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Representational Shifts During Category Learning
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Abstract plar models were evaluated, leaving the vast majority of po-

Protot 4 | dels form ¢ ‘ ) | tential category representations unexplored. Since ttatse
rototype and exemplar models form two extremes in a class ; - ; o

of mixture model accounts of human category learning. This Provide a natural testing ground for exploring the flextili
class of models allows flexible representations that caer-int of category representations, the current paper underpakes
plolate fromt5|m\R/Ie protlotypes to Elghly dlffeLeptlztetd "fi’;(et . cisely this analysis. The plan of the paper is as follows. We
plar accounts. We apply one such framework to data that af- ¢ . - ; .
ford an insight into the nature of representational changes firstintroduce the fprmal mOd?“ng framgwork, and then dis
ing category learning. While generally supporting the ot cuss the data provided by Smith and Minda (1998). We then
of a prototype-to-exemplar shift during learning, the deth analyze two key data sets from this paper, looking first to ex-
analysis suggests that the nature of the changes is camisiyler 5+ oy explicit model for the individual differences inrpe

more complex than previous work suggests. .
. . . formance (Webb & Lee, 2004) before analyzing the data set
Keywords: cognitive models, category learning, abstraction,

representational change. using the Varying Abstraction Model (VAM) introduced by
Vanpaemel et al. (2005) which provides a much richer set of
Introduction potential category representations.
Classification tasks present people with stimuli and their Treating Categories as Mixtures

accompanying category labels, and require label predictio|y most theories of human concepts (e.g., Nosofsky, 1986;
for novel stimuli. Starting with seminal work in the 1970s | gye et al., 2004), people are assumed to have some inter-
(Rosch, 1978), the psychology of categorization has beefy) representation of a categafythat provides a probability
assumed to be best thought of in terms of a kind of “fam-gjstributionp(- | C') over possible objects in the world. When
ily resemblance”. For example, prototype theories (Reedyansiated into formal models, it is typical to assume this t
1972) represent a category using a single prototypical stimyjstribution is a mixture of several component densitiesi-g
ulus, which need not necessarily correspond to a real objecra|ly on the implicit assumption that each “element” of the

Similarity to a category is defined as similarity to the proto category representation constitutes a psychologicasyruit
type. In contrast, exemplar theories (Medin & Schaffer,897 component of the category.

Nosofsky, 1986) represent a category as the set of all of its

previously observed members (its exemplars), and the catd-he General Approach

gory similarity as the aggregated similarity to the exemgpla We begin by introducing the general approach, in which the

More recently, it has been argued (Love, Medin, & Gureckis psychological representation of a category is modeled as a

2004; Anderson, 1991; Rosseel, 2002; Vanpaemel, Stormsnixture of simpler components. If the internal represéotat

& Ons, 2005) that exemplar representations and prototypeontainsg components, the probability assigned by category

representations constitute the two extremes of a spectfum @ to theith stimulusz; is given:

models. Although different authors have adopted slighifiy d .

ferent formallsms to advance their viewpoint, they shgqa th p(x;|C) = ij (@ | 5), 1)

common view that human conceptual structure is sufficiently =

flexible to adopt simple, highly abstracted “prototypeelik

representations at times, but can also accommodate highWherep(z; | j) is the density assigned by compongie the

differentiated “exemplar-like” representations at other ith stimulusz;, andw; weights the contribution made by each
An elegant experimental test of this idea was conducted bgomponent. The general mixture formulation in Equation 1

Smith and Minda (1998), involving a series of categorizatio IS often translated into a specific statistical model by gipi|

experiments. In each experiment, prototype and exemplar a¢he exponential law for generalization developed by Steépar

counts were contrasted at different stages of the |earn'[m,g p (1987) In view of this |aW, it is natural to treat each of the

cess, to see which model provided a superior account. Alcomponentdistributions as an exponential density,

though the overall pattern of performance across expetsnen s —Ad(zs,15)

: o pxilj) o< e i, )

is complex, the general finding was that exemplar models

tend to be favored late in learning, with the possibilityttha wherep; denotes the internal representation of jkiecom-

prototype models are favored early in learning (but see, e.gponent to the category, is a scaling parameter that governs

Nosofsky & Zaki, 2002 for a contrasting view). However, the specificity of the generalization away from that repnese

one drawback to the study is that only prototype and exemtation, andi(-, -) describes @sychological distance function.
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Prototype Model Intermediate Model Exemplar Model . . .
0.1 g 01 01 : Table 1: Stimulus representations for the non-linearlyasaiple cat-

