
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Transferrable Representations for Visual Recognition

Permalink
https://escholarship.org/uc/item/2wr8k45r

Author
Donahue, Jeffrey

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wr8k45r
https://escholarship.org
http://www.cdlib.org/

Transferrable Representations for Visual Recognition

by

Jeffrey Donahue

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Chair
Professor Jitendra Malik
Professor Alexei Efros

Professor Bruno Olshausen

Spring 2017

Transferrable Representations for Visual Recognition

Copyright c© 2017

by

Jeffrey Donahue

1

Abstract

Transferrable Representations for Visual Recognition

by

Jeffrey Donahue
Doctor of Philosophy in Computer Science

University of California, Berkeley
Professor Trevor Darrell, Chair

The rapid progress in visual recognition capabilities over the past several years can be
attributed largely to improvements in generic and transferrable feature representations,
particularly learned representations based on convolutional networks (convnets) trained
“end-to-end” to predict visual semantics given raw pixel intensity values. In this thesis,
we analyze the structure of these convnet representations and their generality and
transferrability to other tasks and settings.

We begin in Chapter 2 by examining the hierarchical semantic structure that
naturally emerges in convnet representations from large-scale supervised training,
even when this structure is unobserved in the training set. Empirically, the resulting
representations generalize surprisingly well to classification in related yet distinct
settings.

Chapters 3 and 4 showcase the flexibility of convnet-based representations for
prediction tasks where the inputs or targets have more complex structure. Chapter 3
focuses on representation transfer to the object detection and semantic segmentation
tasks in which objects must be localized within an image, as well as labeled. Chapter 4
augments convnets with recurrent structure to handle recognition problems with
sequential inputs (e.g., video activity recognition) or outputs (e.g., image captioning).
Across each of these domains, end-to-end fine-tuning of the representation for the
target task provides a substantial additional performance benefit.

Finally, we address the necessity of label supervision for representation learning.
In Chapter 5 we propose an unsupervised learning approach based on generative
models, demonstrating that some of the transferrable semantic structure learned by
supervised convnets can be learned from images alone.

i

To my parents, Jim and Linda.

Contents

Contents ii

1 Introduction 1

2 Classification: DeCAF 4
2.1 Background . 5
2.2 Deep Convolutional Activation Features 7

2.2.1 Feature generalization and visualization 7
2.3 Evaluation . 8

2.3.1 Object recognition . 9
2.3.2 Domain adaptation . 10
2.3.3 Subcategory recognition . 12
2.3.4 Scene recognition . 14

2.4 Discussion . 15

3 Localization: R-CNN 16
3.1 Object detection . 19

3.1.1 Module design . 19
3.1.2 Test-time detection . 20
3.1.3 Training . 21
3.1.4 Results on PASCAL VOC 2010-12 22
3.1.5 Results on ILSVRC2013 detection 23
3.1.6 Visualization, ablation, and modes of error 24
3.1.7 The ILSVRC2013 detection dataset 29

3.2 Semantic segmentation . 33
3.3 Discussion . 34
3.4 Appendix . 35

3.4.1 Object proposal transformations 35
3.4.2 Positive vs. negative examples and softmax 35
3.4.3 Bounding-box regression . 37
3.4.4 Additional feature visualizations 38
3.4.5 Per-category segmentation results 38

iii

3.4.6 Analysis of cross-dataset redundancy 39

4 Sequences: LRCN 45
4.1 Background . 47
4.2 Long-term Recurrent Convolutional Networks 50
4.3 Activity recognition . 52

4.3.1 Evaluation . 53
4.4 Image captioning . 56

4.4.1 Evaluation . 58
4.5 Video description . 65

4.5.1 Evaluation . 66
4.6 Related work . 67

4.6.1 Prior work . 67
4.6.2 Contemporaneous and subsequent work 68

4.7 Discussion . 70

5 Unsupervised Learning: BiGAN 72
5.1 Background . 74
5.2 Bidirectional Generative Adversarial Networks 75

5.2.1 Optimal discriminator, generator, & encoder 76
5.2.2 Optimal generator & encoder are inverses 77
5.2.3 Relationship to autoencoders 78
5.2.4 Learning . 78
5.2.5 Generalized BiGAN . 79

5.3 Evaluation . 80
5.3.1 Baseline methods . 80
5.3.2 Permutation-invariant MNIST 81
5.3.3 ImageNet . 82

5.4 Discussion . 84
5.5 Appendix . 86

5.5.1 Additional proofs . 86
5.5.2 Learning details . 91
5.5.3 Model and training details . 92

6 Conclusion 95
6.1 Frontiers and future directions . 95

iv

Acknowledgments

I’ve been extraordinarily lucky to learn from, work with, and enjoy the company of so
many brilliant, kind, and funny people over my six years at Berkeley. None of this
would have been possible without them.

Thanks to Trevor Darrell for being a great and enthusiastic advisor, always
patient and willing to support, brainstorm with, and guide me on any research path I
was excited about, and for organizing countless events from bar nights to Tahoe ski
retreats that have made being a part of the group so memorable.

Thanks to the rest of my committee – Jitendra Malik, Alyosha Efros, and Bruno
Olshausen – for their feedback and guidance with this dissertation, for their memorable
teaching and conversations that have informed and shaped my research, and for their
infectious enthusiasm.

Thanks to Kristen Grauman, my undergraduate advisor at UT Austin, from
whom I learned how to do research and write a paper, and whose inspiring teaching
first got me interested in computer vision.

Thanks to the great (former) postdocs and research scientists I’ve had the chance
to collaborate with, including Kate Saenko, Erik Rodner, Marcus Rohrbach, and
Sergio Guadarrama. I worked especially closely with and learned an enormous amount
from Ross Girshick and Philipp Krähenbühl.

Thanks to all my friends and collaborators in Berkeley (including some visitors)
who have made it an intellectually rich and thoroughly enjoyable place to be (and a
sad place to leave...for now at least): Yangqing Jia, Oriol Vinyals, Jon Barron, Sergey
Karayev, Judy Hoffman, Jon Long, Ning Zhang, Allie Janoch, Hyun Oh Song, Georgia
Gkioxari, Saurabh Gupta, Pulkit Agrawal, Evan Shelhamer, Lisa Anne Hendricks, Eric
Tzeng, Richard Zhang, Subha Venugopalan, Carl Doersch, Deepak Pathak, Samaneh
Azadi, Kate Rakelly, Erin Grant, Parsa Mahmoudieh, Zeynep Akata, David Fouhey,
and many more.

Thanks to everyone on the Visual Discovery team at Pinterest for the fun and
welcoming home away from home across the bay, including Kevin Jing, Jiajing Xu,
Dmitry Kislyuk, Andrew Zhai, David Liu, Stephanie Rogers, and Raymond Shiau.

Thanks to my brother Chris and to friends across the country who I’ve been able
to stay in touch with over the years – particularly Marc Legrand, Allen Farris, and
Vishal Ganesan – for their moral support.

Finally, thanks to my parents for all their love and support throughout the years,
and for always encouraging me to pursue education. This thesis is dedicated to them.

1

Chapter 1

Introduction

The last decade of advancement in visual recognition has been largely fueled by
improvements in feature representations. Previously, improving feature representations
meant sitting down and thinking very hard about how to process an image locally
to make its higher level semantics more accessible to the machine learning algorithm
downstream. More recently, however, end-to-end learning techniques in which visual
feature representations are learned directly from raw pixel intensity values – primarily
using convolutional networks or convnets – have facilitated rapid progress and come
to supplant the hand-engineered approaches.

Though convnets had been proposed by the early 1980s (Fukushima, 1980), and
even put into real-world use for handwritten digit recognition by the 1990s (LeCun
et al., 1998), the deep learning revolution in mainstream computer vision began at
the end of 2012 with a groundbreaking submission (Krizhevsky et al., 2012) from
Alex Krizhevsky and his collaborators at the University of Toronto to the ImageNet
classification challenge (Russakovsky et al., 2015). The Toronto team trained a deep
convnet, now affectionately known as AlexNet, to predict image categories directly
from pixel intensity inputs. Compared with the next best method, which used a
variety of traditional computer vision techniques based on hand-engineered features,
AlexNet reduced the classification error rate by around 40%.

To some, the reason for the success of this new approach seemed immediately
clear: the use of end-to-end learning with minimal data preprocessing to optimize
the representation for performance on the task at hand, rather than a hand-designed
representation based on intuition and trial-and-error alone. Yet despite the compelling
ImageNet results, much of the community remained skeptical of the generality of the
approach.

With over 1.2 million labeled images, the ImageNet challenge dataset was much
larger than typical datasets in computer vision, which often consist of just a few
labeled examples of each category. Was this complex model with millions of parameters
learning anything that could generalize to other settings? In particular, could these
deep learning based approaches possibly be applicable in more common settings with

CHAPTER 1. INTRODUCTION 2

just a few labeled examples, or would each new application always require an additional
painstaking and expensive annotation effort to label thousands or millions of images?

Figure 1.1. Deep convnets
learn representations that or-
ganize the visual world into
“supercategories” they were
never explicitly trained to
recognize (Chapter 2).

Furthermore, classification is just one challenge
in computer vision – arguably the simplest one – and
AlexNet struck many as an inscrutable black box whose
structure was quite rigid and inflexible, taking input im-
ages of a fixed resolution and producing predictions from
a fixed and finite discrete hypothesis space. As such,
there was palpable doubt that deep learning approaches
could facilitate similar progress in more complex visual
recognition tasks like object detection and semantic seg-
mentation, where objects need not only be identified
but localized as well, or in tasks where the inputs or
outputs are dynamic or sequential rather than drawn
from a fixed hypothesis space.

In Chapter 2 we address the first set of questions,
demonstrating that these deep hierarchical models infer
structure and regularities in the data not explicitly spec-
ified by the labels on which they are trained (Figure 1.1),
and furthermore that their learned representations are highly transferrable to related
classification tasks. When activations in the intermediate layers of this network are
treated as “features” and fed into simple classifiers, respectable classification accuracy
can be achieved with as little as a single sample per class, and with more labeled
samples, results quickly approach or exceed the prior state of the art.

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1.2. When appropriately
equipped, convnets go beyond classifi-
cation, handling tasks with more com-
plex structure (Chapters 3 & 4).

With Chapters 3 and 4 we further
demonstrate that with a bit of additional in-
strumentation, these networks are quite capa-
ble not only of classification, but of handling
more complex localization problems, as well
as tasks with dynamic inputs or outputs (Fig-
ure 1.2). And while surprisingly good perfor-
mance comes quickly and easily by transfer-
ring an ImageNet-pretrained convnet repre-
sentation as a simple feature extractor, the
real power of these approaches is their capac-
ity to be learned end-to-end, and this power
is apparent from the significant further perfor-
mance gains that can be had by fine-tuning
the pre-trained weights for the target task.

Given these triumphs and innumerably
many others over the last four years since

AlexNet, the initial skepticism as to whether deep convnets would come to proliferate

CHAPTER 1. INTRODUCTION 3

and dominate all of supervised learning in computer vision has largely evaporated.
While network architectures, optimization techniques, and other aspects of supervised
deep learning are still being refined and improved to this day, by now there is broad
(if at times begrudging) consensus within the community that given a sufficiently
large labeled dataset, a convolutional network with appropriate structure can adeptly
handle just about any computer vision problem one throws at it.

features data

z G G(z)

xEE(x)

G(z), z

x, E(x)
D P (y)

Figure 1.3. Unsupervised BiGANs learn
the structure of the visual world by gen-
erating it (Chapter 5).

What is less clear, however, is how these
networks might be able to learn unsuper-
vised to exploit the virtually infinite supply
of unlabeled data available in the wild. Intu-
ition suggests that it should be possible for
a model to gain useful knowledge about the
structure of the visual world just by looking
at it, without always being explicitly told
what it’s looking at, as in fully supervised
learning.

In Chapter 5 we’ll discuss approaches
that aim to address this important research frontier, focusing particularly on a purely
generative model based on Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), a powerful class of models capable of synthesizing realistic images from
simple latent distributions. Bidirectional GANs (BiGANs) learn semantic feature
representations of the visual world by generating it (Figure 1.3).

Though generative models for unsupervised representation learning are still in
their infancy, there are a number of potential areas for improvement, as well as broad
applications outside of pure visual recognition in areas like reinforcement learning.
And despite the relative strength and maturity of supervised representation learning
for visual recognition, a variety of techniques could further enhance their efficiency
and accuracy. In Chapter 6 we’ll conclude and discuss some of these exciting future
research directions.

4

Chapter 2

A Deep Convolutional Activation
Feature for Generic Visual
Recognition1

Discovery of effective representations that capture salient semantics for a given
task is a key goal of perceptual learning. Performance with conventional visual
representations, based on flat feature representations involving quantized gradient
filters, has been impressive but has likely plateaued in recent years.

It has long been argued that deep or layered compositional architectures should
be able to capture salient aspects of a given domain through discovery of salient
clusters, parts, mid-level features, and/or hidden units (Fidler and Leonardis, 2007;
Hinton and Salakhutdinov, 2006; Krizhevsky et al., 2012; Singh et al., 2012; Zhu et al.,
2007). Such models have been able to perform better than traditional hand-engineered
representations in many domains, especially those where good features have not already
been engineered (Le et al., 2011). Recent results have shown that moderately deep
unsupervised models outperform the state-of-the art gradient histogram features in
part-based detection models (Ren and Ramanan, 2013).

Deep models have recently been applied to large-scale visual recognition tasks,
trained via back-propagation through layers of convolutional filters (LeCun et al.,
1989). These models perform extremely well in domains with large amounts of training
data, and had early success in digit classification tasks (LeCun et al., 1998). With
the advent of large scale sources of category-level training data; e.g., ImageNet (Deng
et al., 2009), and efficient implementation with online approximate model averaging
(“dropout”) (Krizhevsky et al., 2012), they have recently outperformed all known
methods on a large scale recognition challenge (Deng et al., 2012).

With limited training data, however, fully-supervised deep architectures with

1This chapter is based on joint work with Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang,
Eric Tzeng, and Trevor Darrell (Donahue et al., 2014).

CHAPTER 2. CLASSIFICATION: DECAF 5

the representational capacity of (Krizhevsky et al., 2012) will generally dramatically
overfit the training data. In fact, many conventional visual recognition challenges have
tasks with few training examples; e.g., when a user is defining a category “on-the-fly”
using specific examples, or for fine-grained recognition challenges (Welinder et al.,
2010), attributes (Bourdev et al., 2011), and/or domain adaptation (Saenko et al.,
2010).

In this chapter we investigate semi-supervised multi-task learning of deep convo-
lutional representations, where representations are learned on a set of related problems
but applied to new tasks which have too few training examples to learn a full deep
representation. Our model can either be considered as a deep architecture for transfer
learning based on a supervised pre-training phase, or simply as a new visual feature
DeCAF defined by the convolutional network weights learned on a set of pre-defined
object recognition tasks. Our work is also related to representation learning schemes in
computer vision which form an intermediate representation based on learning classifiers
on related tasks (Li et al., 2010; Quattoni et al., 2008; Torresani et al., 2010).

Our main result is the empirical validation that a generic visual feature based on a
convolutional network weights trained on ImageNet outperforms a host of conventional
visual representations on standard benchmark object recognition tasks, including
Caltech-101 (Li et al., 2004), the Office domain adaptation dataset (Saenko et al.,
2010), the Caltech-UCSD Birds fine-grained recognition dataset (Welinder et al., 2010),
and the SUN-397 scene recognition database (Xiao et al., 2010).

Further, we analyze the semantic salience of deep convolutional representations,
comparing visual features defined from such networks to conventional representations.
In Section 2.2, we visualize the semantic clustering properties of deep convolutional
features compared to baseline representations, and find that convolutional features
appear to cluster semantic topics more readily than conventional features. Finally,
while conventional deep learning can be computationally expensive, we note that the
run-time and resource computation of deep-learned convolutional features are not
exceptional in comparison to existing features such as HOG (Dalal and Triggs, 2005)
or KDES (Bo et al., 2010).

2.1 Background

Deep convolutional networks have a long history in computer vision, with early
examples showing successful results on using supervised back-propagation networks
to perform digit recognition (LeCun et al., 1989). More recently, these networks,
in particular the convolutional network proposed by Krizhevsky et al. (2012), have
achieved competition-winning numbers on large benchmark datasets consisting of
more than one million images, such as ImageNet (Deng et al., 2012).

Learning from related tasks also has a long history in machine learning beginning
with Caruana (1997) and Thrun (1996). Later works such as Argyriou et al. (2006)

CHAPTER 2. CLASSIFICATION: DECAF 6

(a) LLC (b) GIST (c) DeCAF1 (d) DeCAF6

Figure 2.1. This figure shows several t-SNE feature visualizations on the ILSVRC-2012
validation set. (a) LLC , (b) GIST, and features derived from our CNN: (c) DeCAF1,
the first pooling layer, and (d) DeCAF6, the second to last hidden layer (best viewed
in color).

developed efficient frameworks for optimizing representations from related tasks,
and Ando and Zhang (2005) explored how to transfer parameter manifolds to new
tasks. In computer vision, forming a representation based on sets of trained classifiers
on related tasks has recently been shown to be effective in a variety of retrieval and
classification settings, specifically using classifiers based on visual category detectors (Li
et al., 2010; Torresani et al., 2010). A key question for such learning problems is to
find a feature representation that captures the object category related information
while discarding noise irrelevant to object category information such as illumination.

Transfer learning across tasks using deep representations has been extensively
studied, especially in an unsupervised setting (Mesnil et al., 2012; Raina et al., 2007).
However, reported successes with such models in convolutional networks have been
limited to relatively small datasets such as CIFAR and MNIST, and efforts on larger
datasets have had only modest success Le et al. (2012). We investigate the “supervised
pre-training” approach proven successful in computer vision and multimedia settings
using a concept-bank paradigm (Kennedy and Hauptmann, 2006; Li et al., 2010;
Torresani et al., 2010) by learning the features on large-scale data in a supervised
setting, then transferring them to different tasks with different labels.

To evaluate the generality of a representation formed from a deep convolutional
feature trained on generic recognition tasks, we consider training and testing on
datasets known to have a degree of dataset bias with respect to ImageNet. We
evaluate on the SUN-397 scene dataset, as well as datasets used to evaluate domain
adaptation performance directly (Chopra et al., 2013; Kulis et al., 2011). This evaluates
whether the learned features could undo the domain bias by capturing the real semantic
information instead of overfitting to domain-specific appearances.

CHAPTER 2. CLASSIFICATION: DECAF 7

2.2 Deep Convolutional Activation Features

In our approach, a deep convolutional model is first trained in a fully supervised
setting using a state-of-the-art method (Krizhevsky et al., 2012). We then extract
various features from this network, and evaluate the efficacy of these features on
generic vision tasks. Even though the forward pass computed by the architecture in
this section does achieve state-of-the-art performance on ILSVRC-2012, two questions
remain:

• Do features extracted from the CNN generalize to other datasets?

• How do these features perform versus depth?

We address these questions both qualitatively and quantitatively, via visualizations
of semantic clusters below, and experimental comparision to current baselines in the
following section.

2.2.1 Feature generalization and visualization

We visualized the model features to gain insight into the semantic capacity of
DeCAF and other features that have been typically employed in computer vision. In
particular, we compare the features described in Section 2.2 with GIST features (Oliva
and Torralba, 2001) and LLC features (Wang et al., 2010).

We visualize features in the following way: we run the t-SNE algorithm (van der
Maaten and Hinton, 2008) to find a 2-dimensional embedding of the high-dimensional
feature space, and plot them as points colored depending on their semantic category
in a particular hierarchy. We did this on the validation set of ILSVRC-2012 to avoid
overfitting effects (as the deep CNN used in this chapter was trained only on the
training set), and also use an independent dataset, SUN-397 (Xiao et al., 2010), to
evaluate how dataset bias affects our results (see, e.g., Torralba and Efros (2011) for a
deeper discussion of this topic).

One would expect features closer to the output (softmax) layer to be linearly
separable, so it is not very interesting (and also visually quite hard) to represent the
1000 classes on the t-SNE derived embedding.

We first visualize the semantic segregation of the model by plotting the embedding
of labels for higher levels of the WordNet hierarchy; for example, a strong feature for
visual recognition should cluster indoor and outdoor instances separately, even though
there is no explicit modeling through the supervised training of the CNN. Figure 2.1
shows the features extracted on the validation set using the first pooling layer, and
the second to last fully connected layer, showing a clear semantic clustering in the
latter but not in the former. This is compatible with common deep learning knowledge
that the first layers learn “low-level” features, whereas the latter layers learn semantic
or “high-level” features. Furthermore, other features such as GIST or LLC fail to

CHAPTER 2. CLASSIFICATION: DECAF 8

Figure 2.2. In this figure we show how our features trained on ILSVRC-2012 generalized
to SUN-397 when considering semantic groupings of labels (best viewed in color).

capture the semantic difference in the image (although they show interesting clustering
structure).2

More interestingly, in Figure 2.2 we can see the top performing features (DeCAF6)
on the SUN-397 dataset. Even there, the features show very good clustering of semantic
classes (e.g., indoor vs. outdoor). This suggests DeCAF is a good feature for general
object recognition tasks. Consider the case where the object class that we are trying
to detect is not in the original object pool of ILSVRC-2012. The fact that these
features cluster several intermediate nodes of WordNet implies that these features are
an excellent starting point for generalizing to unseen classes.

2.3 Evaluation

In this section, we present experimental results evaluating DeCAF on multiple
standard computer vision benchmarks, comparing many possible featurization and
classification approaches. In each of the experiments, we take the activations of the
nth hidden layer of the deep convolutional neural network described in Section 2.2 as
a feature DeCAFn. DeCAF7 denotes features taken from the final hidden layer – i.e.,
just before propagating through the final fully connected layer to produce the class
predictions. DeCAF6 is the activations of the layer before DeCAF7, and DeCAF5

2Some of the features were very high dimensional (e.g. LLC had 16K dimension), in which case
we preprocess them by randomly projecting them down to 512 dimensions – random projections are
cheap to apply and tend to preserve distances well, which is all the t-SNE algorithm cares about.

CHAPTER 2. CLASSIFICATION: DECAF 9

DeCAF5 DeCAF6 DeCAF7

LogReg 63.29± 6.6 84.30± 1.6 84.87± 0.6
LogReg with Dropout - 86.08± 0.8 85.68± 0.6
SVM 77.12± 1.1 84.77± 1.2 83.24± 1.2
SVM with Dropout - 86.91± 0.7 85.51± 0.9

Yang et al. (2009) 84.3
Jarrett et al. (2009) 65.5

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Num Train per Category

M
e
a
n
 A

c
c
u
ra

c
y
 p

e
r

C
a
te

g
o
ry

LogReg DeCAF6 w/ Dropout

SVM DeCAF6 w/ Dropout

Yang et al. (2009)

Figure 2.3. Left: average accuracy per class on Caltech-101 with 30 training samples
per class across three hidden layers of the network and two classifiers. Our result from
the training protocol/classifier combination with the best validation accuracy – SVM
with Layer 6 (+ dropout) features – is shown in bold. Right: average accuracy per
class on Caltech-101 at varying training set sizes.

the layer before DeCAF6. DeCAF5 is the first set of activations that has been fully
propagated through the convolutional layers of the network. We chose not to evaluate
features from any earlier in the network, as the earlier convolutional layers are unlikely
to contain a richer semantic representation than the later features which form higher-
level hypotheses from the low to mid-level local information in the activations of the
convolutional layers. Because we are investigating the use of the network’s hidden
layer activations as features, all of its weights are frozen to those learned on the Deng
et al. (2012) dataset.3 All images are preprocessed using the procedure described for
the ILSVRC images in Section 2.2, taking features on the center 224× 224 crop of the
256× 256 resized image.

We present results on multiple datasets to evaluate the strength of DeCAF
for basic object recognition, domain adaptation, fine-grained recognition, and scene
recognition. These tasks each differ somewhat from that for which the architecture was
trained, together representing much of the contemporary visual recognition spectrum.

2.3.1 Object recognition

To analyze the ability of the deep features to transfer to basic-level object category
recognition, we evaluate them on the Caltech-101 dataset (Li et al., 2004). In addition
to directly evaluating linear classifier performance on DeCAF6 and DeCAF7, we also
report results using a regularization technique called “dropout” proposed by Hinton
et al. (2012). At training time, this technique works by randomly setting half of the
activations (here, our features) in a given layer to 0. At test time, all activations are
multiplied by 0.5. Dropout was used successfully by Krizhevsky et al. (2012) in layers
6 and 7 of their network; hence we study the effect of the technique when applied to

3We also experimented with the equivalent feature using randomized weights and found it to have
performance comparable to traditional hand-designed features.

CHAPTER 2. CLASSIFICATION: DECAF 10

the features derived from these layers.
In each evaluation, the classifier, a logistic regression (LogReg) or support vector

machine (SVM), is trained on a random set of 30 samples per class (including the
background class), and tested on the rest of the data, with parameters cross-validated
for each split on a 25 train/5 validation subsplit of the training data. The results in
Figure 2.3, left, are reported in terms of mean accuracy per category averaged over
five data splits.

Our top-performing method (based on validation accuracy) trains a linear SVM
on DeCAF6 with dropout, with test set accuracy of 86.9%. The DeCAF5 features
perform substantially worse than either the DeCAF6 or DeCAF7 features, and hence
we do not evaluate them further in this chapter. The DeCAF7 features generally have
accuracy about 1-2% lower than the DeCAF6 features on this task. The dropout
regularization technique uniformly improved results by 0-2% for each classifier/feature
combination. When trained on DeCAF, the SVM and logistic regression classifiers
perform roughly equally well on this task.

We compare our performance against the current state-of-the-art on this bench-
mark from Yang et al. (2009), a method employing a combination of 5 traditional
hand-engineered image features followed by a multi-kernel based classifier. Our top-
performing method training a linear SVM on a single feature outperforms this method
by 2.6%. Our method also outperforms by over 20% the two-layer convolutional
network of Jarrett et al. (2009), demonstrating the importance of the depth of the
network used for our feature. Note that unlike our method, these approaches from
the literature do not implicitly leverage an outside large-scale image database like
ImageNet. The performance edge of our method over these approaches demonstrates
the importance of multi-task learning when performing object recognition with sparse
data like that available in the Caltech-101 benchmark.

We also show how performance of the two DeCAF6 with dropout methods above
vary with the number of training cases per category, plotted in Figure 2.3, right,
trained with fixed parameters and evaluated under the same metric as before. Our
one-shot learning results (e.g., 33.0% for SVM) suggest that with sufficiently strong
representations like DeCAF, useful models of visual categories can often be learned
from just a single positive example.

2.3.2 Domain adaptation

We next evaluate DeCAF for use on the task of domain adaptation. For our
experiments we use the benchmark Office dataset (Saenko et al., 2010).The dataset
contains three domains: Amazon, which consists of product images taken from amazon.

com; and Webcam and Dslr, which consists of images taken in an office environment
using a webcam or digital SLR camera, respectively.

In the domain adaptation setting, we are given a training (source) domain with
labeled training data and a distinct test (target) domain with either a small amount

amazon.com
amazon.com

CHAPTER 2. CLASSIFICATION: DECAF 11

(a) SURF features (b) DeCAF6

Figure 2.4. Visualization of the webcam (green) and dslr (blue) domains using the
original released SURF features (a) and DeCAF6 (b). The figure is best viewed by
zooming in to see the images in local regions. All images from the scissor class are
shown enlarged. They are well clustered and overlapping in both domains with our
representation, while SURF only clusters a subset and places the others in disjoint
parts of the space, closest to distinctly different categories such as chairs and mugs.

of labeled data or no labeled data. We will experiment within the supervised domain
adaptation setting, where there is a small amount of labeled data available from the
target domain.

Most prior work for this dataset uses SURF (Bay et al., 2006) interest point
features (available for download with the dataset). To illustrate the ability of DeCAF
to be robust to resolution changes, we use the t-SNE (van der Maaten and Hinton,
2008) algorithm to project both SURF and DeCAF6, computed for Webcam and Dslr,
into a 2D visualizable space (See Figure 2.4). We visualize an image on the point
in space corresponding to its low dimension projected feature vector. We find that
DeCAF not only provides better within category clustering, but also clusters same
category instances across domains. This indicates qualitatively that DeCAF removed
some of the domain bias between the Webcam and Dslr domains.

We validate this conclusion with a quantitative experiment on the Office dataset.
Table 2.1 presents multi-class accuracy averaged across 5 train/test splits for the domain
shifts Amazon→Webcam and Dslr → Webcam. We use the standard experimental setup
first presented in Saenko et al. (2010). To compare SURF with the DeCAF6, and
DeCAF7 deep convolutional features, we report the multi-class accuracy for each,
using an SVM and Logistic Regression both trained in 3 ways: with only source data

CHAPTER 2. CLASSIFICATION: DECAF 12

Amazon → Webcam Dslr → Webcam

SURF DeCAF6 DeCAF7 SURF DeCAF6 DeCAF7

Logistic Reg. (S) 9.63± 1.4 48.58± 1.3 53.56± 1.5 24.22± 1.8 88.77± 1.2 87.38± 2.2

SVM (S) 11.05± 2.3 52.22± 1.7 53.90± 2.2 38.80± 0.7 91.48± 1.5 89.15± 1.7

Logistic Reg. (T) 24.33± 2.1 72.56± 2.1 74.19± 2.8 24.33± 2.1 72.56± 2.1 74.19± 2.8

SVM (T) 51.05± 2.0 78.26± 2.6 78.72± 2.3 51.05± 2.0 78.26± 2.6 78.72± 2.3

Logistic Reg. (ST) 19.89± 1.7 75.30± 2.0 76.32± 2.0 36.55± 2.2 92.88± 0.6 91.91± 2.0

SVM (ST) 23.19± 3.5 80.66± 2.3 79.12± 2.1 46.32± 1.1 94.79 ± 1.2 92.96± 2.0

Daume III (2007) 40.26± 1.1 82.14 ± 1.9 81.65± 2.4 55.07± 3.0 91.25± 1.1 89.52± 2.2

Hoffman et al. (2013) 37.66± 2.2 80.06± 2.7 80.37± 2.0 53.65± 3.3 93.25± 1.5 91.45± 1.5

Gong et al. (2012) 39.80± 2.3 75.21± 1.2 77.55± 1.9 39.12± 1.3 88.40± 1.0 88.66± 1.9

Chopra et al. (2013) 58.85 78.21

Table 2.1. DeCAF dramatically outperforms the baseline SURF feature available with
the Office dataset as well as the deep adaptive method of Chopra et al. (2013). We
report average multi class accuracy using both non-adaptive and adaptive classifiers,
changing only the input feature from SURF to DeCAF. Most surprisingly, in the case
of Dslr→Webcam the domain shift is largely non-existent with DeCAF.

(S), only target data (T), and source and target data (ST). We also report results
for three adaptive methods run with each DeCAF we consider as input. Finally, for
completeness we report a recent and competing deep domain adaptation result from
Chopra et al. (2013). DeCAF dramatically outperforms the baseline SURF feature
available with the Office dataset as well as the deep adaptive method of Chopra et al.
(2013).

2.3.3 Subcategory recognition

We tested the performance of DeCAF on the task of subcategory recognition.
To this end, we adopted one of its most popular tasks - the Caltech-UCSD birds
dataset (Welinder et al., 2010), and compare the performance against several state-of-
the-art baselines.

Following common practice in the literature, we adopted two approaches to
perform classification. Our first approach adopts an ImageNet-like pipeline, in which
we followed the existing protocol by cropping the images regions 1.5× the size of the
provided bounding boxes, resizing them 256×256 and then feeding them into the CNN
pipeline to get the features for classification. We computed DeCAF6 and trained a
multi-class logistic regression on top of the features.

CHAPTER 2. CLASSIFICATION: DECAF 13

8

7

6

5

4

3

2

10

(a) DPM detections (b) Parts (c) DPD

Figure 2.5. Pipeline of deformable part descriptor (DPD) on a sample test images.
It uses DPM for part localization and then use learned pooling weights for final
pose-normalized representation.

