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ABSTRACT OF THE DISSERTATION

Making the Most of It:

Word Sense Annotation and Disambiguation
in the Face of Data Sparsity and Ambiguity

by

David Alan Jurgens
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Michael Dyer, Chair

Natural language is highly ambiguous, with the same word having different meanings

depending on the context. While human readers often have no trouble interpreting the

correct meaning, semantic ambiguity poses a significant problem for many natural lan-

guage systems, such as those that translate text or perform machine reading. The task

of identifying which meaning of a word is present in a given context is known as Word

Sense Disambiguation (WSD), where a word’s meanings are discretized into units re-

ferred to as senses. Because languages contain hundreds of thousand of unique words

and each of those words can have multiple meanings, comprehensive sense-annotated

corpora are often sparse, with only tens to low-hundreds of annotated examples of each

word. As a result, creating high performance WSD systems requiring overcoming this

data sparsity.

This thesis provides a three-fold approach to improving WSD performance in the

face of data sparsity. First, we introduce two new algorithms that take the role of a

lexicographer and automatically learn the senses of a word from example uses in a

fully unsupervised way. We then demonstrate that these unsupervised systems can be

combined with a limited amount of annotated data to create a semi-supervised WSD
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system that significantly outperforms a state-of-the-art supervised WSD system trained

on the same data. Second, we propose a novel method for gathering high-quality sense

annotations from large numbers of untrained, online workers, commonly referred to as

crowdsourcing. Our method lowers the time and cost of building sense-annotated cor-

pora, while maintaining as high a level of agreement between annotators, comparable

with that of trained experts. Third, we analyze cases of ambiguity in sense annotations,

when two annotators differ about which sense best describes the meaning of a partic-

ular usage of a word. To perform this analysis, we built the largest sense-annotated

corpus where cases of semantic ambiguity are explicitly marked. Our analysis of this

corpus revealed multiple causes for this ambiguity as well as how the ambiguity may

be interpreted and resolved by natural language applications using ambiguous data. To

complement this work on ambiguity, we have also introduced a new methodology for

evaluating WSD systems that explicitly report ambiguous instances.
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CHAPTER 1

Introduction

Understanding the meaning of natural language often requires understanding the mean-

ing of the words being used. For example, consider the meaning of the term bass in the

following sentences:

• I went fishing and caught a bass.

• I sing bass in the choir.

In the first sentence, bass refers to a fish, while in the second, it refers to a type of

singing voice. Representing and understanding the meaning of both sentences is de-

pendent on correctly interpreting bass. This interpretation is equally essential for tasks

such as translation and summarization that must transform the text itself based on its

meaning.

The task of identifying the meaning of a word in a given context is known as Word

Sense Disambiguation (WSD).1 Here, a sense refers to a distinct meaning of a word.

Research on WSD began as a part of work on machine translation (Weaver, 1949)

and has since been incorporated by many other areas of Natural Language Processing

(NLP) to improve their performance. For example, our ADW algorithm measures the

similarity of two sentences by first disambiguating the text and representing its meaning

using senses (Pilehvar et al., 2013). Comparing our sense-based representation of the

sentences’ meanings to measure their similarity achieves state-of-the-art performance

1For clarity, we always use the term disambiguate for cases when a WSD system (i.e., a software
program) is determining which sense is present and use the term annotate when a human is performing
the analogous task.
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in matching human similarity judgments, surpassing the performances of current ap-

proaches, most of which do not disambiguate the text.

Word sense disambiguation is considered a core task of NLP (Ide and Véronis,

1998; Navigli, 2009) and WSD systems have provided a significant benefit to many

NLP areas such as information retrieval (Navigli and Crisafulli, 2010; Zhong and Ng,

2012), paraphrasing (Rus et al., 2009), sentiment analysis (Rentoumi et al., 2009;

Martın-Wanton et al., 2010; Balamurali et al., 2011), knowledge extraction (Hassan

et al., 2006; Ciaramita and Altun, 2006; Navigli and Ponzetto, 2010; Hartmann et

al., 2013), and semantic role labeling (Che et al., 2010). Furthermore, despite per-

formance issues with sense disambiguation in the early years of machine translation,

WSD has since proven beneficial to more recent machine translation systems (Dagan

and Itai, 1994; Vickrey et al., 2005; Carpuat and Wu, 2007; Chan et al., 2007). Given

the wide-spread use of WSD systems, further improvements to WSD performance can

offer corresponding benefits to many areas of NLP.

Two central challenges face WSD systems. The first challenge is the sparsity of

sense annotated data. Typically, word uses are annotated with senses from an estab-

lished sense inventory, such as WordNet (Fellbaum, 1998) or OntoNotes (Hovy et al.,

2006). These inventories provide clear descriptions of each sense’s meaning and oc-

casionally syntactic information on how the sense is used. However, because of the

large number of unique words in a language and resources required to produce anno-

tated examples of each, words are usually associated with only tens of sense-annotated

examples, with few words having more than several hundred annotated instances. For

example, the largest sense-annotated resource, SemCor (Miller et al., 1993), contains

only 234,157 annotated examples. Because of this sparsity, many WSD approaches

have incorporated techniques such as unsupervised methods that use knowledge from

the sense inventory itself to disambiguate (e.g., (Pedersen and Kolhatkar, 2009) and

(Navigli and Lapata, 2010)) or methods for automatically generating more examples of

sense-associated features (e.g., (Agirre et al., 2001) and (Zhong and Ng, 2010)). How-
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ever, even with these additions, supervised methods often only sightly out-perform the

baseline of always selecting the most-frequent sense of a word (Navigli et al., 2007;

Pradhan et al., 2007), with unsupervised approaches generally performing worse than

supervised approaches.

The second challenge stems from the difficulty of the task itself and distinguishing

between senses. In the easiest setting, a word is a homonym and has unrelated mean-

ings, such as bass with its fish and vocal senses and bank with its senses of a financial

institution and a sloping surface that borders water. Because these senses are unrelated,

they are generally easier to disambiguate using the specific contextual cues associated

with each (e.g., “fishing” or “music” for the senses of bass); furthermore, these cues

are easily learned by WSD systems because of distinctness of the contexts in which the

unrelated senses appear. However, many words have senses that are related in some

way. Extending our earlier example, bass may be both a singing voice and a musi-

cal instrument (e.g., a double bass). This sense relatedness results in two challenges.

First, because of their relatedness, both meanings may appear in similar music-related

contexts, which increases the difficulty of learning features that distinguish between

them. This difficulty is further compounded by the sparsity of sense-annotated exam-

ples, which could potentially reveal key contextual differences between such senses.

Second, in some contexts, the senses may be indistinguishable from one another. For

example, in the context “The bass was too loud at the concert last night.” bass clearly

refers to a musical entity and not the fish, but the context itself is ambiguous as to

which musical entity. This second challenge also causes issues for human annotators

when creating sense-annotated corpora and results in annotator disagreements, which

increase the time and costs required for producing such corpora (Palmer et al., 2007).

In this thesis, we address both challenges in three ways. First, we show how the

sparse sense-annotated data can be more effectively used by combining the data with the

results of unsupervised algorithms that automatically learn a word’s meanings in order

to produce a semi-supervised WSD system. We demonstrate that this semi-supervised
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system offers superior performance to fully supervised WSD state of the art in settings

where data is sparse. Second, we propose new methods for reducing data sparsity by

producing sense-annotated data from untrained workers on crowdsourcing platforms,

showing that our methods result in expert-level agreement on the resulting annotations.

Third, we analyze the challenge of ambiguity when sense annotating in order to identify

the causes behind multiple interpretations, their frequencies, and how the annotation

process and WSD system evaluations can be improved in light of this ambiguity.

Following, in Section 1.1, we describe our contributions towards these problems

in more detail and then, in Section 1.2, we present the outline of this thesis. Last,

in Section 1.3, we formalize the terminology used in this thesis for the benefit of the

reader.

1.1 Contributions

This thesis provides contributions in four categories.

1.1.1 Semi-supervised WSD

Given the limited amount of training data, we propose a new semi-supervised approach

to performing WSD, which makes better use of the annotated data than using it directly

to train a supervised system. We describe a new method for building semi-supervised

WSD systems that combines sense-annotated data with the output of fully-unsupervised

methods that learn the senses of words automatically. These unsupervised methods,

known as Word Sense Induction (WSI) methods, examine how a word is used through-

out a corpus in order to learn its different meanings and how to distinguish between

them. The information learned by the WSI model about a word’s different meanings is

combined with annotated examples to create a semi-supervised system that is capable

of disambiguating new instances of the word in contexts that contain features never

seen in the original sense-annotated examples.

4



Our work on sense induction offers three contributions. First, we propose two new

methods for inducing senses from graphs of semantic relations and demonstrate that

they identify clear semantic distinctions. Second, we evaluate the current method of

constructing semi-supervised WSD systems from sense induction methods and show

that our novel approach produces a statistically significant improvement over both the

current method and over state-of-the-art supervised WSD. Third, we examine the effect

of the amount of data for training either semi-supervised or fully-supervised WSD sys-

tems and identify the point at which one out-performs the other. This third contribution

enables researchers to properly optimize their WSD systems based on the amount of

annotated data.

1.1.2 Sense Annotation by Non-experts

The problem of data sparsity may also be addressed by finding alternate, more effi-

cient or cost-effective methods to sense annotate data. The current methods of using

experts do not scale due to the time-constraints and limited supply of experts; similarly,

methods using trained annotators are often slow due to the time and costs involved in

training.

Our work examines using untrained workers to produce sense annotations. Specifi-

cally, we focused on recruiting workers from crowdsourcing platforms such as Amazon

Mechanical Turk and CrowdFlower, which enables gathering annotations from poten-

tially tens of thousands of individuals and provides the much-needed scale. We propose

two new annotation methodologies that are specifically adapted to the crowdsourcing

setting to match the workers’ unfamilarity with the task and their ambiguity in assigning

senses. Our contribution is showing that one of our new methodologies enables work-

ers to produce high-quality annotations with annotation agreement rates on par with

those seen in expert-annotated corpora. In contrast, traditional annotation methodolo-

gies used by experts result in poor worker performance. As a result, we demonstrate

that crowdsourcing offers a potential way to mitigate data sparsity by gathering high-
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quality annotations cheaply.

1.1.3 Understanding Causes of Annotation Difficulty

Sense annotation is often difficult due to the relatedness of a word’s senses, as was illus-

trated for bass. Typically, this difficulty is evidenced by disagreements between human

annotators during the annotation process over which sense applies. Significant effort

has been put into revising a word’s sense definitions to avoid confusion and, ideally,

reduce the number of annotator disagreements (Edmonds and Cotton, 2001; Palmer et

al., 2004; Hovy et al., 2006). However, little work has examined the underlying causes

for why annotators disagree. In some instances, a word’s use is genuinely ambiguous,

either due to too little context, or from having contextual features that evoke multiple

distinct interpretations of the use. In such cases, annotators may have valid -though

differing- interpretations, which should not be treated as a case of disagreement.

We provide two contributions towards understanding some of the most difficult

cases seen in sense annotation and disambiguation. First, we analyze the uses of twenty

nouns, twenty verbs, and ten adjectives in a total of 4664 contexts to identify the fre-

quency with which each might have more than one valid sense interpretation. This anal-

ysis produced the largest publicly-available sense-annotated corpus in which instances

may be annotated with multiple senses, showing that, on average, 11% of instances

can have multiple valid interpretations. Second, we analyze the instances with multiple

interpretations to identify the underlying cause of the interpretations, showing that con-

textual underspecification is the predominant cause of ambiguity. This finding suggests

that future work on WSD could improve its performance by recognizing underspecified

contexts and then seeking additional context outside of the immediate sentence contain-

ing the usage. As a part our analysis, we propose a new classification for specifying the

type of ambiguity that is present and how the word may be interpreted based on that

ambiguity. From this classification, we provide two recommendations for improving

the guidelines used by future sense annotation efforts.

6



1.1.4 Evaluation Measure for Comparing Ambiguous Annotations

In some cases of ambiguity, the meaning of a word use is best modeled with multiple

senses. Current evaluations for WSD systems have used only instances with a sin-

gle sense label and their metrics have been designed for such single-sense instances,

making them unsuitable for use in the multiple sense setting. Therefore, we evalu-

ate extensions of current metrics and new metrics for both WSD and WSI systems in

the multiple-sense setting. We demonstrate cases where certain metrics are unable to

identify problematic annotations and where some metrics have systematic biases. Our

contribution is identifying complementary, robust metrics for evaluating WSI and WSD

systems in this new setting.

1.2 Thesis Overview

We begin by introducing Word Sense Induction in Chapter 2 and present two algorithms

for automatically learning the meaning of words, based on our work in Jurgens (2011)

and Jurgens (2012). We demonstrate examples of features associated with induced

senses and contexts tagged with each sense in order to highlight the induction and

disambiguation capabilities of each system.

In Chapter 3, we show how WSI systems can be used to build high-performance

semi-supervised WSD systems. Instead of using the context around a usage as features

for disambiguation, these semi-supervised systems first label the usage with induced

senses and then used the induced senses as features for disambiguating the usage with

senses from an established sense inventory such as WordNet (Fellbaum, 1998). We

present a new method for building semi-supervised systems that out-performs current

state of the art. Using our new method, we show how multiple WSI models may be

combined into a single ensemble semi-supervised WSD system, which produces a large

statistically-significant improvement over any one model. To test and demonstrate the

systems’ effectiveness, we introduce a new evaluation setting for semi-supervised WSD
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systems that are tested on two orders of magnitude more data in precisely-controlled

conditions, enabling a more reliable estimation of performance than used in current

tests. Finally, we show that the ensemble semi-supervised system provides superior

performance to fully supervised WSD systems in cases where fewer than several hun-

dred annotated instances are available, which is the case for most words for which

annotated data is available.

In Chapter 4, we consider an alternate approach for addressing data sparsity by

showing how untrained, crowdsourced workers can be used to gather annotations at

scale instead of relying solely on trained lexicographers. Starting from our work in

Jurgens (2013), we introduce issues in sense annotation and highlight the challenges

in making fine-grained sense distinctions. We describe our two new methodologies for

gathering sense annotations and compare them with current annotation methods. We

then demonstrate that our methods enable workers to equal the inter-annotator agree-

ment rates of experts in current annotated corpora, which was not seen with current

methods.

Based on the challenges of word sense annotation, in Chapter 5, we analyze annota-

tions with respect to ambiguity (i.e., whether two senses seem equally-good annotations

for the same usage), which is a core problem faced by annotators and WSD systems.

We begin by describing our effort in producing a new sense-annotated corpus in Jurgens

and Klapaftis (2013), which contains instance that have been explicitly marked with all

applicable WordNet senses. This corpus is the largest corpus of its kind. Following,

we present our analysis, described in Jurgens (2014), where we analyze each instance

having multiple sense annotations to identify the causes of such ambiguity and those

causes’ frequencies. Our analysis reveals three major findings. First, we show that too

little informative context is responsible for the majority of ambiguous cases. Second,

we show that the fine-grained sense distinctions of WordNet are not completely respon-

sible for the perception of multiple senses. Last, we propose a two-way classification

scheme, which we argue would serve sense annotators as a guideline when considering
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multiple senses for a usage.

As a formal quantitative comparison, in Chapter 6, we present a series of experi-

ments that demonstrate the state-of-the-art performance of our WSI and semi-supervised

WSD models. This chapter contains the results of SemEval-2013 Task 13 (Jurgens

and Klapaftis, 2013), which we co-organized as a way of presenting a standardized

evaluation methodology for WSI and WSD models on instances that are labeled with

multiple word senses. We include an additional performance comparison analysis of

existing unsupervised and unsupervised WSD systems on the task, showing that our

semi-supervised models offer superior performance. In a second set of evaluations,

we test our ensemble semi-supervised WSD system design on our SemEval-2013 Task

13 and prior SemEval WSI tasks, showing that it provides a consistent performance

improvement.

Last, in Chapter 7, we synthesize and review the research contributions of this the-

sis. Following, we discuss our on-going work to extend these contributions. To con-

clude, we highlight several open questions that remain for research on Word Sense

Disambiguation and Induction.

1.3 Terminology

Briefly, we clarify some of the terminology and notation used throughout this thesis.

A token refers to an occurrence of a word in a context. We use the notation “token”

when describing a use of a token in text. A word type denotes a concept that can

be expressed in different morphological forms (i.e., tokens). For example, the type

run may be expressed in tokens such as “run,” “running,” and “ran.” Additionally,

some types such as Named Entities or fixed expressions (e.g., idioms) may span several

tokens, e.g., “White House,” “pain in the neck,” or “lead on” (i.e., deceive), where the

tokens as a whole denote the type.

For stylistic reasons, we may refer to a type as term or lemma with no difference
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in meaning; where unclear, we will always use type. Types are denoted using italics,

e.g., bass. When the part of speech is ambiguous, we will append a type with its part

of speech, e.g., lead.n or address.v.

A usage denotes the occurrence of a particular word type in a context; for stylistic

reasons we will occasionally refer to a usage as use or instance when the context is clear.

