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In brief

The OpenPBTA is a global, collaborative

open-science initiative that brought

together researchers and clinicians to

genomically characterize 1,074 pediatric

brain tumors and 22 patient-derived cell

lines. Shapiro et al. create over 40 open-

source, scalable modules to perform

cancer genomics analyses and provide a

richly annotated somatic dataset across

58 brain tumor histologies. The

OpenPBTA framework can be used as a

model for large-scale data integration to

inform basic research, therapeutic target

identification, and clinical translation.
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SUMMARY
Pediatric brain and spinal cancers are collectively the leading disease-related cause of death in children; thus,
we urgently need curative therapeutic strategies for these tumors. To accelerate such discoveries, the Chil-
dren’s Brain TumorNetwork (CBTN) andPacific Pediatric Neuro-OncologyConsortium (PNOC) created a sys-
tematic process for tumor biobanking, model generation, and sequencing with immediate access to harmo-
nized data. We leverage these data to establish OpenPBTA, an open collaborative project with over 40
scalable analysis modules that genomically characterize 1,074 pediatric brain tumors. Transcriptomic classi-
fication reveals universal TP53 dysregulation in mismatch repair-deficient hypermutant high-grade gliomas
and TP53 loss as a significant marker for poor overall survival in ependymomas and H3 K28-mutant diffuse
midline gliomas. Already being actively applied to other pediatric cancers and PNOC molecular tumor board
decision-making, OpenPBTA is an invaluable resource to the pediatric oncology community.
INTRODUCTION

Pediatric brain and spinal cord tumors are collectively the sec-

ond most common malignancy in children after leukemia, repre-
This is an open access article und
senting the leading disease-related cause of death in children.1

Five-year survival rates vary widely across different histologic

and molecular classifications of brain tumors. For example,

most high-grade gliomas carry a universally fatal prognosis,
Cell Genomics 3, 100340, July 12, 2023 ª 2023 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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while children with pilocytic astrocytoma have an estimated

10-year survival rate of 92%.2 Recent estimates suggest that

children and adolescents aged 0–19 with brain tumors in the

United States lose an average 47,631 years of life.3

The low survival rates for some pediatric tumors are multifac-

torial, explained partly by our lack of comprehensive under-

standing of ever-evolving brain tumor molecular subtypes, by

difficulty drugging these tumors, and by the shortage of drugs

specifically labeled for pediatric malignancies. Historically, fatal

inoperable brain tumors, such as diffuse intrinsic pontine gli-

omas (DIPGs), were not routinely biopsied due to perceived bi-

opsy risks and the paucity of therapeutic options. Thus, com-

bined with rare incidences of pediatric tumors in the first place,

limited availability of tissue for developing patient-derived cell

lines and mouse models has hindered research.

To address these barriers, multiple national and international

consortia have collaborated to uniformly collect clinically anno-

tated surgical biosamples and associated germline materials

through both observational and interventional clinical trials. The

Pediatric Brain Tumor Atlas (PBTA) initiative, established in

2018 by the Children’s Brain Tumor Network (CBTN, https://

cbtn.org)4 and the Pacific Pediatric Neuro-Oncology Consortium

(PNOC, https://pnoc.us), built upon 12 years of enrollment, sam-

ple collection, and clinical followup across over 30 institutions.

Just as cooperation accelerates specimens and data sharing,

collaboration among computational researchers, bench scien-

tists, clinicians, and pathologists is critical for rigorous genomic

analysis.

Although there has been significant progress elucidating

genomic bases of pediatric brain tumor formation and progres-

sion, translating therapeutic agents to phase II or III clinical tri-

als and subsequent FDA approvals have not kept pace. Within
2 Cell Genomics 3, 100340, July 12, 2023
the last 20 years, the FDA has approved only seven targeted

agents for treating pediatric brain tumors.5 This is partly due

to pharmaceutical company priorities, posing challenges for re-

searchers to obtain therapeutic agents for pediatric clinical tri-

als. Critically, since August 2020, an amendment to the Pediat-

ric Research Equity Act called the ‘‘Research to Accelerate

Cures and Equity (RACE) for Children Act’’ mandates that all

new adult oncology drugs also be tested in children when the

molecular target exists in a childhood cancer. The RACE Act,

coupled with genomics advances to identify putative molecular

targets in pediatric cancers, will accelerate identification of pre-

viously overlooked but effective therapeutic options for pediat-

ric diseases.

We anticipated that a model of open collaboration would

enhance the PBTA’s value and provide a framework for ongoing

analysis of pediatric brain tumor datasets. Leveraging diverse

scientific and analytical expertise, we established the

OpenPBTA, which employs an open sciencemodel with features

such as analytical code review6,7 and continuous integration,7,8

thereby ensuring reproducibility throughout the project’s life-

time. Through the OpenPBTA, we present a comprehensive,

collaborative, open genomic analysis of 1,074 tumors and 22

cell lines, comprised of 58 distinct brain tumor histologies from

943 patients. The data and containerized infrastructure of the

OpenPBTA have already supported discovery and translational

research studies,9–12 are actively integrated into PNOC molecu-

lar tumor board decision-making, and have provided a founda-

tional layer for the Childhood Cancer Data Initiative’s (CCDI)

recently established pediatric Molecular Targets Platform

(https://moleculartargets.ccdi.cancer.gov/). We anticipate that

the OpenPBTA will continue to be invaluable to the pediatric

oncology community.

https://cbtn.org
https://cbtn.org
https://pnoc.us
https://moleculartargets.ccdi.cancer.gov/
mailto:rokita@chop.edu
mailto:jaclyn.taroni@ccdatalab.org
https://doi.org/10.1016/j.xgen.2023.100340
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Figure 1. Overview of the OpenPBTA project

(A) CBTN and PNOC collected tumors from 943 patients. 22 tumor cell lines were created, and over 2,000 specimenswere sequenced (n = 1035 RNA-seq, n = 940

WGS, and n = 32 WXS or targeted panel). The Kids First Data Resource Center Data harmonized the data using Amazon S3 through CAVATICA. Panel created

with BioRender.com.

(B) Number of biospecimens across phases of therapy, with one broad histology per panel. Each bar denotes a cancer group (abbreviations: GNG, ganglioglioma;

other LGG, other low-grade glioma; PA, pilocytic astrocytoma; PXA, pleomorphic xanthoastrocytoma; SEGA, subependymal giant cell astrocytoma; DIPG,

diffuse intrinsic pontine glioma; DMG, diffusemidline glioma; other HGG, other high-grade glioma; ATRT, atypical teratoid rhabdoid tumor;MB,medulloblastoma;

other ET, other embryonal tumor; EPN, ependymoma; PNF, plexiform neurofibroma; DNET, dysembryoplastic neuroepithelial tumor; CRANIO, craniophar-

yngioma; EWS, Ewing sarcoma; CPP, choroid plexus papilloma).

(legend continued on next page)
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RESULTS

Crowd-sourced somatic analyses to create an open
PBTA
We previously performed whole-genome sequencing (WGS),

whole-exome sequencing (WXS), and RNA sequencing (RNA-

seq) on matched tumor/normal tissues and selected cell lines13

from 943 patients from the PBTA, consisting of 911 patients

from the CBTN4 and 32 patients from PNOC10,14 (Figure 1A)

across various histologies phrases of therapy (Figure 1B). We

harnessed and extended the benchmarking efforts of the Gabri-

ella Miller Kids First Data Resource Center to develop robust and

reproducible data analysis workflows within the CAVATICA plat-

form for comprehensive somatic analyses (Figure S1; STAR

Methods) of the PBTA.

A key innovative feature of the OpenPBTA is its open contri-

bution framework used for analytical code and manuscript

writing. We created a public GitHub analysis repository (https://

github.com/AlexsLemonade/OpenPBTA-analysis) to hold all

analysis code downstream of Kids First workflows and a GitHub

manuscript repository (https://github.com/AlexsLemonade/Open

PBTA-manuscript) with Manubot15 integration to enable real-

time manuscript creation. As all analyses and manuscript writing

were conducted in public repositories, any researcher in the world

could contribute to the OpenPBTA following the process outlined

in Figure 1C. First, a potential contributor proposed an analysis by

filing an issue in theGitHubanalysis repository. Next, project orga-

nizers or other contributors with expertise provided feedback

about the proposed analysis (Figure 1C). The contributor formally

requested to include their analytical code and results—written in

their own copy (fork) of repository—in the OpenPBTA analysis re-

pository by filing a GitHub pull request (PR). All PRs underwent

peer review to ensure scientific accuracy, maintainability, and

readability of code and documentation (Figures 1C and 1D).

Beyond peer review, we implemented additional checks to

ensure consistent results for all collaborators over time (Fig-

ure 1D). To provide a consistent software development environ-

ment, we created a monolithic image with all OpenPBTA depen-

dencies using Docker16 and the Rocker project.17 We used the

continuous integration (CI) service CircleCI to run analytical

code in PRs on a test dataset before formal code review, allow-

ing us to detect code bugs or sensitivity to data release changes.

We followed a similar process in our Manubot-powered15 re-

pository for proposed manuscript additions (Figure 1C); peer re-

viewers ensured clarity and scientific accuracy, and Manubot

performed spellchecking.

Molecular subtyping of OpenPBTA CNS tumors
Since 2000, neuro-oncology experts and the WHO have collab-

orated to iteratively redefine central nervous system (CNS) tumor

classifications.18,19 In 2016,20 molecular subtypes driven by ge-

netic alterations were integrated into these classifications. Since
(C) Overview of the open analysis and manuscript contribution models. Contributo

with proposed changes. PRs underwent review for scientific rigor and accuracy

dependencies were included and that code was not sensitive to underlying data c

to the Manubot-powered manuscript repository for review.

(D) A potential path for an analytical PR. Arrows indicate revisions.

4 Cell Genomics 3, 100340, July 12, 2023
CBTN specimen collection began in 2011, most tumors lacked

molecular subtype information when tissuewas collected. More-

over, the PBTA does not yet feature methylation arrays, which

are increasingly used to inform molecular subtyping and cancer

diagnosis. Therefore, we created analysis modules to systemat-

ically consider key genomic features of tumors described by

the WHO in 2016 or Ryall and colleagues.21 Coupled with clini-

cian and pathologist review, we generated high-confidence,

research-grade integrated diagnoses for 60% (644/1,074) of tu-

mors (Table S1) without methylation data, a major innovation of

this project. We then aligned OpenPBTA specimen diagnoses

with whom classifications (e.g., tumors formerly ascribed primi-

tive neuro-ectodermal tumor [PNET] diagnoses) discovered rarer

tumor entities (e.g., H3-mutant ependymoma, meningioma with

YAP1::FAM118B fusion), as well as identified and corrected data

entry errors (e.g., an embryonal tumor with multilayer rosettes

(ETMRs) incorrectly entered as a medulloblastoma) and histo-

logically mis-identified specimens (e.g., Ewing sarcoma sample

labeled as a craniopharyngioma). Uniquely, we used transcrip-

tomic classification to subtype 122 medulloblastomas into

SHH, WNT, group 3, or group 4 with MedulloClassifier22 and

MM2S,23 with 95% (41/43) and 91% (39/43) accuracy,

respectively.

In total, we subtyped low-grade gliomas (LGGs) (n = 290),

high-grade gliomas (HGGs) (n = 141), embryonal tumors (n

= 126), ependymomas (n = 33), tumors of sellar region (n = 27),

mesenchymal non-meningothelial tumors (n = 11), glialneuronal

tumors (n = 10), and chordomas (n = 6), where n represents

unique tumors (Table 1). For detailed methods, see STAR

Methods and Figure S1.

Somatic mutational landscape of pediatric brain tumors
We performed a comprehensive genomic analysis of somatic

SNVs, copy number variants (CNVs), structural variants (SVs),

and fusions across all 1,074 PBTA tumors (n = 1,019 RNA-seq,

n = 918 WGS, n = 32 WXS/panel) and 22 cell lines (n = 16

RNA-Seq, n = 22 WGS) from 943 patients, 833 with paired

normal specimens (n = 801WGS, n = 32WXS/panel). Tumor pu-

rity across PBTA samples was high (median 76%), though we

observed some cancer groups with lower purity, including sub-

ependymal giant cell astrocytoma (SEGA), pleomorphic xan-

thoastrocytoma (PXA), and teratoma (Figure S3A). Unless other-

wise noted, each analysis was performed for diagnostic tumors

using one tumor per patient.

SNV consensus calling (Figures S1 and S2A–S2G) revealed,

as expected, lower tumor mutation burden (TMB) (Figure S2H)

in pediatric tumors compared with adult brain tumors from The

Cancer Genome Atlas (TCGA) (Figure S2I), with hypermutant

(>10 mutations [Mut]/Mb) and ultra-hypermutant (>100 Mut/

Mb) tumors24 only found within HGGs and embryonal tumors.

Figures 2 and S3Bdepict oncoprints recapitulating known histol-

ogy-specific driver genes in primary tumors across OpenPBTA
rs proposed analyses, implemented it in their fork, and filed a pull request (PR)

. Container and continuous integration technologies ensured that all software

hanges. Finally, a contributor filed a PR documenting their methods and results

https://github.com/AlexsLemonade/OpenPBTA-analysis
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histologies, and Table S2 summarizes all detected alterations

across cancer groups.

