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Abstract

A common approximation in the analysis of non-classically damped systems is to ignore the off-diagonal elements of the
modal damping matrix. This procedure is termed the decoupling approximation. Contrary to widely accepted beliefs, it is
shown numerically that over a finite range, errors due to the decoupling approximation can continuously increase at any
specified rate while the modal damping matrix becomes more and more diagonal.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that an undamped linear system possesses classical normal modes, and that in each mode
different parts of the system vibrate in a synchronous manner. The normal modes constitute a modal matrix,
which defines a linear coordinate transformation that decouples the undamped system. This process of decou-
pling the equation of motion of an undamped vibratory system is a time-honored procedure termed modal
analysis. Upon decoupling, an undamped linear system can be treated as a series of independent single-
degree-of-freedom systems.

In the presence of damping, a linear system cannot be decoupled by modal analysis unless it possesses a full
set of classical normal modes, in which case the system is said to be classically damped (Caughey and O’Kelly,
1965). Practically speaking, classical damping means that energy dissipation is almost uniformly distributed
throughout the system. This assumption is violated for systems consisting of two or more parts with signifi-
cantly different levels of damping. Examples of such systems include soil-structure systems (Clough and Moj-
tahedi, 1976), base-isolated structures (Tsai and Kelly, 1988), and systems in which coupled vibrations of
structures and fluids occur. In fact, experimental modal testing suggests that no real physical system is strictly
classically damped (Sestieri and Ibrahim, 1994).
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A common approximation in the analysis of non-classically damped systems is to ignore the off-diagonal
elements of the modal damping matrix. This procedure is termed the decoupling approximation, which could
substantially streamline the solution of large-scale systems. It is generally believed that diagonal dominance of
the modal damping matrix is a sufficient condition for the decoupling approximation. The purpose of this
paper is to show numerically that, over a finite range, errors due to the decoupling approximation can con-
tinuously increase at any specified rate while the modal damping matrix becomes more diagonal with its
off-diagonal elements decreasing continuously in magnitude. Thus small off-diagonal elements of the modal
damping matrix may not be sufficient to neglect modal coupling by the decoupling approximation.

2. Errors due to the decoupling approximation

The equations of motion of an n-degree-of-freedom linear system can be written in the form
M€xþ C _xþ Kx ¼ fðtÞ; ð1Þ
where the generalized coordinate x and excitation f(t) are real n-dimensional column vectors. The mass matrix
M, the damping matrix C, and the stiffness matrix K are real matrices of order n � n. For passive systems, M,
C and K are symmetric and positive definite. Associated with the undamped system is a generalized eigenvalue
problem (Meirovitch, 1967)
Ku ¼ kMu: ð2Þ
Owing to the definiteness of the coefficient matrices, the n eigenvalues ki ¼ x2
i are real and positive. The cor-

responding eigenvectors are real and orthogonal with respect to M and K such that uT
i Muj ¼ 0 and uT

i Kuj ¼ 0
for i 6¼ j. Define the modal and spectral matrices respectively by
U ¼ ½u1ju2j � � � jun�; ð3Þ
X ¼ diag½x2

1;x
2
2; . . . ;x2

n�: ð4Þ
Upon normalization, the orthogonality of the modes can be expressed in a compact form:
UTMU ¼ I; ð5Þ
UTKU ¼ X: ð6Þ
The modal matrix U defines an invertible coordinate transformation
x ¼ Uq: ð7Þ
In terms of the principal coordinate q, the equation of motion takes the canonical form
€qþD _qþXq ¼ gðtÞ ð8Þ
for which g(t) = UTf(t). The symmetric matrix
D ¼ UTCU ð9Þ
is referred to as the modal damping matrix. While an undamped system can be decoupled entirely by modal
analysis, a damped system is completely decoupled if and only if the modal damping matrix is diagonal.