When annotated, a usage will have one or more sense labels, which each label denotes

a specific sense. We refer to a set of labels for multiple usages as a sense labeling. For

example, if two WSD systems label the same corpus, we say that the corpus has two

sense labelings. If a usage is labeled with more than one sense, we use the description

multi-sense.
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CHAPTER 2

Learning and Disambiguating Word Senses from Word

Communities

Summary Performance on Word Sense Disambiguation is often constrained by the

availability of sense-annotated data. Rather than rely solely on human-annotated data,

an alternate approach has been to use fully-unsupervised systems that learn a word’s

senses directly from how the word is used and that are able to produce automatically-

disambiguated data. This chapter introduces two new unsupervised techniques for auto-

matically learning word senses based on our work in Jurgens (2011) and Jurgens (2012),

which learn senses from networks of semantic relations. We illustrate the learning pro-

cess of both our methods and then show examples of the induced senses, demonstrating

that the methods are effective at automatically identifying meaningful sense distinc-

tions.

2.1 Introduction

Work on Word Sense Disambiguation depends on the availability of sense-annotated

data, both for building supervised systems and for evaluating the quality of all types

of WSD systems. However, sense annotation is an intensive process, requiring both

significant time and human resources (Navigli, 2009). The intensive nature of sense

annotation creates a knowledge acquisition bottleneck in which WSD methods must

learn from sparse data due to the high cost and time required to gather additional anno-

tations (Gale et al., 1992). For example, in the largest sense-annotated corpus, SemCor
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(Miller et al., 1993), all but 97 of the 11,685 polysemous lemmas in SemCor have fewer

than 200 annotated instances, with many lemmas having just a few example instances of

their less-common senses.1 This sparsity of annotated examples presents a significant

challenge to WSD methods, especially for less-common senses.

A potential solution to the knowledge acquisition bottleneck is to learn a word’s

senses directly from how it is used, which has the potential to disambiguate an arbi-

trary number of instances automatically using the learned senses. A word’s uses are

collected and then automatically organized such that uses having the same meaning are

grouped together, a process often referred to as Word Sense Induction (WSI). This pro-

cess is an analog of the one used by lexicographers when constructing resources such

as dictionaries (Church and Hanks, 1990). However unlike the manual investigations of

lexicographers, sense induction methods are completely unsupervised and use lexical

and semantic regularities in a word’s contexts to identify its different meanings. We

illustrate this with an example; consider the meaning of pescespada in the following

contexts:

• He grilled the pescespada well done.

• Pescespada goes well with capers and lemon.

• Catching a pescespada takes many hours in the open ocean.

• I used to drive a pescespada to work.

• She bought a used pescespada from the dealer.

• Fiat is releasing the 2014 model of the pescespada later this year.

The context of pescespada suggest two different senses: a type of fish and a type of car.

Humans easily recognize these sense distinctions based on the contextual clues relating

to pescespada’s meanings: the first three sentences contain words such as grilled and

ocean known to be associated with fish, while the latter three sentences contain words

such as drive and Fiat known to be associated with cars. By identifying these types of
1For example, bass.n occurs just three times, with all occurrences referring the music-related senses

and no examples of the fish-related sense.
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associations in each of a word’s contexts, a sense induction method (1) learns regulari-

ties in the word’s associations that each evoke each distinct meaning, and (2) labels each

context with which meaning is present based on the associations, i.e., disambiguates the

instance with one of the induced senses.

We propose two new methods for sense induction based on the one sense per col-

location hypothesis (Yarowsky, 1993): Given a collocation consisting of two seman-

tically associated word types (e.g., bass and ocean), the semantic association holds

between only one sense of each word. Following convention, a collocation is defined

as two words appearing together in text and sharing some semantic relationship.2 In our

method, we identify groups of collocations that frequently occur together and share re-

lations with a word, which are used identify its different senses, e.g., discovering in the

earlier pescespada example that the collocations of (pescespada, ocean), (pescespada,

catch), and (ocean, catch) occur in similar contexts and point to the same meaning of

pescespada.

In our methods, sense induction is performed in two phases: (1) detecting words

with strong semantic associations to a target word and forming collocations and (2)

identifying the groups of related collocations that co-occur with the same sense of the

target. Both of our methods accomplish the first phase by constructing a graph where

edges connect statistically-associated lemmas. For the second phase, our first method

clusters a graph to perform an all-words sense induction to identify groups of collo-

cations that may be applied to disambiguate multiple words; in contrast, our second

method induces senses from a graph for one word at a time.

We illustrate our methods’ process abstractly for the target lemma paper using Fig-

ure 2.1. Figure 2.1a shows a graph for the target after four collocations are added. In

their disconnected state, the collocations do not reveal any distinctions in the target’s

meaning. Therefore, edges are added between the collocations themselves when they

are related with each other. Figure 2.1b shows two edges added to the graph, forming

2Interpretations of this general definition are considered later in Section 2.2.1
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Figure 2.1: A high-level depiction of the sense induction process used in this thesis: (1)

collocations are found for a target word and modeled as a graph, in Figure 2.1a, (2) then

edges are added between the collocations themselves to discover densely-connected

clusters that denote senses, shown in stages as Figures 2.1b and 2.1c.

two triads. The connected structure of these collocations suggests that the target has

two meanings. A larger graph for the target with more collocations and edges, shown

in Figure 2.1c, has a similar structure with two densely (but not completely) connected

clusters of collocations. Our methods first build graphs that have this type of modular

structure and then identify the groups of densely connected vertices in order to induce

senses, shown as shaded ovals in the Figures 2.1b and 2.1c.

This chapter contains two main contributions. First, in Section 2.2, we review cur-
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rent methods for identifying collocations, showing that many current methods are bi-

ased by word frequency and insufficient for the purposes of sense induction. We ulti-

mately demonstrate that the χ2 statistic offers the most robust way of identifying collo-

cations for inducing senses. Second, in Section 2.3, we propose two new methods for

sense induction from graphs of collocations and in Section 2.4 demonstrate that both

methods identify meaningful sense distinctions for a variety of example words.

2.2 A Graph Representation of Collocations

Graph-based WSI operates by finding groups of related collocations using the colloca-

tions’ connectivity in a graph structure. Graphs provide a natural way of modeling the

relationships between collocations by representing word types as vertices and adding

edges between types that participate in a collocation. The challenge is therefore to con-

struct a graph whose structure has densely-connected regions that each correspond to a

different meaning of a word. Furthermore, because words vary in the frequency with

which they appear, the construction procedure should produce graphs with similar sizes

or properties – especially if the method is parameterizable.

Constructing a collocation graph for WSI depends has two parameters: (1) how

collocations are identified computationally and (2) which collocations are included in

the graph itself. Following, we define four common methods for defining collocations

in the graph (Sec. 2.2.1) and then describe three approaches to building graphs from

these collocations (Sec. 2.2.2).

2.2.1 Modeling Collocations

Because of the loose definition of a collocation as two words occurring together in text

with some defined relationship (Yarowsky, 1993), multiple approaches have defined the

specifics of a collocation differently according to two parameters: (1) the conditions in

which two words participate in a collocation and (2) the statistic for measuring the
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strength of the collocation’s relationship, where larger values indicate a closer semantic

connection.3

The first choice of the scope of a collocation has varied widely between approaches.

For example, Yarowsky (1993) suggests using two lemmas that either occur sequen-

tially or are involved in direct syntactic relationship (e.g., subject-verb); in contrast,

Véronis (2004) considers all pair-wise combinations of content words in a paragraph as

collocations.4 These two extremes represent a trade-off in the information that is repre-

sented in a collocation. More immediate scopes (i.e., the words to the left and right) are

known to capture information on how the word is used, whereas larger scopes capture

topical associations (Peirsman et al., 2008; Utsumi, 2010). Both sources of information

are useful for sense induction, and so most approaches have adopted a middle ground of

restricting the context to a single sentence and considering all pair-wise combinations

of content words as collocations, e.g., (Dorow and Widdows, 2003; Bordag, 2006; Jur-

gens, 2011). We adopt the sentence boundary in this work.

The strength of a collocation has been frequently computed with one of four statis-

tics: (1) co-occurrence frequency, (2) conditional probability, (3) the Dice coefficient

and (4) the χ2 statistic. We define these four methods next. Given two lemmas w1 and

w2, let c(w) and c(w1, w2) denote the frequency of a lemma and the frequency of their

co-occurrence together in a corpus. Raw co-occurrence frequency is simply the value

c(w1, w2) and has been used widely (Dorow and Widdows, 2003; Biemann, 2006; Ju-

rgens, 2011). Véronis (2004) proposes using the maximum of the words’ conditional

probabilities: max(p(w1|w2), p(w2|w1)).5 Navigli and Crisafulli (2010) and Manand-

har et al. (2010) propose using the Dice coefficient, which is measured as 2c(w1,w2)
c(w1)+c(w2)

.

In Jurgens (2012) we propose using the χ2 statistical association, which is computed

3For a survey of collocation definition in general NLP settings, see Evert (2005).
4In the original version,Véronis (2004) includes only nouns and adjectives with minimal filtering of

high-frequency lemmas from a stop list, but later applications of the algorithm have included verbs as
well (Agirre et al., 2006a).

5In the original formulation, Véronis (2004) uses 1−max(p(w1|w2), p(w2|w1)); we invert the def-
inition here without loss of generality to make the interpretation of the value consistent with that of the
other statistics.
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Co-occurrence Conditional Probability Dice χ2

be.v largemouth.n drum.n drum.n
guitar.n crappie.n guitar.n guitar.n
drum.n smallmouth.n vocal.n vocal.n
band.n tasmania’s.n keyboard.n largemouth.n
play.v bluegill.n drum.v keyboard.n
have.v fretless.j guitarist.n drum.v
vocal.n pumpkinseed.n percussion.n crappie.n
player.n muskellunge.n piano.n percussion.n
also.r panfish.n band.n smallmouth.n
album.n contrabassoon.n drummer.n band.n
include.v be.v double.j bluegill.n
member.n furneaux.n electric.j trombone.n
keyboard.n 5-string.j rhythm.n vocals.n
music.n keyboards.n instrument.n saxophone.n
use.v ampeg.n tenor.n fretless.j

Table 2.1: The fifteen highest-weighted within-sentence collocations in Wikipedia for

bass.n according to four metrics.

from a 2x2 contingency table:

c(w1, w2) c(w1, w2)

c(w1, w2) c(w1, w2)

wherew1 andw1 denote the presence and absence of a word in the context, respectively.

χ2 is then calculated over the rows and columns of the table as
n∑
i

(Oi − Ei)2

Ei
,

where i denotes a cell in the table and Oi and Ei denote the observed and expected

values, computed from the contingency table.

To illustrate the differences between association statistics, Table 2.1 shows the fif-

teen highest-weighted collocations of bass.n measured according to four statistics, us-

ing Wikipedia as a corpus. Similar collocations appear in all four lists, e.g., drum.n.

However, the differences in each list highlight the metrics’ biases. Collocations from
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raw co-occurrences contain high-frequency lemmas such as be.v and member.n, which

are largely not sense-specific and likely to occur in the highest-weighted collocation

lists of many words thereby distorting the structure of the graph (i.e., the majority of

collocations with the target word would also be connected to these vertices). While a

stop-list could be used to exclude such words, other high-frequency lemmas not on the

list would still be likely to appear among the highest-weighted.

Collocations from Dice coefficient, conditional probability, and χ2 statistics use

the lemmas’ relative frequencies, which prevents universally-occurring high-frequency

lemmas from having high weights. However, both Dice coefficient and conditional

probability are still affected by frequency. The denominator of the Dice value normal-

izes using the sum c(w1) + c(w2). Using the sum penalizes collocations of a frequent

and infrequent word, even if the infrequent term commonly co-occurs. For example,

consider weighting two collocations (w1, w2) and (w1, w3) where w1 occurs 100 times,

w2 occurs 9 of its 10 times with w1 and w3 occurs 25 of its 50 times with w1. The Dice

coefficient of (w1, w2) is 0.16, while the coefficient for (w1, w3) is twice the value, 0.33,

despite the fact that nearly all (90%) of w2’s occurrences are with w1. In the context of

sense induction, occurrences of word senses are often unevenly distributed throughout

a corpus, with a few occurring more frequently than the rest.6 Because the Dice coef-

ficient’s penalizes collocations with infrequent word types, the highest-weighted collo-

cations will be those occurring when the usage has the most frequent sense. Therefore,

few collocations with infrequent senses appear among the highest-weighted, which lim-

its the ability of sense induction algorithms to discover these senses. For example, in

Table 2.1, the Dice coefficient collocations contain only higher-frequency words for the

music senses of bass.n, which is the most frequent sense in Wikipedia.

The conditional probability measure exhibits frequency biases for two types of

words: (1) infrequent word types that may occur only a few times but only with the

6For example, in SemCor, paper.n refers to a cellulose material (e.g., printer paper) three times as
often as it refers to a newspaper.
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target type and (2) high-frequency types that occur in most contexts with the target.

The infrequent types are highly sense-associated; for example, the term pumpkinseed.n

shown in Table 2.1 is a type of fishing lure commonly used to catch bass. However, be-

cause the highest-weighted collocations are dominated by these terms, sense induction

methods are likely to omit more-common collocations which are necessary for disam-

biguating (i.e., most contexts will not contain the infrequent terms, thereby making the

sense ambiguous to the model). The high-frequency types are often the better source

of collocation information from conditional probability, but may also introduce noise

from ubiquitous, unrelated word types occurring in the same context, as seen with be.v

occurring in the 15 highest-weighted collocations in Table 2.1.

The χ2 statistic mitigates the frequency biases of the Dice coefficient and Condi-

tional Probability measures by using the ratio of the actual co-occurrences and those

expected by chance. This ratio allows both infrequent and frequent words to appear

among the highest-weighted, which makes the highest-weighted collocations more suit-

able for identifying less-frequent senses during sense induction. Examining Table 2.1,

the χ2 list contains collocation for the fish and music senses, unlike the Co-occurrence

and Dice lists, but does not contain the rare lemmas found in the list for Conditional

Probability. Given the potential for bias in the Dice coefficient and conditional probabil-

ity, we view using the χ2 statistic as the most robust method for gathering collocations

among those in common use.

2.2.2 Building Collocation Graphs for Sense Induction

Graph-based WSI methods rely on having lexical networks that exhibit modular struc-

ture where groups of vertices are more connected to each other than the rest of the

network. The vertices in these modules correspond to collocations around a particular

sense of a word. For example, Figure 2.2 shows the local neighborhood around voice.n
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with all edges whose χ2 ≥ 3000, calculated using the ukWaC corpus.7 This neigh-

borhood contains four densely-connected clusters loosely corresponding to senses for

voice.n as musical instrument (top), an aspect of the human body (right), a person acting

as a religious or authoritative spokesperson (bottom right), and a type of communica-

tion technology (bottom left). When a collocation network is constructed from the

highest-weighted collocations and adding subsequent lesser-weighted collocations, the

network naturally exhibits this desirable type of modularity (Véronis, 2004; Biemann

and Quasthoff, 2009) and are scale-free, small-world networks (Watts and Strogatz,

1998), where graphs of different sizes have similar structure.

Three methods have been proposed for building graphs for sense induction. First,

Dorow and Widdows (2003) propose a method where for a word type, t, the k highest-

weighted collocations of t, denoted as C, are added as edges between the word types in

the collocation. Then the k highest-weighted collocations for t′ ∈ C are also added as

edges, i.e., forming connections between the neighbors as the earlier example in Figure

2.1b. Second, Véronis (2004) uses all collocations in a corpus above a certain weight,

but restricts the collocations to being calculated from contexts of t, which constrains

the resulting size of the graph. This procedure has the effect that the strength of rela-

tionships between collocations are decided based on their occurrences in the context of

t, rather than throughout the whole corpus. Third, Navigli and Crisafulli (2010) include

all collocations of t with weight above a threshold δ, denoted C, and then include edges

from t′ ∈ C if they participate in collocations with weight at least δ as well. In all three

methods, once the graph has been constructed, the vertex for t is removed from the

graph in order to analyze the connectivity of the neighborhood without the influence of

the connectivity of t.

Of these three methods, the latter two have potential biases in them which may

create problematic graphs. First, construction process of Véronis (2004) restricts the

7The graph was arranged automatically using the organic layout procedure in Cytoscape (Shannon et
al., 2003), which favors visualizing densely connected regions closer together.
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Figure 2.2: An example lexical network showing the neighbors of voice.n and all edges

with χ2 ≥ 3000 when calculated using the ukWaC corpus. The resulting network shows

high connectivity among sense-specific features of voice.n.

graphs to only information contained within the context, which in-turn biases the weight-

ing of the collocations. Strongly-associated collocations that are frequent in the target

word’s contexts become indistinguishable from high-frequency lemmas that are ubiq-

uitous.

Second, both the methods of Véronis (2004) and Navigli and Crisafulli (2010) use

a single parameter for all lemmas. Because the magnitude of the weights assigned to

each collocation may be affected by the words’ frequencies, the single threshold may

produce graphs of significantly different sizes. Terms with meaningful collocations that

are lesser-weighted may fail to produce a graph at all if the collocations’ weights are

below the threshold.
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The k-neighbors method of Dorow and Widdows (2003) uses the ranks of the col-

locations, rather than the weights directly. Therefore, the method is not sensitive to

changes in the magnitude of the weights and will still produce modular small-world

graphs for words regardless of their frequency. We adopt this method for producing the

graphs used in this work.