Our second approach, we tested DeCAF in a pose-normalized setting using the
deformable part descriptors (DPD) method (Zhang et al., 2013). Inspired by the
deformable parts model (Felzenszwalb et al., 2010), DPD explicitly utilizes the part
localization to do semantic pooling. Specifically, after training a weakly-supervised
DPM on bird images, the pool weight for each part of each component is calculated by
using the key-point annotations to get cross-component semantic part correspondence.
The final pose-normalized representation is computed by pooling the image features
of predicted part boxes using the pooling weights. Based on the DPD implementation
provided by the authors, we applied DeCAF in the same pre-trained DPM model
and part predictions and used the same pooling weights. Figure 2.5 shows the DPM
detections and visualization of pooled DPD features on a sample test image. As
our first approach, we resized each predicted part box to 256 × 256 and computed
DeCAF6 to replace the KDES image features (Bo et al., 2010) used by Zhang et al.
(2013).

Our performance as well as those from the literature are listed in Table 2.2.
DeCAF together with a simple logistic regression already obtains a significant perfor-
mance increase over existing approaches, indicating that such features, although not
specifically designed to model subcategory-level differences, captures such information
well. In addition, explicitly taking more structured information such as part locations
still helps, and provides another significant performance increase, obtaining an accu-
racy of 64.96%, compared to the 50.98% accuracy reported in Zhang et al. (2013). It
also outperforms POOF (Berg and Belhumeur, 2013), which is the best part-based
approach for fine-grained categorization published so far.

To the best of our knowledge, this is the best accuracy reported so far in the
literature.

We note again that in all the experiments above, no fine-tuning is carried out

CHAPTER 2. CLASSIFICATION: DECAF 14

Method Accuracy

DeCAF6 58.75
DPD + DeCAF6 64.96

DPD (Zhang et al., 2013) 50.98
POOF (Berg and Belhumeur, 2013) 56.78

Table 2.2. Accuracy on the Caltech-UCSD bird dataset.

on the CNN layers since our main interest is to analyze how DeCAF generalizes to
different tasks. To obtain the best possible result one may want to perform a full
back-propagation. However, the fact that we see a significant performance increase
without fine-tuning suggests that DeCAF may serve as a good off-the-shelf visual
representation without heavy computation.

2.3.4 Scene recognition

Finally, we evaluate DeCAF on the SUN-397 large-scale scene recognition
database (Xiao et al., 2010). Unlike object recognition, wherein the goal is to identify
and classify an object which is usually the primary focus of the image, the goal of
a scene recognition task is to classify the scene of the entire image. In the SUN-397
database, there are 397 semantic scene categories including abbey, diner, mosque, and
stadium. Because DeCAF is learned on ILSVRC, an object recognition database,
we are applying it to a task for which it was not designed. Hence we might expect
this task to be very challenging for these features, unless they are highly generic
representations of the visual world.

Based on the success of using dropout with DeCAF6 and DeCAF7 for the object
recognition task detailed in Section 2.3.1, we train and evaluate linear classifiers on
these dropped-out features on the SUN-397 database. Table 2.3 gives the classification
accuracy results averaged across 5 splits of 50 training images and 50 test images.
Parameters are fixed for all methods, but we select the top-performing method by
cross-validation, training on 42 images and testing on the remaining 8 in each split.

Our top-performing method in terms of cross-validation accuracy was to use
DeCAF7 with the SVM classifier, resulting in 40.94% test performance. Comparing
against the method of Xiao et al. (2010), the current state-of-the-art method, we
see a performance improvement of 2.9% using only DeCAF. Note that, like the
state-of-the-art method used as a baseline in Section 2.3.1, this method uses a large
set of traditional vision features and combines them with a multi-kernel learning
method. The fact that a simple linear classifier on top of our single image feature
outperforms the multi-kernel learning baseline built on top of many traditional features
demonstrates the ability of DeCAF to generalize to other tasks and its representational

CHAPTER 2. CLASSIFICATION: DECAF 15

DeCAF6 DeCAF7

LogReg 40.94 ± 0.3 40.84± 0.3
SVM 39.36± 0.3 40.66± 0.3

Xiao et al. (2010) 38.0

Table 2.3. Average accuracy per class on SUN-397 with 50 training samples and 50
test samples per class, across two hidden layers of the network and two classifiers.
Our result from the training protocol/classifier combination with the best validation
accuracy – Logistic Regression with DeCAF7 – is shown in bold.

power as compared to traditional hand-engineered features.

2.4 Discussion

In this work, we analyze the use of deep features applied in a semi-supervised
multi-task framework. In particular, we demonstrate that by leveraging an auxiliary
large labeled object database to train a deep convolutional architecture, we can
learn features that have sufficient representational power and generalization ability to
perform semantic visual discrimination tasks using simple linear classifiers, reliably
outperforming current state-of-the-art approaches based on sophisticated multi-kernel
learning techniques with traditional hand-engineered features. Our visual results
demonstrate the generality and semantic knowledge implicit in these features, showing
that the features tend to cluster images into interesting semantic categories on which
the network was never explicitly trained. Our numerical results consistently and
robustly demonstrate that our multi-task feature learning framework can substantially
improve the performance of a wide variety of existing methods across a spectrum
of visual recognition tasks, including domain adaptation, fine-grained part-based
recognition, and large-scale scene recognition. The ability of a visual recognition
system to achieve high classification accuracy on tasks with sparse labeled data has
proven to be an elusive goal in computer vision research, but our multi-task deep
learning framework and fast open-source implementation are significant steps in this
direction. While our current experiments focus on contemporary recognition challenges,
we expect our feature to be very useful in detection, retrieval, and category discovery
settings as well.

16

Chapter 3

Object Detection by Regions with
Convolutional Network Features1

Features matter. The last decade of progress on various visual recognition tasks
has been based considerably on the use of SIFT (Lowe, 2004) and HOG (Dalal and
Triggs, 2005). But if we look at performance on the canonical visual recognition task,
PASCAL VOC object detection (Everingham et al., 2010), it is generally acknowledged
that progress has been slow during 2010-2012, with small gains obtained by building
ensemble systems and employing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms, a representation we could
associate roughly with complex cells in V1, the first cortical area in the primate visual
pathway. But we also know that recognition occurs several stages downstream, which
suggests that there might be hierarchical, multi-stage processes for computing features
that are even more informative for visual recognition.

Fukushima’s “neocognitron” (Fukushima, 1980), a biologically-inspired hierar-
chical and shift-invariant model for pattern recognition, was an early attempt at just
such a process. The neocognitron, however, lacked a supervised training algorithm.
Building on Rumelhart et al. (1985), LeCun et al. (1989) showed that stochastic
gradient descent via backpropagation was effective for training convolutional neural
networks (CNNs), a class of models that extend the neocognitron.

CNNs saw heavy use in the 1990s (e.g., LeCun et al. (1998)), but then fell
out of fashion with the rise of support vector machines. In 2012, Krizhevsky et al.
(2012) rekindled interest in CNNs by showing substantially higher image classification
accuracy on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Deng
et al., 2009, 2012). Their success resulted from training a large CNN on 1.2 million
labeled images, together with a few twists on LeCun’s CNN (e.g., max(x, 0) rectifying
non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously debated during the

1This chapter is based on joint work with Ross Girshick, Trevor Darrell, and Jitendra Malik (Gir-
shick et al., 2014).

CHAPTER 3. LOCALIZATION: R-CNN 17

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 3.1. Object detection system overview. Our system (1) takes an input
image, (2) extracts around 2000 bottom-up region proposals, (3) computes features
for each proposal using a large convolutional neural network (CNN), and then (4)
classifies each region using class-specific linear SVMs. R-CNN achieves a mean average
precision (mAP) of 53.7% on PASCAL VOC 2010. For comparison, Uijlings et al.
(2013) reports 35.1% mAP using the same region proposals, but with a spatial pyramid
and bag-of-visual-words approach. The popular deformable part models perform at
33.4%. On the 200-class ILSVRC2013 detection dataset, R-CNN’s mAP is
31.4%, a large improvement over OverFeat (Sermanet et al., 2013a), which had the
previous best result at 24.3%.

ILSVRC 2012 workshop. The central issue can be distilled to the following: To what
extent do the CNN classification results on ImageNet generalize to object detection
results on the PASCAL VOC Challenge?

We answer this question by bridging the gap between image classification and
object detection. This chapter shows that a CNN can lead to dramatically higher
object detection performance on PASCAL VOC as compared to systems based on
simpler HOG-like features. To achieve this result, we focused on two problems:
localizing objects with a deep network and training a high-capacity model with only a
small quantity of annotated detection data.

Unlike image classification, detection requires localizing (likely many) objects
within an image. One approach frames localization as a regression problem. However,
work from Szegedy et al. (2013), concurrent with our own, indicates that this strategy
may not fare well in practice (they report a mAP of 30.5% on VOC 2007 compared
to the 58.5% achieved by our method). An alternative is to build a sliding-window
detector. CNNs have been used in this way for at least two decades, typically on
constrained object categories, such as faces (Rowley et al., 1998; Vaillant et al.,
1994) and pedestrians (Sermanet et al., 2013b). In order to maintain high spatial
resolution, these CNNs typically only have two convolutional and pooling layers. We
also considered adopting a sliding-window approach. However, units high up in our

CHAPTER 3. LOCALIZATION: R-CNN 18

network, which has five convolutional layers, have very large receptive fields (195× 195
pixels) and strides (32×32 pixels) in the input image, which makes precise localization
within the sliding-window paradigm an open technical challenge.

Instead, we solve the CNN localization problem by operating within the “recog-
nition using regions” paradigm (Gu et al., 2009), which has been successful for both
object detection (Uijlings et al., 2013) and semantic segmentation (Carreira and Smin-
chisescu, 2012). At test time, our method generates around 2000 category-independent
region proposals for the input image, extracts a fixed-length feature vector from each
proposal using a CNN, and then classifies each region with category-specific linear
SVMs. We use a simple technique (affine image warping) to compute a fixed-size
CNN input from each region proposal, regardless of the region’s shape. Figure 3.1
presents an overview of our method and highlights some of our results. Since our
system combines region proposals with CNNs, we dub the method R-CNN: Regions
with CNN features.

In this chapter, we provide a head-to-head comparison of R-CNN and the recently
proposed OverFeat (Sermanet et al., 2013a) detection system by running R-CNN on
the 200-class ILSVRC2013 detection dataset. OverFeat uses a sliding-window CNN for
detection and until now was the best performing method on ILSVRC2013 detection.
We show that R-CNN significantly outperforms OverFeat, with a mAP of 31.4% versus
24.3%.

A second challenge faced in detection is that labeled data is scarce and the
amount currently available is insufficient for training a large CNN. The conventional
solution to this problem is to use unsupervised pre-training, followed by supervised
fine-tuning (e.g., Sermanet et al. (2013b)). The second principle contribution of this
chapter is to show that supervised pre-training on a large auxiliary dataset (ILSVRC),
followed by domain-specific fine-tuning on a small dataset (PASCAL), is an effective
paradigm for learning high-capacity CNNs when data is scarce. In our experiments,
fine-tuning for detection improves mAP performance by 8 percentage points. After
fine-tuning, our system achieves a mAP of 54% on VOC 2010 compared to 33% for
the highly-tuned, HOG-based deformable part model (DPM) (Felzenszwalb et al.,
2010; Girshick et al.). We also point readers to contemporaneous work of Donahue
et al. (2014), who show that Krizhevsky’s CNN can be used (without fine-tuning) as a
blackbox feature extractor, yielding excellent performance on several recognition tasks
including scene classification, fine-grained sub-categorization, and domain adaptation.

Our system is also quite efficient. The only class-specific computations are a
reasonably small matrix-vector product and greedy non-maximum suppression. This
computational property follows from features that are shared across all categories and
that are also two orders of magnitude lower-dimensional than previously used region
features (cf. Uijlings et al. (2013)).

Understanding the failure modes of our approach is also critical for improving it,
and so we report results from the detection analysis tool of Hoiem et al. (2012). As an
immediate consequence of this analysis, we demonstrate that a simple bounding-box

CHAPTER 3. LOCALIZATION: R-CNN 19

regression method significantly reduces mislocalizations, which are the dominant error
mode.

Before developing technical details, we note that because R-CNN operates on
regions it is natural to extend it to the task of semantic segmentation. With minor
modifications, we also achieve competitive results on the PASCAL VOC segmentation
task, with an average segmentation accuracy of 47.9% on the VOC 2011 test set.

3.1 Object detection

Our object detection system consists of three modules. The first generates
category-independent region proposals. These proposals define the set of candidate
detections available to our detector. The second module is a large convolutional neural
network that extracts a fixed-length feature vector from each region. The third module
is a set of class-specific linear SVMs. In this section, we present our design decisions for
each module, describe their test-time usage, detail how their parameters are learned,
and show detection results on PASCAL VOC 2010-12 and on ILSVRC2013.

3.1.1 Module design

Region proposals. A variety of recent papers offer methods for generating category-
independent region proposals. Examples include: objectness (Alexe et al., 2012),
selective search (Uijlings et al., 2013), category-independent object proposals (Endres
and Hoiem, 2010), constrained parametric min-cuts (CPMC) (Carreira and Sminchis-
escu, 2012), multi-scale combinatorial grouping (Arbeláez et al., 2014), and Cireşan et
al. (Cireşan et al., 2013), who detect mitotic cells by applying a CNN to regularly-
spaced square crops, which are a special case of region proposals. While R-CNN is
agnostic to the particular region proposal method, we use selective search to enable a
controlled comparison with prior detection work (e.g., Uijlings et al. (2013); Wang
et al. (2013a)).

Feature extraction. We extract a 4096-dimensional feature vector from each region
proposal using the Caffe (Jia et al., 2014) implementation of the CNN described
by Krizhevsky et al. (Krizhevsky et al., 2012). Features are computed by forward
propagating a mean-subtracted 227×227 RGB image through five convolutional layers
and two fully connected layers. We refer readers to Jia et al. (2014); Krizhevsky et al.
(2012) for more network architecture details.

In order to compute features for a region proposal, we must first convert the
image data in that region into a form that is compatible with the CNN (its architecture
requires inputs of a fixed 227× 227 pixel size). Of the many possible transformations
of our arbitrary-shaped regions, we opt for the simplest. Regardless of the size or
aspect ratio of the candidate region, we warp all pixels in a tight bounding box around
it to the required size. Prior to warping, we dilate the tight bounding box so that at

CHAPTER 3. LOCALIZATION: R-CNN 20

aeroplane bicycle bird car

Figure 3.2. Warped training samples from VOC 2007 train.

the warped size there are exactly p pixels of warped image context around the original
box (we use p = 16). Figure 3.2 shows a random sampling of warped training regions.
Alternatives to warping are discussed in Appendix 3.4.1.

3.1.2 Test-time detection

At test time, we run selective search on the test image to extract around 2000
region proposals (we use selective search’s “fast mode” in all experiments). We warp
each proposal and forward propagate it through the CNN in order to compute features.
Then, for each class, we score each extracted feature vector using the SVM trained for
that class. Given all scored regions in an image, we apply a greedy non-maximum
suppression (for each class independently) that rejects a region if it has an intersection-
over-union (IoU) overlap with a higher scoring selected region larger than a learned
threshold.

Run-time analysis. Two properties make detection efficient. First, all CNN pa-
rameters are shared across all categories. Second, the feature vectors computed by
the CNN are low-dimensional when compared to other common approaches, such as
spatial pyramids with bag-of-visual-word encodings. The features used in the UVA
detection system (Uijlings et al., 2013), for example, are two orders of magnitude
larger than ours (360k vs. 4k-dimensional).

The result of such sharing is that the time spent computing region proposals
and features (13s/image on a GPU or 53s/image on a CPU) is amortized over all
classes. The only class-specific computations are dot products between features and
SVM weights and non-maximum suppression. In practice, all dot products for an
image are batched into a single matrix-matrix product. The feature matrix is typically
2000 × 4096 and the SVM weight matrix is 4096 × N , where N is the number of
classes.

This analysis shows that R-CNN can scale to thousands of object classes without
resorting to approximate techniques, such as hashing. Even if there were 100k classes,
the resulting matrix multiplication takes only 10 seconds on a modern multi-core
CPU. This efficiency is not merely the result of using region proposals and shared
features. The UVA system, due to its high-dimensional features, would be two orders of

CHAPTER 3. LOCALIZATION: R-CNN 21

magnitude slower while requiring 134GB of memory just to store 100k linear predictors,
compared to just 1.5GB for our lower-dimensional features.

It is also interesting to contrast R-CNN with the recent work from Dean et al. on
scalable detection using DPMs and hashing (Dean et al., 2013). They report a mAP
of around 16% on VOC 2007 at a run-time of 5 minutes per image when introducing
10k distractor classes. With our approach, 10k detectors can run in about a minute
on a CPU, and because no approximations are made mAP would remain at 59%
(Section 3.1.6.2).

3.1.3 Training

Supervised pre-training. We discriminatively pre-trained the CNN on a large
auxiliary dataset (ILSVRC2012 classification) using image-level annotations only
(bounding-box labels are not available for this data). Pre-training was performed using
the open source Caffe CNN library (Jia et al., 2014). In brief, our CNN nearly matches
the performance of Krizhevsky et al. (Krizhevsky et al., 2012), obtaining a top-1 error
rate 2.2 percentage points higher on the ILSVRC2012 classification validation set.
This discrepancy is due to simplifications in the training process.

Domain-specific fine-tuning. To adapt our CNN to the new task (detection) and
the new domain (warped proposal windows), we continue stochastic gradient descent
(SGD) training of the CNN parameters using only warped region proposals. Aside from
replacing the CNN’s ImageNet-specific 1000-way classification layer with a randomly
initialized (N + 1)-way classification layer (where N is the number of object classes,
plus 1 for background), the CNN architecture is unchanged. For VOC, N = 20 and
for ILSVRC2013, N = 200. We treat all region proposals with ≥ 0.5 IoU overlap with
a ground-truth box as positives for that box’s class and the rest as negatives. We
start SGD at a learning rate of 0.001 (1/10th of the initial pre-training rate), which
allows fine-tuning to make progress while not clobbering the initialization. In each
SGD iteration, we uniformly sample 32 positive windows (over all classes) and 96
background windows to construct a mini-batch of size 128. We bias the sampling
towards positive windows because they are extremely rare compared to background.

Object category classifiers. Consider training a binary classifier to detect cars.
It’s clear that an image region tightly enclosing a car should be a positive example.
Similarly, it’s clear that a background region, which has nothing to do with cars,
should be a negative example. Less clear is how to label a region that partially overlaps
a car. We resolve this issue with an IoU overlap threshold, below which regions are
defined as negatives. The overlap threshold, 0.3, was selected by a grid search over
{0, 0.1, . . . , 0.5} on a validation set. We found that selecting this threshold carefully
is important. Setting it to 0.5, as in Uijlings et al. (2013), decreased mAP by 5 points.
Similarly, setting it to 0 decreased mAP by 4 points. Positive examples are defined
simply to be the ground-truth bounding boxes for each class.

CHAPTER 3. LOCALIZATION: R-CNN 22

VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

DPM v5 (Girshick et al.)† 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4

UVA (Uijlings et al., 2013) 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1

Regionlets (Wang et al., 2013a) 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7

SegDPM (Fidler et al., 2013)† 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4

R-CNN 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2

R-CNN BB 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7

Table 3.1. Detection average precision (%) on VOC 2010 test. R-CNN is most
directly comparable to UVA and Regionlets since all methods use selective search
region proposals. Bounding-box regression (BB) is described in Section 3.1.6.5. At
publication time, SegDPM was the top-performer on the PASCAL VOC leaderboard.
†DPM and SegDPM use context rescoring not used by the other methods.

Once features are extracted and training labels are applied, we optimize one linear
SVM per class. Since the training data is too large to fit in memory, we adopt the
standard hard negative mining method (Felzenszwalb et al., 2010; Sung and Poggio,
1994). Hard negative mining converges quickly and in practice mAP stops increasing
after only a single pass over all images.

In Appendix 3.4.2 we discuss why the positive and negative examples are defined
differently in fine-tuning versus SVM training. We also discuss the trade-offs involved
in training detection SVMs rather than simply using the outputs from the final softmax
layer of the fine-tuned CNN.

3.1.4 Results on PASCAL VOC 2010-12

Following the PASCAL VOC best practices (Everingham et al., 2010), we val-
idated all design decisions and hyperparameters on the VOC 2007 dataset (Sec-
tion 3.1.6.2). For final results on the VOC 2010-12 datasets, we fine-tuned the CNN
on VOC 2012 train and optimized our detection SVMs on VOC 2012 trainval. We
submitted test results to the evaluation server only once for each of the two major
algorithm variants (with and without bounding-box regression).

Table 3.1 shows complete results on VOC 2010. We compare our method against
four strong baselines, including SegDPM (Fidler et al., 2013), which combines DPM
detectors with the output of a semantic segmentation system (Carreira et al., 2012)
and uses additional inter-detector context and image-classifier rescoring. The most
germane comparison is to the UVA system from Uijlings et al. (2013), since our
systems use the same region proposal algorithm. To classify regions, their method
builds a four-level spatial pyramid and populates it with densely sampled SIFT,
Extended OpponentSIFT, and RGB-SIFT descriptors, each vector quantized with
4000-word codebooks. Classification is performed with a histogram intersection kernel
SVM. Compared to their multi-feature, non-linear kernel SVM approach, we achieve a
large improvement in mAP, from 35.1% to 53.7% mAP, while also being much faster
(Section 3.1.2). Our method achieves similar performance (53.3% mAP) on VOC
2011/12 test.

CHAPTER 3. LOCALIZATION: R-CNN 23

0 20 40 60 80 100

UIUC−IFP

Delta

GPU_UCLA

SYSU_Vision

Toronto A

*OverFeat (1)

*NEC−MU

UvA−Euvision

*OverFeat (2)

*R−CNN BB

mean average precision (mAP) in %

ILSVRC2013 detection test set mAP

1.0%

6.1%

9.8%

10.5%

11.5%

19.4%

20.9%

22.6%

24.3%

31.4%

competition result

post competition result

0

10

20

30

40

50

60

70

80

90

100

*
R

−
C

N
N

 B
B

U
v
A

−
E

u
v
is

io
n

*
N

E
C

−
M

U

*
O

v
er

F
ea

t
(1

)

T
o
ro

n
to

 A

S
Y

S
U

_
V

is
io

n

G
P

U
_
U

C
L

A

D
el

ta

U
IU

C
−

IF
P

av
er

ag
e

p
re

ci
si

o
n
 (

A
P

)
in

 %

ILSVRC2013 detection test set class AP box plots

Figure 3.3. (Left) Mean average precision on the ILSVRC2013 detection
test set. Methods preceeded by * use outside training data (images and labels
from the ILSVRC classification dataset in all cases). (Right) Box plots for the
200 average precision values per method. A box plot for the post-competition
OverFeat result is not shown because per-class APs are not yet available (per-class
APs for R-CNN are in Table 3.8 and also included in the tech report source uploaded
to arXiv.org; see R-CNN-ILSVRC2013-APs.txt). The red line marks the median AP,
the box bottom and top are the 25th and 75th percentiles. The whiskers extend to
the min and max AP of each method. Each AP is plotted as a green dot over the
whiskers (best viewed digitally with zoom).

3.1.5 Results on ILSVRC2013 detection

We ran R-CNN on the 200-class ILSVRC2013 detection dataset using the same
system hyperparameters that we used for PASCAL VOC. We followed the same
protocol of submitting test results to the ILSVRC2013 evaluation server only twice,
once with and once without bounding-box regression.

Figure 3.3 compares R-CNN to the entries in the ILSVRC 2013 competition and
to the post-competition OverFeat result (Sermanet et al., 2013a). R-CNN achieves a
mAP of 31.4%, which is significantly ahead of the second-best result of 24.3% from
OverFeat. To give a sense of the AP distribution over classes, box plots are also
presented and a table of per-class APs follows at the end of the chapter in Table 3.8.
Most of the competing submissions (OverFeat, NEC-MU, UvA-Euvision, Toronto A,
and UIUC-IFP) used convolutional neural networks, indicating that there is significant
nuance in how CNNs can be applied to object detection, leading to greatly varying
outcomes.

In Section 3.1.7, we give an overview of the ILSVRC2013 detection dataset and
provide details about choices that we made when running R-CNN on it.

CHAPTER 3. LOCALIZATION: R-CNN 24

1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

1.0 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6

1.0 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6

1.0 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

1.0 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Figure 3.4. Top regions for six pool5 units. Receptive fields and activation values
are drawn in white. Some units are aligned to concepts, such as people (row 1) or
text (4). Other units capture texture and material properties, such as dot arrays (2)
and specular reflections (6).

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

R-CNN pool5 51.8 60.2 36.4 27.8 23.2 52.8 60.6 49.2 18.3 47.8 44.3 40.8 56.6 58.7 42.4 23.4 46.1 36.7 51.3 55.7 44.2

R-CNN fc6 59.3 61.8 43.1 34.0 25.1 53.1 60.6 52.8 21.7 47.8 42.7 47.8 52.5 58.5 44.6 25.6 48.3 34.0 53.1 58.0 46.2

R-CNN fc7 57.6 57.9 38.5 31.8 23.7 51.2 58.9 51.4 20.0 50.5 40.9 46.0 51.6 55.9 43.3 23.3 48.1 35.3 51.0 57.4 44.7

R-CNN FT pool5 58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 55.5 43.4 43.1 57.7 59.0 45.8 28.1 50.8 40.6 53.1 56.4 47.3

R-CNN FT fc6 63.5 66.0 47.9 37.7 29.9 62.5 70.2 60.2 32.0 57.9 47.0 53.5 60.1 64.2 52.2 31.3 55.0 50.0 57.7 63.0 53.1

R-CNN FT fc7 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

R-CNN FT fc7 BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

DPM v5 (Girshick et al.) 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

DPM ST (Lim et al., 2013) 23.8 58.2 10.5 8.5 27.1 50.4 52.0 7.3 19.2 22.8 18.1 8.0 55.9 44.8 32.4 13.3 15.9 22.8 46.2 44.9 29.1

DPM HSC (Ren and Ramanan, 2013) 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

Table 3.2. Detection average precision (%) on VOC 2007 test. Rows 1-3
show R-CNN performance without fine-tuning. Rows 4-6 show results for the CNN
pre-trained on ILSVRC 2012 and then fine-tuned (FT) on VOC 2007 trainval. Row 7
includes a simple bounding-box regression (BB) stage that reduces localization errors
(Section 3.1.6.5). Rows 8-10 present DPM methods as a strong baseline. The first uses
only HOG, while the next two use different feature learning approaches to augment or
replace HOG.

3.1.6 Visualization, ablation, and modes of error

3.1.6.1 Visualizing learned features

First-layer filters can be visualized directly and are easy to understand (Krizhevsky
et al., 2012). They capture oriented edges and opponent colors. Understanding the
subsequent layers is more challenging. Zeiler et al. (2011) presents a visually attractive
deconvolutional approach. We propose a simple (and complementary) non-parametric
method that directly shows what the network learned.

The idea is to single out a particular unit (feature) in the network and use it as if

CHAPTER 3. LOCALIZATION: R-CNN 25

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

R-CNN T-Net 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

R-CNN T-Net BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

R-CNN O-Net 71.6 73.5 58.1 42.2 39.4 70.7 76.0 74.5 38.7 71.0 56.9 74.5 67.9 69.6 59.3 35.7 62.1 64.0 66.5 71.2 62.2

R-CNN O-Net BB 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

Table 3.3. Detection average precision (%) on VOC 2007 test for two dif-
ferent CNN architectures. The first two rows are results from Table 3.2 using
Krizhevsky et al.’s architecture (T-Net). Rows three and four use the recently proposed
16-layer architecture from Simonyan and Zisserman (O-Net) (Simonyan and Zisserman,
2015).

it were an object detector in its own right. That is, we compute the unit’s activations
on a large set of held-out region proposals (about 10 million), sort the proposals from
highest to lowest activation, perform non-maximum suppression, and then display the
top-scoring regions. Our method lets the selected unit “speak for itself” by showing
exactly which inputs it fires on. We avoid averaging in order to see different visual
modes and gain insight into the invariances computed by the unit.

We visualize units from layer pool5, which is the max-pooled output of the
network’s fifth and final convolutional layer. The pool5 feature map is 6×6×256 = 9216-
dimensional. Ignoring boundary effects, each pool5 unit has a receptive field of 195×195
pixels in the original 227× 227 pixel input. A central pool5 unit has a nearly global
view, while one near the edge has a smaller, clipped support.

Each row in Figure 3.4 displays the top 16 activations for a pool5 unit from a
CNN that we fine-tuned on VOC 2007 trainval. Six of the 256 functionally unique
units are visualized (Appendix 3.4.4 includes more). These units were selected to show
a representative sample of what the network learns. In the second row, we see a unit
that fires on dog faces and dot arrays. The unit corresponding to the third row is a red
blob detector. There are also detectors for human faces and more abstract patterns
such as text and triangular structures with windows. The network appears to learn a
representation that combines a small number of class-tuned features together with
a distributed representation of shape, texture, color, and material properties. The
subsequent fully connected layer fc6 has the ability to model a large set of compositions
of these rich features.

3.1.6.2 Ablation studies

Performance layer-by-layer, without fine-tuning. To understand which layers
are critical for detection performance, we analyzed results on the VOC 2007 dataset for
each of the CNN’s last three layers. Layer pool5 was briefly described in Section 3.1.6.1.
The final two layers are summarized below.

Layer fc6 is fully connected to pool5. To compute features, it multiplies a
4096× 9216 weight matrix by the pool5 feature map (reshaped as a 9216-dimensional
vector) and then adds a vector of biases. This intermediate vector is component-wise

CHAPTER 3. LOCALIZATION: R-CNN 26

half-wave rectified (x← max(0, x)).
Layer fc7 is the final layer of the network. It is implemented by multiplying the

features computed by fc6 by a 4096 × 4096 weight matrix, and similarly adding a
vector of biases and applying half-wave rectification.

We start by looking at results from the CNN without fine-tuning on PASCAL, i.e.
all CNN parameters were pre-trained on ILSVRC 2012 only. Analyzing performance
layer-by-layer (Table 3.2 rows 1-3) reveals that features from fc7 generalize worse than
features from fc6. This means that 29%, or about 16.8 million, of the CNN’s parameters
can be removed without degrading mAP. More surprising is that removing both fc7

and fc6 produces quite good results even though pool5 features are computed using
only 6% of the CNN’s parameters. Much of the CNN’s representational power comes
from its convolutional layers, rather than from the much larger densely connected
layers. This finding suggests potential utility in computing a dense feature map, in
the sense of HOG, of an arbitrary-sized image by using only the convolutional layers
of the CNN. This representation would enable experimentation with sliding-window
detectors, including DPM, on top of pool5 features.

Performance layer-by-layer, with fine-tuning. We now look at results from our
CNN after having fine-tuned its parameters on VOC 2007 trainval. The improvement
is striking (Table 3.2 rows 4-6): fine-tuning increases mAP by 8.0 percentage points
to 54.2%. The boost from fine-tuning is much larger for fc6 and fc7 than for pool5,
which suggests that the pool5 features learned from ImageNet are general and that
most of the improvement is gained from learning domain-specific non-linear classifiers
on top of them.

Comparison to recent feature learning methods. Relatively few feature learning
methods have been tried on PASCAL VOC detection. We look at two recent approaches
that build on deformable part models. For reference, we also include results for the
standard HOG-based DPM (Girshick et al.).

The first DPM feature learning method, DPM ST (Lim et al., 2013), augments
HOG features with histograms of “sketch token” probabilities. Intuitively, a sketch
token is a tight distribution of contours passing through the center of an image patch.
Sketch token probabilities are computed at each pixel by a random forest that was
trained to classify 35× 35 pixel patches into one of 150 sketch tokens or background.

The second method, DPM HSC (Ren and Ramanan, 2013), replaces HOG with
histograms of sparse codes (HSC). To compute an HSC, sparse code activations are
solved for at each pixel using a learned dictionary of 100 7× 7 pixel (grayscale) atoms.
The resulting activations are rectified in three ways (full and both half-waves), spatially
pooled, unit `2 normalized, and then power transformed (x← sign(x)|x|α).

