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Mass Customization versus Mass Production:
Variety and Price Competition

Abstract: We study competition between two multi-product firms with distinct production

technologies in a market where customers have heterogeneous preferences on a single taste

attribute. The mass customizer (MC) has a perfectly flexible production technology, thus

can offer any variety within a product space, represented by Hotelling’s (1929) linear city.

The mass producer (MP) has a more focused production technology, and therefore, it offers

a finite set of products in the same space. MP can invest in more flexible technology, which

reduces its cost of variety and hence allows it to offer a larger set of products; in the extreme,

MP can emulate MC’s technology and offer infinite variety. The firms simultaneously decide

whether to enter the market, and MP chooses its degree of product-mix flexibility upon

entry. Next, MP designs its product line, i.e., the number and position of its products; MC’s

perfectly flexible technology makes this unnecessary. Finally, both firms simultaneously set

prices. We analyze the sub-game perfect Nash equilibrium in this three-stage game, allowing

firm-specific fixed and variable costs that together characterize their production technology.

We find that an MP facing competition from an MC offers lower product variety compared

to an MP monopolist, in order to reduce the intensity of price competition. We also find that

MP can survive this competition even if it has higher fixed cost of production technology or

higher marginal cost of production or both.
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1 Introduction

A quintessential feature of modern commerce is the proliferation of product variety in virtu-

ally every industry. At the dawn of mass production, Ford offered the Model T in any color

as long as it was black; theMazda 323 recently came in four shades of black from a palette of

180 different colors (Fisher et al. 1995). As a logical outcome of this ever-increasing product

variety, many companies have begun formulating their marketing and operations strategies

around customization (Pine 1993, Kotha 1995, Lampel and Mintzberg 1996, Feitzinger and

Lee 1997, Zipkin 2001), while others still use mass production technologies that limit them

to a predetermined set of products. Hence, we witness customizing firms competing against

non-customizing firms in many industries ranging from health care to cosmetics.

The business press provides many examples of customization: vitamins (Acumin);

sports shoes (Adidas); hockey sticks (Branches Hockey); industrial detergents (ChemSta-

tion); notebook and desktop computers (Dell); industrial plastics (GE Plastics); pants and

shirts (Lands’ End); lighting systems (Lutron); industrial electronic components (Marshall

Industries); custom-color coated M&M’s (Masterfoods USA); bicycles (National Bicycle);

sneakers (Nike); beauty-care products (Procter & Gamble); golf clubs (TaylorMade); mes-

senger bags (Timbuk2); plastic food containers (Ultra Pac); and candles (Yankee Candle).

This list is by no means exhaustive, but reflects the diversity of industries in which cus-

tomization is gaining ground. Its main appeal to customers is the promise of products that

fit better with their needs or desires. In some cases, as in hip-joint replacements or house

windows, perfect fit is essential. In others, as in fragrance or birthday cards, the quest for

better fit is more driven by fashion or desire for uniqueness than by need.
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Many scholars and practitioners believe that, due to advances in manufacturing and in-

formation technologies, very high levels of product variety — high enough to be termed “mass

customization” — can now be achieved without a prohibitive cost penalty from reduced effi-

ciency. This not only requires overcoming the traditional trade-off between product variety

and manufacturing efficiency, but also an ability to market (almost) infinite product variety.

National Bicycle, a Japanese company that custom-makes eight million variations of a high-

end bicycle (based on different model types, colors and frame sizes), is a successful example

of such operations-marketing coordination (Kotha 1995).

Mass customization capabilities have several other benefits, in addition to matching

customer needs more closely. For instance, customization typically eliminates finished goods

inventories and all the associated costs. It can also be an accurate tool for learning customer

preferences, as shown by National Bicycle.

The prevailing view is that the competitive benefits of higher product variety lead to

higher profits (Kekre and Srinivasan 1990). Empirical and analytical studies have shown

however that incongruence between product plans and supply process leads to poor perfor-

mance (Randall and Ulrich 2001, Berry and Cooper 1999, Safizadeh et al. 1996, de Groote

1994). Hence, adopting customization requires shifts in both marketing and operations strat-

egy. Often this means radical changes in an entire supply chain, which might explain why

mass customization has eluded the auto industry for so long. Therefore, customization tends

to be employed by new entrants (e.g. Dell) rather than established mass production firms

(e.g. Compaq). Besides, firms differ in their ability to adopt new technologies. We can thus

expect mass customizers and mass producers to compete in many industries, at least in the

short run, as new entrants adopt customization before established firms respond.
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In this paper we study competition between two multi-product firms with distinct pro-

duction technologies, characterized by different fixed and variable costs. Themass customizer

(MC) has a perfectly flexible production technology, thus can offer any variety within a hori-

zontally differentiated product space, represented by Hotelling’s (1929) linear city. The mass

producer (MP) has a continuum of choices between perfectly flexible and more focused pro-

duction technologies; in the latter case, it can only offer a finite, predefined set of products.

Customers are heterogenous on a single taste attribute, so firms compete on price and prox-

imity to each customer’s “ideal” product. The firms first simultaneously decide whether to

enter the market, and MP chooses its degree of product-mix flexibility upon entry. Then MP

designs its product line, deciding the number and location of its products. Finally, both firms

simultaneously set prices; in line with our focus on horizontal product differentiation, neither

firm applies price discrimination based on taste. This is consistent with existing examples

of mass customization in a horizontal differentiation setting, such as Masterfoods, Timbuk2,

and others mentioned above. We characterize the sub-game perfect Nash equilibrium in this

three-stage game.

We address the following research questions: How would MC and MP set prices when

competing against each other? How would MP design its product line? Will MP increase

or decrease its product variety in response to competition from MC? Under what conditions

can both firms coexist? When will one technology dominate the other? The contribution

of this paper lies in its assessment of the competitive value of perfect product-mix flexibil-

ity and in its incorporation of a supply-side element (production technology) in modeling

product competition, which has predominantly been studied from the demand side. Also,

the comprehensive treatment we offer here, in contrast to most existing work which tends
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to focus on selected special cases, reveals interactions that would otherwise remain hidden.

We return to this in the discussion section.

One could study many other types of competition, such as competition between two

mass producers of multiple products. However, the problem of endogenous product line

design followed by price competition is recognized as unsolvable (Klemperer 1992, Teitz

1968). The current work is a first step toward understanding the competitive effects of

product variety under different production technologies, and we believe that competition

between MP and MC is the most interesting place to start.

The rest of the paper is organized as follows. We first review literature from economics,

marketing and operations. In §3 and §4 we present the model and analysis. In §5 and §6 we

discuss the results and limitations of our study. All the proofs are provided in a separate

appendix.

2 Literature Review

We draw from the economics, marketing and operations management literatures on horizon-

tal product differentiation, emphasizing research inspired by Hotelling’s (1929) model.

The economics literature on product variety generally focuses on market equilibrium

and social optimum. For an in-depth review, see Lancaster (1990). Here we review three

papers on competition between multi-product firms, an under-studied subject in economics

(Klemperer 1992, Lancaster 1990).

Heal (1980) explores spatial distribution of retail outlets in a circular city with a pro-

ducer located at the center, focusing on social optimality, profit-maximizing behavior of a
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single retail chain, and competition between single-outlet retailers. Heal’s producer is analo-

gous to our MC, and his collection of retail outlets to our MP. However, his central producer

is passive (does not set its own price) in contrast to MC in our model.

Eaton and Schmitt (1994) model flexibility in a Hotelling framework by introducing

a cost of producing variations on a basic product. They then study competition between

many flexible firms for examining the conditions under which flexible manufacturing leads

to market concentration.

Ulph and Vulkan (2001) study variety-price competition between two firms that are

based at the endpoints of a ‘linear city’ and can either standardize (offer a single product) or

customize (offer non-overlapping ranges of custom products). Also, they can price discrim-

inate on customer location (first degree) or on product location (second degree). Although

firms are better off adopting neither customization nor first-degree price discrimination, in

equilibrium they adopt both and make lower profits. The authors do not consider a finite-

variety multi-product firm (our MP), and restrict firms’ location choices more than we do.

