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Diagnosis of Alzheimer’s disease using 
plasma biomarkers adjusted to clinical 
probability

Recently approved anti-amyloid immunotherapies for Alzheimer’s disease 
(AD) require evidence of amyloid-β pathology from positron emission 
tomography (PET) or cerebrospinal fluid (CSF) before initiating treatment. 
Blood-based biomarkers promise to reduce the need for PET or CSF testing; 
however, their interpretation at the individual level and the circumstances 
requiring confirmatory testing are poorly understood. Individual-level 
interpretation of diagnostic test results requires knowledge of disease 
prevalence in relation to clinical presentation (clinical pretest probability). 
Here, in a study of 6,896 individuals evaluated from 11 cohort studies from 
six countries, we determined the positive and negative predictive value of 
five plasma biomarkers for amyloid-β pathology in cognitively impaired 
individuals in relation to clinical pretest probability. We observed that 
p-tau217 could rule in amyloid-β pathology in individuals with probable 
AD dementia (positive predictive value above 95%). In mild cognitive 
impairment, p-tau217 interpretation depended on patient age. Negative 
p-tau217 results could rule out amyloid-β pathology in individuals with non-
AD dementia syndromes (negative predictive value between 90% and 99%). 
Our findings provide a framework for the individual-level interpretation 
of plasma biomarkers, suggesting that p-tau217 combined with clinical 
phenotyping can identify patients where amyloid-β pathology can be ruled 
in or out without the need for PET or CSF confirmatory testing.

With the recent Food and Drug Administration approval of disease-
modifying therapies for Alzheimer’s disease (AD)1, determining eligi-
bility for anti-amyloid-β therapy is an important need for cognitively 
impaired individuals where AD is a suspected etiology. Anti-amyloid-β 
immunotherapies currently require evidence of amyloid-β pathology 
from either positron emission tomography (PET) or cerebrospinal fluid 
(CSF) to initiate treatment2. PET and CSF assessments are limited by 
cost, accessibility and invasiveness. Minimally invasive, scalable and 
cost-effective methods to determine the presence of AD pathology 
are urgently needed3.

Several recent studies have reported that plasma biomarkers have 
excellent diagnostic accuracy for AD, with sensitivity or specificity 

often exceeding 90% (refs. 4–10). However, sensitivity and specificity 
provide limited information when making decisions about individual 
patients11–13. In contrast, predictive values are critical for interpreting 
individual-level test results11,12,14,15. Sufficiently high positive predictive 
values (PPVs) or negative predictive values (NPVs) of plasma biomark-
ers for AD pathology could circumvent the need for the majority of PET 
or CSF testing, with confirmatory testing used in remaining situations 
with lower predictive values3,16.

Evaluation of the PPVs and NPVs of diagnostic tests in large, unse-
lected populations requires knowledge the prevalence of the disease 
of interest11,12,15,17. As the prevalence of amyloid-β pathology is closely 
linked to age and clinical syndrome18–20, clinical and demographic 
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PPVs (above 95%) for Aβ+ at all ages. Owing to the high prevalence of Aβ+ 
in individuals with probable AD dementia, NPVs of plasma biomarkers 
was comparatively lower. Again, p-tau217 had the highest NPV at all 
age ranges for individuals with probable AD dementia, reaching 60% 
by age 90 years. Other plasma biomarkers had lower NPVs at all ages.  
A summary of age- and APOE ε4-adjusted PPVs and NPVs for individuals 
with probable AD dementia is presented in Supplementary Tables 19–21.

PPVs and NPVs of plasma biomarkers for Aβ+ in non-AD 
clinical syndromes
In non-AD dementia syndromes, plasma biomarkers, in particular 
p-tau217, could rule out the presence of AD pathology with NPVs above 
90% in nearly all circumstances. Two exceptions to this were ruling 
out amyloid-β pathology in individuals with vascular dementia above 
age 90 years (NPV 89.4%, 95% CI 87.5–91.3%) and ruling out amyloid-β 
pathology in individuals with corticobasal syndrome younger than age 
65 years (NPV 88.2%, 95% CI 86.1–90.3%). A summary of the PPVs and 
NPVs of plasma p-tau217, the best-performing biomarker, for amyloid 
PET positivity in all ages and clinical syndromes is presented in Table 2. A 
summary of PPVs and NPVs of plasma biomarkers for amyloid-β pathol-
ogy additionally adjusted for the APOE ε4 genotype in non-AD dementia 
syndromes is presented in Supplementary Tables 22–33.