2.3 Learning Word Senses from Graph Connectivity

Sense induction on graphs of collocations is based on the hypothesis that if word w1

has collocations with words w2 and w3 and those words also share a collocation, then

both w2 and w3 are related to the same sense of w1. This basic relation forms a triadic

structure in the graph and when many collocations are related to the same sense and are

themselves related, the resulting graph becomes highly connected and in the extreme

case is a clique (cf. the earlier example in Figure 2.1). When a word has more than one

meaning, the graph contains multiple highly-connected groups of vertices representing

related collocations for each sense.

Finding a word’s densely-connected sense-specific groups of vertices is compli-

cated by two structural features. First, in most cases, the collocations associated with

each sense of a word will not themselves all be related and instead form a mostly-

connected group of vertices, rather than a clique. Second, some collocations may be

related to multiple senses, partially connecting two groups of vertices.

To find densely-connected groups of vertices in graphs with these features, we draw

upon work on the analogous problem on similarly-structured graphs. Specifically, the

small-world network seen in the collocation graphs used here mirrors the structure of

social networks; and, the two problematic structural features in collocational networks

parallel features seen in social networks, where (1) an individual’s social network is not

generally fully connected and where (2) an individual could be a part of many social

groups that are not entirely separate from one another. Research in social networks
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has focused on the objective of community detection, which tries to find groups of

individuals sharing common social bonds purely on the basis of the structure of their

social network (Fortunato, 2010). Here, communities are defined as groups of vertices

that are more connected with each other than with the rest of the network (Newman and

Girvan, 2004).

In our sense induction model, we construct graphs of collocations and then use

community detection methods to identify the sense-specific groups of vertices. We

propose two sense induction methods using alternate methods of community detection.

The first method builds a graph for each term in order to induce its senses and then

uses the Fast Modularity algorithm (Clauset et al., 2004) to induce senses. Instead of

performing sense induction for one word at a time, the second method performs all-

words sense induction by creating a large network of collocations and then using an

edge-based community detection method (Ahn et al., 2010) to identify the different

senses of all word types in the graph. We refer to the single-word method as SWCD

and all-words method as AWCD.

2.3.1 Single-word Sense Induction

Our SWCD algorithm for inducing the senses of a single word consists of three steps.

First, a graph for a target term t is built from collocations using the k-neighbors proce-

dure (Sec. 2.2.2) and ranking collocations by their χ2 association. Note that this graph

does not contain t itself. We therefore retain which vertices in the graph were origi-

nally connected to t to identify its senses (i.e., to identify the communities into which

the collocations of t were placed).

Second, the graph is represented as an adjacency matrix A and Fast Modularity

(Clauset et al., 2004) is used to find groups of densely interconnected communities.

Fast Modularity is a greedy approximation algorithm that tries to find a partition of

the vertices into communities that maximizes network modularity (Newman, 2006),
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which is a measure of the degree of interconnectedness of the partition’s vertex groups

relative to the expected degree in a random network. Network modularity is high when

the vertices in each group are highly connected to each other, but not to the rest of

the network. Modularity, Q, in our undirected graph of m collocation edges is defined

as follows. Let i and j denote vertices represented by the rows and columns of the

adjacency matrix A and let Ai,j = 1 if i and j are connected in the graph and Ai,j = 0

otherwise. Let ki denote the degree of the vertex for i. Given two vertices of degrees

ki and kj , the expected number of edges between them in an undirected graph with the

same degree sequence is kikj
2m

. Then, given a function δ where δ(ci, cj) = 1 if the two

vertices are in the same community and zero otherwise, we may compute the difference

between the number of edges in each community and its expected value to calculate Q:

Q =
∑
i,j

[
Ai,j
2m
− kikj

(2m)2

]
δ(ci, cj) (2.1)

Note only vertices in the same community (i.e. δ(ci, cj) = 1) contribute to the value of

Q and when each vertex is in its own community, Q = 0.

Identifying the partition with maximalQ is computationally infeasible as it requires

computing Q for all possible partitions of the vertices into non-empty subsets, which is

exponential in complexity. To overcome the complexity, Fast Modularity uses a greedy

merge procedure to find communities, having complexityO(md log n) for a graph with

m edges and n vertices with average degree d. Specifically, each vertex begins in its

own community and then communities are agglomeratively clustered into a dendro-

gram by merging the two communities whose merger would result in the partition with

highest modularity. The dendrogram may then be scanned to find the partition with a

locally-maximal Q and cut at that level to produce the final community solution. While

many other community detection methods exist (cf. Fortunato (2010) for an extensive

review), the low computational complexity of Fast Modularity is highly desirable when

dealing with collocational networks containing hundreds of thousands of edges and tens

of thousands of vertices.
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In our sense induction algorithm’s third step, the community output of Fast Mod-

ularity is analyzed to find the communities containing neighbors of the target term t.

These communities are pruned to remove any with three or fewer vertices and all re-

maining communities are treated as distinct senses of t. The pruning stage is useful

for removing communities that appear from noisy network structure and are likely too

small to reliably distinguish a distinct sense.

2.3.2 All-Words Sense Induction

Just as individuals in social networks participate in multiple social groups, words in col-

location networks participate in multiple groups of related collocations. In the single-

word sense induction procedure, after a graph is built for term t, the term is removed

in order to analyze its neighboring structure to identify the senses of t, i.e., the multiple

communities in which t participates. Including t would both unnecessarily influence

the connectitivity of the graph but also force the Fast Modularity algorithm to place t in

only one community. However, an alternate approach is to let t remain in the graph but

allow it to participate in multiple communities. To accomplish this approach, we adopt

community detection methods that have a similar goal of finding densely connected

regions, but relax the constraint that communities must be disjoint, i.e., a vertex may be

in more than one community.

Finding overlapping communities enables an alternative to single-word sense in-

duction: A graph may be built from all of the highest-weighted collocations in a corpus

– irrespective of any target word – and then an overlapping community detection al-

gorithm may be used to find the senses of all words in the graph on the basis of the

communities in which they participate. As Biemann and Quasthoff (2009) showed,

collocation graphs containing the k highest-weighted collocations within a corpus are

both scale-free and small-world. Thus, more lower-weighted edges may be added to

expand the number of word types while still retaining the graph’s small-world structure

and suitability for use with community detection.
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Our all-words sense induction method, AWCD, proceeds in three steps. First, we

compute the χ2 association between all words in a corpus and construct a graph of all

associations where χ2 ≥ τ . As collocation networks are scale-free, the parameter τ is

used only to determine the size of the network, with networks produced from different

τ having approximately the same structure.

Second, the edge clustering algorithm of Ahn et al. (2010) is used to identify over-

lapping communities. In the algorithm, edges rather than vertices are evaluated for their

participation in community-like structure. Given two edges, ei,j and ei,k their similarity

is computed as:

sim(ei,j, ei,k) =
nj ∩ nk
nj ∪ nk

,

where ni denotes the set containing vertex i and its neighbors. This similarity reflects

the percentage of collocations in common with the terms for vertices j and k, inde-

pendent of those with the term for the shared vertex i. Similarity increases as the two

endpoints of the edges share more of their collocations, reflecting the two edges being

embedded in a densely inter-connected part of the graph.

In the algorithm, edges are ranked by similarity and then single-link hierarchical

agglomerative clustering (Manning et al., 2008) is used to build a dendrogram over

merge operations between edge-based clusters. Each cut of the dendrogram produces a

partition over edges, which in turn is used to produce overlapping clusters of vertices,

also known as a cover. To create a cover, each edge partition becomes the set of vertices

that are endpoints of its edges.

To derive the final output, each cut of the dendrogram is evaluated according to the

quality of its communities. Because network modularity (Eq. 2.1) is defined only for

partitions of vertices, not covers, Ahn et al. (2010) propose an alternate method for eval-

uating the goodness of an overlapping community solution in terms of its connectivity.

Let M denote the number of edges in the graph, c denote a specific community, and nc

and mc be the number of vertices and edges in cluster c, respectively. The density of
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the community solution is defined as

D =
2

M

∑
c

mc
mc − (nc − 1)

(nc − 2)(nc − 1)
,

The denominator within the summation reflects the percentage of edges present within

the community relative to the maximum number possible. In the case of nc = 2, D

is defined as zero. Just as with network modularity, D increases as the communities

contain vertices that are more connected with each other than with the rest of the net-

work. Ultimately, the dendrogram is cut the level that maximizes D, producing a set of

overlapping communities.

In the third step of our algorithm, each word is associated with the set of senses, ac-

cording to the communities in which it participates. Just as in the single-word method,

we remove communities with three or fewer vertices. This filtering step is highly im-

portant for the all-words approach, as the edge clustering method has a tendency to put

relatively-isolated single edges in their own community (i.e., size two), which artifi-

cially inflates the number of senses.

2.3.3 Induced Sense Disambiguation

Each induction method represents a word’s senses as a set of related collocations with

that sense. To disambiguate a new context according to these senses, we compute the

overlap between the lemmatized context and each sense. In the event of ties, we report

the sense associated with more collocations under the assumption that this sense is more

frequent (as evidenced by having more collocations from occurring a wider variety of

contexts) and therefore is more likely to be the meaning.

2.4 Example Results

The senses induced by each method are illustrated by showing (1) features from each

of the collocation communities and (2) a keyword in context (KWIC) for usages tagged
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with the induced senses. Both methods induced senses using the ukWaC (Baroni et

al., 2009), a large web-gathered corpus. Tokens were lemmatized and POS-tagged

using the TreeTagger (Schmid, 1994) and then lower-cased to produce the set of word

types. Collocation weights were calculated using the χ2 statistic. As example words,

we consider 243 ambiguous words used in prior SemEval WSI tasks (Agirre and Soroa,

2007; Manandhar et al., 2010; Jurgens and Klapaftis, 2013).

The systems were configured as follows. For the all-words method, the graph was

created by including the 20,000 most frequent word types (excluding stop words) that

were noun, verb, adjective, or adverb. The 50 highest-weighted collocation were added

for each of these types. This produced a graph with 964,665 edges and 102,251 vertices.

For the single-word method, graphs were created using the k-neighbors method with

k = 1000. Both community methods are non-parametric, so the number of senses is

determined from the graphs themselves.

Because the number of collocations included in each sense community can poten-

tially be in the thousands, we summarize each community using its seven collocations

that have highest-weight with the target word.8 For constructing the KWIC, 10,000 us-

ages were randomly gathered for each target word from the ukWaC, where usages were

required to have between 10 and 40 tokens.9 Usages were then disambiguated with the

method described earlier in Section 2.3.3. To better highlight the sense’s meaning, each

sense’s contexts were ranked as follows. Given a context with the set of content words

C,10 let Cs denote the subset of those words associated with collocations for sense s

and let weight(wi) denote the collocation weight (χ2) for word wi ∈ Cs. A context is

then weighted as
∑

wi∈Cs
weight(wi)

|C| . This weighting favors contexts containing strongly

associated collocations, normalizing by the total length of the context so that longer

contexts are not overly favored. We then show the three highest-ranked contexts for

8In the event that a sense is associated with fewer than seven, all collocations are shown.
9Because the corpus is web-gathered, this avoided including contexts that were too long or short due

to HTML processing errors.
10We consider noun, verb, adjective, and adverbs as content words.

28



different senses of a word in the KWIC.11

For the SWCD and AWCD methods, Tables 2.2 and 2.3 show examples of colloca-

tions associated with induced senses and below each group the collocations, example

usages the sense. Both methods effectively identify fine-grain distinctions in a word’s

meaning. For example, the SWCD method identifies the distinction between winning

an object and winning a competition for win.v, between a political campaign and a so-

cial movement for campaign.n, and between having a darker hue and being devoid of

light for dark.j. Similarly, the AWCD method identifies distinctions between narcotics

and medicine for drug.n and between an object that emits warmth and an object that

retains warmth for warm.j.

Examining the number of collocations associated with each sense reveals a key dif-

ference between the methods. The SWCD approach averages 326.1 collocations per

sense, while the AWCD method average 9.7 per sense. The smaller number of col-

locations found in the AWCD method is due to its computational cost; because the

all-words method is O(|E|2) in complexity,12 only a limited number of collocations

may be included for any word, which ultimately results in fewer features per sense.

The collocations associated with the induced senses from the AWCD method represent

high-precision features that are likely to always select the correct sense when disam-

biguating; however, due to their sparsity, the method is likely to have reduced discrim-

inative capabilities when contexts contain none of the collocations associated with the

senses.
11Because of the fixed number of contexts used for building the KWIC, some senses occurred fewer

than three times. In such cases, we report all the available contexts.
12Specifically, the method isO(|E|2) in time complexity due to agglomerative clustering andO(|E|2)

in space complexity due to the need for keeping all pair-wise edge comparison in memory in a priority
heap. While the time complexity can be overcome just by running the algorithm for sufficiently long pe-
riods, the space completely often proved the deciding factor for size of the graph that could be processed.
For example, the 1M edge graph used in creating these results required approximately 18GB of memory
– even when using space-optimized data structures.
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sanctions.n election.n against.n solidarity.n union.n support.v campaigning.n

During the election campaign in May I travelled across the country.

Churchill contested twenty-one election campaigns from 1899 to 1959.

The end of the campaign was run like we were fighting an election.

launch.v advertising.n awareness.n marketing.n archived.j casi.n uncaged.j

Gorbachev launched his campaign for glasnost (openness) and perestroika.

The modifications proved straightforward and a marketing campaign was launched.

A television advertising campaign will be launched shortly to support the brand’s development.

llaguno.n bolivariana.n outlooks.n post-14.j isitfair.n heats.n anti-stigma.n

Many of the NCADC ’s affiliate campaigns are evidence of this fact

[. . .] opportunities for members to participate and support the campaign.

I am a member of the Truth About Rape campaign and I am writing to complain about this

brown.j light.j pale.j blue.j colour.n black.j hair.n

They have dark brown fur , lighter brown or grey underneath.

They have the ability to change colour from a dark brown colour to light green.

Eyes and toe-nails to be dark brown or blue.

light.n cloud.n dark.n eye.n shadow.n night.n sky.n

Like the shining of a torch, or a light in a window, on a dark winters night.

Lights come on in a nasty, dark room.

I can see light at the end of this dark tunnel

wireless.n connect.v ethernet.n networks.n computer.n access.n internet.n

Will the broadband phone service work over a wireless network?

Wireless networking, which will look at providing broadband network access using wireless techniques.

It ’s easy to add another wireless computer to a Wi-Fi network.

neural.j intelligence-g.n reading-inference.n hyperstructure.n human-animal.n purposeful.n efference.n

Two options for this are neural networks and statistically-based heuristic rules.

The difference in the question we asked of the neural networks was subtle but important.

[. . .] some experiments with noughts and crosses playing neural networks.

rail.n tibus.n support.n bt82.n organisation.n information.n development.n

He also wants more control of the London rail network.

And what about the black hole in Scotland’s rail network, Fort William-Inverness

Some details of the Iraqi rail network on the Come Back Alive website.

match.n game.n win.n victory.n chance.n beat.v season.n

Except that nobody could win the match for us.

When you have five match points you ought to win.

The better you know the game, the better your chances of winning it.

award.n prise.n championship.n medal.n cup.n competition.n trophy.n

If so, you could win a prize.

Well, she wins prizes and things.

To win one award is special - but two awards is unique.

Table 2.2: Example senses of four words, where each sense is shown as its highest-

weighted collocations and immediately below a KWIC for usages tagged with that

sense. Senses were learned using the SWCD WSI method.
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anti-inflammatory.j non-steroidal.n antipsychotic.j nonsteroidal.j anti-cancer.j chemotherapy.n aspirin.n

Avoid NSAIDs (non-steroidal anti-inflammatory drugs) if possible.

[. . .] with non-aspirin non-steroidal anti-inflammatory drugs.

Ibuprofen belongs to a group of drugs called non-steroidal anti-inflammatory drugs (NSAIDs).

decriminalisation.n decriminalised.v criminalisation.n criminalised.v

Transform A policy think talk arguing for drug decriminalisation.

This is the party whose manifesto pledged to ‘maximise drug prevention,’ but [. . .]

[. . .] moving cannabis to a Class C drug would not amount to decriminalisation or legalisation.

alcoholism.n alcoholic.n alcohol-related.j binge-drinking.n

[. . .] Sad news regarding alcoholism, drugs and incarceration [. . .]

[. . .] all kinds of addictions besides alcoholism and drug problems.

Topics include groupies, alcoholism, drugs, the glam image [. . .]

confer.v exercisable.j expedient.j paragraph.n inserted.n article.n person.n

Indeed there are elements of it in the powers conferred on the ARA by POCA.

Regulation 5 is made in exercise of the powers conferred by s.64(3).

The powers in the Act are conferred on the Secretary of State.

electricity.n chp.n hydro.j hydroelectric.j megawatt.n hydro-electric.j gas-fired.j

The electricity will be fed into the mainland grid via power cables.

Do we need to connect up to an electricity supply for power?

But its electricity is distributed over all that area , providing light and power.

kingly.j endue.v longsuffering.n dishonour.n keepeth.v fleshly.j fount.n

[. . .] to us who are being saved it is the power of God.

[. . .] God’s omniscience and healing power, and prayers of repentance and hope.

