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Abstract

Evidence is accumulating regarding a role of micronutrients in folate metabolism in cancer risk.
We investigated the associations of plasma folate, vitamin B12, and homocysteine with upper
gastrointestinal (Gl) cancers in a population-based case-control study in Taixing City, China. With
informed consent, we recruited cases with cancers of esophagus (7= 218), stomach (7= 206), and
liver (n=204), and one common healthy control group (77 = 405). A standardized epidemiologic
questionnaire was used in face-to-face interviews, and blood samples were collected during
interviews. We observed an inverse association between plasma folate levels and liver cancer. The
adjusted odds ratio (aOR) was 0.46 [95% confidence interval (Cl) = 0.24-0.88] comparing
individuals in the highest quartile to those in the lowest. We found a positive association between
plasma vitamin B12 levels and all three cancers. The aORs for those in the highest quartile were
2.80 (95% CI = 1.51-5.18) for esophageal cancer, 2.17 (1.21-3.89) for stomach cancer, and 9.97
(4.82-20.60) for liver cancer, comparing to those in the lowest quartile. We further observed
interaction between plasma folate and vitamin B12 on these cancers. Our data indicated
associations between plasma folate and vitamin B12 with upper Gl cancers in Chinese population.
Further research is warranted considering the debate over the necessity of food fortification.

INTRODUCTION

Upper gastrointestinal (GI) cancers of the stomach, liver, and esophagus are the fourth, sixth,
and eighth most common cancers worldwide, respectively, based on GLOBOCAN 2012
estimates (1). About 2.19 million new cases of these 3 upper Gl cancers were estimated to
have occurred (15.5% of all cancers worldwide), and approximately 1.87 million people died
from these cancers (22.8% of deaths from all cancers) in 2012 (1). The majority of these
cancers (74%) occurred in less developed countries and China alone accounted for almost
half (46.7%) of these cases (2).

Folate is a water-soluble B vitamin that plays an important role in DNA synthesis and
methylation reactions by donating one-carbon units for cellular metabolism (3). Mandatory
fortification of flour and grain products with folic acid, a synthetic form of folate, was
introduced in North America in 1998 with an attempt to reduce the occurrence of neural tube
defects (4). As of December 2014, 82 countries worldwide have legislation to mandate folic
acid fortification in at least one industrially milled cereal grain (5). Although evidence has
been accumulating for a protective role of folate in cancer development (6-8), recent studies
also suggested a possible increased risk of cancer related to folic acid fortification (9,10),
raising a debate on the necessity of food fortification and a need for more research on the
role of folate and other related micronutrients on cancer prevention.
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The World Cancer Research Fund concluded that there is limited evidence suggesting that
folate protects against esophageal cancer and no conclusion was drawn for stomach or liver
cancer (11) as there have been limited studies investigating the associations between dietary
or plasma folate and upper Gl cancers (7,12,13). In this study, we aimed to examine plasma
folate and related micronutrients, including vitamin B12 and homocysteine, and cancers of
the esophagus, stomach, and liver in a population-based case-control study conducted in
China. We also explored potential interactions within these micronutrients and between
these micronutrients and other environmental exposures on cancer susceptibility. Mandatory
folic acid fortification is not adopted in China, which makes it an ideal site to study the role
of blood folate and related micro-nutrients in carcinogenesis.

MATERIALS AND METHODS

Study Population

A population-based case-control study on cancers of the esophagus, stomach, and liver was
conducted in Taixing City, Jiangsu Province, China in 2000 (14). Eligible cases were newly
diagnosed esophageal, stomach, and liver cancer patients with pathologically or clinically
confirmed diagnoses reported to the Taixing CDC Tumor Registry. Eligibility included
having lived in Taixing for at least 10 yr, at least 20 yr old, in stable medical condition as
determined by physicians, and willingness to participate. We recruited 218 esophageal, 206
stomach, and 204 liver cancer cases, which, respectively, represented 67%, 65%, and 57% of
all new cancer patients. The control population was randomly selected from healthy
individuals from the general population in Taixing who were also at least 20 yr of age and
lived in Taixing for 10 or more years. Age, sex, and residential area (village or city block)
were frequency matched between the esophageal, stomach, and liver cancer cases and
controls in a 3:2 ratio. Among a total of 464 potential controls, 415 (89.4%) consented to
participate. All study participants completed an epidemiologic questionnaire conducted by
trained interviewers and donated an 8-ml blood specimen.