LGGs

As expected, most (62%, 140/226) LGGs harbored a somatic

alteration in BRAF, with canonical BRAF::KIAA1549 fusions as

themajor oncogenic driver25 (Figure 2A).We observed additional

mutations in FGFR1 (2%), PIK3CA (2%), KRAS (2%), TP53 (1%),

and ATRX (1%) and fusions in NTRK2 (2%), RAF1 (2%), MYB

(1%), QKI (1%), ROS1 (1%), and FGFR2 (1%), concordant with

previous studies reporting near-universal upregulation of the

RAS/MAPK pathway in LGGs.21,25 Indeed, gene set variant anal-

ysis (GSVA) revealed significant upregulation (ANOVA Bonfer-

roni-corrected p < 0.01) of the KRAS signaling pathway in

LGGs (Figure 5B).

Embryonal tumors

Most (n = 95) embryonal tumors were medulloblastomas from

four characterized molecular subtypes (WNT, SHH, group 3,

and group 4; see molecular subtyping of OpenPBTA CNS tu-

mors), as identified by subtype-specific canonical mutations

(Figure 2B). We detected canonical SMARCB1/SMARCA4 dele-

tions or inactivating mutations in atypical teratoid rhabdoid

tumors (ATRTs; Table S2) and C19MC amplification in ETMRs

(displayed within ‘‘other embryonal tumors’’ in Figure 2B).26–29

HGGs

Across HGGs, TP53 (57%, 36/63) and H3F3A (54%, 34/63) were

both most mutated and co-occurring genes (Figures 2A and 2C),

followed by frequent mutations in ATRX (29%, 18/63), which

is commonly mutated in gliomas.30 We observed recurrent

amplifications and fusions in EGFR, MET, PDGFRA, and KIT,

highlighting that these tumors leverage multiple oncogenic

mechanisms to activate tyrosine kinases, as previously re-

ported.14,31,32 GSVA showed upregulation (ANOVA Bonferroni-

corrected p < 0.01) of DNA repair, G2M checkpoint, and MYC

pathways as well as downregulation of the TP53 pathway (Fig-

ure 5B). The two ultra-hypermutated tumors (>100 Mut/Mb)

were from patients with mismatch repair deficiency syndrome.13

Other CNS tumors

We observed that 25% (15/60) of ependymomas were

C11orf95::RELA (now, ZFTA::RELA) fusion positive33 and that

68% (21/3 1) of craniopharyngiomas contained CTNNB1 muta-

tions (Figure 2D). We observed somatic mutations or fusions in

NF2 in 41% (7/17) of meningiomas, 5% (3/60) of ependymomas,

and 25% (3/12) of schwannomas, as well as rare fusions in

ERBB4, YAP1, and/or QKI in 10% (6/60) of ependymomas. Dys-

embryoplastic neuroepithelial tumors (DNETs) harbored alter-

ations in MAPK/PI3K pathway genes, as was previously re-

ported,34 including FGFR1 (21%, 4/19), PDGFRA (10%, 2/19),

and BRAF (5%, 1/19).

Mutational co-occurrence, CNV, and signatures
highlight key oncogenic drivers
We analyzed mutational co-occurrence across the OpenPBTA

using a single tumor from each patient (n = 668) with WGS.

The top 50 mutated genes (see STAR Methods for details) in pri-

mary tumors are shown in Figure 3 by tumor type (Figure 3A, bar

plots), with co-occurrence scores illustrated in the heatmap (Fig-

ure 3B). As expected, TP53 was the most frequently mutated

gene across the OpenPBTA (8.7%, 58/668), significantly co-
occurring with H3F3A (odds ratio [OR] = 30.05, 95% confidence

interval [CI]: 14.5–62.3, q = 2.34e�16),ATRX (OR = 23.3, 95%CI:

9.6–56.3, q = 8.72e�9), NF1 (OR = 8.26, 95% CI: 3.5–19.4,

q = 7.40e�5), and EGFR (OR = 17.5, 95% CI: 4.8–63.9,

q = 2e�4), with all of these driven by HGGs and consistent

with previous reports.31,35,36

In embryonal tumors, CTNNB1 mutations significantly co-

occurred with TP53 mutations (OR = 43.6 95% CI: 7.1–265.8,

q = 1.52e�3) as well as with DDX3X mutations (OR = 21.4,

95% CI: 4.7–97.9, q = 4.15e�3), events driven by medulloblas-

tomas as previously reported.37,38 FGFR1 and PIK3CA muta-

tions significantly co-occurred in LGGs (OR = 77.25, 95% CI:

10.0–596.8, q = 3.12e�3), consistent with previous findings.38,39

Of HGG tumors with TP53 or PPM1D mutations, 53/55 (96.3%)

had mutations in only one of these genes (OR = 0.17, 95% CI:

0.04–0.89, q = 0.056), recapitulating previous observations that

these mutations are usually mutually exclusive in HGGs.36

CNV and SV analyses revealed that HGG, diffuse midline gli-

oma (DMG), andmedulloblastoma tumors had themost unstable

genomes, while craniopharyngiomas and schwannomas gener-

ally lacked somatic CNVs (Figure S3C). These CNV patterns

largely aligned with our TMB estimates (Figure S2H). SV and

CNV breakpoint densities were significantly correlated (linear

regression p = 1.05e�38; Figure 3C), and as expected, the num-

ber of chromothripsis regions called increased with breakpoint

density (Figures S3D and S3E). We identified chromothripsis

events in 31% (n = 12/39) of DMGs and in 44% (n = 21/48) of

other HGGs (Figure 3D) and found evidence of chromothripsis

in over 15% of sarcomas, PXAs, metastatic secondary tumors,

chordomas, glial-neuronal tumors, germinomas, meningiomas,

ependymomas, medulloblastomas, ATRTs, and other embry-

onal tumors.

We assessed the contributions of eight adult CNS-specific

mutational signatures from the RefSig database40 across tumors

(Figures 3E and S4A). Signature 1, which reflects normal sponta-

neous deamination of 5-methylcytosine, predominated in stage

0 and/or 1 tumors characterized by low TMBs (Figure S2H)

such as pilocytic astrocytomas, gangliogliomas, other LGGs,

and craniopharyngiomas (Figure S4A). Signature 1 exposures

were generally higher in tumors sampled at diagnosis (pretreat-

ment) compared with tumors from later phases of therapy (Fig-

ure S4B). This trend may have emerged from therapy-induced

mutations that produced additional signatures (e.g., temozolo-

mide treatment has been suggested to drive signature 1141),

subclonal expansion, and/or acquisition of additional driver mu-

tations during tumor progression, leading to detection of addi-

tional signatures. We observed the CNS-specific signature N6

in nearly all tumors. Signature 18 drivers (TP53, APC, NOTCH1;

found at https://signal.mutationalsignatures.com/explore/

referenceCancerSignature/31/drivers) are also canonical medul-

loblastoma drivers, and indeed, signature 18 had the highest

signature weight in medulloblastomas. Finally, signatures 3, 8,

18, and MMR2 were prevalent in HGGs, including DMGs.

Transcriptomic landscape of pediatric brain tumors
Most RNA-seq samples in the PBTA were prepared with

ribosomal RNA depletion followed by stranded sequencing

(n = 977), while remaining samples were prepared with poly-A
Cell Genomics 3, 100340, July 12, 2023 5
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Table 1. Molecular subtypes generated through the OpenPBTA project

Broad histology group OpenPBTA molecular subtype Patients Tumors

Chordoma CHDM, conventional 2 2

CHDM, poorly differentiated 2 4

Embryonal tumor CNS embryonal, NOS 13 13

CNS HGNET-MN1 1 1

CNS NB-FOXR2 2 3

ETMR, C19MC altered 5 5

ETMR, NOS 1 1

MB, group 3 14 14

MB, group 4 48 49

MB, SHH 24 30

MB, WNT 10 10

Ependymoma EPN, H3 K28 1 1

EPN, ST RELA 25 28

EPN, ST YAP1 3 4

High-grade glioma DMG, H3 K28 18 24

DMG, H3 K28, TP53 activated 10 13

DMG, H3 K28, TP53 loss 30 40

HGG, H3 G35 3 3

HGG, H3 G35, TP53 loss 1 1

HGG, H3 wild type 26 31

HGG, H3 wild type, TP53 activated 5 5

HGG, H3 wild type, TP53 loss 14 21

HGG, IDH, TP53 activated 1 2

HGG, IDH, TP53 loss 1 1

Low-grade glioma GNG, BRAF V600E 13 13

GNG, BRAF V600E, CDKN2A/B 1 1

GNG, FGFR 1 1

GNG, H3 1 1

GNG, IDH 1 2

GNG, KIAA1549-BRAF 5 5

GNG, MYB/MYBL1 1 1

GNG, NF1-germline 1 1

GNG, NF1-somatic, BRAF V600E 1 1

GNG, other MAPK 4 4

GNG, other MAPK, IDH 1 1

GNG, RTK 2 3

GNG, wild type 14 14

LGG, BRAF V600E 25 27

LGG, BRAF V600E, CDKN2A/B 5 5

LGG, FGFR 8 8

LGG, IDH 3 3

LGG, KIAA1549-BRAF 106 113

LGG, KIAA1549-BRAF, NF1-germline 1 1

LGG, KIAA1549-BRAF, other MAPK 1 1

LGG, MYB/MYBL1 2 2

LGG, NF1-germline 6 6

LGG, NF1-germline, CDKN2A/B 1 1

LGG, NF1-germline, FGFR 1 2

(Continued on next page)
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Table 1. Continued

Broad histology group OpenPBTA molecular subtype Patients Tumors

LGG, NF1-somatic 2 2

LGG, NF1-somatic, FGFR 1 1

LGG, NF1-somatic, NF1-germline,

CDKN2A/B

1 1

LGG, other MAPK 11 12

LGG, RTK 8 10

LGG, RTK, CDKN2A/B 1 1

LGG, wild type 33 34

SEGA, RTK 1 1

SEGA, wild type 10 11

Mesenchymal non-meningothelial tumor EWS 9 11

Neuronal and mixed neuronal-glial tumor CNC 2 2

EVN 1 1

GNT, BRAF V600E 1 1

GNT, KIAA1549-BRAF 1 2

GNT, other MAPK 1 1

GNT, other MAPK, FGFR 1 1

GNT, RTK 1 2

Tumor of sellar region CRANIO, ADAM 27 27

Total – 577 644

Broad tumor histologies, molecular subtypes generated, and number of patients and tumors subtyped within the OpenPBTA.

Resource
ll

OPEN ACCESS
selection (n = 58). Since batch correction was not feasible (see

limitations of the study and Figure S7A), the following transcrip-

tomic analyses considered only stranded samples.

Prediction of TP53 oncogenicity and telomerase activity

We applied a TCGA-trained classifier42 to calculate a TP53

score, a proxy for TP53 gene or pathway dysregulation, and sub-

sequently infer tumor TP53 inactivation status. We identified

‘‘true positive’’ TP53 alterations from high-confidence SNVs,

CNVs, SVs, and fusions in TP53, annotating tumors as ‘‘acti-

vated’’ if they harbored one of the p.R273C or p.R248W gain-

of-function mutations43 or ‘‘lost’’ if (1) the patient had a Li-

Fraumeni syndrome (LFS) predisposition diagnosis, (2) the tumor

harbored a known hotspot mutation, or (3) the tumor contained

two hits (e.g., both SNVs and CNVs), suggesting that both alleles

were affected. If the TP53 mutation did not reside within the

DNA-binding domain or no alterations in TP53 were detected,

we annotated the tumor as ‘‘other,’’ indicating an unknown

TP53 alteration status. The classifier achieved a high accuracy

(area under the receiver operating characteristic curve

[AUROC] = 0.86) for rRNA-depleted, stranded tumors, but it

did not perform as well on the poly-A tumors in this cohort

(AUROC = 0.62; Figure S5A).

We observed that ‘‘activated’’ and ‘‘lost’’ tumors had similar

TP53 scores (Figure 4B; Wilcoxon p = 0.92), contrasting our

expectation that ‘‘lost’’ tumors would have higher TP53 scores.

This difference suggests that classifier scores >0.5 may actually

represent an oncogenic, or altered, TP53 phenotype rather than

solely TP53 inactivation, as interpreted previously.42 However,

‘‘activated’’ tumors showed higher TP53 expression compared

with those with TP53 ‘‘loss’’ mutations (Wilcoxon p = 0.006; Fig-
ure 4C). DMGs, medulloblastomas, HGGs, DNETs, ependymo-

mas, and craniopharyngiomas, all known to harbor TP53 muta-

tions, had the highest median TP53 scores (Figure 4D). By

contrast, gangliogliomas, LGGs, meningiomas, and schwanno-

mas had the lowest median scores.

We hypothesized that tumors (n = 10) from patients with LFS

(n = 8) would have higher TP53 scores, which we indeed

observed for 8/10 tumors (Table S3). Although two tumors had

low TP53 scores (BS_DEHJF4C7 at 0.09 and BS_ZD5HN296

at 0.28), pathology reports confirmed that both patients were

diagnosed with LFS and harbored a TP53 pathogenic germline

variant. These two LFS tumors also had low tumor purity (16%

and 37%, respectively), suggesting that accurate classification

may require a certain level of tumor content. We suggest that

this classifier could be generally applied to infer TP53 function

in the absence of a predicted oncogenic TP53 alteration or

DNA sequencing.