All R-CNN variants strongly outperform the three DPM baselines (Table 3.2
rows 8-10), including the two that use feature learning. Compared to the latest version
of DPM, which uses only HOG features, our mAP is more than 20 percentage points
higher: 54.2% vs. 33.7%—a 61% relative improvement. The combination of HOG and

CHAPTER 3. LOCALIZATION: R-CNN 27

sketch tokens yields 2.5 mAP points over HOG alone, while HSC improves over HOG
by 4 mAP points (when compared internally to their private DPM baselines—both
use non-public implementations of DPM that underperform the open source version
(Girshick et al.)). These methods achieve mAPs of 29.1% and 34.3%, respectively.

3.1.6.3 Network architectures

Most results in this chapter use the network architecture from Krizhevsky et al.
(2012). However, we have found that the choice of architecture has a large effect
on R-CNN detection performance. In Table 3.3 we show results on VOC 2007 test
using the 16-layer deep network recently proposed by Simonyan and Zisserman (2015).
This network was one of the top performers in the recent ILSVRC 2014 classification
challenge. The network has a homogeneous structure consisting of 13 layers of 3× 3
convolution kernels, with five max pooling layers interspersed, and topped with three
fully-connected layers. We refer to this network as “O-Net” for OxfordNet and the
baseline as “T-Net” for TorontoNet.

To use O-Net in R-CNN, we downloaded the publicly available pre-trained
network weights for the VGG ILSVRC 16 layers model from the Caffe Model Zoo.2

We then fine-tuned the network using the same protocol as we used for T-Net. The
only difference was to use smaller minibatches (24 examples) as required in order
to fit within GPU memory. The results in Table 3.3 show that R-CNN with O-Net
substantially outperforms R-CNN with T-Net, increasing mAP from 58.5% to 66.0%.
However there is a considerable drawback in terms of compute time, with the forward
pass of O-Net taking roughly 7 times longer than T-Net.

3.1.6.4 Detection error analysis

We applied the excellent detection analysis tool from Hoiem et al. (2012) in order
to reveal our method’s error modes, understand how fine-tuning changes them, and to
see how our error types compare with DPM. A full summary of the analysis tool is
beyond the scope of this chapter and we encourage readers to consult Hoiem et al.
(2012) to understand some finer details (such as “normalized AP”). Since the analysis
is best absorbed in the context of the associated plots, we present the discussion
within the captions of Figure 3.5 and Figure 3.6.

3.1.6.5 Bounding-box regression

Based on the error analysis, we implemented a simple method to reduce localiza-
tion errors. Inspired by the bounding-box regression employed in DPM (Felzenszwalb
et al., 2010), we train a linear regression model to predict a new detection window
given the pool5 features for a selective search region proposal. Full details are given in

2https://github.com/BVLC/caffe/wiki/Model-Zoo

https://github.com/BVLC/caffe/wiki/Model-Zoo

CHAPTER 3. LOCALIZATION: R-CNN 28

total false positives

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

R−CNN fc6: animals

25 100 400 1600 6400
0

20

40

60

80

100

Loc
Sim
Oth
BG

total false positives

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

R−CNN FT fc7: animals

25 100 400 1600 6400
0

20

40

60

80

100

Loc
Sim
Oth
BG

total false positives

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

R−CNN FT fc7 BB: animals

25 100 400 1600 6400
0

20

40

60

80

100

Loc
Sim
Oth
BG

total false positives

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe
R−CNN fc6: furniture

25 100 400 1600 6400
0

20

40

60

80

100

Loc
Sim
Oth
BG

total false positives
pe

rc
en

ta
ge

 o
f e

ac
h

ty
pe

R−CNN FT fc7: furniture

25 100 400 1600 6400
0

20

40

60

80

100

Loc
Sim
Oth
BG

total false positives

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

R−CNN FT fc7 BB: furniture

25 100 400 1600 6400
0

20

40

60

80

100

Loc
Sim
Oth
BG

Figure 3.5. Distribution of top-ranked false positive (FP) types. Each plot
shows the evolving distribution of FP types as more FPs are considered in order of
decreasing score. Each FP is categorized into 1 of 4 types: Loc—poor localization
(a detection with an IoU overlap with the correct class between 0.1 and 0.5, or a
duplicate); Sim—confusion with a similar category; Oth—confusion with a dissimilar
object category; BG—a FP that fired on background. Compared with DPM (see
Hoiem et al. (2012)), significantly more of our errors result from poor localization,
rather than confusion with background or other object classes, indicating that the
CNN features are much more discriminative than HOG. Loose localization likely
results from our use of bottom-up region proposals and the positional invariance
learned from pre-training the CNN for whole-image classification. Column three shows
how our simple bounding-box regression method fixes many localization errors.

Appendix 3.4.3. Results in Table 3.1, Table 3.2, and Figure 3.5 show that this simple
approach fixes a large number of mislocalized detections, boosting mAP by 3 to 4
points.

3.1.6.6 Qualitative results

Qualitative detection results on ILSVRC2013 are presented in Figure 3.8 and
Figure 3.9 at the end of the chapter. Each image was sampled randomly from the val2
set and all detections from all detectors with a precision greater than 0.5 are shown.
Note that these are not curated and give a realistic impression of the detectors in
action. More qualitative results are presented in Figure 3.10 and Figure 3.11, but
these have been curated. We selected each image because it contained interesting,
surprising, or amusing results. Here, also, all detections at precision greater than 0.5
are shown.

CHAPTER 3. LOCALIZATION: R-CNN 29

occ trn size asp view part
0

0.2

0.4

0.6

0.8

0.212

0.612

0.420

0.557

0.201

0.720

0.344

0.606

0.351

0.677

0.244

0.609

0.516

no
rm

al
iz

ed
 A

P

R−CNN fc6: sensitivity and impact

occ trn size asp view part
0

0.2

0.4

0.6

0.8

0.179

0.701

0.498

0.634

0.335

0.766

0.442

0.672

0.429

0.723

0.325

0.685

0.593

no
rm

al
iz

ed
 A

P

R−CNN FT fc7: sensitivity and impact

occ trn size asp view part
0

0.2

0.4

0.6

0.8

0.211

0.731

0.542

0.676

0.385

0.786

0.484

0.709

0.453

0.779

0.368

0.720

0.633

no
rm

al
iz

ed
 A

P

R−CNN FT fc7 BB: sensitivity and impact

occ trn size asp view part
0

0.2

0.4

0.6

0.8

0.132

0.339

0.216

0.347

0.056

0.487

0.126

0.453

0.137

0.391

0.094

0.388

0.297
no

rm
al

iz
ed

 A
P

DPM voc−release5: sensitivity and impact

Figure 3.6. Sensitivity to object characteristics. Each plot shows the mean (over
classes) normalized AP (see Hoiem et al. (2012)) for the highest and lowest performing
subsets within six different object characteristics (occlusion, truncation, bounding-
box area, aspect ratio, viewpoint, part visibility). We show plots for our method
(R-CNN) with and without fine-tuning (FT) and bounding-box regression (BB) as
well as for DPM voc-release5. Overall, fine-tuning does not reduce sensitivity (the
difference between max and min), but does substantially improve both the highest and
lowest performing subsets for nearly all characteristics. This indicates that fine-tuning
does more than simply improve the lowest performing subsets for aspect ratio and
bounding-box area, as one might conjecture based on how we warp network inputs.
Instead, fine-tuning improves robustness for all characteristics including occlusion,
truncation, viewpoint, and part visibility.

3.1.7 The ILSVRC2013 detection dataset

In Section 3.1 we presented results on the ILSVRC2013 detection dataset. This
dataset is less homogeneous than PASCAL VOC, requiring choices about how to use
it. Since these decisions are non-trivial, we cover them in this section.

3.1.7.1 Dataset overview

The ILSVRC2013 detection dataset is split into three sets: train (395,918), val
(20,121), and test (40,152), where the number of images in each set is in parentheses.
The val and test splits are drawn from the same image distribution. These images
are scene-like and similar in complexity (number of objects, amount of clutter, pose
variability, etc.) to PASCAL VOC images. The val and test splits are exhaustively
annotated, meaning that in each image all instances from all 200 classes are labeled
with bounding boxes. The train set, in contrast, is drawn from the ILSVRC2013

CHAPTER 3. LOCALIZATION: R-CNN 30

classification image distribution. These images have more variable complexity with a
skew towards images of a single centered object. Unlike val and test, the train images
(due to their large number) are not exhaustively annotated. In any given train image,
instances from the 200 classes may or may not be labeled. In addition to these image
sets, each class has an extra set of negative images. Negative images are manually
checked to validate that they do not contain any instances of their associated class.
The negative image sets were not used in this work. More information on how ILSVRC
was collected and annotated can be found in Deng et al. (2009); Russakovsky et al.
(2015).

The nature of these splits presents a number of choices for training R-CNN. The
train images cannot be used for hard negative mining, because annotations are not
exhaustive. Where should negative examples come from? Also, the train images have
different statistics than val and test. Should the train images be used at all, and if so,
to what extent? While we have not thoroughly evaluated a large number of choices,
we present what seemed like the most obvious path based on previous experience.

Our general strategy is to rely heavily on the val set and use some of the train
images as an auxiliary source of positive examples. To use val for both training and
validation, we split it into roughly equally sized “val1” and “val2” sets. Since some
classes have very few examples in val (the smallest has only 31 and half have fewer
than 110), it is important to produce an approximately class-balanced partition. To do
this, a large number of candidate splits were generated and the one with the smallest
maximum relative class imbalance was selected.3 Each candidate split was generated
by clustering val images using their class counts as features, followed by a randomized
local search that may improve the split balance. The particular split used here has a
maximum relative imbalance of about 11% and a median relative imbalance of 4%.
The val1/val2 split and code used to produce them will be publicly available to allow
other researchers to compare their methods on the val splits used in this report.

3.1.7.2 Region proposals

We followed the same region proposal approach that was used for detection on
PASCAL. Selective search (Uijlings et al., 2013) was run in “fast mode” on each
image in val1, val2, and test (but not on images in train). One minor modification was
required to deal with the fact that selective search is not scale invariant and so the
number of regions produced depends on the image resolution. ILSVRC image sizes
range from very small to a few that are several mega-pixels, and so we resized each
image to a fixed width (500 pixels) before running selective search. On val, selective
search resulted in an average of 2403 region proposals per image with a 91.6% recall
of all ground-truth bounding boxes (at 0.5 IoU threshold). This recall is notably

3Relative imbalance is measured as |a− b|/(a+ b) where a and b are class counts in each half of
the split.

CHAPTER 3. LOCALIZATION: R-CNN 31

test set val2 val2 val2 val2 val2 val2 test test

SVM training set val1 val1+train.5k val1+train1k val1+train1k val1+train1k val1+train1k val+train1k val+train1k

CNN fine-tuning set n/a n/a n/a val1 val1+train1k val1+train1k val1+train1k val1+train1k

bbox reg set n/a n/a n/a n/a n/a val1 n/a val

CNN feature layer fc6 fc6 fc6 fc7 fc7 fc7 fc7 fc7

mAP 20.9 24.1 24.1 26.5 29.7 31.0 30.2 31.4

median AP 17.7 21.0 21.4 24.8 29.2 29.6 29.0 30.3

Table 3.4. ILSVRC2013 ablation study of data usage choices, fine-tuning, and
bounding-box regression.

lower than in PASCAL, where it is approximately 98%, indicating significant room
for improvement in the region proposal stage.

3.1.7.3 Training data

For training data, we formed a set of images and boxes that includes all selective
search and ground-truth boxes from val1 together with up to N ground-truth boxes
per class from train (if a class has fewer than N ground-truth boxes in train, then
we take all of them). We’ll call this dataset of images and boxes val1+trainN . In an
ablation study, we show mAP on val2 for N ∈ {0, 500, 1000} (Section 3.1.7.5).

Training data is required for three procedures in R-CNN: (1) CNN fine-tuning,
(2) detector SVM training, and (3) bounding-box regressor training. CNN fine-tuning
was run for 50k SGD iteration on val1+trainN using the exact same settings as were
used for PASCAL. Fine-tuning on a single NVIDIA Tesla K20 took 13 hours using
Caffe. For SVM training, all ground-truth boxes from val1+trainN were used as
positive examples for their respective classes. Hard negative mining was performed on
a randomly selected subset of 5000 images from val1. An initial experiment indicated
that mining negatives from all of val1, versus a 5000 image subset (roughly half of
it), resulted in only a 0.5 percentage point drop in mAP, while cutting SVM training
time in half. No negative examples were taken from train because the annotations
are not exhaustive. The extra sets of verified negative images were not used. The
bounding-box regressors were trained on val1.

3.1.7.4 Validation and evaluation

Before submitting results to the evaluation server, we validated data usage
choices and the effect of fine-tuning and bounding-box regression on the val2 set
using the training data described above. All system hyperparameters (e.g., SVM
C hyperparameters, padding used in region warping, NMS thresholds, bounding-
box regression hyperparameters) were fixed at the same values used for PASCAL.
Undoubtedly some of these hyperparameter choices are slightly suboptimal for ILSVRC,
however the goal of this work was to produce a preliminary R-CNN result on ILSVRC
without extensive dataset tuning. After selecting the best choices on val2, we submitted

CHAPTER 3. LOCALIZATION: R-CNN 32

exactly two result files to the ILSVRC2013 evaluation server. The first submission was
without bounding-box regression and the second submission was with bounding-box
regression. For these submissions, we expanded the SVM and bounding-box regressor
training sets to use val+train1k and val, respectively. We used the CNN that was
fine-tuned on val1+train1k to avoid re-running fine-tuning and feature computation.

3.1.7.5 Ablation study

Table 3.4 shows an ablation study of the effects of different amounts of training
data, fine-tuning, and bounding-box regression. A first observation is that mAP on
val2 matches mAP on test very closely. This gives us confidence that mAP on val2 is a
good indicator of test set performance. The first result, 20.9%, is what R-CNN achieves
using a CNN pre-trained on the ILSVRC2012 classification dataset (no fine-tuning)
and given access to the small amount of training data in val1 (recall that half of the
classes in val1 have between 15 and 55 examples). Expanding the training set to
val1+trainN improves performance to 24.1%, with essentially no difference between
N = 500 and N = 1000. Fine-tuning the CNN using examples from just val1 gives
a modest improvement to 26.5%, however there is likely significant overfitting due
to the small number of positive training examples. Expanding the fine-tuning set to
val1+train1k, which adds up to 1000 positive examples per class from the train set,
helps significantly, boosting mAP to 29.7%. Bounding-box regression improves results
to 31.0%, which is a smaller relative gain that what was observed in PASCAL.

3.1.7.6 Relationship to OverFeat

There is an interesting relationship between R-CNN and OverFeat: OverFeat can
be seen (roughly) as a special case of R-CNN. If one were to replace selective search
region proposals with a multi-scale pyramid of regular square regions and change
the per-class bounding-box regressors to a single bounding-box regressor, then the
systems would be very similar (modulo some potentially significant differences in how
they are trained: CNN detection fine-tuning, using SVMs, etc.). It is worth noting
that OverFeat has a significant speed advantage over R-CNN: it is about 9x faster,
based on a figure of 2 seconds per image quoted from Sermanet et al. (2013a). This
speed comes from the fact that OverFeat’s sliding windows (i.e., region proposals)
are not warped at the image level and therefore computation can be easily shared
between overlapping windows. Sharing is implemented by running the entire network
in a convolutional fashion over arbitrary-sized inputs. Speeding up R-CNN should be
possible in a variety of ways and remains as future work.

CHAPTER 3. LOCALIZATION: R-CNN 33

3.2 Semantic segmentation

Region classification is a standard technique for semantic segmentation, allowing
us to easily apply R-CNN to the PASCAL VOC segmentation challenge. To facilitate
a direct comparison with the current leading semantic segmentation system (called
O2P for “second-order pooling”) (Carreira et al., 2012), we work within their open
source framework. O2P uses CPMC to generate 150 region proposals per image
and then predicts the quality of each region, for each class, using support vector
regression (SVR). The high performance of their approach is due to the quality of
the CPMC regions and the powerful second-order pooling of multiple feature types
(enriched variants of SIFT and LBP). We also note that Farabet et al. (2013) recently
demonstrated good results on several dense scene labeling datasets (not including
PASCAL) using a CNN as a multi-scale per-pixel classifier.

We follow Arbeláez et al. (2012); Carreira et al. (2012) and extend the PASCAL
segmentation training set to include the extra annotations made available by Hariharan
et al. (2011). Design decisions and hyperparameters were cross-validated on the VOC
2011 validation set. Final test results were evaluated only once.

CNN features for segmentation. We evaluate three strategies for computing
features on CPMC regions, all of which begin by warping the rectangular window
around the region to 227× 227. The first strategy (full) ignores the region’s shape and
computes CNN features directly on the warped window, exactly as we did for detection.
However, these features ignore the non-rectangular shape of the region. Two regions
might have very similar bounding boxes while having very little overlap. Therefore,
the second strategy (fg) computes CNN features only on a region’s foreground mask.
We replace the background with the mean input so that background regions are zero
after mean subtraction. The third strategy (full+fg) simply concatenates the full and
fg features; our experiments validate their complementarity.

full R-CNN fg R-CNN full+fg R-CNN
O2P (Carreira et al., 2012) fc6 fc7 fc6 fc7 fc6 fc7

46.4 43.0 42.5 43.7 42.1 47.9 45.8

Table 3.5. Segmentation mean accuracy (%) on VOC 2011 validation. Col-
umn 1 presents O2P; 2-7 use our CNN pre-trained on ILSVRC 2012.

Results on VOC 2011. Table 3.5 shows a summary of our results on the VOC 2011
validation set compared with O2P. (See Appendix 3.4.5 for complete per-category
results.) Within each feature computation strategy, layer fc6 always outperforms
fc7 and the following discussion refers to the fc6 features. The fg strategy slightly
outperforms full, indicating that the masked region shape provides a stronger signal,
matching our intuition. However, full+fg achieves an average accuracy of 47.9%,

CHAPTER 3. LOCALIZATION: R-CNN 34

VOC 2011 test bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

R&P (Arbeláez et al., 2012) 83.4 46.8 18.9 36.6 31.2 42.7 57.3 47.4 44.1 8.1 39.4 36.1 36.3 49.5 48.3 50.7 26.3 47.2 22.1 42.0 43.2 40.8

O2P (Carreira et al., 2012) 85.4 69.7 22.3 45.2 44.4 46.9 66.7 57.8 56.2 13.5 46.1 32.3 41.2 59.1 55.3 51.0 36.2 50.4 27.8 46.9 44.6 47.6

ours (full+fg R-CNN fc6) 84.2 66.9 23.7 58.3 37.4 55.4 73.3 58.7 56.5 9.7 45.5 29.5 49.3 40.1 57.8 53.9 33.8 60.7 22.7 47.1 41.3 47.9

Table 3.6. Segmentation accuracy (%) on VOC 2011 test. We compare against
two strong baselines: the “Regions and Parts” (R&P) (Arbeláez et al., 2012) and the
second-order pooling (O2P) method (Carreira et al., 2012). Without any fine-tuning,
our CNN achieves top segmentation performance, outperforming R&P and roughly
matching O2P.

our best result by a margin of 4.2% (also modestly outperforming O2P), indicating
that the context provided by the full features is highly informative even given the fg
features. Notably, training the 20 SVRs on our full+fg features takes an hour on a
single core, compared to 10+ hours for training on O2P features.

In Table 3.6 we present results on the VOC 2011 test set, comparing our best-
performing method, fc6 (full+fg), against two strong baselines. Our method achieves
the highest segmentation accuracy for 11 out of 21 categories, and the highest overall
segmentation accuracy of 47.9%, averaged across categories (but likely ties with the
O2P result under any reasonable margin of error). Still better performance could
likely be achieved by fine-tuning.

3.3 Discussion

In recent years, object detection performance had stagnated. The best performing
systems were complex ensembles combining multiple low-level image features with
high-level context from object detectors and scene classifiers. This chapter presents a
simple and scalable object detection algorithm that gives a 30% relative improvement
over the best previous results on PASCAL VOC 2012.

We achieved this performance through two insights. The first is to apply high-
capacity convolutional neural networks to bottom-up region proposals in order to
localize and segment objects. The second is a paradigm for training large CNNs
when labeled training data is scarce. We show that it is highly effective to pre-
train the network—with supervision—for a auxiliary task with abundant data (image
classification) and then to fine-tune the network for the target task where data is
scarce (detection). We conjecture that the “supervised pre-training/domain-specific
fine-tuning” paradigm will be highly effective for a variety of data-scarce vision
problems.

We conclude by noting that it is significant that we achieved these results by using
a combination of classical tools from computer vision and deep learning (bottom-up
region proposals and convolutional neural networks). Rather than opposing lines of
scientific inquiry, the two are natural and inevitable partners.

CHAPTER 3. LOCALIZATION: R-CNN 35

3.4 Appendix

3.4.1 Object proposal transformations

The convolutional neural network used in this work requires a fixed-size input of
227× 227 pixels. For detection, we consider object proposals that are arbitrary image
rectangles. We evaluated two approaches for transforming object proposals into valid
CNN inputs.

The first method (“tightest square with context”) encloses each object proposal
inside the tightest square and then scales (isotropically) the image contained in that
square to the CNN input size. Figure 3.7 column (B) shows this transformation.
A variant on this method (“tightest square without context”) excludes the image
content that surrounds the original object proposal. Figure 3.7 column (C) shows
this transformation. The second method (“warp”) anisotropically scales each object
proposal to the CNN input size. Figure 3.7 column (D) shows the warp transformation.

For each of these transformations, we also consider including additional image
context around the original object proposal. The amount of context padding (p) is
defined as a border size around the original object proposal in the transformed input
coordinate frame. Figure 3.7 shows p = 0 pixels in the top row of each example and
p = 16 pixels in the bottom row. In all methods, if the source rectangle extends
beyond the image, the missing data is replaced with the image mean (which is then
subtracted before inputing the image into the CNN). A pilot set of experiments showed
that warping with context padding (p = 16 pixels) outperformed the alternatives by a
large margin (3-5 mAP points). Obviously more alternatives are possible, including
using replication instead of mean padding. Exhaustive evaluation of these alternatives
is left as future work.

3.4.2 Positive vs. negative examples and softmax

Two design choices warrant further discussion. The first is: Why are positive
and negative examples defined differently for fine-tuning the CNN versus training the
object detection SVMs? To review the definitions briefly, for fine-tuning we map each
object proposal to the ground-truth instance with which it has maximum IoU overlap
(if any) and label it as a positive for the matched ground-truth class if the IoU is at
least 0.5. All other proposals are labeled “background” (i.e., negative examples for
all classes). For training SVMs, in contrast, we take only the ground-truth boxes as
positive examples for their respective classes and label proposals with less than 0.3
IoU overlap with all instances of a class as a negative for that class. Proposals that fall
into the grey zone (more than 0.3 IoU overlap, but are not ground truth) are ignored.

Historically speaking, we arrived at these definitions because we started by
training SVMs on features computed by the ImageNet pre-trained CNN, and so
fine-tuning was not a consideration at that point in time. In that setup, we found

CHAPTER 3. LOCALIZATION: R-CNN 36

(A) (B) (C) (D) (A) (B) (C) (D)

Figure 3.7. Different object proposal transformations. (A) the original object
proposal at its actual scale relative to the transformed CNN inputs; (B) tightest square
with context; (C) tightest square without context; (D) warp. Within each column and
example proposal, the top row corresponds to p = 0 pixels of context padding while
the bottom row has p = 16 pixels of context padding.

that our particular label definition for training SVMs was optimal within the set of
options we evaluated (which included the setting we now use for fine-tuning). When
we started using fine-tuning, we initially used the same positive and negative example
definition as we were using for SVM training. However, we found that results were
much worse than those obtained using our current definition of positives and negatives.

Our hypothesis is that this difference in how positives and negatives are defined
is not fundamentally important and arises from the fact that fine-tuning data is
limited. Our current scheme introduces many “jittered” examples (those proposals
with overlap between 0.5 and 1, but not ground truth), which expands the number of
positive examples by approximately 30x. We conjecture that this large set is needed
when fine-tuning the entire network to avoid overfitting. However, we also note that
using these jittered examples is likely suboptimal because the network is not being
fine-tuned for precise localization.

This leads to the second issue: Why, after fine-tuning, train SVMs at all? It
would be cleaner to simply apply the last layer of the fine-tuned network, which is a
21-way softmax regression classifier, as the object detector. We tried this and found
that performance on VOC 2007 dropped from 54.2% to 50.9% mAP. This performance

CHAPTER 3. LOCALIZATION: R-CNN 37

drop likely arises from a combination of several factors including that the definition of
positive examples used in fine-tuning does not emphasize precise localization and the
softmax classifier was trained on randomly sampled negative examples rather than on
the subset of “hard negatives” used for SVM training.

This result shows that it’s possible to obtain close to the same level of performance
without training SVMs after fine-tuning. We conjecture that with some additional
tweaks to fine-tuning the remaining performance gap may be closed. If true, this
would simplify and speed up R-CNN training with no loss in detection performance.

3.4.3 Bounding-box regression

We use a simple bounding-box regression stage to improve localization perfor-
mance. After scoring each selective search proposal with a class-specific detection SVM,
we predict a new bounding box for the detection using a class-specific bounding-box
regressor. This is similar in spirit to the bounding-box regression used in deformable
part models (Felzenszwalb et al., 2010). The primary difference between the two
approaches is that here we regress from features computed by the CNN, rather than
from geometric features computed on the inferred DPM part locations.

The input to our training algorithm is a set of N training pairs {(P i, Gi)}i=1,...,N ,
where P i = (P i

x, P
i
y, P

i
w, P

i
h) specifies the pixel coordinates of the center of proposal

P i’s bounding box together with P i’s width and height in pixels. Hence forth, we drop
the superscript i unless it is needed. Each ground-truth bounding box G is specified
in the same way: G = (Gx, Gy, Gw, Gh). Our goal is to learn a transformation that
maps a proposed box P to a ground-truth box G.

We parameterize the transformation in terms of four functions dx(P), dy(P),
dw(P), and dh(P). The first two specify a scale-invariant translation of the center of
P ’s bounding box, while the second two specify log-space translations of the width
and height of P ’s bounding box. After learning these functions, we can transform an
input proposal P into a predicted ground-truth box Ĝ by applying the transformation

Ĝx = Pwdx(P) + Px (3.1)

Ĝy = Phdy(P) + Py (3.2)

Ĝw = Pw exp(dw(P)) (3.3)

Ĝh = Ph exp(dh(P)). (3.4)

Each function d?(P) (where ? is one of x, y, h, w) is modeled as a linear function
of the pool5 features of proposal P , denoted by φ5(P). (The dependence of φ5(P) on
the image data is implicitly assumed.) Thus we have d?(P) = wT

? φ5(P), where w? is
a vector of learnable model parameters. We learn w? by optimizing the regularized

CHAPTER 3. LOCALIZATION: R-CNN 38

least squares objective (ridge regression):

w? = argmin
ŵ?

N∑
i

(ti? − ŵT
? φ5(P i))2 + λ ‖ŵ?‖2 . (3.5)

The regression targets t? for the training pair (P,G) are defined as

tx = (Gx − Px)/Pw (3.6)

ty = (Gy − Py)/Ph (3.7)

tw = log(Gw/Pw) (3.8)

th = log(Gh/Ph). (3.9)

As a standard regularized least squares problem, this can be solved efficiently in closed
form.

We found two subtle issues while implementing bounding-box regression. The
first is that regularization is important: we set λ = 1000 based on a validation set. The
second issue is that care must be taken when selecting which training pairs (P,G) to
use. Intuitively, if P is far from all ground-truth boxes, then the task of transforming
P to a ground-truth box G does not make sense. Using examples like P would lead
to a hopeless learning problem. Therefore, we only learn from a proposal P if it is
nearby at least one ground-truth box. We implement “nearness” by assigning P to
the ground-truth box G with which it has maximum IoU overlap (in case it overlaps
more than one) if and only if the overlap is greater than a threshold (which we set to
0.6 using a validation set). All unassigned proposals are discarded. We do this once
for each object class in order to learn a set of class-specific bounding-box regressors.

At test time, we score each proposal and predict its new detection window only
once. In principle, we could iterate this procedure (i.e., re-score the newly predicted
bounding box, and then predict a new bounding box from it, and so on). However,
we found that iterating does not improve results.

3.4.4 Additional feature visualizations

Figure 3.12 shows additional visualizations for 20 pool5 units. For each unit, we
show the 24 region proposals that maximally activate that unit out of the full set of
approximately 10 million regions in all of VOC 2007 test.

We label each unit by its (y, x, channel) position in the 6× 6× 256 dimensional
pool5 feature map. Within each channel, the CNN computes exactly the same function
of the input region, with the (y, x) position changing only the receptive field.

3.4.5 Per-category segmentation results

In Table 3.7 we show the per-category segmentation accuracy on VOC 2011 val
for each of our six segmentation methods in addition to the O2P method (Carreira

CHAPTER 3. LOCALIZATION: R-CNN 39

VOC 2011 val bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

O2P (Carreira et al., 2012) 84.0 69.0 21.7 47.7 42.2 42.4 64.7 65.8 57.4 12.9 37.4 20.5 43.7 35.7 52.7 51.0 35.8 51.0 28.4 59.8 49.7 46.4

full R-CNN fc6 81.3 56.2 23.9 42.9 40.7 38.8 59.2 56.5 53.2 11.4 34.6 16.7 48.1 37.0 51.4 46.0 31.5 44.0 24.3 53.7 51.1 43.0

full R-CNN fc7 81.0 52.8 25.1 43.8 40.5 42.7 55.4 57.7 51.3 8.7 32.5 11.5 48.1 37.0 50.5 46.4 30.2 42.1 21.2 57.7 56.0 42.5

fg R-CNN fc6 81.4 54.1 21.1 40.6 38.7 53.6 59.9 57.2 52.5 9.1 36.5 23.6 46.4 38.1 53.2 51.3 32.2 38.7 29.0 53.0 47.5 43.7

fg R-CNN fc7 80.9 50.1 20.0 40.2 34.1 40.9 59.7 59.8 52.7 7.3 32.1 14.3 48.8 42.9 54.0 48.6 28.9 42.6 24.9 52.2 48.8 42.1

full+fg R-CNN fc6 83.1 60.4 23.2 48.4 47.3 52.6 61.6 60.6 59.1 10.8 45.8 20.9 57.7 43.3 57.4 52.9 34.7 48.7 28.1 60.0 48.6 47.9

full+fg R-CNN fc7 82.3 56.7 20.6 49.9 44.2 43.6 59.3 61.3 57.8 7.7 38.4 15.1 53.4 43.7 50.8 52.0 34.1 47.8 24.7 60.1 55.2 45.7

Table 3.7. Per-category segmentation accuracy (%) on the VOC 2011 validation set.

et al., 2012). These results show which methods are strongest across each of the 20
PASCAL classes, plus the background class.

3.4.6 Analysis of cross-dataset redundancy

One concern when training on an auxiliary dataset is that there might be
redundancy between it and the test set. Even though the tasks of object detection and
whole-image classification are substantially different, making such cross-set redundancy
much less worrisome, we still conducted a thorough investigation that quantifies the
extent to which PASCAL test images are contained within the ILSVRC 2012 training
and validation sets. Our findings may be useful to researchers who are interested in
using ILSVRC 2012 as training data for the PASCAL image classification task.

We performed two checks for duplicate (and near-duplicate) images. The first
test is based on exact matches of flickr image IDs, which are included in the VOC 2007
test annotations (these IDs are intentionally kept secret for subsequent PASCAL test
sets). All PASCAL images, and about half of ILSVRC, were collected from flickr.com.
This check turned up 31 matches out of 4952 (0.63%).

The second check uses GIST (Oliva and Torralba, 2001) descriptor matching,
which was shown in Douze et al. (2009) to have excellent performance at near-duplicate
image detection in large (> 1 million) image collections. Following Douze et al. (2009),
we computed GIST descriptors on warped 32× 32 pixel versions of all ILSVRC 2012
trainval and PASCAL 2007 test images.

Euclidean distance nearest-neighbor matching of GIST descriptors revealed 38
near-duplicate images (including all 31 found by flickr ID matching). The matches
tend to vary slightly in JPEG compression level and resolution, and to a lesser extent
cropping. These findings show that the overlap is small, less than 1%. For VOC 2012,
because flickr IDs are not available, we used the GIST matching method only. Based
on GIST matches, 1.5% of VOC 2012 test images are in ILSVRC 2012 trainval. The
slightly higher rate for VOC 2012 is likely due to the fact that the two datasets were
collected closer together in time than VOC 2007 and ILSVRC 2012 were.