Laboratory Assays

The extraction of DNA from blood clots was carried out using a phenol-chloroform method.
Enzyme-linked immunosorbant assays (ELISA) were performed to measure serum HBV
surface antigen (HBsAg; Reagent Company of the Shanghai Hospital for Infectious
Diseases, Shanghai, China), antihepatitis C virus (HCV) antibody (HCV 1gG test, Shanghai
Huamei Biological Company, Shanghai, China), and CagA-Helobacter pylori (H. py/ori, H.
Pylori 1gG test, Reagent Company of the Shanghai Biotechnology Industry Park, Shanghai,
China). Plasma aflatoxin B1 (AFB1)-albumin adduct levels were measured by ELISA assays
as previously described (15), using free aflatoxin (Supelco) as a standard. Plasma levels of
folate and vitamin B12 were measured using a competitive radioassay with 12%iodine-labeled
folate and 57cobalt-labeled vitamin B12 as tracers (Quantaphase 11 B12/folate radiobinding
kit, Bio-Rad, Berkeley, CA). The mean within-run coefficient of variation (CV) was 10.9%,
and the between-run CV was 16.6%. Plasma total homocysteine (tHcy) levels were
measured using a commercially available chemiluminescent immunoassay system
(IMMULITE 1000 Automated Analyzer; DPC, Los Angeles, CA). The mean within-run CV
was 8.6%, and the mean between-run CV was 10.3%.
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Statistical Analyses

Unconditional logistic regression analyses were conducted to estimate the associations of
plasma levels of folate, vitamin B12, and tHcy with cancers of the esophagus, stomach, and
liver, with crude and adjusted odds ratios (cORs and aORs, respectively) and 95%
confidence intervals (Cls). Plasma levels of folate, vitamin B12, and tHcy were categorized
according to the quartile distribution in the control group: 1) <8.9, 8.9-12.8, 12.8-17.7,
>17.7 nmol/l for folate; 2) <154.2, 154.2-228.9, 228.9-324.1, >324.1 pmol/l for vitamin
B12; and 3) <6.7, 6.7-9.5, 9.5-13.1, >13.1 pmol/I for tHcy. Potential confounding factors,
including age (continuous), gender, education level (illiteracy, primary school, higher than
middle school), body mass index (BMI; continuous), smoking pack-years (continuous), and
alcohol drinking frequency (never, occasionally, often, everyday) were adjusted. In modeling
one of the three plasma micronutrients, we adjusted for the other two plasma micronutrients
categorized according to the quintile distributions in controls. In addition, we adjusted H.
pyloriinfection (negative/positive) in stomach cancer analyses, and HBsAg status (hegative/
positive) and plasma AFB1-albumin adduct levels (quintiles) in liver cancer analyses.

Stratified analyses on environmental risk factors including smoking status, alcohol
consumption, H. pyloriinfection (in stomach cancer analyses), HBsAg status (in liver cancer
analyses), and plasma AFBL1 levels (in liver cancer analyses), and statistical interactions
between these 3 plasma micronutrients on both additive and multiplicative scales were
conducted. Median levels in controls were used to dichotimize plasma levels of folate (12.8
nmol/l), vitamin B12 (228.9 pmol/l), tHcy (9.5 umol/l), and AFB1-albumin adduct in both
stratified and interaction analyses. Multiplicative interactions were assessed by including
both the main effect variables and their product terms in logistic regression models. Two
additive interaction measurements according to Knol et al. (16), relative excess risk due to
interaction (RERI) and synergy index (SI), were calculated. The 95% CI of RERI and Sl
were estimated by the delta method (17, 18).