We used gene expression data to predict telomerase activity

using expression-based telomerase enzymatic activity detection

(EXTEND)44 as a surrogate measure of malignant potential,44,45

where higher EXTEND scores indicate higher telomerase activ-

ity. Aggressive tumors such as DMGs, other HGGs, and medul-

loblastoma (MB) had high EXTEND scores (Figure 4D), and low-

grade lesions such as schwannomas, gangliogliomas (GNGs),

DNETs, and other LGGs had among the lowest scores

(Table S3), supporting previous reports that aggressive tumor

phenotypes have higher telomerase activity.46–49 While EXTEND

scores were not significantly higher in tumors with TERT pro-

moter (TERTp) mutations (n = 6; Wilcoxon p value = 0.1196),

scores were significantly correlated with TERC (R = 0.619,
Cell Genomics 3, 100340, July 12, 2023 7
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Figure 2. Mutational landscape of PBTA tumors

Frequencies of canonical somatic genemutations, CNVs, fusions, and TMB (top bar plot) for the top mutated genes across primary tumors within the OpenPBTA

dataset.

(A) LGGs (n = 226): pilocytic astrocytoma (n = 104), other LGG (n = 68), ganglioglioma (n = 35), pleomorphic xanthoastrocytoma (n = 9), and subependymal giant

cell astrocytoma (n = 10).

(B) Embryonal tumors (n = 129): medulloblastoma (n = 95), atypical teratoid rhabdoid tumor (n = 24), and other embryonal tumor (n = 10).

(C) HGGs (n = 63): diffuse midline glioma (n = 36) and other HGG (n = 27).

(D) Other CNS tumors (n = 153): ependymoma (n = 60), craniopharyngioma (n = 31), meningioma (n = 17), dysembryoplastic neuroepithelial tumor (n = 19), Ewing

sarcoma (n = 7), schwannoma (n = 12), and neurofibroma plexiform (n = 7). Rare CNS tumors are displayed in Figure S3B. Histology (cancer group) and sex

annotations are displayed under each plot. Only tumors with mutations in the listed genes are shown. Multiple CNVs are denoted as a complex event. n denotes

the number of unique tumors (one tumor per patient).
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p < 0.01) and TERT (R = 0.491, p < 0.01) log2 FPKM expression

values (Figures S5B and S5C). Since catalytically active telome-

rase requires full-length TERT, TERC, and certain accessory pro-

teins,50 we expect that EXTEND scores may not be exclusively

correlated with TERT alterations and expression.

Hypermutant tumors share mutational signatures and

have dysregulated TP53
We investigated themutational signature profiles of hypermutant

(TMB >10Mut/Mb; n = 3) and ultra-hypermutant (TMB >100Mut/

Mb; n = 4) tumors and/or derived cell lines from six patients in the

OpenPBTA (Figure 4E). Five tumors were HGGs and one was a

brain metastasis of an MYCN non-amplified neuroblastoma tu-

mor. Signature 11, which is associated with exposure to temozo-
8 Cell Genomics 3, 100340, July 12, 2023
lomide plus MGMT promoter and/or mismatch repair defi-

ciency,51 was indeed present in tumors with previous exposure

to the drug (Table 2). We detected the MMR2 signature

in tumors of four patients (PT_0SPKM4S8, PT_3CHB9PK5,

PT_JNEV57VK, and PT_VTM2STE3) diagnosed with either

constitutional mismatch repair deficiency (CMMRD) or Lynch

syndrome (Table 2), genetic predisposition syndromes caused

by a variant in a mismatch repair gene such as PMS2, MLH1,

MSH2, MSH6, or others.52 Three of these patients harbored

pathogenic germline variants in one of the aforementioned

genes. While we did not detect a known pathogenic variant in

the germline of PT_VTM2STE3, this patient’s pathology report

contained a self-reported PMS2 variant, and we indeed found
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Figure 3. Mutational co-occurrence and signatures highlight key oncogenic drivers

(A) Non-synonymous mutations for 50 most commonly mutated genes across all histologies. ‘‘Other’’ denotes a histology with <10 tumors.

(B) Co-occurrence and mutual exclusivity of mutated genes. The co-occurrence score is defined as Ið�log10ðPÞÞ where P is Fisher’s exact test and I is 1 when

mutations co-occur more often than expected or �1 when exclusivity is more common.

(C) Number of SV and CNV breaks are significantly correlated (adjusted R = 0.443, p = 1.05e�38).

(D) Chromothripsis frequency across cancer groups with n R3 tumors.

(E) Sina plots of RefSig signature weights for signatures 1, 11, 18, 19, 3, 8, N6, MMR2, and other across cancer groups. Boxplot represents 5% (lower whisker),

25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker) quantiles.

Cell Genomics 3, 100340, July 12, 2023 9

Resource
ll

OPEN ACCESS



D

F

G

H

A

E

B C

Figure 4. TP53 and telomerase activity

(A) Receiver operating characteristic for TP53 classifier run on stranded FPKM RNA-seq.

(B) Violin and strip plots of TP53 scores plotted by TP53 alteration type (nactivated = 11, nlost = 100, nother = 866, Wilcoxon p = 0.92).

(C) Violin and strip plots of TP53 RNA expression plotted by TP53 activation status (nactivated = 11, nlost = 100, nother = 866, Wilcoxon p = 0.006).

(D) Boxplots of TP53 and telomerase (EXTEND) scores across cancer groups. TMB status is highlighted in orange (hypermutant) or red (ultra-hypermutant).

Boxplot represents 5% (lower whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker) quantiles.

(E) Heatmap of RefSig mutational signatures for patients with at least one hypermutant tumor or cell line.

(F) Forest plot depicting prognostic effects of TP53 and telomerase scores on overall survival (OS), controlling for extent of tumor resection, LGG group, and HGG

group.

(G) Forest plot depicting the effect of molecular subtype on HGGOS. Hazard ratios (HRs) with 95% confidence intervals and p values (multivariate Cox) are given

in (F) and (G). Black diamonds denote significant p values, and gray diamonds denote reference groups.

(H) Kaplan-Meier curve of HGGs by molecular subtype.
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Table 2. Patients with hypermutant tumors

Kids First

participant ID

Kids First

biospecimen ID CBTN ID

Phase of

therapy Composition Therapy post-biopsy

Cancer

predisposition Pathogenic germline variant TMB

OpenPBTA molecular

subtype

PT_0SPKM4S8 BS_VW4XN9Y7 7316-2640 initial CNS

tumor

solid tissue radiation, temozolomide,

CCNU

none

documented

NM_000535.7(PMS2):c.137G>T

(p.Ser46Ile) (LP)

187.4 HGG, H3 wild type,

TP53 activated

PT_3CHB9PK5 BS_20TBZG09 7316-515 initial CNS

tumor

solid tissue radiation, temozolomide,

irinotecan, bevacizumab

CMMRD NM_000179.3(MSH6):c.3439-

2A>G (LP)

307 HGG, H3 wild type,

TP53 loss

PT_3CHB9PK5 BS_8AY2GM4G 7316-2085 progressive solid tissue radiation, temozolomide,

irinotecan, bevacizumab

CMMRD NM_000179.3(MSH6):c.3439-

2A>G (LP)

321.6 HGG, H3 wild type,

TP53 loss

PT_EB0D3BXG BS_F0GNWEJJ 7316-3311 progressive solid tissue radiation, nivolumab none

documented

none detected 26.3 metastatic NBL,

MYCN non-amplified

PT_JNEV57VK BS_85Q5P8GF 7316-2594 initial CNS

tumor

solid tissue radiation, temozolomide Lynch

syndrome

NM_000251.3(MSH2):c.1906G>C

(p.Ala636Pro) (P)

4.7 DMG, H3 K28,

TP53 loss

PT_JNEV57VK BS_HM5GFJN8 7316-3058 progressive derived cell

line

radiation, temozolomide,

nivolumab

Lynch

syndrome

NM_000251.3(MSH2):c.1906G>C

(p.Ala636Pro) (P)

35.9 DMG, H3 K28,

TP53 loss

PT_JNEV57VK BS_QWM9BPDY 7316-3058 progressive derived cell

line

radiation, temozolomide,

nivolumab

Lynch

syndrome

NM_000251.3(MSH2):c.1906G>C

(p.Ala636Pro) (P)

7.4 DMG, H3 K28,

TP53 loss

PT_JNEV57VK BS_P0QJ1QAH 7316-3058 progressive solid tissue radiation, temozolomide,

nivolumab

Lynch

syndrome

NM_000251.3(MSH2):c.1906G>C

(p.Ala636Pro) (P)

6.3 DMG, H3 K28,

TP53 activated

PT_S0Q27J13 BS_P3PF53V8 7316-2307 initial CNS

tumor

solid tissue radiation, temozolomide,

irinotecan

none

documented

none detected 15.5 HGG, H3 wild type,

TP53 activated

PT_VTM2STE3 BS_ERFMPQN3 7316-2189 progressive derived cell

line

unknown Lynch

syndrome

none detected 5.7 HGG, H3 wild type,

TP53 loss

PT_VTM2STE3 BS_02YBZSBY 7316-2189 progressive solid tissue unknown Lynch

syndrome

none detected 274.5 HGG, H3 wild type,

TP53 activated

Patients with at least one hypermutant or ultra-hypermutant tumor or cell line. Pathogenic or likely pathogenic germline variants, coding region TMB, phase of therapy, therapeutic interventions,

cancer predisposition (constitutional mismatch repair deficiency), andmolecular subtypes are included. P, pathogenic; LP, likely pathogenic; CMMRD, constitutional mismatch repair deficiency.
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19 intronic variants of unknown significance (VUSs) in their

PMS2. This is not surprising since an estimated 49% of germline

PMS2 variants in patients with CMMRD and/or Lynch syndrome

are VUSs.52 Interestingly, while the cell line derived from patient

PT_VTM2STE3’s tumor at progression was not hypermutated

(TMB = 5.7 Mut/Mb), it only contained the MMR2 signature, sug-

gesting selective pressure to maintain a mismatch repair (MMR)

phenotype in vitro. Only one of the two cell lines derived from pa-

tient PT_JNEV57VK’s progressive tumor was hypermutated

(TMB = 35.9 Mut/Mb). The hypermutated cell line was strongly

weighted toward signature 11, while the non-hypermutated cell

line showed several lesser signature weights (1, 11, 18, 19,

MMR2; Table S2). This mutational process plasticity highlights

the importance of careful genomic characterization and model

selection for preclinical studies.

Signature 18, which has been associated with high genomic

instability and can induce a hypermutator phenotype,40 was uni-

formly represented among hypermutant solid tumors. Addition-

ally, all hypermutant HGG tumors or cell lines had dysfunctional

TP53 (Table 2), consistent with previous findings that tumorswith

high genomic instability signatures require TP53 dysregulation.40

With one exception, hypermutant and ultra-hypermutant tumors

had high TP53 scores (>0.5) and telomerase activity. Interest-

ingly, none of the hypermutant tumors showed evidence of

signature 3 (present in homologous recombination-deficient tu-

mors), 8 (arises from double nucleotide substitutions/unknown

etiology), or N6 (a universal CNS tumor signature). The mutual

exclusivity of signatures 3 and MMR2 corroborates previous

suggestions that tumors do not generally feature both deficient

homologous repair and MMR.42

Next, we asked whether transcriptomic classification of TP53

dysregulation and/or telomerase activity recapitulate these

oncogenic biomarkers’ known prognostic influence. We identi-

fied several expected trends, including a significant overall sur-

vival benefit following full tumor resection (hazard ratio [HR] =

0.35, 95% CI = 0.2–0.62, p < 0.001) or if the tumor was an

LGG (HR = 0.046, 95% CI = 0.0062–0.34, p = 0.003), and a sig-

nificant risk if the tumor was anHGG (HR= 6.2, 95%CI = 4.0–9.5,

p < 0.001) (Figure 4F; STAR Methods). High telomerase scores

were associated with poor prognosis across brain

tumor histologies (HR = 20, 95%CI = 6.4–62, p < 0.001), demon-

strating that EXTEND scores calculated from RNA-seq are an

effective rapid surrogate measure for telomerase activity. Higher

TP53 scores were associated with significant survival risks

(Table S4) within DMGs (HR = 6436, 95% CI = 2.67–1.55e7,

p = 0.03) and ependymomas (HR = 2003, 95% CI = 9.9–

4.05e5, p = 0.005). Given this result, we next assessed whether

different HGG molecular subtypes carry different survival risks if

stratified by TP53 status. We found that DMG H3 K28 tumors

with TP53 loss had significantly worse prognosis (HR = 2.8,

CI = 1.4–5.6, p = 0.003) than those with WT TP53 (Figures 4G

and 4H), recapitulating results from two recent restrospective

analyses of DIPG tumors.10,53

Histologic and oncogenic pathway clustering

Uniform manifold approximation and projection (UMAP) visuali-

zation of gene expression variation across brain tumors (Fig-

ure 5A) showed expected histological clustering of brain tumors.