The marketing literature emphasizes decision aid for real business problems (e.g. Hauser

and Shugan 1983) and testing empirical implications of theoretical models (e.g. Bayus and

Putsis 1999). Analytical models tend to focus on the marketing mix variables, but do not

usually consider production technologies as we do here (Ratchford 1990). For instance,

Balachander and Farquhar (1994) ask how product availability affects Hotelling-type price

competition, and Moorthy (1988) examines two single-product firms’ choice of quality and

price in a market with heterogenous valuations.

Balasubramanian (1998) studies price competition between a direct marketer and mul-

tiple retailers, evenly spaced on a circular market. He characterizes the price equilibrium,
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predicts the impact of a direct marketer’s entry on the retail market, and examines the strate-

gic implications of informing only a fraction of customers about the direct channel. This

can also represent competition between multiple specialized brands and a mass customizer.

Our model differs in several ways: His retailers are analogous to independent single-product

firms, while our “retailers” are managed by a single firm, MP. His retailers are evenly spaced,

while we place no ex ante restrictions on positioning. His reservation price is sufficiently high

that no consumer is priced out, an assumption we do not make.

Product variety has been handled in the operations literature almost exclusively from a

supply-side perspective (Ramdas 2003, Ho and Tang 1998), often focusing on how increased

product variety affects manufacturing or supply chain performance (e.g. Thonemann and

Bradley 2002, Randall and Ulrich 2001, Fisher and Ittner 1999, Gupta and Srinivasan 1998,

MacDuffie et al. 1996). A few exceptions recognize both demand and supply sides in exploring

optimal assortment to balance market gains and inventory costs due to variety (Gaur and

Honhon 2004, van Ryzin and Mahajan 1999); interaction of product line, pricing and make-

to-order / make-to-stock decisions (Dobson and Yano 2002); link between conformance /

performance quality and product strategy (Karmarkar and Pitbladdo 1997); marketing -

operations impact of higher variety and the resulting coordination issues (Netessine and

Taylor 2005; Yunes et al. 2004; Cattani, Dahan and Schmidt 2003; De Groote 1994; Kekre

and Srinivasan 1990).

Dewan et al. (2000) study product strategy - location - price competition of two firms

that can offer a single standard product or a range of custom products on a circular space.

The equilibrium involves both firms choosing to customize, because the first stage poses a

Prisoner’s Dilemma. The assumption of zero marginal cost is critical, as the customizing
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firm can always replicate (hence dominate) a standard-product firm. Our model allows more

general cost parameters, giving either MC or MP a cost advantage; besides, our MP can

offer multiple products. Mendelson and Parlakturk (2004) offers an alternative to Dewan et

al. (2000), emphasizing the practical reality that customization is rarely perfect in matching

every customer’s wish.

In a study independent of but parallel to ours, Xia and Rajagopalan (2004) find that

the longer leadtime associated with custom products can give the standard product firm an

advantage. While they have a more general functional form for the cost of variety than we

do, they restrict analysis to the case with a sufficiently high reservation price, and do not

model market entry. Moreover, lead time is determined only by the MC’s investment and

is not affected by congestion. As a result, the effect of lead time in their model is primarily

to modify the consumers’ reservation price. For this reason, the analysis of time-variety

competition is not included in the current paper, despite being studied in the first author’s

dissertation (Alptekinoğlu 2004). An extended abstract of an earlier version of the current

paper appeared as Alptekinoğlu and Corbett (2004).

We contribute to this literature in several ways. First, our product differentiation

model incorporates a key supply-side factor: production technology with varying product-

mix flexibility. Hence, our model can help assess the strategic value of perfect flexibility.

Second, within the Hotelling model, we introduce a mass customizing firm that can produce

and market any variety with no penalty, in line with recent advances in manufacturing and

information technologies. Third, we find that some common assumptions in the operations

literature about the effect of variety are not always true.
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3 Model

In this section we present a model of competition between two multi-product firms with

fundamentally different production technologies. The mass customizer (MC) is able to offer

an infinite variety of custom products (within the bounds of the product space) by using

a perfectly flexible production technology. The mass producer (MP) offers a finite set of

standard products by using a focused production technology. The degree of product-mix

flexibility associated with this technology is a decision made by MP by investing in setup

cost reduction as in Porteus (1985). At the extreme, MP has the option to invest enough

to make its technology perfectly flexible. If MP invests in perfectly flexible technology, it

becomes indistinguishable from MC. The competition between MP and MC revolves around

price and the ability to match each customer’s “ideal” product. We assume the standard and

custom products are available equally soon. We do this in order to study competitive effects

of product variety in isolation, rather than commingling them with time-based competition

issues that would arise if customers had to wait (longer) for custom products.

We consider a set of horizontally differentiated products, each fully characterized by a

single taste attribute, quantified by a real number between 0 and 1. We refer to this as the

product’s location on the product space [0, 1].

The Mass Producer (MP) makes four decisions: entry and flexibility, variety, and price.

MP first decides whether to enter the market. If it enters, it pays a fixed cost Fp(f) for a

mass production technology with a degree of product-mix flexibility that results in a fixed

cost f per distinct product offered. There is some evidence from the operations literature

that the cost of variety for a multi-product firm is indeed approximately linear in the number
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of products, assuming a cyclical base stock policy or something similar (Federgruen, Gallego

and Katalan 2000; DeGroote, Yucesan and Kavadias 2002; Thonemann and Bradley 2002;

Benjaafar et al. 2004). We follow Porteus (1985) and assume that the fixed cost Fp(f) is

convex decreasing in f through Fp(f) = κ− θ ln(γ + f) (where κ, θ, γ > 0 are scalars such

that Fp(·) is strictly positive for a domain of f relevant to our model). Note that MP can

achieve perfect product-mix flexibility, i.e., choose f = 0 and offer infinite variety in an effort

to emulate MC, at a fixed cost Fp(0) = κ − θ ln(γ). By letting γ drop to 0, one can make

it arbitrarily costly for MP to emulate MC. Second, MP decides on variety, i.e., the number

and location of standard products. For each member of its product line, MP pays the fixed

cost f . Let n ∈ {1, 2, 3, ...} denote the number of products and xi ∈ [0, 1] the location of

product i ∈ {1, 2, ..., n}. The variety decision thus involves setting the dimension n and the

elements of the vector x ≡ (x1, ..., xn), and committing to a cost of fn. Third, MP sets the

prices p ≡ (p1, ..., pn) for products 1, ..., n respectively. The variable unit cost of production

cp is the same for all products. We will see later that MP does always choose to charge a

uniform price for all of its products, so restricting MP upfront to uniform pricing (i.e., no

price discrimination, as mentioned in the introduction) yields the same results.

The Mass Customizer (MC) makes two decisions: entry, and price. MC, if it enters,

pays a fixed cost Fc for a perfectly flexible technology capable of custom-producing any

product within the product space. Typically one would expect to find Fc > Fp(f), i.e.,

the flexibility of MC’s technology comes at a price, but we do not restrict our analysis to

that case. Because of its infinite flexibility within the product space, MC has no distinct

"products" and incurs no "per-product" cost for variety. For instance, in the case of custom-

blended paint or custom-made clothing, once MC has the necessary technology there is no
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incremental cost for any particular color or garment. Second, MC sets a uniform price pc

for its products. The variable unit cost of production cc is again independent of location.

The apparent asymmetry between MC and MP in ability to price-discriminate has no effect,

as MP will never use its ability to price-discriminate given that the MC does not do so.

We present the model allowing MP to price-discriminate as it is slightly more general, and

yields the exact same results as a model where neither firm can price-discriminate. The

setting studied here is consistent with horizontal differentiation, where price discrimination

based on taste is not common. Allowing both firms to price-discriminate does change the

analysis; that setting would be more consistent with vertical differentiation and is left for

future research.

Each customer buys one unit (if any) from either MP or MC. Customers are heteroge-

nous in their tastes: they each have a location on [0, 1], representing their ideal product.