RESULTS

The comparisons of the distributions of selected demographic characteristics among cases of
the three cancer types and controls are summarized in Table 1. In general, compared to the
control group, cancer cases were more likely to be smokers, have lower BMI, and were less
educated. Liver cancer cases had the highest male-to-female ratio (3.53). Stomach cancer
cases were the oldest at diagnoses (mean age = 62.8 yr), followed by esophageal cancer
cases (mean age = 60.6 yr), controls (mean age = 57.7 yr), and liver cancer cases (mean age
=53.9 yr). The proportion of HBsAg-positivity and anti-HCV-positivity in serum samples
were higher in liver cancer patients than in controls. Liver cancer patients also had higher
plasma AFB1 levels than controls. The median value of plasma folate levels was the highest
among esophageal cancer cases (14.66 nmol/L), and it was the lowest among liver cancer
cases (12.50 nmol/L). The measured plasma folate levels in our control population (median
12.76 nmol/L) were comparable with what have been observed in the United States before
folic acid fortification (NHANES 1988-1994; median 12.50 nmol/L) (19). All cancer cases
had substantially higherDmedian value of plasma vitamin B12 levels (300.46-382.77
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pmol/L) than controls (228.8 pmol/L). Cancer cases also had higher median value of plasma
tHcys levels (10.05-11.15 umol/L) than controls (9.50 umol/L).

The associations between plasma levels of folate, vitamin B12, and tHcy with cancers of the
esophagus, stomach, and liver are presented in Table 2. There was weak or no linear
relationship between these three plasma micronutrients (in quintile) (Pearson correlation
coefficient r = 0.31, < 0.001 between folate and vitamin B12; r = 0.046, A= 0.14 between
folate and tHcy; r = 0.078, P = 0.014 between vitamin B12 and tHcy; data not shown). After
the adjustment for potential confounding factors, as well as plasma levels of vitamin B12
and tHcy, we found an inverse association between plasma folate levels and liver cancer (P
for trend 0.008). Individuals in the highest quartile of plasma folate levels were 54% less
likely to have liver cancer than those in the lowest quartile (aOR = 0.46, 95% CI = 0.24—
0.89). Plasma vitamin B12 levels were positively associated with all three cancers after the
adjustment for potential confounding factors and plasma levels of folate and tHcy (P for
trend < 0.004). Compared to individuals in the lowest quartile of plasma vitamin B12 levels,
those in the highest quartile had an aOR of 2.80 (95% CI = 1.51- 5.18) for esophageal
cancer, 2.17 (95% CI = 1.21-3.89) for stomach cancer, and 9.90 (95% CI = 4.80-20.44) for
liver cancer. We did not observe clear associations between plasma tHcy levels and
esophageal, stomach, or liver cancer.

Potential statistical interactions between these three plasma micronutrients for the 3 cancers
were shown in Table 3. There is potential statistical interaction between plasma levels of
folate and vitamin B12 for all 3 cancers on both additive and multiplicative scales.
Compared to individuals with lower levels of both plasma folate and vitamin B12, those
with lower plasma folate levels and higher plasma vitamin B12 levels had the highest ORs
for cancers; the ORs were 4.44 (95% CI 2.42-8.16) for esophageal cancer, 2.86 (95% CI =
1.58-5.18) for stomach cancer, and 8.81 (95% CI 4.56-17.04) for liver cancer.

In stratified analyses on other environmental risk factors, we detected heterogeneity of the
associations between plasma vitamin B12 levels and liver cancer across the HBsAg strata (P
for heterogeneity = 0.040), and between plasma folate levels and liver cancer across the
strata of plasma AFBZ1-albumin adduct levels (P for heterogeneity = 0.002; Table 4). The
positive association between plasma vitamin B12 levels and liver cancer was stronger among
HBsAg-positive individuals (aOR = 9.54, 95% CI = 4.13-22.04) than among HBsAg-
negative individuals (aOR association = 4.70, 95% CI 2.28-9.67). The inverse between
plasma folate levels and liver cancer was observed among individuals with higher plasma
AFB1 levels (aOR = 0.16, 95% CI = 0.07-0.37), but not among those with lower levels
(aOR =1.26, 95% CI = 0.62-2.57).