CHAPTER 3. LOCALIZATION: R-CNN 40

lemon 0.79

lemon 0.70

lemon 0.56
lemon 0.50

person 0.88

person 0.72

cocktail shaker 0.56

dog 0.97
dog 0.85 dog 0.57

bird 0.63

dog 0.97dog 0.95

dog 0.64

helmet 0.65

helmet 0.52

motorcycle 0.65

person 0.75

person 0.58
snowmobile 0.83
snowmobile 0.83

bow tie 0.86

person 0.82

bird 0.61

dog 0.66

dog 0.61

domestic cat 0.57

bird 0.96 dog 0.91

dog 0.77

sofa 0.71

dog 0.95

dog 0.55

ladybug 1.00 person 0.87

car 0.96
car 0.66

car 0.63

bird 0.98

Figure 3.8. Example detections on the val2 set from the configuration that achieved
31.0% mAP on val2. Each image was sampled randomly (these are not curated).
All detections at precision greater than 0.5 are shown. Each detection is labeled
with the predicted class and the precision value of that detection from the detector’s
precision-recall curve. Viewing digitally with zoom is recommended.

CHAPTER 3. LOCALIZATION: R-CNN 41

class AP class AP class AP class AP class AP

accordion 50.8 centipede 30.4 hair spray 13.8 pencil box 11.4 snowplow 69.2

airplane 50.0 chain saw 14.1 hamburger 34.2 pencil sharpener 9.0 soap dispenser 16.8

ant 31.8 chair 19.5 hammer 9.9 perfume 32.8 soccer ball 43.7

antelope 53.8 chime 24.6 hamster 46.0 person 41.7 sofa 16.3

apple 30.9 cocktail shaker 46.2 harmonica 12.6 piano 20.5 spatula 6.8

armadillo 54.0 coffee maker 21.5 harp 50.4 pineapple 22.6 squirrel 31.3

artichoke 45.0 computer keyboard 39.6 hat with a wide brim 40.5 ping-pong ball 21.0 starfish 45.1

axe 11.8 computer mouse 21.2 head cabbage 17.4 pitcher 19.2 stethoscope 18.3

baby bed 42.0 corkscrew 24.2 helmet 33.4 pizza 43.7 stove 8.1

backpack 2.8 cream 29.9 hippopotamus 38.0 plastic bag 6.4 strainer 9.9

bagel 37.5 croquet ball 30.0 horizontal bar 7.0 plate rack 15.2 strawberry 26.8

balance beam 32.6 crutch 23.7 horse 41.7 pomegranate 32.0 stretcher 13.2

banana 21.9 cucumber 22.8 hotdog 28.7 popsicle 21.2 sunglasses 18.8

band aid 17.4 cup or mug 34.0 iPod 59.2 porcupine 37.2 swimming trunks 9.1

banjo 55.3 diaper 10.1 isopod 19.5 power drill 7.9 swine 45.3

baseball 41.8 digital clock 18.5 jellyfish 23.7 pretzel 24.8 syringe 5.7

basketball 65.3 dishwasher 19.9 koala bear 44.3 printer 21.3 table 21.7

bathing cap 37.2 dog 76.8 ladle 3.0 puck 14.1 tape player 21.4

beaker 11.3 domestic cat 44.1 ladybug 58.4 punching bag 29.4 tennis ball 59.1

bear 62.7 dragonfly 27.8 lamp 9.1 purse 8.0 tick 42.6

bee 52.9 drum 19.9 laptop 35.4 rabbit 71.0 tie 24.6

bell pepper 38.8 dumbbell 14.1 lemon 33.3 racket 16.2 tiger 61.8

bench 12.7 electric fan 35.0 lion 51.3 ray 41.1 toaster 29.2

bicycle 41.1 elephant 56.4 lipstick 23.1 red panda 61.1 traffic light 24.7

binder 6.2 face powder 22.1 lizard 38.9 refrigerator 14.0 train 60.8

bird 70.9 fig 44.5 lobster 32.4 remote control 41.6 trombone 13.8

bookshelf 19.3 filing cabinet 20.6 maillot 31.0 rubber eraser 2.5 trumpet 14.4

bow tie 38.8 flower pot 20.2 maraca 30.1 rugby ball 34.5 turtle 59.1

bow 9.0 flute 4.9 microphone 4.0 ruler 11.5 tv or monitor 41.7

bowl 26.7 fox 59.3 microwave 40.1 salt or pepper shaker 24.6 unicycle 27.2

brassiere 31.2 french horn 24.2 milk can 33.3 saxophone 40.8 vacuum 19.5

burrito 25.7 frog 64.1 miniskirt 14.9 scorpion 57.3 violin 13.7

bus 57.5 frying pan 21.5 monkey 49.6 screwdriver 10.6 volleyball 59.7

butterfly 88.5 giant panda 42.5 motorcycle 42.2 seal 20.9 waffle iron 24.0

camel 37.6 goldfish 28.6 mushroom 31.8 sheep 48.9 washer 39.8

can opener 28.9 golf ball 51.3 nail 4.5 ski 9.0 water bottle 8.1

car 44.5 golfcart 47.9 neck brace 31.6 skunk 57.9 watercraft 40.9

cart 48.0 guacamole 32.3 oboe 27.5 snail 36.2 whale 48.6

cattle 32.3 guitar 33.1 orange 38.8 snake 33.8 wine bottle 31.2

cello 28.9 hair dryer 13.0 otter 22.2 snowmobile 58.8 zebra 49.6

Table 3.8. Per-class average precision (%) on the ILSVRC2013 detection test set.

CHAPTER 3. LOCALIZATION: R-CNN 42

baby bed 0.55helmet 0.51
pitcher 0.57

dog 0.98

hat with a wide brim 0.78

person 0.86

bird 0.52
table 0.60

monkey 0.97

table 0.68

watercraft 0.55

person 0.88

car 0.61

person 0.87

person 0.51

sunglasses 0.51

dog 0.94dog 0.55

Figure 3.9. More randomly selected examples. See Figure 3.8 caption for details.
Viewing digitally with zoom is recommended.

person 0.81
person 0.57

person 0.53

motorcycle 0.64

person 0.73

person 0.51

bagel 0.57

pineapple 1.00 bowl 0.63

guacamole 1.00tennis ball 0.60

lemon 0.88

lemon 0.86
lemon 0.80

lemon 0.78

orange 0.78

orange 0.73

orange 0.71

golf ball 1.00

golf ball 1.00

golf ball 0.89

golf ball 0.81

golf ball 0.79

golf ball 0.76golf ball 0.60

golf ball 0.60

golf ball 0.51

lemon 0.53

soccer ball 0.67

lamp 0.61

table 0.59

bee 0.85
jellyfish 0.71

bowl 0.54

hamburger 0.78

dumbbell 1.00person 0.52

microphone 1.00

person 0.85

head cabbage 0.83

head cabbage 0.75

Figure 3.10. Curated examples. Each image was selected because we found it impres-
sive, surprising, interesting, or amusing. Viewing digitally with zoom is recommended.

CHAPTER 3. LOCALIZATION: R-CNN 43

person 0.82

snake 0.76

frog 0.78
bird 0.79

goldfish 0.76

goldfish 0.76

goldfish 0.58

person 0.94

stethoscope 0.56

person 0.95person 0.92person 0.67
person 0.60

table 0.81

jellyfish 0.67

lemon 0.52 person 0.78
person 0.65

watercraft 0.55

baseball 1.00

person 0.94

person 0.82

person 0.80

person 0.61

person 0.55

person 0.52

computer keyboard 0.81

dog 0.60 person 0.88

person 0.79

person 0.68
person 0.59

tv or monitor 0.82

lizard 0.58

chair 0.50

person 0.74

table 0.82

person 0.94

person 0.94

person 0.95
person 0.81person 0.69

rugby ball 0.91

person 0.84 person 0.59

volleyball 0.70 pineapple 1.00

brassiere 0.71

person 0.95
person 0.94person 0.94

person 0.81 person 0.80
person 0.80

person 0.79

person 0.79

person 0.69

person 0.66

person 0.58

person 0.56person 0.54

swimming trunks 0.56

baseball 0.86

helmet 0.74

person 0.75

miniskirt 0.64

person 0.92

vacuum 1.00
dog 0.98

dog 0.93

person 0.94 person 0.75

person 0.65

person 0.53

ski 0.80
ski 0.80

bird 0.55

tiger 1.00

tiger 0.67

tiger 0.59

bird 0.56
whale 1.00

chair 0.53

person 0.92

person 0.92

person 0.82
person 0.78

bowl 0.52

strawberry 0.79
strawberry 0.70

burrito 0.54

croquet ball 0.91croquet ball 0.91croquet ball 0.91
croquet ball 0.91

mushroom 0.57
watercraft 0.91

watercraft 0.87

watercraft 0.58

plastic bag 0.62

plastic bag 0.62

whale 0.88

Figure 3.11. More curated examples. See Figure 3.10 caption for details. Viewing
digitally with zoom is recommended.

CHAPTER 3. LOCALIZATION: R-CNN 44

pool5 feature: (3,3,1) (top 1 − 24)
1.0 0.9 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

pool5 feature: (3,3,2) (top 1 − 24)
1.0 0.9 0.9 0.9 0.9 0.8 0.8 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

pool5 feature: (3,3,3) (top 1 − 24)
0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6

0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

pool5 feature: (3,3,4) (top 1 − 24)
0.9 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6

pool5 feature: (3,3,5) (top 1 − 24)
0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

pool5 feature: (3,3,6) (top 1 − 24)
0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

pool5 feature: (3,3,7) (top 1 − 24)
0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6

pool5 feature: (3,3,8) (top 1 − 24)
0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

pool5 feature: (3,3,9) (top 1 − 24)
0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

pool5 feature: (3,3,10) (top 1 − 24)
0.9 0.8 0.8 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5

pool5 feature: (3,3,11) (top 1 − 24)
0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6

0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

pool5 feature: (3,3,12) (top 1 − 24)
0.9 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

pool5 feature: (3,3,13) (top 1 − 24)
0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

pool5 feature: (3,3,14) (top 1 − 24)
0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

pool5 feature: (3,3,15) (top 1 − 24)
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

pool5 feature: (3,3,16) (top 1 − 24)
0.9 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Figure 3.12. We show the 24 region proposals, out of the approximately 10
million regions in VOC 2007 test, that most strongly activate each of 20
units. Each montage is labeled by the unit’s (y, x, channel) position in the 6×6×256
dimensional pool5 feature map. Each image region is drawn with an overlay of the
unit’s receptive field in white. The activation value (which we normalize by dividing
by the max activation value over all units in a channel) is shown in the receptive
field’s upper-left corner. Best viewed digitally with zoom.

45

Chapter 4

Long-term Recurrent
Convolutional Networks for Visual
Recognition and Description1

Recognition and description of images and videos is a fundamental challenge of
computer vision. Dramatic progress has been achieved by supervised convolutional
neural network (CNN) models on image recognition tasks, and a number of extensions
to process video have been recently proposed. Ideally, a video model should allow
processing of variable length input sequences, and also provide for variable length
outputs, including generation of full-length sentence descriptions that go beyond
conventional one-versus-all prediction tasks. In this chapter we propose Long-term
Recurrent Convolutional Networks (LRCNs), a class of architectures for visual recog-
nition and description which combines convolutional layers and long-range temporal
recursion and is end-to-end trainable (Figure 4.1). We instantiate our architecture for
specific video activity recognition, image caption generation, and video description
tasks as described below.

Research on CNN models for video processing has considered learning 3D spatio-
temporal filters over raw sequence data (Baccouche et al., 2011; Ji et al., 2013),
and learning of frame-to-frame representations which incorporate instantaneous optic
flow or trajectory-based models aggregated over fixed windows or video shot seg-
ments (Karpathy et al., 2014a; Simonyan and Zisserman, 2014). Such models explore
two extrema of perceptual time-series representation learning: either learn a fully
general time-varying weighting, or apply simple temporal pooling. Following the same
inspiration that motivates current deep convolutional models, we advocate for video
recognition and description models which are also deep over temporal dimensions;
i.e., have temporal recurrence of latent variables. Recurrent Neural Network (RNN)

1This chapter is based on joint work with Lisa Anne Hendricks, Marcus Rohrbach, Subhashini
Venugopalan, Sergio Guadarrama, Kate Saenko, and Trevor Darrell (Donahue et al., 2015).

CHAPTER 4. SEQUENCES: LRCN 46

y1

y2

yT

Output

CNN

CNN

CNN

Visual
Features

Input

LSTM

LSTM

LSTM

Sequence
Learning

Figure 4.1. We propose Long-term Recurrent Convolutional Networks (LRCNs), a
class of architectures leveraging the strengths of rapid progress in CNNs for visual
recognition problems, and the growing desire to apply such models to time-varying
inputs and outputs. LRCN processes the (possibly) variable-length visual input (left)
with a CNN (middle-left), whose outputs are fed into a stack of recurrent sequence
models (LSTMs, middle-right), which finally produce a variable-length prediction
(right). Both the CNN and LSTM weights are shared across time, resulting in a
representation that scales to arbitrarily long sequences.

models are “deep in time” – explicitly so when unrolled – and form implicit composi-
tional representations in the time domain. Such “deep” models predated deep spatial
convolution models in the literature (Rumelhart et al., 1985; Williams and Zipser,
1989).

The use of RNNs in perceptual applications has been explored for many decades,
with varying results. A significant limitation of simple RNN models which strictly
integrate state information over time is known as the “vanishing gradient” effect:
the ability to backpropagate an error signal through a long-range temporal interval
becomes increasingly difficult in practice. Long Short-Term Memory (LSTM) units,
first proposed in Hochreiter and Schmidhuber (1997), are recurrent modules which
enable long-range learning. LSTM units have hidden state augmented with nonlinear
mechanisms to allow state to propagate without modification, be updated, or be reset,
using simple learned gating functions. LSTMs have recently been demonstrated to be
capable of large-scale learning of speech recognition (Graves and Jaitly, 2014) and

CHAPTER 4. SEQUENCES: LRCN 47

language translation models (Cho et al., 2014a; Sutskever et al., 2014).
We show here that convolutional networks with recurrent units are generally

applicable to visual time-series modeling, and argue that in visual tasks where static or
flat temporal models have previously been employed, LSTM-style RNNs can provide
significant improvement when ample training data are available to learn or refine the
representation. Specifically, we show that LSTM type models provide for improved
recognition on conventional video activity challenges and enable a novel end-to-end
optimizable mapping from image pixels to sentence-level natural language descriptions.
We also show that these models improve generation of descriptions from intermediate
visual representations derived from conventional visual models.

We instantiate our proposed architecture in three experimental settings (Fig-
ure 4.3). First, we show that directly connecting a visual convolutional model to
deep LSTM networks, we are able to train video recognition models that capture
temporal state dependencies (Figure 4.3 left; Section 4.3). While existing labeled
video activity datasets may not have actions or activities with particularly complex
temporal dynamics, we nonetheless observe significant improvements on conventional
benchmarks.

Second, we explore end-to-end trainable image to sentence mappings. Strong
results for machine translation tasks have recently been reported (Cho et al., 2014a;
Sutskever et al., 2014); such models are encoder-decoder pairs based on LSTM networks.
We propose a multimodal analog of this model, and describe an architecture which
uses a visual convnet to encode a deep state vector, and an LSTM to decode the
vector into a natural language string (Figure 4.3 middle; Section 4.4). The resulting
model can be trained end-to-end on large-scale image and text datasets, and even
with modest training provides competitive generation results compared to existing
methods.

Finally, we show that LSTM decoders can be driven directly from conventional
computer vision methods which predict higher-level discriminative labels, such as
the semantic video role tuple predictors in Rohrbach et al. (2013) (Figure 4.3, right;
Section 4.5). While not end-to-end trainable, such models offer architectural and
performance advantages over previous statistical machine translation-based approaches.

4.1 Background

Traditional recurrent neural networks (RNNs, Figure 4.2, left) model temporal
dynamics by mapping input sequences to hidden states, and hidden states to outputs
via the following recurrence equations (Figure 4.2, left):

ht = g(Wxhxt +Whhht−1 + bh)

zt = g(Whzht + bz)

CHAPTER 4. SEQUENCES: LRCN 48

+

σ

σσ

xt
ht-1

ht
 = zt

Output
Gate

Input
Gate

Forget Gate

Input Modulation Gate

LSTM Unit

ϕ

xt

ht-1

ht

Output
zt

RNN Unit

σ

σ

ϕ

ft

it
gt

ot

ctct-1

Figure 4.2. A diagram of a basic RNN cell (left) and an LSTM memory cell (right)
used in this chapter (from Zaremba and Sutskever (2014), a slight simplification of the
architecture described in Graves (2013), which was derived from the LSTM initially
proposed in Hochreiter and Schmidhuber (1997)).

where g is an element-wise non-linearity, such as a sigmoid or hyperbolic tangent, xt
is the input, ht ∈ RN is the hidden state with N hidden units, and zt is the output at
time t. For a length T input sequence 〈x1, x2, ..., xT 〉, the updates above are computed
sequentially as h1 (letting h0 = 0), z1, h2, z2, ..., hT , zT .

Though RNNs have proven successful on tasks such as speech recognition (Vinyals
et al., 2012) and text generation (Sutskever et al., 2011), it can be difficult to train them
to learn long-term dynamics, likely due in part to the vanishing and exploding gradients
problem (Hochreiter and Schmidhuber, 1997) that can result from propagating the
gradients down through the many layers of the recurrent network, each corresponding
to a particular time step. LSTMs provide a solution by incorporating memory units
that explicitly allow the network to learn when to “forget” previous hidden states
and when to update hidden states given new information. As research on LSTMs
has progressed, hidden units with varying connections within the memory unit have
been proposed. We use the LSTM unit as described in Zaremba and Sutskever (2014)
(Figure 4.2, right), a slight simplification of the one described in Graves and Jaitly
(2014), which was derived from the original LSTM unit proposed in Hochreiter and
Schmidhuber (1997). Letting σ(x) = (1 + e−x)

−1
be the sigmoid non-linearity which

squashes real-valued inputs to a [0, 1] range, and letting tanh(x) = ex−e−x

ex+e−x = 2σ(2x)−1
be the hyperbolic tangent non-linearity, similarly squashing its inputs to a [−1, 1]

CHAPTER 4. SEQUENCES: LRCN 49

range, the LSTM updates for time step t given inputs xt, ht−1, and ct−1 are:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf)

ot = σ(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxcxt +Whcht−1 + bc)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

x� y denotes the element-wise product of vectors x and y.
In addition to a hidden unit ht ∈ RN , the LSTM includes an input gate it ∈ RN ,

forget gate ft ∈ RN , output gate ot ∈ RN , input modulation gate gt ∈ RN , and
memory cell ct ∈ RN . The memory cell unit ct is a sum of two terms: the previous
memory cell unit ct−1 which is modulated by ft, and gt, a function of the current
input and previous hidden state, modulated by the input gate it. Because it and ft
are sigmoidal, their values lie within the range [0, 1], and it and ft can be thought of
as knobs that the LSTM learns to selectively forget its previous memory or consider
its current input. Likewise, the output gate ot learns how much of the memory cell to
transfer to the hidden state. These additional cells seem to enable the LSTM to learn
complex and long-term temporal dynamics for a wide variety of sequence learning and
prediction tasks. Additional depth can be added to LSTMs by stacking them on top
of each other, using the hidden state h

(`−1)
t of the LSTM in layer `− 1 as the input to

the LSTM in layer `.
Recently, LSTMs have achieved impressive results on language tasks such as

speech recognition (Graves and Jaitly, 2014) and machine translation (Cho et al., 2014a;
Sutskever et al., 2014). Analogous to CNNs, LSTMs are attractive because they allow
end-to-end fine-tuning. For example, Graves and Jaitly (2014) eliminates the need for
complex multi-step pipelines in speech recognition by training a deep bidirectional
LSTM which maps spectrogram inputs to text. Even with no language model or
pronunciation dictionary, the model produces convincing text translations. Sutskever
et al. (2014) and Cho et al. (2014a) translate sentences from English to French with a
multi-layer LSTM encoder and decoder. Sentences in the source language are mapped
to a hidden state using an encoding LSTM, and then a decoding LSTM maps the
hidden state to a sequence in the target language. Such an encoder-decoder scheme
allows an input sequence of arbitrary length to be mapped to an output sequence
of different length. The sequence-to-sequence architecture for machine translation
circumvents the need for language models.

The advantages of LSTMs for modeling sequential data in vision problems are
twofold. First, when integrated with current vision systems, LSTM models are
straightforward to fine-tune end-to-end. Second, LSTMs are not confined to fixed
length inputs or outputs allowing simple modeling for sequential data of varying
lengths, such as text or video. We next describe a unified framework to combine

CHAPTER 4. SEQUENCES: LRCN 50

recurrent models such as LSTMs with deep convolutional networks to form end-to-end
trainable networks capable of complex visual and sequence prediction tasks.

4.2 Long-term Recurrent Convolutional Networks

This work proposes a Long-term Recurrent Convolutional Network (LRCN)
model combining a deep hierarchical visual feature extractor (such as a CNN) with a
model that can learn to recognize and synthesize temporal dynamics for tasks involving
sequential data (inputs or outputs), visual, linguistic, or otherwise. Figure 4.1 depicts
the core of our approach. LRCN works by passing each visual input xt (an image
in isolation, or a frame from a video) through a feature transformation φV (.) with
parameters V , usually a CNN, to produce a fixed-length vector representation φV (xt).
The outputs of φV are then passed into a recurrent sequence learning module.

In its most general form, a recurrent model has parameters W , and maps an input
xt and a previous time step hidden state ht−1 to an output zt and updated hidden
state ht. Therefore, inference must be run sequentially (i.e., from top to bottom, in
the Sequence Learning box of Figure 4.1), by computing in order: h1 = fW (x1, h0) =
fW (x1, 0), then h2 = fW (x2, h1), etc., up to hT . Some of our models stack multiple
LSTMs atop one another as described in Section 4.1.

To predict a distribution P (yt) over outcomes yt ∈ C (where C is a discrete,
finite set of outcomes) at time step t, the outputs zt ∈ Rdz of the sequential model
are passed through a linear prediction layer ŷt = Wzzt + bz, where Wz ∈ R|C|×dz and
bz ∈ R|C| are learned parameters. Finally, the predicted distribution P (yt) is computed

by taking the softmax of ŷt: P (yt = c) = softmax(ŷt) = exp(ŷt,c)∑
c′∈C

exp(ŷt,c′)
.

The success of recent deep models for object recognition (Krizhevsky et al.,
2012; Simonyan and Zisserman, 2015; Szegedy et al., 2015) suggests that strategically
composing many “layers” of non-linear functions can result in powerful models for
perceptual problems. For large T , the above recurrence indicates that the last few
predictions from a recurrent network with T time steps are computed by a very “deep”
(T layer) non-linear function, suggesting that the resulting recurrent model may have
similar representational power to a T layer deep network. Critically, however, the
sequence model’s weights W are reused at every time step, forcing the model to learn
generic time step-to-time step dynamics (as opposed to dynamics conditioned on t,
the sequence index) and preventing the parameter size from growing in proportion to
the maximum sequence length.

In most of our experiments, the visual feature transformation φ corresponds to
the activations in some layer of a deep CNN. Using a visual transformation φV (.) which
is time-invariant and independent at each time step has the important advantage of
making the expensive convolutional inference and training parallelizable over all time
steps of the input, facilitating the use of fast contemporary CNN implementations

CHAPTER 4. SEQUENCES: LRCN 51

Activity Recognition
Sequences in the Input

Image Captioning
Sequences in the Output

Video Description
Sequences in the Input and Output

<BOS>HighJump

C
N

N

C
N

N

C
N

N

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

A man runs <EOS>

LSTM LSTM LSTM LSTM LSTM

A man jumps high<BOS> <EOS>

Average

C
N

N

C
R

F

LSTM LSTM LSTM LSTM LSTM

Figure 4.3. Task-specific instantiations of our LRCN model for activity recognition,
image description, and video description.

whose efficiency relies on independent batch processing, and end-to-end optimization
of the visual and sequential model parameters V and W .

We consider three vision problems (activity recognition, image description and
video description), each of which instantiates one of the following broad classes of
sequential learning tasks:

1. Sequential input, static output (Figure 4.3, left): 〈x1, x2, ..., xT 〉 7→ y. The visual
activity recognition problem can fall under this umbrella, with videos of arbitrary
length T as input, but with the goal of predicting a single label like running or
jumping drawn from a fixed vocabulary.

2. Static input, sequential output (Figure 4.3, middle): x 7→ 〈y1, y2, ..., yT 〉. The
image captioning problem fits in this category, with a static (non-time-varying)
image as input, but a much larger and richer label space consisting of sentences
of any length.

3. Sequential input and output (Figure 4.3, right): 〈x1, x2, ..., xT 〉 7→ 〈y1, y2, ..., yT ′〉.
In tasks such as video description, both the visual input and output are time-
varying, and in general the number of input and output time steps may differ
(i.e., we may have T 6= T ′). In video description, for example, the number of
frames in the video should not constrain the length of (number of words in) the
natural language description.

In the previously described generic formulation of recurrent models, each instance
has T inputs 〈x1, x2, ..., xT 〉 and T outputs 〈y1, y2, ..., yT 〉. Note that this formulation
does not align cleanly with any of the three problem classes described above – in the
first two classes, either the input or output is static, and in the third class, the input
length T need not match the output length T ′. Hence, we describe how we adapt this
formulation in our hybrid model to each of the above three problem settings.

CHAPTER 4. SEQUENCES: LRCN 52

With sequential inputs and static outputs (class 1), we take a late-fusion approach
to merging the per-time step predictions 〈y1, y2, ..., yT 〉 into a single prediction y for
the full sequence. With static inputs x and sequential outputs (class 2), we simply
duplicate the input x at all T time steps: ∀t ∈ {1, 2, ..., T} : xt := x. Finally, for a
sequence-to-sequence problem with (in general) different input and output lengths
(class 3), we take an “encoder-decoder” approach, as proposed for machine translation
by Cho et al. (2014b); Sutskever et al. (2014). In this approach, one sequence model,
the encoder, maps the input sequence to a fixed-length vector, and another sequence
model, the decoder, unrolls this vector to a sequential output of arbitrary length. Under
this type of model, a run of the full system on one instance occurs over T + T ′ − 1
time steps. For the first T time steps, the encoder processes the input x1, x2, ..., xT ,
and the decoder is inactive until time step T , when the encoder’s output is passed
to the decoder, which in turn predicts the first output y1. For the latter T ′ − 1 time
steps, the decoder predicts the remainder of the output y2, y3, ..., yT ′ with the encoder
inactive. This encoder-decoder approach, as applied to the video description task, is
depicted in Section 4.5, Figure 4.5 (left).

Under the proposed system, the parameters (V,W) of the model’s visual and
sequential components can be jointly optimized by maximizing the likelihood of the
ground truth outputs yt at each time step t, conditioned on the input data and
labels up to that point (x1:t, y1:t−1). In particular, for a training set D of labeled
sequences (xt, yt)

T
t=1 ∈ D, we optimize parameters (V,W) to minimize the expected

negative log likelihood of a sequence sampled from the training set L(V,W,D) =
− 1
|D|
∑

(xt,yt)Tt=1∈D
∑T

t=1 logP (yt|x1:t, y1:t−1, V,W).
One of the most appealing aspects of the described system is the ability to

learn the parameters “end-to-end,” such that the parameters V of the visual feature
extractor learn to pick out the aspects of the visual input that are relevant to the
sequential classification problem. We train our LRCN models using stochastic gradient
descent, with backpropagation used to compute the gradient ∇V,WL(V,W, D̃) of the
objective L with respect to all parameters (V,W) over minibatches D̃ ⊂ D sampled
from the training dataset D.

We next demonstrate the power of end-to-end trainable hybrid convolutional
and recurrent networks by exploring three applications: activity recognition, image
captioning, and video description.

4.3 Activity recognition

Activity recognition is an instance of the first class of sequential learning tasks
described above: each frame in a length T sequence is the input to a single convolutional
network (i.e., the convnet weights are tied across time). We consider both RGB and
flow as inputs to our recognition system. Flow is computed with Brox et al. (2004)
and transformed into a “flow image” by scaling and shifting x and y flow values to a

CHAPTER 4. SEQUENCES: LRCN 53

range of [−128,+128]. A third channel for the flow image is created by calculating
the flow magnitude.

During training, videos are resized to 240 × 320 and we augment our data by
using 227× 227 crops and mirroring. Additionally, we train the LRCN networks with
video clips of 16 frames, even though the UCF101 videos are generally much longer
(on the order of 100 frames when extracting frames at 30 FPS). Training on shorter
video clips can be seen as analogous to training on image crops and is a useful method
of data augmentation. LRCN is trained to predict the video’s activity class at each
time step. To produce a single label prediction for an entire video clip, we average the
label probabilities – the outputs of the network’s softmax layer – across all frames
and choose the most probable label. At test time, we extract 16 frame clips with a
stride of 8 frames from each video and average across all clips from a single video.

The CNN base of LRCN in our activity recognition experiments is a hybrid of the
CaffeNet (Jia et al., 2014) reference model (a minor variant of AlexNet (Krizhevsky
et al., 2012)) and the network used by Zeiler & Fergus (Zeiler and Fergus, 2014). The
network is pre-trained on the 1.2M image ILSVRC-2012 (Russakovsky et al., 2015)
classification training subset of the ImageNet (Deng et al., 2009) dataset, giving the
network a strong initialization to facilitate faster training and avoid overfitting to the
relatively small video activity recognition datasets. When classifying center crops, the
top-1 classification accuracy is 60.2% and 57.4% for the hybrid and CaffeNet reference
models, respectively.

We compare LRCN to a single frame baseline model. In our baseline model, T
video frames are individually classified by a CNN. As in the LSTM model, whole video
classification is done by averaging scores across all video frames.

4.3.1 Evaluation

We evaluate our architecture on the UCF101 dataset (Soomro et al., 2012) which
consists of over 12,000 videos categorized into 101 human action classes. The dataset
is split into three splits, with just under 8,000 videos in the training set for each split.

We explore various hyperparameters for the LRCN activity recognition architec-
ture. To explore different variants, we divide the first training split of UCF101 into a
smaller training set (≈6,000 videos) and a validation set (≈3,000 videos). We find
that the most influential hyperparameters include the number of hidden units in the
LSTM and whether fc6 or fc7 features are used as input to the LSTM. We compare
networks with 256, 512, and 1024 LSTM hidden units. When using flow as an input,
more hidden units leads to better peformance with 1024 hidden units yielding a 1.7%
boost in accuracy in comparison to a network with 256 hidden units on our validation
set. In contrast, for networks with RGB input, the number of hidden units has little
impact on the performance of the model. We thus use 1024 hidden units for flow
inputs, and 256 for RGB inputs. We find that using fc6 as opposed to fc7 features
improves accuracy when using flow as input on our validation set by 1%. When using

CHAPTER 4. SEQUENCES: LRCN 54

RGB images as input, the difference between using fc6 or fc7 features is quite small;
using fc6 features only increases accuracy by 0.2%. Because both models perform
better with fc6 features, we train our final models using fc6 features (denoted by
LRCN-fc6). We also considered subsampling the frames input to the LSTM, but
found that this hurts performance compared with using all frames. Additionally, when
training the LRCN network end-to-end, we found that aggressive dropout (0.9) was
needed to avoid overfitting.

Table 4.1 reports the average accuracy across the three standard test splits of
UCF101. Columns 2-3, compare video classification of LRCN against the baseline
single frame architecture for both RGB and flow inputs. LRCN yields the best results
for both RGB and flow and improves upon the baseline network by 0.83% and 2.91%
respectively. RGB and flow networks can be combined by computing a weighted average
of network scores as proposed in Simonyan and Zisserman (2014). Like Simonyan and
Zisserman (2014), we report two weighted averages of the predictions from the RGB
and flow networks in Table 4.1 (right). Since the flow network outperforms the RGB
network, weighting the flow network higher unsurprisingly leads to better accuracy.
In this case, LRCN outperforms the baseline single-frame model by 3.40%.

