or special cases of them, such as cepstral mean

normalization or vocal tract length normalization by frequency warping (e.g. [82] implicitly results in

linearly tying the HMM parameters). Speaker space methods define a space where each point represents

one speaker model (e.g. by concatenating all means in a supervector) and interpolate among several

speaker models by clustering or PCA (e.g. [77, 49]). All above methods have been successfully applied

in HMM-based speech recognition and require a word-level transcription (i.e., correspondences) such

that each phone HMM can be adapted by data corresponding to the phone. However, it is difficult to

apply them methods to our problem. This is mainly because our adaptation data is very limited with

respect to number of model parameters and they do not assume correspondences.

Adapting articulatory models for articulatory speech processing. Recall from chapter 5, an

articulatory model, e.g. Maeda’s model, is a mathematical model that characterizes the geometrical

shape of VT as a function of a few controllable parameters, which are often chosen by hand. Some

articulatory models are learned by applying principal component analysis on VT shapes segmented

from MRI or X-ray images. Adapting an existing articulatory model has the advantages of reusing an

existing model to reconstruct the VT for a new speaker without recording large amount of speaker-

specific articulatory data, which is time-consuming and expensive. It also enables synthesizing speech

through articulatory synthesizer with the reconstructed VT as input. As a result, the adaptation can be

evaluated in terms of both visual and acoustic match. On the other hand, adaptation would inherit the

problems of articulatory models, e.g. producing unrealistic VT shapes and unrealistic synthetic voice.

Furthermore, human intervention or extra articulatory modality are often needed for adaptation tasks.

It is worth noting that it is possible to adapt an articulatory model with an optimization procedure as

our adaptation framework. Recall that in a typical articulatory model, e.g. Maeda’s model, VT outline

can be completely determined by scale factors and a set of articulatory parameters. Therefore, these

methods can be further classified based on which parameters to adapt:

• Methods that adapt scale factors (e.g. [94, 54, 20, 40]). They adapt scale factors (i.e., the semi-

polar grid) that controls VT dimensions of oral and pharynx cavity. This is often achieved by
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superimposing the articulatory model on sagittal MRI image of some vowels and then estimating

the factors manually that achieve best overall fit between the exterior contours produced by

adapted model and those extracted measurements. Note that the goal is to adapt the articulatory

model such that it can generate sounds that specific to new speakers.

• Methods that adapt articulatory parameters (e.g. [15, 1]). They adapt articulatory parameters,

e.g. jaw height, tongue location and shape, lip aperture and protrusion, larynx height, from

other articulatory measurement, e.g. XRMB or EMA. Birkholz and Kroger [15] adjusts manually

parameters of the 3D vocal tract model of a Russian speaker such that model-derived outline

match closely with the measured MRI outline of vocal tract of a German speaker. Bawab et al. [1]

derive articulatory parameters of Maeda’s model manually from EMA data in MOCHA through

a geometrical mapping. In addition, the method can return the entire VT shape w.r.t EMA

data and hence is able to synthesize the corresponding speech sound through an articulatory

synthesizer. These adaptations are essentially feature normalization. However, they could be

insufficient because they ignore speaker-specific parameters, e.g. length and shape of VT, encoded

in scale factors. Also, the method has to use heuristics to adapt some parameters, e.g. jaw height

and lip protrusion, that don’t have correspondence to measured EMA data.

• Methods that adapt both scale factors and articulatory parameters (e.g. [11, 151, 2]) They adjust

speaker-specific parameters and derive articulatory parameters by inverting the linear articula-

tory model. Toutios et al. [151] estimates articulatory parameters by minimizing distance between

model output and measurements while respecting geometrical constraints on articulatory param-

eters. In addition, they introduce regularization terms to encourage the temporal smoothness of

estimated articulatory trajectory and solve the new optimization problem by variational calcu-

lus with initialization from the original unregularized solution. This method can be viewed as

“on-line” adaptation — deriving separate articulatory parameters for each EMA measurement.

Since estimating articulatory parameters at each frame involves solving a complicated optimiza-

tion problem that is prone to local optima, this adaptation is very expensive. Bawab et al. [2]

improve [1] by adapting 3 grid parameters in Maeda’s model and finding the best geometric-fit

VT shape through a codebook search. This idea is very close to [151] except the latter searches

the closest VT shape in model space (in contrast, [2] search in data space through sampling the

model). Note that searching for the best-fit VT shape in a huge codebook independently could

be expensive and this does not respect temporal smoothness. This method is very related to ours

in that it can reconstruct the entire tongue shape by using only EMA data in MOCHA.
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6.3 The predictive model of tongue shapes

We briefly review predictive modeling of tongue shapes. We want to predict the full tongue contour

y = (yT
1 , . . . ,yT

P )T ∈ R
2P consisting of P points yi ∈ R

2 given only the positions x = (xT
1 , . . . ,xT

K)T ∈
R

2K of K landmarks xi ∈ R
2 (fig. 6.2). Our approach fits a predictive mapping f by minimizing

the predictive square error E(f) =
∑N

n=1 ‖yn − f(xn)‖2 (plus a regularization term for RBFs) given a

sufficiently large training set, and f(x) = Wx + w (linear) or f(x) = WΦ(x) + w (RBF) with M basis

functions φm(x) = exp (−1
2 ‖(x − µm)/σ‖2). The RBF is trained in an efficient but slightly suboptimal

way (as commonly done) by fixing the centers µm by k–means and cross-validating the width σ and

the regularization parameter λ.

f1

x1 y1

Figure 6.2: Training a predictive model f1 for speaker 1 with sufficient numbers of full contours (here
K = 3 landmarks and P = 24 points).

6.4 Feature adaptation of predictive models with full contours

In this section, we consider the following adaptation task (see fig. 6.3): given a predictive mapping f1

for speaker 1 and a new, small training set S2 = {(xn,yn)}N
n=1 with N full contours from speaker 2

(i.e., each adaptation data item is a pair (xn,yn) where yn is the P–point contour and xn the K–point

input (a subset of yn)), estimate a new predictive mapping f2 for speaker 2.

Given the limited training set S2, it is difficult to estimate an accurate, complex predictive mapping

from scratch 3. The data sparsity also poses significant challenges on performing model adaptation, be-

cause model parameters in our predictive mappings (e.g. weights, centers, widths in RBF) significantly

outnumber the adaptation data. One way to circumvent this is to tie model parameters and adapt them

3In chapter 5, we show that it is necessary to have sufficient contours, e.g. N > 200, to estimate such a mapping.
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together using same data. However, this explicit parameter tying is very difficult to implement since it

requires information that are not available in our problem setting. Rather, we take the feature normal-

ization approach related to that used in acoustic HMM adaptation [83, 160]. In summary, adaptation

of an existing predictive mapping f is done as follows: (1) estimate an linear, invertible transformation

through which map new data to old data (see fig. 6.4 for example); (2) apply the old predictive mapping

and maps back (with the inverse transformation) the predictive full contour to the new speaker space.

We propose two algorithms for feature normalization. The first algorithm enforces all the landmarks

and contour points to share a global linear transformation. It turns out to be simple but effective and

achieves reasonable accuracy in just seconds of CPU because it involves estimating very few parameters.

It can also be extended to adapt a full-contour model given only partial contours (see section 6.5). The

second algorithm extends the first one by allowing each landmark and contour point to have separate

linear transformations. This extension turns out to be very useful because it eliminates the bias and

mitigates the error stagnation problem (i.e., increasing K or adaptation data does not reduce the

predictive error) by relaxing the transformations at the expense of increased complexity. These two

versions of adaptation makes our algorithms very flexible and convenient for users to trade off runtime

and accuracy. Let us describe two algorithms in details in following sections.

f1 +

f2

x2 y2

Figure 6.3: Adapting f1 for speaker 1 to speaker 2 given a few full contours.

6.4.1 Global feature adaptation

The key aspect of this global feature normalization is to apply the same transformation to each 2D point

of an x– or y–contour. We take this 2D-wise alignment transformation g(x) = Ax + b to be linear, in

order to ensure it is invertible and has few parameters. Consequently, the inputs x and outputs y also
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undergo invertible linear transformations gx, gy:

x̃ = gx(x) =
(

Ax1+b
...

AxK+b

)

= (IK ⊗A)x + 1K ⊗ b (6.1)

ỹ = gy(y) =
(

Ay1+b
...

AyP +b

)

= (IP ⊗ A)y + 1P ⊗ b (6.2)

where ⊗ is the Kronecker product. The adapted predictive mapping is given by g−1
y ◦ f ◦ gx. Then,

adaptation requires estimating only the 6 parameters A2×2 and b2×1, which are shared among all 2D

points in a contour (so one contour is enough if P > 2 points). To estimate {A,b} we need to define a

suitable error function. The obvious candidate is the same one that was used to estimate the predictive

mapping f , namely the predictive squared error E(A,b):

min
A,b

E(A,b) =
N
∑

n=1

∥

∥yn − g−1
y (f(gx(xn)))

∥

∥

2
. (6.3)

Even when f is linear, E is very nonlinear, involving both A and its inverse, and has a complicated

gradient. Instead, we use a proxy error function F (A,b):

min
A,b

F (A,b) =
N
∑

n=1

‖gy(yn) − f(gx(xn))‖2 (6.4)

which is easier to handle because it involves only A (not its inverse). This has the disadvantage that if

a ground-truth A, b is used to transform the data, then in general this ground-truth is not a minimizer

of F . However, in practice it is very close to a minimizer, and the small bias incurred is a fair price to

pay for the simplicity and efficiency of the algorithm. This is further discussed in the following. Also,

we do not constrain A to be invertible in (6.4), as we find this unnecessary in practice.

To minimize F , we compute the gradients (vec (·) concatenates the columns of its argument into a

single column vector)

∂F

∂ vec (A)
= 2

N
∑

n=1

rT
nPn Pn =

∂rn

∂ vec (A)
(6.5)

∂F

∂ vec (b)
= 2

N
∑

n=1

rT
nQn Qn =

∂rn

∂ vec (b)
(6.6)

where rn(A,b) = gy(yn) − f(gx(xn)). Using the formula (CT ⊗ A) vec (B) = vec (ABC), we obtain

rn = Pn vec (A) + Q vec (b) − w

Pn = y�
n ⊗ I2 − W(x�

n ⊗ I2)

Qn = 1P ⊗ I2 − W(1K ⊗ I2) = Q
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for the linear predictive mapping, and

rn = ỹn − WΦ(x̃n) − w

Pn = y�
n ⊗ I2 +

1

σ2
W diag (Φ(x̃n)) (x̃n1

T
M − M)T (x�

n ⊗ I2)

Qn = 1P ⊗ I2 +
1

σ2
W diag (Φ(x̃n)) (x̃n1

T
M − M)T (1K ⊗ I2)

for the RBF predictive mapping, where x̃n = gx(xn), ỹn = gy(yn), M2K×M = (µ1, . . . ,µM ), y� =

(y1 · · ·yP )T of P × 2, and x� = (x1 · · ·xK)T of K × 2.

The solution for the linear case is unique and given by the following positive definite 6 × 6 linear

system:
(

PT P P
T
Q

QT P QT Q

)(

vec(A)
vec(b)

)

=
(

P Q
)T

w (6.7)

where P = 1
N

∑N
n=1 Pn and PT P = 1

N

∑N
n=1 PT

nPn.

The solution for the RBF case requires nonlinear optimization of F using the gradient equations

given above. We have found BFGS (a quasi-Newton method with superlinear convergence [101]) to

be very efficient and reliable 4; when initializing it from the {A,b} obtained for the linear predictive

mapping and the Gauss-Newton approximation for the initial Hessian, it converges to machine precision

in 5–15 iterations. Random initializations have failed to find local optima in F with our datasets.

The computational complexity of the adaptation algorithms in number of multiplications is O(32NP )

for the linear case and O(14NM(P + K)) per BFGS iteration for the RBF case, where the constants

given are approximate and assume 2D-wise vectors. For N = 10 adaptation contours, M = 500 basis

functions, P = 24 points and K = 3 landmarks, RBF adaptation takes 0.1 s and linear adaptation takes

4 ms in a 2.66 GHz PC.

Bias incurred by the proxy objective function. In general, if the data is transformed with a

ground-truth {A0,b0}, then the latter is a minimizer of E (up to local optima) but not of F . This is

due to the fact that E and F are minimizing errors in different variables (just like the regression lines of

y on x and x on y are different). However, we can prove that the bias (A,b)− (A0,b0) is proportional

to the predictive error on the original training set (and zero if the model was perfect, i.e., yn = f(xn)).

Our predictive errors are very low, particularly for the RBF case, and in synthetic examples we observe a

relative bias of less than 1%. This is a fair price to pay for the simplicity and efficiency of the algorithm.

There are two further differences in the RBF case with respect to the linear one that cause the adapted

model to be slightly better than expected. (1) The original f may be slightly suboptimal because of the

heuristic RBF training; minimizing F will not only adapt but also indirectly optimize over the centers

4Gradient descent does not work here because the objective function, near the ground truth minimizer is extremely
ill-conditioned. With proper re-scaling datasets, its convergence may be improved.
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g(x) = Ax + b

Figure 6.4: Five sample contours from S1 aligned with a 2D-wise mapping g with A =
(

0.26 1.82
−0.36 0.26

)

, b = ( 52.8
67.4 ). Red : adaptation contours; Blue: original contours, recovered by g.

and width. (2) The adapted RBF model results in non-radial basis functions (with inverse covariance

(IK ⊗ ATA)/σ2), and is thus more flexible than the original one which has radial basis functions with

inverse covariance σ−2 I.

6.4.2 Local feature adaptation

Coupling 2D wise transformation make the global feature adaptation algorithm simple, fast and effective,

but also restrictive. As shown later, the accuracy of this algorithm deteriorates somewhat when adapting

to a completely different speaker; specifically, the prediction error stagnates quickly (with just 5 to 10

adaptation contours) and relatively far from the optimal one that we would achieve if training with

abundant data (0.3 to 0.7 mm more, which is over twice that error). There are two basic reasons for

this. Firstly, every 2D point in the contour (including the landmarks) undergoes exactly the same linear

transformation, resulting in only 6 adaptation parameters. While this works perfectly under translation,

rotation, scaling and global shearing, it does not allow for different transformations in different points

of the tongue. This is very restrictive, because we should expect more complex variations arising from

anatomical factors, sex and age (for example, the new speaker might have a longer tip but a shorter

dorsum than the old one) as well as other factors such as speaking style, language, etc. Secondly, in

order to simplify the optimization, a proxy objective function is used that introduces a (small) bias in

the transformation.

To address above problems, we propose the local feature adaptation. The key idea is to use local,

linear feature transformations at each landmark and at each contour point. This increases the number
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of parameters and hence the flexibility of the adaptation, which can take advantage of a larger number of

adaptation contours and achieve an error much close to the optimal one (0.1 to 0.3 mm more); besides,

we optimize the real reconstruction error without bias. In addition, we apply regularization that reduces

variance if using very few contours.

Specifically, we adapt an existing predictive mapping f by estimating two invertible linear mappings

gx and gy (with few parameters) that map new data to old data in the landmark (x) and contour (y)

spaces, respectively. Each mapping g is defined as a concatenation of separate, local linear mappings

that map a 2D point to another 2D point:

x̃ = gx(x) =
(

Ax

1x1+bx

1...
Ax

K
xK+bx

K

)

, ỹ = gy(y) =

(

A
y

1 y1+b
y

1...
A

y

P
yP +b

y

P

)

. (6.8)

The adapted predictive mapping is given by g−1
y ◦ f ◦ gx and requires estimating 6(K + P ) parameters

that we write collectively as (Ax,bx,Ay,by). The adapted model is linear if f was linear, and a basis

function network where the basis functions are non-radial if f was a radial basis function network. Recall

that in the global adaptation in section 6.4.1, Ax
i = Ay

j = A and bx
i = by

j = b, so there were only 6

parameters.

Objective function. To estimate (Ax,bx,Ay,by), we minimize the predictive squared error E(Ax,bx,Cy,dy):

min E(Ax,bx,Cy,dy) =
N
∑

n=1

∥

∥yn − g−1
y f(gx(xn))

∥

∥

2
(6.9)

where we introduce new parameters Cy
j , dy

j , so we work with

y = g−1
y (ỹ) =

(

C
y

1 ỹ1+d
y

1...
C

y

P
ỹP +d

y

P

)

Cy
j = (Ay

j )−1

dy
j = −(Ay

j )−1by
j

(6.10)

instead of gy, simplifying the optimization (no matrix appears as an inverse). In section 6.4.1, we

optimized a proxy function F (A,b):

min
A,b

F (A,b) =

N
∑

n=1

‖gy(yn) − f(gx(xn))‖2 (6.11)

because E(A,b) must contain both A and A−1 and its gradient and optimization are more complicated.

Our new approach has several advantages over this (apart from being more flexible): (1) As mentioned

in section 6.4.1, the (A,b) that minimize F differ somewhat from those optimizing E and are thus

suboptimal. (2) Optimizing E in the new approach is quite simpler because the parameters of gx

and gy are decoupled (see gradients below), in fact E separates over each (Cy
j ,dy

j ) for fixed (Ax,bx).

Besides, the function F is not useful with the new parameters because it has a trivial solution: setting
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Ax, bx and Cy to zero then each term in F is a constant that dy can pick up, so F = 0. However, the

local transformation approach does not carry over to the case where the adaptation data contains only

partial contours (see section 6.5) because then we have no data to fit (Cy
j ,dy

j ), for j = 1, . . . , P and

they play no role in (6.9).