Discussion
This study evaluated the PPVs and NPVs of plasma biomarkers for 
amyloid-β pathology in relation to patient age and clinical syndrome. 
We report that, in older adults with MCI (ages 80+ years) or in individu-
als with clinically diagnosed probable AD dementia, plasma p-tau217 
can rule in amyloid-β pathology with PPVs above 90%. Furthermore, in 
non-AD dementia syndromes such as frontotemporal dementia, vascular 
dementia and corticobasal syndrome, plasma p-tau217 could rule out 
AD pathology with NPVs above 90%. Owing to the high prevalence of 
amyloid-β pathology in individuals with clinically diagnosed AD demen-
tia, negative plasma biomarkers will warrant confirmatory testing to rule 
out AD pathology in individuals with these symptoms. Similarly, in older 
adults with MCI where the prevalence of AD pathology is high, confirma-
tory testing is needed to rule out AD pathology. Taken together, our study 
provides a framework for the individual-level interpretation of plasma 
biomarkers for AD according to patient age and clinical syndrome23.

The PPVs and NPVs reported in the present study are to be under-
stood within the context of the prevalence of amyloid-β pathology 
within MCI, probable AD dementia and other non-AD dementia syn-
dromes. MCI is a highly heterogeneous clinical syndrome that can be 
caused by several different neurodegenerative and nonneurodegenera-
tive conditions24. Estimates from memory clinic and community-based 
studies suggests the prevalence of amyloid-β pathology in individuals 
with MCI is relatively low for individuals in their 60s but reaches 75–80% 
by age 90 years19,20. Correspondingly, the PPV of plasma p-tau217 for the 
detection of amyloid-β pathology in MCI rose with age, exceeding 95% 
by age 90 years. Owing to the high pretest probability that amyloid-β 
is present in older adults with MCI, the NPV of even highly accurate 
plasma biomarkers fell below 80% with more advanced age.

The clinical syndrome of probable AD dementia is more closely 
associated with amyloid-β pathology than MCI at all ages19,20,25 There-
fore, in clinically diagnosed probable AD dementia, the PPV of plasma 
biomarkers, particularly p-tau217, is very high and probably sufficient 
to rule in amyloid-β pathology. The corollary is that the NPV of plasma 
biomarkers for AD was lower owing to the high prevalence of AD pathol-
ogy in this clinical syndrome. Studies in other areas of medicine have 
also found lower NPVs of even highly sensitive and specific tests in situa-
tions where the pretest probability of a disease is high23,26,27. The risk of a 
false negative in probable AD dementia may be high enough to warrant 
confirmatory CSF or PET testing for individuals with clinically diag-
nosed probable AD dementia with a negative plasma biomarker test 
result, even for highly accurate biomarkers such as plasma p-tau217.

information can be used to infer the clinical pretest probability of 
amyloid-β positivity (Aβ+) based on standard clinical assessments17,21,22. 
Here, using the prevalence of amyloid-β pathology from meta-analyses 
of memory clinic and research settings, we determined the age- and 
clinical dementia syndrome-associated PPV and NPV of different 
plasma biomarkers for amyloid-β pathology.

Results
This study examined a total of 6,896 individuals from Canada, France, 
South Korea, Spain, Sweden and the United States who were assessed 
with standardized cognitive assessments, plasma AD biomarkers and 
established reference standard AD biomarkers (PET, CSF or neuro-
pathological assessments). The mean (s.d.) age of all participants was 
69.7 (9.2) years, and 3,698 (53.6%) were female. The mean (s.d.) years 
of education of the sample was 13.3 (3.6) years. A summary of clinical 
and demographic characteristics of the entire sample is presented in 
Table 1, with cohort-specific data presented in Supplementary Tables 
3–15. MMSE, Mini-Mental State Examination.