Table 4.2 compares LRCN’s accuracy with the single frame baseline model
for individual classes on Split 1 of UCF101. For the majority of classes, LRCN
improves performance over the single frame model. Though LRCN performs worse
on some classes including Knitting and Mixing, in general when LRCN performs
worse, the loss in accuracy is not as substantial as the gain in accuracy for classes like
BoxingPunchingBag and HighJump. Consequently, accuracy is higher overall.

Table 4.3 compares accuracies for the LRCN flow and LRCN RGB models for
individual classes on Split 1 of UCF101. Note that for some classes the LRCN flow
model outperforms the LRCN RGB model and vice versa. One explanation is that
activities which are better classified by the LRCN RGB model are best determined by
which objects are present in the scene, while activities which are better classified by the
LRCN flow model are best classified by the kind of motion in the scene. For example,
activity classes like Typing are highly correlated with the presence of certain objects,
such as a keyboard, and are thus best learned by the LRCN RGB model. Other
activities such as SoccerJuggling include more generic objects which are frequently seen
in other activities (soccer balls, people) and are thus best identified from class-specific
motion cues. Because RGB and flow signals are complementary, the best models take
both into account.

LRCN shows clear improvement over the baseline single-frame system and is
comparable to accuracy achieved by other deep models. Simonyan and Zisserman
(2014) report the results on UCF101 by computing a weighted average between flow
and RGB networks and achieve 87.6%. Karpathy et al. (2014a) reports 65.4% accuracy
on UCF101, which is substantially lower than LRCN.

CHAPTER 4. SEQUENCES: LRCN 55

Single Input Type Weighted Average
Model RGB Flow 1/2, 1/2 1/3, 2/3

Single frame 67.37 74.37 75.46 78.94
LRCN-fc6 68.20 77.28 80.90 82.34

Table 4.1. Activity recognition: Comparing single frame models to LRCN networks
for activity recognition on the UCF101 (Soomro et al., 2012) dataset, with RGB and
flow inputs. Average values across all three splits are shown. LRCN consistently and
strongly outperforms a model based on predictions from the underlying convolutional
network architecture alone.

Label ∆ Label ∆
BoxingPunchingBag 40.82 BoxingSpeedBag -16.22
HighJump 29.73 Mixing -15.56
JumpRope 28.95 Knitting -14.71
CricketShot 28.57 Typing -13.95
Basketball 28.57 Skiing -12.50
WallPushups 25.71 BaseballPitch -11.63
Nunchucks 22.86 BrushingTeeth -11.11
ApplyEyeMakeup 22.73 Skijet -10.71
HeadMassage 21.95 Haircut -9.10
Drumming 17.78 TennisSwing -8.16

Table 4.2. Activity recognition: comparison of improvement ∆ in LRCN’s per-class
recognition accuracy versus the single-frame baseline. Here we report results on all
three splits of UCF101 (Soomro et al., 2012). ∆ is the difference between LRCN’s
accuracy and the single-frame model’s accuracy.

CHAPTER 4. SEQUENCES: LRCN 56

Label ∆ Label ∆
BoxingPunchingBag 57.14 Typing -44.19
PushUps 53.33 TennisSwing -42.86
JumpRope 50.00 FieldHockeyPenalty -32.50
SoccerJuggling 48.72 BrushingTeeth -30.56
HandstandWalking 44.12 CuttingInKitchen -30.30
Basketball 40.00 Skijet -28.57
BodyWeightSquats 38.46 Mixing -26.67
Lunges 37.84 Skiing -25.00
Nunchucks 34.29 Knitting -20.59
WallPushups 34.29 FloorGymnastics -19.44

Table 4.3. Activity recognition: comparison of per-class recognition accuracy between
the flow and RGB LRCN models. ∆ is the difference between LRCN flow accuracy
and LRCN RGB accuracy.

4.4 Image captioning

In contrast to activity recognition, the static image captioning task requires only
a single invocation of a convolutional network since the input consists of a single image.
At each time step, both the image features and the previous word are provided as
inputs to the sequence model, in this case a stack of LSTMs (each with 1000 hidden
units), which is used to learn the dynamics of the time-varying output sequence,
natural language.

At time step t, the input to the bottom-most LSTM is the embedded word
from the previous time step yt−1. Input words are encoded as “one-hot” vectors:
vectors y ∈ RK with a single non-zero component yi = 1 denoting the ith word in the
vocabulary, where K is the number of words in the vocabulary, plus one additional
entry for the <BOS> (beginning of sequence) token which is always taken as y0, the
“previous word” at the first time step (t = 1). These one-hot vectors are then projected
into an embedding space with dimension de by multiplication Weyt with a learned
parameter matrix We ∈ Rde×K . The result of a matrix-vector multiplication with a
one-hot vector is the column of the matrix corresponding to the index of the single
non-zero component of the one-hot vector. We can therefore be thought of as a “lookup
table,” mapping each of the K words in the vocabulary to a de-dimensional vector.

The visual feature representation φV (x) of the image x may be input to the
sequence model – a stack of L LSTMs – by concatenating it at each time step either
with (1) the embedded previous word Weyt−1 and fed into the first LSTM of the stack,

or (2) the hidden state h
(`−1)
t output from LSTM `− 1 and fed into LSTM `, for some

` ∈ 2, ..., L. These choices are depicted in Figure 4.4. We refer to the latter choice as

CHAPTER 4. SEQUENCES: LRCN 57

<BOS>

LSTM LSTM

A man

C
N
N

<BOS>

LSTM LSTM

A man

C
N
N

LSTM LSTM

<BOS>

LSTM LSTM

A man

C
N
N

LSTM LSTM

Single Layer (L = 1) Two Layers (L = 2), Two Layers (L = 2),
Unfactored Factored

LRCN1u LRCN2u LRCN2f

Figure 4.4. Three variants of the LRCN image captioning architecture that we
experimentally evaluate. We explore the effect of depth in the LSTM stack, and the
effect of the “factorization” of the modalities.

“factored,” as it forces a sort of separation of responsibilities by “blinding” the first
`− 1 LSTMs and forcing all of the capacity of their hidden states at time step t to
represent only the partial caption y1:t−1 independent of the visual input, while the
LSTMs starting from ` are responsible for fusing the lower layer’s hidden state given
by the partial caption with the visual feature representation φV (x) to produce a joint

hidden state representation h
(`)
t of the visual and language inputs up to time step t

from which the next word yt can be predicted. In the factored case, the hidden state
ht for the lower layers is conditionally independent of the image x given the partial
caption y1:t−1.

The outputs of the final LSTM in the stack are the inputs to a learned linear
prediction layer with a softmax producing a distribution P (yt|y1:t−1, φV (x)) over words
yt in the model’s vocabulary, including the <EOS> token denoting the end of the
caption, allowing the model to predict captions of varying length. The visual model
φV used for our image captioning experiments is either the CaffeNet (Jia et al., 2014)
reference model, a variant of AlexNet (Krizhevsky et al., 2012), or the more modern
and computationally expensive VGGNet (Simonyan and Zisserman, 2015) model
pre-trained for ILSVRC-2012 (Russakovsky et al., 2015) classification.

Without any explicit language modeling or impositions on the structure of the
generated captions, the described LRCN system learns mappings from images input
as pixel intensity values to natural language descriptions that are often semantically
descriptive and grammatically correct.

At training time, the previous word inputs y1:t−1 at time step t are from the
ground truth caption. For inference of captions on a novel image x, the input is a sample

CHAPTER 4. SEQUENCES: LRCN 58

R@1 R@5 R@10 Medr

Caption to Image (Flickr30k)

DeViSE (Frome et al., 2013) 6.7 21.9 32.7 25
SDT-RNN (Socher et al., 2014) 8.9 29.8 41.1 16
DeFrag (Karpathy et al., 2014b) 10.3 31.4 44.5 13
m-RNN (Mao et al., 2015a) 12.6 31.2 41.5 16
ConvNet (Kiros et al., 2015) 11.8 34.0 46.3 13
LRCN2f (ours) 17.5 40.3 50.8 9

Image to Caption (Flickr30k)

DeViSE (Frome et al., 2013) 4.5 18.1 29.2 26
SDT-RNN (Socher et al., 2014) 9.6 29.8 41.1 16
DeFrag (Karpathy et al., 2014b) 16.4 40.2 54.7 8
m-RNN (Mao et al., 2015a) 18.4 40.2 50.9 10
ConvNet (Kiros et al., 2015) 14.8 39.2 50.9 10
LRCN2f (ours) 23.6 46.6 58.3 7

Table 4.4. Image description: retrieval results for the Flickr30k (Young et al., 2014)
datasets. R@K is the average recall at rank K (high is good). Medr is the median
rank (low is good).

ỹt ∼ P (yt|ỹ1:t−1, φV (x)) from the model’s predicted distribution at the previous time
step, and generation continues until an <EOS> (end of sequence) token is generated.

4.4.1 Evaluation

We evaluate our image description model for retrieval and generation tasks. We
first demonstrate the effectiveness of our model by quantitatively evaluating it on
the image and caption retrieval tasks proposed by Hodosh et al. (2013) and seen in
Frome et al. (2013); Karpathy et al. (2014b); Kiros et al. (2015); Mao et al. (2015a);
Socher et al. (2014). We report results on Flickr30k (Young et al., 2014), and COCO
2014 (Lin et al., 2014) datasets, both with five captions annotated per image.

4.4.1.1 Retrieval

Retrieval results on the Flickr30k (Young et al., 2014) dataset are recorded in
Table 4.4. We report median rank, Medr, of the first retrieved ground truth image or
caption and Recall@K, the number of images or captions for which a correct caption
or image is retrieved within the top K results. Our model consistently outperforms
the strong baselines from recent work (Frome et al., 2013; Karpathy et al., 2014b;

CHAPTER 4. SEQUENCES: LRCN 59

Kiros et al., 2015; Mao et al., 2015a; Socher et al., 2014) as can be seen in Table 4.4.
Here, we note that the VGGNet model in Kiros et al. (2015) (called OxfordNet in their
work) outperforms our model on the retrieval task. However, VGGNet is a stronger
convolutional network (Simonyan and Zisserman, 2015) than that used for our results
on this task. The strength of our sequence model (and integration of the sequence
and visual models) can be more directly measured against the ConvNet (Kiros et al.,
2015) result, which uses a very similar base CNN architecture (AlexNet (Krizhevsky
et al., 2012), where we use CaffeNet) pretrained on the same data.

We also ablate the model’s retrieval performance on a randomly chosen subset of
1000 images (and 5000 captions) from the COCO 2014 (Lin et al., 2014) validation
set. Results are recorded in Table 4.5. The first group of results for each task
examines the effectiveness of an LSTM compared with a “vanilla” RNN as described
in Section 4.1. These results demonstrate that the use of the LSTM unit compared to
the simpler RNN architecture is an important element of our model’s performance on
this task, justifying the additional complexity and suggesting that the LSTM’s gating
mechanisms allowing for “long-term” memory may be quite useful, even for relatively
simple sequences.

Within the second and third result groups, we compare performance among the
three sequence model architectural variants depicted in Figure 4.4. For both tasks and
under all metrics, the two layer, unfactored variant (LRCN2u) performs worse than
the other two. The fact that LRCN1u outperforms LRCN2u indicates that stacking
additional LSTM layers alone is not beneficial for this task. The other two variants
(LRCN2f and LRCN1u) perform similarly across the board, with LRCN2f appearing
to have a slight edge in the image to caption task under most metrics, but the reverse
for caption to image retrieval.

Unsurprisingly, finetuning the CNN (indicated by the “FT?” column of Table 4.5)
and using a more powerful CNN (VGGNet (Simonyan and Zisserman, 2015) rather
than CaffeNet) each improve results substantially across the board. Finetuning boosts
the R@k metrics by 3-5% for CaffeNet, and 5-8% for VGGNet. Switching from
CaffeNet to VGGNet improves results by around 8-12% for the caption to image task,
and by roughly 11-17% for the image to caption task.

4.4.1.2 Generation

We evaluate LRCN’s caption generation performance on the COCO2014 (Lin
et al., 2014) dataset using the official metrics on which COCO image captioning sub-
missions are evaluated. The BLEU (Papineni et al., 2002) and METEOR (Banerjee
and Lavie, 2005) metrics were designed for automatic evaluation of machine trans-
lation methods. ROUGE-L (Lin, 2004) was designed for evaluating summarization
performance. CIDEr-D (Vedantam et al., 2015) was designed specifically to evaluate
the image captioning task.

In Table 4.6 we evaluate variants of our model along the same axes as done for

CHAPTER 4. SEQUENCES: LRCN 60

Vision Model Sequence Model Retrieval Performance

CNN FT? Unit L Factor? R@1 R@5 R@10 Medr

Caption to Image

CaffeNet - RNN 2 X 21.3 51.7 67.2 5
CaffeNet - LSTM 2 X 25.0 56.2 70.6 4

CaffeNet - LSTM 1 - 25.2 56.2 70.8 4
CaffeNet - LSTM 2 - 23.4 54.8 69.3 5
CaffeNet - LSTM 2 X 25.0 56.2 70.6 4

CaffeNet X LSTM 1 - 28.5 60.0 74.5 4
CaffeNet X LSTM 2 - 25.6 57.2 72.2 4
CaffeNet X LSTM 2 X 27.2 59.6 74.7 4

VGGNet - LSTM 2 X 33.5 68.1 80.8 3
VGGNet X LSTM 2 X 39.3 74.7 85.9 2

Image to Caption

CaffeNet - RNN 2 X 30.2 61.0 72.6 4
CaffeNet - LSTM 2 X 33.8 65.3 75.3 3

CaffeNet - LSTM 1 - 32.3 64.5 75.6 3
CaffeNet - LSTM 2 - 29.9 60.8 72.7 3
CaffeNet - LSTM 2 X 33.8 65.3 75.3 3

CaffeNet X LSTM 1 - 36.1 68.4 79.5 3
CaffeNet X LSTM 2 - 33.1 63.7 76.9 3
CaffeNet X LSTM 2 X 36.3 67.3 80.6 2

VGGNet - LSTM 2 X 46.0 77.4 88.3 2
VGGNet X LSTM 2 X 53.3 84.3 91.9 1

Table 4.5. Retrieval results (image to caption and caption to image) for a randomly
chosen subset (1000 images) of the COCO 2014 (Lin et al., 2014) validation set. R@K
is the average recall at rank K (high is good). Medr is the median rank (low is good).

CHAPTER 4. SEQUENCES: LRCN 61

Generation Strategy Vision Model Sequence Model Generation Performance (COCO 2014 Validation Set)

Beam Sample
Width N T CNN FT? Unit L Factor? B1 B2 B3 B4 C M R

1 - - CaffeNet - RNN 2 X 0.638 0.454 0.315 0.220 0.660 0.209 0.473
1 - - CaffeNet - LSTM 2 X 0.646 0.462 0.321 0.224 0.674 0.210 0.477

1 - - CaffeNet - LSTM 1 - 0.654 0.475 0.333 0.231 0.661 0.209 0.480
1 - - CaffeNet - LSTM 2 - 0.653 0.470 0.328 0.230 0.682 0.212 0.480
1 - - CaffeNet - LSTM 2 X 0.646 0.462 0.321 0.224 0.674 0.210 0.477

1 - - CaffeNet X LSTM 1 - 0.661 0.485 0.344 0.241 0.702 0.216 0.489
1 - - CaffeNet X LSTM 2 - 0.659 0.478 0.338 0.238 0.716 0.217 0.486
1 - - CaffeNet X LSTM 2 X 0.659 0.478 0.336 0.237 0.717 0.218 0.486

1 - - VGGNet - LSTM 2 X 0.674 0.494 0.351 0.248 0.773 0.227 0.497
1 - - VGGNet X LSTM 2 X 0.695 0.519 0.374 0.268 0.839 0.237 0.512

- 100 1.5 CaffeNet - RNN 2 X 0.647 0.466 0.334 0.244 0.703 0.212 0.479
- 100 1.5 CaffeNet - LSTM 2 X 0.657 0.478 0.344 0.251 0.720 0.215 0.485

- 100 1.5 CaffeNet - LSTM 1 - 0.664 0.490 0.354 0.254 0.704 0.211 0.488
- 100 1.5 CaffeNet - LSTM 2 - 0.664 0.486 0.352 0.257 0.732 0.216 0.489
- 100 1.5 CaffeNet - LSTM 2 X 0.657 0.478 0.344 0.251 0.720 0.215 0.485

- 100 1.5 CaffeNet X LSTM 1 - 0.679 0.507 0.370 0.268 0.753 0.219 0.499
- 100 1.5 CaffeNet X LSTM 2 - 0.672 0.495 0.361 0.265 0.762 0.222 0.495
- 100 1.5 CaffeNet X LSTM 2 X 0.670 0.493 0.358 0.264 0.764 0.222 0.495

- 100 1.5 VGGNet - LSTM 2 X 0.690 0.514 0.377 0.278 0.828 0.231 0.508
- 100 1.5 VGGNet X LSTM 2 X 0.711 0.541 0.402 0.300 0.896 0.242 0.524

1 - - VGGNet X LSTM 2 X 0.695 0.519 0.374 0.268 0.839 0.237 0.512
2 - - VGGNet X LSTM 2 X 0.707 0.533 0.394 0.291 0.879 0.242 0.520
3 - - VGGNet X LSTM 2 X 0.708 0.536 0.399 0.298 0.888 0.243 0.521
4 - - VGGNet X LSTM 2 X 0.706 0.534 0.398 0.299 0.888 0.243 0.521
5 - - VGGNet X LSTM 2 X 0.704 0.533 0.398 0.300 0.888 0.242 0.520
10 - - VGGNet X LSTM 2 X 0.699 0.528 0.395 0.298 0.886 0.241 0.518

- 1 2.0 VGGNet X LSTM 2 X 0.658 0.472 0.327 0.224 0.733 0.222 0.483
- 10 2.0 VGGNet X LSTM 2 X 0.708 0.534 0.391 0.286 0.868 0.239 0.519
- 25 2.0 VGGNet X LSTM 2 X 0.712 0.540 0.398 0.294 0.885 0.241 0.523
- 100 2.0 VGGNet X LSTM 2 X 0.714 0.543 0.402 0.297 0.889 0.242 0.524

- 100 1.0 VGGNet X LSTM 2 X 0.674 0.494 0.357 0.261 0.805 0.228 0.494
- 100 1.5 VGGNet X LSTM 2 X 0.711 0.541 0.402 0.300 0.896 0.242 0.524
- 100 2.0 VGGNet X LSTM 2 X 0.714 0.543 0.402 0.297 0.889 0.242 0.524

Table 4.6. Image caption generation performance (under the BLEU 1-4 (Papineni
et al., 2002) (B1-B4), CIDEr-D (Vedantam et al., 2015) (C), METEOR (Banerjee
and Lavie, 2005) (M), and ROUGE-L (Lin, 2004) (R) metrics) across various network
architectures and generation strategies.

CHAPTER 4. SEQUENCES: LRCN 62

Generation Performance (COCO 2014 Test Set)

Method B1 B2 B3 B4 C M R

Vinyals et al. (2015a) NIC 0.895 0.802 0.694 0.587 0.946 0.346 0.682
Devlin et al. (2015a) MSR Captivator 0.907 0.819 0.710 0.601 0.937 0.339 0.680
Mao et al. (2015b) m-RNN (2015) 0.890 0.798 0.687 0.575 0.935 0.325 0.666

* LRCN (sample) 0.895 0.804 0.695 0.585 0.934 0.335 0.678
Fang et al. (2015) MSR 0.880 0.789 0.678 0.567 0.925 0.331 0.662

Devlin et al. (2015b) Nearest Neighbor 0.872 0.770 0.655 0.542 0.916 0.318 0.648
Lin et al. (2014) Human 0.880 0.744 0.603 0.471 0.910 0.335 0.626

Mao et al. (2015a) m-RNN (2014) 0.890 0.801 0.690 0.578 0.896 0.320 0.668
Donahue et al. (2015) LRCN (greedy) 0.871 0.772 0.653 0.534 0.891 0.322 0.656

Xu et al. (2015) Show, Attend, and Tell 0.872 0.768 0.644 0.523 0.878 0.323 0.651
Kiros et al. (2015) MLBL 0.848 0.747 0.633 0.517 0.752 0.294 0.635

Karpathy and Li (2015) NeuralTalk 0.828 0.701 0.566 0.446 0.692 0.280 0.603

Table 4.7. Image caption generation results from top-performing methods in the 2015
COCO caption challenge competition, sorted by performance under the CIDEr-D met-
ric. (We omit submissions that did not provide a reference to a report describing their
method; see full results at http://mscoco.org/dataset/#captions-leaderboard.)
All results except for our updated result (denoted by LRCN, this work) were competi-
tion entries (submitted by May 2015). Our updated result differs from our original
competition entry only by generation strategy (sampling with N = 100, T = 1.5,
rather than beam search with width 1; i.e., greedy search); the visual and recurrent
architectures (and trained weights) are the same.

http://mscoco.org/dataset/#captions-leaderboard

CHAPTER 4. SEQUENCES: LRCN 63

the retrieval tasks in Table 4.5. In the topmost set of results, we show performance
across various CNN and recurrent architectures for a simple generation strategy –
beam search with beam width 1 (i.e., simply choosing the most probable word at each
time step). In the middle set of results, we show performance across the same set
of architectures for a more sophisticated and computationally intensive generation
strategy found to be the best performing (in terms of performance under the CIDEr-
D metric) among those explored in the bottom-most set of results, which explores
various generation strategies while fixing the choice of network. In the first two sets of
results, we vary the visual input CNN architecture (either CaffeNet (Jia et al., 2014),
an architecture similar to AlexNet (Krizhevsky et al., 2012), or the more modern
VGGNet (Simonyan and Zisserman, 2015)) and whether its weights are finetuned
(FT?). Keeping the visual input CNN fixed with CaffeNet, we also vary the choice of
recurrent architecture, comparing a stack of “vanilla” RNNs with LSTMs (Hochreiter
and Schmidhuber, 1997), as well as the number of layers in the stack L, and (for
L = 2) whether the layers are “factored” (i.e., whether the visual input is passed into
the second layer).

In the last of the three groups of results, we additionally explore and evaluate
various caption generation strategies that can be employed for a given network. The
simplest strategy, and the one employed for most of our generation results in our prior
work (Donahue et al., 2015), is to generate captions greedily; i.e., by simply choosing
the most probable word at each time step. This is equivalent to (and denoted in
Table 4.6 by) beam search with beam width 1. In general, beam search with beam
width N approximates the most likely caption by retaining and expanding only the N
current most likely partial captions, according to the model. We find that of the beam
search strategies, a beam width of 3-5 gives the best generation numbers – performance
saturates quickly and even degrades for larger beam width (e.g., 10).

An alternative, non-deterministic generation strategy is to randomly sample N
captions from the model’s distribution and choose the most probable among these.
Under this strategy we also examine the effect of applying various choices of scalar
factors (inverse of the “temperature”) T to the real-valued predictions input to the
softmax producing the distribution. For larger values of T the samples are greedier
and less diverse, with T = ∞ being equivalent to beam search with beam width 1.
Larger values of N suggest using smaller values of T , and vice versa – for example,
with large N and large T , most of the O(N) computation is wasted as many of the
samples will be redundant. We assess saturation as the number of samples N grows,
and find that N = 100 samples with T = 2 improves little over N = 25. We also
varied the temperature T among values 1, 1.5, and 2 (all with N = 100) and found
T = 1.5 to perform the best.

We adopt the best-performing generation strategy from the bottom-most set
of results in Table 4.6 (sampling with T = 1.5, N = 100) as the strategy for the
middle set of results in the table, which ablates LRCN architectures. We also record
generation performance for all architectures (Table 4.6, top set of results) with the

CHAPTER 4. SEQUENCES: LRCN 64

simpler generation strategy used in our earlier work (Donahue et al., 2015) for ease
of comparison with this work and for future researchers. For the remainder of this
discussion, we will focus on the middle set of results, and particularly on the CIDEr-
D (Vedantam et al., 2015) (C) metric, as it was designed specifically for automatic
evaluation of image captioning systems. We see again that the LSTM unit outperforms
an RNN unit for generation, though not as significantly as for retrieval. Between
the sequence model architecture choices (depicted in Figure 4.4) of the number of
layers L and whether to factor, we see that in this case the two-layer models (LRCN2f

and LRCN2u) perform similarly, outperforming the single layer model (LRCN1u).
Interestingly, of the three variants, LRCN2f is the only one to perform best for both
retrieval and generation.

We see again that fine-tuning (FT) the visual representation and using a stronger
vision model (VGGNet (Simonyan and Zisserman, 2015)) improves results significantly.
Fine-tuning improves CIDEr-D by roughly 0.04 points for CaffeNet, and by roughly
0.07 points for VGGNet. Switching from finetuned CaffeNet to VGGNet improves
CIDEr-D by 0.13 points.

In Table 4.7 we compare generation performance with contemporaneous and
recent work submitted to the 2015 COCO caption challenge using our best-performing
method (under the CIDEr-D metric) from the results on the validation set described
above – generating a caption for a single image by taking the best of N = 100
samples with a scalar factor of T = 1.5 applied to the softmax inputs, using an
LRCN model which pairs a fine-tuned VGGNet with our LRCN2f (two layer, factored)
sequence model architecture. Our results are competitive with the contemporary
work, performing 4th best in CIDEr-D (0.934, compared with the best result of 0.946
from (Vinyals et al., 2015a)), and 3rd best in METEOR (0.335, compared with 0.346
from (Vinyals et al., 2015a)).

In addition to standard quantitative evaluations, we also employ Amazon Mech-
nical Turk workers (“Turkers”) to evaluate the generated sentences. Given an image
and a set of descriptions from different models, we ask Turkers to rank the sentences
based on correctness, grammar and relevance. We compared sentences from our model
to the ones made publicly available by Kiros et al. (2015). As seen in Table 4.8, our
fine-tuned (FT) LRCN model performs on par with the Nearest Neighbour (NN) on
correctness and relevance, and better on grammar.

We show sample captions in Figure 4.6. We additionally note some properties of
the captions our model generates. When using the VGG model to generate sentences
in the validation set, we find that 33.7% of our generated setences exactly match a
sentence in the training set. Furthermore, we find that when using a beam size of
one, our model generates 42% of the vocabulary words used by human annotators
when describing images in the validation set. Some words, such as “lady” and “guy”,
are not generated by our model but are commonly used by human annotators, but
synonyms such as “woman” and “man” are two of the most common words generated
by our model.

CHAPTER 4. SEQUENCES: LRCN 65

Correctness Grammar Relevance

TreeTalk (Kuznetsova et al., 2014) 4.08 4.35 3.98
VGGNet (Kiros et al., 2015) 3.71 3.46 3.70
NN (Kiros et al., 2015) 3.44 3.20 3.49
LRCN fc8 (ours) 3.74 3.19 3.72
LRCN FT (ours) 3.47 3.01 3.50

Captions 2.55 3.72 2.59

Table 4.8. Image description: Human evaluator rankings from 1-6 (low is good)
averaged for each method and criterion. We evaluated on 785 Flickr images selected by
the authors of Kiros et al. (2015) for the purposes of comparison against this similar
contemporary approach.

LSTM

LSTM
CRF cutting

board

cut

knife

board

cutting

cut

knife

[0, 1, 0, 0…]

[1, 0, 0, 0…]

[0, 0, 1, 0...]

[0, 0, 0, 1…]

LSTM

LSTM

A

man

cuts

<EOS>

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

D
ec

o
d

er

E
n

co
d

er

CRF-max
Input

Sentence
One Hot

Visual
Input

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

[0, 1, 0, 0…] [0, 0, 1, 0...] [0, 0, 0, 1…]

[0, 1, 0, 0…] [0, 0, 1, 0...] [0, 0, 0, 1…]

[0, 1, 0, 0…] [0, 0, 1, 0...] [0, 0, 0, 1…]

[0, 1, 0, 0…] [0, 0, 1, 0...] [0, 0, 0, 1…]

LSTM

LSTM

CRF

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

A

man

cuts

<EOS>

[0, 0.8, 0.2, 0…][0.3, 0, 0.7, 0…][0, 0.1, 0.2, 0.7…]

[0, 0.8, 0.2, 0…][0.3, 0, 0.7, 0…][0, 0.1, 0.2, 0.7…]

[0, 0.8, 0.2, 0…][0.3, 0, 0.7, 0…][0, 0.1, 0.2, 0.7…]

[0, 0.8, 0.2, 0…][0.3, 0, 0.7, 0…][0, 0.1, 0.2, 0.7…]

CRF-prob
Visual
Input knifecut

cutting
board

(a) (b) (c)
LSTM LSTM LSTM

Encoder-Decoder Decoder (CRF-max) Decoder (CRF-prob)

Figure 4.5. Our approaches to video description. (a) LSTM encoder & decoder
with CRF max (b) LSTM decoder with CRF max (c) LSTM decoder with CRF
probabilities.

4.5 Video description

In video description the LSTM framework allows us to model the video as a
variable length input stream. However, due to the limitations of available video
description datasets, we rely on more “traditional” activity and video recognition
processing for the input and use LSTMs for generating a sentence. We first distinguish
the following architectures for video description (see Figure 4.5). For each architecture,
we assume we have predictions of activity, tool, object, and locations present in the
video from a CRF based on the full video input. In this way, we observe the video as
whole at each time step, not incrementally frame by frame.

(a) LSTM encoder & decoder with CRF max. (Figure 4.5(a)) This
architecture is motivated by the video description approach presented in Rohrbach
et al. (2013). They first recognize a semantic representation of the video using the

CHAPTER 4. SEQUENCES: LRCN 66

Architecture Input BLEU

SMT (Rohrbach et al., 2013) CRF max 24.9
SMT (Rohrbach et al., 2014) CRF prob 26.9
(a) LSTM Encoder-Decoder (ours) CRF max 25.3
(b) LSTM Decoder (ours) CRF max 27.4
(c) LSTM Decoder (ours) CRF prob 28.8

Table 4.9. Video description: Results on detailed description of TACoS multi-
level (Rohrbach et al., 2014), in %, see Section 4.5 for details.

maximum a posteriori (MAP) estimate of a CRF with video features as unaries. This
representation, e.g., 〈knife,cut,carrot,cutting board〉, is concatenated into an input
sequence (knife cut carrot cutting board) which is translated to a natural language
sentence (a person cuts a carrot on the board) using statistical machine translation
(SMT) (Koehn et al., 2007). We replace SMT with an encoder-decoder LSTM, which
encodes the input sequence as a fixed length vector before decoding to a sentence.

(b) LSTM decoder with CRF max. (Figure 4.5(b)) In this variant we
provide the full visual input representation at each time step to the LSTM, analogous
to how an image is provided as an input to the LSTM in image captioning.

(c) LSTM decoder with CRF probabilites. (Figure 4.5(c)) A benefit of
using LSTMs for machine translation compared to phrase-based SMT (Koehn et al.,
2007) is that it can naturally incorporate probability vectors during training and test
time which allows the LSTM to learn uncertainties in visual generation rather than
relying on MAP estimates. The architecture is the the same as in (b), but we replace
max predictions with probability distributions.

4.5.1 Evaluation

We evaluate our approach on the TACoS multilevel (Rohrbach et al., 2014)
dataset, which has 44,762 video/sentence pairs (about 40,000 for training/validation).
We compare to Rohrbach et al. (2013) who use max prediction as well as a variant
presented in Rohrbach et al. (2014) which takes CRF probabilities at test time and
uses a word lattice to find an optimal sentence prediction. Since we use the max
prediction as well as the probability scores provided by Rohrbach et al. (2014), we
have an identical visual representation. Rohrbach et al. (2014) uses dense trajectories
(Wang et al., 2013b) and SIFT features as well as temporal context reasoning modeled
in a CRF. In this set of experiments we use the two-layered, unfactored version of
LRCN, as described for image description.

Table 4.9 shows the BLEU-4 score. The results show that (1) the LSTM outper-
forms an SMT-based approach to video description; (2) the simpler decoder architecture
(b) and (c) achieve better performance than (a), likely because the input does not

CHAPTER 4. SEQUENCES: LRCN 67

need to be memorized; and (3) our approach achieves 28.8%, clearly outperforming
the best reported number of 26.9% on TACoS multilevel by Rohrbach et al. (2014).

More broadly, these results show that our architecture is not restricted only to
input from deep networks, but can be cleanly integrated with fixed or variable length
inputs from other vision systems.