They pay a transportation cost (or disutility) d per unit distance between their location and

the purchased product; there is no transportation cost for custom products. Each customer

buys the product with the smallest delivered price, the list price plus the transportation

cost, as long as this does not exceed a reservation price p̄. A customer located at z ∈ [0, 1]

receives a utility of U(z, x, p) = p̄− p− d |z − x| by purchasing a product at x for price p.

This customer will therefore purchase the custom product located at z if pc < pi+d |z − xi|

for all i ∈ {1, 2, ..., n}, and pc ≤ p̄; the standard product i ∈ {1, 2, ..., n} located at xi if

i = argmin
j∈{1,2,...,n}

[pj + d |z − xj|] and pi + d |z − xi| ≤ min (pc, p̄); and will make no purchases

if pc > p̄, and pi + d |z − xi| > p̄ for all i ∈ {1, 2, ..., n}. Ties can be broken arbitrarily. We

assume that an indifferent customer will prefer the standard product over the custom prod-

uct, and a purchase over no purchase. The total number of customers is λ, their locations
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uniformly spread between 0 and 1.

The interaction between MP and MC unfolds in three stages. In the first stage, the

entry game, firms simultaneously decide whether to enter the market, and MP decides how

much to invest in product-mix flexibility. The entry game has four possible outcomes. If

both firms decide to enter, then a duopoly competition ensues. If one firm decides not to

enter, the other acts as amonopolist. Finally, if neither firm enters,market breakdown occurs.

Throughout, we assume that cc < p̄ and cp < p̄; otherwise, one or both firms would never

enter. In the second stage, MP - if it enters - determines its product variety, i.e., sets n and

designs its product line x. No decision by MC is needed in the second stage. Finally, in

the third stage, firms in the market simultaneously set their prices, pc and p. This sequence

is consistent with the hierarchy of decisions in marketing and economics models of product

strategy. Note that we only let one firm, MP, choose its production technology upon entry.

This is because endogenous technology choice by both firms would require a treatment of

competition between two MPs, which appears to have no equilibrium (Klemperer 1992).

Moreover, we believe the MP - MC competition is the most interesting focus of analysis.

MC’s profit is given by πc (pc, f, n,x,p) = (pc − cc) λ yc (pc, f, n,x,p) − Fc, where

yc(·) is the total market share captured by the custom products. MP’s profit is given by

πp (pc, f, n,x,p) =
nP
i=1

[(pi − cp) λ yi (pc, f, n,x,p)− f ] − Fp(f), where yi(·) is the length of

the market segment captured by the standard product i ∈ {1, 2, ..., n}. yc and
Pn

i=1 yi are

MC’s and MP’s total market share. Furthermore, yc +
Pn

i=1 yi ≤ 1, with strict inequality

only when MC sets a non-competitive price (pc > p̄, which implies yc = 0) and MP chooses

not to cover the entire market. Our analysis in §4 shows that the entire market will be

covered whenever any firm chooses to enter the market.
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We develop a full analysis of this three-stage game in the next section to address the

following research questions: What conditions result in duopoly, or in a monopoly of either

firm? How would the firms set prices as monopolists or duopolists? How would MP design

its product line when competing with MC, as opposed to when acting as a monopolist? Does

duopoly lead to higher or lower variety of standard products than monopoly? Under what

conditions, if ever, can MP profitably coexist with MC?

4 Analysis

In this section we determine the sub-game perfect Nash equilibrium of the three-stage game

defined in §3. As usual, the analysis proceeds by backward induction, starting with the last

stage, where firms set prices in the monopoly or duopoly outcome of the entry game. The

first part of the analysis is largely standard, but necessary for the competitive analysis that

follows, which is where our main contribution lies.

4.1 Monopoly of the Mass Producer (MP)

We first consider the case in which only MP enters and chooses a technology with f > 0.

We establish some structural properties of MP’s positioning and pricing decisions, slightly

more general than those in de Groote (1994), that considerably reduce the solution space.

Proposition 1 Given f > 0 and n < ∞, MP’s optimal positioning and pricing decisions

when acting as a monopolist obey two structural properties: the products must be located such

that the market segment captured by each is contiguous and of equal length, i.e. y1 = y2 =

· · · = yn; and priced uniformly, i.e. p1 = p2 = · · · = pn.
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Optimality of a symmetric product line design is not surprising under the assumption

of uniformly spread customer locations. In effect, Proposition 1 reduces MP’s second-stage

decision to choosing n, and its third-stage decision to setting a uniform price pp. MP’s

pricing problem for a given n is then:

max
pp

πp(f, n, pp) = (pp − cp)λnyp − nf − Fp(f)

st. yp =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1/n , if pp < p̄− d/2n

2(p̄− pp)/d , if p̄− d/2n ≤ pp ≤ p̄

0 , if pp > p̄

where yp denotes the same market segment length captured by each one of MP’s products.

Proposition 2 For fixed values of f > 0 and n <∞, MP’s optimal monopoly price is:

p∗p =

⎧⎪⎪⎨⎪⎪⎩
p̄− d/2n , if p̄ > cp + d/n

(p̄+ cp)/2 , if p̄ ≤ cp + d/n

(1)

As expected, a monopolist MP will charge a higher price if it offers more products (hence

closer to each customer’s ideal point). Also, p∗p is increasing in cp and p̄, and decreasing in

d. When the customers’ reservation price is not high enough, i.e. p̄ < cp + d/n, MP chooses

not to cover the entire market. This contrasts with most of the existing literature, which

explicitly or implicitly assumes full market coverage. Analysis of the entry game in §4.4 shows

that if MP enters, it will indeed always cover the entire market. Nevertheless, Proposition 2

(in concert with Proposition 3 below) establishes that the common assumption of full market

coverage is not always satisfied when firm entry and/or number of products are given.

We now turn to the second stage: the variety decision. MP sets the number of standard

products n knowing that the optimal price in (1) will follow in the third stage. MP’s product
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variety problem can thus be stated as follows:

max
n≥1

πp(f, n, p
∗
p) =

⎧⎪⎪⎨⎪⎪⎩
(p̄− cp − d

2n
)λ− nf − Fp(f) , if p̄ > cp + d/n

λn
2d
(p̄− cp)

2 − nf − Fp(f) , if p̄ ≤ cp + d/n

For ease of exposition we relax the integrality of n, a standard practice in the literature (e.g.

Balasubramanian 1998). Define parameter regions (μ1) through (μ4) as follows:

(μ1) ≡ { p̄ > cp + d and f < λd
2
} or { p̄ ≤ cp + d and f < λ(p̄−cp)2

2d
}

(μ2) ≡ { p̄ > cp + d and f ≥ λd
2
}

(μ3) ≡ { p̄ ≤ cp + d and f > λ(p̄−cp)2
2d

}

(μ4) ≡ { p̄ ≤ cp + d and f = λ(p̄−cp)2
2d

}

The first portion of (μ1) is the usual case implicitly assumed in the literature; the other

regions have either a low reservation price and/or a high fixed cost per product. In §5 we will

see that considering all possible cases rather than just those usually studied in the literature

reveals some interactions that would otherwise not be apparent.

Proposition 3 For MP, when acting as a monopolist with f > 0, the optimal product

variety (number of products), the optimal price, and the resulting profit are given by:

Region Variety, n∗ Price, p∗p Profit, πmonop
p (f) ≡ πp(f, n

∗, p∗p)

(μ1)
q

λd
2f

p̄−
q

df
2λ

λ (p̄− cp)−
√
2λdf − Fp(f)

(μ2) 1 p̄− d
2

λ
¡
p̄− cp − d

2

¢− f − Fp(f)

(μ3) 1 p̄+cp
2

λ
2d
(p̄− cp)

2 − f − Fp(f)

(μ4) n∗ ∈
h
1, d

p̄−cp

i
p̄+cp
2

−Fp(f)

Larger markets (λ) and markets with higher willingness-to-pay (p̄) can support higher

product variety, while variety is (weakly) decreasing in f and cp. In regions (μ2) and (μ3),
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the fixed cost f per product is so high that the firm offers only a single product. In regions

(μ3) and (μ4), MP chooses not to cover the entire market but is also sure to make a loss.

MP will of course decide not to enter in these cases.

