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Abstract

Recognition and treatment of malnutrition in pediatric oncology patients is crucial because it is associated with increased
morbidity and mortality. Nutrition-relevant data collected from cancer clinical trials and nutrition-specific studies are insuffi-
cient to drive high-impact nutrition research without augmentation from additional data sources. To date, clinical big data
resources are underused for nutrition research in pediatric oncology. Health-care big data can be broadly subclassified into
three clinical data categories: administrative, electronic health record (including clinical data research networks and learning
health systems), and mobile health. Along with -omics data, each has unique applications and limitations. We summarize
the potential use of clinical big data to drive pediatric oncology nutrition research and identify key scientific gaps. A frame-
work for advancement of big data utilization for pediatric oncology nutrition research is presented and focuses on transdisci-
plinary teams, data interoperability, validated cohort curation, data repurposing, and mobile health applications.

Malnutrition, including under- and overnutrition, is common in
pediatric cancer and affects up to 78% of patients before or dur-
ing cancer treatment (1,2). Recognition and treatment of malnu-
trition is vital because it is associated with poorer outcomes for
survival, wound healing, physical and cognitive development,
immune function, and quality of life (1–3). Research to prevent
or ameliorate malnutrition in children with cancer has been
hindered by data limitations including the lack of access to nu-
trition data and difficulties combining data across studies.
Nutrition data are often collected without commonly defined
data elements in disparate data structures and storage systems
(4). This limits the ability to combine data across studies and es-
tablish larger data repositories to address complex nutrition re-
search questions (5). Furthermore, most studies of nutrition
support in pediatric oncology predate use of standardized diag-
nostic indicators for malnutrition defined in 2014 by the
Academy of Nutrition and Dietetics and the American Society
for Parenteral and Enteral Nutrition (6). These data limitations
are at least partially responsible for the failure to close impor-
tant knowledge gaps for evidence-based nutrition supportive
care within pediatric oncology. Moving forward, maintaining
the status quo with nutrition and anthropometric data collected

from clinical trials, cancer registries, and nutrition studies will
likely be insufficient to drive meaningful nutrition research
without augmentation from additional data sources.
Incorporating big data into nutrition research can address many
of the current data limitations and accelerate future
discoveries.

Big data sources exist outside traditional nutrition and sup-
portive care research models for pediatric oncology. Healthcare
big data is defined as the digital data assets contained as struc-
tured or unstructured data generated from experiments, direct
patient care by health-care providers, or patients themselves
(7). The importance of big data has been recognized through the
creation of programs such as the National Institute of Health’s
Big Data to Knowledge initiative and the Patient-Centered
Outcomes Research Institute’s (PCORI) Clinical Data Research
Network and its PCORnet infrastructure (8). These initiatives
were designed to advance the methods and resources available
to rapidly improve health-care research and delivery.

As a previously untapped resource, healthcare big data can
aid in improving nutrition-related outcomes in pediatric oncol-
ogy. We discuss advantages, research design considerations,
and challenges in using different big data sources to increase
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the research pipeline (Table 1). When available, prior nutrition
research in oncology is cited. The importance of expanding nu-
trition research and incorporating big data is partially driven by
the dearth of nutrition examples for several of the topics dis-
cussed. Finally, we present a framework to incorporate big data
into future oncologic nutrition research.

Clinical Big Data Relevant to Pediatric Oncology
Nutrition Research

Administrative Data

Administrative data, including population health registries,
census, vital statistics, and medical claims data, are often cre-
ated as a by-product of administering health surveillance pro-
grams, reimbursing health-care services, or other governmental
and/or regulatory functions. Administrative data are attractive
for research because they are often readily available, relatively
inexpensive, structured, and continuously curated and cover
large segments of the population (9). Administrative data are
made available for research by public or private entities (eg, the
Research Data Assistance Center from the Centers for Medicare
and Medicaid, the Kids Inpatient Database, or the Pediatric
Health Information System). The Pediatric Health Information
System has been used to conduct pediatric oncology research
outside the clinical trials infrastructure to address topics such
as racial disparities (10) and off-study immunotherapy use (11).
Administrative (group-level) data can be combined with individ-
ual data, for example, proximity to grocery stores or food
deserts can be integrated with individual data for nutritional
studies.