Optimizing E. The gradients of E are (vec (·) concatenates the columns of its argument into a single

column vector)

∂E

∂ vec (Ax)
= 2

N
∑

n=1

rT
nPx

n Px
n =

∂rn

∂ vec (Ax)

∂E

∂ vec (bx)
= 2

N
∑

n=1

rT
nQx

n Qx
n =

∂rn

∂ vec (bx)

∂E

∂ vec (Cy)
= 2

N
∑

n=1

rT
nPy

n Py
n =

∂rn

∂ vec (Cy)

∂E

∂ vec (dy)
= 2

N
∑

n=1

rT
nQy

n Qy
n =

∂rn

∂ vec (dy)

where rn(Ax,bx,Cy,dy) = yn−diag
(

Cy
1 , . . . ,Cy

P

)

zn−vec (dy) and zn = (zT
n1, . . . ,z

T
nP )T = f(gx(xn)).

For the linear mapping function we obtain (⊗ is the Kronecker product)

∂rn

∂ vec (Ax)
= − diag

(

Cy
j

)

W diag (xT
n1 ⊗ I2, . . . ,x

T
nK ⊗ I2) (6.12)

∂rn

∂ vec (bx)
= − diag

(

Cy
j

)

W (6.13)

∂rn

∂ vec (Cy)
= − diag (zT

n1 ⊗ I2, . . . ,z
T
nP ⊗ I2) (6.14)

∂rn

∂ vec (dy)
= −I2P (6.15)

and for the RBF mapping we obtain (notation as in section 6.4.1)

∂rn

∂ vec (Ax)
=

1

σ2
diag

(

Cy
j

)

W diag
(

Φ′
n

)

(x̃n1
T
M − M)T diag

(

xT
ni ⊗ I2

)

(6.16)

∂rn

∂ vec (bx)
=

1

σ2
diag

(

Cy
j

)

W diag
(

Φ′
n

)

(x̃n1
T
M − M)T (6.17)

and the same formulas for (Cy,dy). The solution for both linear and RBF cases requires nonlinear

optimization of E using these gradient equations. As in section 6.4.1, we found BFGS to be effective

and reliable. E has local optima and we initialize BFGS from the solution obtained by the global

adaptation method.

BFGS constructs approximate inverse Hessian matrices of order 6(P + K), so it will not work if P

is large (consider a detailed 2D tongue shape representation of P = 100× 100 = 104 points in 3D). The

fact that E decouples over each (Cy
j ,dy

j ) for fixed (Ax,bx) suggests alternating minimization of E:
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1. Fix (Ax,bx) (thus fixing f(gx(xn))) and minimize E over each (Cy
j ,dy

j ). Since E is linear over

the latter, the unique solution is given by P linear systems of 6 × 6.

2. Fix (Cy,dy) and minimize E over (Ax,bx) with BFGS. This requires matrices of order 6K only.

A disadvantage of the alternating optimization is that it converges very slowly. We use the full BFGS

in our experiments.

Regularizing E. As in section 6.5, we can penalize Ax and Cy with large condition numbers by

adding the following term to E:

λC(Ax,Cy) = λ

(

K
∑

i=1

C(Ax
i ) +

P
∑

i=1

C(Cy
i )

)

(6.18)

λ > 0, C(A) = tr (ATA) − D(det (ATA))1/D. (6.19)

With very little adaptation data (N = 10), this increases robustness to misspecification of landmarks

and reduces overfitting (see below the reason for this regularization term).

6.5 Feature adaptation of predictive models with partial contours

f1 +

f2

x2 y2

Figure 6.5: Adapting f1 for speaker 1 to speaker 2 given partial contours containing only the landmark
positions.

Now, we consider a more challenging adaptation task (see fig. 6.5): given as adaptation data for a new

speaker not the full contours with P points but only the much sparser K–landmark contours (N of

them), estimate the predictive mapping f2 as before. Thus, we have no training data or ground truth

for the remaining P − K points at all. This is the problem with e.g. the MOCHA database, which

contain the 2D locations of K = 3 pellets over time during speech for several unknown speakers, but
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not a single full contour. Given this information alone, how can we reconstruct the full tongue contour

from the K points for unseen speakers? We propose an extension of our global feature adaptation by

considering as input x and also as output y = x the pellet coordinates in these databases. Note that

the local feature adaptation does not carry over in this case because we have no data to fit (Cy
j ,dy

j ).

We define the new problem (minimized with BFGS):

min
A,b

Fx(A,b) =

N
∑

n=1

‖gx(xn) − fx(gx(xn))‖2 (6.20)

where fx is the components extracted from f corresponding to the K landmarks. This is equivalent to

seeking {A,b} such that the adapted model g−1
x ◦ fx ◦ gx best approximates the identity mapping and

interpolates the landmarks. We then apply {A,b} to reconstruct the entire contour as g−1
y ◦ f ◦ gx.

Note this approach does not work if f is linear, because then fx became the identity when minimizing

E(f) =
∑N ′

n=1 ‖yn − f(xn)‖2 during training, and Fx(A,b) = 0 in (6.20) for any {A,b}. In contrast, a

Gaussian RBF with a finite number of basis functions approximates the identity to high but not perfect

accuracy, and only within a finite domain of the input x, thus (6.20) has a well-defined minimum that

implicitly aligns the new speaker’s input with the domain of the old speaker’s one. Also note that we

do not need correspondences, i.e., pairs of inputs of the old and new speakers corresponding to the same

sound; achieving such correspondences is not only time-consuming but also ill defined, as it is not clear

what sounds from both speakers should be considered the “same”.

We have found an additional problem when applying the method proposed to our ultrasound data.

Essentially, our models (trained and adapted) are as good as the data used to train the predictive

mapping f . When tracking the tongue contour in ultrasound images, it is very difficult to detect

compression or stretching of the tongue because the air-tongue interface is featureless (and the tip or

back of the tongue can partially disappear)—a situation similar to the aperture problem in computer

vision. Thus, our training contours show mostly equidistant contour points, and we observe that a

(small) proportion of the MOCHA frames show distances between pellets differing by up to 30%. If

the adaptation data contains such frames, the adapted model can be far from the best one (fig. 6.10a).

Note this problem is caused not by our adaptation algorithm but by our contour data, and the ultimate

solution would be to collect tongue contours that show compression and stretching as naturally occurring

during speech (perhaps attaching metal pellets to the subject’s tongue with ultrasound imaging). It

is possible to use only MOCHA frames with roughly equidistant pellets (fig. 6.10b), but this discards

useful adaptation data and is unreliable. However, we have found one way of achieving very good overall

adaptation with our existing data: to regularize problem (6.20) to encourage A to have a low condition

number. This works because much of the misalignment between speakers can be explained by a scaling

and rigid motion (which has cond (A) = 1), and we do observe that poorly adapted models obtained
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when using all sorts of MOCHA frames indeed yield a poorly conditioned A. We then solve

min
A,b

Fx(A,b) + λC(A), λ ≥ 0. (6.21)

Directly minimizing C(A) = cond (A) = ‖A‖2 ‖A−1‖2 is difficult, so we use instead the much simpler

C(A) = tr (ATA) − D det (AT A)
1/D

for AD×D, (6.22)

which satisfies C(A) ≥ 0 and C(A) = 0 iff cond (A) = 1 (so it is minimal when cond (A) is minimal), and

is piecewise quadratic for D = 2. In our experiments we find that, for a wide range of λ, this method

reliably obtains the best results of all options and realistically reconstructs the full tongue contour

(within and beyond the MOCHA pellets) for most frames. Frames with significantly non-equidistant

pellets do show distortions, but this is unavoidable with our data.

Before training the predictive model and running the adaptation algorithm, we need to determine

which of the P contour points are the K landmarks so that this matches as closely as possible the

landmark locations in the new dataset. MOCHA and XRMB give approximate information as to how

the pellets were attached to the tongue (e.g. “2 mm from the tongue tip”) that can be used for this

purpose. The location of the reconstructed tongue relative to the velum/teeth/palate can also be used

to refine this estimate.

The computational complexity of the adaptation algorithm per BFGS iteration is O(NMK) with

N adaptation contours, M radial basis functions and K landmarks. Convergence occurs in around 10

iterations.

6.6 Experimental results

In this section, we study performance of our adaptation algorithms on practical speaker adaptation

tasks. In particular, we try to answer following questions: (1) How are they compared with retraining?

That is, minimize the predictive error E(f) of (5.1) over all parameters of f . (2) How robust is our

methods to choice of adaptation data?. (3) How realistic is the reconstructed VT from a few landmarks?

6.6.1 Speaker adaptation of predictive models of tongue shapes

In this experiment, we aim to quantify how well our global and local adaptation methods perform on a

real speaker adaptation task.

Dataset. We use data from maaw0 and feal0 in the ultrasound database as in chapter 5. Fig. 6.6

shows the contour datasets from both speakers, which display significant differences in shape. (Some
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differences in the tongue root of feal0 are due to its being poorly visible in the ultrasound; this poses

an additional challenge for the adaptation algorithms.)

Speaker maaw0 Speaker feal0 maaw0 & feal0
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Figure 6.6: Contour datasets for two speakers. Only a subset of contours plotted to avoid clutter.

Predictive models. We use (1) an RBF mapping with M = 500 basis functions, width σ = 55 and

regularization parameter λ = 10−4, trained by cross-validation on the 2 236 contours of S1; and (2) a

linear mapping, given as a baseline (as it is consistently outperformed by the RBF mapping); we also

use it to obtain initial {A,b} for the RBF. The K landmarks were chosen optimally from the P contour

points as in section 5.5.3.

Adaptation task. We adapt a predictive model for maaw0 (learned on 2 236 tongue contours from

its first session) to feal0. We use up to 500 contours from feal0 for adaptation/retraining and the

remaining 2 409 contours for testing.

Comparison methods. We compare our local and global feature adaptation with (1) retraining the

predictive mapping from scratch on the adaptation data and (2) PCA alignment, a simple adaptation

method that uses neither correspondences nor the predictive mapping f ; it finds {A,b} by matching the

mean and covariance (principal axes’ angle and variance) of the original and the adaptation datasets,

each considered as a collection of 2D points (i.e., all the points from all the contours). Note care is

needed to set the sign of the principal axes’ angle to ensure correct alignment. We initialize the local

method with the parameters of the global one. The optimal baseline is achieved by retraining the

predictive model with abundant data. All the error values we quote are RMSE predictive errors E per

contour point in mm on the test data.

Results. Figs. 6.8–6.9 plot the errors after adaptation/retraining as a function of the number of

adaptation contours N , and the number of landmarks K. Using the predictive model of maaw0 directly

on feal0 without adaptation would incur an error > 2 mm. With global adaptation, the RBF beats

the linear f consistently by over 0.4 mm as in section 6.4.1. With just one contour, the RBF achieves
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an error of 0.9 mm robustly (note the tight errorbars). However, while the error decreases with N ,

it stagnates when N = 10 far from reaching the optimal value (retraining with abundant data). The

performance gap is around 0.3 mm. With local adaptation, both the linear and RBF f work very well

with N ≥ 20 contours, consistently and significantly outperforming the global adaptation (see fig. 6.7 for

visual comparisons). Surprisingly, the adaptation error of the linear and RBF cases are now comparable.

With N < 7 to 20 contours, the local adaptation is less stable and has an average error larger than the

global one. This is likely an overfitting effect, since the local method has now more parameters. The

error decreases with N , stagnating around N = 50 but very close to the ground truth (less than 0.1

mm worse). PCA alignment (not shown in the figures) is consistently worse than both global and local

adaptation and with a larger variance even for larger N . Retraining catches up local adaptation for

N ≈ 50 to 90 contours and is essentially useless for N < 20.

global adaptation local adaptation

40 60 80 100 120

45

65

85

X (mm)

 

 

ground truth
global adapt

40 60 80 100 120
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85
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ground truth
local adapt

Figure 6.7: Contour dataset for maaw0 aligned to that for feal0 (K = 3). Only a subset of contours
plotted to avoid clutter.

From fig. 6.9, as K increases, the predictive error decreases (it is easier to reconstruct the contour

given more landmarks), and the adaptation error closely tracks it. The local adaptation consistently

beats the global one by 40% across K if using N > 20 contours. The articulatory databases use K = 3

(MOCHA) and K = 4 (XRMB), and the advantage of the local adaptation over the global one is

strongest in this region.

Suitable amounts of regularization (linear: λ = 10, RBF: λ = 104) reduce the error for the local

adaptation (RBF in particular) if using very few contours. Global adaptation benefits marginally from

regularization.

In summary, using data from two speakers (maaw0 and feal0) with significantly different shapes, our

experiments show the global method gives a reasonable adaptation but stagnates with as few as 5 to 10

contours. The local method keeps reducing the error with more contours and stagnation happens only

with many more contours, producing reconstruction results close to retraining the predictive model
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Figure 6.8: Predictive error E (as RMSE per contour point in mm) after adaptation as a function of
the number of adaptation contours N (for given (K,λ)). Errorbars over 10 random choices of the N
adaptation contours. Note the crosspoints with the retraining curve.
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Figure 6.9: As fig. 6.8 but as a function of the number of landmarks K (for given (N,λ)).

for the new speaker on abundant data. With very few contours (N < 10), the local method needs

regularization to reduce its variance, and performs worse than the global one. With more than 50

contours, retraining is the better option. Thus, the user has options to guide data collection and

achieve the best result in each application. All these statements hold for various numbers of landmarks

K. The local adaptation method takes 3 (linear) and 10 (RBF) minutes of CPU time in a workstation

for N = 50 and K = 3.

6.6.2 Reconstruction of the full tongue contour from EMA/X-Ray microbeam

This experiment aims to quantify how well our adaptation method could reconstruct the full tongue

contour from only a few tongue pellets for MOCHA and XRMB. The roles of adaptation in these

tasks include: (1) compensating session misalignment since data for target and reference speakers were

usually recorded in different experimental settings, e.g. face orientation, coordinate systems. Even for

the same speaker, adaptation is still necessary to compensate those misalignment caused by different

setups. Our adaptation algorithm is found to be very effective to correct session misalignment [111];

(2) compensating geometrical differences between different speakers. We use the same RBF predictive

model as in previous experiments (trained with abundant data).

Figures 6.10–6.11 show results for MOCHA (speaker fsew0), which has K = 3 tongue pellets. We

estimated their locations in our predictive model as [4 9 14], as this gave visually the best results.
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Effect of regularization and data selection. Fig. 6.10 shows results using N = 3600 partial contours

for adaptation. In fig. 6.10a the N contours were randomly selected from the MOCHA database and

no regularization was used (λ = 0). The reconstructed contour oscillates wildly, its ends are too long

and it can even appear upside-down; note the diagonal of A has very different values of opposite

sign. In fig. 6.10b we first eliminated all MOCHA contours having inter-pellet distance below a certain

threshold (see section 6.5) and randomly selected N partial contours from these for adaptation without

regularization (λ = 0). The reconstructed contours are now better, but the result is sensitive to the

threshold used and we lose useful adaptation data. In fig. 6.10c we used contours without selecting

them (as in 6.10a), and regularization with λ = 104 (for this dataset, λ ∈ [102, 104] gave similar results).

The reconstructed contours are the best. The resulting {A,b} are essentially a translation and uniform

scaling, as one might expect. These conclusions hold over different choices of the N contours and the

value of N , and demonstrate the need for regularization. The experiments below use a predictive model

adapted with N = 104 contours and regularization.

a: λ = 0, no selection b: λ = 0, selection c: λ = 104, no select.
(
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Figure 6.10: Effect of regularization and data selection in adaptation in MOCHA for a given frame
(the same in all 3 plots). a: no regularization, randomly selected adaptation set. b: no regulariza-
tion, carefully selected adaptation set. c: adaptation with regularization λ = 104, randomly selected
adaptation set. Color scheme as fig. 6.11; A, b and cond (A) over each plot.

Realistic tongue contour reconstruction. Fig. 6.11 shows representative reconstructed tongue

contours for MOCHA. Although, by the very nature of our goal, we do not have ground truth full

contours from the MOCHA speaker to compare with, we do have strong indirect evidence that our re-

constructions are quite realistic: (1) The reconstructed contours interpolate well the 3 input pellets, and

they respect physical constraints (even though we did not impose this in any way when estimating the

model): the tongue very rarely goes through the palate, velum or lower incisor (6% of all 10 000 frames

of 460 utterances we tested, and then by less than 1 mm); see also fig. 6.13. (2) Comparing visually
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our contours with those from the ultrasound database (fig. 6.12) shows similar shapes, in particular

in the back of the tongue (beyond the innermost pellet): “pick” (fig. 6.11) and frame 177/maaw0 177

(fig. 6.12); “overall” (fig. 6.11) and frame 300/maaw0 054 (fig. 6.12). (3) The contours correlate well

with the phoneme articulation. Note how precisely reconstructed is the posterior tongue-palate contact

in “pick” and the narrow alveolar constriction in “overall” and “thieves”; see also fig. 6.13. This infor-

mation, which is crucial for speech production and possibly for articulatory synthesis and inversion, is

not readily visible from the pellet locations alone (cf. [155]).

We do obtain less realistic reconstructions for a small proportion of frames, usually those having a

small inter-pellet distance, or that are not well represented in our ultrasound dataset. We think this

could be improved by collecting a more comprehensive contour dataset, without the need for changes

in the algorithm.
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Figure 6.11: Realistic tongue reconstruction for MOCHA; λ = 104, A =
(

−1.13 −0.07
0.06 −1.05

)

, b = ( 121
48 ),

cond (A) = 1.07. Black curve: estimate of the palate computed as the convex hull of all the tongue
pellets in the entire MOCHA data for speaker fsew0. Red curve: reconstructed tongue contour. Green
curve: contour reconstructed by a cubic spline. The markers show the EMA pellets (tongue: open
blue; lips: cyan; lower incisor: brown; velum: magenta). Lips to the left. See utterance animations,
and Matlab packages MOCHAtools/XRMBtools that implement the tongue reconstruction algorithm
for the MOCHA/XRMB databases, at http://faculty.ucmerced.edu/mcarreira-perpinan.