DISCUSSION

In this Southeastern Chinese high-risk population, we observed an inverse association
between plasma folate levels and liver cancer, and this association appeared stronger among
those with higher AFB1-albumin adducts levels. We found a positive association between
plasma vitamin B12 levels and cancers of the esophagus, stomach, and liver. The association
between B12 and liver cancer appeared more robust among chronic HBV carriers. In
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addition, we reported for the first time a potential interaction between plasma levels of folate
and B12 on these three cancers.

Our finding for the association between plasma folate and liver cancer is consistent with a
hospital-based case-control study conducted in Taiwan reported that serum folate levels were
inversely associated with hepatocellular carcinoma (HCC) (20), and of animal studies
showing that dietary deficient in folate and other methyl donors can induce the development
of liver cancer (21). The temporal sequence of pathological and molecular changes of folate/
methyl-deficient diet induced hepatocarcinogenesis in rodents is very similar to the
development of human HCCs (22). Folate and other micronutrients in one-carbon
metabolism play an important role for the biosynthesis of S-adenosyl-L-methionine (SAM),
the major methyl donor for cellular methylation reactions. DNA methylation is the major
epigenetic mechanism for the control of gene expression and the maintenance of genome
integrity. Global DNA hypomethylation is considered as a cause of oncogenesis (23).
Rodent studies suggested that severe folate deficiency not only resulted in decreased SAM
levels in the liver (24-26), but also increased uracil misincorporation followed by DNA
strand breaks (27,28). Because folate also plays a fundamental role in purine and
thymidylate synthesis, and a folate-deficient diet can lead to an overrepresentation of uracil
in the nucleotide pool, which can result in reiterative repair of DNA strand breaks and abasic
sites (29). James et al. (30) further indicated that lesion-containing DNA is less efficiently
methylated than lesion-free DNA and that an increase in DNA strand breaks was followed
by DNA hypomethylation. They also demonstrated that in promoter regions, the
inappropriate binding of the DNA methyltransferase to unrepaired lesions or mispairs may
promote local histone deacetylation, methylation, and regional hypermethylation associated
with tumor suppressor gene silencing (30). In addition, a folate/methyl-deficient diet also
resulted in altered lipid metabolism, oxidative stress, and other epigenetic alterations such as
histone modification changes and microRNA alterations in hepatocarcinogenesis (22).
Folate has also been shown to have antimutagenic effects on AFB1 in animal studies (31),
which was supported by our observation that the inverse association between folate and liver
cancer was only observed among those with higher AFB1 levels. We did not find a clear
association between plasma folate and cancers of the esophagus or stomach in our current
study. Although some studies indicated an association between dietary folate and these two
cancers (7,12), there are no studies on blood folate status to the best of our knowledge.
Blood folate status may also be associated with liver cancer prognosis. More advanced stage
HCC patients had lower plasma/serum folate levels than those with an earlier stage of the
disease (32,33). Although we do not have stage information, it is very likely that our group
of liver cancer patients had less aggressive disease because those with more advanced
disease might have been too ill during enrollment to participate or had died of cancer. Under
the assumption that higher plasma folate is associated with better liver cancer prognosis, we
may have underestimated the protective effect of folate if we were able to recruit all of the
incident liver cancer patients.

Because we collected blood samples after disease diagnosis, the observed association might
have been due to reverse causality. Recent literature suggested a dual role for folate in
carcinogenesis. Folate may prevent tumor development before the existence of preneoplastic
lesions, but increase tumorigenesis once preneoplastic lesions are established (34,35).
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Therefore, lower plasma folate levels among liver cancer patients in our study may be a
consequence of increased folate use by tumors (36). On the other hand, low folate status
may be a consequence of general malnutrition caused by severe weight and appetite loss,
which were frequently observed in several types of cancer patients, especially those with Gl
cancers (37,38). Reduced folate levels may also reflect underlying liver diseases among liver
cancer patients because impaired liver function has been reported to accompany low folate
status in patients with viral hepatitis, alcoholic liver disorders, and liver cirrhosis (39).