4.2 Monopoly of the Mass Customizer (MC)

Now suppose that only MC enters, or that only MP enters and chooses an infinitely flexible

technology so that f = 0 (i.e., MP essentially becomes a monopolist MC). This is a trivial

case, where pricing is the only post-entry decision. Since customers buy as long as the price

pc is at or below their reservation price, MC will set the highest price possible, i.e., p∗c = p̄,

while still capturing the entire market (yc = 1). An MC monopolist obtains a profit of

πmonop
c ≡ πc(p

∗
c) = (p̄− cc)λ− Fc. Of course, if the fixed cost is too high, MC will not enter.

4.3 Duopoly Competition between MP and MC

If both firms enter and MP invests in perfect flexibility so that f = 0, pure price com-

petition ensues, in which case it is not possible for both firms to recoup their fixed costs.

Therefore, when both firms enter, MP must have chosen a technology with f > 0. MP’s

optimal positioning and pricing shares structural properties with the monopoly case shown

in Proposition 1: MP evenly spaces out and uniformly prices its products1. This reduces

MP’s second-stage decision to choosing n, and its third-stage decision to setting a uniform

price pp.

1We state this without proof. The idea is that, going from monopoly to duopoly, MC’s price replaces

the reservation price in forming an upper limit to MP’s delivered price. Including an endogenous but not

congestion-dependent lead time for MC similarly has the effect of shifting this upper limit.
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4.3.1 Third Stage: Price Competition

To state the Nash equilibrium in prices for a given n, which is known to both parties, we

first need to define four parameter regions (η1) through (η4) as follows:

(η1) ≡ { cc − cp ≥ d
n
}

(η2) ≡ { p̄ ≤ d
3n
+ 2cc+cp

3
}

(η3) ≡ { − d
2n

< cc − cp <
d
n
and p̄ > d

3n
+ 2cc+cp

3
}

(η4) ≡ { cc − cp ≤ − d
2n
}

Proposition 4 For fixed values of f > 0 and n <∞, the unique Nash equilibrium in prices

is given by:

Region Price Equilibrium, (p̂c, p̂p)

(η1) (cc , cc − d
2n
)

(η2) (p̄ , p̄+cp
2
)

(η3) ( d
3n
+ 2cc+cp

3
, d

6n
+ cc+2cp

3
)

(η4) (cp , cp)

Proposition 4 shows that the equilibrium prices (p̂c, p̂p) are increasing in cc, cp and p̄. In

regions (η1) and (η4), MP and MC respectively completely dominate. These two extremes

become more likely as n increases. In regions (η2) and (η3), the cost differential |cc − cp| is

small enough that both firms capture some market share, but the bounds on |cc − cp| become

tighter as n increases. Note that (η2), together with the assumptions cc < p̄ and cp < p̄,

implies − d
2n

< cc − cp <
d
n
, so the four regions are mutually exclusive.

Naively, one might expect that a higher variety would allow MP to charge a higher

price. This is true in (η1), where MC’s costs are so high that MP acts as a monopolist.
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But in (η3), MP’s equilibrium price p̂p is strictly decreasing in n. Therefore, under duopoly

competition, price decrease and variety increase can coexist for MP. This is because MC’s

reaction to an increase in n by MP would be to cut price. Hence, MP may prefer lower

variety, in order to soften the price competition; we discuss this further in §5.

4.3.2 Second Stage: Product Variety Decision of the Mass Producer (MP)

Having established the duopoly price equilibrium for any given n, we can now analyze MP’s

variety decision for a fixed value of f > 0. MP maximizes profit πp(p̂c, f, n, p̂p) subject to

n ≥ 1. We again relax the integrality of n. Define parameter regions (δ1) through (δ4) as

follows:

(δ1) ≡ { cc − cp > d and f < λd
2
} or { 0 < cc − cp ≤ d and f < f̄ }

(δ2) ≡ { cc − cp > d and f ≥ λd
2
}

(δ3) ≡ { 0 < cc − cp ≤ d and f ≥ f̄ } or { − d
2
≤ cc − cp ≤ 0 }

(δ4) ≡ { cc − cp < −d
2
}

where f̄ uniquely satisfies 2λ(cc−cp)
9d

(cc − cp − d
4
) ≤ f̄ < λ(cc−cp)2

2d
and

p
2λd f̄ − f̄ =

2λ
9d

h
− (cc − cp)

2 + 7d
2
(cc − cp)− d2

4

i
. Also define regions (ε1) through (ε4) as follows:

(ε1) ≡ { 0 < cc − cp < d , f < f̆ }

(ε2) ≡ { 0 < cc − cp < d , f̆ ≤ f < λ(p̄−cp)2
2d

} or { − d
2
< cc − cp ≤ 0 , f < λ(p̄−cp)2

2d
}

(ε3) ≡ { − d
2
< cc − cp < d , f = λ(p̄−cp)2

2d
}

(ε4) ≡ { − d
2
< cc − cp < d , f > λ(p̄−cp)2

2d
}

where f̆ uniquely satisfies λ(cc−cp)
6d

(2cc − cp − p̄) ≤ f̆ < λ(cc−cp)2
2d

and (3p̄− 2cc − cp) ·q
2λdf̆ − df̆ = 2λ (p̄− cc) (cc − cp) +

λ
2
(p̄− cp) (2cc − cp − p̄).

18



Proposition 5 For MP competing with MC, having chosen f > 0 in the first stage, the

optimal product variety and the resulting price equilibrium and market shares are:

Case 1: High reservation price: p̄ > d
3
+ 2cc+cp

3

Region Variety, n̂ Price equilibrium, (p̂c, p̂p) Market shares, (yc, n̂yp)

(δ1)
q

λd
2f

µ
cc, cc −

q
df
2λ

¶
(0, 1)

(δ2) 1
¡
cc, cc − d

2

¢
(0, 1)

(δ3) 1
³
d
3
+ 2cc+cp

3
, d
6
+ cc+2cp

3

´ ³
2
3
− 2(cc−cp)

3d
, 1
3
+ 2(cc−cp)

3d

´
(δ4) 1 (cp, cp) (1, 0)

Case 2: Low reservation price: p̄ ≤ d
3
+ 2cc+cp

3

Region Variety, n̂ Price equilibrium, (p̂c, p̂p) Market shares, (yc, n̂yp)

(ε1)
q

λd
2f

µ
cc, cc −

q
df
2λ

¶
(0, 1)

(ε2) d
3p̄−2cc−cp (p̄, p̄+cp

2
)

³
2(p̄−cc)

3p̄−2cc−cp ,
p̄−cp

3p̄−2cc−cp

´
(ε3) n̂ ∈

h
1, d

3p̄−2cc−cp

i
(p̄, p̄+cp

2
)

³
1− n̂(p̄−cp)

d
, n̂(p̄−cp)

d

´
(ε4) 1 (p̄, p̄+cp

2
)

¡
1− p̄−cp

d
, p̄−cp

d

¢

where region (ε3) yields multiple optima. (Profit expressions, πduopc (f) ≡ πc(p̂c, f, n̂, p̂p) and

πduopp (f) ≡ πp(p̂c, f, n̂, p̂p), are provided in a separate appendix.)

Regardless of the reservation price p̄, the variable cost differential between MC and MP

must be small enough for both firms to attract positive market share. MP’s optimal variety

n̂ is decreasing in f , and increasing in λ and d.
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4.4 Entry Game

Having determined variety and price(s) under monopoly and duopoly, we now analyze the

entry game, our ultimate objective. In the entry game, both firms decide whether to enter

the market, and MP sets f if it does enter. The entry game can be summarized as follows:

MC \ MP enter with f ≥ 0 do not enter

enter πduopc (f) , πduopp (f) πmonop
c , 0

do not enter 0 , πmonop
p (f) 0 , 0

Therefore, each firm needs to determine a best response to no entry or entry (with a

choice of f in the case of MP) by the other firm. Depending on how monopoly and duopoly

profits compare to not entering the market (i.e., zero profit), there may be unique or multiple

equilibria in this game. We adopt the convention that the firms enter the market when they

are indifferent between entering and not entering.