Comparison with an interpolating spline. Fig. 6.10–6.11 (MOCHA) and 6.13 (XRMB) also show

the reconstruction using a cubic interpolating spline (green curve). (For XRMB speaker jw11, which uses

K = 4 tongue pellets, we chose landmarks [3 7 11 15]; other parameters as for MOCHA.) Although

the spline can often give a reasonable contour between the pellets, beyond them it generally looks

completely unrealistic (e.g. see “overall” or “caused” in fig. 6.11). The spline can also oscillate wildly
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Figure 6.12: Typical tongue shapes during normal speech production in the ultrasound database (lips
to the right).

between the pellets as in fig 6.13. Constraining the spline a priori not to go through the palate, velum

or teeth seems very difficult, while such constraints are implicitly learned in our data-driven approach.
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Figure 6.13: Snapshots of realistic tongue reconstructions for XRMB, λ = 104, A =
(

1.07 −0.46
−0.15 −0.67

)

,
b = ( 130

62 ), cond (A) = 1.75. Color scheme as in fig. 6.11, but the palate was actually traced from a
mold from the speaker. Lips to the right.

6.7 Discussion

Our adaptation methods do not need correspondences, that is, contour pairs (y1,y2) from recording

sessions 1 and 2 (or speakers 1 and 2) that correspond to the same sound or phonetic gesture. Accurate

correspondences are hard to obtain; although one might ask speaker 2 to utter a few prototype sounds

and match these to equivalent ones in speaker 1, inaccuracies will arise, and besides it may be hard

for speaker 2 to understand and produce exactly the sound requested. If we did have correspondences,

one might simply fit a 2D-wise alignment mapping g to the corresponding pairs directly. However,

this ignores the existing predictive model and would likely perform less well than our method; our real

objective is to reduce the predictive error rather than find the best alignment of the contours.

Our global adaptation can be seen as speaker normalization using linear transformations gx, gy of

a specific structure, namely replicating an unknown 2 × 2 block A along their diagonal, and having
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extremely few free parameters altogether (6, independently of the contour size). This indirectly ties all

the RBF parameters (weights, centers, widths), but it is more intuitive to do this in the feature space

because of the 2D-wise structure of the tongue contours. Also, our problem is not density estimation

by maximum likelihood, but least-squares regression with linear or RBF models, and this requires using

both g and g−1.

Although we illustrate our adaptation algorithms with 2D tongue contours, all the equations carry

over to data structured in 3D blocks, and can be extended to adapt predictive models of the 3D

tongue shape. Also, our adaptation framework is very flexible and can be extended naturally to handle

adaptation with incomplete contours that contain variable missing patterns from a new speaker.

6.8 Summary

We have presented two novel feature adaptation based methods for adapting a tongue model to a new

speaker. The global adaptation, estimates a global 2D-wise linear transformation for all contour

points. It runs extremely fast (e.g. < 1 second for adapting a RBF model) and can be used to correct

misalignments between different ultrasound recording sessions. Furthermore, it can be extended to han-

dle important applications where only partial adaptation contours are available. We have demonstrated

that such extension can recover realistic tongue contours for articulatory databases, based only on the

2D coordinates for the tongue pellets provided in the latter (without the need for correspondences, full

contours or any other information like MRI images of VT, audio, geometric articulatory models). The

reconstructed tongue satisfies physical constraints (e.g. not going through the palate, teeth or velum)

without having to apply the latter explicitly, and provides detailed information not readily available in

the database such as the precise location of tongue-palate constrictions. This could be very useful for

speech production, articulatory synthesis and inversion. The local adaptation, improves the first one

by considering local transformations that align each contour point separately. This makes the method

more flexible and eliminates its estimation bias. It asymptotes close to the one retrained with abundant

data, and distinctly outperforms retraining and the global method when the number of adaptation

contours is not very small (10 to 50). Thus the user should use the global, local, or retraining methods

with less than 10, 10 to 50, and more than 50 contours, respectively. Finally, all adaptation methods

are applicable to any 2D or 3D shapes and thus open the door for reconstructing the entire vocal tract

shape of an unknown speaker from a few landmarks on it, provided one can train a predictive model for

a reference speaker using data for the full vocal tract of the latter (recorded with e.g. MRI or X-ray).



Chapter 7

Estimating missing data sequences in

X-ray microbeam recordings

7.1 Missing data in X-ray microbeam recordings

In this chapter, we consider one particular problem, mistracked or missing pellets, that affects techniques

(such as X-ray microbeam or EMA) that are based on tracking over time the 2D or 3D positions of

pellets attached to the tongue, lips and other articulators (see fig. 7.1). These techniques, often through

publicly available databases such as MOCHA or XRMB, are widely used in work in articulatory speech

processing, speech production, and this thesis. Mistracks in these techniques happen for various reasons,

from pellets unattaching to sensor malfunction [154, 122]. Some of the reasons depend on the recording

technology. With X-ray microbeam [154], on which we focus in this chapter, mistracks can happen

because the microbeam looks for a pellet but is not able to find it, or because it follows the wrong

pellet, e.g. the T1 raster follows the T2 pellet. This may be caused by the pellet accelerating too

quickly; by shadowing from tissue, bone, teeth and fillings; or by pellets coming into close proximity.

Mistracks can often be detected by the recording technology (e.g. when losing a pellet) or a posteriori

(e.g. if following the wrong pellet, the values for two pellets will be nearly identical over time); but

sometimes they are not detected at all. We will focus here on detected mistracks, and assume that the

recording system provides a binary label indicating whether each component of the vector containing

the coordinates of all pellets is present or not.

With X-ray microbeam, mistracks of a given pellet occur more commonly in subsequences of 50 to

500 ms, often near the beginning of a record, after which the pellet is recaptured (a record is defined as a

This chapter is mainly based on the reference [114]
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T4x

T4y

Figure 7.1: Example of typical mistracks for one pellet in the XRMB (pellet schematic at right). The
mistrack duration is around 0.5 sec. The pellet can move drastically over this period, so one cannot
simply interpolate it linearly.

single continuous task interval, e.g. an utterance or an isolated word recording). Mistrack proportions in

the XRMB are small (around 1.9%), but the proportion of records containing mistracks is at least 35%

[154, p. 65]. Since recording is expensive, cumbersome and (with X-ray microbeam) risky, this means

that one cannot just discard records and re-record them again until they are perfectly tracked. Also,

discarding the mistracks is wasteful and would break the continuity of articulation, which in turn makes

it more difficult to recover articulatory movements from acoustics [132]. Therefore, reconstructing the

mistracks becomes a necessity. At present, the XRMB indicates which frames are missing in each record,

but provides no reconstruction.

The fundamental approach we follow is based on the following question: given that say only the

tongue dorsum pellet is missing, can we reconstruct it from the location of the rest of the pellets? More

generally, is there enough information in the present components of the data to predict the missing

components? If the answer is yes—which it largely is in our problem considering human articulation

are quite constrained, at least if not too much data is missing—then we can apply machine learning

algorithms to estimate the missing data quite accurately. In addition, the method must handle time-

varying missing data patterns in a transparent way. We describe such an algorithm in section 7.2, and

report very successful experimental results with the XRMB in section 7.3.

Related work. If the mistrack sequence are very short, e.g. < 20 ms, we can recover the mistracks

by the spline interpolation assuming the articulators move continuously. However, this method does

not use information from those present components. Besides, these short-term mistracks are not the

typical cases in the XRMB. From chapters 5–6, we know that it is possible to reconstruct the entire

midsagittal tongue contour with submillimetric accuracy from the positions of just 3–4 points on it.

However, it was assumed that some components were always present (the 3–4 pellets) and the rest
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always missing, so the problem reduces to fitting a single mapping from the present to the missing

components. This is unsatisfactory in our case because which components are present and which are

missing varies from frame to frame; thus, the number of combinations of (present,missing) variables

(such as missing = {tongue tip, lower lip} and present = {rest}) grows exponentially, and there is

neither enough data nor enough computation available to fit all those mappings. Roweis [127] proposed

to learn a low-dimensional manifold to represent the data and then intersect this with the constraints

provided by the present values. This geometric approach is only efficient with (locally) linear manifolds.

Furthermore, the reconstructed trajectories can be quite jagged since the method does not consider the

continuity constraint explicitly. Another approach to missing data reconstruction is via the expectation-

maximization (EM) algorithm [52].

7.2 Deriving mappings with varying sets of inputs and outputs from

a density model

Our goal is to obtain a flexible, efficient way to construct mappings “on demand” between an arbitrary

set of input and output variables. Our approach is based on [22, 24]. Call the articulatory variables

x = (x1, . . . , xD) (in our problem, D = 16 for the 2D positions of 8 pellets). At frame xt in the

utterance, let Pt and Mt be two sets of indices with Pt ∩Mt = ∅ and Pt∪Mt = {1, . . . ,D}, indicating

the present and missing variables at that frame, respectively. The idea is to encode all possible input-

output relations in a master joint density p(x1, . . . , xD), and derive from it a mapping xP → xM as

the mean of the conditional distribution p(xM|xP). The conditional distribution answers the question

“what can we say about the values of xM given I know the values of xP?”.

For this to be useful, computing the conditional distributions must be done efficiently, yet they

must be able to represent arbitrary nonlinear mappings. We can satisfy both needs by defining the

joint density to be a Gaussian mixture with M components p(x) =
∑M

m=1 πm N (x;µm,Σm). The

conditional distribution can be obtained as p(xM|xP) = p(x)/p(xP ) in terms of the joint and marginal

distributions, all of which are Gaussian mixtures, and they equal (the indices assume we extract the

corresponding block matrices, e.g. the marginalized variables are simply removed):

p(xP) =
M
∑

m=1

πm N (xP ;µm,P ,Σm,PP) (7.1)

p(xM|xP) =

M
∑

m=1

πm,M|P N (xM;µm,M|P ,Σm,M|P) (7.2)
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where the GM parameters {πm,M|P , µm,M|P , Σm,M|P , for ∀m} can be computed as

πm,M|P = πm N (xP ;µm,P ,Σm,PP)/p(xP ) (7.3)

µm,M|P = µm,M + ΣT
m,PMΣ−1

m,PP(xP − µm,P) (7.4)

Σm,M|P = Σm,MM − ΣT
m,PMΣ−1

m,PPΣm,PM (7.5)

Conditional mean. We can derive the desirable mapping f(xP) by summarizing p(xM|xP). One

effective way is to derive it through conditional mean E {xM|xP}.

f(xP ) = E {xM|xP} = µM|P(xP ) =

M
∑

m=1

πm,M|P(xP)µm,M|P(xP) (7.6)

To indicate uncertainty of missing data reconstruction, one can compute the errorbars for prediction.

We can estimate the errorbar from Gaussian mixture covariance ΣM|P , defined as:

ΣM|P ≡ E
{

(xM − µM|P)(xM − µM|P)T |xP

}

(7.7)

=
M
∑

m=1

πm,M|P (Σm,M|P + (µm,M|P − µM|P)(µm,M|P − µM|P)T ) (7.8)

That is, we compute the error bar for the missing articulatory channel as the square root of the corre-

sponding eigenvalue of ΣM|P .

Conditional modes. Alternatively, we can apply the conditional modes, developed in chapter 4, which

results in a multivalued mapping.

If the conditional distributions are unimodal for each frame, using the conditional mean gives a good

reconstruction for the missing values. If at some frame there were many missing values, the latter would

be poorly constrained and their distribution would likely be multimodal, but empirically we observe

that this is not the case in our data. Therefore, in this chapter, we focus on reconstruction using the

conditional mean.

In summary, the method is as follows. The joint density model is learned offline using a complete

data set {xn} using the EM algorithm (note that it is also possible to estimate the joint density via EM

from incomplete datasets [52]. But this is not the case in our problem since we have enough complete

data.). At each frame xt we determine which components Mt are missing, and reconstruct them as

E {xMt |xPt}. Note each frame in the utterance is reconstructed independently of the others, i.e., we

apply no temporal smoothing.
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Figure 7.2: Histogram of the number of missing articulators for speakers jw11 and jw45.

7.3 Experimental results

Dataset. We use articulatory data from two speakers, jw11 and jw45 from XRMB, with mistrack

percentages of 11.32% and 3.55%, respectively. Mistracks occur most often on one articulator at a

time and very rarely on multiple articulators (fig. 7.2). We focus on the reconstruction of a single

missing articulator, but our method is generally applicable to cases of multiple missing articulators. We

partition the data for each speaker into training and testing sets. They contain 50 000 frames randomly

sampled from 49 utterances and 10 000+ frames from 14 utterances, respectively.

Joint density. To estimate the joint density p(x), we explore two types of models.

• Nonparametric Gaussian kernel density estimate (KDE). We try isotropic (KDEi, Σm = σ2I ∀m)

and full-covariance matrices (KDEF, Σm = σ2
F Σ̂m). In KDEi, the user supplies a bandwidth σ

so each covariance is σ2I. In KDEF, we estimate a full covariance matrix Σ̂m for each mixture

component m from its 100 nearest neighbors in the training set of 10000 frames, and multiply this

by a user bandwidth σF so each covariance is σ2
FΣm.

• Parametric density estimate by Gaussian mixtures (GM). We try GM with M = 32, 64 and 128

components and each with a full-covariance matrix (this gave better results than using isotropic

or diagonal covariances). Each GM is trained with EM from 10 random initializations.

7.3.1 Reconstruction of artificially blacked-out data

This experiment aims to quantify the reconstruction accuracy with ground truth. Given an utterance

with complete articulatory measurements, we black out two channels of one articulator over the entire

utterance, and then infer their positions given the remaining 7 articulators, and compare with the

ground truth. We repeat this for each articulator and for several utterances.
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Figure 7.3: Effect of the bandwidth σ on reconstructing missing articulators. Top: KDEi. Bottom:
KDEF. The “Avg” curve is a weighted sum of the reconstruction error of each articulator, with weights
inversely proportional to the respective error.

First, we study the choice of model parameters. Although many rules exist to set the bandwidth of a

KDE in an unsupervised setting, here we can set it to minimize our reconstruction error. Fig. 7.3 plots

the effect of the KDE bandwidth. For each blacked-out articulator, we compute the RMSE by averaging

over a subset of the testing set for the given σ or σF . Each articulator favors a slightly different σ.

On average, we found σ = 1.75 (jw11) and 1 (jw45), and σF = 1 (jw11, jw45) to be optimal, and

use these values for the rest of the experiments. The reconstruction error also varies among different

articulators. In general, it is easier to reconstruct the dorsum tongue pellets T2,T3,T4 (around 1 mm

RMSE) than T1 (the tongue tip) and the lips (1.5+ mm RMSE). This agrees with the observation that

the latter tend to be more variable and harder to predict (T1) or less coupled from other articulators

(lips). However, the relative difficulty in the reconstruction does differ among the speakers, as does the

absolute reconstruction error (the average RMSE differs by 0.5 mm among both speakers).

Next, we quantify the reconstruction error for individual missing articulators with each density

model. Fig. 7.4 plots the averaged RMSE over the test set for individual missing articulators. Although

by little, the GMs consistently outperform the KDEs by an average 0.2 mm. KDEF beats KDEi but

requires considerably more computation. Among all GMs, the one with M = 32 components beats all

others. All these results hold for both speakers and they are consistent with fig. 7.3. For example, they
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Figure 7.4: Reconstruction error for each missing articulator. For the Gaussian mixtures, the (tiny)
errorbars are over 10 random initializations of EM.

confirm that the lower lip for jw11 and T1 for jw45 are the hardest to be reconstructed. On average,

the reconstruction for all articulators is 1 to 1.5 mm for jw11 (except for the lower lip, with a RMSE of

2.0 mm) and 0.5 to 1 mm for jw45 (except for T1, with a RMSE of 1.4 mm). Thus, we conclude that a

highly parsimonious Gaussian mixture (just 32 full-covariance components) can achieve a very accurate

reconstruction. Recall that the measurement error in the XRMB is around 0.5 mm [154].

Fig. 7.5 shows typical reconstructions of tongue pellets’ trajectories for missing periods of 5 sec.

The reconstructed trajectories are very close and correlated with the true ones even though the latter

heavily oscillate over the missing period. This holds for all density models, although as mentioned the

GM provides the best reconstruction (lowest reconstruction error and also smoothest reconstructions).

KDEF is again better than KDEi and occasionally beats GM (e.g. the reconstruction of T1 between 3.2

and 3.4 seconds). Even though we use no temporal information, discontinuous or jagged reconstructions

happen only very rarely. T1 is often more difficult to reconstruct than other tongue pellets since its

motion is less coupled with them. On the other hand, it is very easy to reconstruct T2 from T3 or vice

versa, which is due to the fact that T2 is highly correlated with T3. The results are consistent among

both speakers. Reconstruction errors seem to be correlated with those from articulatory inversion.

For example, in both cases it is more difficult to recover the movement of lips than the tongue pellets

although RMSE on lips appear deceptively low.