We further observed that, except for three outliers, C11orf95::
12 Cell Genomics 3, 100340, July 12, 2023
RELA (ZFTA::RELA) fusion-positive ependymomas fell within

distinct clusters (Figure S6A). MB tumors clustered by molecular

subtype, with WNT and SHH in distinct clusters and groups 3

and 4 showing some expected overlap (Figure S6B). Notably,

two MB tumors annotated as SHH did not cluster with the other

MB tumors, and one clustered with group 3/4 tumors, suggest-

ing potential subtype misclassification or different underlying

biology of these two tumors. BRAF-driven LGGs (Figure S6C)

fell into three separate clusters, suggesting additional shared

biology within each cluster. Histone H3 G35-mutant HGGs

generally clustered together and away from K28-mutant tumors

(Figure S6D). Interestingly, although H3 K28-mutant and H3 WT

tumors have different biological drivers,54 they did not form

distinct clusters. This pattern suggests that these subtypes

may be driven by common transcriptional programs or have

other, much stronger biological drivers than their known distinct

epigenetic drivers or that we lack power to detect transcriptional

differences.

We performedGSVA for Hallmark cancer gene sets (Figure 5B)

and quantified immune cell fractions using quanTIseq

(Figures 5C and S6E), results from which recapitulated previ-

ously described tumor biology. For example, HGG, DMG, MB,

and ATRT tumors are known to upregulate MYC,55 which in

turn activates E2F and S phase.56 Indeed, we detected signifi-

cant (Bonferroni-corrected p < 0.05) upregulation of MYC and

E2F targets, as well as G2M (cell cycle phase following S phase)

in MBs, ATRTs, and HGGs compared with several other cancer

groups. In contrast, LGGs showed significant downregulation

(Bonferroni-corrected p < 0.05, multiple cancer group compari-

sons) of these pathways. Schwannomas and neurofibromas,

which have an inflammatory immune microenvironment of T

and B lymphocytes and tumor-associated macrophages

(TAMs), are driven by upregulation of cytokines such as inter-

feron g (IFNg), interleukin-1 (IL-1), IL-6, and tumor necrosis factor

a (TNF-a).57 GSVA revealed significant upregulation of these cy-

tokines in hallmark pathways (Bonferroni-corrected p < 0.05,

multiple cancer group comparisons) (Figure 5B), and monocytes

dominated these tumors’ immune cell repertoire (Figure 5C). We

also observed significant upregulation of pro-inflammatory cyto-

kines IFNa and IFNg in both LGGs and craniopharyngiomas

when compared with either MBs or ependymomas (Bonferroni-

corrected p < 0.05) (Figure 5B). Together, these results support

previous proteogenomic findings that aggressive MBs and

ependymomas have lower immune infiltration compared with

BRAF-driven LGGs and craniopharyngiomas.58

Although CD8+ T cell infiltration across all cancer groups was

minimal (Figure 5C), we observed a signal in specific cancer mo-

lecular subtypes (group 3 and 4 MBs) as well as outlier tumors

(BRAF-driven LGG,BRAF-driven andWTGNG, andCNS embry-

onal tumors, not otherwise specified (NOS); Figure S6E). Surpris-

ingly, the classically immunologically cold HGGs and DMGs59,60

contained higher overall fractions of immune cells, primarily

monocytes, dendritic cells, and natural killer (NK) cells (Fig-

ure 5C). Thus, quanTIseq might have actually captured microglia

within these immune cell fractions.

While we did not detect notable prognostic effects of immune

cell infiltration on overall survival in HGGs or DMGs, we found

that high levels of macrophage M1 and monocytes were
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Figure 5. Transcriptomic and immune landscape of pediatric brain tumors

(A) First two dimensions of transcriptome data UMAP, with points colored by broad histology.

(B) Heatmap of GSVA scores for Hallmark gene sets with tumors ordered by cancer group.

(C) Boxplots of quanTIseq estimates of immune cell proportions in cancer groups with n >15 tumors. Note: other HGGs and other LGGs have immune cell

proportions similar to DMG and pilocytic astrocytoma, respectively, and are not shown.

(D) Forest plot depicting additive effects of CD274 expression, immune cell proportion, and extent of tumor resection on OS of medulloblastoma patients. HRs

with 95% confidence intervals and p values (multivariate Cox) are listed. Black diamonds denote significant p values, and gray diamonds denote reference

groups. Note: themacrophageM1HRwas 0 (coefficient =�9.90e4) with infinite upper and lower confidence intervals (CIs) and thuswas not included in the figure.

(E) Boxplot ofCD274 expression (log2 FPKM) for medulloblastomas grouped by subtype. Bonferroni-corrected p values fromWilcoxon tests are shown. Boxplot

represents 5% (lower whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker) quantiles. Only stranded RNA-seq data are plotted.
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associated with poorer overall survival (monocyte HR = 2.1e18,

95% CI = 3.80e5 to 1.2e31, p = 0.005, multivariate Cox) in

MBs (Figure 5D). We further reproduced previous findings (Fig-

ure 5E) that MBs typically have low expression of CD274 (PD-

L1).61 We also found that higher expression ofCD274was signif-

icantly associated with improved overall prognosis for MB

tumors, although marginal (HR = 0.0012, 95% CI = 7.5e�06 to

0.18, p = 0.008, multivariate Cox) (Figure 5D). This result may

be explained by the higher expression of CD274 observed in

WNT subtype tumors by us and others,62 as this diagnosis

carries the best prognosis of all MB subgroups (Figure 5E).

We additionally explored the ratio of CD8+ to CD4+ T cells

across tumor subtypes. This ratio has been associated with bet-

ter immunotherapy response and prognosis following PD-L1 in-

hibition in non-small cell lung cancer or adoptive T cell therapy in

multiple stage III or IV cancers.63,64 While adamantinomatous

craniopharyngiomas and group 3 and 4 MBs had the highest ra-

tios (Figure S6F), very few tumors had ratios greater than 1, high-

lighting an urgent need to identify novel therapeutics for pediatric

brain tumors with poor prognosis.

Finally, we explored the potential influence of tumor purity by

repeating selected transcriptomic analyses restricted to only

samples with high tumor purity (see STAR Methods). Results

from these analyses were broadly consistent (Figures S7D–S7I)

with results derived from all stranded RNA-seq samples.

DISCUSSION

The CBTN released the PBTA raw genomic data in September

2018 without embargo, allowing researchers immediate access

to begin making discoveries on behalf of children with CNS tu-

mors everywhere. Since this publication, theCBTNhasapproved

over 200 data research projects4 from 69 different institutions,

with 60% from non-CBTN sites. We created the OpenPBTA as

an open, real-time, reproducible analysis framework to genomi-

cally characterize pediatric brain tumors, bringing together basic

and translational researchers, clinicians, and data scientists. We

provide reusable code and data resources, paired with cloud-

based availability of source and derived data resources, to the

pediatric oncology community, encouraging interdisciplinary

collaboration. To our knowledge, this initiative represents the first

large-scale, collaborative, open analysis of genomic data

coupled with open manuscript writing, wherein we comprehen-

sively analyzed the PBTA cohort. Using available WGS, WXS,

and RNA-seq data, we generated high-confidence consensus

SNV and CNV calls, prioritized putative oncogenic fusions, and

established over 40 scalable and rigorously reviewed modules

to perform common downstream cancer genomics analyses.

We detected expected patterns of genomic lesions, mutational

signatures, and aberrantly regulated signaling pathways across

multiple pediatric brain tumor histologies.

Assembling large, pan-histology cohorts of fresh frozen sam-

ples and associated clinical phenotypes and outcomes requires

a multiyear, multiinstitutional framework, like those provided by

CBTN and PNOC. As such, uniform clinical molecular subtyping

was largely not performed for this cohort at the time of sample

collection. Since DNA methylation data for these samples were

not yet available to classify molecular subtypes, we created
14 Cell Genomics 3, 100340, July 12, 2023
RNA- and DNA-based subtyping modules aligned with molecu-

larly defined diagnoses. We worked closely with pathologists

and clinicians to assign research-grade integrated diagnoses

for 60% of tumors while discovering incorrectly diagnosed or

misidentified samples in the OpenPBTA cohort. For example,

we subtyped MB tumors, of which only 35% (43/122) had prior

subtype information from pathology reports, usingMMS2 orMe-

dulloClassifier22,23 and subsequently applied the consensus of

these methods to subtype all MBs.

We advanced the integrative analyses and cross-cohort com-

parison via a number of validated modules. We used an expres-

sion classifier to determine whether tumors have dysfunctional

TP5342 and the EXTEND algorithm to determine their degree of

telomerase activity using a 13-gene signature.44 Interestingly,

we found that hypermutant HGGs universally displayed TP53

dysregulation, unlike adult cancers like colorectal cancer and

gastric adenocarcinoma, where TP53 dysregulation in hypermu-

tated tumors is less common.65,66 Furthermore, high TP53

scores were a significant prognostic marker for poor overall sur-

vival for patients with tumor types including H3 K28-mutant

DMGs and ependymomas. We also show that EXTEND scores

are a robust surrogate measure for telomerase activity in pediat-

ric brain tumors. By assessing TP53 and telomerase activity

prospectively from expression data, information usually only

attainable with DNA sequencing and/or qPCR, we incorporated

oncogenic biomarker and prognostic knowledge, thereby ex-

panding our biological understanding of these tumors.

We identified enrichment of hallmark cancer pathways and

characterized the immune cell landscape across pediatric brain

tumors, demonstrating that tumors in some histologies, such as

schwannomas, craniopharyngiomas, and LGGs, may have an

inflammatory tumor microenvironment. Notably, we observed

upregulation of IFNg, IL-1, IL-6, and TNFa in craniopharyngio-

mas, tumors difficult to resect due to their anatomical location

and critical surrounding structures. Neurotoxic side effects

have been reported in response to IFNa immunotherapy,67,68

leading researchers to propose additional immune vulnerabil-

ities, such as IL-6 inhibition and immune checkpoint blockade,

as cystic adamantinomatous craniopharyngiomas thera-

pies.69–73 Our results support this endeavor. Finally, we repro-

duced the overall known poor infiltration of CD8+ T cells and

general low expression of CD274 (PD-L1) in pediatric brain tu-

mors, highlighting that we urgently need novel therapeutic stra-

tegies for tumors unlikely to respond to immune checkpoint

blockade therapy.

While large-scale collaborative efforts may take a longer time to

complete, adoption an open science framework substantiallymiti-

gated this concern. By maintaining all data, analytical code, and

results in public repositories, we ensured that such logistics did

not hinder progress in pediatric cancer research. Indeed, the

OpenPBTA is already a foundational data analysis and processing

layer for several discovery research and translational projects and

will continue to add other genomic modalities and analyses,

including germline, epigenomic, single-cell, splicing, imaging,

and model drug response data. For example, the OpenPBTA

RNA fusion filteringmodule led to the development of the R pack-

age annoFuse74 and anRShiny application shinyFuse. Leveraging

OpenPBTA’sMB subtyping and immune deconvolution analyses,
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Dang and colleagues showed that SHH tumors are enriched with

monocyte and microglia-derived macrophages, which may accu-

mulate following radiation therapy.9 Expression andCNVanalyses

demonstrated thatGPC2 is a highly expressed and copy-number-

gained immunotherapeutic target in ETMRs, MBs, choroid plexus

carcinomas, H3 WT HGGs, and DMGs. Foster and colleagues

therefore developed a chimeric antigen receptor (CAR) directed

against GPC2, which shows preclinical efficacy in mouse

models.11 Another study harnessed the OpenPBTA to integrate

germline variants, discovering that pediatric patients with HGG

with alternative telomere lengthening are enriched for pathogenic

or likely pathogenic germline variants in the MMR pathway,

possess oncogenic ATRX mutations, and have increased

TMB.12 Moreover, the OpenPBTA has enabled a framework to

support real-time integration of clinical trial subjects as they

enrolled in the PNOC008 HGG clinical trial75 or the PNOC027

MB clinical trial,76 allowing researchers and clinicians to link

tumor biology to translational impact through clinical decision

support during tumor board discussions. Finally, as part of

the NCI’s CCDI, the OpenPBTA was recently expanded into

OpenPedCan, a pan-pediatric cancer effort (https://github.com/

PediatricOpenTargets/OpenPedCan-analysis) that enabled the

creation of the pediatric Molecular Targets Platform (https://

moleculartargets.ccdi.cancer.gov/) in support of the RACE Act.

An additional, large-scale cohort of >1,500 tumor samples and

associated germline DNA is undergoing harmonization as part of

CBTN CCDI-Kids First NCI and Common Fund project (https://

commonfund.nih.gov/kidsfirst/2021X01projects#FY21_Resnick)

and will be immediately integrated with OpenPBTA data through

OpenPedCan. The OpenPBTA has paved the way for newmodes

of collaborative data-driven discovery using open, reproducible,

and scalable analyses that will continue to grow over time. We

anticipate that this foundational work will have an ongoing, long-

term impact for pediatric oncology researchers, ultimately accel-

erating translation and leading to improved outcomes for children

with cancer.