In the absence of entry by MC, MP sets its marginal cost of variety f so as to maximize

πmonop
p (f) = πp(f, n

∗, p∗p) given in Proposition 3. If MC enters, on the other hand, MP

maximizes πduopp (f) = πp(p̂c, f, n̂, p̂p), which is a result of Proposition 5 and is given in

a separate appendix. The entry game equilibrium can be fully characterized by solving

these two problems. In Proposition 6 below, we only present the results for the duopoly

competition outcome, in which MP and MC coexist in the market at equilibrium. Details of

how to characterize the remaining outcomes of the entry game are provided in the proof of

Proposition 6 given in a separate appendix.
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Proposition 6 MP and MC coexist in the market iff the parameter values satisfy one of

two mutually exclusive regions:

Equilibrium Outcome: Duopoly Competition

Parameter Regions Cost of Variety, f̂ Variety, n̂ Price Equilibrium, (p̂c, p̂p)

(υ3) πduopp (f̂), πduopc (f̂) ≥ 0 max
n
f̆ , f3

o
d

3p̄−2cc−cp (p̄, p̄+cp
2
)

(υ4) πduopp (f̂), πduopc (f̂) ≥ 0 max
©
θ − γ, f̄

ª
1

³
d
3
+ 2cc+cp

3
, d
6
+ cc+2cp

3

´
where f3 ≡ θ

d
(3p̄− 2cc − cp)− γ, and the parameter regions are defined as:

(υ3) ≡ p̄ ≤ d
3
+ 2cc+cp

3
, { [ 0 < cc − cp ≤ d , f̆ > 0 ]

or [ − d
2
≤ cc − cp ≤ d , 0 < f3 <

λ(p̄−cp)2
2d

] }

(υ4) ≡ p̄ > d
3
+ 2cc+cp

3
, { [ 0 < cc − cp ≤ d , f̄ > 0 ]

or [ − d
2
≤ cc − cp ≤ d , θ > γ ] }

(Profit expressions, πduopc (f̂) = πc(p̂c, f̂ , n̂, p̂p) and πduopp (f̂) = πp(p̂c, f̂ , n̂, p̂p), are provided in

a separate appendix.)

Observe that MP only offers multiple products in duopoly when the reservation price is

relatively low; in other words, smaller profit margins lead to higher variety. Also, MP never

invests in perfect product-mix flexibility (f = 0) in a duopoly outcome. This is because, if

MP emulated MC by choosing f = 0 and offering infinite variety, MP and MC would lock

themselves in a pure-price competition: the firm with higher unit cost is unable to capture

any of the market, earns no revenue, hence makes a negative profit.
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5 Discussion

5.1 Competition, Price and Variety

Consider a world in which Fc is sufficiently high (and Fp sufficiently low) that MP monop-

olizes the market. Suppose, over time, production technology improves so that Fc drops

significantly; and suppose this moves the market to a duopoly. Comparing the scenario with

high Fc (monopoly of MP) to the scenario with low Fc (duopoly), we observe the following.

First, prices are lower under duopoly than under monopoly, i.e. p̂c ≤ p∗c and p̂p ≤ p∗p. Note

that this is not an obvious result in light of the fact that firms seek to soften the price

competition in duopoly equilibrium, our next observation.

Second, and more importantly, MP chooses to be less flexible and offers lower product

variety under duopoly competition than under monopoly, i.e. f̂ ≥ f∗ and n̂ ≤ n∗. Naively,

one might expect MP to increase its product variety to better compete against MC. However,

the price equilibrium result of Proposition 4 indicates that, in the regions (η2) and (η3) where

both firms may enter, higher variety leads to increased price competition, hence lower prices.

Therefore, MP prefers to cut product variety in order to soften the price competition at the

third stage. Note that in significant portions of the parameter space, the inequality n̂ < n∗

is strict, e.g. when region (υ4) overlaps with (τ1) or (τ2), regions that are relevant for the

MP monopoly outcome (given in a separate appendix).

This result extends a recurring theme from the economics and marketing literatures

to the OM literature: the incentive to soften price competition often trumps other con-

siderations. For instance, in a model of horizontal product differentiation under shopping

costs, Klemperer (1992) shows how exactly-matching (“head-to-head”) product lines may
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help soften price competition. In a model of vertical product differentiation with two firms,

each offering an interval of quality on [0,∞), Champsaur and Rochet (1989) show that the

firms leave a gap between their product lines to relax price competition. Balachander and

Farquhar (1994) study fixed-location price competition in a Hotelling framework with two

firms setting their product availability, modeled as the probability of serving all customers or

none. If shopping costs are so low that customers choose to visit the other store when faced

with a stockout, the firms allow occasional stockouts, again to soften price competition.

5.2 Coexistence or Dominance?

For the duopoly outcome to occur, both firms must earn a non-negative profit when they

both enter the market. From Proposition 6, this occurs only in two cases:

MP’s optimal variety, n̂ Price equilibrium, (p̂c, p̂p)

Case 1: region (υ3) d
3p̄−2cc−cp (p̄, p̄+cp

2
)

Case 2: region (υ4) 1
³
d
3
+ 2cc+cp

3
, d
6
+ cc+2cp

3

´
Note that MP offers multiple products only when the reservation price is relatively low

(case 1), and offers a single product when the reservation price is high (case 2). In both

cases of the duopoly outcome, the difference between cc and cp must be small relative to d,

i.e., −d
2
≤ cc − cp ≤ d. These bounds are skewed in favor of MC: MP drops out with a unit

cost disadvantage of d/2, whereas MC can withstand a unit cost disadvantage of up to d.

Also, MC charges a higher price and captures a larger market share than MP, i.e. p̂c ≥ p̂p

and yc ≥ n̂ yp.

A key question is whether a finite-variety MP can survive competition from an infinite-

variety MC. Depending on the relative magnitude of the firms’ fixed and variable costs, MP

23



can often profitably compete. This may not be a surprise when MP has lower fixed and

variable costs than MC. However, contrary to basic intuition, MP can profitably compete

even if MC has a variable production cost advantage, as long as that advantage is not too

large, i.e. cp − d
2
< cc < cp. This can occur in either region, (υ3) or (υ4). Also, MP can still

profitably compete even if MC also has a lower fixed cost, i.e. Fp(f) > Fc for all f .

It is a surprising conclusion that MP can coexist with MC despite simultaneous fixed

and variable cost disadvantages. The underlying reason is that even if MC has a lower

variable cost, it may choose not to lower its uniform price enough to deter entry by MP.

Cutting price would entice a few MP customers to switch to MC, but would reduce MC’s

revenue in the rest of the market. This hinges on our focus on horizontal differentiation and

hence MC’s inability to price-discriminate, similar to the situation in De Groote (1994) and

Balasubramanian (1998). If we do let an MC with a variable cost advantage charge location-

specific prices, it could always undercut MP’s delivered price by a small margin, hence

rendering the competitive analysis entirely uninteresting. Assuming uniform prices would

be questionable in the case of vertical differentiation, but is consistent with the horizontal

differentiation setting studied here.

MC having fixed and variable cost advantages may not be a common occurrence, but

does happen, as illustrated by Dell. Our finding that anMPwith a variable cost disadvantage

can coexist with an MC is consistent with the literature on contestable markets, although

the context is quite different. Gelman and Salop (1983) show that an incumbent may let an

entrant with no cost advantage survive if the latter can commit to limiting capacity. In that

case, it is better for the incumbent to surrender a small part of the market to the entrant,

rather than driving him out by offering a lower price to the entire market. Drawing the
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analogy with our work would require treating the MC as the incumbent and viewing MP’s

choice of variety as a form of capacity commitment.

5.3 When Does Higher Variety Imply Higher Prices?

The prevailing view in the OM community seems to be that higher product variety always

allows charging higher prices, because perceived value to customers increases as product

variety grows. In the monopoly analysis for MP, higher variety does indeed imply (weakly)

higher prices (Proposition 2). However, under duopoly, a higher variety offered by MP

may result in a lower, equal, or higher equilibrium price (Proposition 4). Therefore, our

analysis points out that whether higher product variety implies higher prices depends on the

prevailing competitive structure (monopoly versus duopoly) and relative costs of different

production technologies. This is in agreement with the finding by Norman and Thisse (1999)

that introduction of FMS technology, which makes higher product variety economical, can

lead to more aggressive pricing between competitors.