7.3.2 Reconstruction of truly missing data

Fig. 7.6 shows the reconstructions of truly missing articulators (for which we have no ground truth)

using the GM with M = 32 components; we show the phonetic labels (which are available from the

synchronized speech and potentially could be used to constrain the reconstruction) to help validate the

reconstruction. Overall, the reconstructed articulatory trajectories are quite smooth, and the endpoints
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Figure 7.5: Reconstruction of artificially blacked-out articulators T1,T1,T3,T4 (top to bottom) for
the utterance tp011.
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of the reconstructed data typically match very well with the present data, even though this was not

enforced (each frame is reconstructed independently). Small discontinuities do occur, likely caused by

the transition from one mixture component to another. This may be improved by a better density model,

or by using temporal information. Visually, the trajectories look realistic, particularly if comparing with

the corresponding phonetic label of the missing data, and if we compare the same phonetic context in a

case where it is missing with a case where it is present. This happens in the reconstruction of mistracks

of T4 for tp12 jw11: note the context grandfather, especially for T4y. In addition, we show the errorbars

of one standard deviation along with the reconstructions. They are quite small relatively, i.e., within 5%

of dynamic ranges of articulatory channels. They move smoothly across time generally except for some

segments, e.g. T4 for tp012 jw11, where rapid changes occur during short periods. This indicates

our density model is not smooth and could be improved in future. In addition, we also show the

reconstructions by spline interpolation in fig. 7.6. The results clearly confirmed that the unsupervised

spline interpolation fails to reconstruct the mistracks of long periods because the articulators typically

undergo drastic changes during these periods.

7.4 Summary

We have extended an algorithm for missing data reconstruction and applied it to recovering missing

pellet tracks in X-ray microbeam recordings, where the pellets are missing over extended periods, and

the subset of missing pellets changes over time. A surprisingly parsimonious density model was sufficient

to produce very accurate reconstructions for most pellets, even when the trajectory oscillates drastically

over the period where it is missing. One limitation of the approach is that it relies on estimating a

density model of the data ahead of time using a complete dataset (with no missing values). While this

is not a problem with existing, large articulatory databases, future work should address reconstruction

in more challenging situations, such as (near) real-time, or where little or no complete data are available

for training.
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Figure 7.6: Reconstruction of truly missing data (i.e., one articulator is missing at a time) with a GM
(red); rest of the articulatory trajectory in blue, and phonetic labels. The shaded, pink colored error
regions plotted to indicate uncertainty of missing data reconstruction. Interpolation by spline is plotted
in green.



Chapter 8

Conclusions

8.1 Summary

Articulatory speech processing involves processing and modeling in articulatory domain. It regains

its popularity recently because (1) acoustics based speech technologies seem to hit their performance

bottleneck and very difficult to be improved upon. (2) speech production databases containing real

articulatory measurements become widely available in many languages, which enables data-driven stud-

ies. Although it is a long-standing problem in speech research, there are still many hard problems to

be solved and open questions to be answered. In this thesis, we address several key problems in this

field, i.e., articulatory inversion, tongue reconstruction, missing data reconstruction, trajectory inverse

kinematics.

In chapter 2, we address nonuniqueness in acoustic-to-articulatory mapping, a crucial problem that

plagues many computational algorithms. Due to lack of reliable speech production model, analytical

analysis of the problem is infeasible. Rather, we study nonuniqueness by a systematic, large-scale

empirical investigation using articulatory data for normal speech from the Wisconsin XRMB. Searching

for nonuniqueness in the full articulatory spaces does give direct, quantitative evidence of the presence

of nonuniqueness of the inverse mapping in normal human speech; but also suggest that, while some

sounds are indeed produced in multiple ways, often a unique VT shape is used. In the refined searching

for nonuniqueness in individual articulatory spaces suggests that nonuniqueness affects all articulators

we considered especially the tongue. However, for any given acoustic sound some or even all articulators

may be strongly constrained. The set of articulatory shapes that correspond to a given sound is usually

tightly concentrated around a roughly spherical region in articulator space (dimension 0). We do

find many sounds that show more complex shapes: multimodality (dimension 0), very elongated in a

straight or curved path (dimension 1), or even more complex. The limitation of our work includes:

98



99

(1) We considered a single speaker from the XRMB, and did not study the relevance of the acoustic

context for the cases where nonuniqueness occurred. (2) The VT representation provided by the XRMB

is incomplete, lacking data about the lower VT. It is thus possible that sounds that are produced with

the same upper VT shape do differ in the lower VT, thus increasing the frequency of nonuniqueness.

As a promising articulatory acquisition technique, dynamic MRI may offer a full representation of the

VT in the future. In chapter 3, we aim to identify the best acoustic features and their parametrization

for articulatory inversion. We found relatively large windows and smoothing help to alleviate the

jaggedness of acoustic features and improve inversion accuracy. The best acoustic feature is found to

be LSF (although PLP performed just as well). The best parametrization is obtained by using dynamic

features, 64 to 80 ms short-time window, double-filtering smoothing of cut-off frequency θ = 0.25, and

a 15 ms time delay between articulatory and acoustic frames. However, the improvement over other

combinations of features or smoothing was very small (around 0.3 mm, to yield an RMSE of around

1.65 mm). The results may be specific to the single speaker. However, while other choices may alter

the RMSE in absolute terms, we do not expect major changes to the relative ranking of the features.

In chapter 4, we have presented an articulatory inversion algorithm, conditional modes, that employs

a density model to predict (possibly multiple) feasible, typical vocal tract shapes for a given acoustics,

and disambiguates a sequence by choosing the smoothest path among these shapes. The algorithm

correctly recovers either a retroflex or a bunched shape for the American English /ô/, while a neural

network recovers an incorrect average of both. While being computationally more costly than neural

networks, we can adopt a practical strategy that apply the algorithm selectively on acoustic frames that

exhibit nonuniqueness.

The goal of chapter 5 is to study predictive modeling of tongue shapes by a nonlinear mapping. We

found the nonlinear predictive model significantly outperforms the conventional spline interpolation by

an order of magnitude. It also consistently improve over the linear mapping. In addition, we identify the

best landmarks placements empirically, which is very instructive on how to place tongue pellets during

EMA/XRMB recordings. In chapter 6, we aim to adapt the predictive model previously learned on one

speaker to another. We propose two feature adaptation based methods. Global adaptation estimates

a global linear transformation. It run extremely fast (e.g. < 1 second for adapting a RBF model) and can

be used to correct misalignments between different ultrasound recording sessions. Furthermore, it can

be extended to handle important applications where only partial adaptation contours are available. We

have demonstrated that such extension can recover realistic tongue contours for articulatory databases,

based only on the 2D coordinates for the tongue pellets provided in the latter (without the need

for correspondences, full contours or any other information like MRI images of VT, audio, geometric

articulatory models). The reconstructed tongue satisfies physical constraints (e.g. not going through the
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palate, teeth or velum) without having to apply the latter explicitly, and provides detailed information

not readily available in the database such as the precise location of tongue-palate constrictions. This

could be very useful for research in speech production and articulatory synthesis and inversion. Local

adaptation, improves the first one by considering local transformations that align each contour point

separately. This makes the method more flexible and eliminates its estimation bias. It asymptotes close

to the one retrained with abundant data, and distinctly outperforms retraining and the global method

when the number of adaptation contours is not very small (10 to 50). Thus the user should use the

global, local, or retraining methods with less than 10, 10 to 50, and more than 50 contours, respectively.

In chapter 7, we address a practical missing data problem in articulatory data acquisition. That is, we

aim to recover the some mistracked articulatory channels from other available ones. We have extended

an algorithm for missing data reconstruction and applied it to recovering missing pellet tracks in X-ray

microbeam recordings. We found a surprisingly parsimonious density model was sufficient to produce

very accurate reconstructions for most pellets, even when the trajectory oscillates drastically over the

period where it is missing. One limitation of the approach is that the quality of reconstruction relies on

the quality of a density model that must be estimated offline using a complete dataset. While this is

not a problem with existing, large articulatory databases, future work should address reconstruction in

more challenging situations, such as (near) real-time, or where little or no complete data are available

for training.

In appendix C, we apply our conditional modes approach to trajectory IK, recovering the sequence

of joint angles of a robot arm such that its hand reaches a sequence of targets in the work space. It is

related to articulatory inversion for the nonunique inverse mapping. Compared with the conventional

approaches (e.g. Jacobian pseudoinverse), our method can effectively deal with trajectories containing

singularities, where the inverse mapping changes topology, and with complicated angle domains caused

by mechanical constraints (e.g. to prevent self-intersection of body limbs in a humanoid robot). We have

demonstrated the method with trajectory IK for the industrial robot arms, i.e., PUMA 560 with known

forward and inverse mappings. We also confirm by experiments that our method is able to deal with

other practical issues: fine positioning, real-time manipulation, joint limits and obstacles. Alternatively,

we have demonstrated that the conditional density may be estimated online by nonlinear, nongaussian

trackers, e.g. particle filter. In addition, we formulate the trajectory IK as a tracking problem and show

various Gaussian or nongaussian trackers can be used independently to produce competitive results.

One limitation of our methods is the scalability to robot arms with high DOF because estimating

p(θ|x) in high-dim space would become very challenging and still an open research area.
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8.2 Contribution of the thesis

The main contributions of this thesis are:

• Articulatory inversion (chapter 2–4)

1. Presented the first empirical study on nonuniqueness of instantaneous acoustic-to-articulatory

mapping using large-scale speech production data.

2. Presented the first study on comparisons of acoustic representation for articulatory inversion.

3. Applied the framework of conditional density modes to articulatory inversion successfully.

• Tongue reconstruction (chapter 5–6)

1. Proposed predictive modeling tongue shapes by nonlinear regression.

2. Proposed adaptation framework based on feature normalization.

3. Reconstructed tongue shapes from a few landmarks in articulatory databases

• Missing data reconstruction (chapter 7)

1. Extended a missing data reconstruction method to reconstruct mistracks in an articulatory

database

• Trajectory inverse kinematics (appendix C)

1. Applied the condition density modes to trajectory IK successfully. Designed and implemented

the smoothness constraint and its optimization by dynamic programming.

2. Proposed the tracking framework for trajectory IK. To the best of our knowledge, our work

may be the first work on formulating trajectory IK as a tracking problem.

8.3 Public data resources

This thesis produces a dataset and several code packages of potential use for future research. They will

be publicly and freely available from my home page in a hope to be useful for the other researchers.

These resources include:

• A distribution of contour datasets of ultrasound tongue images and extracted 2D tongue contours.

• Corrected orthographies for several speakers in XRMB.
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• A Matlab package for manipulating Gaussian mixture and mode-finding.

• Two Matlab packages containing tools to read raw data from articulatory databases — XRMBtools

for XRMB and MOCHAtools for MOCHA, into Matlab format, visualize the databases, and plot

animations of the vocal tract and acoustics.

• A Matlab package for recovering mistracks for arbitrary missing data patterns in XRMB.

• A Matlab package for acoustic feature extraction from speech signals.

• A Matlab package tongue prediction and adaptation.

8.4 Directions for future work

8.4.1 Articulatory inversion

Particle filtering. EKF still assumes the posterior distribution p(xt|y1:t) to be a Gaussian. Thus, it

can fail in certain nonlinear and non-Gaussian problems with multimodal posterior distributions, such

as articulatory inversion due to the multi-valued inverse mapping. On the other hand, particle filtering

(PF) is a new and promising method since it is able to approximate the nonlinear and non-Gaussian

posterior distribution p(xt|y1:t) by a set of weighted samples. As in the Kalman filtering, the two

components are necessary here: a measurement model (given by an estimated forward mapping) and a

dynamic model (e.g. given by a random walk model). To our knowledge, no work has applied PF to

articulatory inversion before. Note that PF only provides a set of particles and weights at each time

step instead of effective inverse solutions. One conventional way to use these particles and weights is

to directly use the mean of the posterior distribution as an instantaneous inverse solution; we will also

use the modes derived from the posterior distribution by smoothing the particles and then using the

mode-finding algorithm.

Combining sequential data and manifold learning. It is well-known that articulators move

smoothly and articulatory data can be assumed to lie on a low-dim speech manifold. These temporal

and spatial constraints in principle can be used to constraint the inverse mapping. Previous work have

applied sequential data learning algorithms, e.g. HMM [60, 164] and LDS [38], to explore the constraint

of temporal smoothness. Work by Roweis [127] is the first successful attempt to combine HMM and

LDS where manifold learning is integral part of his constrained HMM framework [128]. This inversion

framework could be a promising direction to pursue. Alternatively, one can first apply dimensionality

reduction to articulatory data and then do inversion in low-dim space.



103

8.4.2 Tongue reconstruction

Adaptation on missing data. Our local adaptation framework can be extended to handle the missing

adaptation data simply by dropping terms involving missing components — missing data deleted.

3D tongue shapes modeling and adaptation. All equations and formulae in our predictive mod-

eling and adaptation could carry over to 3D tongue reconstruction.

Application of tongue modeling and adaptation techniques to motion retargetting in graph-

ics. The idea of predictive modeling and adaptation of tongue shapes from a few landmarks may find

useful application in motion retargetting, a key problem in computer graphics research.

8.4.3 Missing data reconstruction

Our method essentially leverages spatial constraints in geometrical XRMB data. Thus, it is possible to

improve reconstructions by exploiting other constraints given by the dataset. The following are some

possible constraints to pursue in future.

Temporal constraint. Our method reconstructs each missing frame independently without consider-

ing the temporal order of the trajectory data. Therefore, Incorporating temporal constraints would be

useful. Classical algorithms for sequential data, e.g. HMM or LDS [17] should help.

Acoustic constraint. In Wisconsin X-ray microbeam database, there are simultaneous audio record-

ings. Therefore, one could infer missing articulators data from acoustics through articulatory inversion.

Phonetic constraint. Apart from audio, phonetic information are also available in the dataset. One

way to leveraging phonetic information would be training GMMs separately for each sound and apply

GMMs according to the phonetic label for the missing data.

8.4.4 Trajectory inverse kinematics

We will apply our approach to trajectory IK in other domains, e.g. animation in computer graphics,

articulated pose tracking in computer vision, protein folding in computational biology, where neither

the inverse nor possibly the forward mappings are known, and having complex mechanical constraints

that are best captured by data-driven approaches.
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Articulatory speech databases

A.1 The Wisconsin X-ray microbeam database

The Wisconsin X-ray microbeam database (XRMB) database [154] was designed for research in speech

production, phonetics, and linguistics by John Westbury and his team at University of Wisconsin [154,

153]. This database is well-known for its richness of phonetics, large-scale, high-quality, simultaneous

recordings of speech production data and audio. The database contains different kinds of measurements

for isolated words, number sequences, read sentences, paragraphs and other tasks spoken by 57 native

speakers (25 men, 32 women) with varieties of regional dialects of American English and background.

Each recorded 20 minutes of simultaneously recordings of articulatory measurements and audio. The

articulatory measurements consist of traces of the positions of 8 receiver coils in the midsagittal plane

on the speaker’s articulators (4 on tongue, 2 on lips, 2 on the jaw, sampled at about 147Hz) 1, a palate,

a neck wall vibration. Three reference coils (2 placed on the bridge of nose and 1 on upper incisor)

were recorded to compensate head translation and pitch. Articulatory measurement error is about 0.7

mm [154]. The audio, i.e., acoustic waveform, was recorded in presence of significant room and machine

noise with a sampling rate of 21739 Hz. More details about data collections and recording specifications

(e.g. bead placement, coordinate systems, and XRMB tracking mechanism) can be found in [154].

The database does provides word-level transcriptions of each task, identical for each speaker. How-

ever, what was actually said often differs from these ideal transcriptions. We provide the “actually-said”

version of word-level transcriptions for several speakers at https://eng.ucmerced.edu/people/cqin,

which are useful for the task such as forced alignment, i.e., time-aligned speech segmentation of acoustic

1Although the database contains 2D measurement of articulatory in midsagittal plane. However, as shown by Stone
and others [144, 145, 146] and our work described in Chapters 5,6,7, shape that tongue assumed during normal speech are
sufficiently constrained and hence it is possible to infer the full tongue shape from knowledge of sparse pellet midsagittal
measurement.
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waveforms.

Fig. A.1 shows the trace of 8 articulators over the utterance tp105 for speaker jw11 plotted with

the routine XRMBtrace.m in our Matlab package XRMBtools. Table A.1–A.2 show the sentences used in

our experiments and table A.3 lists the subjects used from XRMB.

“sa sa sa sa sa sa sa sa sa”
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Figure A.1: Traces of 5 second recordings of 8 articulators for utterance tp105 from speaker jw11.

I am very grateful to Dr. John Westbury for provide the XRMB and for the courtesy of allowing us

to include the sentences from XRMB in our Matlab package XRMBtools.

A.2 The MOCHA-TIMIT database

The Multichannel Articulatory (MOCHA) database developed by Alan Wrench in Queen Margaret Uni-

versity [162] is another very popular resource for articulatory speech processing and linguistics research.