4.6 Related work

We present previous literature pertaining to the three tasks discussed in this
work. Additionally, we discuss subsequent extensions which combine convolutional
and recurrent networks to achieve improved results on activity recognition, image
captioning, and video description as well as related new tasks such as visual question
answering.

4.6.1 Prior work

Activity recognition. State-of-the-art shallow models combine spatio-temporal
features along dense trajectories (Wang and Schmid, 2013) and encode features as
bags of words or Fisher vectors for classification. Such shallow features track how low
level features change through time but cannot track higher level features. Furthermore,
by encoding features as bags of words or Fisher vectors, temporal relationships are
lost.

Many deep architectures proposed for activity recognition stack a fixed number
of video frames for input to a deep network. Karpathy et al. (2014a) propose a fusion
convolutional network which fuses layers which correspond to different input frames
at various levels of a deep network. Simonyan and Zisserman (2014) proposes a two
stream CNN which combines one CNN trained on RGB frames and one CNN trained
on a stack of 10 flow frames. When combining RGB and flow by averaging softmax
scores, results are comparable to state-of-the-art shallow models on UCF101 (Soomro
et al., 2012) and HMDB51 (Kuehne et al., 2011). Results are further improved by using
an SVM to fuse RGB and flow as opposed to simply averaging scores. Alternatively,
Ji et al. (2013) and Baccouche et al. (2011) propose learning deep spatio-temporal
features with 3D convolutional neural networks. Baccouche et al. (2011) and Baccouche
et al. (2010) propose extracting visual and motion features and modeling temporal
dependencies with recurrent networks. This architecture most closely resembles our
proposed architecture for activity classification, though it differs in two key ways.
First, we integrate 2D CNNs that can be pre-trained on large image datasets. Second,
we combine the CNN and LSTM into a single model to enable end-to-end fine-tuning.

Image captioning. Several early works (Farhadi et al., 2010; Kulkarni et al., 2011;
Mitchell et al., 2012; Yang et al., 2011) on image captioning combine object and

CHAPTER 4. SEQUENCES: LRCN 68

scene recognition with template or tree based approaches to generate captions. Such
sentences are typically simple and are easily distinguished from more fluent human
generated descriptions. Kuznetsova et al. (2012, 2014) address this by composing new
sentences from existing caption fragments which, though more human like, are not
necessarily accurate or correct.

More recently, a variety of deep and multi-modal models (Frome et al., 2013;
Kiros et al., 2014; Mao et al., 2015a; Socher et al., 2014) have been proposed for
image and caption retrieval, as well as caption generation. Though some of these
models rely on deep convolutional nets for image feature extraction (Frome et al.,
2013; Kiros et al., 2014), recently researchers have realized the importance of also
including temporally deep networks to model text. Socher et al. (2014) propose an
RNN to map sentences into a multi-modal embedding space. By mapping images
and language into the same embedding space, they are able to compare images and
descriptions for image and annotation retrieval tasks. Mao et al. (2015a) propose a
model for caption generation that is more similar to the model proposed in this work:
predictions for the next word are based on previous words in a sentence and image
features. Kiros et al. (2014) propose an encoder-decoder model for image caption
retrieval which relies on both a CNN and LSTM encoder to learn an embedding of
image-caption pairs. Their model uses a neural language decoder to enable sentence
generation. As evidenced by the rapid growth of image captioning, visual sequence
models like LRCN are increasingly important for describing the visual world using
natural language.

Video description. Recent approaches to describing video with natural language
have made use of templates, retrieval, or language models (Barbu et al., 2012; Das
et al., 2013; Guadarrama et al., 2013; Khan et al., 2011,?; Rohrbach et al., 2013; Tan
et al., 2011; Thomason et al., 2014). To our knowledge, we present the first application
of deep models to the video description task. Most similar to our work is Rohrbach
et al. (2013), which use phrase-based SMT (Koehn et al., 2007) to generate a sentence.
In Section 4.5 we show that phrase-based SMT can be replaced with LSTMs for video
description as has been shown previously for language translation (Sak et al., 2014;
Sutskever et al., 2014).

4.6.2 Contemporaneous and subsequent work

Similar work in activity recognition and visual description was conducted con-
temporaneously with our work, and a variety of subsequent work has combined
convolutional and recurrent networks to both improve upon our results and achieve
exciting results on other sequential visual tasks.

Activity recognition. Contemporaneous with our work, Ng et al. (2015) train
a network which combines CNNs and LSTMs for activity recognition. Because

CHAPTER 4. SEQUENCES: LRCN 69

activity recognition datasets like UCF101 are relatively small in comparison to image
recognition datasets, Ng et al. (2015) pretrain their network using the Sports-1M
(Karpathy et al., 2014a) dataset which includes over a million videos mined from
YouTube. By training a much larger network (four stacked LSTMs) and pretraining
on a large video dataset, Ng et al. (2015) achieve 88.6% on the UCF101 dataset.

Yeung et al. (2015) also combines a convolutional network with an LSTM to
predict multiple activities per frame. Unlike LRCN, Yeung et al. (2015) focuses on
frame-level (rather than video-level) predictions, which allows their system to label
multiple activities that occur in different temporal locations of a video clip. Like
we show for activity recognition, Yeung et al. (2015) demonstrates that including
temporal information improves upon a single frame baseline. Additionally, Yeung
et al. (2015) employ an attention mechanism to further improve results.

Image captioning. Karpathy and Li (2015) and Vinyals et al. (2015a) also propose
models which combine a CNN with a recurrent network for image captioning. Though
similar to LRCN, the architectures proposed in Karpathy and Li (2015) and Vinyals
et al. (2015a) differ in how image features are input into the sequence model. In
contrast to our system, in which image features are input at each time step, Karpathy
and Li (2015) and Vinyals et al. (2015a) only input image features at the first time
step. Furthermore, they do not explore a “factored” representation (Figure 4.4).
Subsequent work (Xu et al., 2015) has proposed attention to focus on which portion
of the image is observed during sequence generation. By including attention, Xu
et al. (2015) aim to visually focus on the current word generated by the model. Other
works aim to address specific limitations of captioning models based on combining
convolutional and recurrent architectures. For example, methods have been proposed
to integrate new vocabulary with limited (Mao et al., 2015b) or no (Hendricks et al.,
2016) examples of images and corresponding captions.

Video description. In this work, we rely on intermediate features for video descrip-
tion, but end-to-end trainable models for visual captioning have since been proposed.
Venugopalan et al. (2015a) propose creating a video feature by pooling high level CNN
features across frames. The video feature is then used to generate descriptions in the
same way an image is used to generate a description in LRCN. Though achieving
good results, by pooling CNN features, temporal information from the video is lost.
Consequently, Venugopalan et al. (2015b) propose an LSTM to encode video frames
into a fixed length vector before sentence generation with an LSTM. Using an end-
to-end trainable “sequence-to-sequence” model which can exploit temporal structure
in video, Venugopalan et al. (2015b) improve upon results for video description.Yao
et al. (2015) propose a similar model, adding a temporal attention mechanism which
weights video frames differently when generating each word in a sentence.

CHAPTER 4. SEQUENCES: LRCN 70

Visual grounding. Rohrbach et al. (2015) combine CNNs with LSTMs for visual
grounding. The model first encodes a phrase which describes part of an image using
an LSTM, then learns to attend to the appropriate location in the image to accurately
reconstruct the phrase. In order to reconstruct the phrase, the model must learn to
visually ground the input phrase to the appropriate location in the image.

Natural language object retrieval. In this work, we present methods for image
retrieval based on a natural language description. In contrast, Hu et al. (2016) use a
model based on LRCN for object retrieval, which returns the bounding box around
a given object as opposed to an entire image. In order to adapt LRCN to the task
of object retrieval, Hu et al. (2016) include local convolutional features which are
extracted from object proposals and the spatial configuration of object proposals
in addition to a global image feature. By including local features, Hu et al. (2016)
effectively adapt LRCN for object retrieval.

4.7 Discussion

We’ve presented LRCN, a class of models that is both spatially and temporally
deep, and flexible enough to be applied to a variety of vision tasks involving sequential
inputs and outputs. Our results consistently demonstrate that by learning sequential
dynamics with a deep sequence model, we can improve upon previous methods which
learn a deep hierarchy of parameters only in the visual domain, and on methods which
take a fixed visual representation of the input and only learn the dynamics of the
output sequence.

As the field of computer vision matures beyond tasks with static input and
predictions, deep sequence modeling tools like LRCN are increasingly central to vision
systems for problems with sequential structure. The ease with which these tools can
be incorporated into existing visual recognition pipelines makes them a natural choice
for perceptual problems with time-varying visual input or sequential outputs, which
these methods are able to handle with little input preprocessing and no hand-designed
features.

CHAPTER 4. SEQUENCES: LRCN 71

A female tennis
player in action on
the court.

A group of young
men playing a game
of soccer

A man riding a wave
on top of a surf-
board.

A baseball game in
progress with the
batter up to plate.

A brown bear stand-
ing on top of a lush
green field.

A person holding a
cell phone in their
hand.

A close up of a
person brushing his
teeth.

A woman laying on a
bed in a bedroom.

A black and white
cat is sitting on a
chair.

A large clock
mounted to the side
of a building.

A bunch of fruit that
are sitting on a table.

A toothbrush holder
sitting on top of a
white sink.

Figure 4.6. Image description: images with corresponding captions generated by our
finetuned LRCN model. These are images 1-12 of our randomly chosen validation set
from COCO 2014 (Lin et al., 2014). We used beam search with a beam size of 5 to
generate the sentences.

72

Chapter 5

Unsupervised Representation
Learning with Bidirectional
Generative Adversarial Networks1

Deep convolutional networks (convnets) have become a staple of the modern com-
puter vision pipeline. After training these models on a massive database of image-label
pairs like ImageNet (Russakovsky et al., 2015), the network easily adapts to a variety
of similar visual tasks, achieving impressive results on image classification (Donahue
et al., 2014; Razavian et al., 2014; Zeiler and Fergus, 2014) or localization (Girshick
et al., 2014; Long et al., 2015) tasks. In other perceptual domains such as natural
language processing or speech recognition, deep networks have proven highly effective
as well (Bahdanau et al., 2015; Graves et al., 2013; Sutskever et al., 2014; Vinyals
et al., 2015b). However, all of these recent results rely on a supervisory signal from
large-scale databases of hand-labeled data, ignoring much of the useful information
present in the structure of the data itself.

Meanwhile, Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)
have emerged as a powerful framework for learning generative models of arbitrarily
complex data distributions. The GAN framework learns a generator mapping samples
from an arbitrary latent distribution to data, as well as an adversarial discriminator
which tries to distinguish between real and generated samples as accurately as possible.
The generator’s goal is to “fool” the discriminator by producing samples which are as
close to real data as possible. When trained on databases of natural images, GANs
produce impressive results (Denton et al., 2015; Radford et al., 2016).

Interpolations in the latent space of the generator produce smooth and plausible
semantic variations, and certain directions in this space correspond to particular
semantic attributes along which the data distribution varies. For example, Radford

1This chapter is based on joint work with Philipp Krähenbühl and Trevor Darrell (Donahue et al.,
2017).

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 73

et al. (2016) showed that a GAN trained on a database of human faces learns to
associate particular latent directions with gender and the presence of eyeglasses.

A natural question arises from this ostensible “semantic juice” flowing through
the weights of generators learned using the GAN framework: can GANs be used for
unsupervised learning of rich feature representations for arbitrary data distributions?
An obvious issue with doing so is that the generator maps latent samples to generated
data, but the framework does not include an inverse mapping from data to latent
representation.

Hence, we propose a novel unsupervised feature learning framework, Bidirectional
Generative Adversarial Networks (BiGAN). The overall model is depicted in Figure 5.1.
In short, in addition to the generator G from the standard GAN framework (Goodfellow
et al., 2014), BiGAN includes an encoder E which maps data x to latent representations
z. The BiGAN discriminator D discriminates not only in data space (x versus G(z)),
but jointly in data and latent space (tuples (x, E(x)) versus (G(z), z)), where the
latent component is either an encoder output E(x) or a generator input z.

It may not be obvious from this description that the BiGAN encoder E should
learn to invert the generator G. The two modules cannot directly “communicate” with
one another: the encoder never “sees” generator outputs (E(G(z)) is not computed),
and vice versa. Yet, in Section 5.2, we will both argue intuitively and formally prove
that the encoder and generator must learn to invert one another in order to fool the
BiGAN discriminator.

Because the BiGAN encoder learns to predict features z given data x, and prior
work on GANs has demonstrated that these features capture semantic attributes of
the data, we hypothesize that a trained BiGAN encoder may serve as a useful feature
representation for related semantic tasks, in the same way that fully supervised visual
models trained to predict semantic “labels” given images serve as powerful feature
representations for related visual tasks. In this context, a latent representation z may
be thought of as a “label” for x, but one which came for “free,” without the need for
supervision.

An alternative approach to learning the inverse mapping from data to latent
representation is to directly model p(z|G(z)), predicting generator input z given
generated data G(z). We’ll refer to this alternative as a latent regressor, later arguing
(Section 5.3.1) that the BiGAN encoder may be preferable in a feature learning context,
as well as comparing the approaches empirically.

BiGANs are a robust and highly generic approach to unsupervised feature
learning, making no assumptions about the structure or type of data to which they are
applied, as our theoretical results will demonstrate. Our empirical studies will show
that despite their generality, BiGANs are competitive with contemporary approaches
to self-supervised and weakly supervised feature learning designed specifically for a
notoriously complex data distribution – natural images.

Dumoulin et al. (2016) independently proposed an identical model in their
concurrent work, exploring the case of a stochastic encoder E and the ability of such

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 74

features data

z G G(z)

xEE(x)

G(z), z

x, E(x)
D P (y)

Figure 5.1. The structure of Bidirectional Generative Adversarial Networks (BiGAN).

models to learn in a semi-supervised setting.

5.1 Background

Let pX(x) be the distribution of our data for x ∈ ΩX (e.g. natural images). The
goal of generative modeling is capture this data distribution using a probabilistic model.
Unfortunately, exact modeling of this probability density function is computationally
intractable (Hinton et al., 2006; Salakhutdinov and Hinton, 2009) for all but the
most trivial models. Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) instead model the data distribution as a transformation of a fixed latent
distribution pZ(z) for z ∈ ΩZ. This transformation, called a generator, is expressed as
a deterministic feed forward network G : ΩZ → ΩX with pG(x|z) = δ (x−G(z)) and
pG(x) = Ez∼pZ [pG(x|z)]. The goal is to train a generator such that pG(x) ≈ pX(x).

The GAN framework trains a generator, such that no discriminative model
D : ΩX 7→ [0, 1] can distinguish samples of the data distribution from samples of
the generative distribution. Both generator and discriminator are learned using the
adversarial (minimax) objective min

G
max
D

V (D,G), where

V (D,G) := Ex∼pX [logD(x)] + Ex∼pG [log (1−D(x))]︸ ︷︷ ︸
Ez∼pZ

[log(1−D(G(z)))]

(5.1)

Goodfellow et al. (2014) showed that for an ideal discriminator the objective
C(G) := maxD V (D,G) is equivalent to the Jensen-Shannon divergence between the
two distributions pG and pX.

The adversarial objective 5.1 does not directly lend itself to an efficient optimiza-
tion, as each step in the generator G requires a full discriminator D to be learned.
Furthermore, a perfect discriminator no longer provides any gradient information

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 75

to the generator, as the gradient of any global or local maximum of V (D,G) is 0.
To provide a strong gradient signal nonetheless, Goodfellow et al. (2014) slightly
alter the objective between generator and discriminator updates, while keeping the
same fixed point characteristics. They also propose to optimize (5.1) using an alter-
nating optimization switching between updates to the generator and discriminator.
While this optimization is not guaranteed to converge, empirically it works well if the
discriminator and generator are well balanced.

Despite the empirical strength of GANs as generative models of arbitrary data
distributions, it is not clear how they can be applied as an unsupervised feature
representation. One possibility for learning such representations is to learn an inverse
mapping regressing from generated data G(z) back to the latent input z. However,
unless the generator perfectly models the data distribution pX, a nearly impossible
objective for a complex data distribution such as that of high-resolution natural images,
this idea may prove insufficient.

5.2 Bidirectional Generative Adversarial Networks

In Bidirectional Generative Adversarial Networks (BiGANs) we not only train
a generator, but additionally train an encoder E : ΩX → ΩZ. The encoder induces
a distribution pE(z|x) = δ(z− E(x)) mapping data points x into the latent feature
space of the generative model. The discriminator is also modified to take input from
the latent space, predicting PD(Y |x, z), where Y = 1 if x is real (sampled from the
real data distribution pX), and Y = 0 if x is generated (the output of G(z), z ∼ pZ).

The BiGAN training objective is defined as a minimax objective

min
G,E

max
D

V (D,E,G) (5.2)

where

V (D,E,G) := Ex∼pX
[
Ez∼pE(·|x) [logD(x, z)]︸ ︷︷ ︸

logD(x,E(x))

]
+ Ez∼pZ

[
Ex∼pG(·|z) [log (1−D(x, z))]︸ ︷︷ ︸

log(1−D(G(z),z))

]
.

(5.3)

We optimize this minimax objective using the same alternating gradient based opti-
mization as Goodfellow et al. (2014). See Section 5.2.4 for details.

BiGANs share many of the theoretical properties of GANs (Goodfellow et al.,
2014), while additionally guaranteeing that at the global optimum, G and E are
each other’s inverse. BiGANs are also closely related to autoencoders with an `0 loss
function. In the following sections we highlight some of the appealing theoretical
properties of BiGANs.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 76

Definitions Let pGZ(x, z) := pG(x|z)pZ(z) and pEX(x, z) := pE(z|x)pX(x) be the
joint distributions modeled by the generator and encoder respectively. Ω := ΩX × ΩZ

is the joint latent and data space. For a region R ⊆ Ω,

PEX(R) :=
∫

Ω
pEX(x, z)1[(x,z)∈R] d(x, z) =

∫
ΩX

pX(x)
∫

ΩZ
pE(z|x)1[(x,z)∈R] dz dx

PGZ(R) :=
∫

Ω
pGZ(x, z)1[(x,z)∈R] d(x, z) =

∫
ΩZ
pZ(z)

∫
ΩX

pG(x|z)1[(x,z)∈R] dx dz

are probability measures over that region. We also define

PX(RX) :=
∫

ΩX
pX(x)1[x∈RX] dx PZ(RZ) :=

∫
ΩZ
pZ(z)1[z∈RZ] dz

as measures over regions RX ⊆ ΩX and RZ ⊆ ΩZ. We refer to the set of features and
data samples in the support of PX and PZ as Ω̂X := supp(PX) and Ω̂Z := supp(PZ)
respectively. DKL (P ||Q) and DJS (P ||Q) respectively denote the Kullback-Leibler
(KL) and Jensen-Shannon divergences between probability measures P and Q. By
definition,

DKL (P ||Q) := Ex∼P [log fPQ(x)]

DJS (P ||Q) := 1
2

(
DKL

(
P
∣∣∣∣ P+Q

2

)
+ DKL

(
Q
∣∣∣∣ P+Q

2

))
,

where fPQ := dP
dQ

is the Radon-Nikodym (RN) derivative of measure P with respect

to measure Q, with the defining property that P (R) =
∫
R
fPQ dQ. The RN derivative

fPQ : Ω 7→ R≥0 is defined for any measures P and Q on space Ω such that P is
absolutely continuous with respect to Q: i.e., for any R ⊆ Ω, P (R) > 0 =⇒ Q(R) > 0.

5.2.1 Optimal discriminator, generator, & encoder

We start by characterizing the optimal discriminator for any generator and
encoder, following Goodfellow et al. (2014). This optimal discriminator then allows
us to reformulate objective (5.3), and show that it reduces to the Jensen-Shannon
divergence between the joint distributions PEX and PGZ.

Proposition 1 For any E and G, the optimal discriminator D∗EG := argmaxD V (D,E,G)
is the Radon-Nikodym derivative fEG := dPEX

d(PEX+PGZ)
: Ω 7→ [0, 1] of measure PEX with

respect to measure PEX + PGZ.

Proof. Given in Appendix 5.5.1.1.
This optimal discriminator now allows us to characterize the optimal generator

and encoder.

Proposition 2 The encoder and generator’s objective for an optimal discriminator
C(E,G) := maxD V (D,E,G) = V (D∗EG, E,G) can be rewritten in terms of the Jensen-
Shannon divergence between measures PEX and PGZ as C(E,G) = 2 DJS (PEX ||PGZ)−
log 4.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 77

Proof. Given in Appendix 5.5.1.2.

Theorem 1 The global minimum of C(E,G) is achieved if and only if PEX = PGZ.
At that point, C(E,G) = − log 4 and D∗EG = 1

2
.

Proof. From Proposition 2, we have that C(E,G) = 2 DJS (PEX ||PGZ)− log 4.
The Jensen-Shannon divergence DJS (P ||Q) ≥ 0 for any P and Q, and DJS (P ||Q) =
0 if and only if P = Q. Therefore, the global minimum of C(E,G) occurs if and only
if PEX = PGZ, and at this point the value is C(E,G) = − log 4. Finally, PEX = PGZ

implies that the optimal discriminator is chance: D∗EG = dPEX

d(PEX+PGZ)
= dPEX

2 dPEX
= 1

2
. �

The optimal discriminator, encoder, and generator of BiGAN are similar to
the optimal discriminator and generator of the GAN framework (Goodfellow et al.,
2014). However, an important difference is that BiGAN optimizes a Jensen-Shannon
divergence between a joint distribution over both data X and latent features Z. This
joint divergence allows us to further characterize properties of G and E, as shown
below.

5.2.2 Optimal generator & encoder are inverses

We first present an intuitive argument that, in order to “fool” a perfect discrimi-
nator, a deterministic BiGAN encoder and generator must invert each other. (Later
we will formally state and prove this property.) Consider a BiGAN discriminator
input pair (x, z). Due to the sampling procedure, (x, z) must satisfy at least one of
the following two properties:

(a) x ∈ Ω̂X ∧ E(x) = z (b) z ∈ Ω̂Z ∧ G(z) = x

If only one of these properties is satisfied, a perfect discriminator can infer the source
of (x, z) with certainty: if only (a) is satisfied, (x, z) must be an encoder pair (x, E(x))
and D∗EG(x, z) = 1; if only (b) is satisfied, (x, z) must be a generator pair (G(z), z)
and D∗EG(x, z) = 0.

Therefore, in order to fool a perfect discriminator at (x, z) (so that 0 < D∗EG(x, z) <
1), E and G must satisfy both (a) and (b). In this case, we can substitute the equality
E(x) = z required by (a) into the equality G(z) = x required by (b), and vice versa,
giving the inversion properties x = G(E(x)) and z = E(G(z)).

Formally, we show in Theorem 2 that the optimal generator and encoder invert
one another almost everywhere on the support Ω̂X and Ω̂Z of PX and PZ.

Theorem 2 If E and G are an optimal encoder and generator, then E = G−1 almost
everywhere; that is, G(E(x)) = x for PX-almost every x ∈ ΩX, and E(G(z)) = z for
PZ-almost every z ∈ ΩZ.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 78

Proof. Given in Appendix 5.5.1.4.
While Theorem 2 characterizes the encoder and decoder at their optimum, due

to the non-convex nature of the optimization, this optimum might never be reached.
Experimentally, Section 5.3 shows that on standard datasets, the two are approximate
inverses; however, they are rarely exact inverses. It is thus also interesting to show
what objective BiGAN optimizes in terms of E and G. Next we show that BiGANs
are closely related to autoencoders with an `0 loss function.

5.2.3 Relationship to autoencoders

As argued in Section 5, a model trained to predict features z given data x should
learn useful semantic representations. Here we show that the BiGAN objective forces
the encoder E to do exactly this: in order to fool the discriminator at a particular z,
the encoder must invert the generator at that z, such that E(G(z)) = z.

Theorem 3 The encoder and generator objective given an optimal discriminator
C(E,G) := maxD V (D,E,G) can be rewritten as an `0 autoencoder loss function

C(E,G) = Ex∼pX

[
1[E(x)∈Ω̂Z∧G(E(x))=x] log fEG(x, E(x))

]
+

Ez∼pZ

[
1[G(z)∈Ω̂X∧E(G(z))=z] log (1− fEG(G(z), z))

]
with log fEG ∈ (−∞, 0) and log (1− fEG) ∈ (−∞, 0) PEX-almost and PGZ-almost
everywhere.

Proof. Given in Appendix 5.5.1.5.
Here the indicator function 1[G(E(x))=x] in the first term is equivalent to an

autoencoder with `0 loss, while the indicator 1[E(G(z))=z] in the second term shows
that the BiGAN encoder must invert the generator, the desired property for feature
learning. The objective further encourages the functions E(x) and G(z) to produce
valid outputs in the support of PZ and PX respectively. Unlike regular autoencoders,
the `0 loss function does not make any assumptions about the structure or distribution
of the data itself; in fact, all the structural properties of BiGAN are learned as part of
the discriminator.

5.2.4 Learning

In practice, as in the GAN framework (Goodfellow et al., 2014), each BiGAN
module D, G, and E is a parametric function (with parameters θD, θG, and θE,
respectively). As a whole, BiGAN can be optimized using alternating stochastic
gradient steps. In one iteration, the discriminator parameters θD are updated by
taking one or more steps in the positive gradient direction ∇θDV (D,E,G), then
the encoder parameters θE and generator parameters θG are together updated by

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 79

taking a step in the negative gradient direction −∇θE ,θGV (D,E,G). In both cases,
the expectation terms of V (D,E,G) are estimated using mini-batches of n samples
{x(i) ∼ pX}ni=1 and {z(i) ∼ pZ}ni=1 drawn independently for each update step.

Goodfellow et al. (2014) found that an objective in which the real and generated
labels Y are swapped provides stronger gradient signal to G. We similarly observed
in BiGAN training that an “inverse” objective provides stronger gradient signal to
G and E. For efficiency, we also update all modules D, G, and E simultaneously at
each iteration, rather than alternating between D updates and G, E updates. See
Appendix 5.5.2 for details.

5.2.5 Generalized BiGAN

It is often useful to parametrize the output of the generator G and encoder E
in a different, usually smaller, space Ω′X and Ω′Z rather than the original ΩX and ΩZ.
For example, for visual feature learning, the images input to the encoder should be of
similar resolution to images used in the evaluation. On the other hand, generating high
resolution images remains difficult for current generative models. In this situation, the
encoder may take higher resolution input while the generator output and discriminator
input remain low resolution.

We generalize the BiGAN objective V (D,G,E) (5.3) with functions gX : ΩX 7→
Ω′X and gZ : ΩZ 7→ Ω′Z, and encoder E : ΩX 7→ Ω′Z, generator G : ΩZ 7→ Ω′X, and
discriminator D : Ω′X × Ω′Z 7→ [0, 1]:

Ex∼pX
[
Ez′∼pE(·|x) [logD(gX(x), z′)]︸ ︷︷ ︸

logD(gX(x),E(x))

]
+ Ez∼pZ

[
Ex′∼pG(·|z) [log (1−D(x′, gZ(z)))]︸ ︷︷ ︸

log(1−D(G(z),gZ(z)))

]
An identity gX(x) = x and gZ(z) = z (and Ω′X = ΩX, Ω′Z = ΩZ) yields the original
objective. For visual feature learning with higher resolution encoder inputs, gX is an
image resizing function that downsamples a high resolution image x ∈ ΩX to a lower
resolution image x′ ∈ Ω′X, as output by the generator. (gZ is identity.)

In this case, the encoder and generator respectively induce probability measures
PEX′ and PGZ′ over regions R ⊆ Ω′ of the joint space Ω′ := Ω′X×Ω′Z, with PEX′(R) :=∫

ΩX

∫
Ω′X

∫
Ω′Z
pEX(x, z′)1[(x′,z′)∈R]δ(gX(x)−x′) dz′ dx′ dx =

∫
ΩX

pX(x)1[(gX(x),E(x))∈R] dx,

and PGZ′ defined analogously. For optimal E and G, we can show PEX′ = PGZ′ : a
generalization of Theorem 1. When E and G are deterministic and optimal, Theorem 2
– that E and G invert one another – can also be generalized: ∃z∈Ω̂Z

{E(x) = gZ(z) ∧
G(z) = gX(x)} for PX-almost every x ∈ ΩX, and ∃x∈Ω̂X

{E(x) = gZ(z) ∧ G(z) =
gX(x)} for PZ-almost every z ∈ ΩZ.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 80

5.3 Evaluation

We evaluate the feature learning capabilities of BiGANs by first training them
unsupervised as described in Section 5.2.4, then transferring the encoder’s learned
feature representations for use in auxiliary supervised learning tasks. To demonstrate
that BiGANs are able to learn meaningful feature representations both on arbitrary
data vectors, where the model is agnostic to any underlying structure, as well as
very high-dimensional and complex distributions, we evaluate on both permutation-
invariant MNIST (LeCun et al., 1998) and on the high-resolution natural images of
ImageNet (Russakovsky et al., 2015).

In all experiments, each module D, G, and E is a parametric deep (multi-layer)
network. The BiGAN discriminator D(x, z) takes data x as its initial input, and at
each linear layer thereafter, the latent representation z is transformed using a learned
linear transformation to the hidden layer dimension and added to the non-linearity
input.

5.3.1 Baseline methods

Besides the BiGAN framework presented above, we considered alternative ap-
proaches to learning feature representations using different GAN variants.

Discriminator The discriminator D in a standard GAN takes data samples x ∼ pX
as input, making its learned intermediate representations natural candidates as fea-
ture representations for related tasks. This alternative is appealing as it requires
no additional machinery, and is the approach used for unsupervised feature learning
in Radford et al. (2016). On the other hand, it is not clear that the task of dis-
tinguishing between real and generated data requires or benefits from intermediate
representations that are useful as semantic feature representations. In fact, if G
successfully generates the true data distribution pX(x), D may ignore the input data
entirely and predict P (Y = 1) = P (Y = 1|x) = 1

2
unconditionally, not learning any

meaningful intermediate representations.

Latent regressor We consider an alternative encoder training by minimizing a
reconstruction loss L(z, E(G(z))), after or jointly during a regular GAN training, called
latent regressor or joint latent regressor respectively. We use a sigmoid cross entropy
loss L as it naturally maps to a uniformly distributed output space. Intuitively,
a drawback of this approach is that, unlike the encoder in a BiGAN, the latent
regressor encoder E is trained only on generated samples G(z), and never “sees” real
data x ∼ pX. While this may not be an issue in the theoretical optimum where
pG(x) = pX(x) exactly – i.e., G perfectly generates the data distribution pX – in
practice, for highly complex data distributions pX, such as the distribution of natural
images, the generator will almost never achieve this perfect result. The fact that

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 81

BiGAN D LR JLR AE (`2) AE (`1)

97.39 97.30 97.44 97.13 97.58 97.63

Table 5.1. One Nearest Neighbors (1NN) classification accuracy (%) on the
permutation-invariant MNIST (LeCun et al., 1998) test set in the feature space
learned by BiGAN, Latent Regressor (LR), Joint Latent Regressor (JLR), and an
autoencoder (AE) using an `1 or `2 distance.

G(z)

x

G(E(x))

Figure 5.2. Qualitative results for permutation-invariant MNIST BiGAN training,
including generator samples G(z), real data x, and corresponding reconstructions
G(E(x)).

the real data x are never input to this type of encoder limits its utility as a feature
representation for related tasks, as shown later in this section.

5.3.2 Permutation-invariant MNIST

We first present results on permutation-invariant MNIST (LeCun et al., 1998).
In the permutation-invariant setting, each 28 × 28 digit image must be treated as
an unstructured 784D vector (Goodfellow et al., 2013). In our case, this condition
is met by designing each module as a multi-layer perceptron (MLP), agnostic to
the underlying spatial structure in the data (as opposed to a convnet, for example).
See Appendix 5.5.3.1 for more architectural and training details. We set the latent
distribution pZ = [U(−1, 1)]50 – a 50D continuous uniform distribution.