All code and processed data are openly available through

GitHub, CAVATICA, Zenodo, and PedcBioPortal (see STAR

Methods).

Limitations of the study
Notably, PBTA brain tumor samples were collected over de-

cades, and RNA samples were prepared using two distinct li-

brary preparations (stranded or poly-A; Figure S7A) by multiple

sequencing centers. While we noted a strong library preparation

batch effect (Figure S7B) and a possible sequencing center

batch effect (Figure S7C), cancer groups are highly unbalanced

across library preparations (Figure S7A). We did not perform

batch correction because removing batch effects across unbal-

anced groups may induce false differences among groups.77,78

Instead, we circumvent batch effects by grouping only stranded

RNA-seq expression data, which comprise the vast majority of

the PBTA cohort, for the transcriptomic analyses presented in

Figures 4 and 5. As the batch correction strategy depends highly

on research goals,78 we provide library preparation-specific

expression matrices in the OpenPBTA data release for others

to adapt to their needs. A second potential limitation is that per-

forming analyses with all samples, rather than samples with high
tumor purity, might result in loss of information, such as subclo-

nal variants or low-level oncogenic pathway expression. To this

end, we reperformed transcriptomic analyses using only sam-

ples with high tumor purity (see STAR Methods for details), and

indeed, results were broadly consistent with those derived

from the full cohort (Figures S7D–S7I). To enable more robust

statistical analysis and presentation of results, we randomly

selected one independent specimen from patients with dupli-

cate sequenced samples per tumor event rather than combining

the data. This practice did not induce notable differences if the

selected specimen changed over time, e.g., with a new data

release. Finally, because this initial PBTA cohort mostly contains

samples collected at diagnosis from one tumor section/punch,

we could not reliably perform systematic intratumoral and/or lon-

gitudinal analyses, though we expect nearly 100 paired longitu-

dinal tumors from the NIH X01 CA267587-01 pediatric brain

tumor cohort to be released through OpenPedCan for future

exploration.
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Data underlying figures and molecular alterations This project Shapiro et al.81

Experimental models: Cell lines

CBTN pediatric brain tumor-derived cell lines Ijaz et al.13 See Table S1 for identifiers

Software and algorithms

Data processing and analysis software Multiple See Table S5 for identifiers

OpenPBTA workflows repository This project https://github.com/d3b-center/OpenPBTA-workflows82

OpenPBTA analysis repository This project https://github.com/AlexsLemonade/OpenPBTA-analysis80

OpenPBTA manuscript repository This project https://github.com/AlexsLemonade/OpenPBTA-manuscript

Other

TCGA WXS dataset NIH The Cancer Genome

Atlas (TCGA)

dbGAP: phs000178.v11.p8

Cancer hotspots MSKCC https://www.cancerhotspots.org/#/download (v2)

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Reference genomes Broad Institute https://s3.console.aws.amazon.com/s3/buckets/

broad-references/hg38/v0/

Reference genome hg38, patch release 12 UCSC http://hgdownload.soe.ucsc.edu/goldenPath/

hg38/bigZips/

Human Cytoband file UCSC http://hgdownload.cse.ucsc.edu/goldenpath/hg38/

database/cytoBand.txt.gz

CDS from GENCODE v27 annotation GENCODE https://www.gencodegenes.org/human/release_27.html

PFAM domains and locations UCSC http://hgdownload.soe.ucsc.edu/goldenPath/hg38/

database/pfamDesc.txt.gz; https://pfam.xfam.org/

family/PF07714

BSgenome.Hsapiens.UCSC.hg38 annotations Bioconductor https://bioconductor.org/packages/release/data/

annotation/html/BSgenome.Hsapiens.UCSC.

hg38.html

gnomAD v2.1.1 (exome and genome) Genome Aggregation

Database

https://gnomad.broadinstitute.org/downloads#v2-

liftover-variants

KEGG MMR gene set v7.5.1 Broad Institute https://www.gsea-msigdb.org/gsea/msigdb/

download_geneset.jsp?geneSetName=KEGG_

MISMATCH_REPAIR

ClinVar Database (2022-05-07) NCBI https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_

GRCh38/archive_2.0/2022/clinvar_20220507.vcf.gz

Resource
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Requests for access to OpenPBTA raw data and/or specimens may be directed to and will be fulfilled by Jo Lynne Rokita (rokita@

chop.edu).

Materials availability
This study did not create new, unique reagents.

Data and code availability
d Raw and harmonized WGS, WXS, and RNA-Seq data derived from human samples are available within the KidsFirst Portal79

upon access request to the CBTN (https://cbtn.org/) as of the date of the publication. In addition, merged summary files

are openly accessible at https://cavatica.sbgenomics.com/u/cavatica/openpbta or via download script in the https://

github.com/AlexsLemonade/OpenPBTA-analysis repository. Summary data are visible within PedcBioPortal at https://

pedcbioportal.kidsfirstdrc.org/study/summary?id=openpbta. Associated DOIs are listed in the key resources table. Data un-

derlying manuscript figures are available on Zenodo.81

d All original code was developed within the following repositories and is publicly available as follows. Primary data analyses

can be found at https://github.com/d3b-center/OpenPBTA-workflows. Downstream data analyses can be found at https://

github.com/AlexsLemonade/OpenPBTA-analysis. Manuscript code can be found at https://github.com/AlexsLemonade/

OpenPBTA-manuscript. Associated DOIs are listed in the key resources table. Software versions are documented in

Table S5 as an appendix to the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

d Data releases: We maintained a data release folder on Amazon S3, downloadable directly from S3 or our open-access

CAVATICA project, with merged files for each analysis (See data and code availability section). As we produced new results

(e.g., tumor mutation burden calculations) that we expected to be used across multiple analyses, or identified data issues,

we created new data releases in a versioned manner. We reran all manuscript-specific analysis modules with the latest data

release (v23) prior to submission and subsequently created a GitHub repository-tagged release to ensure reproducibility.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The Pediatric Brain Tumor Atlas specimens are comprised of samples from Children’s Brain Tumor Network (CBTN)4 and the Pedi-

atric Pacific Neuro-Oncology Consortium (PNOC). The CBTN is a collaborative, multi-institutional (32 institutions worldwide)
Cell Genomics 3, 100340, July 12, 2023 e2

mailto:rokita@chop.edu
mailto:rokita@chop.edu
https://cbtn.org/
https://cavatica.sbgenomics.com/u/cavatica/openpbta
https://github.com/AlexsLemonade/OpenPBTA-analysis
https://github.com/AlexsLemonade/OpenPBTA-analysis
https://pedcbioportal.kidsfirstdrc.org/study/summary?id=openpbta
https://pedcbioportal.kidsfirstdrc.org/study/summary?id=openpbta
https://github.com/d3b-center/OpenPBTA-workflows
https://github.com/AlexsLemonade/OpenPBTA-analysis
https://github.com/AlexsLemonade/OpenPBTA-analysis
https://github.com/AlexsLemonade/OpenPBTA-manuscript
https://github.com/AlexsLemonade/OpenPBTA-manuscript
https://s3.console.aws.amazon.com/s3/buckets/broad-references/hg38/v0/
https://s3.console.aws.amazon.com/s3/buckets/broad-references/hg38/v0/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cytoBand.txt.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cytoBand.txt.gz
https://www.gencodegenes.org/human/release_27.html
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/pfamDesc.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/pfamDesc.txt.gz
https://pfam.xfam.org/family/PF07714
https://pfam.xfam.org/family/PF07714
https://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg38.html
https://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg38.html
https://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg38.html
https://gnomad.broadinstitute.org/downloads#v2-liftover-variants
https://gnomad.broadinstitute.org/downloads#v2-liftover-variants
https://www.gsea-msigdb.org/gsea/msigdb/download_geneset.jsp?geneSetName=KEGG_MISMATCH_REPAIR
https://www.gsea-msigdb.org/gsea/msigdb/download_geneset.jsp?geneSetName=KEGG_MISMATCH_REPAIR
https://www.gsea-msigdb.org/gsea/msigdb/download_geneset.jsp?geneSetName=KEGG_MISMATCH_REPAIR
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/archive_2.0/2022/clinvar_20220507.vcf.gz
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/archive_2.0/2022/clinvar_20220507.vcf.gz


Resource
ll

OPEN ACCESS
research program dedicated to the study of childhood brain tumors. PNOC is an international consortium dedicated to bringing new

therapies to children and young adults with brain tumors. We also include blood and tumor biospecimens from newly-diagnosed

diffuse intrinsic pontine glioma (DIPG) patients as part of the PNOC003 clinical trial PNOC003/NCT02274987.14

Model generation
Previously, CBTN-generated cell lines were derived from either fresh tumor tissue directly obtained from surgery performed at Chil-

dren’s Hospital of Philadelphia (CHOP) or from prospectively collected tumor specimens stored in Recover Cell Culture Freezingme-

dium (cat# 12648010, Gibco). Tumor tissue was dissociated using enzymatic method with papain as described.13 Briefly, we washed

tissue with HBSS (cat# 14175095, Gibco), and tissue was minced and incubated with activated papain solution (cat# LS003124,

SciQuest) for up to 45 min. Ovomucoid solution (cat# 542000, SciQuest) was used to inactivate the papain, tissue was briefly treated

tissue with DNase (cat# 10104159001, Roche) and passed through a 100mm cell strainer (cat# 542000, Greiner Bio-One). Two cell

culture conditions were initiated based on the number of cells available. For cultures utilizing the fetal bovine serum (FBS), cells were

plated a minimum density of 3 3 105 cells/mL in DMEM/F-12 medium (cat# D8062, Sigma) supplemented with 20% FBS (cat#

SH30910.03, Hyclone), 1% GlutaMAX (cat# 35050061, Gibco), Penicillin/Streptomycin-Amphotericin B Mixture (cat# 17-745E,

Lonza), and 0.2% Normocin (cat# ant-nr-2, Invivogen). For serum-free media conditions, cells were plated at minimum density of

1 3 106 cells/mL in DMEM/F12 medium supplemented with 1% GlutaMAX, 1X B-27 supplement minus vitamin A (cat# 12587-

010, Gibco), 1x N-2 supplement (cat# 17502001, Gibco), 20 ng/mL epidermal growth factor (cat# PHG0311L, Gibco), 20 ng/mL basic

fibroblast growth factor (cat# 100-18B, PeproTech), 2.5 mg/mL heparin (cat# H3149, Sigma), Penicillin/Streptomycin-Amphotericin B

Mixture, and 0.2%Normocin. All cell lines used for nucleic acid extraction were confirmed to bemycoplasma-free. Guardian Forensic

Sciences performed GenePrint 24 (cat# B1870, Promega), short tandem repeat (STR) analysis on cell line extracted DNA to both

confirm identity and that they were free of cross-contamination. Additionally, we performed NGSCheckMate83 on matched DNA

and RNA cell line (tumor) and peripheral blood (normal) CRAM files to further confirm identity.

METHOD DETAILS

Nucleic acids extraction and library preparation
PNOC samples

The Translational Genomic Research Institute (TGEN; Phoenix, AZ) performed DNA and RNA extractions on tumor biopsies using a

DNA/RNA AllPrep Kit (Qiagen, #80204). All RNA used for library prep had a minimum RIN of seven, but no QC thresholds were im-

plemented for the DNA. For library preparation, 500 ng of nucleic acids were used as input for RNA-Seq, WXS, and targeted DNA

panel (panel) sequencing. RNA library preparation was performed using the TruSeq RNA Sample Prep Kit (Illumina, #FC-122-

1001) with poly-A selection, and the exome prep was performed using KAPA Library Preparation Kit (Roche, #KK8201) using Agi-

lent’s SureSelect Human All Exon V5 backbone with custom probes. The targeted DNA panel developed by Ashion Analytics

(formerly known as the GEM Cancer panel) consisted of exonic probes against 541 cancer genes. Both panel and WXS assays con-

tained 44,000 probes across evenly spaced genomic loci used for genome-wide copy number analysis. For the panel, additional

probes tiled across intronic regions of 22 known tumor suppressor genes and 22 genes involved in common cancer translocations

for structural analysis. All extractions and library preparations were performed according to manufacturer’s instructions.

CBTN samples

Blood, tissue, and cell line DNA/RNA extractions were performed at the Biorepository Core at CHOP. Briefly, 10–20mg frozen tissue,

0.4-1mL of blood, or 2e6 cells pellet was used for extractions. Tissueswere lysed using a Qiagen TissueLyser II (Qiagen) with 23 30 s

at 18Hz settings using 5 mm steel beads (cat# 69989, Qiagen). Both tissue and cell pellets processes included a CHCl3 extraction

and were run on the QIACube automated platform (Qiagen) using the AllPrep DNA/RNA/miRNA Universal kit (cat# 80224, Qiagen).