PPVs and NPVs of plasma biomarkers for Aβ+ in MCI
Age-related PPVs and NPVs of five plasma biomarkers for Aβ+ in mild 
cognitive impairment (MCI) are illustrated in Fig. 1. The ability of 
plasma biomarkers to rule in or rule out amyloid-β was closely asso-
ciated with the age-related prevalence of AD pathology in MCI. For 
individuals with MCI, PPVs of plasma biomarkers increased with age, 
with p-tau217 reaching 80.9% (95% confidence interval (CI) 78.7–83.1%) 
at age 65 years and reaching 92.5% (95% CI 91.6–93.5%) for individuals 
aged 90 years. NPVs for Aβ+ in MCI decreased with age, with NPVs above 
90% for individuals younger than 65 years, 80.8% (95% CI 77.8–83.9%) 
at age 80 years and 74.6% (95% CI 70.9–78.4%) at age 90 years. P-tau181, 
p-tau231, glial fibrillary acidic protein (GFAP) and neurofilament light 
chain (NfL) all had lower performance than plasma p-tau217. In APOE 
ε4 carriers with MCI, the PPV of plasma p-tau217 for amyloid-β was 
higher, reaching 90.8% (95% CI 89.6–91.9%) by age 70 years and 95.6% 
(95% CI 95.0–96.1%) by age 80 years. Furthermore, in APOE ε4 noncarri-
ers with MCI, the NPV of plasma p-tau217 was also higher, being above 
95% (95% CI 94.1–96.0%) for individuals aged under 65 years and 89.8% 
(95% CI 87.9–91.6%) for individuals aged under 80 years. A summary of 
the PPVs and NPVs of plasma p-tau217 for amyloid PET positivity in all 
ages and clinical syndromes is presented in Table 2, and a summary of 
age- and APOE ε4-adjusted PPVs and NPVs for individuals with MCI is 
presented in Supplementary Tables 16–18.

PPVs and NPVs of plasma biomarkers for Aβ+ in probable AD 
dementia
Age-associated PPVs and NPVs of five AD plasma biomarkers in prob-
able AD dementia are reported in Fig. 2. In individuals with probable 
AD dementia, plasma biomarkers, particularly p-tau217, had very high 

Table 1 | Demographic and clinical characteristics of the 
study participants

Cognitively unimpaired Cognitively impaired

No. 3,393 3,503

Mean age in years (s.d.) 66.9 (10.6) 72.4 (7.81)

No. of females (%) 1,865 (55.0%) 1,833 (52.3%)

Mean years of education 
(s.d.)

14.4 (3.18) 12.2 (3.99)

No. of APOE ε4 carriers (%) 983 (29%) 1,436 (41%)

Mean MMSE (s.d.) 28.7 (1.35) 24.1 (4.54)

Amyloid-β positive (%) 776 (22.6%) 1,940 (55.4%)

Data are represented as mean and s.d. for continuous variables and number and percentage 
for categorical variables.
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Owing to the substantially higher prevalence of Aβ+ in APOE ε4 
carriers18,19,28, plasma biomarkers had higher PPVs for brain amyloid-β, 
particularly in individuals with MCI. Conversely, the NPV of plasma 
biomarkers, particularly p-tau217, was substantially higher in APOE 
ε4 noncarriers. Therefore, genotyping for APOE (also available with a 
blood sample) will lead to higher predictive values for Aβ+.