Administrative data pose multiple challenges. When used in
isolation, diagnosis codes do not have sufficient specificity for
case identification for multiple conditions including pediatric
malignancies (12,13). In addition to difficulties creating valid

study cohorts, limitations of administrative data may include
more missing and misclassified information (eg, International
Classification of Diseases, Ninth Edition [ICD9] to ICD10 coding
changes) and discrepant follow-up impacting estimates of sur-
vival and cancer recurrence. These concerns can be partially
mitigated through optimal study design, enhanced technologies
to improve data collection, validation of exposure and outcome
data elements, and the use of appropriate statistical methods
(eg, multivariate modeling, multiple imputation, propensity
scores, and instrumental variable estimation).

Electronic Health Record Data

In contrast to protocol-derived research cohort study databases,
there is growing use of electronic health records (EHRs) to sup-
port clinical and translational research. Meaningful use require-
ments for EHRs have placed an emphasis on collection of
structured data, which should lead to more clinical research op-
portunities (14). This, coupled with the development of large-
scale clinical data research networks (CDRNs) linking EHR data
from multiple institutions, represents a massive investment in
data infrastructure, which complements administrative and
clinical trial data. EHR data integrated into CDRNs can form a
critical component for learning health systems (LHS). LHS inte-
grate structured EHR data, research done in routine care set-
tings, and quality improvement processes for the purpose of
rapidly advancing new knowledge (15). These research systems
are attractive because they can link critical components of the
EHR including patient notes, diagnoses, medications, laboratory
values, and imaging data.

EHR data, CDRN, and LHS are particularly attractive for nutri-
tion research because they capture anthropometric and nutrition
intervention data. Beyond anthropometric data, EHRs often contain
other important nutrition indicators such as mid-upper arm cir-
cumference, estimated caloric intake and needs, and relevant clini-
cal laboratory biomarkers. Studies of antibiotic exposure and

Table 1. Big data sources

Type Discipline expertise Methods considerations

Omics • Genetics
• Molecular/cellular biology
• Bioinformatics
• Biostatistics

Experimental design (translational investigation study design); statistical
modeling (time series and nested within-subjects effects); linkage of biol-
ogy data with clinical data

Administrative • Health services research
• Applied epidemiology
• Population health science
• Health policy research
• Health economics
• Medical informatics
• Health information Technology

Identification of patient cohorts; reduction of biasing observational data;
missing data; secular changes in coding (impacting longitudinal datasets);
propensity scores; instrumental variables

Electronic health
record*

• Medical informatics
• Health information technology
• Clinical domain experts
• Health economics
• Finance
• Psychometrics

Definition and validation of patient cohorts and clinical phenotyping (con-
structing synthetic cohorts with data points over time including entry into
a health system); missing and inaccurate data; secular changes in coding;
propensity scores; instrumental variables; patient reported outcomes; un-
structured data and natural language processing

mHealth (quantified
self)

• Medical informatics
• Health information technology
• Communications
• Behavioral economics
• Electrical engineering

Validation of patient cohorts; ontologies for mHealth data; linkage between
EHRs and research data repositories; missing and miscalibrated data; sig-
nal processing and pattern recognition; repeated-measures statistical anal-
yses; precision public health (targeted study populations)

*Electronic health record–derived big data sources include clinical data research networks and learning health systems.
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growth during childhood illustrate how longitudinal EHR-derived
data can inform observational nutrition research. First, researchers
demonstrated that aggregated anthropometric EHR data mirrored
the findings of the reputable National Health and Nutrition
Examination Survey (16). Next, single institution EHR data demon-
strated a link between antibiotic exposure and obesity (15). Finally,
the single institution study results were confirmed using a national
sample contained in PCORnet, a PCORI-funded CDRN (17). By
exploiting routinely collected data, EHR-based studies can be an
economical alternative to large cohort studies. For example, the
PCORI-sponsored ADAPTABLE Trial (Aspirin Dosing: A Patient-
centric Trial Assessing Benefits and Long-Term Effectiveness) dem-
onstrates how data from EHRs can directly support clinical re-
search by utilizing the EHR data to optimize enrollment and
track outcomes for patients participating in this pragmatic clinical
trial (18).

Study-specific databases do have some advantages com-
pared to EHR-derived databases, including higher quality data,
validation, and strict eligibility requirements, and are assured of
collecting data elements vital to addressing the study hypothe-
ses. However, they are typically expensive to construct. In con-
trast, EHR-derived databases are attractive because they may be
more representative of real-world populations (no eligibility
requirements), larger (number of individuals represented), and
much less expensive.