We observed a strong and consistent positive association between plasma vitamin B12 levels
and all 3 upper Gl cancers. Although whether the observed associations are causal remains
speculative, vitamin B12 has been hypothesized to be one of the crucial parameters defining
carcinogenicity of a methyl-deficient diet in animal models (40). Whereas a diet deficient in
folate, choline, and methionine is sufficient to trigger hepatocarcinogenesis in rats without
exposure to any known carcinogens (21,41-45), the effect of additional withdrawal of
vitamin B12 is controversial (40). Wainfan and Poirier (46) found that livers in rats fed with
a diet deficient in choline, methionine, folate, and vitamin B12 had decreased DNA
methylation levels and altered gene expression. However, such severely methyl-deficient diet
did not induce the development of liver cancer in rats in two other studies, with low
incidence of HCC of 3.4% (47) and 0% (43). In epidemiologic studies, higher B12 levels
have been associated with increased risk of prostate and lung cancer. In a meta-analysis,
circulating B12 levels were associated with a 10% increased prostate cancer risk (pooled OR
=1.10, 95% CI = 1.01-1.19) for every 100 pmol/L increase (48). In the European
Investigation into Cancer and Nutrition study, a higher risk for lung cancer was seen for
elevated serum B12 (fourth vs. first quartile OR = 1.35, 95% CI = 1.00-1.82; Pfor trend =
0.04) (49). In a large cohort study in Denmark published recently, a strong association
between elevated plasma vitamin B12 levels and the risk of several hematological and
smoking- and alcohol-related cancers including liver cancer and gastric cancer was found
(50). Elevated plasma vitamin B12 levels are therefore regarded as a marker for various
types of cancers (50). These results are in line with our findings on the plasma levels of B12
and the risk of GI cancers.

The positive associations between B12 and cancer may also be due to reverse causality.
Elevated plasma B12 levels have been reported in some cancer patients (51-53). The
underlying mechanisms are poorly elucidated though the increased release of haptocorrin
(HC; vitamin B12-binding protein) to the circulation was proposed as a plausible
explanation (54). For liver cancer patients, an increased release of vitamin B12 from
damaged hepatocytes and decreased uptake or the diminished clearance of HC by the liver
may also be involved (53,55). In addition, patients with underlying liver diseases also have
elevated plasma B12 levels (54,57). Vitamin B12 supplementation has been recommended
for reducing side effects among cancer patients undergoing chemotherapy. Therefore, prior
liver diseases and cancer treatment may confound our observed association. Although
related information was not collected to investigate such confounding effect, the association
between B12 and liver cancer was consistently seen across the stratum of chronic HBV
infection, indicating the robustness of the association. Similarly, in the Danish cohort study,
the risk of liver cancer associated with elevated B12 remained robust after the stratification
on prior liver diseases, indicating that underlying liver diseases did not confound this
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association (50). Therefore, although a clear causal relationship cannot be established, our
study raises the importance of subsequent work on the role of plasma vitamin B12 on cancer
etiology. As suggested by Arendt et al. (50) the mechanisms resulting in high vitamin B12
levels may be related to malignant pathogenesis.

We also observed a novel finding of a statistical interaction between plasma folate and
vitamin B12 on all of the 3 upper GI cancers. Although the highest ORs for cancer were
observed among individuals with lower folate and higher B12 levels, the lowest ORs were
observed among those with both lower levels. Such finding seems to be consistent with the
before-mentioned observation in rodent models that the additional removal of vitamin B12
from folate-/methyl-deficient diet may not effectively induce hepatocarcinogenesis (40). In
other words, the cancer-inducing effect of folate deficiency may be of greater importance
when vitamin B12 levels are high, which was suggested by our results. The interaction
between folate and B12 has also been observed in one study on dietary folate intake and
breast cancer (58). However, more studies are needed to confirm and elucidate such finding.