Across all cohorts and assays investigated, a consistent find-
ing in this study is that plasma p-tau217 had the highest PPVs and 
NPVs for amyloid-β pathology. These results are consistent with a 
number of recent studies demonstrating excellent performance of 
multiple p-tau217 assays in the differential diagnosis of cognitive 
impairment8–10,29–32, its close association with amyloid-β and tau 
pathologies33,34 and longitudinal increases over time in Aβ+ individu-
als35. Plasma GFAP had slightly lower performance than p-tau217, with 
notably lower specificity. Despite the role of GFAP in AD pathogenesis36 
and in predicting future dementia incidence37, the lower specificity of 
GFAP may limit its role as a diagnostic biomarker for AD38. For example, 
GFAP elevations have been reported in frontotemporal dementia39, 
traumatic brain injury40, multiple sclerosis41 and inflammatory central 
nervous system diseases42. Despite these limitations, GFAP nonetheless 

performed better overall than other plasma biomarkers such as 
p-tau181. However, it is important to emphasize that head-to-head 
studies indicate that different assays for p-tau181 vary substantially in 
their diagnostic performance9,10 and may not all perform inferiorly to 
GFAP in all contexts34,43. As expected, plasma NfL had relatively lower 
PPV and NPV for AD, as NfL is a nonspecific biomarker of neurodegen-
eration, elevated in multiple different neurodegenerative diseases44. 
Taken together, these results highlight the utility of plasma p-tau217 for 
the differential diagnosis of cognitive impairment and for determining 
eligibility for anti-amyloid-β disease-modifying therapies.

Currently, anti-amyloid monoclonal antibodies require the con-
firmation of amyloid-β pathology from PET or CSF before initiating 
therapy45,46. On the basis of the present results, plasma biomarkers, 
particularly plasma p-tau217, may be suitable to rule in amyloid-β 
pathology in individuals with probable AD dementia or in older adults 
with MCI, which stands to circumvent a large number of PET scans or 
lumbar punctures. In contrast, in non-AD clinical syndromes such 
as frontotemporal dementia, vascular dementia and corticobasal 
syndrome, which are less frequently associated with AD pathology18, 
plasma biomarkers can rule out AD pathology at almost all ages. As 
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Fig. 1 | PPVs and NPVs of plasma AD biomarkers in individuals with MCI. Age-associated PPV (left) and NPV (right) of five plasma biomarkers for amyloid PET 
positivity in MCI. The solid lines represent the point estimate, and error bars represent 95% CIs.

Table 2 | PPVs and NPVs of plasma p-tau217 for amyloid-β pathology in different clinical syndromes

MCI Probable AD dementia Frontotemporal dementia Vascular dementia Corticobasal syndrome

Age in 
years

PPV %  
(95% CI)

NPV %  
(95% CI)

PPV %  
(95% CI)

NPV %  
(95% CI)

PPV %  
(95% CI)

NPV %  
(95% CI)

PPV %  
(95% CI)

NPV % (95% 
CI)

PPV %  
(95% CI)

NPV %  
(95% CI)

50–54 68.4% 
(65.5–71.4%)

94.4% 
(93.3–95.4%)

97.5% 
(96.5–98.1%)

44.6% 
(40.1–50%)

27.6% 
(25–30.5%)

99% 
(98.8–99.2%)

45.2% 
(41.9–48.7%)

97.8% 
(97.3–98.2%)

Prevalence data 
unavailable

Prevalence 
data 
unavailable

55–59 73.1% 
(70.5–75.9%)

93% 
(91.7–94.3%)

97.4% 
(96.3–98%)

45.7% 
(41.2–51.1%)

30.5% 
(27.8–33.7%)

98.8% 
(98.6–99%)

49.1% 
(45.8–52.7%)

97.4% 
(96.9–97.9%)

82.9% 
(81–84.9%)

88.2% 
(86.1–90.3%)

60–64 77.1% 
(74.7–79.6%)

91.5% 
(89.9–93%)

97.3%  
(96.1–97.9%)

47%  
(42.4–52.4%)

33.3% 
(30.5–36.6%)

98.6% 
(98.4–98.9%)

52.6% 
(49.3–56.2%)

97%  
(96.4–97.6%)

81.2% 
(79.1–83.3%)

89.4% 
(87.5–91.3%)

65–69 80.9% 
(78.7–83%)

89.6% 
(87.7–91.4%)

97% 
(95.7–97.7%)

49.5% 
(44.8–54.8%)

40.8% 
(37.7–44.3%)

98.1% 
(97.8–98.5%)