In a widely-cited study based on the PIMS (Profit Impact of Marketing Strategies)

database, Kekre and Srinivasan (1990) hypothesized that “a broader product line may lead

to higher relative prices,” but found only marginal support in both industrial and consumer

markets. In contrast, our study offers a theoretical explanation for observing higher variety

and lower prices concurrently (under competition), though further study would be needed

to verify whether this effect does indeed contribute to Kekre and Srinivasan’s finding.

25



6 Concluding Remarks

We model competition between two multi-product firms on the basis of product variety and

price, where one firm is a mass customizer with infinite variety, while the other is a mass

producer with finite variety. We construct a three-stage game using Hotelling’s (1929) model

of horizontal differentiation. First, both firms decide whether to enter the market, and in

MP’s case, how much to invest in product-mix flexibility; next, MP designs its product line;

and then both firms set prices. We characterize the sub-game perfect Nash equilibria of this

game, including a full analysis of when either or both firms decide to enter. We find that MP

will decrease flexibility and variety upon entry by MC. This reflects the firms’ desire to soften

the price competition under duopoly. Also, the finite-variety MP can profitably compete even

if it has a disadvantage against the infinite-variety MC in fixed cost of production technology,

in variable cost of production, or both.

We contribute to the product variety literature in several ways. First, we introduce

a supply side element (production technology) to the study of product differentiation, con-

ducted so far mostly from a demand perspective. Our second contribution is to model an

MC’s horizontal product differentiation in a Hotelling framework. Third, we partly contra-

dict a prevailing view in OM, by finding that MP in a duopoly may wish to reduce product

variety (compared to an MP monopoly) in order to soften price competition with MC.

A more streamlined analysis, focusing only on one or a few of the cases identified in

the analysis, would not permit a full comparison between the outcomes under monopoly and

duopoly, and would not reveal the full range of possible interactions between variety and

price. This illustrates the value of providing a complete treatment as we do here, despite
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the resulting tediousness of the analysis.

Our model has several limitations. First, we do not explicitly model the entry deterrence

effect of product variety (Schmalensee 1978, Salop 1979, Heal 1980). This would require a

model of sequential entry, where MP (the incumbent) may offer excessively high product

variety as a deterrent against the threat of entry by MC. Second, production technology

is exogenous for MC. If both firms were allowed to choose their production technology, we

would need to know the equilibrium product line design and pricing policies of two firms

with finite multiple products. This is an open problem in the economics literature, but the

prevailing conjecture is that location-price equilibrium does not exist even for the case of

fixed numbers of products (Klemperer 1992, Teitz 1968). An alternative approach would be

to simply postulate a specific variety and pricing strategy for both firms, but this would no

longer be a true equilibrium analysis.

This paper offers a step towards understanding supply- and demand-side forces that

shape product strategy decisions of multi-product firms. A useful direction for future research

is to explore the robustness of our findings under other models of product differentiation,

such as the representative consumer or random utility models (Anderson et al. 1992).

7 Appendix

All proofs are provided in a separate document that can be accessed online at http://~/.
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Online Appendix for
“Mass Customization versus Mass Production:
Variety and Price Competition”

Proof of Proposition 1. First, the market segment captured by a standard product

is contiguous: if we take any two locations served by a product, all locations in between must

also be served by the same product. Second, the delivered price at boundary points between

any two adjacent market segments and at end points (0 and 1) must be at least p̄. Suppose

not. In both cases (interior point or end point) the associated product(s) can be replaced

by products that are priced higher and that cover exactly the same market area(s). Third,

market segments captured by standard products must be of equal length and all products

must be priced the same. Suppose not; i.e., in MP’s optimal product line design, there exist

two neighboring products that cover market segments of unequal length a and l−a (a 6= l/2),

and that are priced differently at p1 = p̄−da/2 and p2 = p̄−d (l − a) /2, respectively. (Higher

prices would not allow the given segment lengths; lower prices are not optimal.) Without

loss of generality, assume 0 < a < l − a < l < 1. MP’s profit from these two products

is 4πp(a) = (p̄ − cp)λl − λd
2

£
a2 + (l − a)2

¤
. We can rearrange these two segments without

affecting any other segment by varying a. Solving max
0≤a≤l/2

4πp(a) gives a∗ = l/2. That is,

MP is better off by replacing the two unequal segments with two equal segments. This is

accomplished by equalizing the prices at p1 = p2 = p̄− dl/4 while keeping the total coverage

of the market segments the same. This improvement affects no other segments. Therefore

the optimal product line design cannot have unequal segments. There may be alternative

1



optima for the product locations. The vector of locations symmetric around the center,

x =
¡
1
2n
, 3
2n
, · · · , 2n−1

2n

¢
, is optimal; but in some regions of parameter values, x (or subsets

of x) can be shifted within the bounds of the product space (at most by ± ¯̄ 1
2n
− ¡ p̄−p1

d

¢¯̄
)

without reducing profits.

Proof of Proposition 2. MP’s pricing problem can be restated as: max
pp

πp(f, n, pp) =

(pp−cp)λnyp−nf−Fp(f) subject to p̄−d/2n ≤ pp ≤ p̄ and yp = 2(p̄−pp)/d. The expression

for yp in the second constraint is valid only for the range of prices in the first constraint.

This restriction is justified by two simple observations. First, MP would never reduce pp

below p̄ − d/2n because it already captures the entire market at that price. Second, with

pp > p̄, MP attracts no demand. Substituting yp, as defined by the second constraint above,

into πp, one can verify that πp is concave in pp. The result then follows from the Lagrangean

method.

Proof of Proposition 3. Our solution strategy is to decompose the problem into two

sub-problems based on the two regions of the objective function, solve them separately, and

combine the solutions. The two sub-problems are:

(M1): maxπp(f, n, p∗p) = (p̄− cp − d
2n
)λ− nf − Fp(f) subject to n ≥ d

p̄−cp and n ≥ 1.

(M2): maxπp(f, n, p∗p) =
λn
2d
(p̄− cp)

2 − nf − Fp(f) subject to n ≤ d
p̄−cp and n ≥ 1.

Let n∗1 and n∗2 be the optimal solutions to (M1) and (M2). The objective function of (M1)

is strictly concave in n, while that of (M2) is linear in n. The Lagrangean method gives:

n∗1 =

⎧⎪⎪⎨⎪⎪⎩
q

λd
2f

, if f < min
n
λd
2
, λ(p̄−cp)

2

2d

o
max

³
1, d

p̄−cp

´
, otherwise

2



n∗2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
p̄−cp , if f < λ(p̄−cp)2

2d
and p̄ ≤ cp + d

∈
h
1, d

p̄−cp

i
, if f = λ(p̄−cp)2

2d
and p̄ ≤ cp + d

1 , if f > λ(p̄−cp)2
2d

and p̄ ≤ cp + d

The result follows from combining these, choosing the better solution in case of overlap.

Proof of Proposition 4. Suppose that MP knows MC’s price, pc (cc ≤ pc ≤ p̄), hence

solves the following problem to set its own price:

max
cp≤pp≤p̄

πp(pc, f, n, pp) = (pp − cp)λnyp − nf − Fp(f)

st. yp =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1/n , if pp ≤ pc − d/2n

2(pc − pp)/d , if pc − d/2n ≤ pp ≤ pc

0 , if pp ≥ pc

Employing the same arguments as in Proposition 2, this problem can be further restricted to

the mid-region where pc − d/2n ≤ pp ≤ pc. Using the Lagrangean method, we obtain MP’s

best response function:

p∗p(n, pc) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
pc − d/2n , if pc ≥ cp + d/n

(pc + cp)/2 , if cp < pc < cp + d/n

∈ [cp, p̄] , if pc ≤ cp

Suppose now that MC knows MP’s price, pp (cp ≤ pp ≤ p̄), hence solves:

max
cc≤pc≤p̄

πc(pc, f, n, pp) = (pc − cc)λyc − Fc

st. yc =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 , if pc ≤ pp

1− 2n(pc − pp)/d , if pp ≤ pc ≤ pp + d/2n and pc ≤ p̄

0 , if pp + d/2n ≤ pc ≤ p̄

3



Using exactly the same approach, we obtain MC’s best response function:

p∗c(n, pp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pp , if pp ≥ cc + d/2n

d
4n
+ pp+cc

2
, if cc − d/2n < pp < cc + d/2n , pp < 2p̄− cc − d/2n

p̄ , if pp ≥ 2p̄− cc − d/2n

∈ [cc, p̄] , if pp ≤ cc − d/2n

Given the two best response functions, we find the equilibrium pairs (p̂c, p̂p) by solving

p̂p = p∗p(n, p̂c) and p̂c = p∗c(n, p̂p) simultaneously.