Babylonian-European astrology, with its emphasis on the power of physical bodies on events on earth, [. . .]

plyometric.j fast-twitch.n plyometrics.n one-leg.n

[. . .] plyometric and strength training to get all the benefits of increased power - without putting on additional body mass?

Wherever you look in the world of top-class sport, power counts; and one of the best ways of developing this [. . .]

soak.n thermocline.n thermos.n upwelling.n frigid.j airstream.n unheated.j

The region which separates the warmer water of the mixed layer from the colder deep ocean water [. . .]

They tend to shy away from the warmer waters of the surface, favouring the thermoclines [. . .]

Treatment [. . .] includes the use of hot soaks, warm paraffin applications, heating pads, and joint support devices.

overcoat.n pullover.n raincoat.n poncho.n

We recommend that you pack some long sleeved jerseys or pullovers, a warm jacket, strong footwear and heavy socks.

[. . .] buying her an overcoat to keep warm?

[. . .] he had exchanged years before for a blanket to keep her warm.

reinstall.v reinstalling.v reinstall.n re-installed.v reinstal.v re-install.n non-viral.j

You will need to remove and reinstall the driver.

If the tests fail to connect, remove and reinstall your ADSL modem.

[. . .] and you will need to remove and reinstall the driver.

liposuction.n curettage.n ingrowing.j diathermy.n pericardium.n re-growth.n

Curettage and cautery is another option for removing these.

Then a contractor will remove the roots, thus preventing re-growth.

[. . .] treatment to reduce pain and swelling and if necessary remove the ingrowing nail during a minor surgical procedure.

Table 2.3: Example senses of four words, where each sense is shown as its highest-

weighted collocations and immediately below a KWIC for usages tagged with that

sense. Senses were learned using the AWCD WSI method.
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2.5 Related Work

To perform WSI, two main categories of techniques have emerged: (1) graph-based

methods like those discussed in this chapter and (2) distributional methods that repre-

sent contexts as feature vectors and then use probabilistic models or clustering methods

to discover senses. Below, we summarize both bodies of work by presenting an early

example of each and then describing two most recent works.

2.5.1 Graph-based Approaches

Current graph-based methods have applied similar techniques to the two presented in

this chapter. Approaches have varied most notably in how they construct their col-

location graphs and how clustering has been performed. Dorow and Widdows (2003),

Véronis (2004), and Biemann (2006) all use collocation graphs built from co-occurrences,

which are biased towards high-frequency terms and are likely to miss less frequent

senses. Similarly, Navigli and Crisafulli (2010), Korkontzelos and Manandhar (2010),

and Di Marco and Navigli (2012) use the Dice score between words, which is biased

towards higher scores for collocations that include rare or ubiquitous words.

Dorow and Widdows (2003) proposed the first approach at inducing senses from

graphs. The approach constructs a graph per term using the k-neighbors procedure and

co-occurrence frequency to weight neighbors, with the exception that the target word

is still included in the graph. Then MCL algorithm (Van Dongen, 2000) is applied to

identify clusters in the graph. MCL uses random walks over the graph to identify groups

over vertices in which the random walker persists. However, the algorithm is sensitive

to two parameters for determining the clusters. Therefore, Dorow and Widdows (2003)

use an iterative procedure where MCL is run once to identify the cluster most connected

to the target word. Then, that cluster’s subgraph is pruned out and MCL is re-run until

the remaining vertices do not co-occur with the target work above a threshold number

of times. Finally, pruned clusters are merged if their semantic distance is below a

32



threshold, measuring distance using the technique of Budanitsky and Hirst (2001). The

remaining clusters are treated as unique senses. Dorow and Widdows (2003) apply their

algorithm only to nouns, using noun co-occurrences, and analyze only the two senses

with the largest clusters. While their algorithm is able to avoid manually setting the

number of senses, the algorithm is sensitive to parameter tuning and was only evaluated

qualitatively.

The method of Dorow and Widdows (2003) is a hybrid approach, incorporating

both clustering and pruning. However, later approaches have largely used only one

of these methods, either (1) clustering graph’s vertices, where clusters denote senses,

or (2) pruning the graph’s vertices or edges to discover disconnected components that

denote senses. We illustrate these strategies with two recent models.

Biemann (2006) proposes inducing senses using the Chinese Whispers (CW) al-

gorithm, a nonparametric graph clustering algorithm. CW is a form of unsupervised

label propagation where each vertex is assigned a unique label and then label propa-

gation is run until either convergence or a fixed number of iterations have completed.

Label propagation operates by having each node assign itself to the most frequent label

among its neighbors’ labels. Biemann (2006) constructs the graph in the same manner

as Dorow and Widdows (2003) using k-neighbors with co-occurrences, but excludes

the target word from the graph. For sense induction, each vertex is initially assigned to

its own label (i.e., sense) and then CW is then run over the graph. The resulting clus-

ters of vertices assigned to the same label indicate senses. A major advantage of CW

is the low computational cost; the algorithm often requires only a few passes over the

vertices to converge, which enables it to be run approximately on large graphs. How-

ever, though the method is fast, CW has not been demonstrated to identify groups of

densely-connected collocations and the sense induction approach was tested using the

artificial setup of (Bordag, 2006) where two word’s graphs are merged and the sense

induction method must identify which vertices belong to which word.

Navigli and Crisafulli (2010) propose a pruning-based approach for sense induc-

33



tion, named SquaT. They construct a graph by including all neighboring vertices whose

Dice coefficient is above a specified threshold. The neighbors of these neighbors are

then included provided that their Dice coefficient is above the same threshold. Navigli

and Crisafulli (2010) propose two heuristics for pruning this graph into disconnected

components in order to identify the senses. In the most successful heuristic, each edge

is scored according to the ratio of the squares in which it participates with its neighbors,

relative to the number of possible squares. Here, a square is defined as a closed path

of length four. The intuition behind this heuristic is that edges in densely-connected

regions of the graph will have end points that are linked together in a square. Edges

whose ratio of actual-to-possible squares is below a second threshold are pruned. While

the approach performed well for the task of identifying the different meanings of web

queries, the method has two potential issues. First, the squares-based pruning method

is O(|E|4) in the worst-case and has an expected run-time of O(( |E||V |)
4) based on the

average degree of the vertices. For large graphs, this becomes prohibitively expensive.

Second, the method is sensitive to the parameter values, which can result in signif-

icantly different graph sizes or even producing no graph at all. Furthermore, tuning

these parameters is difficult because of the time required for pruning.

2.5.2 Distributional Approaches

Distributional sense induction approaches were born out of work on distributional,

vector-based semantic representations for words. In their most simple form, a vector

representation records the frequency of co-occurrence of each word type in a separate

vector component (Turney and Pantel, 2010). By computing these vectors from large

corpora, words that appear in similar contexts develop similar vector representations.

However, because words are polysemous, counting the co-occurrences for all uses of a

word produces vector representations that merge the contextual features associated with

the word’s different senses. For example, the vector for bass would be created from the

contexts of its fish and musical instrument meanings, resulting in a noisy representation
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compared with that of cello.

In general, distributional sense induction approaches attempt to separate contexts

according to which meaning is present in order to build separate representations for

each sense. To perform the separation, contexts are represented as an approach-specific

type of vector and compared with each other to identify patterns in usage. Contexts that

contain similar features such as their content words are considered to refer to the same

sense. However, the information contained in a single context is often very sparse,

having tens of content words at most. As a result, two contexts are unlikely to have

any overlapping content, despite potentially referring to the same sense of the word.

For example, the earlier examples sentences of pescespada have no overlap in their

content, marked as bold:

• He grilled the pescespada well done.

• Pescespada goes well with capers and lemon.

• Catching a pescespada takes many hours in the open ocean.

A key challenge for distributional sense induction is to overcome the representational

sparsity of contexts in order to identify the semantic regularities.

In the first distributional sense induction approach, Schütze (1992) overcame con-

textual sparsity by representing a context as a combination of the semantics of its words.

Initially, each word type is associated with a vector representation of its co-occurrences

with other types.13 A context is then represented as the average vector (i.e., centroid)

its word types’ vectors. In essence, a context reflects the average co-occurrences of

its word types. Two contexts with no words in common may still have similar vector

representations if their content words co-occur with similar word types. To discover

senses, Schütze (1992) uses Buckshot clustering (Cutting et al., 1992) to produce a

fixed number of clusters. This method of clustering introduces a major limitation, as

the number of senses per word must be specified ahead of time.

13Note that this vector is itself a noisy combination of the contexts for all senses of the word type.
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Two later directions have emerged from this approach. The first direction uses non-

parametric clustering to automatically determine the number of senses. For example,

Pedersen (2010) and Jurgens and Stevens (2010a) cluster context vectors similar to

those used by Schütze (1992) using either K-means with the Gap Statistic (Tibshirani

et al., 2000) or Streaming K-means (Shindler et al., 2011), respectively, both of which

automatically select the final number of clusters (senses) based on the inter-cluster sim-

ilarity.

A recent system in this first direction is AI-KU (Baskaya et al., 2013), which rep-

resents the context of each target word by using the high probability lexical substitutes

according to a statistical language model.14 A language model is built to identify the

relative probabilities of 4-gram sequences and then FastSubs (Yuret, 2012) is applied

to identify words that appear in the same position as the target word for each context.

For example, one instance of bass may have substitutes such as fish, while another in-

stance may have guitar. Each instance is then represented as 100 substitutes, sampled

from the probability distribution of the most-probable 100 substitutes for that instance;

these substitutes are transformed into a vector representation, reflecting the sampled

frequencies of each. The instance-substitute vectors are then projected into a lower

dimensionality using S-CODE (Maron et al., 2010). The final S-CODE based vectors

are clustered using k-means. Much like Schütze (1992), AI-KU requires specifying

the number of clusters ahead of time, often setting k to a larger than necessary number.

However, to determine the number of senses, AI-KU performs a post-processing step to

remove clusters that contain only a few instances, which are likely artifacts of forcing

each of the k clusters to be non-empty. The remaining clusters are treated as senses of

the word.

A second direction of work induces senses using probabilistic topic modeling al-

gorithms such as Latent Dirichlet allocations (LDA) (Blei et al., 2003; Steyvers and

14A lexical substitute is a word that may replace another word in context without significantly changing
the meaning. For example, in the context “I read the morning paper,” “newspaper” is a valid lexical
substitute for “paper.”
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Griffiths, 2007) and Hierarchical Dirichlet Processes (HDP) (Teh et al., 2006). A topic

model (TM) is a generative model that describes the content of a collection of doc-

uments. A topic is a multinomial distribution over the word types in the collection,

which typically take on themes when inferred from a large collection of documents

(e.g., animals or music). In turn, documents are modeled as multinomial distributions

over topics, reflecting the type of content they contain. In the generative setting, a doc-

ument with n tokens is created by (1) sampling a distribution over topics, and then (2)

for each token, sampling a topic from the document’s distribution, and (3) sampling the

token itself from the topic’s distribution. Importantly, a TM infers the topic multinomi-

als and document-topic distributions automatically based on content of the documents

themselves through statistical inference procedures such as Gibbs sampling. A docu-

ment’s topic distribution acts as a higher-order representation in that documents with

few words in common may have similar representations as distributions over topics

if their contents were generated by the same topics. This higher-order representation

enables topic representations to overcome the sparsity of documents themselves.

TM-based WSI approaches learn senses by applying existing topic modeling algo-

rithms (e.g., LDA, HDP) to specialized document collections. In their common use

case, a TM is inferred from a general collection of documents in order to discover what

commonalities exist in their content (e.g., sports or holiday topics). In contrast, TM-

based sense induction methods infer the TM from a document collection consisting

only of a word’s usages, which discovers commonalities in the contexts in which that

word is used. Because the documents are derived only from uses of the target word, the

inferred topics reflect the different settings in which the word appears. The underlying

assumption behind TM-based WSI methods is that one sense appears per topic and thus

each topic corresponds to a different sense. Given a new usage (document), inferring

the usage’s topic distribution reveals which sense is present.

Earlier WSI models such as Brody and Lapata (2009) and Elshamy et al. (2010)

used the LDA topic model, which requires specifying the number of topics (i.e., senses)
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prior to inferring the model, just as was required with the WSI approach of Schütze

(1992). The more recent approaches of Yao and Van Durme (2011) and Lau et al. (2012)

have used HDP models, which automatically infer the number of topics as well as the

topics themselves. The approach of Lau et al. (2012) differs in that it includes both

content words, positional information (i.e,. the relative offsets of the content words),

and syntactic information as features. In an equivalently-tuned setting, Lau et al. (2012)

show that this extra information provides a performance improvement over the content-

word-only approach of Yao and Van Durme (2011).

2.6 Conclusion

Word sense disambiguation relies on having annotated examples, which can be expen-

sive to produce in large quantities. One alternative to manually annotating instances

is to use Word Sense Induction techniques, which automatically learn the senses of a

word from how it is used and, in the process, disambiguate those examples as well. This

chapter has introduced two new methods for performing sense induction from graphs of

collocations, offering two main contributions. First we show that the different methods

used for identifying collocations can have a significant effect on the senses contained

within the graph; from our analysis we show that using χ2 offers the least bias and

has more potential for containing collocations of multiple senses, irrespective of their

frequency in the corpus. Second, we make the connection between the structure of

collocation networks and social networks, showing that community detection methods

can be used to accurately identify the different senses of a word. We presented two

WSI methods based on community detection, the all-words method of Jurgens (2011),

AWCD, and a new single-word method, SWCD, showing qualitative results that these

methods do identify meaningful senses.
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CHAPTER 3

Semi-Supervised Word Sense Induction and

Disambiguation Systems

Summary This chapter introduces a new technique for building semi-supervised WSD

systems that use induced senses as features for disambiguation, rather than use a con-

text’s features directly. This chapter offers three main contributions. First, we review

the current method for building semi-supervised WSD systems and then propose a

novel method for constructing both individual and ensemble systems, showing that

the new method offers superior performance over current state of the art. Second,

we propose a new evaluation setting for semi-supervised systems using pseudowords,

which enable testing the systems’ efficacy on arbitrarily-large amounts of simulated

sense-annotated data that closely mimics the linguistic and semantic properties of real

sense-annotated data. Third, we use our new evaluation to quantify the performance

difference between semi-supervised and fully-supervised WSD systems when limited

data is present. We show that our semi-supervised WSD systems offer a statistically

significant advantage in cases where only tens to hundreds of annotated instances are

available for a word type.

3.1 Introduction

Word Sense Disambiguation identifies the meaning of a word in context. A major

limitation for building high-performance WSD systems has been the sparsity of sense-

annotated corpora for training supervised systems, and as a result, many unsupervised
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or knowledge-based WSD approaches have been proposed (Navigli, 2009). However,

an alternate method is to build semi-supervised approaches using Word Sense Induc-

tion, often referred to as WSID models (Agirre et al., 2006b). WSID models first use

a WSI algorithm to induce a term’s senses from its usage in a corpus; then, a WSD

system is produced which transforms induced sense annotations into those from a sec-

ond sense inventory such as WordNet (Fellbaum, 1998). By first using an unsupervised

algorithm to learn sense features, WSID systems are potentially able to overcome the

knowledge acquisition bottleneck (Gale et al., 1992) by acquiring more information

for training a WSD system than is available through sense-annotated data alone. WSI

systems automatically group contextual features into senses, which serve as high-level

features for the WSID system; a WSID system trained on induced senses is able to

map these feature groupings to the second sense inventory, enabling the WSID system

to classify new contexts containing features that were not seen in the training data but

were seen in the data used by the WSI model for learning its senses.

Despite the potential of WSID, the design and evaluation of WSID systems has

primarily been done as a part of SemEval tasks focusing on sense induction (Agirre

and Soroa, 2007; Manandhar et al., 2010; Jurgens and Klapaftis, 2013). While perfor-

mance is promising, three important open questions remain. First, in current evalua-

tions, WSID systems have all used the technique of Agirre et al. (2006b) for converting

induced sense annotations into those of a reference inventory. However, the perfor-

mance impact of this process has not been measured, nor have alternative methods

been tested. Second, current WSID evaluations have not controlled for the distribution

and frequency of the senses in training and test data, which can significantly affect per-

formance and the expected generalizability. Third, despite the potential advantages of

WSID for languages with sparse sense-annotated data, no study thus far has directly

compared WSID and WSD systems to identify whether one setup should be preferred

given a limited number of annotations.

Addressing these questions was previously hindered by the lack of a large sense-
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annotated data set. However, we overcome this limitation using the recent resource

of Pilehvar and Navigli (2013), which provides a large-scale close approximation of

the WordNet sense inventory using pseudowords, which are two or more monosemous

lemmas that are replaced throughout a corpus with an artificial token. Deciding which

of the lemmas was originally present given an instance of the pseudoword serves as

an analogous WSD task.1 Crucially, in their data set, each polysemous noun in Word-

Net has a corresponding pseudoword whose pseudosenses closely model the semantic

similarity of the original word’s senses. Because the data approximates real-world dif-

ficulty in disambiguation, the resource enables performing a comprehensive evaluation

of WSID on arbitrarily-large amounts of sense-annotated data with direct generalizabil-

ity to real-world performance.