Table 5.1 compares the encoding learned by a BiGAN-trained encoder E with the
baselines described in Section 5.3.1, as well as autoencoders (Hinton and Salakhutdinov,
2006) trained directly to minimize either `2 or `1 reconstruction error. The same
architecture and optimization algorithm is used across all methods. All methods,
including BiGAN, perform at roughly the same level. This result is not overly surprising
given the relative simplicity of MNIST digits. For example, digits generated by G
in a GAN nearly perfectly match the data distribution (qualitatively), making the
latent regressor (LR) baseline method a reasonable choice, as argued in Section 5.3.1.
Qualitative results are presented in Figure 5.2.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 82

(a) D (b) E (c) Noroozi and Favaro (2016)

(d) G (e) AlexNet-based D (f) Krizhevsky et al. (2012)

Figure 5.3. The convolutional filters learned by the three modules (D, G, and E)
of a BiGAN (left, top-middle) trained on the ImageNet (Russakovsky et al., 2015)
database. We compare with the filters learned by a discriminator D trained with the
same architecture (bottom-middle), as well as the filters reported by Noroozi and
Favaro (2016), and by Krizhevsky et al. (2012) for fully supervised ImageNet training
(right).

5.3.3 ImageNet

Next, we present results from training BiGANs on ImageNet LSVRC (Rus-
sakovsky et al., 2015), a large-scale database of natural images. GANs trained on
ImageNet cannot perfectly reconstruct the data, but often capture some interesting
aspects. Here, each of D, G, and E is a convnet. In all experiments, the encoder E
architecture follows AlexNet (Krizhevsky et al., 2012) through the fifth and last con-
volution layer (conv5). We also experiment with an AlexNet-based discriminator D as
a baseline feature learning approach. We set the latent distribution pZ = [U(−1, 1)]200

– a 200D continuous uniform distribution. Additionally, we experiment with higher
resolution encoder input images – 112× 112 rather than the 64× 64 used elsewhere
– using the generalization described in Section 5.2.5. See Appendix 5.5.3.2 for more
architectural and training details.

Qualitative results The convolutional filters learned by each of the three modules
are shown in Figure 5.3. We see that the filters learned by the encoder E have clear
Gabor-like structure, similar to those originally reported for the fully supervised
AlexNet model (Krizhevsky et al., 2012). The filters also have similar “grouping”
structure where one half (the bottom half, in this case) is more color sensitive, and
the other half is more edge sensitive. (This separation of the filters occurs due to
the AlexNet architecture maintaining two separate filter paths for computational
efficiency.)

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 83

G(z)

x

G(E(x))

x

G(E(x))

x

G(E(x))

Figure 5.4. Qualitative results for ImageNet BiGAN training, including generator
samples G(z), real data x, and corresponding reconstructions G(E(x)).

In Figure 5.4 we present sample generations G(z), as well as real data samples
x and their BiGAN reconstructions G(E(x)). The reconstructions, while certainly
imperfect, demonstrate empirically that the BiGAN encoder E and generator G learn
approximate inverse mappings, as shown theoretically in Theorem 2. In Appendix
5.5.3.2, we present nearest neighbors in the BiGAN learned feature space.

ImageNet classification Following Noroozi and Favaro (2016), we evaluate by
freezing the first N layers of our pretrained network and randomly reinitializing
and training the remainder fully supervised for ImageNet classification. Results are
reported in Table 5.2.

VOC classification, detection, and segmentation We evaluate the transfer-
ability of BiGAN representations to the PASCAL VOC (Everingham et al., 2014)
computer vision benchmark tasks, including classification, object detection, and seman-
tic segmentation. The classification task involves simple binary prediction of presence
or absence in a given image for each of 20 object categories. The object detection and
semantic segmentation tasks go a step further by requiring the objects to be localized,
with semantic segmentation requiring this at the finest scale: pixelwise prediction
of object identity. For detection, the pretrained model is used as the initialization
for Fast R-CNN (Girshick, 2015) (FRCN) training; and for semantic segmentation,
the model is used as the initialization for Fully Convolutional Network (Long et al.,

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 84

conv1 conv2 conv3 conv4 conv5

Random (Noroozi and Favaro, 2016) 48.5 41.0 34.8 27.1 12.0
Wang and Gupta (2015) 51.8 46.9 42.8 38.8 29.8
Doersch et al. (2015) 53.1 47.6 48.7 45.6 30.4
Noroozi and Favaro (2016)* 57.1 56.0 52.4 48.3 38.1

BiGAN (ours) 56.2 54.4 49.4 43.9 33.3
BiGAN, 112× 112 E (ours) 55.3 53.2 49.3 44.4 34.8

Table 5.2. Classification accuracy (%) for the ImageNet LSVRC (Russakovsky et al.,
2015) validation set with various portions of the network frozen, or reinitialized and
trained from scratch, following the evaluation from Noroozi and Favaro (2016). In, e.g.,
the conv3 column, the first three layers – conv1 through conv3 – are transferred and
frozen, and the last layers – conv4, conv5, and fully connected layers – are reinitialized
and trained fully supervised for ImageNet classification. BiGAN is competitive with
these contemporary visual feature learning methods, despite its generality. (*Results
from Noroozi and Favaro (2016) are not directly comparable to those of the other
methods as a different base convnet architecture with larger intermediate feature maps
is used.)

2015) (FCN) training, in each case replacing the AlexNet (Krizhevsky et al., 2012)
model trained fully supervised for ImageNet classification. We report results on each
of these tasks in Table 5.3, comparing BiGANs with contemporary approaches to
unsupervised (Krähenbühl et al., 2016) and self-supervised (Agrawal et al., 2015;
Doersch et al., 2015; Pathak et al., 2016; Wang and Gupta, 2015) feature learning in
the visual domain, as well as the baselines discussed in Section 5.3.1.

5.4 Discussion

Despite making no assumptions about the underlying structure of the data, the
BiGAN unsupervised feature learning framework offers a representation competitive
with existing self-supervised and even weakly supervised feature learning approaches
for visual feature learning, while still being a purely generative model with the ability to
sample data x and predict latent representation z. Furthermore, BiGANs outperform
the discriminator (D) and latent regressor (LR) baselines discussed in Section 5.3.1,
confirming our intuition that these approaches may not perform well in the regime of
highly complex data distributions such as that of natural images. The version in which
the encoder takes a higher resolution image than output by the generator (BiGAN
112× 112 E) performs better still, and this strategy is not possible under the LR and
D baselines as each of those modules take generator outputs as their input.

Although existing self-supervised approaches have shown impressive performance

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 85

FRCN FCN
Classification Detection Segmentation

(% mAP) (% mAP) (% mIU)
trained layers fc8 fc6-8 all all all

sup. ImageNet (Krizhevsky et al., 2012) 77.0 78.8 78.3 56.8 48.0

self-sup.

Agrawal et al. (2015) 31.2 31.0 54.2 43.9 -
Pathak et al. (2016) 30.5 34.6 56.5 44.5 30.0
Wang and Gupta (2015) 28.4 55.6 63.1 47.4 -
Doersch et al. (2015) 44.7 55.1 65.3 51.1 -

unsup.

k-means (Krähenbühl et al., 2016) 32.0 39.2 56.6 45.6 32.6
Discriminator (D) 30.7 40.5 56.4 - -
Latent Regressor (LR) 36.9 47.9 57.1 - -
Joint LR 37.1 47.9 56.5 - -
Autoencoder (`2) 24.8 16.0 53.8 41.9 -
BiGAN (ours) 37.5 48.7 58.9 46.2 34.9
BiGAN, 112× 112 E (ours) 41.7 52.5 60.3 46.9 35.2

Table 5.3. Classification and Fast R-CNN (Girshick, 2015) detection results for
the PASCAL VOC 2007 (Everingham et al., 2014) test set, and FCN (Long et al.,
2015) segmentation results on the PASCAL VOC 2012 validation set, under the
standard mean average precision (mAP) or mean intersection over union (mIU)
metrics for each task. Classification models are trained with various portions of the
AlexNet (Krizhevsky et al., 2012) model frozen. In the fc8 column, only the linear
classifier (a multinomial logistic regression) is learned – in the case of BiGAN, on top
of randomly initialized fully connected (FC) layers fc6 and fc7. In the fc6-8 column,
all three FC layers are trained fully supervised with all convolution layers frozen.
Finally, in the all column, the entire network is “fine-tuned”. BiGAN outperforms
other unsupervised (unsup.) feature learning approaches, including the GAN-based
baselines described in Section 5.3.1, and despite its generality, is competitive with
contemporary self-supervised (self-sup.) feature learning approaches specific to the
visual domain.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 86

and thus far tended to outshine purely unsupervised approaches in the complex
domain of high-resolution images, purely unsupervised approaches to feature learning
or pre-training have several potential benefits.

BiGAN and other unsupervised learning approaches are agnostic to the domain
of the data. The self-supervised approaches are specific to the visual domain, in some
cases requiring weak supervision from video unavailable in images alone. For example,
the methods are not applicable in the permutation-invariant MNIST setting explored
in Section 5.3.2, as the data are treated as flat vectors rather than 2D images.

Furthermore, BiGAN and other unsupervised approaches needn’t suffer from
domain shift between the pre-training task and the transfer task, unlike self-supervised
methods in which some aspect of the data is normally removed or corrupted in order
to create a non-trivial prediction task. In the context prediction task (Doersch et al.,
2015), the network sees only small image patches – the global image structure is
unobserved. In the context encoder or inpainting task (Pathak et al., 2016), each
image is corrupted by removing large areas to be filled in by the prediction network,
creating inputs with dramatically different appearance from the uncorrupted natural
images seen in the transfer tasks.

Other approaches (Agrawal et al., 2015; Wang and Gupta, 2015) rely on auxiliary
information unavailable in the static image domain, such as video, egomotion, or
tracking. Unlike BiGAN, such approaches cannot learn feature representations from
unlabeled static images.

We finally note that the results presented here constitute only a preliminary
exploration of the space of model architectures possible under the BiGAN framework,
and we expect results to improve significantly with advancements in generative image
models and discriminative convolutional networks alike.

5.5 Appendix

5.5.1 Additional proofs

5.5.1.1 Proof of Proposition 1 (optimal discriminator)

Proposition 1 For any E and G, the optimal discriminator D∗EG := argmaxD V (D,E,G)
is the Radon-Nikodym derivative fEG := dPEX

d(PEX+PGZ)
: Ω 7→ [0, 1] of measure PEX with

respect to measure PEX + PGZ.

Proof. For measures P and Q on space Ω, with P absolutely continuous with
respect to Q, the RN derivative fPQ := dP

dQ
exists, and we have

Ex∼P [g(x)] =
∫

Ω
g dP =

∫
Ω
g dP

dQ
dQ =

∫
Ω
gfPQ dQ = Ex∼Q [fPQ(x)g(x)] . (5.4)

Let the probability measure PEG := PEX+PGZ

2
denote the average of measures PEX and

PGZ. Both PEX and PGZ are each absolutely continuous with respect to PEG. Hence

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 87

the RN derivatives fEG := dPEX

d(PEX+PGZ)
= 1

2
dPEX

dPEG
and fGE := dPGZ

d(PEX+PGZ)
= 1

2
dPGZ

dPEG
exist

and sum to 1:

fEG + fGE = dPEX

d(PEX+PGZ)
+ dPGZ

d(PEX+PGZ)
= d(PEX+PGZ)

d(PEX+PGZ)
= 1. (5.5)

We use (5.4) and (5.5) to rewrite the objective V (5.3) as a single expectation under
measure PEG:

V (D,E,G) = E(x,z)∼PEX
[logD(x, z)] + E(x,z)∼PGZ

[log (1−D(x, z))]

= E(x,z)∼PEG
[2fEG︸ ︷︷ ︸

dPEX

dPEG

(x, z) logD(x, z)] + E(x,z)∼PEG
[2fGE︸ ︷︷ ︸

dPGZ

dPEG

(x, z) log (1−D(x, z))]

= 2E(x,z)∼PEG
[fEG(x, z) logD(x, z) + fGE(x, z) log (1−D(x, z))]

= 2E(x,z)∼PEG
[fEG(x, z) logD(x, z) + (1− fEG(x, z)) log (1−D(x, z))] .

Note that argmaxy {a log y + (1− a) log(1− y)} = a for any a ∈ [0, 1]. Thus, D∗EG =
fEG. �

5.5.1.2 Proof of Proposition 2 (encoder and generator objective)

Proposition 2 The encoder and generator’s objective for an optimal discriminator
C(E,G) := maxD V (D,E,G) = V (D∗EG, E,G) can be rewritten in terms of the Jensen-
Shannon divergence between measures PEX and PGZ as C(E,G) = 2 DJS (PEX ||PGZ)−
log 4.

Proof. Using Proposition 1 along with (5.5) (1 − D∗EG = 1 − fEG = fGE) we
rewrite the objective

C(E,G) = maxDV (D,E,G) = V (D∗EG, E,G)

= E(x,z)∼PEX
[logD∗EG(x, z)] + E(x,z)∼PGZ

[log (1−D∗EG(x, z))]

= E(x,z)∼PEX
[log fEG(x, z)] + E(x,z)∼PGZ

[log fGE(x, z)]

= E(x,z)∼PEX
[log (2fEG(x, z))] + E(x,z)∼PGZ

[log (2fGE(x, z))]− log 4

= DKL (PEX ||PEG) + DKL (PGZ ||PEG)− log 4

= DKL

(
PEX

∣∣∣∣ PEX+PGZ

2

)
+ DKL

(
PGZ

∣∣∣∣ PEX+PGZ

2

)
− log 4

= 2 DJS (PEX ||PGZ)− log 4. �

5.5.1.3 Measure definitions for deterministic E and G

While Theorem 1 and Propositions 1 and 2 hold for any encoder pE(z|x) and
generator pG(x|z), stochastic or deterministic, Theorems 2 and 3 assume the encoder
E and generator G are deterministic functions; i.e., with conditionals pE(z|x) =
δ(z− E(x)) and pG(x|z) = δ(x−G(z)) defined as δ functions.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 88

For use in the proofs of those theorems, we simplify the definitions of measures
PEX and PGZ given in Section 5.2 for the case of deterministic functions E and G
below:

PEX(R) =
∫

ΩX
pX(x)

∫
ΩZ
pE(z|x)1[(x,z)∈R] dz dx

=
∫

ΩX
pX(x)

(∫
ΩZ
δ(z− E(x))1[(x,z)∈R] dz

)
dx

=
∫

ΩX
pX(x)1[(x,E(x))∈R] dx

PGZ(R) =
∫

ΩZ
pZ(z)

∫
ΩX

pG(x|z)1[(x,z)∈R] dx dz

=
∫

ΩZ
pZ(z)

(∫
ΩX

δ(x−G(z))1[(x,z)∈R] dx
)

dz

=
∫

ΩZ
pZ(z)1[(G(z),z)∈R] dz

5.5.1.4 Proof of Theorem 2 (optimal generator and encoder are inverses)

Theorem 2 If E and G are an optimal encoder and generator, then E = G−1 almost
everywhere; that is, G(E(x)) = x for PX-almost every x ∈ ΩX, and E(G(z)) = z for
PZ-almost every z ∈ ΩZ.

Proof. Let R0
X := {x ∈ ΩX : x 6= G(E(x))} be the region of ΩX in which the

inversion property x = G(E(x)) does not hold. We will show that, for optimal E
and G, R0

X has measure zero under PX (i.e., PX(R0
X) = 0) and therefore x = G(E(x))

holds PX-almost everywhere.
Let R0 := {(x, z) ∈ Ω : z = E(x) ∧ x ∈ R0

X} be the region of Ω such that
(x, E(x)) ∈ R0 if and only if x ∈ R0

X. We’ll use the definitions of PEX and PGZ for
deterministic E and G (Appendix 5.5.1.3), and the fact that PEX = PGZ for optimal
E and G (Theorem 1).

PX(R0
X) =

∫
ΩX

pX(x)1[x∈R0
X] dx

=
∫

ΩX
pX(x)1[(x,E(x))∈R0] dx

= PEX(R0)

= PGZ(R0)

=
∫

ΩZ
pZ(z)1[(G(z),z)∈R0] dz

=
∫

ΩZ
pZ(z)1[z=E(G(z))∧G(z)∈R0

X] dz

=
∫

ΩZ
pZ(z) 1[z=E(G(z))∧G(z)6=G(E(G(z)))]︸ ︷︷ ︸

=0 for any z, as z=E(G(z)) =⇒ G(z)=G(E(G(z)))

dz

= 0.

Hence region R0
X has measure zero (PX(R0

X) = 0), and the inversion property x =
G(E(x)) holds PX-almost everywhere.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 89

An analogous argument shows that R0
Z := {z ∈ ΩZ : z 6= E(G(z))} has measure

zero on PZ (i.e., PZ(R0
Z) = 0) and therefore z = E(G(z)) holds PZ-almost everywhere.

�

5.5.1.5 Proof of Theorem 3 (relationship to autoencoders)

As shown in Proposition 2 (Section 5.2), the BiGAN objective is equivalent to the
Jensen-Shannon divergence between PEX and PGZ. We now go a step further and show
that this Jensen-Shannon divergence is closely related to a standard autoencoder loss.
Omitting the 1

2
scale factor, a KL divergence term of the Jensen-Shannon divergence

is given as

DKL

(
PEX

∣∣∣∣ PEX+PGZ

2

)
= log 2 +

∫
Ω

log
dPEX

d(PEX + PGZ)
dPEX

= log 2 +

∫
Ω

log f dPEX, (5.6)

where we abbreviate as f the Radon-Nikodym derivative fEG := dPEX

d(PEX+PGZ)
∈ [0, 1]

defined in Proposition 1 for most of this proof.
We’ll make use of the definitions of PEX and PGZ for deterministic E and G

found in Appendix 5.5.1.3. The integral term of the KL divergence expression given
in (5.6) over a particular region R ⊆ Ω will be denoted by

F (R) :=

∫
R

log
dPEX

d (PEX + PGZ)
dPEX =

∫
R

log f dPEX.

Next we will show that f > 0 holds PEX-almost everywhere, and hence F is always
well defined and finite. We then show that F is equivalent to an autoencoder-like
reconstruction loss function.

Proposition 3 f > 0 PEX-almost everywhere.

Proof. Let Rf=0 := {(x, z) ∈ Ω : f(x, z) = 0} be the region of Ω in which f = 0.
Using the definition of the Radon-Nikodym derivative f , the measure PEX(Rf=0) =∫
Rf=0 f d(PEX + PGZ) =

∫
Rf=0 0 d(PEX + PGZ) = 0 is zero. Hence f > 0 PEX-almost

everywhere. �
Proposition 3 ensures that log f is defined PEX-almost everywhere, and F (R)

is well-defined. Next we will show that F (R) mimics an autoencoder with `0 loss,
meaning F is zero for any region in which G(E(x)) 6= x, and non-zero otherwise.

Proposition 4 The KL divergence F outside the support of PGZ is zero: F (Ω \
supp(PGZ)) = 0.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 90

We’ll first show that in region RS := Ω \ supp(PGZ), we have f = 1 PEX-almost
everywhere. Let Rf<1 := {(x, z) ∈ RS : f(x, z) < 1} be the region of RS in which
f < 1. Let’s assume that PEX(Rf<1) > 0 has non-zero measure. Then, using the
definition of the Radon-Nikodym derivative,

PEX(Rf<1) =
∫
Rf<1 f d(PEX + PGZ) =

∫
Rf<1 f︸︷︷︸

≤ε<1

dPEX +
∫
Rf<1 f dPGZ︸ ︷︷ ︸

0

≤ εPEX(Rf<1)

< PEX(Rf<1),

where ε is a constant smaller than 1. But PEX(Rf<1) < PEX(Rf<1) is a contradiction;
hence PEX(Rf<1) = 0 and f = 1 PEX-almost everywhere in RS, implying log f = 0
PEX-almost everywhere in RS. Hence F (RS) = 0. �

By definition, F (Ω \ supp(PEX)) = 0 is also zero. The only region where F might
be non-zero is R1 := supp(PEX) ∩ supp(PGZ).

Proposition 5 f < 1 PEX-almost everywhere in R1.

Let Rf=1 := {(x, z) ∈ R1 : f(x, z) = 1} be the region in which f = 1. Let’s assume
the set Rf=1 6= ∅ is not empty. By definition of the support2, PEX(Rf=1) > 0 and
PGZ(Rf=1) > 0. The Radon-Nikodym derivative on Rf=1 is then given by

PEX(Rf=1) =
∫
Rf=1 f d(PEX + PGZ) =

∫
Rf=1 1 d(PEX + PGZ) = PEX(Rf=1) + PGZ(Rf=1),

which implies PGZ(Rf=1) = 0 and contradicts the definition of support. Hence
Rf=1 = ∅ and f < 1 PEX-almost everywhere on R1, implying log f < 0 PEX-almost
everywhere. �

Theorem 3 The encoder and generator objective given an optimal discriminator
C(E,G) := maxD V (D,E,G) can be rewritten as an `0 autoencoder loss function

C(E,G) = Ex∼pX

[
1[E(x)∈Ω̂Z∧G(E(x))=x] log fEG(x, E(x))

]
+

Ez∼pZ

[
1[G(z)∈Ω̂X∧E(G(z))=z] log (1− fEG(G(z), z))

]
with log fEG ∈ (−∞, 0) and log (1− fEG) ∈ (−∞, 0) PEX-almost and PGZ-almost
everywhere.

Proof. Proposition 4 (F (Ω \ supp(PGZ)) = 0) and F (Ω \ supp(PEX)) = 0 imply
that R1 := supp(PEX) ∩ supp(PGZ) is the only region of Ω where F may be non-zero;
hence F (Ω) = F (R1). Note that

supp(PEX) = {(x, E(x)) : x ∈ Ω̂X}
supp(PGZ) = {(G(z), z) : z ∈ Ω̂Z}

=⇒ R1 := supp(PEX) ∩ supp(PGZ) = {(x, z) : E(x) = z ∧ x ∈ Ω̂X ∧G(z) = x ∧ z ∈ Ω̂Z}
2We use the definition U ∩ C 6= ∅ =⇒ µ(U ∩ C) > 0 here.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 91

So a point (x, E(x)) is in R1 if x ∈ Ω̂X, E(x) ∈ Ω̂Z, and G(E(x)) = x. (We can omit
the x ∈ Ω̂X condition from inside an expectation over PX, as PX-almost all x /∈ Ω̂X

have 0 probability.) Therefore,

DKL

(
PEX

∣∣∣∣ PEX+PGZ

2

)
− log 2 = F (Ω) = F (R1)

=
∫
R1 log f(x, z) dPEX

=
∫

Ω
1[(x,z)∈R1] log f(x, z) dPEX

= E(x,z)∼PEX

[
1[(x,z)∈R1] log f(x, z)

]
= Ex∼pX

[
1[(x,E(x))∈R1] log f(x, E(x))

]
= Ex∼pX

[
1[E(x)∈Ω̂Z∧G(E(x))=x] log f(x, E(x))

]
.

Finally, with Propositions 3 and 5, we have f ∈ (0, 1) PEX-almost everywhere in R1,
and therefore log f ∈ (−∞, 0), taking a finite and strictly negative value PEX-almost
everywhere.

An analogous argument (along with the fact that fEG + fGE = 1) lets us rewrite
the other KL divergence term

DKL

(
PGZ

∣∣∣∣ PEX+PGZ

2

)
− log 2 = Ez∼pZ

[
1[G(z)∈Ω̂X∧E(G(z))=z] log fGE(G(z), z)

]
= Ez∼pZ

[
1[G(z)∈Ω̂X∧E(G(z))=z] log (1− fEG(G(z), z))

]
The Jensen-Shannon divergence is the mean of these two KL divergences, giving
C(E,G):

C(E,G) = 2 DJS (PEX ||PGZ)− log 4

= DKL

(
PEX

∣∣∣∣ PEX+PGZ

2

)
+ DKL

(
PGZ

∣∣∣∣ PEX+PGZ

2

)
− log 4

= Ex∼pX

[
1[E(x)∈Ω̂Z∧G(E(x))=x] log fEG(x, E(x))

]
+

Ez∼pZ

[
1[G(z)∈Ω̂X∧E(G(z))=z] log (1− fEG(G(z), z))

]
�

5.5.2 Learning details

In this section we provide additional details on the BiGAN learning protocol
summarized in Section 5.2.4. Goodfellow et al. (2014) found for GAN training that
an objective in which the real and generated labels Y are swapped provides stronger
gradient signal to G. We similarly observed in BiGAN training that an “inverse”
objective Λ (with the same fixed point characteristics as V) provides stronger gradient
signal to G and E, where

Λ(D,G,E) = Ex∼pX
[
Ez∼pE(·|x) [log (1−D(x, z))]︸ ︷︷ ︸

log(1−D(x,E(x)))

]
+ Ez∼pZ

[
Ex∼pG(·|z) [logD(x, z)]︸ ︷︷ ︸

logD(G(z),z)

]
.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 92

In practice, θG and θE are updated by moving in the positive gradient direction of this
inverse objective ∇θE ,θGΛ, rather than the negative gradient direction of the original
objective.

We also observed that learning behaved similarly when all parameters θD, θG,
θE were updated simultaneously at each iteration rather than alternating between θD
updates and θG, θE updates, so we took the simultaneous updating (non-alternating)
approach for computational efficiency. (For standard GAN training, simultaneous
updates of θD, θG performed similarly well, so our standard GAN experiments also
follow this protocol.)

5.5.3 Model and training details

In the following sections we present additional details on the models and train-
ing protocols used in the permutation-invariant MNIST and ImageNet evaluations
presented in Section 5.3.

Optimization For unsupervised training of BiGANs and baseline methods, we
use the Adam optimizer (Kingma and Ba, 2015) to compute parameter updates,
following the hyperparameters (initial step size α = 2× 10−4, momentum β1 = 0.5 and
β2 = 0.999) used by Radford et al. (2016). The step size α is decayed exponentially to
α = 2× 10−6 starting halfway through training. The mini-batch size is 128. `2 weight
decay of 2.5× 10−5 is applied to all multiplicative weights in linear layers (but not to
the learned bias β or scale γ parameters applied after batch normalization). Weights
are initialized from a zero-mean normal distribution with a standard deviation of 0.02,
with one notable exception: BiGAN discriminator weights that directly multiply z
inputs to be added to spatial convolution outputs have initializations scaled by the
convolution kernel size – e.g., for a 5× 5 kernel, weights are initialized with a standard
deviation of 0.5, 25 times the standard initialization.

Software & hardware We implement BiGANs and baseline feature learning meth-
ods using the Theano (Theano Development Team, 2016) framework, based on the
convolutional GAN implementation provided by Radford et al. (2016). ImageNet
transfer learning experiments (Section 5.3.3) use the Caffe (Jia et al., 2014) frame-
work, per the Fast R-CNN (Girshick, 2015) and FCN (Long et al., 2015) reference
implementations. Most computation is performed on an NVIDIA Titan X or Tesla
K40 GPU.

5.5.3.1 Permutation-invariant MNIST

In all permutation-invariant MNIST experiments (Section 5.3.2), D, G, and E
each consist of two hidden layers with 1024 units. The first hidden layer is followed by
a non-linearity; the second is followed by (parameter-free) batch normalization (Ioffe

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 93

and Szegedy, 2015) and a non-linearity. The second hidden layer in each case is
the input to a linear prediction layer of the appropriate size. In D and E, a leaky
ReLU (Maas et al., 2013) non-linearity with a “leak” of 0.2 is used; in G, a standard
ReLU non-linearity is used. All models are trained for 400 epochs.

5.5.3.2 ImageNet

In all ImageNet experiments (Section 5.3.3), the encoder E architecture follows
AlexNet (Krizhevsky et al., 2012) through the fifth and last convolution layer (conv5),
with local response normalization (LRN) layers removed and batch normalization (Ioffe
and Szegedy, 2015) (including the learned scaling and bias) with leaky ReLU non-
linearity applied to the output of each convolution at unsupervised training time. (For
supervised evaluation, batch normalization is not used, and the pre-trained scale and
bias is merged into the preceding convolution’s weights and bias.)

In most experiments, both the discriminator D and generator G architecture are
those used by Radford et al. (2016), consisting of a series of four 5× 5 convolutions
(or “deconvolutions” – fractionally-strided convolutions – for the generator G) applied
with 2 pixel stride, each followed by batch normalization and rectified non-linearity.

The sole exception is our discriminator baseline feature learning experiment, in
which we let the discriminator D be the AlexNet variant described above. Generally,
using AlexNet (or similar convnet architecture) as the discriminator D is detrimental
to the visual fidelity of the resulting generated images, likely due to the relatively large
convolutional filter kernel size applied to the input image, as well as the max-pooling
layers, which explicitly discard information in the input. However, for fair comparison
of the discriminator’s feature learning abilities with those of BiGANs, we use the same
architecture as used in the BiGAN encoder.

Preprocessing To produce a data sample x, we first sample an image from the
database, and resize it proportionally such that its shorter edge has a length of 72
pixels. Then, a 64× 64 crop is randomly selected from the resized image. The crop is
flipped horizontally with probability 1

2
. Finally, the crop is scaled to [−1, 1], giving

the sample x.

Timing A single epoch (one training pass over the 1.2 million images) of BiGAN
training takes roughly 40 minutes on a Titan X GPU. Models are trained for 100
epochs, for a total training time of under 3 days.

Nearest neighbors In Figure 5.5 we present nearest neighbors in the feature space
of the BiGAN encoder E learned in unsupervised ImageNet training.

CHAPTER 5. UNSUPERVISED LEARNING: BIGAN 94

Query #1 #2 #3 #4

Figure 5.5. For the query images used in Krähenbühl et al. (2016) (left), nearest
neighbors (by minimum cosine distance) from the ImageNet LSVRC (Russakovsky
et al., 2015) training set in the fc6 feature space of the ImageNet-trained BiGAN
encoder E. (The fc6 weights are set randomly; this space is a random projection of
the learned conv5 feature space.)

95

Chapter 6

Conclusion

In the first few chapters of this thesis, we saw that feature representations learned
by supervised convolutional networks generalize surprisingly well to related domains
and tasks. Chapter 2 demonstrated state-of-the-art classification results in domains
like scene recognition and fine-grained or subcategory recognition simply by pairing
linear classifiers with features transferred from ImageNet-trained convnets. Chapter 3
paired pretrained convnet representations with region proposal mechanisms to address
localization tasks, far exceeding the state of the art at the time in object detection
and matching the state of the art in pixelwise semantic segmentation. Chapter 4
showed that convnets may be paired with recurrent networks (e.g., LSTMs) to accept
sequential inputs or produce sequential outputs.

All of these results relied heavily on supervision from the 1.2 million labeled
images of the ImageNet challenge database (Deng et al., 2012). In contrast, Chapter 5
proposed and evaluated an approach – Bidirectional GANs or BiGANs – for learning
powerful visual feature representations without supervision, from unlabeled images
alone. Although the representations learned by unsupervised approaches like BiGAN
currently lag behind the fully supervised representations in quantitative evaluations,
these approaches show significant promise as potential ways of exploiting the billions
or trillions of images available “in the wild” from the internet and other sources to
learn even richer and more generalizable visual feature representations than those
learned from purely supervised approaches.

While much progress in both supervised and unsupervised representation learning
has been made, there remain a number of important frontiers and directions for future
research, some of which we’ll discuss below.

6.1 Frontiers and future directions

Improving unsupervised generative models. While there’s a great deal of
excitement around GANs (Goodfellow et al., 2014), and justifiably so, their current

CHAPTER 6. CONCLUSION 96

forms generally work best – i.e., synthesize images most convincingly – when applied
to restricted domains (e.g., when trained on only scene or face images as in Radford
et al. (2016), or only on dog images, as in Salimans et al. (2016)), or when trained
conditionally with supervision to generate images of a particular class (Zhang et al.,
2016). In contrast, when trained unconditionally on the entirety of the ImageNet 1000
class dataset, for example, the generated images produced by current GANs have little
recognizable structure, mostly producing amorphous “blobs” rather than recognizable
objects (see, e.g., Figure 5.4). Ian Goodfellow’s GAN tutorial (Goodfellow, 2016)
provides a nice discussion of these and other issues with GAN training, as well as
various recently proposed techniques to partially alleviate them.

Given the relationship of the generator and the encoder in a BiGAN, the inability
of the generator to accurately represent the many modes of a large dataset like
ImageNet also limits the encoder’s ability to learn visual semantics. For example, if
the generator does not learn to associate a concept like “cat” with some direction
in latent space, the encoder, which inverts the generator, will not learn to recognize
cats in its inputs. As such, improving the BiGAN encoder’s ability to learn good
feature representations from large and diverse datasets like ImageNet may require
improvements to image generation.