§> ‘E, § egories used by Smith and Minda (1998), experiments 2 (panel
8 3 8 and 3 (panel b). In both panels each column corresponds tiarée
£ 005 £ 005 2 005 (i.e., letter), and each row to a stimulus.
© [ ©
e 8 g (@[AJ0 0 0 0 0 0
=y & R 1 0 0 0 0 0O
-1 0 1 -1 0 1 -1 0 1 0 1 0 0 0 0
Stimulus Location Stimulus Location Stimulus Location 0 0 1 0 0 0 (b) ATO 0 0 1
. N ) ) 0 0 0 0 1 0O 0 1 0 0
Figure 1: Category densities for the a one-dimensionalgcaye 0 0 0 0 0 1 1 0 1 1
consisting of items located at = (—0.2,—0.1,0,0.3,0.4) and 1 9 1 o3 0 9
A = 10. The density on the left is produced by the prototype model, 0 1 1 1 1 1 1 0 1 0
and the one on the right by the exemplar model. The middleityens i g é i i i é % % %
belongs to a model that groups the three stimuli on the lefttha 11 1 0 1 1
two stimuli on the right. é é é i (1) 8

When applying such models, it is typical to assume Mads

the same value for all components. While there are many, ¢ 1 2 ... ¢ indexes the representational cluster to which
possibilities for a psychological distance function, a @on  theth stimulus belongs. As suahcan be interpreted as the
choice is to use one of the attention-weighted Minkowski |evel of abstraction of the category representation. In the con-

metrics, strained framework, the representation of iftle cluster is
1 taken to be the average of the representations of its coestit

N - , e\ stimuli. Thus,u;, = (1/n;) 32;.,—; i Wheren; denotes

i) = (2 ar ik = pik] ) ’ ®) " the number of stimuli that belong to cluster Applying the

same logic, the mixture weights are constrained to reflect th
whereq,, represents the proportion of attention applied to theproportionw; = n;/n of category members that fall in the
kth stimulus dimension. To provide a concrete illustratiébn o cluster.
the approach, Figure 1 shows three different mixture repre- In this framework, the partitions, andcp of categories
sentations of the same category, corresponding to prastyp A and B define a particular model for these categories, with
exemplars and an intermediate case. In order to describe han overall level of abstractiops + ¢gg. The model's free
man behavior in a two-alternative forced-choice task betwe parameters are the attention weighjsand the specificity
categoriesA and B, it is typical to apply a standard choice X\ (the metricr is taken to be a property of the stimulus

rule, space itself, and is held fixed). This formulation ensuras th
Pl € A|ay) = p(zi|A) ‘ (4) all models have the same number of free parameters. The
p(x; | A) + p(x; | B) standard prototype and exemplar models are special cases
of the VAM: a category represented using a single-cluster
A Simplified Framework partitonc = (1,1,...,1) has a prototype representation,

The general mixture model formulation is broad enough toand a category represented using a cluster for every stimulu
cover a range of approaches. However, the simplest proposal= (1,2, ...,n) has an exemplar representation. In between
is perhaps the one introduced by Vanpaemel et al. (2005Jhese two extremes, however, lie a wealth of infrequently-
Unlike some approaches (e.g., Love et al., 2004; Andersorexplored representational possibilities.
1991) it makes no particular assumptions about how human ) . .
learning takes place, and it is much more constrained than Looking for Representational Shifts
the mixture model formulation adopted by Rosseel (2002) idt has been argued (Smith & Minda, 1998) that much of the
terms of how the weightsy; and probabilities(z; | j) are  categorization literature is overly-reliant on experirnsethat
assigned. While the simplicity of this arrangement does noprovide participants with a great deal of training before at
necessarily make it a superior cognitive model, it provides tempting to measure the structure of their conceptual repre
very clean framework in which to ask questions about representation. With that in mind, Smith and Minda (1998) con-
sentational structure without introducing any additiopsy-  ducted a series of experiments aimed to show that the cate-
chological principles that could confound the analysis. gory representation changes as learning progresses. sln thi
In Vanpaemel et al.’s (2005) Varying Abstraction Model paper, we focus on their experiments 2 and 3, involving non-
(VAM) the mixture componentg; andw; that might other-  linearly separable categories. For both experiments tiime s
wise be treated as free parameters are fully determined by @i took the form of pronounceable nonsense words (gay.,
specific partition of category members into a set of clustersfuz, daki), on the assumption that each letter corresponds to
Each cluster implies a specific psychological represamtati a feature. In experiment 2, both categories consisted eirsev
;, that can be viewed as a kind of sub-prototype. Thus, @xemplars possessing six features each, and were designed
category ofn exemplars represented in termsqtlusters  to be well-differentiated category structures even degpi¢
can be described using the vector= (ci,...,¢,), where fact that both categories contain obvious exception itehes:
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Table 2: The series of representations used to build modelext
periment 2. Each column corresponds to a partition, eitfiche
category A exemplars or the category B exemplars.

cA

Proportion Correct

2 4 6 8 10
Trial Segment
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BAWNRRRPREAMONR R
TAWNRRROMWN R
CURWNR RO WNEF
~NOUITAWN RN UTAWN

Figure 2: Empirical learning curves for all 16 participairsthe
experiment 2. The data segregate naturally into two groups.