This chapter has the following four main contributions. First, we provide a com-

prehensive evaluation setting for WSID that tests systems on millions of instances,

two orders of magnitude more than previous evaluations. Our evaluation setting uses

high-quality pseudowords that effectively simulate the properties of WordNet senses,

which allows us to precisely control the sense distribution of both test and training

data. Second, we show that the method for transforming induced senses into WordNet

senses has a significant impact on WSID performance, and when using an appropriate

method, WSID performance significantly outperforms formerly competitive baselines

in multiple tests sets. Third, we demonstrate that combining WSI models into an en-

semble WSID provides statistically significant performance improvements. Fourth, in

direct comparisons with a state-of-the-art supervised WSD system, we demonstrate

that an ensemble WSID system outperforms supervised WSD when fewer than sev-

eral hundred sense-annotated instances are available, indicating that WSID can indeed

overcome the knowledge bottleneck.

1For example, the polysemous noun pic has two WordNet senses: (1) a motion picture, and (2) a
picture. This noun can be approximated by equating each of its senses with a monosemous noun, e.g.,
movie and photo, respectively. In the analogous task, a WSD system is asked to determine which of the
nouns is present in a context where one originally occurred.
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3.2 WSID Systems

A WSID system consists of two key components: a WSI model and a function that

converts the model’s sense annotations into those of another sense inventory, as formal-

ized in Agirre et al. (2006b). First, a WSI model induces its senses from a base corpus.

Second, a training corpus is labeled using both the induced senses of the WSI model

and the senses from a reference inventory. The co-labeled corpus serves as training data

for building a classifier that predicts the reference sense label given an induced sense

annotation. The present study assesses the performance of WSID systems and therefore

we consider a range of sense mapping functions and WSI models, described next.

3.2.1 Sense Mapping Functions

A mapping function is a supervised classifier that given an annotation of one or more

induced senses produces a new sense annotation for the instance from a different sense

inventory, with the induced senses essentially acting as features. Agirre et al. (2006b)

proposed the first mapping function based on matrix multiplication, which has been

used in WSID evaluations (Agirre and Soroa, 2007; Manandhar et al., 2010; Jurgens

and Klapaftis, 2013). In their setup, a sense co-occurrence matrix M is computed from

the training corpus, with columns denoting the n induced senses and rows denoting the

m reference senses; the cell M(i, j) records the two senses co-occurrence frequencies.

For sense mapping, an induced sense annotation is represented as an n-dimensional

vector v with non-zero values in the columns of the annotated senses. The product vM

produces am-dimensional vector v′ containing a distribution over reference senses; the

sense with the largest corresponding value in v′ is the resulting annotation.

While this mapping function has been used in many prior WSID evaluations, it

comes with two weaknesses: (1) all induced senses are considered equally informative

for producing the reference sense annotation, and (2) the weights assigned to a sense

annotation are not effectively used when an instance’s induced labeling has multiple
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senses (Jurgens, 2012). Therefore, in constructing WSID systems, we consider six ad-

ditional supervised learning algorithms for performing the mapping function: Support

Vector Machines (SVMs) with both linear and radial basis function (RBF) kernels, De-

cision Trees based on either entropy or Gini impurity, and naive Bayes classifiers using

either Multinomial or Bernoulli distributions. These six classifiers were chosen for two

reasons. First, the classifiers have proven effective in a variety prior NLP tasks and

second, because the impact of the mapping function has not been tested, using multiple

high-quality classifiers will reveal the differences in performance in order to assess how

much performance improvement can be attributed to the choice in mapping function.

All six classifiers are trained on feature vectors where each induced sense is a dis-

tinct feature and produce a single sense label in the reference inventory. Feature vectors

are weighted with the values provided by the WSI models in their annotation, except

for SVM, whose instance weights were scaled into [0,1], and for Bernoulli distributed

naı̈ve Bayes where all positive values are set to 1 due to its requirement for binary data.

Classifiers were implemented using SciKit (Pedregosa et al., 2011).

3.2.2 WSI Models

To assess the impact of the mapping function, we evaluate using five models: our single-

word WSI described in Chapter 2, Section 2.3.1, and four other recent WSI algorithm,

described earlier in Chapter 2, Section 2.5.2 The additional models were balanced

between those using lexical distributions and those using networks: AI-KU (Baskaya

et al., 2013) and HDP (Lau et al., 2012), which use token statistics to induce senses, and

Chinese Whispers (Biemann, 2006) and SquaT (Di Marco and Navigli, 2012), which

construct graphs to induce senses.

Rather than just reporting the single, highest-weighted sense for a context, we report

all detected senses, weighted according to the WSI model’s disambiguation step. This

2Due to the type of evaluation used (described next in Section 3.3), testing on our all-words WSI
model would require months of computation time and is therefore infeasible.
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multi-sense labeling potentially captures more information about the context’s features

and models cases of ambiguity where a mapping function can learn to discriminate

which induced sense provides more information predicting the correct sense.

3.2.3 Ensemble WSID Model

Many WSI models -including those used here- exploit different sources of lexical infor-

mation for inducing senses and thus identify different features for distinguishing those

senses. While prior work on WSD has combined complementary WSD systems to im-

prove performance with an ensemble model (Pedersen, 2000; Florian and Yarowsky,

2002; Brody et al., 2006; Søgaard and Johannsen, 2010), no work has pursued an

analogous ensemble approach for WSID. We propose a new heterogeneous ensemble

WSID system built from the output of all five WSI models. For each instance, the

output of the WSI systems is combined and the instance is labeled with the induced

senses from all systems. Because WSI models capture different aspects of the context,

the ensemble-based system can potentially identify induced senses or combinations

thereof that produce a more accurate mapping to the reference sense inventory.

3.3 Experimental Design

To evaluate WSID and WSD systems, all experiments use a common pseudoword dis-

ambiguation task. Following, we describe the task and data.

3.3.1 Pseudoword Disambiguation

Pseudowords provide an analogous form of polysemous data for evaluating WSD sys-

tems. A pseudoword is made of two or more monosemous lemmas, referred to as its

pseudosenses. The occurrences of these pseudosenses in a corpus are replaced with a

unique token. In the corresponding disambiguation task, a WSD system must decide
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Polysemous noun Pseudosenses

doubles badminton, tennis

pic movie, photo

ca calcium, california

drawer desk, treasurer, cartoonist

tapestry complexity, cloth, rug

headshot photo, soccer, gunfire

Table 3.1: Examples of pseudowords used in the experiments

which of the pseudosenses was originally present given an occurrence of the token, ef-

fectively simulating the traditional sense disambiguation task. Independently proposed

by Gale et al. (1992) and Schütze (1992), pseudoword disambiguation fills an important

evaluation gap when large amounts of sense-annotated data is unavailable.

However, disambiguation performance on pseudowords is not guaranteed to model

the difficulty of disambiguating real words, which may contain related senses (Palmer

et al., 2007). To overcome this limitation, Pilehvar and Navigli (2013) present a pseu-

doword data set where each pseudoword models the sense properties of one of the

15,935 polysemous nouns in WordNet 3.0. Specifically, pseudosenses were selected to

closely mimic the semantic similarities of the corresponding senses of the polysemous

word. Table 3.1 shows example nouns and their corresponding pseudosenses used in

the experiments.

In their analyses, WSD systems were trained on Senseval-3 (Mihalcea et al., 2004)

and an analogous pseudosense-annotated data set. The resulting disambiguation per-

formance on the pseudosense-annotated data set was highly correlated with the perfor-

mance on Senseval-3. Their results indicate that pseudosense-annotated data sets may

be constructed to effectively approximate real-world WordNet WSD performance.
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3.3.2 Data

All experiments were performed on a subset of 920 pseudowords both for reasons

of computational efficiency in building WSI models and for evaluating only on the

highest-quality data in the data set of Pilehvar and Navigli (2013). Specifically, their

data set includes pseudosenses that are likely introduce noise due to errors from part of

speech tagging or taking part in a named entity that was not present in WordNet. There-

fore, we exclude pseudosenses where (1) the lemma is also the plural form of another

lemma, e.g., spirits, (2) the lemma may be another part of speech, e.g., freezing, and (3)

the lemma occurs in fewer than 1,000 contexts in Gigaword when not part of a named

entity. To test for the third condition, we used TreeTagger (Schmid, 1994) to identify

named entity mentions.

Ultimately, all remaining pseudowords not using these pseudosenses were ranked

according to their degree of semantic correspondence with a polysemous WordNet

lemma. In descending order of correspondence, we then selected the 920 pseudowords

that best approximated the distribution of the number of senses for polysemous nouns in

WordNet. Pseudowords in the final data set had between two and twelve pseudosenses

with 70% having two senses. Last, because the mapping functions described previ-

ously in Section 3.2.1 are parametric, five additional disemous pseudowords were also

selected to use in parameter tuning.

3.3.3 Sense Distributions

The sense distribution of a word is often uneven, with one or two senses occurring

more frequently than the rest in natural text. The sense distribution can greatly affect

WSID performance, with artificially-inflated performances in settings where one sense

dominates and all induced senses are mapped to that sense; in such cases, WSID perfor-

mance does not reflect cases where the sense distribution may vary. While controlling

the sense distribution in real-world test data requires a significant number of annotated
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instances from which to select, when using pseudowords, the sense distribution may be

precisely controlled. Therefore, we consider two extremes in sense distribution in order

to better generalize future performance of the models.

In the first distribution, we leverage the correspondence between the pseudowords’

senses and WordNet senses to simulate real-world sense distributions based on Sem-

Cor (Miller et al., 1993). Specifically, for each pseudoword, we measure the frequen-

cies in SemCor of the senses for the word it models and use their relative frequencies.

However, many words are too infrequent to accurately model their expected sense fre-

quencies. Therefore, words with fewer than ten occurrences use the average sense

distribution computed from all words having both the same polysemy and at least ten

occurrences in SemCor. We refer to the resulting data set as having a SemCor sense

distribution.

The second distribution uses a uniform sense distribution. When both training and

test data have a uniform sense distribution, WSD systems cannot use the often-effective

strategy of defaulting to the most-frequent sense. Though unnatural, the uniform case

represents a challenging setting where the performance of WSD models is entirely de-

pendent on their ability to use contextual features without help from a biased sense

distribution.

3.4 Experiment 1: Evaluating WSID Mapping

The first experiment measures the impact of the sense mapping function in two ways.

First, given the wide-spread use of the Agirre et al. (2006b) mapping function, we

assess whether the six alternative functions described in Section 3.2.1 can consistently

improve WSID performance.
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3.4.1 Experimental Setup

WSID Systems Twenty eight WSID configurations were built for each combinations

of the seven sense mapping functions (Sec. 3.2.1) and WSI models (Sec. 3.2.3). WSI

models were trained on the same base corpus, ukWaC (Baroni et al., 2009); though we

note that models induce senses from the corpus in different ways.

The same WSI parameter values were used for all pseudowords. AI-KU uses the

settings for the language model, S-CODE and Fastsubs (Yuret, 2012) algorithms re-

ported in Baskaya et al. (2013). For the k-means algorithm used by AI-KU, k was

arbitrarily set at 10, with no further parameter tuning. HDP uses the two parameters

to specify the variability of senses in the corpus, γ and α0, which were set to the same

values reported in Lau et al. (2012) and Lau et al. (2013). The SquaT parameters δ and

σ were set to 0.00125 and 0.25, respectively, after a limited grid search showed these

values produced sufficiently large graphs for inducing the senses of all pseudowords.

Our SWCD model built graphs using the k-neighbors procedure using k = 1000 after

a parameter search on the tuning data (described below) showed this value yielded the

best performance.

Seven ensemble WSID systems were built by training each of the mapping func-

tions on the induced sense labelings from all four WSI systems using their default

configuration.

Cross-Validation Evaluation Systems were evaluated using five-fold cross valida-

tion, with modifications to ensure consistency across distribution types. Initially, a

pseudoword is associated with five data partitions, where partitions contain the same

number of instances of each pseudosense. The instances of each partition are then fil-

tered to match a desired sense distribution; this filtering process is deterministic so that

a partition always has the same instances for a particular distribution across folds. Fig-

ure 3.1 visualizes this process. Importantly, this setup ensures that its instances remain
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Evaluation Data

Training partitions

Test partition

SemCor(    )

Uniform(    )

Training instances

Test instances

(a) (b) (c)

Figure 3.1: A schematic of the cross validation. Evaluation data partitions initially

contain an equal number of instances per pseudosense (a), shown as colored boxes. For

each fold of validation, four partitions are used for training and one for test (b). The

instances from each partition are then sampled according to a distribution (shown in

grey boxes), which produces the final training and test instances.

consistent when the partition is used in different folds of validation. We note that in

the case of the ensemble WSID system, the underlying WSI models are trained only on

the appropriate training data during each fold, ensuring that no test data leaks into the

training data.

The reported experiments use either the SemCor or Uniform distributions for both

training and test as they are most informative of the expected real-world performance

(c.f. Sec. 3.3.3). In the reported experiments, all WSID systems were trained and tested

on partitions with the same sense distribution, e.g., training and test partitions having

a SemCor sense distribution. However, our evaluation setup is sufficiently general to

support evaluating using arbitrary distributions, including using different training and

test distributions, as shown in the example in Figure 3.1.

Evaluation Data Evaluation data for the partitions was drawn from the Gigaword

corpus (Graff et al., 2003). Instances of pseudosenses were filtered to ensure the cor-
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rect part of speech and to remove all occurrences where the pseudosense was part of a

named entity. Ultimately each partition in the evaluation data contained 200 instances

of all senses, which were filtered according to the desired distribution. For SemCor-

distributed data, the most frequent sense has 200 instances, with all other senses having

proportional numbers based on their relative sense frequencies. We note that this setup

was chosen instead of using a fixed number of instances per partition so as not to bias

the results against more polysemous words whose rarer sense would have fewer in-

stances in the fixed-size setting. Because the number of instances varies in the SemCor-

distributed data, the corresponding Uniform-distributed data for a pseudoword was bal-

anced to have the same total size.

Two baselines are used with the evaluation data: Random and Most Frequent Sense

(MFS). The Random baseline simply picks randomly from among the senses; the MFS

baseline selects the most frequent sense of the word, which often performs competi-

tively in skewed distributions such as SemCor and surpassed the performance of many

WSID models in previous studies. We note that in the Uniform sense distribution, the

MFS and Random baselines are equivalent.

Scoring Systems were evaluated using the standard WSD precision, recall and F1

metrics (Navigli, 2009). Precision measures the percentage of sense assignments pro-

vided by a WSID system that are identical to the gold standard. Recall measures the

percentage of all instances that are correctly labeled by the system. The F1 is the har-

monic mean of precision and recall. When a system labels all instances, precision and

recall are equivalent.

Parameter Tuning Five disemous words were used to tune each parametric mapping

function. Using a grid search over parameter values, each WSID was scored using an

identical five-fold cross-validation process. The parameter values that produced the

highest average F1 across all folds were selected for use in the WSID model.
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Figure 3.2: Average performance of all WSID systems when training and testing data

follow the SemCor sense distribution

3.4.2 Results and Discussion

The WSID system evaluation showed a clear impact from the choice in mapping func-

tion. Results for all untuned WSID systems using the SemCor distribution are shown

in Figure 3.2. For all WSID systems, tuning the parameters of the mapping function

provided little to no performance improvement. We therefore omit tuned results here,

but report the scores in the Appendix material. For all WSI models, the commonly-

used Agirre et al. (2006b) mapping function does not produce WSID systems that out-

perform the MFS baseline on average in the SemCor-distributed data. In data with a

skewed sense distribution such as SemCor, the mapping function generally maps all in-

stances to the most frequent sense. However, the function does provide higher average

performance than the Multinomial naive Bayes WSID systems for SemCor-distributed

data because of this tendency to map to the most frequent sense.

The best performance when using a single WSI model comes from SVM with a
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Figure 3.3: Average performance of all WSID systems when training and testing data

follow the Uniform sense distribution

linear kernel. Indeed, a WSID system using the AI-KU model and a linear kernel SVM

mapping function provides an average 3.24 absolute increase in F1 score over the MFS

baseline, which is statistically significant at p<0.01.

Results for the Uniform distribution, shown in Figure 3.3, are consistent with those

of the SemCor distribution, though the individual differences of the WSI models are

more evident. WSID systems using Agirre et al. (2006b) mapping function perform

well on average, but all WSI models enjoy consistently-higher performance when using

a SVM mapping function, though the difference between SVM and Agirre et al. (2006b)

is not statistically significant for the AI-KU and HDP models.

Results between WSID system show clear distinctions based on the WSI approach.

The two distributional methods, HDP and AI-KU, both outperform the graph-based

methods for both SemCor- and Uniform-distributed data. Among the graph-based

methods, the SWCD approach proposed in this thesis (Ch. 2, Sec. 2.3.1) performs simi-

larly to the state of the art in SemCor-distributed data, but offer a statistically significant
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performance improvement over the graph-based approaches at p<0.01. To test the im-

pact of the SWCD approach, we perform an ablation test, removing it from the ensem-

ble and recalculating performance. The SWCD method yields an improvement in F1

of 0.003 and 0.008 for SemCor and Uniform, both of which are significant at p<0.01.

Thus, though the SWCD method performs worse than HDP and AI-KU, it still provides

a meaningful increase to performance, complementing the methods’ WSID abilities.