Write D in the form
D ¼ Dd þDo; ð10Þ
where Dd = diag[d11,d22, . . . ,dnn] is a diagonal matrix composed of the diagonal elements of D, and Do is a
matrix with zero diagonal elements and whose off-diagonal elements coincide with those in D. The decoupling
approximation amounts to simply neglecting the off-diagonal elements of D and thus replacing D by Dd. The
system response by the decoupling approximation satisfies the decoupled equation
€qaðtÞ þDd _qaðtÞ þXqaðtÞ ¼ gðtÞ: ð11Þ
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The error due to the decoupling approximation is equal to
eðtÞ ¼ qðtÞ � qaðtÞ: ð12Þ
It can be shown (Morzfeld et al., in press) that the relative steady-state error due to the decoupling approx-
imation is given by
sðixÞ ¼ kEðixÞkkQðixÞk ¼
kxHaðixÞDoQðixÞk

kQðixÞk ; ð13Þ
where E(ix) and Q(ix) are, respectively, the Fourier transforms of e(t) and q(t), i ¼
ffiffiffiffiffiffiffi
�1
p

and Ha(ix) =
(X � x2I + ix Dd)�1 is the frequency response matrix of the decoupled system (11). While any vector norm
may be used in Eq. (13), the Euclidean norm is chosen in this paper. However, any other norm will yield sim-
ilar results in subsequent analysis.

3. Indices of diagonality of the modal damping matrix

How can one quantify the property of being diagonal? When does a matrix become more diagonal than
another? These issues will first be clarified in the present section.

The modal damping matrix D is said to be diagonally dominant (Horn and Johnson, 1985) if
jdiijP
Xn

j¼1
j6¼i

jdijj ð14Þ
for all i = 1, . . . ,n. The matrix D is diagonally dominant in a generalized sense (Berman and Plemmons, 1994)
if there exist scalars ai such that
jdiijP
Xn

j¼1
j6¼i

ai

aj
jdijj; jdiijP

Xn

j¼1
j 6¼i

aj

ai
jdijj ð15Þ
for all i = 1, . . . ,n. These definitions of diagonal dominance have solid footing in linear algebra and many
important properties of diagonally dominant matrices have been established. Clearly, a diagonally dominant
matrix is diagonally dominant in the generalized sense. Recall the definitions of Dd and Do in Eq. (10). Let
jDdj = diag[jd11j, jd22j, . . . , jdnnj] and similarly let jDoj be a matrix whose elements are the absolute values of
those in Do. It can be shown (Graham, 1987) that if the spectral radius (largest absolute value of any eigen-
value) of j D�1

d jj Do j satisfies
rðjD�1
d kDojÞ < 1; ð16Þ
then D is diagonally dominant in the generalized sense.
Based upon Eq. (14), an index of diagonality of modal damping may be readily defined as
qðDÞ ¼
Xn

j¼1

jdjjj
,Xn

j;i¼1
j 6¼i

jdjij: ð17Þ
Clearly, 0 6 q(D) 61 for any modal damping matrix D. If D is diagonally dominant, then q(D) P 1. A large
value of q(D) indicates a more diagonal matrix and, for a diagonal matrix, q(D) =1. Another index of diag-
onality may be based upon the spectral radius of j D�1

d jj Do j in Eq. (16) and defined as
q1ðDÞ ¼ rðjD�1
d kDojÞ: ð18Þ
If D is diagonally dominant in the generalized sense, 0 6 q1(D) 6 1. When D is diagonal, q1(D) = 0. A small
value of q1(D) indicates a more diagonal matrix and the two indices q(D) and q1(D) have opposite trends. An
advantage of using q1(D) is that it lies within a finite range. On the other hand, q(D) can be computed more
readily.
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It is certainly possible to define other indices of diagonality. However, it will become evident that the choice
of an index of diagonality of D is of minor significance in the characterization of modal coupling (Morzfeld
et al., in press).

4. Numerical examples

It is generally accepted that errors due to the decoupling approximation must be small if the off-diagonal
elements of the modal damping matrix D are small. In addition, the errors should decrease as D becomes more
and more diagonal. Numerical examples are constructed to yield contradictory results: diagonal dominance
may continuously increase while errors due to the decoupling approximation also continuously increase.
Moreover, the errors can increase at any specified rate.