Proof of Proposition 5. We decompose the problem into four sub-problems based on

the regions (η1) - (η4), solve these separately, and combine their solutions. The sub-problem

that corresponds to region (ηk), labeled (Ck) for k = 1, 2, 3, 4, can be stated as follows.

(C1): maxπp(p̂c, f, n, p̂p) = λ(cc − cp − d
2n
)− nf − Fp(f) st. n ≥ d

cc−cp and n ≥ 1.

(C2): maxπp(p̂c, f, n, p̂p) = λn
2d
(p̄− cp)

2 − nf − Fp(f) st. 1 ≤ n ≤ d
3p̄−2cc−cp .

(C3): maxπp(p̂c, f, n, p̂p) = 2λn
9d
( d
2n
+ cc− cp)

2− nf −Fp(f) st. 1 ≤ n ≤ max
h

d
cc−cp ,

−d
2(cc−cp)

i
and n ≥ d

3p̄−2cc−cp .

(C4): maxπp(p̂c, f, n, p̂p) = −nf − Fp(f) st. n ≥ −d
2(cc−cp) and n ≥ 1.

It is easy to see that the objective functions of (C1), (C2), (C3) and (C4) are strictly

concave, linear, strictly convex and linear in n, respectively. The Lagrangean method yields

the following, where n̂k represents the optimal solution for (Ck):

n̂1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q
λd
2f

, if cc − cp > 0 and f < λd
2
and f < λ(cc−cp)2

2d

d
cc−cp , if 0 < cc − cp ≤ d and f ≥ λ(cc−cp)2

2d

1 , if cc − cp > d and f ≥ λd
2

4



n̂2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
3p̄−2cc−cp , if 3p̄− 2cc − cp ≤ d and f < λ(p̄−cp)2

2d

∈
h
1, d

3p̄−2cc−cp

i
, if 3p̄− 2cc − cp ≤ d and f = λ(p̄−cp)2

2d

1 , if 3p̄− 2cc − cp ≤ d and f > λ(p̄−cp)2
2d

n̂3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
cc−cp , if { 0 < cc − cp ≤ d , 3p̄− 2cc − cp ≤ d , f < λ(cc−cp)2

2d
}

or { 0 < cc − cp ≤ d , 3p̄− 2cc − cp > d ,

and f < 2λ(cc−cp)
9d

(cc − cp − d
4
) }

d
3p̄−2cc−cp , if { 0 < cc − cp ≤ d , 3p̄− 2cc − cp ≤ d , f ≥ λ(cc−cp)2

2d
}

or { − d
2
≤ cc − cp ≤ 0 , 3p̄− 2cc − cp ≤ d }

1 , if { 0 < cc − cp ≤ d , 3p̄− 2cc − cp > d ,

and f ≥ 2λ(cc−cp)
9d

(cc − cp − d
4
) }

or { − d
2
≤ cc − cp ≤ 0 , 3p̄− 2cc − cp > d }

n̂4 =

⎧⎪⎪⎨⎪⎪⎩
d

2(cp−cc) , if − d
2
< cc − cp < 0

1 , if cc − cp ≤ −d
2

Combining these four solutions by choosing the best one wherever they overlap, we obtain

the optimal number of standard products under duopoly competition. The resulting optimal

variety by MP is given in the proposition under four parameter regions; associated profit

expressions are as follows:
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Case 1: High reservation price: p̄ > d
3
+ 2cc+cp

3

Region πduopc (f) ≡ πc(p̂c, f, n̂, p̂p) πduopp (f) ≡ πp(p̂c, f, n̂, p̂p)

(δ1) −Fc λ (cc − cp)−
√
2λdf − Fp(f)

(δ2) −Fc λ
¡
cc − cp − d

2

¢− f − Fp(f)

(δ3) 2λ
9d
[d− (cc − cp)]

2 − Fc
2λ
9d

¡
cc − cp +

d
2

¢2 − f − Fp(f)

(δ4) λ (cp − cc)− Fc −f − Fp(f)

Case 2: Low reservation price: p̄ ≤ d
3
+ 2cc+cp

3

Region πduopc (f) ≡ πc(p̂c, f, n̂, p̂p) πduopp (f) ≡ πp(p̂c, f, n̂, p̂p)

(ε1) −Fc λ (cc − cp)−
√
2λdf − Fp(f)

(ε2) 2λ(p̄−cc)2
3p̄−2cc−cp − Fc

λ(p̄−cp)2
2(3p̄−2cc−cp) − df

(3p̄−2cc−cp) − Fp(f)

(ε3) λ(p̄− cc)
³
1− n̂(p̄−cp)

d

´
− Fc −Fp(f)

(ε4) λ(p̄− cc)
¡
1− p̄−cp

d

¢− Fc
λ(p̄−cp)2

2d
− f − Fp(f)

Proof of Proposition 6. We first characterize MP’s best response to no entry by MC.

In this case, MP sets its marginal cost of variety f so as to maximize πmonop
p (f) = πp(f, n

∗, p∗p)

given in Proposition 3. We decompose the problem into two sub-problems based on the

regions (μ1) and (μ2), the only regions in Proposition 3 that can lead to a non-negative

profit for MP. The two sub-problems - labeled (D1) and (D2), respectively - can be stated

as follows.

(D1): πp(f, n∗, p∗p) = λ (p̄− cp)−
√
2λdf − Fp(f) st. (μ1).

(D2): πp(f, n∗, p∗p) = λ
¡
p̄− cp − d

2

¢− f − Fp(f) st. (μ2).

The objective functions of (D1) and (D2) are decreasing-increasing-decreasing and strictly
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concave in f , respectively. Therefore, for (D1) the larger of two roots (if they exist) and for

(D2) the unique root (if it exists) of the first order condition gives the respective solutions,

f∗(μ1) andf
∗
(μ2) below. The result obtains when these solutions are combined by choosing the

better one wherever they overlap.

f∗(μ1) =

⎧⎪⎪⎨⎪⎪⎩
0 , if θ2

λd
≤ 2γ or { θ2

λd
> 2γ and ln(γ + f0)− ln(γ) < 2f0

γ+f0
}

f1 , if θ2

λd
> 2γ and ln(γ + f0)− ln(γ) ≥ 2f0

γ+f0

f∗(μ2) = f2 ≡ max
½
λd

2
, θ − γ

¾
where f1 ≡ min

½
λd
2
, λ(p̄−cp)

2

2d
, θ

2

λd
− γ +

q¡
θ2

λd

¢2 − 2γ ¡ θ2
λd

¢¾
.