In nearly all WSID configuration, the ensemble WSID system obtains substantial

performance gains. For SemCor-distributed data (Fig. 3.2), the ensemble with a linear

kernel SVM produces the highest performance of all WSID configurations, achieving

a 7.30 absolute increase in F1 over the MFS and 4.05 increase over the next-closest

system (AI-KU). Furthermore, except when using the Agirre et al. (2006b) and Multi-

nomial naive Bayes mapping functions, ensemble WSID systems outperforms all in-

dividual WSID systems. When testing and training on a Uniform sense distribution,

the ensemble WSID system achieves even more substantial gains over other WSID

systems, as shown in Figure 3.3.

The results for both distributions provide two main insights. First, using a linear

kernel SVM for sense mapping provides consistently superior WSID performance that

is robust to variations in the choice of WSI model. Second, WSID performance can be

significantly improved by combining sense annotations from heterogeneous WSI sys-

tems with a linear kernel SVM; this improvement was not observed with the currently-

used mapping function of Agirre et al. (2006b), which even lowered the performance

of the ensemble below that of its best system when tested on Uniform-distributed data

(Fig. 3.3). This second finding is key for future work on ensemble WSID methods be-

cause it highlights the importance of choosing an appropriate mapping function when

combining multiple WSI methods, which had not been identified prior.

To further validate these results, we analyzed the performance of all WSID systems

using a linear kernel SVM for different levels of pseudoword polysemy. Due to sparsity,

performances for pseudowords with six or more senses were combined and averaged.
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Figure 3.4: Performance of WSID systems using SVM (linear) for different polysemy

on SemCor-distributed training and testing data

Figures 3.4 and 3.5 show the performance for SemCor and Uniform sense distribu-

tions, respectively, using a box and whisker plot. Whiskers denote the maximum and

minimum F1 score of any pseudoword, boxes denote the 1st and 3rd quartiles, and the

middle line denotes the median performance. As the baselines’ performances change

with polysemy, each is plotted as a horizontal line.

As seen in Figures 3.4 and 3.5, the ensemble WSID system offers superior perfor-

mance across all levels of polysemy. Even in the highly skewed SemCor distribution

for disemous words, the ensemble WSID performs better than the MFS baseline for

nearly all pseudowords. In the evaluation set of pseudowords, 87% have either two or

three senses, for which the ensemble WSID system offered the smallest performance

increase over the baseline (though larger than that of any other WSID system). With

different data that includes more pseudowords whose polysemy is greater than four, we

would expect that the ensemble WSID system would even-further outperform the MFS

baseline in average performance.
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Figure 3.5: Performance of WSID systems using SVM (linear) for different polysemy

on Uniform-distributed training and testing data

3.5 Experiment 2: Comparing WSID and Supervised WSD

In resource-constrained languages, limited sense-annotated data may be available. This

poses a dilemma where practitioners must decide how to best use the data for building

a WSD system: to directly train a WSD system or to use a semi-supervised WSID

system. Therefore, in the second experiment, we assess whether WSID can outperform

supervised WSD, given identical training data of different sizes.

3.5.1 Experimental Setup

Supervised WSD For a comparison, we use It-Makes-Sense (IMS) (Zhong and Ng,

2010), a publicly-available supervised WSD system with state-of-the-art performance

on multiple WSD benchmarks. IMS was trained using its default parameter values.
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Training and Test Data IMS training data is generated similar to how instances were

allocated for distributions in Experiments 1. For a pseudoword, SemCor-distributed

training data is constructed by selecting k instances for its most frequent sense, with

other senses assigned a proportional number of instances. Given the SemCor-distributed

training data for a specific k with n instances, equivalently-sized Uniform-distributed

training data is constructed by including n
m

instances for the pseudoword’s m senses.

Because the number of instances for the most frequent sense in Uniform-distributed

data is based on the SemCor-distributed data at k, we use the notation k̂ for denoting

the equivalently-sized Uniform-distributed data set.

Training and test data were generated from same Gigaword data used in previous

experiments, using a five-fold cross validation. Training data was generated for k =

{10, 25, 50, 75, 100, 150, 200, 250, 500, 750}. Both WSID and IMS systems were

trained on the k and k̂ data sets created from four partitions and then tested on the fifth,

full partition. In this setting, both WSID and IMS were evaluated on exactly the same

test data as in Experiment 1.

WSID Systems WSID systems were constructed using the same procedure used in

previous experiments (c.f. Sec. 3.4.1). For simplicity, we report only WSID systems us-

ing a linear kernel SVM, as these provided the highest performance. Full performance

scores of all other configuration are available in the Supplementary material.

3.5.2 Results and Discussion

The WSID and IMS performances reveal that WSID systems provide significant benefit

over IMS when few annotated instances are available. Figures 3.6 and 3.7 show the

resulting F1 scores for SemCor- and Uniform-distributed data, with x-axis drawn at

log scale. The random baseline (F1=0.432) is omitted from Figure 3.6 for better visual

contrast of the remaining systems.
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Figure 3.6: Performance of IMS and WSID systems on SemCor-distributed data

As expected, IMS provides superior WSD performance, surpassing all single-system

WSID configuration for nearly all values of k and k̂. In SemCor-distributed data, IMS

outperforms the ensemble WSID at k=10 (significant at p <0.01). However, starting at

k=25, the ensemble WSID outperforms IMS until k=750. All ensemble performances

25≥ k ≥250 are statistically significant at p <0.01 and the IMS and WSID perfor-

mances at k=500 are statistically equivalent. In Uniform-distributed data, the ensemble

WSID system outperforms IMS until k̂=200, where they are statistically equivalent.

Together these results suggest that an ensemble WSID models can offer significant

advantages over supervised WSD except when very little or large amounts of sense-

annotated data are available. Indeed, all but 97 of the 11,685 polysemous lemmas in

SemCor have fewer than 200 instances, which suggests that the ensemble WSID system

may offer better performance than existing supervised systems trained only on that cor-

pus. These results indicate that by using the unsupervised features of the WSI models,

the ensemble WSID system is able to break the knowledge acquisition bottleneck and

acquire more information for disambiguation than available by annotated data alone.
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Figure 3.7: Performance of IMS and WSID systems on Uniform-distributed data

Last, we note that increasing the amount of training data consistently improves the

performance of IMS, while providing decreasing benefits to WSID models. This con-

trast highlights the difference in how both systems learn. Training a WSID model on

additional sense-annotation data can only improve performance up to the discrimina-

tory power of the underlying WSI systems. Should the training data come from a new

domain or context features not see in the WSI systems’ training, this new data can-

not improve performance. In contrast, providing the same data to a supervised WSD

system may enable it to learn new features since the disambiguation system itself can

be revised to include such features. Nevertheless, the performance of WSID does de-

pend on having sufficient sense-annotated data to build a correct mapping function, as

shown in the large performance improvements between k=10 and k=25 shown in Fig-

ures 3.6 and 3.7. Having too few sense-annotated examples prevents the WSID system

from learning an accurate correspondence between the induced senses and those of the

reference inventory.
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3.6 Related Work

The connection between sense induction and disambiguation has been explored by sev-

eral works. Purandare and Pedersen (2004) and Niu et al. (2005) produce sense in-

duction models and then assign the induced senses directly to reference senses, rather

than creating a mapping function that converts induced sense annotations. Both report

finding induced senses that closely correspond to existing definitions in reference sense

inventories but neither analyze the performance at disambiguating new instances with

reference senses, which is the role of WSID systems in this study. As noted in Sec-

tion 3.2, Agirre et al. (2006b) first formalized the WSID process. In their experiments,

a WSID system was built from the HyperLex WSI model (Véronis, 2004) and their

mapping function; the resulting system obtained a 0.06 improvement in F1 score over

the MFS baseline with default parameters and a further 0.11 improvement over MFS

when tuned. Last, in Jurgens (2012), we note the potential for having WSI models an-

notate items with multiple senses and proposes a modification to the mapping function

of Agirre et al. (2006b) to improve performance when multiple induced senses annota-

tion is weighted. In their experiments, WSID systems with this new mapping function

were able to outperform a MFS baseline. However, their changes to the mapping func-

tion did not address the issue of treating all induced senses equally when performing a

mapping.

Several recent works have analyzed senses using pseudowords. Cook and Hirst

(2011) simulate the sense properties of lemmas in the Senseval-3 lexical sample task

(Mihalcea et al., 2004) in order to model the process by which lemmas acquire new

senses; however, pseudowords are analyzed by contextual features rather than using

WSD as done in this study. In Jurgens and Stevens (2011), we create a set of dise-

mous pseudowords where the pseudosenses have varying degrees of similarity, mea-

sured using their distributional properties in a corpus. Sense induction models are then

tested according to their abilities to discriminate pseudosenses at different similarity
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levels. However, distributional-based pseudosenses are not monosemous which limits

the ability to use them in new corpora with a potentially different sense distributions

of the polysemous pseudosenses. Last, the most similar study is that of Pilehvar and

Navigli (2013), whose pseudowords we use; however, their analysis focused entirely

on supervised WSD, unlike this study which focuses on WSID.

3.7 Conclusion

This chapter presents a comprehensive analysis of WSID systems using a novel evalu-

ation design incorporating 920 pseudowords from the data set of Pilehvar and Navigli

(2013), whose pseudosenses closely approximate the properties and disambiguation

difficulty of nouns in WordNet 3.0. In our experiments on over a million instances,

we provide three contributions. First, we demonstrate that the choice of the mapping

function used to convert induced senses can significantly affect WSID and that a lin-

ear kernel SVM significantly improves upon the current state of the art (Agirre et al.,

2006b). Second, we demonstrate that when using the a linear kernel SVM, joining mul-

tiple WSI models into an ensemble WSID system yields large improvements, which

were not seen when using prior state of the art. Third, in a direct comparison with a

state-of-the-art supervised WSD system (Zhong and Ng, 2010), we demonstrate that an

ensemble WSID system offers superior performance over the supervised system using

the same training data except when very few or hundreds of annotated instances are

available, suggesting that WSID is a viable mechanism for overcoming the knowledge

acquisition bottleneck.
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CHAPTER 4

Methodologies for Crowdsourcing Word Sense

Annotations

Summary An alternate method for overcoming the knowledge acquisition bottleneck

is to gather annotations at scale using non-expert annotators. This chapter introduces

two new methodologies for gathering word sense annotations using crowdsourcing,

presented in Jurgens (2013). Our two methods modify the annotation task to help non-

expert annotators resolve their perceived ambiguity in which sense is present. In a

series of experiments, we show that by using our novel annotation design with MaxDiff

questions, crowdsourced workers achieve inter-annotator agreement rates on par with

those seen in expert-annotated corpora.

4.1 Introduction

Sense-annotated corpora are essential resources for developing and evaluating WSD

systems. Large-scale sense annotation efforts have used expert lexicographers or trained

annotators to produce high-quality annotations (Landes et al., 1998; Hovy et al., 2006;

Passonneau et al., 2010). However, the limited supply of experts and trained annotators

creates a significant knowledge acquisition bottleneck for building additional sense-

annotated corpora (Gale et al., 1992). For example, in the sense-annotation effort for

Senseval-1 (Kilgarriff and Palmer, 2000), Krishnamurthy and Nicholls (2000) report an

average annotation rate of one annotation per minute; At such a rate, doubling the size

of the largest annotated corpus, SemCor (Miller et al., 1993), would require at least 974
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total days of effort (2.66 years), assuming two lexicographers each annotating everyday

for a standard eight-hour work day.

To overcome the constraints of expert-driven annotation, many researchers have

turned to crowdsourcing for gathering annotations. In the crowdsourcing setting, un-

trained workers complete tasks on sites such as Amazon Mechanical Turk1 (MTurk) or

Crowdflower2 in exchange for a small amount of pay per task. Because the sites offer

large pools of workers, tens of thousands of annotations may be easily gathered in a

short amount of time by distributing them across multiple workers.3 Snow et al. (2008)

showed that for many NLP tasks, these untrained workers were able to accurately anno-

tate at the level of experts when their annotations were aggregated. However, research

efforts on gathering sense annotations with crowdsourcing have shown mixed results

in obtaining high-quality annotations (Snow et al., 2008; Biemann and Nygaard, 2010;

Passonneau et al., 2012b; Rumshisky et al., 2012).

The difficulty of sense annotation can be seen through a comparison with another

NLP annotation task, part-of-speech (POS) tagging. In POS-tagging, annotators are

presented with clear, agreed-upon classification categories (e.g., noun or verb) and all

words are labeled using the same set of categories. In contrast to POS-tagging, sense

annotation is more difficult due to three factors. First, the sense definitions change for

each word, requiring annotators to learn new classification criteria for each (Kilgarriff,

1998). Second, unlike the distinctions between parts of speech, the distinctions between

senses may be fuzzy (Palmer et al., 2007), creating ambiguity as to which applies,

especially in cases where too little context is available. Third, while in POS-tagging, a

word may be used with only a handful of parts of speech, in sense annotation, a word

may be highly polysemous and could have tens of senses. This large number of senses

increases the difficulty of classification and the time needed per instance.

1http://www.mturk.com
2http://www.crowdflower.com/
3To help distinguish the expertise of the person annotating, we use the term “worker” to refer to a

person participating from a Crowdsourcing platform and “annotator” when the person has received at
least minimal training in the task.
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Trained sense annotators are able to overcome these issues by benefit of their ex-

pertise, though performance at making sense distinctions for highly-polysemous words

or for words with related senses is often lower (Palmer et al., 2007; Passonneau et al.,

2009). However, crowdsourced workers do not have the benefit of training. Therefore,

we consider how to modify the annotation task itself to make it easier for untrained

annotators to produce high-quality annotations with their limited experience.

In this chapter, we propose two new methods for sense annotating using crowd-

sourcing and evaluate our novel methods in comparison to existing methods. Our

methods are specifically designed to address two leading problems for producing high-

quality annotations: (1) the corresponding decrease in performance as polysemy in-

creases (Fellbaum et al., 1997), and (2) decreased annotator agreement when there

is contextual ambiguity about which sense applies. This work builds upon the prior

observation that in cases of ambiguity, a usage may be marked with more than one

sense to make its ambiguity explicit (Erk and McCarthy, 2009). In prior crowdsourced

annotation efforts, workers were required to choose only a single sense. Because of

their unfamiliarity with the senses, workers often disagreed on which sense was present

(Passonneau et al., 2012b). We hypothesize that if the annotation methodology allows

workers to explicitly or implicitly identify all the senses they perceive, their resulting

annotations with have higher agreement (i.e., by agreement on the ambiguity itself) and

thereby provide a clear annotation of what sense or senses are present.

We test our hypothesis by three experiments comparing four different methodolo-

gies for sense annotation, two prior approaches: (1) the common single-sense assign-

ment annotation methodology, (2) the Likert-scale annotation methodology of Erk et

al. (2009) and two novel approaches: (1) a two-stage process where workers identify

potentially applicable sense and then later rate their applicabilities, and (2) a ranked

choice based annotation task that uses MaxDiff questions, which removes the need for

a sense-applicability rating scale. Each methodology is evaluated using 400 instances

evenly divided across eight words.
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Our results offer two contributions. First, we show that when asked to annotate

using only a single sense, crowdsourced workers attain very low agreement rates, but,

when workers can use multiple senses, agreement improves significantly, even when

normalized to account for agreement by chance. We find that worker agree on the

ambiguous labeling for a sentence and that allowing them to express such ambiguity

in their annotations (e.g., by selecting multiple senses) yields high agreement. Sec-

ond, we demonstrate that our MaxDiff-based annotation methodology produces highly-

replicable annotations that can be reproduced by separate sets of workers. Furthermore,

the agreement rates of independently-produced MaxDiff-based annotations are on par

with those seen in expert-annotated corpora.

This chapter is organized as follows. First, in Section 4.2, we formalize the task

of word sense annotation and review prior work both with expert annotators and with

crowdsourcing. Second, in Section 4.3 we describe our new sense annotation method-

ologies and in Section 4.3.6 how their annotation output will be evaluated. Last, in

Section 4.4 we perform three experiments and analyses of the methodologies using

thousands of crowdsourced annotations.

4.2 Word Sense Annotation

A word sense annotation task is to assign a word’s usage to one of that word’s senses,

given a sense inventory detailing its different meanings. Figure 4.1 shows an example

task of annotating a usage of the homonym bank.n according to two meanings. An-

notators typically work through multiple instances of the same word (Fellbaum et al.,

1997; Kilgarriff, 1998; Hovy et al., 2006), which increases annotator familiarity with

the word’s senses, though an alternative setting of sequentially tagging all words in a

context has been proposed by Miller et al. (1998), finding it less tedious and no slower.

Producing an annotated corpus requires at least two annotators to ensure that the

annotations are reliable and high-quality. Reliability is measured according to inter-
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I dropped my money off at the bank today.

Please select the sense of bank in the sentence above:

1. sloping land, especially the slope beside a body of water (“they pulled the canoe up

on the bank”, “he sat on the bank of the river and watched the currents”)

2. a financial institution that accepts deposits and channels the money into lending

activities (“he cashed a check at the bank”, “that bank holds the mortgage on my

home”)

Figure 4.1: An example sense annotation task for the word bank.n

annotator agreement (IAA), which has been measured using a variety of statistics such

as percentage agreement (Artstein and Poesio, 2008). When annotators have a high-

degree of IAA, the annotations are considered high-quality (Navigli, 2009). For ex-

ample, Kilgarriff (1998) argues that an IAA of at least 0.8 is necessary for considering

a sense-annotated corpus for evaluation, based on a IAA ranging in [0,1] where 1 is

complete agreement.