57.3% 
(54.1–60.8%)

96.4% 
(95.7–97.1%)

76.4% 
(73.9–78.9%)

91.8% 
(90.3–93.3%)

70–74 84% 
(82.2–85.9%)

87.3% 
(85.1–89.5%)

96.7% 
(95.4–97.5%)

51.7% 
(47.1–57.1%)

47.2% 
(43.9–50.7%)

97.6% 
(97.1–98.1%)

64% 
(60.9–67.2%)

95.3% 
(94.4–96.2%)

74% 
(71.4–76.7%)

92.7% 
(91.4–94.1%)

75–79 87.5% 
(86–89%)

83.9% 
(81.2–86.6%)

96.5% 
(95–97.3%)

53.9% 
(49.3–59.2%)

52.6% 
(49.3–56.2%)

97%  
(96.4–97.6%)

69.4% 
(66.6–72.4%)

94.1% 
(93–95.2%)

69.4% 
(66.6–72.4%)

94.1% 
(93–95.2%)

80–84 89.6% 
(88.3–90.9%)

80.8% 
(77.8–83.9%)

96.2% 
(94.6–97.1%)

55.9% 
(51.3–61.1%)

57.3% 
(54.1–60.8%)

96.4% 
(95.7–97.1%)

74% 
(71.4–76.7%)

92.7% 
(91.4–94.1%)

64% 
(60.9–67.2%)

95.3% 
(94.4–96.2%)

85–89 91.1% 
(90–92.2%)

77.9% 
(74.6–81.4%)

95.7% 
(93.9–96.7%)

58.6% 
(54.1–63.7%)

61.5%  
(58.3–64.8%)

95.8% 
(95–96.6%)

77.8% 
(75.5–80.2%)

91.2% 
(89.6–92.8%)

60.2% 
(57–63.6%)

96% 
(95.2–96.8%)

90–95 92.5% 
(91.6–93.5%)

74.6% 
(70.9–78.4%)

95.3% 
(93.3–96.4%)

61.2% 
(56.7–66.1%)

65.2% 
(62.1–68.3%)

95.1% 
(94.2–96%)

81.2% 
(79.1–83.3%)

89.4% 
(87.5–91.3%)

55.8% 
(52.6–59.3%)

96.6% 
(96–97.3%)
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the prevalence of AD pathology is associated with age in non-AD 
syndromes18, the PPV and NPV of plasma biomarkers also varies slightly 
with age. For example, because of the relatively higher prevalence of 
AD pathology in younger individuals with corticobasal syndrome18, 
caution is warranted in using plasma biomarkers to rule out AD in these 
individuals. Overall, however, plasma biomarkers are more limited in 
ruling in AD pathology in non-AD clinical syndromes and follow-up 
testing with either PET or CSF may be warranted; in these instances, 
the topographical information provided by tau-PET47,48 may be useful. 
Plasma biomarkers may therefore have an important role in reducing 
the patient burden associated with the initiation of anti-amyloid-β 
therapies for AD, which at present require biomarker confirmation 
with PET or CSF, as well as serial magnetic resonance imaging to moni-
tor for adverse events45,46. However, it is also important to consider 
that multiple neuropathological processes are often present in older 
individuals with cognitive symptoms, and plasma biomarkers alone 
cannot determine whether AD is the driving force behind a specific 
clinical syndrome. This is especially true of biomarkers that plateau 
in later disease stages49. In the future, plasma biomarker panels that 
measure p-tau217 in addition to biomarkers that become abnormal at 
later stages such as p-tau205 (refs. 50,51) or MTBR-tau243 (ref. 52) may 
prove beneficial in this regard53. Furthermore, more work is needed 
to determine what is an acceptable PPV for Aβ+ for the initiation of 
anti-amyloid therapy, as it is possible that PPVs below 85–90% may not 
be sufficient and more invasive/expensive testing may be warranted.