This database is also known for its rich phonetic coverage, large-scale, simultaneous recordings of speech

production data and audio. The database contains different kinds of measurements for 460 TIMIT read

sentences spoken by 40 native speakers with northern and southern British English. Each recorded

20 minutes of simultaneously recordings of articulatory measurements and audio. The articulatory

measurements consist of traces of the positions of 7 pellets in the midsagittal plane on the speaker’s

articulators (3 on tongue, 2 on lips, 1 on the jaw, 1 on the velum, recorded at 500Hz sampling rate by

Electromagnetic Articulograph), a laryngograph (sampled at 16000 Hz), EPG (sampled at 200 Hz), a

video of front view of mouth area. Two reference coils (1 placed on the bridge of nose and 1 on upper

incisor) were recorded to compensate head translation and pitch. Articulatory measurement error is
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ID Word-level transcription Duration (s)

tp001 problem children dormer never dormitory school has 7.50
tp002 nothing this street even special children ship 7.50
tp003 nine seven three nine two eight six eight five eight four nine five five ... 10.50
tp004 row special but special things although glowing 7.50
tp005 people told look moment programmer moment quite 7.50
tp006 hail this right dormer told already blend 7.50
tp007 she is about two or three when can we go home Hispanic costumes are ... 10.50
tp008 form ship back almost things school program 7.50
tp009 order row shoot used right nothing been 7.50
tp010 the other one is too big don’t do Charlie’s dirty dishes she had your ... 10.50
tp011 you wish to know all about my grandfather well he is nearly ninety three ... 25.00
tp012 twice each day he plays skillfully and with zest upon a small organ except ... 22.00
tp013 side sewed seed sod sued sawed sid sad surd said sud soid sowd sood sayed 20.00
tp017 don’t ask me to carry an oily rag like that you can shoot at the ship or do ... 10.50
tp018 dormitory words about light first about 7.50
tp019 the coat has a blend of both light and dark fibers across the street stands ... 10.50
tp020 i assume moisture will damage this ship’s hull the coat has a blend of both ... 10.50
tp021 country understand silk sense hail both 7.50
tp022 school dormer children seemed house had but 7.50
tp023 coat blend street child dormer had 7.50
tp024 things in a row provide a sense of order put these two back second children ... 10.50
tp026 the other one is too big combine all the ingredients in a large bowl the ... 14.00
tp027 seemed yourself across right sense second could 7.50
tp028 program told this across between children 7.50
tp029 when all else fails use force you can shoot at the ship or do nothing put ... 10.50
tp030 the point of the pro of the program will be told before long shaving cream ... 10.50
tp031 we are open every Monday evening I’ll make sense of the problem in a ... 10.50
tp032 dorm before programmer blend sense told 7.50
tp033 beautiful row than dorm sense second 7.50
tp034 combine all the ingredients in a large bowl the other one is too big combine ... 10.50
tp035 much order smooth people have wou 7.50
tp036 they remained lifelong friends and companions they all know what I said the ... 10.50
tp037 sense long house across programmer problem 7.50
tp038 the other one is too big combine all the ingredients in a large bowl the ... 14.00
tp039 when all else fails use force combine all the ingredients in a large bowl ... 10.50
tp040 you must blend certain things to make a special wax the dormitory is between ... 10.50
tp041 but point about ship house early 7.50
tp042 combine all the ingredients in a large bowl the other one is too big combine ... 10.50
tp043 you can shoot at the ship or do nothing the gorgeous butterfly ate a lot of ... 10.50
tp044 seemed problem moment become were seemed wo 7.50
tp045 the other one is too big she always jokes about too much garlic in his food ... 10.50
tp046 the point of the program will be told before long across the street stands ... 10.50
tp047 dormitory among second street across find 7.50
tp048 the point of the program will be told before long second children are often ... 10.50
tp049 row order problem country told dorm coa 7.50

Table A.1: XRMB sentences by speaker jw11 used in the experiments. For some sentences, we only
show the truncated word-level transcriptions for clarity. The full transcription for jw11 and several
other speakers in XRMB can be found at https://eng.ucmerced.edu/people/cqin/.
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ID Word-level transcription Duration (s)

tp051 seven seven eight nine three eight eight eight seven six one three three ... 10.50
tp052 program dorm dormer order didn’t house program 7.50
tp053 she had your dark suit in greasy wash water all year you can shoot at ... 10.50
tp054 long light programmer information above sigh 7.50
tp055 put these two back the point of the program will be told before long the ... 10.50
tp056 the sermon emphasized the need for affirmative action second children are ... 10.50
tp057 combine all the ingredients in a large bowl the other one is too big ... 14.00
tp058 around both country had ship yet both 7.50
tp059 the coat has a blend of both light and dark fibers they all know what I ... 14.50
tp061 point man enjoy long much shoot had 7.50
tp062 against people first long from people weigh 7.50
tp063 six five eight two two six nine seven two one seven four two four two three ... 10.50
tp064 I’ll make sense of the problem in a moment the point of the program will be ... 10.50
tp065 coat began cash blend this pushed flip 7.50
tp066 shoot country both shoot cash program second 7.50
tp068 when all else fails use force don’t ask me to carry an oily rag like that ... 10.50
tp070 so much that light there house special 7.50
tp071 do they go up and down you must blend certain things to make a special wax ... 10.50
tp072 five six eight one nine nine eight six seven four four one six six 7.00
tp073 cash nothing point what school that becau 7.50
tp074 the dormitory is between the house and the school combine all the ... 10.50
tp075 put those two back no put these two back put those two back no put ... 17.50
tp076 major first about back this nothing wax 7.50
tp077 it’s just a little thing grandmother outgrew her upbringing in petticoats ... 10.50
tp078 in late fall and early spring the short rays of the sun call a true son of ... 25.00
tp079 the desk that had tied him down was gone and his one thought was for quail ... 25.00
tp080 tom stopped near stream to rest soon after he had laid down his gun he ... 22.00
tp083 seemed himself point hail wax dormitory 7.50
tp084 you must blend certain things to make a special wax I think that’s real ... 10.50
tp085 porcupines resemble sea urchins across the street stands a country school ... 10.50
tp086 put this one right here cheap stockings run the first time they’re worn ... 10.50
tp087 first second head long dormitory that right 7.50
tp088 one two three four five six seven eight nine ten eleven twelve thirteen ... 20.00
tp089 himself cash point conversation that shoot had 7.50
tp091 hail light wax light ship blend school 7.50
tp092 four three seven five one two five three six four seven nine six two one ... 10.50
tp093 the other one is too big combine all the ingredients in a large bowl the ... 10.50
tp094 put these two down no put these two back put these two down no put these ... 17.50
tp095 himself blink but about measure coat wax 7.50
tp096 does creole cooking use curry a roll of wire lay near the wall don’t ask ... 10.50
tp097 the other one is too big if I had that much cash i’d buy the house you can ... 10.50
tp098 if I had that much cash i’d buy the house she had your dark suit in greasy ... 10.50
tp099 wax order coat right problem first much 7.50
tp100 himself back street nothing back things street 7.50
tp101 elderly people are often excluded when all else fails use force the ... 10.50

Table A.2: XRMB sentences by speaker jw11 used in the experiments (continued). For some sentences,
we only show the truncated word-level transcriptions for clarity. The full transcriptions for jw11 and
several other speakers in XRMB can be found at https://eng.ucmerced.edu/people/cqin/.
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Speaker Gender Accent

jw11 male Dialect of Wisconsin
jw45 male Dialect of Indiana

Table A.3: XRMB speakers used in the experiments.

about 0.45 mm [122]. The audio, i.e., acoustic waveform, was recorded with a sampling rate of 16000

Hz. More details about data collections and recording specifications (e.g. pellet placement, coordinate

systems, and Electromagnetic Articulograph tracking mechanism) can be found in [162].

The database provides word-level transcriptions of each task and time-aligned phone level transcrip-

tion computed by forced-alignment for each speaker.

Fig. A.2 shows the trace of 7 articulators over the utterance 001 for speaker fsew0 plotted with the

routine MOCHAtrace.m in our Matlab package MOCHAtools. Table A.4 show the sentences used in our

experiments and table A.5 lists 3 subjects available in MOCHA database.

“This was easy for us”
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Figure A.2: Traces of 2 second recordings of 7 articulators for utterance 001 from speaker fsew0.

Table A.4 shows the TIMIT sentences used for testing in our experiments 2 and table A.5 the 1

subject used from the MOCHA-TIMIT database.

I am very grateful to Dr. Alan Wrench and CSTR, Edinburgh for provide the MOCHA-TIMIT

database for our research and and Dr. Korin Richmond for clarifying technical questions about it.

2The TIMIT sentences used for training are not shown here but can be found at https://eng.ucmerced.edu/
people/cqin/
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ID Word-level transcription Duration (s)

006 Bright sunshine shimmers on the ocean 3.22
016 A roll of wire lay near the wall 3.22
026 Most young rabbits rise early every morning 3.97
036 Only the most accomplished artists obtain popularity 4.47
196 Straw hats are out of fashion this year 3.47
216 I gave them several choices and let them set the priorities 4.47
406 They assume no burglar will ever enter here 3.72
456 Ralph prepared red snapper with fresh lemon sauce for dinner 4.97

Table A.4: Testing sentences selected from the MOCHA-TIMIT database used in the experiments.

Speaker Gender Accent

fsew0 female Southern English
msak0 male Northern English
maps0 male Northern English

Table A.5: Speakers available in the MOCHA-TIMIT database.

A.3 Tongue contour dataset

The ultrasound tongue contour dataset used in chapter 5–6 was created at Queen Margaret University.

It contains two speakers (one male, maaw0, and one female, feal0) with different Scottish accents. Two

data streams were recorded synchronously for each speaker: acoustic waves and ultrasound videos. The

acoustic waves recorded audio signals in Microsoft PCM format at 16000 Hz. The ultrasound videos

recorded the movements of the tongue in the midsagittal plane of the vocal tract at 100 Hz. To achieve

phonetic balance, each speaker recorded a set of British TIMIT sentences designed for this purpose

and each ultrasound recording lasted 5 to 6 seconds approximately. We also recorded two utterances

containing two repetitions of three isolated words, “heed had whod”, with ascending and descending

pitches, respectively. Total durations for ultrasound recordings are 145 and 90 seconds for maaw0 and

feal0, respectively. We extracted tongue contours from ultrasound images (i.e., the lower edge of the

highlighted strip as shown in fig. A.5) in a semi-automatic approach: (1) track contours by EdgeTrak

[85], an open contour tracker based on energy minimization; (2) correct tracking errors by hand. We

discarded those unreliably tracked contours and obtained the datasets of 8671 contours for maaw0 and

7272 contours for feal0. In addition to tongue contour recordings, we also recorded the outline of hard

palate by tracing the tongue tip along the hard palate, illustrated in fig. A.3.

Although the ultrasound probe is held against the chin while recording, it is possible in principle



110

40 60 80 100 120

40

50

60

70

80

90

100

Figure A.3: Outline of hard palate in tongue contour dataset for speaker maaw0. Blue: tongue contours
(a subset plotted to avoid clutter). Black: outline of hard palate. Note that the tongue contours and
the hard palate were recorded in different sessions and the alignment is done by hand.

that the chin and the probe shift w.r.t. each other during recording. This would require normalizing

the contours w.r.t. a fixed reference. However, we found this unnecessary for two reasons: in a pilot

experiment, we compared the prediction results with normalization (by shifting the data to zero mean

and a given orientation) and without normalization, and found little difference; in addition, we used a

device (Fig. A.4) to stabilize the probe w.r.t. the head. However, there was a break when the speaker

maaw0 removed the helmet after recording 10 utterances and wore it again for the remaining 12. This

introduced a slight but noticeable mismatch. Thus, maaw0 has datasets S1 (3727 contours from 10

utterances) and S2 (4944 contours from 12 utterances) for sessions 1 and 2, respectively.

It is worth noting that no EMA pellet or receiver coil was glued on the tongue as reference points,

which are useful for identifying the extremity of the tongue tip (often invisible in ultrasound images)

and aligning temporal contour points (i.e., alleviate landmark misspecification problems described in

chapter 6). This is mainly because such recording setup was not available at the time of recording.

Instead, we attempted an alternative, i.e., glue two mental balls at locations of EMA tongue pellets

along the tongue during recording, as shown in fig. A.5. However, in the end we did not implement this

because of following concerns on the metal balls: (1) they have the risk of falling off the tongue and

being swallowed during speech productions. (2) they must be big enough (i.e., its diameter ≥ 6.5mm) to

be imaged by ultrasound. However, the resulting balls would be heavy and hence affect naturalness of

speech production. (3) they will introduce the comet tail in ultrasound images and aggravate difficulty

of contour tracking.



111

Figure A.4: Left : 2D ultrasound machine used. Right : device to stabilize the head (to reduce motion
w.r.t. the ultrasound probe) [133].

Figure A.5: Tongue contour recording with two mental balls attached to the tongue surface. Left :
Two mental balls glued to the tongue surface. Right : Cometic tail effect induced by the two mental
balls.
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Table A.6 shows the TIMIT sentences used in our experiments and table A.7 the 2 subjects used

from the English tongue contour dataset (all native English speakers but with different accents).

I am very grateful to Dr. Alan Wrench and Queen Margaret University for recording ultrasound

data of tongue movement for our research and for clarifying technical questions about it.

ID Word-level transcription Duration (s)

054 The eastern coast is a place for pure pleasure and excitement 6.82
069 Eat your raisins outdoors on the porch steps 4.44
088 Flying standby can be practical if you want to save money 6.33
161 The government sought authorization of his citizenship 6.35
162 As co-authors, we presented our new book to the haughty audience 6.81
169 Employee layoffs coincided with the company’s reorganization 5.58
177 The haunted house was a hit due to outstanding audiovisual effects 6.70
216 I gave them several choices and let them set the priorities 5.04
252 The cigarettes in the clay ashtray overflowed onto the oak table 6.21
283 To further his prestige, he occasionally reads the Wall Street Journal 8.37
317 Those answers will be straightforward if you think them through carefully first 3.17
319 If people were more generous, there would be no need for welfare 5.20
326 The groundhog clearly saw his shadow, but stayed out only a moment 6.08
332 Al received a joint appointment in the biology and the engineering 5.54
338 An adult male baboon’s teeth are not suitable for eating shellfish 5.46
340 Gus saw pine trees and redwoods on his walk through Sequoia National Forest 6.01
341 Rob made Hungarian goulash for dinner and gooseberry pie for desert 6.07
352 The patient and the surgeon are both recuperating from the lengthy operation 5.99
355 Many wealthy tycoons splurged and bought both a yacht and a schooner 6.16
369 Each untimely income loss coincided with the breakdown of a heating system part 7.67
461 Heed Had Whod (high-to-low pitch) 10.37
462 Heed Had Whod (low-to-high pitch) 8.46
463 A (/A:/) I (/i:/) U (/u:/) E (/e/) O (/6/) 6.66

Table A.6: Tongue contour dataset used in the experiments.

Speaker Gender Accent

maaw0 male Scotish English
feal0 female Scotish English

Table A.7: Speakers recorded for the English tongue contour dataset.
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Acoustic feature extraction

B.1 Pre-processing

The front-end signal processing transforms the speech signal to a set of feature vectors. The aim is to

obtain a new representation that is more compact and less redundant than the raw signal. Such rep-

resentation is more suitable for statistical modeling and calculation of distance measures. The popular

features used in speech technology are based on (1) linear predictive analysis, e.g. linear predictive cod-

ing (LPC) coefficients, line spectrum frequencies (LSF), linear predictive cepstral coefficient (LPCC)).

(2) filterbank analysis, e.g. filterbank spectra (FBANK), Mel-frequency cepstral coefficient (MFCC). (3)

auditory models of speech, e.g. perceptual linear predictive (PLP). One convention in acoustic feature

extraction is to pre-process the speech signal and we describe the step briefly as follows.

The speech signal is first pre-emphasized, that is, a filter is applied to it. The filter’s frequency

response emphasizes on the high frequency part of the spectrum, which are generally decreased by the

speech production process. The pre-emphasized signal is obtained by applying the following filter:

s̃(n) = s(n) − α · s(n − 1) (B.1)

where α is the pre-emphasis parameters (a most common value for α is about 0.95). By doing this,

the spectrum magnitude of the outgoing pre-emphasized speech will have a 20 dB boost in the upper

frequencies and 32 dB increase at the Nyquist frequency. The pre-emphasized speech signal is then

segmented into frames, which are spaced 20-30 ms apart, with 10-15 ms overlaps for short-time spectral

analysis. Each frame is multiplied by a fixed length window. The Hamming window are the most widely

used since they taper the original signal on the sides and thus reduce the side effects.

Endpoint detection. In speech application, it is sometimes useful to classify acoustic frames into

silent or nonsilent category. For example, in articulatory inversion, silent frames are often discarded
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during training phrase because those frames contain little information about locations of the articulators.

This is also known as endpoint detection in speech processing. Formally, it is a process of clamping

the interval that contains only the desired speech, e.g. voiced speech. There exist many algorithms

for performing endpoint detection, e.g. zero-crossing rate [118]. In this thesis, we adopt a simple but

effective procedure based on frame-energy. The algorithm is outline as follows:

1. Calculate the energy for each frame within an utterance.

2. Build an energy codebook by applying vector quantization.

3. Label each frame into silent or nonsilent according to the codebook the frame assigned to.

As described earlier, the popular acoustic features used in speech technology can be broadly classified

into three categories. In the following sections, we provide an brief overview of feature extractions based

on linear predictive analysis and filterbank analysis. More extensive treatment can be found in [118].

B.2 Linear predictive analysis

Linear predictive coding (LPC) [119, 118] is widely used in speech applications (e.g. recognition, coding,

modeling, etc.) because the speech production process can be well modeled by linear prediction. It

is essentially an autoregressive signal model of a discrete-time speech signal x(n) where each sample is

modeled by a linear combination of previous p speech samples:

x(n) =

p
∑

i=1

aix(n − i) + Gu(n) (B.2)

where p is the order of linear prediction, {ai, i = 1, . . . , p}, assumed constant over the short-time speech

analysis frame, are LPC coefficients, G is the gain of the excitation, u(n) is a excitation signal, which

can either be a quasi-periodic train of impulses (for modeling voiced sounds) or a random noise source

(for modeling unvoiced or fricative sounds). LPC coefficients {ai} determines the spectral shape of a

sound and are closely related to the shape of the vocal tract. By taking Z-transform, (B.2) can be

rewritten in the frequency domain as

S(z) =

p
∑

i=1

aiz
−iS(z) + GU(z) (B.3)

Consequently, the transfer function from source u(n) to x(n)

H(z) =
S(z)

GU(z)
=

1

1 −
p
∑

i=1

aiz
−i

=
1

A(z)
(B.4)
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, which is also known as an all-pole filter whose impulse response are given by ai. Fig. B.1 shows the

corresponding block diagram of this model.

u(n) x(n)

A(z)

G

Figure B.1: Linear prediction model of speech (after [118]).

Our primary interest is to determine the set of LPC coefficients {ai} from the short-time windowed

signal x(n). One approach is through the autocorrelation method. This problem reduces to solving a

linear system of a p× p matrix whose entries are computed from the autocorrelation function. Because

this matrix has special structure, i.e., it is a Toeplitz matrix, it can be efficiently solved by several

well-known procedures, e.g. the Levinson-Durbin algorithm [118]. A detailed analysis of LPC model

and properties is beyond the scope of this thesis can be found in [119, 118].