Research on sense annotating has focused on three aspects: (1) modifying the sense

inventory to clarify sense distinction and reduce annotator confusion, (2) modifying

the annotation task to model annotation ambiguity, and (3) gathering annotations from

untrained annotators. In this work, we rely on using an established sense inventory,

WordNet (Fellbaum, 1998), and therefore do not consider the first aspect. However, we

do consider the second and third aspects by adapting the task itself to the crowdsourcing

setting.

Following, we review IAA measures used in sense annotation and formally define

how it will be calculated in this work (Sec. 4.2.1). Then, we review prior work in

modeling uncertainty in sense annotation (Sec. 4.2.2) and work in sense annotation via

crowdsourcing (Sec. 4.2.3).
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IAA Statistic Adjusts for Chance Supports ≥ 2 annotators Allows Partial Annotations

Percentage Agreement no no no

Scott’s π yes no no

Cohen’s κ yes no no

Fleiss’s κ yes yes no

Krippendorff’s α yes yes yes

Table 4.1: A comparison of different IAA statistics commonly used in sense annotation

studies

.

4.2.1 Inter-Annotator Agreement

Inter-Annotator Agreement measures the degree to which two or more annotators se-

lect the same senses on the same instances. In the most simple case of two annotators

who rate all items, the percentage of agreement provides a useful indication of their

overall agreement. However, three factors necessitate using more complicated statis-

tics than percentage agreement. First, the distribution of a word’s senses in a corpus

may be skewed so that only a few senses are likely. This biased distribution can lead

to increased agreement by chance if an annotator always selects the most prevalent

sense. Therefore, many IAA statistics include an adjustment for chance agreement so

that the overall frequency with which an annotator uses each sense is taken into ac-

count. Second, more than two annotators may label the same corpus so an IAA statistic

should support an arbitrary number of annotators – especially in the case where ad-

justment for chance needs to be made across all of the annotators’ judgments. Third,

multiple annotators may each partially label a corpus, producing a corpus where each

item annotated by different subsets of annotators (though each having the same number

of annotations). This phenomena is especially prevalent in the crowdsourcing setting,

where workers may perform as much or as little annotation as they like. Hence, an IAA

statistic should ideally handle cases of partial annotations.
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They gave the speaker a warm welcome.

Please select the sense of warm in the sentence above:

1. having or producing a comfortable and agreeable degree of heat or imparting or

maintaining heat (“a warm body”, “a warm room” “a warm climate”)

2. psychologically warm; friendly and responsive (“a warm greeting”, “a warm per-

sonality”, “warm support”)

3. inducing the impression of warmth; used especially of reds and oranges and yellows

when referring to color (“warm reds and yellows and orange”)

4. freshly made or left (“a warm trail”, “the scent is warm”)

5. easily aroused or excited (“a warm temper”)

6. characterized by strong enthusiasm (”warm support”)

7. characterized by liveliness or excitement or disagreement (“a warm debate”)

8. uncomfortable because of possible danger or trouble (“made things warm for the

bookies”)

9. of a seeker; near to the object sought (“you’re getting warm”)

Figure 4.2: A sense annotation task for warm.j, using its nine senses in WordNet 3.0.

Artstein and Poesio (2008) provide a comprehensive analysis of the most common

IAA statistics (summarized in Table 4.1) and suggest the adoption of Krippendorff’s α

(Krippendorff, 1980) based on its support for the three desirable IAA properties men-

tioned prior. Krippendorff’s α is able to calculate agreement for an arbitrary number of

annotators who may each have only partially annotated the corpus. Based on the global

distribution of their annotations, Krippendorff’s α adjusts for chance, ranging between

[−1, 1], where 1 indicates perfect agreement and -1 indicates systematic disagreement.

If annotators randomly assigned senses, α has an expected value of zero.
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4.2.2 Modeling Annotation Uncertainty

Words with clear, distinct meanings are often straight-forward to annotate (e.g., the

homonym bank.n in Figure 4.1). However, many words are less straightforward due to

fuzzy distinctions in their meaning, which we illustrate with an example disambiguation

task for warm.j, shown in Figure 4.2. The meaning of warm.j in example sentence

conveys the idea of a friendly and enthusiastic audience. Examining the senses, we

observe that senses 2 and 6 both seem to match; indeed, WordNet 3.0 includes the

same example use (“warm support”) for both senses. Different annotators may agree

that the usage is ambiguous but may disagree on which sense best applies in the context

and therefore mark different senses. These disagreements in ambiguous cases lower

annotator agreement, which is potentially unnecessary if the annotators can agree on

the ambiguity itself.

To measure the potential for this ambiguity, Véronis (1998) relaxed the constraint

that an annotator must use only a single sense. In the study, six untrained linguistic

students rated 600 contexts each for 60 French terms using a common French dictio-

nary to define the word’s senses. The number of senses per term varied significantly

between 2 and 38 senses term.4 The six annotators were asked to rate each context as

having (1) one sense, (2) multiple senses, or (3) “don’t know.” Approximately 70% of

the instances were marked as having only one sense. However, 30% of noun, 25% of

adjective, and 20% of verb instances were marked as exhibiting more than one sense,

demonstrating that cases of sense ambiguity are prevalent across all part of speech

classes. Nevertheless, in a follow-up analysis, Véronis (1998) notes that the French dic-

tionary itself was responsible for some ambiguity due to the vagueness of its definitions

and that better sense applicability guidelines could resolve at least some ambiguity.

In later annotation studies using the well-established WordNet sense inventory, both

Langone et al. (2004) and Passonneau et al. (2006) have noted that allowing multiple

4Adjectives had the fewest senses on average (2.4), with verbs had the most (5.8), and nouns falling
in between (4.6).
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senses is necessary in some contexts. However, neither report statistics on how fre-

quently these cases occur, with Langone et al. (2004) noting that precise annotator

guidelines still need to be developed.

Erk et al. (2009) propose modeling the ambiguity with weighted sense assignments:

When an annotator perceives multiple senses, they rate each sense according to its ap-

plicability. The weights serve to explicitly model cases were one sense clearly applies

but where alternate-but-unlikely semantic interpretations of the lemma might also be

perceived. To test this type of annotation, Erk et al. (2009) had three annotators rate

50 contexts each for eight verbs, providing weighted sense assignments for all of a

lemma’s senses. They found that while annotators varied in their rating distributions,

the annotators had high pair-wise agreement when measured using Spearman’s ρ, vary-

ing between 0.466-0.540. In a follow-up paper, Erk et al. (2012) report even higher

pair-wise agreement on a ratings for ten contexts of 26 different terms, ranging from

0.52-0.72. This pair-wise agreement rivals that of early sense annotation efforts where

annotators were constrained to apply only a single sense per instance (Kilgarriff and

Rosenzweig, 2000; Snyder and Palmer, 2004; Mihalcea et al., 2004), suggesting that

allowing multiple senses can also provide a reliable form of annotation.

Together, these studies suggest that (1) annotation ambiguity is an uncommon but

real phenomena for both experts and novices which must be accounted for and (2)

allowing annotators to label uses with multiple senses can still provide high levels of

agreement.

4.2.3 Crowdsourcing

Given the time and resources required for experts to sense annotate, multiple studies

have measured the ability of crowdsourced workers to perform the same task. In their

tests on crowdsourcing multiple types of NLP annotation, Snow et al. (2008) had work-

ers sense annotate a part of data from the SemEval-2007 Lexical Sample task (Pradhan
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et al., 2007). Ten MTurk workers annotated all 177 instances of president.n accord to

its three WordNet meanings: (1) executive officer of a business, (2) head of a coun-

try, or (3) head of the USA. Worker annotations were then aggregated by using the

majority rating as the final annotation. Snow et al. (2008) report perfect accuracy at

disambiguating the instances –even finding an incorrect sense annotation in the task’s

gold standard data set. While encouraging, the study analyzes performance on a sin-

gle low-polysemy word with clear sense distinctions and therefore is not predictive of

future worker performance on highly-polysemous words or those with related senses.

Sense annotation disagreements between crowdsourced workers can occur due to

many causes, such as limited fluency in the task’s language, poor worker skill at the

task, or even adversarial worker who answer randomly. Therefore, two studies have

evaluated methods to identify and remove inaccurate workers. Bhardwaj et al. (2010)

had either five or six experts annotate 100 occurrences each for three moderately pol-

ysemous adjectives (6-11 senses). Fourteen MTurk workers then re-annotated those

same 100 instances and the Krippendorff’s α was used to measure IAA for each group.

Expert agreement was moderate, ranging in 0.49 to 0.67, while worker IAA was signif-

icantly lower, near chance level from 0.08 to 0.25. Bhardwaj et al. (2010) then propose

an unsupervised method for analyzing annotator agreement patterns, Anveshan, and

use it to identify subsets of workers that are have high IAA. While the authors are able

to improve IAA, they were only able to find a subset of workers with high IAA for a

single word in their test set.

Passonneau et al. (2012b) later reanalyzed the data of Bhardwaj et al. (2010) and

trained a supervised GLAD model (Whitehill et al., 2000) with gold standard labels to

recognize high-accuracy workers. Although using the GLAD model produced higher-

quality aggregated annotations than using simple majority voting, the overall accuracy

was not as high as that of expert annotators.

A major limitation of both Anveshan and GLAD is the need to have workers anno-

tate all items in order to calculate the statistics. In the crowdsourced setting, workers
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frequently complete only a subset of an job’s total work; forcing workers to complete

all tasks can serve as a major deterrent to attracting new workers. Indeed, based on

payment methods originally used in Bhardwaj et al. (2010), MTurk workers actively

advised each other to avoid performing future work for the authors.5

Two crowdsourcing studies have achieved good results on disambiguation low-

polysemy, coarse-grained senses. Both studies use senses from FrameNet (Ruppen-

hofer et al., 2006) which describe the word’s intended role in the type of context, re-

ferred to as a frame. For example, in the Cooking frame, the verb bake could take

on three senses: (1) Apply heat, “She baked the roast for 10 minutes;” (2) Cook-

ing creation, “He baked his kids some cookies;” or (3) Absorb heat, “The cake baked

for 10 minutes.”

Hong and Baker (2011) analyzed worker performance at disambiguating FrameNet

senses in 240 sentences each of six lemmas with two to five senses. Ten workers rated

each sentence, with the most frequent answer selected as the final annotation. The

authors report three main findings. First, workers were able to obtain high accuracy

between 73% and 92% (average 85%); however accuracy was increased by excluding

10-30% of the sentences in which fewer than four workers agreed on the same answer.

Second, the authors report that in some cases of disagreement either between workers

or between workers and the gold-standard, the instance itself was ambiguous and could

have been correctly annotation with either sense, which is what workers did. Third,

consistent with prior studies involving annotators (Fellbaum et al., 1997; Palmer et al.,

2007), they also found that worker accuracy decreased as polysemy increased, with

their only five-sense lemma having a disambiguation accuracy of 73% compared with

92% for the three-sense lemmas. However, their sample size is too small to use in

generalizing future performance.

Fossati et al. (2013) propose a sense annotation task using the same instances as

5See for example http://mturkforum.com/showthread.php?
1244-Stay-away-from-Rebecca-J-Passonneau .
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Hong and Baker (2011), but invert the annotation task structure. Instead of asking

workers to select a word’s meaning from a list, the task presents two possible senses

from different semantic frames (e.g., Cooking and Cause-Motion) and then asks work-

ers to pick which word in the sentence has the meaning, if any. In each case, the

potentially-annotated words were restricted to those having two senses. When workers

identify the particular meaning with a lemma, the task serves to both disambiguate the

word and identify the sentence’s semantic frame. Fossati et al. (2013) report an accu-

racy of 79.2%. While the study shows that workers can accurately identify senses, the

generalizability is limited by the two-sense restriction.

Last, we highlight the study of Alonso et al. (2013), which examined the ability of

crowdsourced workers to accurately identify cases where more than one sense of a word

applied. Specifically, Alonso et al. (2013) examined instances of regular polysemy in

nouns where classes of nouns, referred to as dot types, exhibit the same types of sense

distinctions (Pustejovsky, 1995). For example, the dot type of Animal/Meat contains

words such as chicken that can be used either as an animal (“I fed the chickens”) or

as food (“I ate my chicken sandwich”). Uses of a dot type may elicit both meanings,

as in “I grow my own onions and then cook with them,” where onion is both a plant

and food. In their study, Alonso et al. (2013) had five workers annotate 500 items

each for five different dot types. Using Krippendorff’s α to measure agreement, their

results showed that dot type annotation difficulty varied, with α ranging from 0.10 to

0.69. While performance is low for some dot types, they argue that for at least one,

the workers were able to produce annotations whose quality was on par with those of

experts.

Together, these prior works provide two key insights. First, the studies of Hong and

Baker (2011) and Fossati et al. (2013) indicate that high-quality sense annotations can

currently be obtained from non-expert workers when the sense distinctions are clear

and when polysemy is low. Second, the works of Alonso et al. (2013) and Hong and

Baker (2011) indicate that workers can accurately identify word uses with ambiguous
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sense annotations. However, no prior study has tested whether the decrease in per-

formance on moderate polysemy words is due to ambiguity and whether performance

could be improved by letting annotators mark such instances as ambiguous, which is

the hypothesis pursued by this work.

4.3 Crowdsourcing Annotation Methodologies

To compare crowdsourcing methods for sense annotation, we measure the effective-

ness of four methodologies when each is used annotate the same data set. Our com-

parison includes two existing methodologies, single-sense and Likert-ratings, and two

new methodologies, Select-and-Rate and MaxDiff. The methodologies produce the

same type of sense annotation but differ in how the annotation task is presented to the

worker. We first describe how word senses are shown to annotators in all methodologies

and then present how each methodology works individually.

4.3.1 Sense Inventory and Descriptions

All annotation tasks use the WordNet 3.0 sense inventory (Fellbaum, 1998). WordNet

provides three types of information each sense: (1) a list of other lemmas that having the

same meaning, i.e., synonyms, (2) a short definition of the sense’s meaning, referred

to as a gloss, and (3) for many senses, one or more example sentences in which one

of the sense’s lemmas is used. Table 4.2 shows an example of this information for

add.v. The annotation methodologies present senses to workers using all three pieces

of information.

4.3.2 Single-sense Annotation

Single-sense annotation asks workers to read the context and select the sense that best

matches the meaning of a highlighted word in context. Figure 4.3 shows an example
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# Synonyms Gloss Usages

1 - make an addition (to); join or combine

or unite with others; increase the qual-

ity, quantity, size or scope of

“We added two students to that dorm room”; “She added a per-

sonal note to her letter”; “Add insult to injury”; “Add some extra

plates to the dinner table”

2 append, supply state or say further “‘It doesn’t matter,’ he supplied”

3 lend, impart, bestow, con-

tribute, bring

bestow a quality on “Her presence lends a certain cachet to the company”; “The mu-

sic added a lot to the play”; “She brings a special atmosphere to

our meetings”; “This adds a light note to the program”

4 add together make an addition by combining num-

bers

“Add 27 and 49, please!”

5 total, tot, tot up, sum, sum

up, summate, tote up, add

together, tally, add up

determine the sum of “Add all the people in this town to those of the neighboring

town”

6 - constitute an addition “This paper will add to her reputation”

Table 4.2: The synonyms, glosses, and example usages for add.v in WordNet 3.0

Figure 4.3: A single-sense annotation task for add.v on the MTurk platform.

question for add.v on the MTurk platform. Single-sense annotation is the most com-

monly used methodology in expert-based annotation and has been used exclusively in

all crowdsourcing based studies. To produce a final sense annotation, multiple workers

annotate the same context and then the most frequent sense annotation is selected as

the sense label for the context.

Single-sense annotation is a highly-efficient annotation methodology, where each

task can be performed quickly (i.e., selecting a single sense) and where a worker only

needs to respond to one question in order to annotate the instance. However, its main

weakness is the ease with which adversarial workers may click randomly.
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Figure 4.4: An example of a Likert scale sense annotation question on the MTurk

platform.

4.3.3 Likert scale Annotation

Rather than require annotators to use a single sense in labeling a usage, Erk et al. (2009)

proposed having them rate the applicability of each sense for the usage using a Likert

scale. A Likert scale is a type of rating scale that models respondent’s preferences or

selections along a single axis.6 In the context of sense annotation, the Likert scale was

modeled as a five-point a scale from “completely applicable in this context” to “not at

all applicable.” Figure 4.4 shows a Likert annotation question on the MTurk platform.

Likert scale annotation has previously only been tested with annotators but not with

crowdsourced workers.

Likert scales provide a direct way to measure worker uncertainty during annotation.

Unlike single-sense annotation, workers may select more than one sense and indicate

their varying degrees of applicability. We illustrate the potential benefit with two ex-

ample annotations in Figure 4.5 of earlier example sentence of warm (Fig. 4.2). Here,

both workers agree on which senses were present, but differ slightly on which sense

applies more. In the single-sense setting, workers would be forced to select only one of

the senses, leading to disagreement as to what the final sense annotation is. However,

with the Likert scale rating, we are able to observe that the two annotations vary only

slightly and therefore the final annotation should incorporate both senses. Likert scales

6A common occurrence of Likert scales are in questionnaires that ask the respondent to choose a
rating on a scale from “strongly agree” to “strongly disagree.”
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They gave the speaker a warm welcome.