EHR databases, CDRNs and LHS contain much of the infor-
mation present in administrative databases as well as a trea-
sure trove of additional data. However, they retain similar
limitations, including bias, missing data, and nonuniform diag-
nostic coding, which render construction of valid historical
study cohorts challenging. Accurate cohort construction in
CDRN and LHS can be facilitated by utilizing computable pheno-
types, which can leverage additional EHR information present
in the CDRN and LHS (19). Within this context, a computable
phenotype is a machine-evaluable definition for a given condi-
tion based on standard terminology (eg, SNOMED diagnosis
codes) and clinical features that can be determined from avail-
able EHR data. Computable phenotypes should be validated
whenever possible.

Previous studies demonstrate the need for rigorous quality
assurance practices when utilizing EHR data (20,21).
Anthropometric data pertinent to nutrition research are espe-
cially prone to erroneous values, and algorithms to clean these
data have been developed (22). Perhaps the biggest new chal-
lenge of using EHR data for research is wrangling it from various
EHR vendors into a harmonized common data model (CDM)
that runs across the CDRNs or LHS. Ontologies for clinical re-
search and CDMs have been developed to address these con-
cerns (23), but conforming to these solutions is labor intensive.
Other challenges are integrating standards for data that typi-
cally live outside the EHR such as patient-reported outcomes.
Finally, many EHR-derived networks contain structured and un-
structured data. Natural language processing (NLP) can be
highly useful to convert unstructured EHR data into structured
data. However, NLP approaches may still not yield results suffi-
ciently complete and accurate for clinical and translational
research.

Mobile Health and Quantified Self-Data

Mobile health (mHealth), the use of mobile and wireless tech-
nologies for health, aims to capitalize on the rapid uptake of in-
formation and communication technologies to improve

health-system efficiency and health outcomes (24). This encom-
passes an incredibly wide range of devices from mobile phones,
smart watches, and other wearable devices. mHealth data
includes quantified self-data from individuals engaged in the
self-tracking of any kind of biological, physical, behavioral, or
environmental information (25). These technologies potentially
allow researchers to view patients in their “natural environ-
ment” and are believed to improve understanding of person-
specific disease risk factors and treatment response (26).

mHealth holds particular promise for advancing nutrition
research for pediatric oncology. Nutritionally relevant mHealth
applications include electronic food diaries, home-health device
monitoring such as feeding pump summary information, and
continuous glucose monitoring. Furthermore, established die-
tary assessment methods in epidemiological studies are ripe for
adaptation into an mHealth format including duplicate diet
approaches, food consumption records, 24-hour dietary recalls,
dietary records, dietary histories, and other food frequency
questionnaires (27).

Challenges for mHealth data include integration with the EHR
(28) and creating mHealth data with an architecture that allows the
information to be used appropriately (19,29). Aside from privacy
and integrity concerns, validation of mHealth data is required prior
to integration; standards for this are not universally defined. These
and other challenges posed by mHealth research can be addressed
and mitigated by using mHealth reporting guidelines published by
the World Health Organization (24).

Omics Data

In addition to clinical big data, -omics data are also important
for nutrition research in pediatric oncology. Omics refers to the
study of biologic fields ending in omics such as genomics includ-
ing nutrigenomics (genetic variants that influence metabolism
of specific nutrients), proteomics, or metabolomics and can be
expanded to include informatics or statistical tools germane to
biology subfields. For nutrition specifically, the microbiome is
likely to have significant relevance to -omics research.
Although not detailed here, the incorporation of genetic and
other biologic information into patient care as well as clinical
and translational research is crucial to advance precision medi-
cine approaches to nutrition care. The framework presented be-
low, with goals such as data interoperability, are also applicable
to -omics data.

Framework for Clinical Big Data Utilization for
Pediatric Oncology Nutrition Research

The overarching challenge of utilizing big data for nutrition re-
search within pediatric oncology is that data are spread across
multiple entities including laboratory data, the EHR, adminis-
trative data warehouses, cancer registries, and research proto-
col data repositories. We propose a framework with the
following five key components to address these issues and in-
form a path forward for nutrition research within pediatric
oncology.

Form Transdisciplinary Research Teams

Effective big data research requires transdisciplinary research
teams that possess discipline expertise in study design and
can also prospectively address challenges such as data linking.
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For example, the ADAPTABLE Trial used expertise across the in-
formatics and clinical domains to conduct a prospective-con-
trolled randomized trial that compared the effectiveness of two
doses of aspirin for postmyocardial infarction patients.
ADAPTABLE used the EHR as both the means of identifying all
participants and the principal source of the primary clinical trial
data and was supplemented by the collection of patient-
reported outcome data (18,30).