Spectral distortion measure. Given two vectors of LPC coefficients, it is often necessary to compute

the “distance” between two LPC vectors in pattern recognition application such as speech recognition.

The most useful distance measures for LPC coefficients are Itakura distance [64] and Itakura-Saito

distance [65]. They have been extensively analyzed in [55, 118] and thus in the following we only outline

the practical procedures to compute these two distortions. The LPC coefficients aim to minimize

the residual energy between the true magnitude spectrum of the speech frame and the LPC model

spectrum. This suggests that one may compute the “distance” between two LPC vectors by comparing

their residual energies between each of their reconstructed spectra and “true” spectrum. Let a and â be

the pth-order LPC coefficients computed from two (windowed) speech frames x(n) and ˆx(n) respectively.

It is known (from Exercise 3.6 in [118]) that the prediction error (residual energy) by linear predictive

analysis can be written in the form

E(p) = aTRxa (B.5)

where Rx is the Toeplitz matrix calculated from the autocorrelation sequences of the signal x(n). Thus,

a reasonable measure of spectral distance between two frames of speech represented by a and â, and

augmented matrices R and R̂ is

D(a, â) =
âTRxâ

aTRxa
(B.6)
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Based on (B.6), Itakura distance is defined as

DI(a, â) = log
aTRxa

âTRx̂â
(B.7)

Similarly, Itakura-Saito distance is defined as

DIS(a, â) =
âTRx̂â

aTRxa
− log

âTRx̂â

aTRxa
− 1 (B.8)

It is evidence that both distance measures are asymmetric, i.e., DI(a, â) 6= DI(â,a) and DIS(a, â) 6=
DIS(â,a). However, asymmetry is usually not a problem for applications such as speech quality evalu-

ation [14]. In practice, when the distortion is small, the Itakura distance measure is not very different

from the Itakura-Saito distance measure. Both distance measures are very popular in speech recogni-

tion. In particular, the Itakura-Saito distance has many interesting properties. In particular, it has been

shown to be highly correlated with subjective quality evaluation. For example, when the Itakura-Saito

distance between x(n) and ˆx(n) is less than 0.1, they would be perceived nearly identically by human

ears [14].

B.3 Filterbank and cepstral analysis

Fig. B.2 shows a modular representation of a filterbank based cepstral representation. Once the speech

Pre-

emphasis
Windowing FFT Filterbank 20*log

Cepstral

transform

Speech 

Signal

Spectral

vectors

Cepstral

vectors| |i

Figure B.2: Modular representation of a filterbank based cepstral parameterizations.

signal has been windowed, Discrete Fourier Transform (DFT) is used to transfer these time-domain

samples into frequency-domain ones. Usually, Fast Fourier Transform (FFT) is used to compute the

DFT, and thus a power spectrum is obtained.

Filterbank spectrum. This spectrum presents a lot of fluctuations, and we are usually not interested

in all the details of the them. Only the envelope of the spectrum is of interest. Another reason for the

smoothing of the spectrum is the reduction of the size of spectral vectors. To realize the smoothing

and get the envelope of the spectrum, we multiply the spectrum by a filterbank. A filterbank is a series

of bandpass filters that are multiplied one by one with spectrum in order to get an average value in

individual frequency bands. The filterbank is defined by the shape of the filters and by their frequency

location (left frequency, central frequency, and right frequency). Triangular filter are often used and
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they can be located differently over the frequency. Mel scale for frequency localization of the filters is

usually applied in most front-end feature extractions. This scale is an auditory scale which is similar to

the frequency scale of the human ear. The localization of the central frequencies of the filters is given

by

fMel = 2595 ∗ log10(1 + fLin/700) (B.9)

Finally, we take the log of this spectral envelope and multiply each coefficient by 20 in order to obtain

the envelope in dB. At this stage of the processing, spectral vectors can be obtained.

Cepstral analysis. Discrete Cosine Transform (DCT), is usually applied to the spectral vectors in

speech processing and yields cepstral coefficients [118]

Cn =

K
∑

k=1

Sk · cos[n(k − 1

2
)
π

K
], n = 1, 2, . . . , L (B.10)

where K is the number of log-spectral coefficients calculated previously, Sk are the log-spectral coeffi-

cients, and L is the number of cepstral coefficients that we want to calculate (L ≤ K). This transforma-

tion decorrelates features, which leads to using diagonal covariance matrices instead of full covariance

matrices. Finally, a cepstral vector is obtained for each analysis window.

There is an additional operation called cepstral mean subtraction (CMS) which is used to remove

from the cepstrum contributions of slowly varying convolution noises.

B.4 Dynamic features

In addition to the static features computed either as LPC or cepstral coefficients, the time derivative

approximations are incorporated in feature vectors to represent the dynamic characteristic of speech

signal. To combine the dynamic properties of speech, the first and second order differences of these

cepstral coefficients may be used. And these dynamic features have been shown to be beneficial to

speech and speaker recognition performance [47, 140]. For MFCC, the first-order delta MFCC (∆Cm)

and second-order delta-delta MFCC (∆∆Cm) are computed as [47]:

∆Cm =

∑l
k=−l k · Cm+k
∑l

k=−l |k|
(B.11)

∆∆Cm =

∑l
k=−l k

2 · Cm+k
∑l

k=−l k
2

(B.12)



Appendix C

Trajectory inverse kinematics

C.1 Introduction

From previous chapters on articulatory inversion, we know that an acoustic frame may be produced

by different vocal tract shapes. This characteristic nonuniqueness also appears in other computational

fields, e.g. realistic animation of articulated characters [56] in computer graphics, the protein loop closure

in computational biology [76], robot arm inverse kinematics (IK) in robotics [30, 136]. IK is formally

defined as inferring joint angles of a robot manipulator (see fig. C.1 for various robot manipulators)

given the desired position of the robot’s hand or end-effector. This is in contrast to forward kinematics

(FK), which maps the joint angles to the position of the end-effector and essentially characterizes the

geometrical relationship between joint angles of articulators and the end-effector’s position. Further-

more, FK typically maps very different joint angles to the same end-effector’s position and this makes

its inverse one-to-many. As an example, the two-link planar robot arm can reach a target in (Cartesian)

the workspace by either “elbow-up” or “elbow-down” arm configurations. Therefore, one could easily

imagine the following analogs: acoustic frame vs. Cartesian position; vocal tract shape vs. joint angle.

Likewise, FK resembles articulatory-to-acoustic mapping and so as IK to acoustic-to-articulatory map-

ping. What is different is that in IK we have the well-defined forward kinematics, available for each

robot manipulator [30, 136]. We want to study IK in this chapter because the algorithms we develop

for IK can be useful for articulatory inversion as well.

In this chapter, we consider a variation of the IK problem, trajectory inverse kinematics of a (say)

robot arm, where given a sequence of positions x1, . . . ,xT in (Cartesian) workspace of the end-effector,

we want to obtain a feasible sequence of joint angles θ1, . . . ,θT that produce the x-sequence (we do

not consider dynamics in this thesis). Given the joint angles, the end-effector position is given by the

This chapter is mainly based on references [109, 110]

118
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Figure C.1: Serial link robot manipulators. Left 3 : illustrations of planar 2-link arm, planar 3-link
arm, and PUMA 560. Right : real world PUMA 560 robot arm.

forward kinematics mapping, f : θ → x, which is usually known. For example, f can be obtained in

closed form for a kinematic chain as a product of homogeneous transformation matrices, one per link

(however, we remark that this is not always the case, as in articulatory inversion). However, the inverse

f−1(x) can take multiple values, or for redundant manipulators (where dim θ > dimx), an infinite

number of them; this makes it difficult to represent and compute f−1. At the same time, we want the

recovered sequence of joint angles to trace a continuous, realizable trajectory. Importantly, we aim to

not only solve IK at each trajectory point, but also to obtain an angle trajectory that is globally feasible

(e.g. avoiding discontinuities or forbidden regions). It is worth noting that this problem is different from

trajectory planning (a.k.a. trajectory generation), which basically aims to generate a trajectory from

the initial to the desired final positions while avoiding obstacles in the workspace. In trajectory inverse

kinematics, we assume that the planning problem in workspace has been solved and we are given a

trajectory in it.

We apply the method of conditional density modes of [22, 24] discussed in chapter 4 to trajectory

IK. The goal of this study is twofold: (1) propose an new algorithm for IK; (2) quantify the performance

of conditional density modes in a practical and challenging problem. Note [24] applies this algorithm to

trajectory IK but tries only a planar 2-link robot arm without forbidden regions. As a recap, this method

directly represents multivalued mappings using density models. It is a machine learning method that

learns trajectory IK given a training set of input-output pairs (x,θ) and possibly but not necessarily

given the forward mapping f . It is a global method in that it disambiguates multiple branches by

minimizing a trajectory-wide constraint. The goal of the method is to obtain a θ-trajectory that, while

not perfectly accurate, is sufficiently close at each point to the correct trajectory that it can be refined

(if desired) using a local method.

In addition, we propose another algorithm that approaches IK by tracking in section C.4. In this

tracking framework, we construct a conditional distribution of θ (= unobserved states) given past
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and current x (= measurements) by nonlinear, nongaussian trackers, which are capable of modeling

multimodal distributions. We review previous approaches in section C.2, describe and demonstrate our

methods in section C.3.1 and section C.4.2.

C.2 Computational approaches to inverse kinematics

Inverse kinematics is a fundamental problem in robotics and graphics. It has been researched for years

and there exist many practical and well-established approaches (see [136]). Desirable features of ideal

IK solvers include: (1) run fast to allow real-time manipulation. (2) highly accurate for fine-positioning.

(3) capable of finding all local solutions. (4) capable of handling singularity, obstacles, collision, and

joint limits. (5) widely applicable to various manipulators. (6) stable and repeatable solutions. State-

of-the-art approaches generally do not bear all above features. Let us briefly review some of these

approaches here.

Analytic methods One tries to obtain the IK mapping in closed form (e.g. [106]); this is only possible

for certain types of manipulators, and even then it can be complicated.

Local methods Local methods [157, 86, 35] are based on linearizing f to obtain ẋ = J(θ)θ̇, where

J is the Jacobian of f (Resolved Motion Rate Control [157]). This equation can then be integrated

numerically in order to obtain the global trajectory for θ. For redundant manipulators, where J has

more columns than rows, a unique value of θ̇ may be obtained by optimizing a suitable objective (such

as energy) over the null space of the Jacobian; in particular, one can obtain the pseudoinverse method by

minimizing ‖θ̇‖2, yielding θ̇ = J+(θ)ẋ, at a computational cost O(m2n) where m = dimx < n = dim θ.

However, the idea breaks down at singularities θ∗, where J(θ∗) becomes singular; this is caused by

the existence of multiple inverse branches intersecting at θ∗. Also, the numerical error can accumulate

over time, and the computational cost is high since many pseudoinverses of non-sparse Jacobians must

be computed. Other local methods [35] use an augmented set of variables (ẋ,θ) rather than just ẋ.

Another local method (well-known in articulatory inversion) is analysis-by-synthesis, which directly

finds an inverse value θ of f by iteratively minimizing the squared error E(θ) = ‖x− f(θ)‖2 with a

numerical optimization method, e.g. gradient descent, where ∇E = 2J(θ)T (f(θ) − x). Unfortunately,

which inverse value is found depends on the initial value for θ, and the iteration may also get stuck at

non-inverse values where J(θ)T (f(θ)−x) = 0 but f(θ) 6= x. However, the method is useful if the initial

θ is sufficiently close to the inverse sought.

Global methods Global methods [97, 93] propose a variational approach where the trajectory of

θ minimizes a functional
∫ t1
t0

G(θ, θ̇, t) dt (such as energy and manipulability) subject to the forward
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kinematic constraint x(t) = f(θ(t)) and appropriate boundary conditions. The trajectory is obtained by

numerical integration of the corresponding Euler-Lagrange equation. However, the method still suffers

from singularities [93] and needs the user to provide boundary conditions that are often unknown.

Thus, an important problem of many of these methods are the singularities of the Jacobian. These

correspond to the intersection of multiple inverse branches (violating the inverse function theorem), and

while locally any of these branches is valid a priori, globally perhaps only one is valid.

Data-driven methods A different type of methods is based on machine learning (data-driven) tech-

niques. These methods estimate the inverse mapping using a training set of input-output pairs (x,θ).

While f may be learned by fitting a (say) neural net directly to pairs (θ,x), learning the inverse map-

ping by fitting a neural net to pairs (x,θ) would average the different inverse branches, yielding invalid

solutions. For example, consider the function x = f(θ) = θ2; the least-squares error ‖θ − g(x)‖2
2 is

minimized by g(x) = 0, the average of the two branches ±√
x, and this is what a neural net would

yield. The distal learning approach [67] first trains a neural net to model the forward kinematics f ; then

another net is prepended to this, and the resulting, cascaded network is retrained to learn the identity

but keeping unchanged the weights of the forward model. This results in the prepended portion of the

network learning one of the possible inverses (with the other branches being irreversibly lost). DeMers

and Kreutz-Delgado [31, 32] try to identify (by clustering) subsets of the data corresponding to different

branches, i.e., representing one-to-one mappings, and then they fit to each of them a neural net. How-

ever, in practice it is hard to identify such subsets. D’Souza et al. [35] fit a locally weighted projection

regression to map (ẋ,θ) to θ̇ as in the local methods discussed above.

C.3 Trajectory inverse kinematics by conditional density modes

We will demonstrate our method on several robot arms including one industrial arm. It is important

to point out that our method is not restricted to these arms but generally applicable to other arms.

We apply our method, conditional density modes, discussed in chapter 4 to trajectory IK. A recap of

the method is given below. Assume we have a training set of pairs (θ,x) with x = f(θ), where f is the

forward kinematics mapping (if we do not know f , we could estimate it by fitting e.g. a neural net). At

run time, given a trajectory x1, . . . ,xT in workspace, we want to obtain a trajectory θ1, . . . ,θT of joint

angles that yields the x-trajectory while avoiding discontinuous jumps in θ-space. Our method works

as follows. Offline, it estimates a density model p(θ,x) for both variables, or just a conditional density

p(θ|x), using the training set. At run time, for each n = 1, . . . , T we obtain the conditional density

p(θ|xt) and its modes; the latter explicitly represent the multiple inverse solutions at each xt. Then,

we obtain the θ-trajectory by minimizing a constraint over the entire set of modes.
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C.3.1 Experimental results

We show proof-of-concept experiments for several simple robot arms. Our goal is to illustrate the meth-

ods’ performance with known ground truth for different settings. We consider the following methods:

the Jacobian pseudoinverse (local method baseline); a conditional mean method, which estimates a uni-

valued inverse mapping (as a neural net would do); and our conditional modes method, which estimates

multivalued mappings and disambiguates the solution by minimizing a global constraint. We study

different choices of the density model (full and conditional) and of the global constraint (continuity

constraint C, smoothness constraint S, forward constraint F).

Planar 2-link robot arm
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Figure C.2: Geometry of the planar 2-link arm of sec. C.3.1 (left: θ-space, right: x-space). The black
dots are the training set of pairs (θ,x) ∈ R

4, which indicate the reachable region of workspace and
which are used to estimate the joint density model offline. The blue curve is a sample trajectory to
be reconstructed at run time, and the red lines schematically represent the robot arm in 3 different
configurations. Points near the two ends of the workspace can only be reached by one configuration
because of limits on θ1.

First, we consider a planar 2-link robot arm (fig. C.2) for which it is possible to visualize the conditional

density and study the method. The forward mapping is

x1 = l1 cos θ1 + l2 cos(θ1 + θ2)

x2 = l1 sin θ1 + l2 sin(θ1 + θ2)
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where l1 = 0.8 and l2 = 0.2. The inverse mapping can be computed analytically and has 2 solutions

(elbow up/down). Singularities occur when |J(θ)| = |l1l2 sin θ2| = 0 ⇔ θ2 = 0, ±π, i.e., when the arm

is fully stretched or folded. To make the problem more complex, we limit the θ-domain to [0.3, 1.2] ×
[1.5, 4.7] rad so that certain branches are invalid in certain regions of the workspace. For example, the

region at the right end of the workspace is only reachable as elbow-up, and the region at the left end

as elbow-down. More generally, the feasible θ-domain could have a very complicated shape, where the

range of allowed values for a single angle θi depends on the values of other angles θj , e.g. to avoid

self-intersections in a humanoid robot. Respecting these constraints is simple in our method, since the

training set will only contain feasible configurations by construction, and the density modes will always

lie on high-density regions (not so the mean!). The trajectory in fig. C.2 goes through singularities

(when the arm is fully stretched); a local method may choose a branch that later on is unable to reach

the trajectory, but our method can choose the correct branch by keeping track of all local solutions and

then disambiguating them with the global constraint.
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Figure C.3: Marginal densities p(θ) (left) and p(x) (right) for the fine GTM model p(θ,x) (4–
dimensional), as a contour plot. The component centers of the Gaussian mixture are indicated by
red dots.

We generated a training set of 2 000 pairs (θ,x) by uniformly sampling the θ-space1 and mapping

with f (black dots in fig. C.2). We trained density models by maximum likelihood:

1We included samples in a slightly larger domain [0.1, 1.4]× [1.3, 4.9] to avoid boundary effects in the density model. For
GTM, we also added a bit of noise (with standard deviation of 0.05) to improve the smoothness of the resulting density.
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• Full density p(x,θ): we could have trained a GM directly, but instead we trained a generative

topographic mapping (GTM) model [18], since the intrinsic dimensionality of (x,θ) is 2 (not 4,

because of the forward mapping). GTM is a latent variable model that yields a GM constrained to

lie in a low-dimensional manifold. We tried 2 GTM models, one coarse (with M = 225 components

in the GM) and one fine (with M = 2500). Fig. C.3 shows the resulting density, or rather the

marginals p(θ) and p(x) for visualization purposes.