The major limitation in this study is confounding by indication because we collected blood
samples after disease diagnosis. The observed associations might be caused by reverse
causality, as discussed above. In addition, as esophageal, stomach, and liver cancers are fatal
diseases, some cancer patients diagnosed at advanced stages were too ill to enroll. This may
have resulted in the selection of patients with less aggressive cancers, which may have
different etiologic indications. We also had limited sample size to detect interactions.
However, given that there is limited prior research, our results are of importance.

In conclusion, the findings from this study suggest an inverse association between plasma
folate levels and liver cancer, and positive associations between plasma vitamin B12 levels
and cancers of the esophagus, stomach, and liver in a Chinese population where mandatory
folic acid fortification is not implemented. Our data also indicated the presence of a potential
interaction between plasma folate and vitamin B12 in these 3 cancers. Considering the
practice of mandatory folic acid fortification in many countries, further research is warranted
to investigate the associations of micronutrients involved in folate metabolism with cancer.
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TABLE 2

Associations between plasma levels of folate, vitamin B12, and homocysteine and cancers of esophagus,

stomach, and liver

Casen (%) Controln (%) Crude OR (95% Cl)  Adjusted ORY (95% CI)  Adjusted OR? (95% Cl)

Folate (nmol/l)
£8.90
8.90-12.76
12.76-17.66
>17.66
Prend™

Vitamin B12 (pmol/l)
<£154.23
154.23-228.88
228.88-324.06
>324.06
Pirena™

Homocysteine (umol/1)
<6.70
6.70-9.50
9.50-13.10
>13.10

Ptrend *

Folate (nmol/l)
<8.90
8.90-12.76
12.76-17.66
>17.66
Pirena™

Vitamin B12 (pmol/1)
<154.23
154.23-228.88
228.88-324.06
>324.06
Prrena ™

Homocysteine (umol/1)
<6.70
6.70-9.50
9.50-13.10
>13.10

43(7.0)
41(6.7)
47 (1.7)

75 (12.2)

25 (4.1)
28 (4.6)
60 (9.8)
93 (15.2)

36 (5.9)
42 (6.8)
67 (10.9)
61(9.9)

46 (7.6)
41(6.7)
41(6.7)
73 (12.0)

37(6.1)
33(5.4)
43(7.1)
87 (14.4)

47(1.7)
49 (8.0)
48 (7.9)
56 (9.2)

102 (16.6)
102 (16.6)
101 (16.4)
103 (16.8)

102 (16.7)
100 (16.3)
102 (16.7)
102 (16.7)

103 (16.7)
103 (16.7)
101 (16.4)
102 (16.6)

102 (16.7)
102 (16.7)
101 (16.6)
103 (16.9)

102 (16.8)
100 (16.5)
102 (16.8)
102 (16.8)

103 (16.9)
103 (16.9)
101 (16.6)
102 (16.7)

Esophageal cancer

1.00

0.95 (0.57, 1.59)

1.10 (0.67, 1.81)

1.73 (1.09, 2.75)
0.012

1.00
1.14 (0.62, 2.09)
2.40 (1.40, 4.12)
3.72(2.21, 6.26)
<0.001

1.00
1.17 (0.69, 1.97)
1.90 (1.16, 3.10)
1.71 (1.04, 2.81)
0.009

Stomach cancer

1.00
0.89 (0.54, 1.47)
0.90 (0.54, 1.49)
1.57 (0.99, 2.49)
0.044

1.00
0.91 (0.53, 1.57)
1.16 (0.69, 1.95)
2.35 (1.47,3.77)
<0.001

1.00
1.04 (0.64, 1.69)
1.04 (0.64, 1.69)
1.20 (0.75, 1.93)

1.00

0.88 (0.50, 1.54)

0.99 (0.57, 1.71)