Blood was thawed and treated with RNase A (cat#, 19101, Qiagen); 0.4-1mL was processed using the Qiagen QIAsymphony auto-

mated platform (Qiagen) using the QIAsymphony DSP DNA Midi Kit (cat# 937255, Qiagen). DNA and RNA quantity and quality was

assessed by PerkinElmer DropletQuant UV-VIS spectrophotometer (PerkinElmer) and an Agilent 4200 TapeStation (Agilent, USA) for

RIN and DIN (RNA Integrity Number and DNA Integrity Number, respectively). The NantHealth Sequencing Center, BGI at CHOP, or

the Genomic Clinical Core at Sidra Medical and Research Center performed library preparation and sequencing. BGI at CHOP and

Sidra Medical and Research Center used in house, center-specific workflows for sample preparation. At NantHealth Sequencing

Center, DNA sequencing libraries were prepared for tumor and matched-normal DNA using the KAPA Hyper-Prep kit (cat#

08098107702, Roche), and tumor RNA-Seq libraries were prepared using KAPA Stranded RNA-Seq with RiboErase kit (cat#

07962304001, Roche).

Data generation
NantHealth and Sidra performed 2x150 bpWGS on paired tumor (�60X) and constitutive DNA (�30X) samples on an Illumina X/400.

BGI at CHOP performed 2x100 bp WGS sequenced at 60X depth for both tumor and normal samples. NantHealth performed ribo-

somal-depleted whole transcriptome stranded RNA-Seq to an average depth of 200M. BGI at CHOP performed poly-A or ribosomal-

depleted whole transcriptome stranded RNA-Seq to an average depth of 100M. The Translational Genomic Research Institute

(TGEN; Phoenix, AZ) performed paired tumor (�200X) and constitutive whole exome sequencing (WXS) or targetedDNApanel (panel)
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and poly-A selected RNA-Seq (�200M reads) for PNOC tumor samples. The panel tumor sample was sequenced to 470X, and the

normal panel sample was sequenced to 308X. PNOC 2x100 bp WXS and RNA-Seq libraries were sequenced on an Illumina

HiSeq 2500.

DNA WGS alignment
WeusedBWA-MEM84 to align paired-end DNA-seq reads to the version 38 patch release 12 of theHomo sapiens genome reference,

obtained as a FASTA file fromUCSC (see key resources table). Next, we used the Broad Institute’s Best Practices85 to process Binary

Alignment/Map files (BAMs) in preparation for variant discovery. We marked duplicates using SAMBLASTER,86 and we merged and

sorted BAMs using Sambamba87We used theBaseRecalibrator submodule of the Broad’s Genome Analysis Tool KitGATK88 to pro-

cess BAM files. Lastly, for normal/germline input, we used the GATK HaplotypeCaller89 submodule on the recalibrated BAM to

generate a genomic variant call format (GVCF) file. This file is used as the basis for germline calling, described in the SNP calling

for B-allele frequency (BAF) generation section.

We obtained references from the Broad Genome References on AWS bucket with a general description of references at https://s3.

amazonaws.com/broad-references/broad-references-readme.html.

Quality control of sequencing data
To confirm sample matches and remove mis-matched samples from the dataset, we performed NGSCheckMate83 on matched tu-

mor/normal CRAM files. Briefly, we processed CRAMs using BCFtools to filter and call 20k common single nucleotide polymor-

phisms (SNPs) using default parameters.We used the resulting VCFs to runNGSCheckMate. PerNGSCheckMate author recommen-

dations, we used % 0.61 as a correlation coefficient cutoff at sequencing depths >10 to predict mis-matched samples. We

determined RNA-Seq read strandedness by running the infer_experiment.py script from RNA-SeQC90 on the first 200k mapped

reads. We removed any samples whose calculated strandedness did not match strandedness information provided by the

sequencing center. We required that at least 60% of RNA-Seq reads mapped to the human reference for samples to be included

in analysis. During OpenPBTA analysis, we identified some samples which were mis-identified or potentially swapped. Through

collaborative analyses and pathology review, these samples were removed from our data releases and from the Kids First portal.

Sample removal and associated justifications were documented in the OpenPBTA data release notes.

Germline variant calling
SNP calling for B-allele frequency (BAF) generation

We performed germline haplotype calls using the GATK Joint Genotyping Workflow on individual GVCFs from the normal sample

alignment workflow. Using only SNPs, we applied theGATK generic hard filter suggestions to the VCF, with an additional requirement

of 10 reads minimum depth per SNP. We used the filtered VCF as input to Control-FREEC and CNVkit (below) to generate B-allele

frequency (BAF) files. This single-sample workflow is available in the D3b GitHub repository. References can be obtained from the

Broad Genome References on AWS bucket, and a general description of references can be found at https://s3.amazonaws.com/

broad-references/broad-references-readme.html.

Assessment of germline variant pathogenicity

For patients with hypermutant samples, we first added population frequency of germline variants using ANNOVAR91 and pathoge-

nicity scoring from ClinVar92 using SnpSift.93 We then filtered for variants with read depth R 15, variant allele fraction R 0.20, and

which were observed at < 0.1% allele frequency across each population in the Genome Aggregation Database (see key resources

table). Finally, we retained variants in genes included in the KEGGMMRgene set (see key resources table),POLE, and/or TP53which

were ClinVar-annotated as pathogenic (P) or likely pathogenic (LP) with review status of R 2 stars. All P/LP variants were manually

reviewed by an interdisciplinary team of scientists, clinicians, and genetic counselors. This workflow is available in the D3b GitHub

repository.

Somatic mutation calling
SNV and indel calling

We used four variant callers to call SNVs and indels from paired tumor/normal samples with Targeted Panel, WXS, and/or WGS data:

Strelka2,94 Mutect2,95 Lancet,96 and VarDictJava.97 VarDictJava-only calls were not retained since �39M calls with low VAF were

uniquely called and may be potential false positives. (�1.2M calls were called by Mutect2, Strelka2, and Lancet and included

consensus CNV calling as described below.) We used only Strelka2, Mutect2 and Lancet to analyze WXS samples from TCGA.

TCGA samples were captured using various WXS target capture kits and we downloaded the BED files from the GDC portal. The

manufacturers provided the input interval BED files for both panel and WXS data for PBTA samples. We padded all panel and

WXS BED files were by 100 bp on each side for Strelka2, Mutect2, and VarDictJava runs and by 400 bp for the Lancet run. For

WGS calling, we utilized the non-padded BROAD Institute interval calling list wgs_calling_regions.hg38.interval_list, comprised of

the full genome minus N bases, unless otherwise noted below. We ran Strelka294 using default parameters for canonical chromo-

somes (chr1-22, X,Y,M), as recommended by the authors, and we filtered the final Strelka2 VCF for PASS variants. We ran Mutect2

from GATK according to Broad best practices outlined from their Workflow Description Language (WDL), and we filtered the final

Mutect2 VCF for PASS variants. To manage memory issues, we ran VarDictJava97 using 20 kb interval chunks of the input BED,
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padded by 100 bp on each side, such that if an indel occurred in between intervals, it would be captured. Parameters and filtering

followed BCBIO standards except that variants with a variant allele frequency (VAF) R 0.05 (instead of R 0.10) were retained. The

0.05 VAF increased the true positive rate for indels and decreased the false positive rate for SNVs when using VarDictJava in

consensus calling. We filtered the final VarDictJava VCF for PASS variants with TYPE=StronglySomatic. We ran Lancet using default

parameters, except for those noted below. For input intervals to LancetWGS,we created a reference BED fromonly the UTR, exome,

and start/stop codon features of the GENCODE 31 reference, augmented as recommended with PASS variant calls from Strelka2

and Mutect2. We then padded these intervals by 300 bp on each side during Lancet variant calling. Per recommendations for

WGS samples, we augmented the Lancet input intervals described above with PASS variant calls from Strelka2 and Mutect2 as

validation.98

VCF annotation and MAF creation

We normalized INDELs with bcftools norm on all PASS VCFs using the kfdrc_annot_vcf_sub_wf.cwl subworkflow, release v3 (See

Table S5). The Ensembl Variant Effect Predictor (VEP),99 reference release 93, was used to annotate variants and bcftools was

used to add population allele frequency (AF) from gnomAD.100 We annotated SNV and INDEL hotspots from v2 of Memorial Sloan

Kettering Cancer Center’s (MSKCC) database (See key resources table) as well as the TERT promoter mutations C228T and

C250T.101 We annotated SNVs bymatching amino acid position (Protein_position column inMAF file) with SNVs in the MSKCC data-

base, we matched splice sites to HGVSp_Short values in the MSKCC database, and we matched INDELs based on amino acid pre-

sent within the range of INDEL hotspots values in the MSKCC database. We removed non-hotspot annotated variants with a normal

depth less than or equal to 7 and/or gnomAD allele frequency (AF) greater than 0.001 as potential germline variants. We matched

TERT promoter mutations using hg38 coordinates as indicated in ref. 101: C228T occurs at 5:1295113 is annotated as existing variant

s1242535815, COSM1716563, or COSM1716558, and is 66 bp away from the TSS; C250T occurs at Chr5:1295135, is annotated as

existing variant COSM1716559, and is 88 bp away from the TSS. We retained variants annotated as PASS or HotSpotAllele=1 in the

final set, and we created MAFs using MSKCC’s vcf2maf tool.

Gather SNV and INDEL hotspots

We retained all variant calls from Strelka2, Mutect2, or Lancet that overlapped with an SNV or INDEL hotspot in a hotspot-specific

MAF file, which we then used for select analyses as described below.

Consensus SNV calling

Our SNV calling process led to separate sets of predicted mutations for each caller. We considered mutations to describe the same

change if they were identical for the following MAF fields: Chromosome, Start_Position, Reference_Allele, Allele, and Tumor_

Sample_Barcode. Strelka2 does not call multinucleotide variants (MNV), but instead calls each component SNV as a separate mu-

tation, so we separated MNV calls from Mutect2 and Lancet into consecutive SNVs before comparing them to Strelka2 calls. We

examined VAFs produced by each caller and compared their overlap with each other (Figure S2). VarDictJava calls included

many variants that were not identified by other callers (Figure S2C), while the other callers produced results that were relatively

consistent with one another. Many of these VarDictJava-specific calls were variants with low allele frequency (Figure S2B). We there-

fore derived consensus mutation calls as those shared among the other three callers (Strelka2,Mutect2, and Lancet), and we did not

further consider VarDictJava calls due to concerns it called a large number of false positives. This decision had minimal impact on

results because VarDictJava also identified nearly every mutation that the other three callers identified, in addition to many unique

mutations.

Somatic copy number variant calling (WGS samples only)
We used Control-FREEC102,103 and CNVkit104 for copy number variant calls. For both algorithms, the germline_sex_estimate

(described below) was used as input for sample sex and germline variant calls (above) were used as input for BAF estimation. Con-

trol-FREEC was run on human genome reference hg38 using the optional parameters of a 0.05 coefficient of variation, ploidy choice

of 2–4, and BAF adjustment for tumor-normal pairs. Theta2105 used VarDictJava germline and somatic calls, filtered on PASS and

strongly somatic, to infer tumor purity. Theta2 purity was added as an optional parameter to CNVkit to adjust copy number calls.

CNVkit was run on human genome reference hg38 using the optional parameters of Theta2 purity and BAF adjustment for tumor-

normal pairs. We used GISTIC106 on the CNVkit and the consensus CNV segmentation files to generate gene-level copy number

abundance (Log R Ratio) as well as chromosomal arm copy number alterations using the parameters specified in the (run-gistic anal-

ysis module in the OpenPBTA Analysis repository).

Consensus CNV calling

For each caller and sample, we called CNVs based on consensus among Control-FREEC,102,103 CNVkit,104 and Manta.107 We spe-

cifically includedCNVs called significant byControl-FREEC (p value <0.01) andManta calls that passed all filters in consensus calling.

We removed sample and consensus caller files with more than 2,500 CNVs because we expected these to be noisy and derive poor

quality samples based on cutoffs used in GISTIC.106 For each sample, we included the regions in the final consensus set: 1) regions

with reciprocal overlap of 50% or more between at least two of the callers; 2) smaller CNV regions in which more than 90% of regions

are covered by another caller. We did not include any copy number alteration called by a single algorithm in the consensus file. We

defined copy number as NA for any regions that had a neutral call for the samples included in the consensus file. We merged CNV

regions within 10,000 bp of each other with the same direction of gain or loss into single region. We filtered out any CNVs that over-

lapped 50% or more with immunoglobulin, telomeric, centromeric, segment duplicated regions, or that were shorter than 3000 bp.
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Somatic structural variant calling (WGS samples only)
We usedManta107 for structural variant (SV) calls, and we limited to regions used in Strelka2. The hg38 reference for SV calling used

was limited to canonical chromosome regions.We usedAnnotSV108 to annotateManta output. All associatedworkflows are available

in the workflows GitHub repository.

Gene expression
Abundance estimation

We used STAR109 to align paired-end RNA-seq reads, and we used the associated alignment for all subsequent RNA analysis. We

used Ensembl GENCODE 27 ‘‘Comprehensive gene annotation’’ (see key resources table) as a reference. We usedRSEM110 for both

FPKM and TPM transcript- and gene-level quantification.