Support Big Data Infrastructure and Interoperability

The single most important step toward big data utilization is
employing consistent ontologies between studies. A CDM for
clinical research has been shown to enable linking of observa-
tional data across different studies and clinical research data-
bases (31). However, a universal CDM for nutrition research is
likely infeasible because of the large amount of resources this
would require. Even if a CDM is not achievable, developing core
common data elements that are shared between studies is a re-
alistic long-term goal; for example, data dictionaries, question-
naires, and protocols could be shared with unified formatting.
Within the nutrition research and informatics community,
work has been done to harmonize terms for nutrition support-
ive care and diagnoses (32,33). The research community and
EHR vendors should work toward utilization of common data
elements that could be linked across studies. Important ele-
ments on the path toward larger-scale data integration at the
patient level include privacy, security, deidentification, ano-
nymization, and informed consent. At the institutional level,
these elements include data use agreements, secure data trans-
fers, and collaborative network participation.

In North America, the Children’s Oncology Group has the po-
tential to take a lead in data infrastructure as the largest pur-
veyor of pediatric oncology research. Standardizing a common
core of anthropometric and nutrition data elements with shared
variable names for distinct Children’s Oncology Group studies
would open the door for powerful nutrition studies in the fu-
ture. The authors recognize the call for standards is not novel;
calls for consistency with study design parameters within pedi-
atric cancer cooperative groups have been made for more than
25 years (34). We are instead advocating for better recognition
and integration of digital data standards across oncology stud-
ies so that nutrition and supportive care research can be per-
formed more efficiently.

Validate Cohorts

A common challenge for administrative, EHR, and mHealth
data is the identification and curation of large, often pooled, val-
idated cohorts. In contrast to single cohorts constructed for re-
search investigations, cohorts created by merging available data
are at increased risk for bias. Ideally, data harmonization and
the use of common data dictionaries minimize error and reduce
heterogeneity around definitions of exposures, covariates, out-
comes, and modeling approaches. In the absence of interopera-
ble data, computable phenotypes and probabilistic matching
techniques have the potential to link the same, or similar,
patient(s) across disparate studies. Providing evidence for nutri-
tion interventions by combining individual-level data across
studies (pooled analyses) provides a more powerful approach
than combining only study results (eg, meta-analyses). Pooled
analyses must use appropriate statistical methods that account
for heterogeneity across different data sources such as study

covariate adjustment, modeling within study and between
study effects, and splitting methods such as recursive partition-
ing. When appropriately validated and analyzed, pooled data
can provide dramatically increased statistical power and stron-
ger weight of evidence for best nutrition supportive care
practices.

Repurpose Data

A significant portion of administrative, EHR, and mHealth data
is not collected for nutrition or supportive care research but can
often be repurposed. For example, a recent feasibility study
demonstrated that anthropometric data in the EHR can be used
in real-time as a malnutrition screen for pediatric oncology
patients (35). For research database construction, there should
be an emphasis on potential reuse and repurposing of big data
for pediatric patients; particularly germane for long-term longi-
tudinal tracking of pediatric patients across different stages of
development.

Explore mHealth and Quantified-Self Research
Opportunities

Nutrition supportive care research is an attractive substrate for
quantified self and mHealth research [eg, a mobile phone appli-
cation helped optimize nutrition behaviors for adult oncology
patients (36)]. Similar studies have not been performed for pedi-
atric patients. Pediatric oncology will face additional mHealth
challenges in that interventions must be developmentally ap-
propriate (ie, young children may not be able to enter data onto
a smart phone or other device).

To date, clinical big data resources are underused for nutri-
tion research in pediatric oncology. Although big data is not a
panacea for all that ails nutrition research, addressing the data
issues described in this paper are key to promoting data liquid-
ity (37) which will accelerate the conduct of nutrition research
in pediatric oncology. Specifically, it would promote more accu-
rate and efficient cohort construction, allow for more accurate
estimates of study parameters during planning phases, lead to
increased accrual (with increased population representative-
ness), increase the precision of statistical analyses, and ulti-
mately, more rapidly disseminate study findings to impact
outcomes. As a research community, we have an obligation to
maximize the use of big data to improve nutrition outcomes for
our pediatric oncology patients.
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