• Conditional density p(θ|x): we used a mixture density network (MDN) [16]. This is a particular

case of mixtures of experts [66] that yields a GM

p(θ|x) =

M
∑

m=1

πm(x)N (θ;µm(x), σm(x)) (C.1)

where the functions πm(x), µm(x) and σm(x) are neural nets. We used M = 2 components and

2-layer neural nets with 10 hidden units. Note a MDN is different from a neural net; the latter is

a uni-valued function, while the MDN represents multimodal densities, whose number of modes

depends on x.

Fig. C.4 shows, for each model, the conditional density for a particular x value. The conditional

density model (MDN) gives a sharply peaked density with 2 modes near the true inverses. The fine

GTM model gives also a bimodal density but less sharp, and the coarse GTM model gives a multimodal

density where spurious modes arise along the line connecting the true inverses. The reason for this is

the interference from the additional dimensions (for x) that GTM is modeling, so that more components

are necessary to achieve an accurate conditional density. However, as seen below, all 3 models succeed

in recovering the true trajectory thanks to the forward constraint F (which filters out the spurious

modes).

Figs. C.5–C.6 show the reconstructed trajectories for each density model (we obtained similar results

with other trajectories). We also show the trajectory that results from using the mean of the conditional

density. This yields the GM regression mapping and is essentially equivalent to fitting a neural net

directly to pairs (x,θ). Since it can only represent a uni-valued mapping, it averages the two inverse

branches, resulting in the fully stretched configuration, which is invalid (i.e., it does not equal the desired

x) for most x; it is valid where the inverse is uni-valued, namely at the ends of the workspace. When

using conditional modes, all 3 density models (MDN, coarse GTM, fine GTM) succeed in reconstructing

the true trajectory with good accuracy, but more importantly, yielding a globally correct trajectory that

chooses the appropriate branch at all steps.

It is very interesting to note that the x-trajectory of fig. C.2 can actually be produced by different

θ-trajectories (fig. C.7). In theory, they all have exactly the same value for the global constraint, but
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Figure C.4: Sample conditional densities p(θ|x = (0.78, 0.48)) for 3 models: coarse GTM (top, 18
modes), fine GTM (middle, 2 modes) and MDN (bottom, 2 modes). Left : contours of the condi-
tional density in θ-space, its modes (red dots) and the true inverses (black circles). Right : robot arm
configurations for the modes (red) and true inverses (black).
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Figure C.5: True (blue) and reconstructed trajectories with the fine GTM model (red) and the pseu-
doinverse (green). Left 2 : using the conditional mean, Right 2 : using the modes and the continuity
constraint C. The pseudoinverse solution is one of the trajectories of fig. C.7.
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Figure C.6: As fig. C.5 but for the MDN model (red).
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in practice they differ slightly due to the particular training set and model used. The pseudoinverse

method, being local, can only find one of these trajectories (fig. C.5–C.6, green). In our method, the

dynamic programming search considers all these trajectories and selects the one with globally minimal

constraint value. However, if (say) the region [1, 1.5] × [1.5, 2] of θ-space were not allowed (e.g. because

of mechanical constraints) then the trajectory found by the pseudoinverse method would be invalid; a

local method has to decide which inverse branch to take at the singularity near θ = (0.3, 3) and does

not benefit from the information about the forbidden θ–rectangle that lies in the future (assuming the

trajectory starts near θ = (0.3, 1.6)). Our method does benefit from it by learning (through the training

set) only those regions and branches that are actually feasible and succeeds in reconstructing the correct

trajectory.
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Figure C.7: Four trajectories in θ-space that produce the same x-trajectory of fig. C.2 (blue) for the
planar 2-link robot arm.

Table C.1 gives the errors in θ and x w.r.t. the true trajectory (true = any of fig. C.7). For x they

are of around 2% of the length of the fully stretched arm (l1 + l2 = 1) for the fine and coarse GTM

models, and of 0.5% for the MDN model. These errors are very close to the “oracle” column, which gives

the error achieved if the closest modes to the true solution were selected. We could refine the trajectory

and reduce the error as much as desired in a post-processing step by initializing an analysis-by-synthesis

search at each point in the trajectory. We find that the continuity constraint alone is enough to find

the correct trajectory with the MDN and the fine GTM model, but not with the coarse GTM model,

because of the spurious modes it has (which provide shortcuts that the continuity constraint favors).

However, adding the forward constraint F as C + λF (over a wide range of λ > 0) yields the correct
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trajectory for all methods. The smoothness constraint S performs as well as the continuity constraint

C. The errors when using the mean of the density are considerably larger, but only the figures show

how truly bad its solutions are.

Angle reconstruction error 1
T

∑T
t=1 ‖θt − θ̂t‖ (rad)

Model mean oracle C S C + λF S + λF
coarse GTM 0.783 0.083 0.628 0.704 0.118 0.122
fine GTM 0.798 0.114 0.114 0.127 0.114 0.127

MDN 0.668 0.037 0.037 0.037 0.037 0.037
pseudoinv 0.06

Workspace reconstruction error 1
T

∑T
t=1 ‖xt − f(θ̂t)‖

Model mean oracle C S C + λF S + λF
coarse GTM 0.084 0.024 0.094 0.097 0.022 0.028
fine GTM 0.084 0.021 0.021 0.021 0.021 0.021

MDN 0.072 0.005 0.005 0.005 0.005 0.005
pseudoinv 0.016

Table C.1: Reconstruction errors for the 2D robot arm by conditional modes

Both the pseudoinverse and our method can achieve low reconstruction error, depending on the

chosen number of iterations and of GM components. Besides its ability to ensure globally feasible

trajectories, our method has the advantage of being less sensitive to singularities. Near singularities,

our mean-shift algorithm converges sublinearly while the pseudoinverse method is numerically unstable

and could take far more iterations to converge.

PUMA 560 robot arm with 6 DOF

Figs. C.11–C.12 and table C.2 show similar experiments for a PUMA 560 robot arm (see fig. C.1 and

fig. C.8) with 3 DOF for position θ = (θ1, θ2, θ3), 3 DOF for orientation (which we ignore), and a 3D

workspace x ∈ R
3. The (point) IK can be solved analytically for this robot [106] and yields 4 solution

branches (two combinations of elbow up/down; fig. C.10); we use the implementation of the Matlab

Robotics Toolbox [29]. As before, we limit the angle domain in order to complicate the topology of the

inverse mapping, and generate a training set of 5 000 pairs (θ,x) (shown in fig. C.9). The GTM (full

density model) that we trained (results not shown) failed to produce a good reconstruction because

of the existence of multiple spurious modes. The reasons for this are the higher dimensionality of the

space, but also the fact that GTM is practically limited to an intrinsic dimensionality of at most 2, while

in this case the intrinsic dimensionality is 3. We also trained a MDN (conditional density model) with
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Figure C.8: A schematic plot of PUMA560 (reproduced with Matlab Robotics toolbox [29])
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Figure C.9: Training set for the PUMA 560 robot arm of sec. C.3.1 (top views, left: θ-space, right:
x-space). The workspace contains an unreachable region shaped like a vertical cylinder passing through
the robot foot.
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M = 12 components (and neural nets with 300 hidden units), which did succeed in reconstructing various

trajectories, with errors of similar magnitude as with the planar arm of sec. C.3.1; we show a sample

of results, for 3 trajectories (an elliptical closed loop, a figure–8 closed loop, and an open trajectory;

figs. C.11–C.12, table C.2). Again, the symmetry of the problem results in several equivalent global

solutions; the pseudoinverse and our method choose different ones. The larger errors occur for points

near a cylindrical hole at the center of the workspace which is not reachable by the robot, because of

boundary effects of the density model. They could be reduced by increasing the number of components

in the GM, or more efficiently by refining the trajectory with a local method. The “oracle” (best

achievable) error (not shown) was very similar to that of C + λF .
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Figure C.10: Left : modes (red dots) for the conditional density p(θ|x) for the MDN model and the
PUMA 560 robot arm. There are 4 true inverses (black circles), which are well represented by the modes,
but there are also two spurious modes (which are removed by the forward constraint F , since they map
far from the desired x). Right : modes and true inverses in workspace, represented as schematic arms.

Redundant planar 3-link robot arm

When dimθ > dimx (redundant manipulator), an infinite number of inverses θ exist for a given x. The

corresponding density p(θ|x) would ideally be uniform over this set of inverses. Instead, because we

use a Gaussian mixture, this uniform density becomes approximate and has multiple modes distributed

over the set of inverses. Thus, these modes act as a quantized representation of the inverse set, and are

available for use by the global constraint (which could also incorporate terms suggested by arguments of

movement economy, such as integrated jerk or torque). We show this with a planar 3-link robot arm with

3 dof for θ (link lengths: 3, 2.5, 2; foot at x = 0) and a 2D workspace x ∈ R
2 (see fig. C.1 for illustration).
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Figure C.11: Reconstruction of an elliptical trajectory (blue) for the PUMA 560 robot arm: MDN
(red); pseudoinverse (green). Left 2 : mean of the density, Right 2 : modes and continuity constraint C.
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Figure C.12: As fig. C.11 but for a figure–8 trajectory.

Angle reconstruction error 1
T

∑T
t=1 ‖θt − θ̂t‖ (rad)

Traj. pseudoinv mean C S C + λF S + λF
Ellipse 0.072 2.110 0.076 0.069 0.071 0.069

Figure–8 0.076 1.990 0.082 0.081 0.081 0.080
Open 0.042 2.140 0.173 0.778 0.173 0.176

Workspace reconstruction error 1
T

∑T
t=1 ‖xt − f(θ̂t)‖

Traj. pseudoinv mean C S C + λF S + λF
Ellipse 0.025 0.819 0.030 0.029 0.029 0.029

Figure–8 0.019 0.750 0.028 0.027 0.027 0.027
Open 0.007 0.665 0.055 0.080 0.055 0.055

Table C.2: Reconstruction errors for the 3D robot arm (PUMA 560) by MDN
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We generate a training set in a subset of [0, 2π]3 and train a MDN (M = 36 components, neural nets with

300 hidden units). Figs. C.13–C.14 and table C.3 show experiments for three trajectories in x–space (a

circle, a loopy trajectory with self-intersections and a figure–8). The larger errors occur when the robot

arm is close to fully-stretched configurations (corresponding to singularities). Both the pseudoinverse

and our method are able to retrieve continuous (but different) trajectories in θ–space. As before, near

singularities the pseudoinverse method is unstable and takes many iterations to converge.
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Figure C.13: Reconstruction of the loopy trajectory for the redundant arm: MDN with constraint
C + λF (red); pseudoinverse (green).

Workspace reconstruction error 1
T

∑T
t=1 ‖xt − f(θ̂t)‖

Model pseudoinv mean C S C + λF S + λF
Circle 0.060 4.610 0.173 0.185 0.140 0.161
Loopy 0.106 3.970 0.231 0.040 0.040 0.040

Figure–8 0.135 3.930 0.069 0.069 0.069 0.069

Table C.3: Reconstruction errors for the redundant manipulator by MDN

C.3.2 Discussions

Our method, by directly representing multivalued mappings and using a global constraint, is able to

achieve feasible, globally correct solutions to trajectory IK even in the presence of (1) singularities

of the Jacobian, where the forward mapping has multiple local inverses, and (2) complicated angle

domains, which are captured through the training set. The power of the density model is its flexibility:
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Figure C.14: As fig. C.13 but for a figure–8 trajectory.

in principle, it represents implicitly (through its modes) all the feasible solution branches once and

for all, even when their topology can be very complex (e.g. with a number of branches that depends

on x) because of the nonlinearity of the forward mapping, or because of mechanical constraints. The

disadvantage is that (1) the mappings are implicit, and must be made explicit at run time by mode

finding, which causes a computational cost; and (2) the inverse values xt returned are approximations,

i.e., f(xt) is not exactly yt. We discuss several aspects of the method next.

Data collection In common with other machine learning methods, we need a training set of pairs

(θ,x). These can be collected by sampling the θ-space and computing x = f(θ), if the forward mapping

f is known, or by recording (θ,x) while the robot is performing a task (perhaps imitating a human).

This has the advantage of yielding valid pairs (by definition) and sampling only those areas of θ-space

that correspond to typical motion, rather than feasible but atypical motions. This advantage already

appeared in articulatory inversion. Besides, typical behavior may result in correlations between joints

that reduce the intrinsic dimensionality of the θ-space. This idea is being exploited in motion-capture

systems and has wide applicability in IK in graphics [56] and articulated pose tracking in computer

vision [152, 26].

Accuracy of the solution The density model need not be overly accurate; it suffices to yield modes

near the true solution, and spurious modes (if there are not too many of them) may be filtered out

by the forward constraint. Being data-driven, a limitation of our method is that the estimated global

trajectories are not perfectly accurate. This is because the modes (even if computed exactly) do not
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necessarily coincide with the inverses, depending on the number of components in the GM. However,

they can be made very close to the true trajectory and may be refined a posteriori if desired by a local

method (e.g. resolved motion rate control or analysis-by-synthesis), that, on its own, might not find a

globally correct solution.

Run time In practice, the run time is dominated by the mode-finding step, which takes O(kM2) [23]

where M is the number of components in the GM and k the average number of iterations per component

(≈ 50). When using a full density model p(x,θ), M is very large, which prevents use in real time. But

with a conditional density model p(θ|x) (e.g. a MDN), which besides is more accurate, we can limit

M to a number slightly larger than the (estimated) maximum number of solution branches for all x,

which is far smaller. The mode-finding algorithms, e.g. Gaussian mean-shift, can also be significantly

accelerated [25], again noting that there is no need to converge with large accuracy. Our method does

not use the Jacobian and needs no matrix inversions. In our unoptimized Matlab implementation for

the PUMA arm, our method took 50/10/4 ms per point (worst/average/best), while the pseudoinverse

method took 200/30/10 ms.

In summary, our method can obtain very accurate solutions if a GM with a large enough number

of components is used. However, its main strength is in being able to find a globally feasible solution

without suffering from singularities of the Jacobian (since it does not use the Jacobian or possibly even

a closed-form forward mapping), and dealing in a natural way (through the training set) with complex

angle domains that are very difficult to express in analytical form.

C.4 Trajectory inverse kinematics by nonlinear and nongaussian track-

ing

In this section, we propose a tracking approach to IK. That is, we consider IK as a tracking problem.

Under the tracking framework, we aim to estimate angles θ (= unobserved states) of the kinematic

system (= a dynamic system or a state-space model) from past and current coordinates x (= observed

measurements) recursively. This framework is particularly suitable to trajectory IK because the input

trajectory in workspace is a typical representative of sequential data, e.g. time series [17]. As the

most well-known linear and Gaussian tracker, Kalman filter assumes (1) the unobserved states, as well

as the observed measurements, are multivariate Gaussian distributions. (2) the state-space model is

linear. Therefore, the posterior distribution of unobserved states θt given observations x1, . . . ,xt is also

Gaussian and the state inference (i.e., computing the posterior and deriving meaningful statistics from

it) can be done exactly. However, such assumption become inappropriate in IK because the posterior
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is typically multimodal (i.e., each mode corresponds to a different arm configuration). We address this

issue by considering nonlinear, nongaussian tracker, e.g. particle filters (PFs). In PFs, the restrictions

on Gaussian distributions are relaxed and the posterior can adopt arbitrary distribution. The price to

pay is that the exact inference becomes intractable. To our best knowledge, this is the first approach

to IK based on (nonlinear, nongaussian) tracking.

Consider a given x–trajectory x1, . . . ,xT in workspace. Our overall algorithm works as follows: (1)

We run a particle filter (or smoother) to obtain at each n = 1, . . . , T a conditional distribution of θ given

positions of the end-effector up to time t, p(θt|x1:t) (or the entire x–trajectory, p(θt|x1:T )). (2) We run

a mode-finding algorithm on each distribution to find all its modes, which represent the multiple inverse

solutions at each xt. (3) We obtain a unique θ–trajectory by minimizing a constraint C + λF over the

entire set of modes with dynamic programming. Essentially, the basic framework (steps 2 and 3) in

the conditional modes of section 4.3 remains and what changes is now we learn online the conditional

distribution p(θ|x1:t) or p(θ|x1:T ) that is estimated by a particle filter or smoother at each time. In

addition, we also apply various linear and nonlinear trackers independently to infer the angles at time

t given positions of the end-effector up to time t or T .

C.4.1 Conditional density by tracking

Our eventual objective is to obtain the multiple inverses of each xt (i.e., values θ s.t. f(θ) = xt)

from the modes of the conditional distribution of angles θ given coordinates x, p(θt|x1:t). We propose

to construct the latter with a nonlinear, nongaussian tracker, where we consider the coordinates x as

observed measurements and the angles θ as unobserved states. Under the tracking framework [4, 34],

as shown in fig. C.15, the dynamic state-space model is given by θt = θt−1 + ωt−1, xt = f(θt) + υt.