Gene expression matrices with unique HUGO symbols

To enable downstream analyses, we next identified gene symbols that map to multiple Ensembl gene identifiers (in GENCODE v27,

212 gene symbols map to 1866 Ensembl gene identifiers), known as multi-mapped gene symbols, and ensured unique mappings

(collapse-rnaseq analysis module in the OpenPBTA Analysis repository). To this end, we first removed genes with no expression

from the RSEM abundance data by requiring an FPKM >0 in at least 1 sample across the PBTA cohort. We computed the mean

FPKM across all samples per gene. For each multi-mapped gene symbol, we chose the Ensembl identifier corresponding to the

maximum mean FPKM, using the assumption that the gene identifier with the highest expression best represented the expression

of the gene. After collapsing gene identifiers, 46,400 uniquely-expressed genes remained in the poly-A dataset, and 53,011

uniquely-expressed genes remained in the stranded dataset.

Gene fusion detection

We set up Arriba111 and STAR-Fusion112 fusion detection tools using CWL on CAVATICA. For both of these tools, we used aligned

BAM and chimeric SAM files from STAR as inputs and GRCh38_gencode_v27 GTF for gene annotation. We ran STAR-Fusion with

default parameters and annotated all fusion calls with theGRCh38_v27_CTAT_lib_Feb092018.plug-n-play.tar.gz file from the STAR-

Fusion release. For Arriba, we used a blacklist file blacklist_hg38_GRCh38_2018-11-04.tsv.gz from the Arriba release to remove

recurrent fusion artifacts and transcripts present in healthy tissue. We provided Arriba with strandedness information for stranded

samples, or we set it to auto-detection for poly-A samples. We used FusionAnnotator on Arriba fusion calls to harmonize annotations

with those of STAR-Fusion. The RNA expression and fusion workflows can be found in the D3b GitHub repository. The FusionAnno-

tator workflow we used for this analysis can be found in the D3b GitHub repository.

QUANTIFICATION AND STATISTICAL ANALYSIS

All p values are two-sided unless otherwise stated. Z-scores were calculated using the formula z= ðx--mÞ=s where x is the value of

interest, m is the mean, and s is the standard deviation.

Tumor purity (tumor-purity-exploration module)
Estimating tumor fraction from RNA directly is challenging because most assume tumor cells comprise all non-immune cells,113

which is not a valid assumption for many diagnoses in the PBTA cohort. We therefore used Theta2 (as described in the ‘‘somatic

copy number variant calling section’’ method details section) to infer tumor purity from WGS samples, further assuming that co-ex-

tracted RNA and DNA samples had the same tumor purity. We then created a set of stranded RNA-Seq data thresholded by median

tumor purity of the cancer group to rerun selected transcriptomic analyses: telomerase-activity-prediction, tp53_nf1_score, tran-

scriptomic-dimension-reduction, immune-deconv, and gene set enrichment analysis. Note that these thresholded analyses, which

only considered stranded RNA samples that also had co-extracted DNA, were performed in their respective OpenPBTA analyses

modules (not within tumor-purity-exploration).

Recurrently mutated genes and co-occurrence of gene mutations (interaction-plots analysis module)

Using the consensus SNV calls, we identified genes that were recurrently mutated in the OpenPBTA cohort, including nonsynony-

mous mutations with a VAF >5% among the set of independent samples. We used VEP99 annotations, including ‘‘High’’ and ‘‘Mod-

erate’’ consequence types as defined in the R package Maftools,114 to determine the set of nonsynonymous mutations. For each

gene, we then tallied the number of samples that had at least one nonsynonymous mutation.

For genes that contained nonsynonymous mutations in multiple samples, we calculated pairwise mutation co-occurrence scores.

This score was defined as Ið�log10ðPÞÞwhere I is 1 when the odds ratio is >1 (indicating co-occurrence), and�1 when the odds ratio

is <1 (indicating mutual exclusivity), with P defined by Fisher’s Exact Test.

Focal copy number calling (focal-cn-file-preparation analysis module)

We added the ploidy inferred via Control-FREEC to the consensus CNV segmentation file and used the ploidy and copy number

values to define gain and loss values broadly at the chromosome level. We used bedtools coverage115 to add cytoband status

using the UCSC cytoband file116 (See key resources table). The output status call fractions, which are values of the loss, gain,

and callable fractions of each cytoband region, were used to define dominant status at the cytoband-level. We calculated the

weighted means of each status call fraction using band length. We used the weighted means to define the dominant status at

the chromosome arm-level.
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A status was considered dominant if more than half of the region was callable and the status call fraction was greater than 0.9 for

that region. We adopted this 0.9 threshold to ensure that the dominant status fraction call was greater than the remaining status frac-

tion calls in a region.

We aimed to define focal copy number units to avoid calling adjacent genes in the same cytoband or arm as copy number losses or

gains where it would be more appropriate to call the broader region a loss or gain. To determine the most focal units, we first consid-

ered the dominant status calls at the chromosome arm-level. If the chromosome arm dominant status was callable but not clearly

defined as a gain or loss, we instead included the cytoband-level status call. Similarly, if a cytoband dominant status call was callable

but not clearly defined as a gain or loss, we instead included gene-level status call. To obtain the gene-level data, we used the

IRanges package in R117 to find overlaps between the segments in the consensus CNV file and the exons in the GENCODE v27 anno-

tation file (See key resources table). If the copy number value was 0, we set the status to ‘‘deep deletion’’. For autosomes only, we set

the status to ‘‘amplification’’ when the copy number value was greater than two times the ploidy value. We plotted genome-wide

gains and losses in (Figure S3C) using the R package ComplexHeatmap.118

Breakpoint density (WGS samples only; chromosomal-instability analysis module)
We defined breakpoint density as the number of breaks per genome or exome per sample. For Manta SV calls, we filtered to retain

‘‘PASS’’ variants and used breakpoints from the algorithm. For consensus CNV calls, if |log2 ratio| > log2(1), we annotated the

segment as a break. We then calculated breakpoint density as:

breakpoint density =
N breaks

Size in Mb of effectively surveyed genome
Chromothripsis analysis (WGS samples only; chromothripsis analysis module)
Considering only chromosomes 1–22 and X, we identified candidate chromothripsis regions in the set of independent tumor WGS

samples with ShatterSeek,119 using Manta SV calls that passed all filters and consensus CNV calls. We modified the consensus

CNV data to fit ShatterSeek input requirements as follows: we set CNV-neutral or excluded regions as the respective sample’s ploidy

value from Control-FREEC, and we then merged consecutive segments with the same copy number value. We classified candidate

chromothripsis regions as high- or low-confidence using the statistical criteria described by the ShatterSeek authors.

Immune profiling and deconvolution (immune-deconv analysis module)

We used the R package immunedeconv120 with the method quanTIseq121 to deconvolute various immune cell types in tumors using

collapsed FPKM RNA-seq, with samples batched by library type and then combined. The quanTIseq deconvolution method directly

estimates absolute fractions of 10 immune cell types that represent inferred proportions of the cell types in themixture. Therefore, we

utilized quanTIseq for inter-sample, intra-sample, and inter-histology score comparisons.

Gene Set Variation Analysis (gene set enrichment analysis analysis module)

WeperformedGene Set Variation Analysis (GSVA) on collapsed, log2-transformed RSEMFPKMdata for stranded RNA-Seq samples

using theGSVABioconductor package.122We specified the parametermx.diff=TRUE to obtain Gaussian-distributed scores for each

of the MSigDB hallmark gene sets.123 We compared GSVA scores among histology groups using ANOVA and subsequent Tukey

tests; p values were Bonferroni-corrected for multiple hypothesis testing. We plotted scores by cancer group using the Complex-

Heatmap R package (Figure 5B).118

Transcriptomic dimension reduction (transcriptomic-dimension-reduction analysis module)

We applied UniformMani-fold Approximation and Projection (UMAP)124 to log2-transformed FPKMdata for stranded RNA-Seq sam-

ples using the umap R package (See key resources table). We considered all stranded RNA-Seq samples for this analysis, but we

removed genes whose FPKM sum across samples was less than 100. We set the UMAP number of neighbors parameter to 15.

Fusion prioritization (fusion_filtering analysis module)

We performed artifact filtering and additional annotation on fusion calls to prioritize putative oncogenic fusions. Briefly, we consid-

ered all in-frame and frameshift fusion calls with at least one junction read and at least one gene partner expressed (TPM>1) to be true

calls. If a fusion call had a large number of spanning fragment reads compared to junction reads (spanning fragment minus junction

read greater than ten), we removed these calls as potential false positives. We prioritized a union of fusion calls as true calls if the

fused genes were detected by both callers, the same fusion was recurrent within a broad histology grouping (>2 samples), or the

fusion was specific to the given broad histology. If either 50 or 30 genes fused to more than five different genes within a sample,

we removed these calls as potential false positives. We annotated putative driver fusions and prioritized fusions based on partners

containing known kinases, oncogenes, tumor suppressors, curated transcription factors,125 COSMIC genes, and/or known TCGA

fusions from curated references. Based on pediatric cancer literature review, we added MYBL1,126 SNCAIP,127 FOXR2,128

TTYH1,129 and TERT130–133 to the oncogene list, and we added BCOR128 and QKI134 to the tumor suppressor gene list.

Oncoprint figure generation (oncoprint-landscape analysis module)
We used Maftools114 to generate oncoprints depicting the frequencies of canonical somatic gene mutations, CNVs, and fusions for

the top 20 genes mutated across primary tumors within broad histologies of the OpenPBTA dataset. We collated canonical genes

from the literature for low-grade gliomas (LGGs),25 embryonal tumors,26,28,29,135,136 high-grade gliomas (HGGs),14,31,32,137 and other
e7 Cell Genomics 3, 100340, July 12, 2023



Resource
ll

OPEN ACCESS
tumors: ependymomas, craniopharyngiomas, neuronal-glial mixed tumors, histiocytic tumors, chordoma, meningioma, and choroid

plexus tumors.33,138–146

Mutational signatures (mutational-signatures analysis module)
We obtained weights (i.e., exposures) for signature sets using the deconstructSigs R package function whichSignatures()147 from

consensus SNVs with the BSgenome.Hsapiens.UCSC.hg38 annotations (see key resources table). Specifically, we estimated signa-

ture weights across samples for eight signatures previously identified in the Signal reference set of signatures (‘‘RefSig’’) as associ-

ated with adult central nervous system (CNS) tumors.40 These eight RefSig signatures are 1, 3, 8, 11, 18, 19, N6, andMMR2.Weights

for signatures fall in the range zero to one inclusive. deconstructSigs estimates the weights for each signature across samples and

allows for a proportion of unassigned weights referred to as ‘‘Other’’ in the text. These results do not include signatures with small

contributions; deconstructSigs drops signature weights that are less than 6%.147 We plotted mutational signatures for patients with

hypermutant tumors (Figure 4E) using the R package ComplexHeatmap.118

Tumor mutation burden (snv-callers analysis module)
We consider tumor mutation burden (TMB) to be the number of consensus SNVs per effectively surveyed base of the genome. We

considered base pairs to be effectively surveyed if they were in the intersection of the genomic ranges considered by the callers used

to generate the consensus and where appropriate, regions of interest, such as coding sequences. We calculated TMB as:

TMB =
# of coding sequence SNVs

Size in Mb of effectively surveyed genome

We used the total number coding sequence consensus SNVs for the numerator and the size of the intersection of the regions

considered by Strelka2 and Mutect2 with coding regions (CDS from GENCODE v27 annotation, see key resources table) as the

denominator.

Clinical data harmonization
WHO classification of disease types

Table S1 contains a README, along with sample technical, clinical, and additional metadata used for this study.

Molecular subtyping

We performed molecular subtyping on tumors in the OpenPBTA to the extent possible. The molecular_subtype field in pbta-

histologies.tsv contains molecular subtypes for tumor types selected from pathology_diagnosis and pathology_free_text_diagnosis

fields as described below, followingWorld Health Organization 2016 classification criteria.20 We further categorized broad tumor his-

tologies into smaller groupings we denote ‘‘cancer groups.’’

Medulloblastoma (MB) subtypes SHH, WNT, Group 3, and Group 4 were predicted using the consensus of two RNA expression

classifiers:MedulloClassifier22 andMM2S23 on the RSEM FPKM data (molecular-subtyping-MB analysis module). The 43 ‘‘true pos-

itive’’ subtypes were manually curated from pathology reports by two independent reviewers.

High-grade glioma (HGG) subtypes were derived (molecular-subtyping-HGG analysis module) using the following criteria.

1. If any sample contained an H3F3A p.K28M, HIST1H3B p.K28M, HIST1H3C p.K28M, or HIST2H3C p.K28M mutation and no

BRAF p.V600E mutation, it was subtyped as DMG, H3 K28.

2. If any sample contained anHIST1H3B p.K28M, HIST1H3C p.K28M, or HIST2H3C p.K28Mmutation and a BRAF p.V600E mu-

tation, it was subtyped as DMG, H3 K28, BRAF V600E.

3. If any sample contained an H3F3A p.G35V or p.G35R mutation, it was subtyped asHGG, H3 G35.

4. If any high-grade glioma sample contained an IDH1 p.R132 mutation, it was subtyped as HGG, IDH.

5. If a sample was initially classified as HGG, had no defining histone mutations, and a BRAF p.V600E mutation, it was subtyped

as BRAF V600E.

6. All other high-grade glioma samples that did not meet any of these criteria were subtyped as HGG, H3 wildtype.

Embryonal tumors were included in non-MB and non-ATRT embryonal tumor subtyping (molecular-subtyping-embryonal analysis

module) if they met any of the following criteria.