As a result, MP’s best response to no entry by MC is to enter the market and choose cost

of variety f∗ if πmonop
p (f∗) ≥ 0; MP’s optimal decisions and profits are:

Region Cost of Variety, f∗ Variety, n∗ Price, p∗p

(τ1) 0 ∞ p̄

(τ2) f1
q

λd
2f1

p̄−
q

df1
2λ

(τ3) f2 1 p̄− d
2

Region MP’s Monopoly Profit, πmonop
p (f∗) = πp(f

∗, n∗, p∗p)

(τ1) λ (p̄− cp)− κ+ θ ln(γ)

(τ2) λ (p̄− cp)− κ− θ
h
2f1
γ+f1
− ln(γ + f1)

i
(τ3) λ

¡
p̄− cp − d

2

¢− f2 − [κ− θ ln(γ + f2)]

where f1 ≡ min
½

λd
2
, λ(p̄−cp)

2

2d
, θ

2

λd
− γ +

q¡
θ2

λd

¢2 − 2γ ¡ θ2
λd

¢¾
, f2 ≡ max

©
λd
2
, θ − γ

ª
, 0 ≤ f1 ≤

7



f2, and the parameter regions are defined as:

(τ1) ≡ { θ ≤ √2λdγ or [ θ > √2λdγ , ln(γ + f1)− ln(γ) < 2f1
γ+f1

] }

and { p̄ ≤ cp + d or [ p̄ > cp + d , ln(γ + f2)− ln(γ) < f2+λd/2
θ

] }

(τ2) ≡ { θ >
√
2λdγ , ln(γ + f1)− ln(γ) ≥ 2f1

γ+f1
} and { p̄ ≤ cp + d or

[ p̄ > cp + d , ln(γ + f2)− ln(γ) < f2+λd/2
θ
− 2f1

γ+f1
] }

(τ3) ≡ p̄ > cp + d , and

{ { { θ ≤ √2λdγ or [ θ > √2λdγ , ln(γ + f1)− ln(γ) < 2f1
γ+f1

] }

and ln(γ + f2)− ln(γ) ≥ f2+λd/2
θ

}

or { θ >
√
2λdγ , ln(γ + f1)− ln(γ) ≥ 2f1

γ+f1
,

and ln(γ + f2)− ln(γ) ≥ f2+λd/2
θ
− 2f1

γ+f1
} }

Next, we characterize MP’s best response to entry by MC. In this case, MP maximizes

πduopp (f) = πp(p̂c, f, n̂, p̂p), which is a result of Proposition 5 and is given in its proof. We

decompose MP’s problem into two sub-problems based on the regions (δ3) and (ε2), the

only regions in Proposition 5 that can lead to non-negative profits for both firms. The two

sub-problems - labeled (E1) and (E2), respectively - can be stated as follows.

(E1): πp(p̂c, f, n̂, p̂p) = 2λ
9d

¡
cc − cp +

d
2

¢2 − f − Fp(f) st. (δ3).

(E2): πp(p̂c, f, n̂, p̂p) =
λ(p̄−cp)2

2(3p̄−2cc−cp) − df
(3p̄−2cc−cp) − Fp(f) st. (ε2).

The objective functions of (E1) and (E2) are both concave in f . Therefore, the first order

condition is necessary and sufficient for global optimality of each sub-problem; and gives the

respective solutions, f̂(δ3) and f̂(ε2) below, which yield the result when combined (there are
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no overlaps in this case because (δ3) and (ε2) are mutually exclusive).

f̂(δ3) =

⎧⎪⎪⎨⎪⎪⎩
max

©
0, f̄ , θ − γ

ª
, if 0 < cc − cp ≤ d

max {0, θ − γ} , if − d
2
≤ cc − cp ≤ 0

f̂(ε2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n
0, f̆

o
, if 0 < cc − cp < d and f2 < f̆

max {0, f3} , if { 0 < cc − cp < d and f̆ ≤ f3 <
λ(p̄−cp)2

2d
}

or { − d
2
< cc − cp ≤ 0 and f3 <

λ(p̄−cp)2
2d

}

λ(p̄−cp)2
2d

, if { 0 < cc − cp < d and f3 ≥ λ(p̄−cp)2
2d

}

or { − d
2
< cc − cp ≤ 0 and f3 ≥ λ(p̄−cp)2

2d
}

where f3 ≡ θ
d
(3p̄− 2cc − cp)− γ.

As a result, MP’s best response to entry by MC is to enter the market and choose cost of

variety f̂ if πduopp (f̂) ≥ 0; the firms’ equilibrium decisions and profits are:

Region Cost of Variety, f̂ Variety, n̂ Price Equilibrium, (p̂c, p̂p)

(υ1) 0 ∞ (min(cc, cp),min(cc, cp))

(υ2) λ(p̄−cp)2
2d

d
3p̄−2cc−cp (p̄, p̄+cp

2
)

(υ3) max
n
f̆ , f3

o
d

3p̄−2cc−cp (p̄, p̄+cp
2
)

(υ4) max
©
θ − γ, f̄

ª
1

³
d
3
+ 2cc+cp

3
, d
6
+ cc+2cp

3

´
Region MC’s Duopoly Profit, πduopc (f̂) = πc(p̂c, f̂ , n̂, p̂p)

(υ1)
−Fc , if cp ≤ cc

λ (p̄− cc)− Fc , if cc < cp

(υ2) 2λ(p̄−cc)2
3p̄−2cc−cp − Fc

(υ3) 2λ(p̄−cc)2
3p̄−2cc−cp − Fc

(υ4) 2λ
9d
[d− (cc − cp)]

2 − Fc

9



Region MP’s Duopoly Profit, πduopp (f̂) = πp(p̂c, f̂ , n̂, p̂p)

(υ1)
λ (p̄− cp)− [κ− θ ln(γ)] , if cp ≤ cc

− [κ− θ ln(γ)] , if cc < cp

(υ2) −
h
κ− θ ln(γ + λ(p̄−cp)2

2d
)
i

(υ3) λ(p̄−cp)2
2(3p̄−2cc−cp) −

dmax(f̆ ,f3)
3p̄−2cc−cp − κ+ θ ln

h
γ +max

³
f̆ , f3

´i
(υ4) 2λ

9d

¡
cc − cp +

d
2

¢2 −max ¡θ − γ, f̄
¢− κ+ θ ln

£
γ +max

¡
θ − γ, f̄

¢¤
where f3 ≡ θ

d
(3p̄− 2cc − cp)− γ, and the parameter regions are defined as:

(υ1) ≡ { p̄ > d
3
+ 2cc+cp

3
, θ ≤ γ , { [ 0 < cc − cp ≤ d , f̄ ≤ 0 ] or [ − d

2
≤ cc − cp ≤ 0 ] } }

or { p̄ ≤ d
3
+ 2cc+cp

3
, { [ 0 < cc − cp ≤ d , f3 ≤ f̆ ≤ 0 ]

or [ −d
2
≤ cc − cp ≤ 0 , f̆ ≤ f3 ≤ 0 ] } }

(υ2) ≡ p̄ ≤ d
3
+ 2cc+cp

3
, −d

2
≤ cc − cp ≤ d , f3 ≥ λ(p̄−cp)2

2d

(υ3) ≡ p̄ ≤ d
3
+ 2cc+cp

3
, { [ 0 < cc − cp ≤ d , f̆ > 0 ]

or [ − d
2
≤ cc − cp ≤ d , 0 < f3 <

λ(p̄−cp)2
2d

] }

(υ4) ≡ p̄ > d
3
+ 2cc+cp

3
, { [ 0 < cc − cp ≤ d , f̄ > 0 ] or [ − d

2
≤ cc − cp ≤ d , θ > γ ] }

Finally, the entry game equilibrium can be explicitly but tediously characterized by using

the following logical statements and the profit expressions given in the proofs of Propositions

5 and 6 (we assume that the firms enter when they are indifferent between entering and not
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entering):

Condition Outcome

πduopp (f̂) ≥ 0 , πduopc (f̂) ≥ 0 =⇒ Duopoly

πduopp (f̂) ≥ 0 , πduopc (f̂) < 0 =⇒ MP Monopoly

πmonop
p (f∗) ≥ 0 , πmonop

c < 0 =⇒ MP Monopoly

πduopp (f̂) < 0 , πduopc (f̂) ≥ 0 =⇒ MC Monopoly

πmonop
p (f∗) < 0 , πmonop

c ≥ 0 =⇒ MC Monopoly

πduopj (f̂) < 0 ≤ πmonop
j for j = p, c =⇒ MP or MC Monopoly

πmonop
p (f∗) < 0 , πmonop

c < 0 =⇒ Market Breakdown

In the only remaining case, if both firms earn negative profit under competition but non-

negative profit under monopoly, then both MC and MP monopoly are Nash equilibria.
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