Example 1. Consider two four-degree-of-freedom systems (Ajavakom, 2005) of the form (8). System 1 is
governed by €qþD1 _qþX1q ¼ gðtÞ where the spectral matrix, the modal damping matrix, and the excitation
are given by
X1 ¼ diag½ 3:952 3:982 4:002 4:102 �; ð19Þ

D1 ¼

1:61 �0:1865 �0:1742 0:3838

�0:1865 1:7 0:3792 �0:1773

�0:1742 0:3792 1:8 �0:1742

0:3838 �0:1773 �0:1742 1:75

2
6664

3
7775; ð20Þ

gðtÞ ¼ ĝ expðixtÞ ¼ ½ 1; 1; 1; 1 �T expði4:16tÞ: ð21Þ
The equation of motion of System 2 has the form €qþD2 _qþX1q ¼ gðtÞ which differs from System 1 only in
the modal damping matrix:
D2 ¼

1:61 0:0009 0:04 0:041

0:0009 1:7 0:0227 0:0376

0:04 0:0227 1:8 0:04

0:041 0:0376 0:04 1:75

2
6664

3
7775: ð22Þ
It can be observed that both D1 and D2 satisfy Eq. (14) and are therefore diagonally dominant. Utilizing the
proposed indices of diagonality, it is found that
qðD1Þ ¼ 2:3� 18:8 ¼ qðD2Þ; ð23Þ
q1ðD1Þ ¼ 0:43� 0:055 ¼ q1ðD2Þ: ð24Þ
Thus D2 is more diagonal than D1. This is perhaps obvious by inspection since each off-diagonal elements of
D2 is at least an-order-of-magnitude smaller than the corresponding element of D1. Intuitively, one would ex-
pect System 2 to yield a smaller error in the decoupling approximation than System 1. However, calculation of
the steady-state error in the decoupling approximation yields an opposite result:
s1ðixÞ ¼ 2:76% < 5:31% ¼ s2ðixÞ: ð25Þ

Hence, errors in the decoupling approximation can be larger for systems whose modal damping matrix is more
diagonal.

This example can be extended. Consider a series of systems €qþDa _qþX1q ¼ gðtÞ indexed by a parameter a
in such a way that Da is linearly interpolated between D1 and D2:
Da ¼ ð1� aÞD1 þ aD2; 0 6 a 6 1: ð26Þ

As a increases from 0 to 1, the diagonal entries of Da remain constant while the index of diagonality q(Da)
increases continuously from q(D1) = 2.3 to q(D2) = 18.8. At the same time, the second index of diagonality
q1(Da) decreases continuously from q1(D1) = 0.43 to q1(D2) = 0.06. In Fig. 1, the steady-state error s(ix)
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Fig. 1. Steady-state error due to the decoupling approximation vs. diagonality q of the damping matrix.
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due to the decoupling approximation is plotted against the index of diagonality q(D). It can be observed that
as the modal damping matrix becomes more diagonal, the error due to the decoupling approximation in-
creases continuously.

If the choice of an index of diagonality is of minor importance, one should be able to obtain consistent
results using the second index of diagonality q1(Da). As a measure of diagonality, q1(Da) and q(Da) have oppo-
site trends. For this reason, the steady-state error due to the decoupling approximation is plotted against the
reciprocal of q1(D) in Fig. 2. As expected, the error curves in Figs. 1 and 2 are very similar. Both demonstrate
that as diagonality of the modal damping matrix continuously increases, errors in the decoupling approxima-
tion continuously increase as well.

It is certainly possible to define a non-linear interpolation between the end-states D1 and D2. Instead of the
linear interpolation represented by Eq. (26), one could use
Da ¼ D1 þ anðD2 �D1Þ ¼ ð1� anÞD1 þ anD2; 0 6 a 6 1; ð27Þ
with any n P 1 to define a series of systems whose end-state are Systems 1 and 2. However, Eq. (27) also leads
to Figs. 1 and 2 because all interpolations between D1 and D2 result in the same intermediate states as a in-
creases from 0 to 1.
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Fig. 2. Steady-state error due to the decoupling approximation vs. diagonality 1/q1 of the damping matrix.
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Example 2. Consider a collection of four-degree-of-freedom linear systems. System 1 is the same as in
Example 1, with its spectral matrix, modal damping matrix and excitation given, respectively, by (19)–(21).
The equations of motion of Systems 3–5 have the form €qþDiqþX1q ¼ gðtÞ, i = 3,4,5, which differ from
System 1 only in the off-diagonal elements of the modal damping matrices
D3 ¼