We model the dynamics p(θt|θt−1) as a random walk with Gaussian noise ωt, and the measurement

model p(xt|θt) is readily given by f with Gaussian noise υt. If the posterior distribution p(θt|x1:t) can

be assumed unimodal, extended Kalman filters (EKFs) [4] can succeed. But, crucially, the posterior

p(θt|x1:t) for IK is multimodal due to the many-to-one f . We then consider particle filters (PFs),

which can approximate multimodal distributions by a set of weighted samples (the particles), and

have demonstrated superior performance over EKFs in many nonlinear, nongaussian problems. Various

versions of PFs have been developed, including sequential importance resampling PF (SIR-PF), sigma-

point PF, unscented PF and others [34]. They mostly differ in the choice of the proposal distribution,

whose support should cover the support of the true posterior. Here, we focus on the SIR-PF, which

uses the transition prior as the proposal distribution, but other PFs would work as well as long as

they can approximate multimodal posteriors. Furthermore, one can refine the posterior distribution by

using all the measurements: p(θt|x1:T ). This leads to extended Kalman smoothers (EKSs) and particle
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smoothers (PSs). We consider two versions of PSs: forward-backward smoother (FBS), which maintains

the original particle locations from the PF but reweights them; and two-filter smoother (TFS) [74, 62],

which combines a forward and a backward PF. The computational cost for M particles is O(M) for

PFs and O(M2) for PSs, which may be reduced to O(M log M) by approximate, fast algorithms [75].

xt−1 xt xT

θt−1 θt θT
random walk

forward kinematics f

p(θt|θt−1)

p
(x

t |θ
t )

θt = θt−1 + noise

xt = f(θt) + noise

Figure C.15: The tracking framework for trajectory inverse kinematics. Empty cirles stand for hidden
states θ. Cirles filled in blue stand for observable measurements x.

PFs (or PSs) only provide a set {θm
t , wm

t }M
m=1 of weighted particles to approximate the posterior

p(θt|x1:t) at time n. Here, we use a Gaussian kernel density estimate to construct the conditional density,

p(θt|x1:t) =
∑M

m=1 wm
t exp(−‖θt − θm

t ‖2 /2σ2), where σ is the kernel width. Unlike most tracking work,

we use all the modes instead of just the mean as the statistical estimate from the conditional density,

as we must track multiple inverse branches.

C.4.2 Experiments with a PUMA 560 robot arm

We illustrate the performance of our tracking methods with known ground truth. All experiments were

repeated 20 times with random initializations for each run in order to calculate variance estimates of

performance.

We consider the PUMA 560 robot arm as in section C.3.1. We run the traditional pseudoinverse

method and our approach with the following trackers: EKF/EKS 2, SIR-PF/FBS/TFS 3. The process

and measurement noises are isotropic with variances σ2
ω = 0.125 and σ2

υ = 0.005, respectively. Note

that these parameters can also be estimated from the training set, if available, consisting of data for

both states θ and measurements x. For SIR-PF/FBS/TFS we used M = 1000 particles and a kernel

density estimate width σ = 0.04. Fig. C.16 illustrates (for the two-link robot arm, which is easier to

2We used the Kalman filter toolbox for Matlab by Kevin Murphy, available at http://www.cs.ubc.ca/~murphyk/

Software/Kalman/kalman.html
3We used our own Matlab implementation with reference to ReBEL, available at http://choosh.csee.ogi.edu/rebel/.
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Figure C.16: Illustration for a planar 2-link robot arm of using conditional modes to represent multiple
inverses. Right : a point x ∈ [0, 1]2 in workspace can be reached by two joint angle configurations, elbow
up/down. Left : the two configurations are captured as the two modes of a conditional density p(θ|x)
obtained from a PF (contours). Its mean (magenta dot) is not a valid inverse, mapping to a fully
stretched arm. The plots show a trajectory in x and θ space (blue) and the particles (black dots) using
a SIR-PF.

visualize) how the modes of the conditional posterior on θ represent the inverses of f . Figs. C.17–C.18

show reconstructions for a figure–8 and elliptical trajectories.

As noted in section C.3.1, there are several θ–trajectories that produce the given x–trajectory due

to the symmetry of f . Gaussian trackers (EKF/EKS) behaves similarly to pseudoinverse, i.e., being

local, stick to one of these trajectories from the beginning (depending on its initialization) and can never

recover the others later on. Likewise, at singularities of f (fully stretched arm), where multiple inverse

branches merge or diverge, these methods (pseudoinverse, EKF/EKS) choose one of the branches and

the rest are irreversibly lost.

The problem with this local choice is that it may turn out to be wrong later on in the trajectory,

e.g. only an elbow-up configuration may be valid in certain workspace regions because of mechanical

limits on some angles. In contrast, nongaussian trackers (SIR-PF, FBS, TFS) are capable of tracking all

branches (thus all solutions) at every time; it is only at the end that a globally valid trajectory (avoiding

discontinuities) is obtained by minimizing the constraint. Fig. C.17 also shows how if we simply use

the mean of the PF distribution (instead of all its modes), a wrong, “average” trajectory is obtained.

Table C.4 gives the errors in θ and x w.r.t. ground truth for several trajectories. Generally, we find little
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Figure C.17: Reconstruction of a figure-8 trajectory for the PUMA 560 robot arm. Left : θ-space,
right : x-space. Top: pseudoinverse, EKF, EKS. Middle: conditional means from SIR-PF, FBS, TFS.
Bottom: conditional modes from SIR-PF, FBS, TFS and constraint C + λF .
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Figure C.18: As fig. C.17 but for an elliptical trajectory.
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difference among the 3 multimodal trackers tested (SIR-PF, FBS, TFS), which all succeed in recovering

the ground truth with good accuracy. We do occasionally find (results not shown) that, depending on

the initialization, the SIR-PF may fail to track all the modes and thus miss possible inverse branches

(this could be corrected using more particles). The smoothers (FBS, TFS) are more robust than the

filter (SIR-PF) in that the backward filter helps to recover such modes. We also obtained very similar

results when using the smoothness constraint; and using a continuity constraint only (i.e., λ = 0), which

indicates that the modes from the conditional density are accurate representatives of the true inverses.

Angle reconstruction error 1
T

∑T
t=1 ‖θt − θ̂t‖ (rad)

Trajectory pseudoinv EKF EKS SIR-PF mean FBS mean TFS mean SIR-PF C + λF FBS C + λF TFS C + λF
Elliptical 0.072 0.274 0.149 1.954 ± 0.654 0.925 ± 0.655 1.304 ± 0.898 0.116 ± 0.025 0.116 ± 0.025 0.100 ± 0.028
Figure–8 0.076 0.324 0.207 1.791 ± 0.520 1.239 ± 0.969 1.505 ± 0.807 0.141 ± 0.014 0.141 ± 0.014 0.144 ± 0.010

Open 0.042 1.230 0.706 2.543 ± 0.925 1.157 ± 0.996 0.826 ± 0.160 0.150 ± 0.028 0.150 ± 0.000 0.150 ± 0.028

Workspace reconstruction error 1
T

∑T
t=1 ‖xt − f(θ̂t)‖

Trajectory pseudoinv EKF EKS SIR-PF mean FBS mean TFS mean SIR-PF C + λF FBS C + λF TFS C + λF
Elliptical 0.025 0.084 0.045 0.523 ± 0.182 0.052 ± 0.037 0.320 ± 0.236 0.033 ± 0.005 0.033 ± 0.005 0.029 ± 0.003
Figure–8 0.019 0.083 0.059 0.409 ± 0.117 0.039 ± 0.022 0.252 ± 0.111 0.031 ± 0.002 0.031 ± 0.003 0.033 ± 0.005

Open 0.007 0.252 0.261 0.940 ± 0.405 0.119 ± 0.095 0.079 ± 0.037 0.042 ± 0.006 0.041 ± 0.006 0.035 ± 0.006

Table C.4: Reconstruction errors for PUMA 560 robot arm by nonlinear, nongaussian tracking (xt:
given x–trajectory, θ̂t: reconstructed θ–trajectory, θt: true θ–trajectory).

Finally, we compared deriving the conditional density from a particle filter with learning offline a

conditional density p(θ|x) (e.g. with a Gaussian mixture) given a training set of pairs (θt,xt), as done

in section C.3.1. The latter gave slightly lower reconstruction errors (θ/x spaces: elliptical, 0.071/0.029;

figure–8, 0.081/0.027; open, 0.173/0.055). However, offline collection of such training data may be a

problem, as it is difficult to sample a high-dimensional space.

Table C.5 lists average running times in seconds (per trajectory point) with different trackers in our

Matlab implementation.

pseudoinv EKF EKS SIR-PF FBS TFS

0.0096 0.0044 0.0046 0.069 0.49 0.44

Table C.5: Average run time per trajectory point by nonlinear, nongaussian tracking (sec.), M = 1000
particles on a Quad Core 2.0 Ghz machine with 2GB of RAM.
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C.5 Practical considerations

In this section, we address several practical issues in traditional IK, i.e., fine positioning, real-time

manipulation, handling kinematic singularity, and handling joint limits and obstacles.

C.5.1 Fine positioning

Fine positioning refers to accuracy of inverse solutions in x-space. By construction, it can be achieved

in nonlinear, nongaussian tracking by setting the coefficients of the covariance of measurement noises

sufficiently small. Therefore, we focus on whether fine positioning can be achieved using conditional

density modes. To measure it, we report the average pointwise reconstruction error, which is calculated

as follows: (1) Sample uniformly in x-space and removing grid points outside the feasible region. (2)

Compute all true inverses and conditional density modes for each sample point in x−space and prune the

infeasible true inverses (e.g. prune any true solution located outside the feasible region). (3) Associate

each true solution with a closest conditional density mode and compute the error between them in both

θ and x spaces. 4.

Angle pointwise error ‖θt − θ̂t‖ (rad) averaged over number of true inverses

mode mixture component mean

Model avg max min avg max min

coarse GTM 0.078 0.24 0 0.077 0.22 0
fine GTM 0.096 0.625 0 0.024 0.144 0

MDN 0.034 0.4 0 0.034 0.4 0

Workspace pointwise error ‖xt − f(θ̂t)‖ averaged over number of true inverses

mode mixture component mean

Model avg max min avg max min

coarse GTM 0.021 0.104 0.0002 0.023 0.103 0.0002
fine GTM 0.018 0.090 0.0001 0.007 0.072 0.00001

MDN 0.0045 0.058 6 · 10−5 0.0045 0.058 6 · 10−5

Table C.6: Pointwise reconstruction errors for the 2D robot arm

Two-link robot arm. Table C.6 gives the pointwise errors (i.e., the average (avg), minimum (min),

maximum (max)) in θ and x-space for the planar two-link robot arm. MDN achieves the lowest errors

of 0.034 and 0.0045 on average in θ and x-space respectively. This result indicates that conditional

density modes can satisfy fine positioning requirement. GTMs perform sightly worse but still give very

4Note that occasionally in PUMA560, we may perform phrase unwrap in data association because f is invariant to the
periodic variables
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appealing accuracy. In addition, we also report the reconstruction errors using mixture component

means, i.e., {µm(x)}M
m=1, of our density models as inverse solutions. Their results are deceptively

comparable to modes. However, the mixture component means are not practical and reliable solution

for following reasons: (1) mixture components could significantly outnumber the modes; However, the

majority of them represent spurious solutions, which could cause the dynamic programming (recall

that its complexity is quadratic on number of candidates) very slow and possibly return an invalid

solution trajectory. (2) modes are much better summarization of multimodal distribution than mixture

component means, which behaves reliably only when they are well separately as in our cases. For MDN,

reconstruction errors seem to be uniformly distributed, though slightly larger at the upper-left and

lower-right corner of the workspace as shown in fig. C.19.
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Figure C.19: Pointwise reconstruction errors of the test set in the workspace for the planar two-link
robot arm. Left : Coarse GTM. Middle: fine GTM. Right : MDN. For each test point, a line is drawn
between the true and predicted positions and its length is proportional to the predictive error.

Angle pointwise error ‖θt − θ̂t‖ (rad) averaged over number of true inverses

mode mixture component mean

Model avg max min avg max min

MDN 0.14 1.1 0.0068 0.14 1.1 0.0068

Workspace pointwise error ‖xt − f(θ̂t)‖ averaged over number of true inverses

mode mixture component mean

Model avg max min avg max min

MDN 0.02 0.15 0.00042 0.02 0.15 0.00042

Table C.7: Pointwise reconstruction errors for PUMA560 on the regular grids
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PUMA560. Table C.7 reports the similar pointwise reconstruction errors for PUMA 560 robot arm.

MDN gives the errors of 0.014 and 0.02 on average in θ and x-space respectively. 0.141 in θ appears

to be high. This is because occasionally, one true local solution may be missed by modes and this

contribute a lot to the error. As in fig. C.20, the big inverse errors all occur around the unreachable

cylinder because of boundary effects of density model. This can be improved by obtaining a better

conditional density model. Again, using mixture component means yields almost identical results to

using modes since the modes coincide more or less to the means.
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Figure C.20: Pointwise reconstruction errors of the test set in the workspace for the PUMA 560 robot
arm. For each test point we have drawn a line between the true and predicted positions. The length of
a line indicates the magnitude of the corresponding predictive error.

C.5.2 Real-time manipulation

Runtime is a critical issue for real manipulation. Pseudoinverse generally runs very fast, i.e., using less

than 3ms to move the end-effector from one position to another in the workspace. It is therefore suit-

able for real-time application. However, pseudoinverse converges very slowly near the neighborhood of

singularity. For conditional modes, most of runtime is spent on mode-finding, which can be significantly

accelerated. In practice, we found the mode-finding only iterates once on average using MDN because

it tends to directly jumps to the mode from the mean. For tracking, as show in table C.5, EKF takes

less than 5 ms to move from one trajectory point to another while PF needs 10 ms because it needs
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sufficient particles to the conditional density. One can reduce runtime by using fewer particles at the

expense of sacrificing accuracy. If too few particles are used, the risk of mistracking one local solution

would increase. However, if one is interested in tracking just one such local trajectory, it is possible to

use many fewer particles while maintaining tracking accuracy.

C.5.3 Handling kinematic singularity

Kinematic singularity occurs when the Jacobian at certain joint configuration becomes rank-deficient.

At singularity, the manipulator behaves very differently, e.g. reduced mobility, increased number of

inverse solutions. In the singular neighborhood, small velocity in the workspace may cause significant

velocities in the joint space. In such cases, pseudoinverse becomes problematic since the Jacobian is

no longer invertible. Unlike pseudoinverse, our conditional modes does not involve computation of the

Jacobian but derive the modes from p(θ|x), which deals with the change in the topology of the manifold

of inverses naturally. For example, in two-link robot arm, near singularity (a.k.a, boundary singularity),

e.g. the arm is fully-stretched, the “elbow-up” and “elbow-down” modes start to merge into a single

one, i.e., the “full-stretched” mode while our conditional density changes from bimodal to unimodal.

Likewise, in our nonlinear, nongaussian tracking framework, different modes derived from p(θt|x1:t)

given by PFs merges into a single one when approaching the singular region and split afterwards.

C.5.4 Handling joint limits and obstacles

Joint limits can be handled conveniently in our framework. For example, in conditional modes, one

can either prune conditional modes that disregard joint limits before dynamic programming, or limit

the training set according to θ-domain so that certain branches are no longer valid (as in fig. C.21).

In particle filtering, one can simply set the weights of particles that fall outside the joint limits to zero

before the resampling step. By doing this, only those particles in the feasible regions will propagate over

time. Obstacle avoidance in x–space or θ-space can be handled similarly. In particle filtering, one can

also set the weights of particles whose mappings to the workspace, e.g. links and effectors, are within

the neighborhood of the obstacles to zero.

C.6 Summary

We have our conditional modes approach to trajectory IK that can deal with trajectories containing

singularities, where the inverse mapping changes topology, and with complicated angle domains caused

by mechanical constraints (e.g. to prevent self-intersection of body limbs in a humanoid robot)—a hard

problem for local methods (e.g. Jacobian pseudoinverse). Given a training set (θ,x), the method learns
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Figure C.21: Example of handling the joint limit by conditional density modes using the planar 2-link
robot arm. Left : The dataset with a hole in contrast to fig. C.2, where the training set has no hole.
Middle: Plots of all conditional modes. Right : Reconstruction by MDN. Cyan box : the forbidden region
in the joint space. The conditional density is derived from a Gaussian mixture with 64 components and
each with a full covariance. Inside the forbidden region, the conditional density is negligible and thus
no condition modes.

a conditional density p(θ|x) (using a mixture density network, MDN) that implicitly represents the

branches of the inverse mapping θ = f−1(x); the mappings are obtained by finding the modes of the

conditional density using a Gaussian mean-shift algorithm, and the final θ-trajectory is obtained by

minimizing a global, trajectory-wide constraint over the set of modes. We have demonstrated the method

with trajectory IK for simple robot arms (e.g. PUMA 560) with known forward and inverse mappings.

Additionally, we have formulated IK as a tracking problem and proposed the first tracking framework for

it. We demonstrate that the conditional density estimated online by nonlinear, nongaussian trackers,

e.g. particle filter or smoother, can be integrated seamlessly into the conditional modes framework.

Alternatively, we show that various Gaussian or nongaussian trackers can be used independently to

produce competitive results. We also confirm by experiments that our method is able to deal with other

practical issues in IK: fine positioning, real-time manipulation, joint limits and obstacle avoidance. One

limitation of our methods is the scalability to robot arms with high DOF because estimating p(θ|x) in

high-dim space would become very challenging and still an open research area.

Future work could apply this approach to trajectory IK in other domains (such as animation in

computer graphics, articulated pose tracking in computer vision or articulatory inversion in speech),

where neither the inverse nor possibly the forward mappings are known, and having complex mechanical
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constraints that are best captured by data-driven approaches. Another advantage of the method is its

probabilistic nature: it can model noise in the measured θ, x and estimate the uncertainty in the

reconstructed trajectory (error bars); it is also applicable when some of the x variables are missing or

unspecified (e.g. for a humanoid robot we might not care about the hand position when walking). For

example, one can use the techniques, developed in chapter 7, to reconstruct the missing data.
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[24] M. Á. Carreira-Perpiñán. Continuous latent variable models for dimensionality reduction and
sequential data reconstruction. PhD thesis, University of Sheffield, UK, 2001.
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