The results of our study used amyloid-β pathology prevalence 
estimates derived from the Amyloid Biomarker Study Group, an inter-
national multicenter study of more than 19,000 individuals19,28. These 
prevalence estimates informed the age-associated pretest probability of 
amyloid-β pathology in MCI, probable AD dementia and non-AD demen-
tia clinical syndromes, which permit PPVs and NPVs to be estimated12,17. 
These prevalence estimates are largely based on subjects recruited from 
clinical and research settings that feature some enrollment biases and 
are not representative in terms of race or ethnicity of the populations 
at risk for dementia globally. Furthermore, research-level phenotyping 
may result in stronger clinico-pathological correlations in individuals 
with MCI, AD dementia and non-AD syndromes than can be reasonably 
achieved in nonspecialist centers. However, very similar results were 
observed when using prevalence estimates from the Mayo Clinic Study 
of Aging, a population-based cohort study20.

Performance of specific plasma AD biomarkers was overall highly 
comparable across different centers, settings and populations. For 
example, the sensitivity and specificity of p-tau181 in the Health and 
Aging Brain Study–Health Disparities (HABS-HD) cohort, a multi-
ethnic and multiracial community-based research study, which fea-
tures a high proportion of Mexican–American and African–American 

individuals, was nearly identical to p-tau181 performance in highly 
specialized memory clinic settings. While p-tau217 was not available 
in some cohorts, previous studies have provided evidence that this 
biomarker also has excellent performance in different racial and ethnic 
groups54,55. Our study contributes to this finding by providing evidence 
of excellent diagnostic performance of plasma p-tau217 for AD in a large 
multicenter memory clinic cohort from South Korea.

Our study has important limitations. First, the binary classifica-
tion of individuals into categories based on the presence/absence of 
disease is a limitation; it is anticipated that plasma biomarker accuracy 
is higher in later-stage disease when burden of pathology is greater. 
Second, while our study used a standardized method of determining 
plasma biomarker abnormality across centers, future work may be able 
to further optimize this method, in turn providing higher PPVs and 
NPVs. For example, recent evidence suggests that a three-range method 
leads to higher accuracy to identify amyloid PET positivity in individu-
als with MCI56. Third, the use of plasma biomarker ratios may further 
improve accuracy by circumventing associations between chronic 
kidney disease and elevated plasma biomarker concentrations57. Fourth, 
refinements to the clinical pretest probability estimates (for example, 
through polygenetic risk scores58 or through basic algorithms incorpo-
rating age, APOE genotype and cognitive testing59) will probably further 
improve plasma biomarker diagnostic performance and interpretation. 
Fifth, our study is a cross-sectional diagnostic study and is not designed 
to predict who will develop AD dementia in the future. Blood biomarkers 
of amyloid-β misfolding have shown promise in this regard60,61. Sixth, 
the amyloid PET positivity prevalence estimates employed in our study 
are derived from meta-analyses of predominantly memory clinic and 
research settings18,19. Correspondingly, the PPV and NPV estimates from 
our study should not be extrapolated to other clinical settings where 
the prevalence of AD is substantially different11,12,14,15.

In conclusion, our study provides information about the inter-
pretation of plasma biomarkers for AD at the individual level, adjusted 
to clinical pretest probability. Our study provides evidence that, in 
individuals with probable AD dementia and in older individuals with 
MCI, plasma biomarkers can be used to rule in amyloid-β pathology, 
required for the initiation of disease-modifying therapies. In individuals 
with non-AD dementia syndromes, a negative plasma p-tau217 result 
can rule out AD pathology, with follow-up testing required for non-AD 
dementia syndrome cases with a positive AD plasma biomarker.

Methods
Study patients
This study evaluated individuals assessed with standardized cogni-
tive assessments, plasma biomarkers of AD and reference standard 
AD biomarker assessments (either PET, CSF or neuropathological 
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assessments). Patients were enrolled from prospective cohort studies 
in Canada, France, South Korea, Spain, Sweden and the United States. 
AD biomarker abnormality was not required for enrollment in any of the 
participating sites. All study participants provided written informed 
consent, and local institutional review boards approved the studies. 
A detailed description of inclusion and exclusion criteria for all pro-
spective cohort studies is provided in the Supplementary Appendix.