1

logical structure of the categories is shown in Table 1(a). | an
contrast, experiment 3 used the smaller, less differetiat ‘9‘-_’“, 08}, 27
category structures shown in Table 1(b). Both experiments ‘8 % >
involved 16 participants who were presented with 560 trials s B2
divided into 10 segments of 56 trials each. On each trial, one € 04f

of the stimuli was presented and the participant was asked to s

classify it as a member of categodyor categoryB. Feed- o 0.2

back was provided after each trial. Smith and Minda (1998) 0

analyzed the data by fitting exemplar and prototype model to

each segment, in order to find evidence for representational o

transitions during learning. They concluded that a shift ha Figure 3: Empirical learning curves for all 16 participaitsthe

occurred during experiment 2, but not during experiment 3. experiment 3. The data segregate naturally into three group
Although the idea of a representational change is in agree-

ment with the spirit of the VAM, Smith and Minda (1998) a more detailed picture of the nature of the representdtiona

only considered prototype and exemplar models, whiclthanges.

makes it difficult to trace out these changes in any detalil. o )

To address this, in the remainder of the paper, we reanalyZgart 1: Individual Differences

the data from these experiments using the VAM, exploringRecent work (Webb & Lee, 2004) has emphasized the fact

the full class of potential category representations. Rer t that category learning tasks show strong individual differ

smaller category, we fit all5 x 15 = 225 category models, ences, and highlighted the fact that averaging across peo-

but for the larger category th&7 x 877 = 769129 models  ple may lead to substantial distortions. In Smith and Minda

are too many to work with, particularly since model fitting (1998), this problem was solved by fitting models to each

is required for 10 different trial segments. Accordingly, i participant independently. However, in addition to infigti

this case we used only a smaller set’ok 7 = 49 mod- the risks of overfitting, this approach is unwieldy and time-

els, with one model at each level of abstraction (i.e., numbeconsuming. A faster and more robust approach emphasizes

of clusters) for each category. These 49 models were foundoth the similarities and differences between people, and

by applying a simple average-link clustering proceduré& t seeks to find groups of participants with similar patterns of

stimulus representations in Table 1(a), and are shown in Tggerformance.

ble 2. Each model was fit to the observed classification ac- To apply this idea, we took the learning curves for each

curacies using maximum likelihood estimation, which meansgparticipant, and partitioned them into meaningful groufs.

that the values of the free parameters maximizing the likelido so, we applied the Minimum Description Length (MDL)

hood of observing the data were determined. The free parantiustering technique pioneered by Kontkanen, Myllymaki,

eters were the scaling parameteand five or three attention Buntine, Rissanen, and Tirri (2005) and extended to learn-

2 4 6 8 10
Trial Segment

weightsay, in experiment 2 or 3 respectively. ing curves by Navarro and Lee (2005). This method, which
) . . is based on information theoretic ideas, assigns two observ
A Varying Abstraction Analysis tions to the same group only if this allows a better compres-

Our analysis involves three stages. Firstly, we analyze theion of the overall data set. Although the technical detais
individual differences in the data, in order to make sure thacomplicated (see Griinwald, 1998, for details on MDL), what
we can draw sensible conclusions about what particular pamatters for the current purposes is that the approach allows
ticipants were doing. Secondly, we reproduce Smith andis to find a statistically-optimal method of grouping ped&ple
Minda'’s (1998) prototype-to-exemplar result within theneo data. Applying this method, we were able to extract three
text of the VAM. Finally, we use this framework to develop strikingly different types of performance for the experimhe
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Figure 4: The rank of the prototype and exemplar models &t eacFigure 6: The level of abstraction of the best model at diifier
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Figure 5: The rank of the prototype and exemplar models dt eac rial Segmen

segment for experimenst Figure 7: The level of abstraction of the best model at daffer
stages of learning during experiment 3.