1.58 (0.95, 2.64)
0.051

1.00
1.00 (0.52, 1.93)
2.30 (1.27, 4.17)
3.07 (1.73, 5.45)
<0.001

1.00
1.31(0.73, 2.33)
1.68 (0.97, 2.93)
1.59 (0.91, 2.76)
0.077

1.00
1.05 (0.59, 1.84)
1.07 (0.60, 1.90)
1.73 (1.01, 2.95)
0.041

1.00
0.94 (0.51, 1.73)
1.16 (0.64, 2.08)
2,50 (1.4, 4.31)
<0.001

1.00
1.35(0.77, 2.35)
1.09 (0.62, 1.90)
1.25(0.73, 2.17)
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1.00

0.72 (0.39, 1.31)

0.77 (0.43, 1.39)

1.00 (0.57, 1.76)
0.80

1.00
0.97 (0.49, 1.90)
2.16 (1.15, 4.04)
2.80 (1.51, 5.18)
<0.001

1.00

1.19 (0.65, 2.17)

1.47 (0.83, 2.60)

154 (0.87,2.72)
0.11

1.00

0.94 (0.52, 1.70)

0.93 (0.51, 1.69)

1.26 (0.70, 2.27)
0.42

1.00
0.90 (0.49, 1.68)
1.09 (0.60, 2.00)
2.17 (1.21, 3.89)
0.004

1.00
1.16 (0.65, 2.07)
0.95 (0.53, 1.70)
1.12 (0.64, 1.96)
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Casen (%) Controln (%) Crude OR (95% Cl)  Adjusted ORY (95% CI)  Adjusted OR? (95% Cl)
P irend 0.46 0.60 0.88
Liver cancer

Folate (nmol/l)
<8.90 45 (7.5) 102 (16.9) 1.00 1.00 1.00
8.90-12.76 55(9.1) 102 (16.9) 1.22 (0.76, 1.98) 1.18 (0.68, 2.05) 0.98 (0.53, 1.83)
12.76-17.66 38 (6.3) 101 (16.7) 0.85(0.51, 1.42) 0.91 (0.50, 1.63) 0.64 (0.33,1.24)
>17.66 58 (9.6) 103 (17.1) 1.28 (0.79, 2.05) 1.05 (0.60, 1.83) 0.46 (0.24, 0.89)
Prend 0.58 0.91 0.008

Vitamin B12 (pmol/l)
£154.23 17 (28)  102(16.9) 1.00 1.00 1.00
154.23-228.88 18 (3.0) 100 (16.6) 1.08 (0.53, 2.21) 1.19 (0.53, 2.68) 1.37 (0.59, 3.16)
228.88-324.06 38 (6.3) 102 (16.9) 2.24 (1.19, 4.21) 3.09 (1.53, 6.25) 4.27 (2.00, 9.10)
>324.06 124 (206) 102 (16.9) 7.29 (4.10, 12.98) 6.65 (3.49, 12.66) 9.90 (4.80, 20.44)
Pirena™ <0.001 <0.001 <0.001

Homocysteine (umol/I)
<6.70 49 (8.1) 103 (17.0) 1.00 1.00 1.00
6.70-9.50 37 (6.1) 103 (17.0) 0.76 (0.45, 1.25) 0.72 (0.40, 1.31) 0.67 (0.35, 1.27)
9.50-13.10 48(7.9) 101 (16.6) 1.00 (0.62, 1.62) 0.94 (0.53, 1.67) 0.71(0.38, 1.33)
>13.10 64 (10.5) 102 (16.8) 1.32 (0.83, 2.09) 1.56 (0.91, 2.70) 1.21(0.67, 2.19)
P trend * 0.13 0.067 0.45

JOdds ratios (ORs) adjusted for age, gender, BMI, education, smoking pack-years, alcohol drinking frequency, H. py/oriinfection (in stomach
cancer analyses), hepatitis B virus surface antigen (in liver cancer analyses), and plasma aflatoxin B1 levels (in liver cancer analyses);

ORs further adjusted for the other two plasma micronutrients in quintile distribution.

*
Pvalue for chi-square test for trend.
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