Plasma biomarker assessments
The plasma biomarkers evaluated in this study were p-tau181, p-tau217, 
p-tau231, GFAP and NfL. Assays for p-tau181 included the in-house 
assay from the University of Gothenburg and from Quanterix. Assays 
of p-tau217 included assays from Lilly, Janssen and ALZPath. Plasma 
p-tau231 was assessed using the in-house assay developed at the Uni-
versity of Gothenburg. GFAP and NfL concentrations were measured 
using the Quanterix assay. The details of all assays can be found in the 
Supplementary Information.

Reference standard biomarker assessments
The reference standards used in this study to determine the presence 
of AD pathology were PET, CSF and neuropathological assessments. 
Abnormality criteria for all reference standard biomarkers have been 
published previously and are described in the Supplementary Informa-
tion for all cohorts.

Statistics and reproducibility
Abnormality for plasma biomarkers was determined in a standard-
ized manner across all cohorts using z-scores created based on the 
means and s.d. of cognitively unimpaired individuals without elevated 
amyloid-β pathology, as previously done in several studies8,62,63. These 
z-scores were applied to the cognitively impaired individuals with ref-
erence standard biomarkers assessed by dementia specialists. In the 
TRIAD cohort and McGill memory clinic cohorts, a z-score of 1.5 had 
high discriminative accuracy for biological AD versus other neurode-
generative diseases. Therefore, plasma biomarker abnormality was 
defined by a z-score of 1.5 and above, and this was applied consistently to 
all cohorts. Prevalence-adjusted (that is, pretest probability-adjusted) 
PPVs and NPVs were calculated using the Bayesian formula provided by 
Altman and Bland15,64,65 using age-associated prevalence of Aβ+ in MCI, 
probable AD dementia and non-AD dementia syndromes (frontotem-
poral dementia, vascular dementia and corticobasal syndrome) from 
published meta-analyses18,19 using the following formulas:

PPV = sensitivity × prevalence
(sensitivity × prevalence) + ((1 − specificity) × (1 − prevalence)) ,

NPV = specificity × (1 − prevalence)
((1 − sensitivity) × prevalence) + (specificity × (1 − prevalence)) .

We furthermore conducted three sets of sensitivity analyses. First, 
owing to the strong association of APOE ε4 genotype with amyloid-β 
pathology18,19, we estimated age- and clinical syndrome-associated 
plasma biomarker PPVs and NPVs adjusted for APOE ε4 carriership. 
In the second, we estimated PPVs and NPVs using the upper and lower 
estimates of the reported prevalence of amyloid-β pathology18,19. In 
the third, we used prevalence estimates of amyloid PET positivity from 
the Mayo Clinic Study of Aging, a population-based cohort study20. No 
statistical methods were used to predetermine sample sizes. No data 
were excluded from any of the analyses. Data were visualized using 
GraphPad Prism (version 10). This study complied with Standards for 
Reporting Diagnostic Accuracy Studies guidelines.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data from the ADNI cohort can be accessed from https://ida.loni.usc.
edu. Data from the HABS-HB study can be accessed from https://apps.
unthsc.edu/itr/researchers. Raw and analyzed de-identified data from 
the Mayo Clinic Study of Aging can be requested at https://ras-rdrs.
mayo.edu/Request/IndexRequest. The request will be reviewed by 
the Mayo Clinic Study of Aging investigators and Mayo Clinic to verify 
whether the request is subject to any intellectual property or confiden-
tiality obligations. A data sharing agreement must be obtained before 
release. Anonymized data from the BICWALZS, BioCogBank, BIODEG-
MAR, BioFINDER, SPIN, TRIAD and UCSD-ADRC cohort studies will be 
shared by request from a qualified academic investigator for the sole 
purpose of replicating procedures and results presented in this Letter 
and as long as the data transfer is in agreement with all local legisla-
tion on general data protection regulation and will be regulated by a 
material transfer agreement. Source data are provided with this paper.

Code availability
No custom code or mathematical algorithm that was central to the 
conclusions was used for this study.
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