Next we’ll discuss one potential direction for doing so.

Figure 6.1. GANs and other gener-
ative models may be trained with
discrete latent components.

Generative models with discrete latent
spaces. In many domains of interest, particu-
larly in the visual world, some of the underly-
ing factors of variation may be discrete rather
than continuous. For example, in distributions
like MNIST or ImageNet, the latent factors for
a given image include a discrete “label” (one of
10 or 1000). Despite this, the latent spaces typ-
ically used by practitioners to train GANs and
other generative models are entirely continuous.
For continuous latent variables z, a continuous
generator G(z) is forced to smoothly interpolate
between the discrete modes of the data distribution, while still producing a sufficiently
plausible image at every point in latent space between any two different modes. While
this has proven empirically to be possible with a deep nonlinear G, at least for MNIST,
this intuition suggests that we might be able to make the generator’s job easier by
feeding it latent inputs z with discrete components.

As a proof of concept, Figure 6.1 shows the results of training a standard GAN
on MNIST where latent inputs z consist of a 10-way discrete categorical variable (i.e.,
a 10D one-hot vector) concatenated with a 10D continuous uniform variable. In each
row, the outcome of the discrete categorical component is fixed; in each column, the
outcome of the continuous component is fixed. The GAN, completely unsupervised,

CHAPTER 6. CONCLUSION 97

learns a discrete clustering of the MNIST digits that exactly corresponds to our notion
of digit identities, as well as learning to associate particular writing styles with the
continuous components.1

Figure 6.2. Generated im-
ages from a GAN with dis-
crete inputs trained on a
subset of ImageNet.

Figure 6.2 shows the results of a similar preliminary
experiment for the first 100 classes of ImageNet (mainly
various bird and fish species), where the latent inputs to
a GAN consist of a 100-way discrete categorical variable
concatenated with a 100D continuous uniform variable.
(Due to space constraints, only ten outcomes of the cat-
egorical variable are shown.) In this case, the categorical
variable seems to select for both a foreground object type
and background texture, somewhat failing to automati-
cally do exactly what we “want” it to do – learn to use
the categorical variable to select for object identity alone.
The addition of more discrete components may help over-
come this limitation – for example, with two categorical
latent variables, the generator could associate one with
selecting the background and the other with selecting the
foreground.

In the case of MNIST, if the GAN generator with
these discrete inputs were perfect, the “latent regressor” en-
coder we proposed earlier, trained to reconstruct z given a
generated image G(z), would learn all the structure learned
by fully supervised classifiers, as it needs to predict the
categorical component of z which the generator learned to
associate with digit identity. Beyond that, by reconstruct-
ing the continuous components of z the encoder learns to
recognize handwriting style – an aspect not represented
by the category label.

Training a BiGAN with discrete z on the other hand
is significantly more challenging. The encoder in this
case is stochastic: its output E(x) includes a softmax
component, parametrizing a categorical distribution, and

a sample ẑ ∼ E(x) includes a one-hot vector sampled from that distribution. This
discrete sampling step is non-differentiable, and thus computing gradients of the
discriminator score D(x, ẑ) with respect to the encoder weights requires a method
beyond standard backpropagation. One method for estimating such gradients is
known as REINFORCE (Williams, 1992), which produces unbiased yet very high

1InfoGAN (Chen et al., 2016) includes a similar result, but found that a standard GAN fails to
associate the categorical outcomes with digit identities. To obtain the results in Figures 6.1 & 6.2,
we scale the one-hot vector representing the categorical component of z by a factor α > 1 before it’s
input to the generator, biasing the generator such that this component has greater influence.

CHAPTER 6. CONCLUSION 98

variance gradient estimates. Preliminary attempts to train discrete BiGANs with
this approach have proven difficult and unstable. (We similarly struggled with other
methods like the “straight-through” estimator (Bengio et al., 2013) and Gumbel-
Softmax reparameterization (Jang et al., 2016), recently proposed as alternatives to
REINFORCE which are biased, but may have lower variance.)

Despite the additional modeling and optimization challenges discrete latent
variables bring, they nonetheless intuitively seem a potentially important direction for
improving unsupervised representation learning.

Semi-supervised learning. In Chapter 5 we stubbornly confined ourselves to
representation learning in the purely unsupervised regime to analyze the extent to
which rich representations can be learned from data alone. But this restriction makes
little sense in many important real world settings. For example, as we saw in the first
chapters of this thesis, if our goal is to use a convnet to make semantic predictions in
a natural image domain, pre-training the convnet to predict ImageNet labels seems to
be a nearly universally beneficial – or at least non-detrimental – first step. In general,
whenever we have access to a supervisory signal for a domain of interest, we may as
well make use of it.

Hence an important next step to demonstrate the value of these approaches in
more realistic settings is to evaluate in the large-scale semi-supervised setting, where a
model is jointly trained with an unsupervised objective on a large unlabeled database,
as well as a supervised objective for any labeled samples we have access to. In the
case of BiGAN, for example, the encoder predicting latent representations z could
also be trained to predict any available labels y with a standard softmax classifier.

Unfortunately, current unsupervised learning approaches are unlikely to improve
learned visual representations given a sufficiently large labeled dataset like ImageNet.
However, once unsupervised learning approaches mature (e.g., by improving generation
as suggested in previous paragraphs), demonstrating benefits in the semi-supervised
setting will be key for adoption of these approaches outside the ivory tower.

Unsupervised learning for reinforcement learning. The goal of reinforcement
learning (RL) is to train an agent to act in response to observations from an en-
vironment, maximizing rewards accumulated over time. Reinforcement learning is,
in general, thought to be more challenging than supervised learning for a variety
of reasons, most of which we won’t delve into here. Among them, though, is the
sparsity of typical reward signals – e.g., the reward may be zero at every step until a
particular complex sequence of actions has been taken – and the resulting difficulty of
representation learning, especially for high dimensional state spaces such as natural
images.

A recent body of work (Dosovitskiy and Koltun, 2017; Jaderberg et al., 2017;
Shelhamer et al., 2016) has shown that optimizing the agent’s policy or value network

CHAPTER 6. CONCLUSION 99

(which takes raw states or observations as input) for auxiliary (self-)supervised or
unsupervised tasks improves the agent’s ability to maximize RL returns, at least
in terms of time to convergence or data efficiency. For example, Shelhamer et al.
(2016) showed that pretraining an Atari agent’s convnet with unsupervised or self-
supervised objectives (e.g., as a BiGAN encoder) improves convergence speed and
data efficiency for many Atari games. While BiGAN does not improve convergence
to the extent that the self-supervised reward or (inverse) dynamics tasks do, the
self-supervised tasks are complementary to BiGAN: as described in the previous
section (semi-supervised learning) for semantic image labels, the BiGAN encoder
could also be jointly trained for prediction per the self-supervised tasks, potentially
with the generator and discriminator conditioned on other components of a (s, a, r, s′)
transition tuple as well. Furthermore, the “joint policy and auxiliary optimization”
results from Shelhamer et al. (2016) show that rather than merely pre-training for
the auxiliary tasks on transitions collected from a randomly initialized agent, data
efficiency can be further improved by training the RL agent jointly to optimize reward
as well as an auxiliary objective. With joint training, unlike pre-training, the inputs
to the auxiliary objective continue to match the (non-stationary) distribution of the
agent’s observations, even as its policy is updated.

A complementary research direction in RL known as intrinsic motivation (Chen-
tanez et al., 2004; Schmidhuber, 1991; Stadie et al., 2015) ponders how agents can be
incentivized to be “curious” – i.e., to learn to explore the full state space. This topic
is especially important in the face of sparse reward signals or high-dimensional obser-
vations. Unsupervised learning and generative modeling approaches may also prove
useful in this area. For example, if a generative model can be used to obtain density
estimates p(x) for observations x, the negative of these (log-)density estimates −p(x)
or − log p(x) could be added to the standard reward signal as “exploration bonuses,”
incentivizing the agent to search for low probability states. PixelCNN (van den Oord
et al., 2016) is a recent generative model that produces such density estimates directly.
The BiGAN encoder can also be used to obtain density estimates, though in a less
straightforward manner.

Overall, existing evidence and intuition suggest that unsupervised learning ap-
proaches may be important tools for making reinforcement learning with sparse reward
signals or high-dimensional observations more tractable.

Multistep prediction and attention. Since AlexNet (Krizhevsky et al., 2012),
deep convnet architectures have been improved with a number of new techniques
and design choices like batch normalization (Ioffe and Szegedy, 2015) and residual
connections (He et al., 2016). These new techniques, as well as improvements in GPU
hardware and low-level software, have made it possible to train larger and deeper
convnets with superior recognition capabilities, as measured by accuracy on ImageNet
classification and other standard vision benchmarks.

However, all of these techniques process the entirety of the input image in a

CHAPTER 6. CONCLUSION 100

single feed-forward inference step. To the extent that vision systems found in nature
can serve as inspiration for improvements in computer vision systems, this suggests
we might be able to do better with a multistep prediction approach; for example using
a learned attention mechanism where a model predicts not only what it’s looking at,
but also where to look, potentially with multiple “glimpses” at the image.

Attention mechanisms have been explored for both recognition (Mnih et al.,
2014; Ranzato, 2014) and generation (Gregor et al., 2015) in small-scale settings, but
haven’t been demonstrated for high-resolution images of interest to modern computer
vision researchers. Despite the current lack of empirical evidence, it is clear that for a
fixed computational budget such approaches have the potential to outperform purely
feed-forward networks in any domain, by allowing for more expensive computations
to be performed on smaller regions of the input.

This capability may prove especially useful for localization problems such as
detection and pixelwise semantic segmentation, where challenges remain with small
objects and fine object boundaries. Taking segmentation as an example, a network
with attention capabilities could first make a “coarse” segmentation prediction at low
resolution, and then “zoom in” on regions near object boundaries, iteratively refining
its predictions.

Of course, learning an attention mechanism brings additional challenges not
suffered with purely feed-forward prediction. In particular, a straightforward supervised
learning problem turns into a much more difficult reinforcement learning problem,
depending on how the problem is formulated. This suggests that improving upon purely
feed-forward models with attention, even with a restricted computational budget,
is unlikely to be straightforward. Nonetheless, the potential benefits of attention
mechanisms for both computational efficiency and recognition accuracy could make
overcoming these barriers a worthwhile pursuit in the long run.

101

Bibliography

P. Agrawal, J. Carreira, and J. Malik, “Learning to see by moving,” in ICCV, 2015.

B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of image windows,”
TPAMI, 2012.

R. Ando and T. Zhang, “A framework for learning predictive structures from multiple
tasks and unlabeled data,” JMLR, 2005.

P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik, “Multiscale combi-
natorial grouping,” in CVPR, 2014.

P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and J. Malik, “Semantic
segmentation using regions and parts,” in CVPR, 2012.

A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature learning,” in NIPS,
2006.

M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, “Action classification
in soccer videos with long short-term memory recurrent neural networks,” in ICANN,
2010.

——, “Sequential deep learning for human action recognition,” in Human Behavior
Understanding, 2011.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” in ICLR, 2015.

S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments,” in ACL Workshops, 2005.

A. Barbu, A. Bridge, Z. Burchill, D. Coroian, S. Dickinson, S. Fidler, A. Michaux,
S. Mussman, S. Narayanaswamy, D. Salvi, L. Schmidt, J. Shangguan, J. M. Siskind,
J. Waggoner, S. Wang, J. Wei, Y. Yin, and Z. Zhang, “Video in sentences out,” in
UAI, 2012.

H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,” in
ECCV, 2006.

BIBLIOGRAPHY 102

Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through
stochastic neurons for conditional computation,” arXiv:1308.3432, 2013.

T. Berg and P. Belhumeur, “POOF: Part-based one-vs-one features for fine-grained
categorization, face verification, and attribute estimation,” in CVPR, 2013.

L. Bo, X. Ren, and D. Fox, “Kernel descriptors for visual recognition,” in NIPS, 2010.

L. Bourdev, S. Maji, and J. Malik, “Describing people: A poselet-based approach to
attribute classification,” in ICCV, 2011.

T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow
estimation based on a theory for warping,” in ECCV, 2004.

J. Carreira and C. Sminchisescu, “CPMC: Automatic object segmentation using
constrained parametric min-cuts,” TPAMI, 2012.

J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu, “Semantic segmentation with
second-order pooling,” in ECCV, 2012.

R. Caruana, “Multitask learning,” Machine Learning, 1997.

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Info-
GAN: Interpretable representation learning by information maximizing generative
adversarial nets,” in NIPS, 2016.

N. Chentanez, A. G. Barto, and S. P. Singh, “Intrinsically motivated reinforcement
learning,” in NIPS, 2004.

K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of
neural machine translation: Encoder-decoder approaches,” in SSST Workshop, 2014.

K. Cho, B. van Merriënboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using rnn encoder-decoder for statistical machine
translation,” in EMNLP, 2014.

S. Chopra, S. Balakrishnan, and R. Gopalan, “DLID: Deep learning for domain
adaptation by interpolating between domains,” in ICML Workshops, 2013.

D. Cireşan, A. Giusti, L. Gambardella, and J. Schmidhuber, “Mitosis detection in
breast cancer histology images with deep neural networks,” in MICCAI, 2013.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
CVPR, 2005.

BIBLIOGRAPHY 103

P. Das, C. Xu, R. Doell, and J. Corso, “Thousand frames in just a few words: Lingual
description of videos through latent topics and sparse object stitching,” in CVPR,
2013.

H. Daume III, “Frustratingly easy domain adaptation,” in ACL, 2007.

T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, and J. Yagnik,
“Fast, accurate detection of 100,000 object classes on a single machine,” in CVPR,
2013.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F.-F. Li, “ImageNet: A large-scale
hierarchical image database,” in CVPR, 2009.

J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and F.-F. Li, “ImageNet Large Scale
Visual Recognition Competition 2012 (ILSVRC2012),” http://www.image-net.org/
challenges/LSVRC/2012/, 2012.

E. L. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep generative image models
using a Laplacian pyramid of adversarial networks,” in NIPS, 2015.

J. Devlin, H. Cheng, H. Fang, S. Gupta, L. Deng, X. He, G. Zweig, and M. Mitchell,
“Language models for image captioning: The quirks and what works,” in ACL, 2015.

J. Devlin, S. Gupta, R. Girshick, M. Mitchell, and C. L. Zitnick, “Exploring nearest
neighbor approaches for image captioning,” arXiv:1505.04467, 2015.

C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning
by context prediction,” in ICCV, 2015.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell,
“DeCAF: A deep convolutional activation feature for generic visual recognition,” in
ICML, 2014.

J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko,
and T. Darrell, “Long-term recurrent convolutional networks for visual recognition
and description,” in CVPR, 2015.

J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” in ICLR,
2017.

A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,” in ICLR,
2017.

M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid, “Evaluation of
GIST descriptors for web-scale image search,” in CIVR, 2009.

http://www.image-net.org/challenges/LSVRC/2012/
http://www.image-net.org/challenges/LSVRC/2012/

BIBLIOGRAPHY 104

V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro, and
A. Courville, “Adversarially learned inference,” in ICLR, 2016.

I. Endres and D. Hoiem, “Category independent object proposals,” in ECCV, 2010.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The
PASCAL Visual Object Classes (VOC) Challenge,” IJCV, 2010.

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The PASCAL Visual Object Classes challenge: A retrospective,”
IJCV, 2014.

H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng, P. Dollár, J. Gao, X. He,
M. Mitchell, J. Platt, C. L. Zitnick, and G. Zweig, “From captions to visual concepts
and back,” in CVPR, 2015.

C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical features
for scene labeling,” TPAMI, 2013.

A. Farhadi, M. Hejrati, M. Sadeghi, P. Young, C. Rashtchian, J. Hockenmaier, and
D. Forsyth, “Every picture tells a story: Generating sentences from images,” in
ECCV, 2010.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object detection with
discriminatively trained part-based models,” TPAMI, 2010.

S. Fidler and A. Leonardis, “Towards scalable representations of object categories:
Learning a hierarchy of parts,” in CVPR, 2007.

S. Fidler, R. Mottaghi, A. Yuille, and R. Urtasun, “Bottom-up segmentation for
top-down detection,” in CVPR, 2013.

A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and T. Mikolov,
“DeVISE: A deep visual-semantic embedding model,” in NIPS, 2013.

K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position,” Biological Cybernetics, 1980.

R. Girshick, P. Felzenszwalb, and D. McAllester, “Discriminatively trained deformable
part models, release 5,” http://www.cs.berkeley.edu/∼rbg/latent-v5/.

R. Girshick, “Fast R-CNN,” in ICCV, 2015.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in CVPR, 2014.

http://www.cs.berkeley.edu/~rbg/latent-v5/

BIBLIOGRAPHY 105

B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for unsupervised
domain adaptation,” in CVPR, 2012.

I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,”
arXiv:1701.00160, 2016.

I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout
networks,” in ICML, 2013.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in NIPS, 2014.

A. Graves, “Generating sequences with recurrent neural networks,” arXiv:1308.0850,
2013.

A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural
networks,” in ICML, 2014.

A. Graves, A.-r. Mohamed, and G. E. Hinton, “Speech recognition with deep recurrent
neural networks,” in ICASSP, 2013.

K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra, “DRAW: A
recurrent neural network for image generation,” in ICML, 2015.

C. Gu, J. J. Lim, P. Arbeláez, and J. Malik, “Recognition using regions,” in CVPR,
2009.

S. Guadarrama, N. Krishnamoorthy, G. Malkarnenkar, S. Venugopalan, R. Mooney,
T. Darrell, and K. Saenko, “YouTube2Text: Recognizing and describing arbitrary
activities using semantic hierarchies and zero-shot recognition,” in ICCV, 2013.

B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, “Semantic contours
from inverse detectors,” in ICCV, 2011.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in CVPR, 2016.

L. A. Hendricks, S. Venugopalan, M. Rohrbach, R. Mooney, K. Saenko, and T. Darrell,
“Deep compositional captioning: Describing novel object categories without paired
training data,” in CVPR, 2016.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
nov, “Improving neural networks by preventing co-adaptation of feature detectors,”
arXiv:1207.0580, 2012.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, 2006.

BIBLIOGRAPHY 106

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Computation, 2006.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
1997.

M. Hodosh, P. Young, and J. Hockenmaier, “Framing image description as a ranking
task: Data, models and evaluation metrics,” JAIR, 2013.

J. Hoffman, E. Rodner, J. Donahue, K. Saenko, and T. Darrell, “Efficient learning of
domain-invariant image representations,” in ICLR, 2013.

D. Hoiem, Y. Chodpathumwan, and Q. Dai, “Diagnosing error in object detectors,”
in ECCV, 2012.

R. Hu, H. Xu, M. Rohrbach, J. Feng, K. Saenko, and T. Darrell, “Natural language
object retrieval,” in CVPR, 2016.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in ICML, 2015.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks,” in
ICLR, 2017.

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,”
arXiv:1611.01144, 2016.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage
architecture for object recognition?” in ICCV, 2009.

S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks for human
action recognition,” TPAMI, 2013.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,”
arXiv:1408.5093, 2014.

A. Karpathy and F.-F. Li, “Deep visual-semantic alignments for generating image
descriptions,” in CVPR, 2015.

A. Karpathy, A. Joulin, and F.-F. Li, “Deep fragment embeddings for bidirectional
image sentence mapping,” in NIPS, 2014.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F.-F. Li, “Large-
scale video classification with convolutional neural networks,” in CVPR, 2014.

BIBLIOGRAPHY 107

L. Kennedy and A. Hauptmann, “LSCOM lexicon definitions and annotations (version
1.0),” IEEE Multimedia, 2006.

M. U. G. Khan, L. Zhang, and Y. Gotoh, “Human focused video description,” in
ICCV Workshops, 2011.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR, 2015.

R. Kiros, R. R. Salakhutdinov, and R. S. Zemel, “Multimodal neural language models,”
in ICML, 2014.

——, “Unifying visual-semantic embeddings with multimodal neural language models,”
in TACL, 2015.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan,
W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst,
“Moses: Open source toolkit for statistical machine translation,” in ACL, 2007.

P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell, “Data-dependent initializations
of convolutional neural networks,” in ICLR, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” in NIPS, 2012.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: a large video
database for human motion recognition,” in ICCV, 2011.

B. Kulis, K. Saenko, and T. Darrell, “What you saw is not what you get: Domain
adaptation using asymmetric kernel transforms,” in CVPR, 2011.

G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg, and T. L. Berg, “Baby
talk: Understanding and generating simple image descriptions,” in CVPR, 2011.

P. Kuznetsova, V. Ordonez, A. C. Berg, T. L. Berg, and Y. Choi, “Collective generation
of natural image descriptions,” in ACL, 2012.

P. Kuznetsova, V. Ordonez, T. L. Berg, U. C. Hill, and Y. Choi, “TreeTalk: Composi-
tion and compression of trees for image descriptions,” in TACL, 2014.

Q. V. Le, W. Zou, S. Yeung, and A. Y. Ng, “Learning hierarchical invariant spatio-
temporal features for action recognition with independent subspace analysis,” in
CVPR, 2011.

Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, and A. Y.
Ng, “Building high-level features using large scale unsupervised learning,” in ICML,
2012.

BIBLIOGRAPHY 108

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural
Computation, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proc. IEEE, 1998.

F.-F. Li, R. Fergus, and P. Perona, “Learning generative visual models from few training
examples: an incremental Bayesian approach tested on 101 object categories,” in
CVPR, 2004.

L. Li, H. Su, F.-F. Li, and E. Xing, “Object bank: A high-level image representation
for scene classification & semantic feature sparsification,” in NIPS, 2010.

J. J. Lim, C. L. Zitnick, and P. Dollár, “Sketch tokens: A learned mid-level represen-
tation for contour and object detection,” in CVPR, 2013.

C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in ACL
Workshops, 2004.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: Common objects in context,” arXiv:1405.0312,
2014.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in CVPR, 2015.

D. Lowe, “Distinctive image features from scale-invariant keypoints,” IJCV, 2004.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in ICML, 2013.

J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Learning like a child:
Fast novel visual concept learning from sentence descriptions of images,” in ICCV,
2015.

J. Mao, W. Xu, Y. Yang, J. Wang, and A. Yuille, “Deep captioning with multimodal
recurrent neural networks (m-RNN),” in ICLR, 2015.

G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. Goodfellow, E. Lavoie,
X. Muller, G. Desjardins, D. Warde-Farley, P. Vincent, A. Courville, and J. Bergstra,
“Unsupervised and transfer learning challenge: a deep learning approach.” JMLR,
2012.

M. Mitchell, X. Han, J. Dodge, A. Mensch, A. Goyal, A. Berg, K. Yamaguchi, T. Berg,
K. Stratos, and H. Daumé III, “Midge: Generating image descriptions from computer
vision detections,” in EACL, 2012.

BIBLIOGRAPHY 109

V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models of visual
attention,” in NIPS, 2014.

J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici, “Beyond short snippets: Deep networks for video classification,” in
CVPR, 2015.

M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving
jigsaw puzzles,” in ECCV, 2016.

A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation
of the spatial envelope,” IJCV, 2001.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method for automatic
evaluation of machine translation,” in ACL, 2002.

D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros, “Context encoders:
Feature learning by inpainting,” in CVPR, 2016.

A. Quattoni, M. Collins, and T. Darrell, “Transfer learning for image classication with
sparse prototype representations,” in CVPR, 2008.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” in ICLR, 2016.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning: Transfer
learning from unlabeled data,” in ICML, 2007.

M. Ranzato, “On learning where to look,” arXiv:1405.5488, 2014.

A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-the-shelf:
an astounding baseline for recognition,” in CVPR Workshops, 2014.

X. Ren and D. Ramanan, “Histograms of sparse codes for object detection,” in CVPR,
2013.

A. Rohrbach, M. Rohrbach, W. Qiu, A. Friedrich, M. Pinkal, and B. Schiele, “Coherent
multi-sentence video description with variable level of detail,” in GCPR, 2014.

A. Rohrbach, M. Rohrbach, R. Hu, T. Darrell, and B. Schiele, “Grounding of textual
phrases in images by reconstruction,” arXiv:1511.03745, 2015.

M. Rohrbach, W. Qiu, I. Titov, S. Thater, M. Pinkal, and B. Schiele, “Translating
video content to natural language descriptions,” in ICCV, 2013.

H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,”
TPAMI, 1998.

BIBLIOGRAPHY 110

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations
by error propagation,” DTIC Document, Tech. Rep., 1985.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and F.-F. Li, “ImageNet large scale visual
recognition challenge,” IJCV, 2015.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to
new domains,” in ECCV, 2010.

H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R. Monga, and M. Mao,
“Sequence discriminative distributed training of long short-term memory recurrent
neural networks,” in Interspeech, 2014.

R. R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann machines,” in AISTATS,
2009.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved techniques for training gans,” in NIPS, 2016.

J. Schmidhuber, “Curious model-building control systems,” in IJCNN, 1991.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “OverFeat:
Integrated recognition, localization and detection using convolutional networks,”
arXiv:1312.6229, 2013.

P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun, “Pedestrian detection with
unsupervised multi-stage feature learning,” in CVPR, 2013.

E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell, “Loss is its own reward:
Self-supervision for reinforcement learning,” arXiv:1612.07307, 2016.

K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action
recognition in videos,” in NIPS, 2014.

——, “Very deep convolutional networks for large-scale image recognition,” in ICLR,
2015.

S. Singh, A. Gupta, and A. A. Efros, “Unsupervised discovery of mid-level discrimina-
tive patches,” in ECCV, 2012.

R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng, “Grounded
compositional semantics for finding and describing images with sentences,” in
TACL, 2014.

K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101 human actions
classes from videos in the wild,” CRCV-TR-12-01, Tech. Rep., 2012.

BIBLIOGRAPHY 111

B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in reinforcement
learning with deep predictive models,” arXiv:1507.00814, 2015.

K. Sung and T. Poggio, “Example-based learning for view-based human face detection,”
Massachussets Institute of Technology, Tech. Rep. A.I. Memo No. 1521, 1994.

I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with recurrent neural
networks,” in ICML, 2011.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in NIPS, 2014.

C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,” in
NIPS, 2013.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in CVPR, 2015.

C. C. Tan, Y.-G. Jiang, and C.-W. Ngo, “Towards textually describing complex video
contents with audio-visual concept classifiers,” in ACM MM, 2011.

Theano Development Team, “Theano: A Python framework for fast computation of
mathematical expressions,” arXiv:1605.02688, 2016.

J. Thomason, S. Venugopalan, S. Guadarrama, K. Saenko, and R. J. Mooney, “Inte-
grating language and vision to generate natural language descriptions of videos in
the wild,” in TACL, 2014.

S. Thrun, “Is learning the n-th thing any easier than learning the first?” in NIPS,
1996.

A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in CVPR, 2011.

L. Torresani, M. Szummer, and A. Fitzgibbon, “Efficient object category recognition
using classemes,” in ECCV, 2010.

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, “Selective search for object
recognition,” IJCV, 2013.

R. Vaillant, C. Monrocq, and Y. LeCun, “Original approach for the localisation of
objects in images,” IEE Proc on Vision, Image, and Signal Processing, 1994.

A. van den Oord, N. Kalchbrenner, L. Espeholt, K. Kavukcuoglu, O. Vinyals, and
A. Graves, “Conditional image generation with PixelCNN decoders,” in NIPS, 2016.

L. van der Maaten and G. E. Hinton, “Visualizing data using t-SNE,” JMLR, 2008.

BIBLIOGRAPHY 112

R. Vedantam, C. L. Zitnick, and D. Parikh, “CIDEr: Consensus-based image descrip-
tion evaluation,” in CVPR, 2015.

S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and K. Saenko,
“Sequence to sequence–video to text,” in ICCV, 2015.

S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and K. Saenko,
“Translating videos to natural language using deep recurrent neural networks,” in
NAACL, 2015.

O. Vinyals, S. V. Ravuri, and D. Povey, “Revisiting recurrent neural networks for
robust ASR,” in ICASSP, 2012.

O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. E. Hinton, “Grammar
as a foreign language,” in NIPS, 2015.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image
caption generator,” in CVPR, 2015.

H. Wang and C. Schmid, “Action recognition with improved trajectories,” in ICCV,
2013.

H. Wang, A. Kläser, C. Schmid, and C. Liu, “Dense trajectories and motion boundary
descriptors for action recognition,” IJCV, 2013.

J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained linear
coding for image classification,” in CVPR, 2010.

X. Wang and A. Gupta, “Unsupervised learning of visual representations using videos,”
in ICCV, 2015.

X. Wang, M. Yang, S. Zhu, and Y. Lin, “Regionlets for generic object detection,” in
ICCV, 2013.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona,
“Caltech-UCSD Birds 200,” California Institute of Technology, Tech. Rep. CNS-TR-
2010-001, 2010.

R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, 1992.

R. J. Williams and D. Zipser, “A learning algorithm for continually running fully
recurrent neural networks,” in Neural Computation, 1989.

J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba, “SUN database: Large-scale
scene recognition from abbey to zoo,” in CVPR, 2010.

BIBLIOGRAPHY 113

K. Xu, J. Ba, R. Kiros, A. Courville, R. R. Salakhutdinov, R. S. Zemel, and Y. Bengio,
“Show, attend and tell: Neural image caption generation with visual attention,” in
ICML, 2015.

J. Yang, Y. L., Y. Tian, L. Duan, and W. Gao, “Group-sensitive multiple kernel
learning for object categorization,” in ICCV, 2009.

Y. Yang, C. L. Teo, H. Daumé III, and Y. Aloimonos, “Corpus-guided sentence
generation of natural images,” in EMNLP, 2011.

L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville,
“Describing videos by exploiting temporal structure,” in CVPR, 2015.

S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and F.-F. Li, “Every moment
counts: Dense detailed labeling of actions in complex videos,” arXiv:1507.05738,
2015.

P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions,”
TACL, 2014.

W. Zaremba and I. Sutskever, “Learning to execute,” arXiv:1410.4615, 2014.

M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
in ECCV, 2014.

M. D. Zeiler, G. Taylor, and R. Fergus, “Adaptive deconvolutional networks for mid
and high level feature learning,” in CVPR, 2011.

H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas, “StackGAN:
Text to photo-realistic image synthesis with stacked generative adversarial networks,”
arXiv:1612.03242, 2016.

N. Zhang, R. Farrell, F. Iandola, and T. Darrell, “Deformable part descriptors for
fine-grained recognition and attribute prediction,” in ICCV, 2013.

L. Zhu, Y. Chen, and A. Yuille, “Unsupervised learning of a probabilistic grammar
for object detection and parsing,” in NIPS, 2007.

	Contents
	Introduction
	Classification: DeCAF
	Background
	Deep Convolutional Activation Features
	Feature generalization and visualization

	Evaluation
	Object recognition
	Domain adaptation
	Subcategory recognition
	Scene recognition

	Discussion

	Localization: R-CNN
	Object detection
	Module design
	Test-time detection
	Training
	Results on PASCAL VOC 2010-12
	Results on ILSVRC2013 detection
	Visualization, ablation, and modes of error
	The ILSVRC2013 detection dataset

	Semantic segmentation
	Discussion
	Appendix
	Object proposal transformations
	Positive vs. negative examples and softmax
	Bounding-box regression
	Additional feature visualizations
	Per-category segmentation results
	Analysis of cross-dataset redundancy

	Sequences: LRCN
	Background
	Long-term Recurrent Convolutional Networks
	Activity recognition
	Evaluation

	Image captioning
	Evaluation

	Video description
	Evaluation

	Related work
	Prior work
	Contemporaneous and subsequent work

	Discussion

	Unsupervised Learning: BiGAN
	Background
	Bidirectional Generative Adversarial Networks
	Optimal discriminator, generator, & encoder
	Optimal generator & encoder are inverses
	Relationship to autoencoders
	Learning
	Generalized BiGAN

	Evaluation
	Baseline methods
	Permutation-invariant MNIST
	ImageNet

	Discussion
	Appendix
	Additional proofs
	Learning details
	Model and training details

	Conclusion
	Frontiers and future directions