1:61 �0:0947 �0:0140 0:3911

�0:0947 1:7 0:3367 �0:0125

�0:0140 0:3367 1:8 �0:0140

0:3911 �0:0125 �0:0140 1:75

2
66664

3
77775; ð28Þ

D4 ¼

1:61 0:0762 0:0008 0:1142

0:0762 1:7 0:2090 0:0006

0:0008 0:2090 1:8 0:0388

0:1142 0:0006 0:0388 1:75

2
66664

3
77775; ð29Þ

D5 ¼

1:61 �0:0008 0:0863 0:1047

�0:000 1:7 0:0380 0:0006

0:0863 0:0380 1:8 0:0863

0:1047 0:0006 0:0863 1:75

2
66664

3
77775: ð30Þ
It can be checked that
qðD1Þ ¼ 2:32 < qðD3Þ ¼ 3:97 < qðD4Þ ¼ 7:80 < qðD5Þ ¼ 10:83; ð31Þ
q1ðD1Þ ¼ 0:43 > q1ðD3Þ ¼ 0:26 > q1ðD4Þ ¼ 0:14 > q1ðD5Þ ¼ 0:11: ð32Þ
Thus D5 is more diagonal than D4, D4 is more diagonal than D3, and D3 is more diagonal than D1. Intuitively,
one would expect that System 1 has the largest steady-state error due to the decoupling approximation among
these four systems. However, calculation of the steady-state error due to the decoupling approximation yields
the opposite result:
s1ðixÞ ¼ 2:76% < s5ðixÞ ¼ 10:83% < s4ðixÞ ¼ 12:76% < s3ðixÞ ¼ 23:04%: ð33Þ

The steady-state error is significantly smaller in System 1 than in Systems 3–5.

In analogy to Example 1, define series of systems, doubly indexed by i = 3,4,5 and the parameter a, such
that the modal damping matrix Di

a is linearly interpolated between D1 and Di:
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Fig. 3. Steady-state error due to the decoupling approximation vs. diagonality q of the damping matrix.
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Di
a ¼ ð1� aÞD1 þ aDi; i ¼ 3; 4; 5; 0 6 a 6 1: ð34Þ
As a increases from 0 to 1, the diagonal entries of Di
a remain constant while the index of diagonality qðDi

aÞ
increases continuously for i = 3, 4, 5. The steady-state error due to the decoupling approximation s(ix) can
be computed for the three series of systems and the results are plotted against the index of diagonality
qðDi

aÞ in Fig. 3. A qualitatively identical plot is obtained in Fig. 4, where q1ðDi
aÞ is used to measure the diag-

onality of the modal damping matrix. It can be observed from Figs. 3 and 4 that as the modal damping matrix
becomes more diagonal continuously, the errors due to the decoupling approximation increase continuously
for all three series of systems. While this observation has already been made in Example 1, this example shows

that the error curves can be constructed to have any gradient, regardless of the initial modal damping matrix.
As previously explained, any non-linear interpolation between D1 and Di for i = 3,4,5 also leads to Figs. 3

and 4 because all interpolations between D1 and Di result in the same intermediate states as a increases from 0
to 1. Although a limited set of data is presented herein, extensive calculations have been performed by the
authors, and all numerical simulations have yielded qualitatively identical results on the characteristics of
modal coupling.
5. Conclusions

The principal coordinates of a non-classically damped linear system are coupled by the off-diagonal ele-
ments of the modal damping matrix. A common approximation is to ignore the off-diagonal elements in
the modal damping matrix. This procedure is termed the decoupling approximation and amounts to neglect-
ing coupling in the principal coordinates. The errors due to the decoupling approximation have been examined
numerically in this paper. Two indices of diagonality have been introduced to quantitatively measure how
diagonal the modal damping matrix is. These indices are non-negative and monotonic functions of the off-
diagonal elements in the modal damping matrix.

Numerical examples have been constructed to demonstrate that, over a finite range, the errors due to the
decoupling approximation can increase continuously at any specified rate while the modal damping matrix
becomes more and more diagonal with its off-diagonal elements decreasing in magnitude continuously. Thus
diagonal dominance of the modal damping matrix may not be sufficient to neglect modal coupling by decou-
pling approximation.

Using complex algebra, an explanation for the unexpected behavior exhibited in the numerical examples is
provided by Morzfeld et al. (in press). Coupling effect is not as intuitive and simplistic as is usually thought. As
a necessary procedure to treat large-scale systems, the decoupling approximation will be used more frequently
in the next decade as more complex structures are built. Through research into the characteristics of coordi-
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nate coupling, it is hoped that the decoupling approximation can be used by practicing engineers with
increased confidence and discretion.
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