3 data (Figure 3) and two probably-distinct groups for the ex . _
periment 2 data (Figure 2). Due to space constraints, we reéxperiment 2, there is an early advantage for the prototype
strict the analyses in this paper to the largest groups;atéil ~ model, and a late advantage for the exemplar model, with the

by the solid lines in both figures. changeover point located between segments four and five. In
] experiment 3, only during the first segment does the proto-
Part 2: Comparing Prototypes to Exemplars type model outrank the exemplar model, and the extent of the

Our approach to analyzing the prototype-to-exemplar shifexemplar advantage grows throughout the experiment.
differs from Smith and Minda’s in several ways. Firstly, we The dramatic shift in the relative fortunes of the prototype
fit a much broader range of models to the data (225 for exand exemplar models illustrated in Figure 4 and 5 suggests
periment 3, and 49 for experiment 2), and used a maximunthat some kind of representational shift has taken place dur
likelihood estimation rather than the least squares ajgproa ing the learning process, particularly with respect to énger
adopted in the original paper. Secondly, we fit data that wereategory structure used in experiment 2. This was essigntial
aggregated in an optimal fashion, as discussed in the previo the conclusion in Smith and Minda (1998), but our applica-
section. Finally, unlike Smith and Minda (1998), we did not tion of the VAM allows us to gain further insight in the nature
include a “guessing parameter”. of the representational shift, a topic which we turn to in the
Despite the very substantial differences in represematio next section.
possibilities considered, the choice of loss functionjvit i ) )
ual differences, and guessing behavior, the basic patfern &art 3: A Richer View of Representational Change
exemplar and prototype performance remains intact. This iThe analyses reported by Smith and Minda (1998) and shown
most naturally shown by looking at how well the two mod- in our Figures 4 and 5 imply that the representational stft i
els fared at different stages of learning, when compared t@olves a jump from a prototype representation to an exemplar
all (225 or 49) models under consideration, as illustrated i representation. However, this is somewhat misleadindyen t
Figures 4 and 5. In one key respect, this pattern is far morsense that the shift appears to be considerably more complex
compelling in the current analysis than in the original: inTo illustrate this, we classified every model in terms of its
Smith and Minda (1998), the exemplar and prototype modelsverall level of abstraction (i.eg4 +¢qg). Figures 6 and 7 dis-
are evaluated without consideration of the other reprasent play, at all 10 segments, the level of abstraction of the rhode
tional possibilities. Happily, when a broad spectrum of-rep that best accounts for the behaviorial data. For both experi
resentational possibilities are included to provide anrapp ments, the level of abstraction of the best model changes sys
priate context, the substantive finding remains unchanged. tematically across trials. Experiment 2 in particular skow
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Figure 8: Scatterplot of the fit of all tH225 models (y-axes) versus the level of abstractian- ¢z (x-axes) at each segment for experiment 3.
Over the first three segments, the best models tend to be muiogype-like (though the prototype model itself perfonpo®rly). As learning
progresses, the profile of good models shifts, and from setg®el0 it is clear that the best models all have a diffeateti, exemplar-like
structure.

segment 1 segment 2 segment 3 segment 4 segment 5

- =395

400

Fit

o -405
5

Fit

Figure 9: Fit of all the 49 models at each level of abstracfmmboth categories at each segment in experiment 2. In aeggblat, the
dependent variable is the model fit, measured in terms obiipdikelihood. The independent variables are the levekhstraction for each
categoryga andgg. As is clear from inspection of the plot, there is a fairly ghaehange in the profile of models at around segment 4-5.

a steady progression from prototypes to exemplars. In thget a more detailed picture of the pattern of changing model
first two trial segments, the very best model is the prototypdits during the course experiment 3, instead of looking at the
model, and in the last segment the best model is very nearlgest fitting models only, we can look at all 225 possible rep-
an exemplar model (having an level of abstraction of 12, outesentational models. This is illustrated in Figure 8 which
of a maximum possible of 14). However, the transition hereshows 10 scatterplots, one for each trial segment. Each plot
is steady, very nearly linear. In other words, while the ex-displays the level of abstraction and the data fit for eachi of a
emplar model improves so dramatically against the promtypthe 225 possible representational models. In the first fegt s
model that the shift looks discrete (as in Figure 4), thelincl ments, highly abstract representations are able to acéount
sion of a broader class of models suggests that the changettse data relatively well (though notably the prototype mode
somewhat more gradual across the best fitting models (as itself fits poorly), while very detailed exemplar-like regen-
Figure 6). Moreover, examination of Figure 7 suggests that gations perform poorly. In contrast, from segment five on-
small shift takes place in experiment 3, which was not etidenwards the profile reverses: in order to provide a good account
in the original analysis. of human performance, the category representation rexjuire

The analysis presented above suggests a representatio@hf€ast four clusters across the two categories. Althowgh n
shift in which conceptual structures smoothly move from-pro Shown, a similar change occurs for the 49 models analyzed in
totypes to exemplars via a range of intermediate models. TEXPeriment 2, also at segment five.
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