1. A TTYH1 (50 partner) fusion was detected.

2. AMN1 (50 partner) fusion was detected, with the exception ofMN1::PATZ1 since it is an entity separate of CNS HGNET-MN1

tumors.148.

3. Pathology diagnoses included ‘‘Supratentorial or Spinal Cord PNET’’ or ‘‘Embryonal Tumor with Multilayered Rosettes’’.

4. A pathology diagnosis of ‘‘Neuroblastoma’’, where the tumor was not indicated to be peripheral or metastatic and was located

in the CNS.

5. Any sample with ‘‘embryonal tumor with multilayer rosettes, ros (who grade iv)’’, ‘‘embryonal tumor, nos, congenital type’’,

‘‘ependymoblastoma’’ or ‘‘medulloepithelioma’’ in pathology free text.
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Non-MB and non-ATRT embryonal tumors identified with the above criteria were further subtyped (molecular-subtyping-

embryonal analysis module) using the criteria below.149–152

1. Any RNA-seq biospecimen with LIN28A overexpression, plus a TYH1 fusion (50 partner) with a gene adjacent or within the

C19MC miRNA cluster and/or copy number amplification of the C19MC region was subtyped as ETMR, C19MC-altered

(Embryonal tumor with multilayer rosettes, chromosome 19 miRNA cluster altered).129,153.

2. Any RNA-seq biospecimen with LIN28A overexpression, a TTYH1 fusion (50 partner) with a gene adjacent or within the C19MC

miRNA cluster but no evidence of copy number amplification of the C19MC region was subtyped as ETMR, NOS (Embryonal

tumor with multilayer rosettes, not otherwise specified).129,153

3. Any RNA-seq biospecimenwith a fusion having a 50 MN1 and 30 BEND2 orCXXC5 partner were subtyped asCNSHGNET-MN1

[Central nervous system (CNS) high-grade neuroepithelial tumor with MN1 alteration].

4. Non-MB and non-ATRT embryonal tumors with internal tandem duplication (as defined in154) of BCORwere subtyped as CNS

HGNET-BCOR (CNS high-grade neuroepithelial tumor with BCOR alteration).

5 Non-MB and non-ATRT embryonal tumors with overexpression and/or gene fusions in FOXR2 were subtyped as CNS NB-

FOXR2 (CNS neuroblastoma with FOXR2 activation).

6. Non-MB and non-ATRT embryonal tumors with CIC::NUTM1 or other CIC fusions, were subtyped as CNS EFT-CIC (CNS Ew-

ing sarcoma family tumor with CIC alteration).128

7. Non-MB and non-ATRT embryonal tumors that did not fit any of the above categories were subtyped asCNS Embryonal, NOS

(CNS Embryonal tumor, not otherwise specified).

Neurocytoma subtypes central neurocytoma (CNC) and extraventricular neurocytoma (EVN) were assigned (molecular-subtyping-

neurocytoma analysis module) based on the primary site of the tumor.155 If the tumor’s primary site was ‘‘ventricles,’’ we assigned the

subtype as CNC; otherwise, we assigned the subtype as EVN.

Craniopharyngiomas (CRANIO) were subtyped (molecular-subtyping-CRANIO analysis module) into adamantinomatous

(CRANIO, ADAM), papillary (CRANIO, PAP) or undetermined (CRANIO, To be classified) based on the following criteria.156,157

1. Craniopharyngiomas from patients over 40 years old with a BRAF p.V600E mutation were subtyped as CRANIO, PAP.

2. Craniopharyngiomas from patients younger than 40 years old with mutations in exon 3 ofCTNNB1were subtyped asCRANIO,

ADAM.

3. Craniopharyngiomas that did not fall into the above two categories were subtyped as CRANIO, To be classified.

A molecular subtype of EWS was assigned to any tumor with a EWSR1 fusion or with a pathology_diagnosis of Ewings Sarcoma

(molecular-subtyping-EWS analysis module).

LGG or glialneuronal tumors (GNT) were subtyped (molecular-subtyping-LGAT analysis module) based on SNV, fusion, and CNV

status based on21 and as described below.

1. If a sample contained a NF1 somatic mutation, either nonsense or missense, it was subtyped as LGG, NF1-somatic.

2. If a sample containedNF1 germline mutation, as indicated by a patient having the neurofibromatosis cancer predisposition, it

was subtyped as LGG, NF1-germline.

3. If a sample contained the IDH p.R132 mutation, it was subtyped as LGG, IDH.

4. If a sample contained a histone p.K28M mutation in either H3F3A, H3F3B, HIST1H3B, HIST1H3C, or HIST2H3C, or if it con-

tained a p.G35R or p.G35V mutation in H3F3A, it was subtyped as LGG, H3.

5. If a sample contained BRAF p.V600E or any other non-canonical BRAF mutations in the kinase (PK_Tyr_Ser-Thr) domain

PF07714 (see key resources table), it was subtyped as LGG, BRAF V600E.

6. If a sample contained KIAA1549::BRAF fusion, it was subtyped as LGG, KIAA1549::BRAF.

7. If a sample contained SNV or indel in either KRAS, NRAS, HRAS,MAP2K1,MAP2K2,MAP2K1, ARAF, RAF1, or non-kinase

domain of BRAF, or if it contained RAF1 fusion, or BRAF fusion that was not KIAA1549::BRAF, it was subtyped as LGG, other

MAPK.

8. If a sample contained SNV in either MET, KIT or PDGFRA, or if it contained fusion in ALK, ROS1, NTRK1, NTRK2, NTRK3 or

PDGFRA, it was subtyped as LGG, RTK.

9. If a sample contained FGFR1 p.N546K, p.K656E, p.N577, or p. K687 hotspot mutations, or tyrosine kinase domain tandem

duplication (See key resources table), or FGFR1 or FGFR2 fusions, it was subtyped as LGG, FGFR.

10. If a sample contained MYB or MYBL1 fusion, it was subtyped as LGG, MYB/MYBL1.

11. If a sample contained focal CDKN2A and/or CDKN2B deletion, it was subtyped as LGG, CDKN2A/B.

For LGG tumors that did not have any of the above molecular alterations, if both RNA and DNA samples were available, it was

subtyped as LGG, wildtype. Otherwise, if either RNA or DNA sample was unavailable, it was subtyped as LGG, To be classified.

If pathology diagnosis was Subependymal Giant Cell Astrocytoma (SEGA), the LGG portion of molecular subtype was recoded

to SEGA.
e9 Cell Genomics 3, 100340, July 12, 2023



Resource
ll

OPEN ACCESS
Lastly, for all LGG- and GNT-subtyped samples, if the tumors were glialneuronal in origin, based on pathology_free_text_diagnosis

entries of desmoplastic infantile, desmoplastic infantile ganglioglioma, desmoplastic infantile astrocytoma or glioneuronal, each was

recoded as follows: If pathology diagnosis is Low-grade glioma/astrocytoma (WHO grade I/II) or Ganglioglioma, the LGG portion of

the molecular subtype was recoded to GNT.

Ependymomas (EPN) were subtyped (molecular-subtyping-EPN analysis module) into EPN, ST RELA, EPN, ST YAP1, EPN, PF A

and EPN, PF B based on evidence for these molecular subgroups as described in Pajtler et al.139 Briefly, fusion, CNV and gene

expression data were used to subtype EPN as follows.

1. Any tumor with fusions containing RELA as fusion partner, e.g., C11orf95::RELA, LTBP3::RELA, was subtyped as EPN, ST

RELA.

2. Any tumor with fusions containing YAP1 as fusion partner, such as C11orf95::YAP1, YAP1::MAMLD1 and YAP1::FAM118B,

was subtyped as EPN, ST YAP1.

3. Any tumor with the following molecular characterization would be subtyped as EPN, PF A:
d CXorf67 expression Z score of over 3

d TKTL1 expression Z score of over 3 and 1q gain

4. Any tumor with the following molecular characterization would be subtyped as EPN, PF B:

d GPBP17 expression Z score of over 3 and loss of 6q or 6p

d IFT46 expression Z score of over 3 and loss of 6q or 6p

Any tumor with the above molecular characteristics would be exclusively subtyped to the designated group.

For all other remaining EPN tumors without above molecular characteristics, they would be subtyped to EPN, ST RELA and EPN,

ST YAP1 in a non-exclusive way (e.g., a tumor could have both EPN, ST RELA and EPN, ST YAP1 subtypes) if any of the following

alterations were present.

1. Any tumor with the following alterations was assigned EPN, ST RELA:
d PTEN::TAS2R1 fusion

d chromosome 9 arm (9p or 9q) loss

d RELA expression Z score of over 3

d L1CAM expression Z score of over 3

2. Any tumor with the following alterations was assigned EPN, ST YAP1:

d C11orf95::MAML2 fusion

d chromosome 11 short arm (11p) loss

d chromosome 11 long arm (11q) gain

d ARL4D expression Z score of over 3

d CLDN1 expression Z score of over 3

After all relevant tumor samples were subtyped by the above molecular subtyping modules, the results from these modules, along

with other clinical information (such as pathology diagnosis free text), were compiled in the molecular-subtyping-pathology module

and integrated into the OpenPBTA data in the molecular-subtyping-integrate module.

TP53 alteration annotation (tp53_nf1_score analysis module)
We annotated TP53 altered HGG samples as either TP53 lost or TP53 activated and integrated this within the molecular subtype. To

this end, we applied a TP53 inactivation classifier originally trained on TCGA pan-cancer data42 to thematched RNA expression data,

with samples batched by library type. Along with the TP53 classifier scores, we collectively used consensus SNV and CNV, SV, and

reference databases that list TP53 hotspot mutations158,159 and functional domains160 to determine TP53 alteration status for each

sample. We adopted the following rules for calling either TP53 lost or TP53 activated.

1. If a sample had either of the two well-characterized TP53 gain-of-function mutations, p.R273C or p.R248W,43 we assigned

TP53 activated status.

2. Samples were annotated as TP53 lost if they contained i) a TP53 hotspot mutation as defined by IARC TP53 database or the

MSKCC cancer hotspots database158,159 (see also, key resources table), ii) two TP53 alterations, including SNV, CNV or SV,

indicative of probable biallelic alterations; iii) one TP53 somatic alteration, including SNV, CNV, or SV or a germline TP53mu-

tation indicated by the diagnosis of Li-Fraumeni syndrome (LFS),161 or iv) one germline TP53mutation indicated by LFS and the

TP53 classifier score for matched RNA-Seq was greater than 0.5.

Prediction of participants’ genetic sex
Participantmetadata included a reported gender. We usedWGS germline data, in concert with the reported gender, to predict partic-

ipant genetic sex so that we could identify sexually dimorphic outcomes. This analysis may also indicate samples that may have been

contaminated. We used the idxstats utility from SAMtools162 to calculate read lengths, the number of mapped reads, and the
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corresponding chromosomal location for reads to the X and Y chromosomes. We used the fraction of total normalized X and Y chro-

mosome reads that were attributed to the Y chromosome as a summary statistic. Wemanually reviewed this statistic in the context of

reported gender and determined that a threshold of less than 0.2 clearly delineated female samples. We marked fractions greater

than 0.4 as predicted males, and wemarked samples with values in the inclusive range 0.2–0.4 as unknown. We performed this anal-

ysis through CWL on CAVATICA. We added resulting calls to the histologies file under the column header germline_sex_estimate.

Selection of independent samples (independent-samples analysis module)
Certain analyses required that we select only a single representative specimen for each individual. In these cases, we identified a

single specimen by prioritizing primary tumors and those with whole-genome sequencing available. If this filtering still resulted inmul-

tiple specimens, we randomly selected a single specimen from the remaining set.

Quantification of telomerase activity using gene expression data (telomerase-activity-prediction analysis module)
Wepredicted telomerase activity of tumor samples using the recently developed EXTENDmethod,44 with samples batched by library

type. Briefly, EXTEND estimates telomerase activity based on the expression of a 13-gene signature. We derived this signature by

comparing telomerase-positive tumors and tumors with activated alternative lengthening of telomeres pathway, a group presumably

negative of telomerase activity.

Survival models (survival-analysis analysis module)
We calculated overall survival (OS) as days since initial diagnosis and performed several survival analyses on the OpenPBTA cohort

using the survival R package.We performed survival analysis for patients by HGG subtype using the Kaplan-Meier estimator163 and a

log rank test (Mantel-Cox test)164 on the different HGG subtypes. Next, we used multivariate Cox (proportional hazards) regression

analysis165 to model the following: a) tp53 scores + telomerase scores + extent of tumor resection + LGG group + HGG group, in

which tp53 scores and telomerase scores are numeric, extent of tumor resection is categorical, and LGG group and HGG group

are binary variables indicating whether the sample is in either broad histology grouping, b) tp53 scores + telomerase scores + extent

of tumor resection for each cancer_group with an N>=3 deceased patients (DIPG, DMG, HGG, MB, and EPN), and c) quantiseq cell

type fractions + CD274 expression + extent of tumor resection for each cancer_group with an N>=3 deceased patients (DIPG, DMG,

HGG, MB, and EPN), in which quantiseq cell type fractions and CD274 expression are numeric.
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