Annotator Applicability Rating Sense

Worker-a
5 psychologically warm; friendly and responsive
4 characterized by strong enthusiasm

Worker-b
4 psychologically warm; friendly and responsive
5 characterized by strong enthusiasm

Figure 4.5: An example Likert annotation of the context from Figure 4.2 by two work-

ers. All other senses of warm are omitted for clarity and were rated “not applicable.”

also provide the ability to capture alternate interpretations of workers, where they agree

on the most applicable sense but also recognize alternate, less-likely interpretations of

the lemma. Such information is lost in the single-sense setting.

To produce the final annotation for a single instance, multiple annotators rate the

same instance and their ratings are aggregated. Erk et al. (2009) do not aggregate their

annotators ratings, so we evaluate using the mean, median, and mode rating, breaking

ties arbitrarily.

Likert scale annotation has two potential disadvantages for sense annotation. First,

Likert scales suffer from scale bias, where in the case of sense annotation, workers’

mental scales for applicability differ causing them to bias their ratings around one point

of the scale. Indeed, Erk et al. (2009) found small scale biases among their three annota-

tors. However, in the crowdsourcing setting, scale bias may potentially be overcome by

gathering large numbers of annotations such that the biased ratings are smoothed over.

Second, Likert scale annotation increases the task complexity by requiring the worker

to answer more questions per instance by providing a rating for each sense. While the

total number of tasks is the same as in the single-choice setting, the increased number

of questions can slow the completion time.
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4.3.4 Select and Rate

For the first new methodology, we propose a two-phase process, referred to as Select

and Rate. The two stages are designed to first identify which senses might apply to a

given usage and second, to rate only the potentially-applicable senses. Separating these

tasks is motivated by two factors. First, only a few senses are likely to apply to any

given use hence, requiring workers to analyze each sense with a Likert scale needlessly

increases the cognitive work.

Second, multiple works have shown that crowdsourcing performance on complex

tasks such as text summarization can be improved by dividing the task into multiple,

conceptually-simpler subtasks, where efforts by one group of workers are used to create

new subtasks for other workers to complete (Bernstein et al., 2010; Kittur et al., 2011;

Kulkarni et al., 2012). These studies showed cases where higher-quality results were

produced from the sequential efforts on the subtasks than from the performing the same

operation in a single, more complicated task.

We hypothesize that sense annotation could be divided into two subtasks: (1) elimi-

nating inapplicable senses, and (2) rating applicability of the remaining. By performing

these tasks separately, workers can focus in the second subtask only on a smaller set of

potentially-applicable senses, leading to higher-quality judgments.

The crowdsourcing workflow is structured as follows. The first subtask, Select,

shows all senses of a word and asks workers to make a binary choice as to whether this

definition might apply. Although, both this subtask and the Likert-rating methodology

requires that workers consider all senses, we hypothesize that making a binary choice

will be easier for annotators than picking a point on a Likert scale. Multiple annota-

tors perform the Select task for the same context to produce a rating distribution over

which senses might be applicable. Senses whose selection frequency is above a certain

threshold are then passed to the second subtask. The second subtask, Rate, operates

identically to the Likert rating methodology with the exception only a subset of the
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(a) Select task

(b) Rate task

Figure 4.6: A Select and Rate task where MTurk workers chose two senses from the

Select task (4.6a) to pass to the Rate task (4.6b).

senses are shown. We refer to the two-stage methodology as Select and Rate, abbre-

viated as S+R. Figure 4.6a and 4.6b show an example Select task on MTurk for add.v

where workers have correctly filtered out all but two ambiguous senses, which are then

passed to the Rate task.

The design of Select and Rate offers two benefits. First, the Select task can po-

tentially filter the senses to a smaller set using the cognitively less-demanding binary

question, thereby allowing annotators to focus their rating faculties only a meaningful

subset of senses that might apply. For highly polysemous words with tens of senses,

the Select task may even be made easier by performing multiple rounds of Select that

each show only subsets of a word’s senses and then aggregating those rounds’ outputs.

Second, crowdsourcing platforms offer limited visual space for displaying informa-

tion to workers. The Select task provides a pragmatic way to streamline the task’s data

so that only a few senses need to be shown on screen for the Rate task. This reduced

space can potentially improve annotation throughput and reduce worker frustration at

viewing a large bank of Likert scale options.
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4.3.5 MaxDiff

Our second novel sense-annotation methodology uses MaxDiff questions to further

simplify the annotation task and remove a rating scale altogether. A MaxDiff ques-

tion is designed to provide information on the respondent’s ranking of multiple items

with respect to a single quality, e.g., sense applicability (Louviere, 1991).7 Then, the

respondent is shown a partial list of all items and asked select the two items that exhibit

the most and least degree of that quality. In the case of sense annotation, workers are

shown a word in context and a subset of the word’s senses and then asked to select the

sense that most applies and sense that least applies to the given context. Figure 4.7

shows an example MaxDiff question on MTurk for add.v, separated into two questions:

one asking for the most applicable and one asking for the least applicable.

Importantly, each question shows only a subset of the senses. Multiple subsets are

shown in different questions in order to capture the relative ranking between all senses.

Showing all senses would fail to capture differences in the ranks of intermediate items

(i.e., those not selected as most or least), while showing only two items per question

would be equivalent to a Paired Comparison rating, which requires 2n− 1 comparisons

to rate all n items. Therefore, MaxDiff has two parameters: (1) how many items are

shown per question, and (2) how many questions are shown with different subsets.

Chrzan and Patterson (2006) recommends of using three to five items per question,

which lets the total ranking be evaluated with fewer questions than Paired Comparison

without overwhelming the respondent with options. In the example MaxDiff question

shown in Figure 4.7, only three of the six senses of add.v are shown. For n items, using

1.5n unique MaxDiff questions is recommended as a minimum (Sawtooth Software,

2007). We specify the parameter values used in our experiment later in Section 4.4.2

after describing the dataset.

By aggregating the most– and least-applicable responses across multiple MaxDiff

7For example, a MaxDiff question may ask a respondent to consider automobiles according to their
reliability.
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Figure 4.7: MaxDiff questions for the same context, which ask workers to select the

most and least applicable senses for the list.

questions for a single context, each sense is assigned a numeric score similar to those

produced by scale-based procedures. Sense applicability ratings are produced using a

modification of the counting procedure of Orme (2009). Let mi be the number of times

sense si was shown and selected as the most applicable and li be the number of times

it was shown and selected as least applicable. The final rating of each sense is mi − li.

All negatively-rated sense are treated as completely inapplicable and assigned a score

of zero; all positively-rated normalize senses are normalized to have their applicability

in (0,1], where one indicates maximal applicability.

Annotating with MaxDiff questions has two advantages. First, because workers an-

swer preference questions, the aggregated ratings are not subject to a scale bias, unlike

Likert scale ratings. Second, because only a subset of senses are shown at a single
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Sense Most App. (mi) Least App. (li) Final Rating

s1 10 0 10
s2 7 0 7
s3 2 8 -6
s4 3 10 -7
s5 1 11 -10

Table 4.3: An example aggregation of MaxDiff responses for five senses where ques-

tions showed three senses at time.

time, MaxDiff questions reduce the complexity of the annotation task, much like the

reduced-item Rate task. However, MaxDiff does have the disadvantage of requiring

more annotations per context: where the previously described annotation methodolo-

gies require a constant number of tasks per context (i.e., one for Single-Choice and

Likert scale; two for Select and Rate), a MaxDiff annotation requires at least 1.5n tasks

for words with n senses, which can significantly increase the cost for annotating highly

polysemous words (e.g., annotating a single sentence of hot.j would require a minimum

of 32 tasks).

We note that while MaxDiff is a comparative method, it too allows workers to ex-

press their ambiguity in sense annotation. Consider the example aggregate MaxDiff

annotation shown in Table 4.3 where MaxDiff questions showed three senses per ques-

tion. Here, workers have found that senses s1 and s2 to be the most applicable when

shown in questions. In cases where both s1 and s2 were shown together, s1 was picked

as most-applicable more often, giving it a higher final rating. Note that when only the

three inapplicable senses were shown in questions, one of these senses must receive

a most-applicable rating. However, in the remaining questions where an applicable

sense was present, the inapplicable senses were frequently selected as least-applicable,

which yields a negative aggregated rating and a final sense annotation of inapplicable.

By varying the items shown in each question, each applicable sense can ultimately re-

ceive most-applicable ratings and a positive aggregate score, while inapplicable items
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become consistently rated as least-applicable. This process allows workers to express

their ambiguity without needing to rate each sense along a scale.

4.3.6 Calculating Inter-annotator Agreement

Krippendorff’s α is used to calculate IAA for each methodology according to its re-

spective level of measurement, which refers to the scale used to represent and com-

pare responses (Stevens, 1946). In our annotation task, The Single Choice, Select, and

MaxDiff tasks use the nominal level of measurement, where responses denote names

that are not comparable to one another. In contrast, the Likert scale and Rate tasks use

the ordinal level of measurement, where applicability ratings reflect rankings along a

value scale. When aggregating Likert scale ratings by taking the mean value, we in-

terpret the value according the interval level of measurement, where the value reflects

a rating (rather than a rank) along a defined scale. Krippendorff’s α may be computed

for all three of these levels, which allows easier interpretation and comparison when

looking at agreement rates from different types of annotated data.

Annotation tasks are modeled as follows for computing α. A Single-sense task

is considered as a single item with n choices, one for each sense. A Select task is

considered as n items, one for each sense; each item has two choices denoting whether

its corresponding sense was selected. A Likert scale task has n items, one for each

sense; each item has five choices, one for each of five ranks on the rating scale. The

Rate task is identical to Likert, but will have between one and n items, depending on

the output of the Select task. Finally, a MaxDiff task is considered as two items, one

for selecting the most applicable sense and one for selecting the least applicable; each

item has k choices, depending on the number of options shown in a MaxDiff question.
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4.4 Experiments

We perform three experiments to measure the quality of fine-grained sense annotations

produced by crowdsourcing using each of the four described annotation methodologies.

The first experiment tests the agreement of the MTurk workers. While crowdsourcing

workers are not expected to have a high agreement, this first analysis is designed to

reveal which of the methodologies yields higher initial agreement. Crowdsourcing is

expected to perform best when worker responses are aggregated (Surowiecki, 2005);

therefore, the second experiment measures the quality of aggregated annotations based

on their agreement with a reference annotation. The third experiment performs a repli-

cability test to measure the reproducibility of the same annotations from an entirely

different group of workers.

4.4.1 Data set

To compare with prior work, experiments were done using the contexts in the Graded

Word Sense (GWS) data set of Erk et al. (2009). In their experiments, Erk et al. (2009)

had three annotator rate 50 contexts each of eight words using the Likert-rating method-

ology (Sec. 4.3.3). The eight words, shown in Table 4.4, are of moderate polysemy with

4–7 senses. The words’ contexts were drawn evenly from the SemCor (Miller et al.,

1993) and SENSEVAL-3 lexical substitution (Mihalcea et al., 2004) corpora. For all

contexts, the GWS annotators rated the applicability of all WordNet 3.0 senses, which

we also use.

Annotation was done in-person (not through crowdsourcing) and annotators were

free to go back and revise their ratings. Annotators were all native English speakers.

For simplicity, we refer to them as the GWS annotators.
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Term Part of Speech Number of senses

add verb 6
ask verb 7
win verb 4
argument noun 7
interest noun 7
paper noun 7
different adjective 5
important adjective 5

Table 4.4: The eight terms from the GWS dataset (Erk et al., 2009) used in the crowd-

sourcing experiments

4.4.2 Crowdsourcing Setup

Crowdsourcing was performed using the Mechanical Turk platform. We first describe

the design of the task itself and then describe MTurk platform-specific details.

Each annotation methodology was tested using a methodology-specific MTurk task

design. Tasks contain three elements: (1) an IRB header indicating that the worker

consents to participating the study,8 (2) general instructions, shown in Table 4.5, asking

the worker to complete all questions and to not participate if they cannot understand the

task or meaning of the words, and (3) methodology-specific instructions describing the

details of what a worker was to do.

The MTurk platform permits works to complete as many tasks as they please.

Therefore, to increase the familiarity with the annotation task, each task included four

annotation questions. To further increase familiarity, all questions showed contexts for

the same lemma with senses in the same order. This batching also served as a deterrent

to adversarial workers that seek to randomly answer a single question and move on.

We note that although workers were free to complete only a single task, many com-

pleted multiple tasks and a few workers even completed tasks from multiple annotation

8All work was submitted and approved under IRB#11-003218.
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This study will be used to better understand how readers interpret the meaning of a word based on its

context. Your input is much appreciated.

If any of the questions in a HIT are unanswered, or some ratings are left blank, then the assignment is no

longer useful to us and we will be unable to pay for the assignment. HITs that contain randomly clicked

ratings will also not be approved.

Skip a HIT if you do not know the meanings of the words.

Attempt HITs only if you are a native speaker of English or very fluent in English.

Certain check questions will be used to make sure your input is responsible and reasonable. HITs that

fail these tests will be rejected. If you fail too many check questions, then it will be assumed that you are

not following instructions above, and ALL of your HITs will be rejected.

In this HIT will be presented five questions.

In the first question, you will be presented with a bold-faced word and a list of possible definitions of

that word. Your task is to select which of the definitions is a correct definition of that word. Only one

definition should be correct; if you feel multiple definitions could be correct, select the definition you

would most commonly use with the word.

Table 4.5: General instructions shown for all annotation methodologies at the beginning

of each task on the MTurk platform, referred to as a HIT in the instructions.

methodologies.

For all methodologies, each task was completed by ten MTurk workers. For Select

and Rate, senses were passed from Select to Rate if they received at least three votes.

For the MaxDiff methodology, questions showed three senses at a time for terms with

six or fewer senses and four senses for those with seven senses, in line with the recom-

mendations of Chrzan and Patterson (2006). Each contexts was rated with 3n tasks per

context where n is the number of senses of the target word. MaxDiff tasks used ran-

domized permutations of the senses, ensuring that each sense appeared at least once.

Due to resource limitations, we omitted the evaluation of argument.n for MaxDiff.

Our task setup on the MTurk platform includes three best-practices for conducting

research with MTurk. First, as Ross et al. (2010) and Mason and Suri (2012) note,

MTurk workers come from a wide-variety of demographics, which can lead to incon-
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Figure 4.8: An example check question that preceded all annotation tasks, where the

Turker must select a correct definition for the bolded word amongst the four options.

sistent results, especially when language fluency is not necessary to submit a response,

which is the case for the multiple choice tasks used in our study. Therefore, to ensure

fluency in English, we adopt the strategy of Jurgens et al. (2012) and prefaced each

HIT with a simple test question that asked the worker to pick out a definition of the

target word from a list of four options. The incorrect options were selected so that they

would be nonsensical for anyone familiar with the target word. Figure 4.8 shows an

example check question for add.v. Additionally, we rejected all work where more than

one option was missing a rating. Approximately 15-25% of the task submissions were

rejected by these criteria (depending on the methodology), underscoring the importance

of filtering.

Second, Zhu and Carterette (2010) notes that adversarial workers will frequently

resort to patterns when providing multiple choice input, e.g., repeated rating items using

a score sequence 1-2-3-4, or rating series of items with a constant score. Therefore, we

test for multiple types of patterns in the input, which resulting in rejecting 5-10% of the

input per lemma.

Third, in related studies Bachrach et al. (2012) and Kosinski et al. (2012) analyzed

the relationship between the payment per task and the capabilities for the responding

MTurk workers on a Raven’s Progressive Matrices (Raven, 1936), which are non-verbal

question for measuring cognitive capacity. Both studies showed that the highest per-

formance was obtained using a payment near 0.05 USD; higher payment resulted in

attracting scammers, while lower payment disinterested higher-quality MTurk workers.
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add.v ask.v win.v argument.n interest.n paper.n different.a important.a

Single-sense 0.332 0.332 0.030 0.139 0.097 0.174 0.007 0.052

Erk et al. (2009) 0.470 0.354 0.072 0.497 0.320 0.403 0.212 0.466

MTurk Likert 0.336 0.212 0.129 0.250 0.209 0.522 0.030 0.240

MTurk Select 0.309 0.127 0.179 0.192 0.164 0.449 0.024 0.111

MTurk Rate 0.204 0.076 0.026 0.005 0.081 0.108 0.005 0.116

MTurk MaxDiff 0.493 0.353 0.295 - 0.349 0.391 0.220 0.511

Table 4.6: IAA per word for the different sets of annotators. The top most methodol-

ogy restricted annotators to a single sense choice, while the middle group all allowed

multiple choices.

Therefore, we adopt the same payment range, paying $0.05USD for the Single-sense,

Select, Rate, and Likert tasks. Because we intentionally use more MaxDiff tasks than

is necessary, the size of the task necessitated paying less due to financial constraints;

payment was ultimately set at $0.03USD, though hourly payment rates were similar

due to the higher throughput of the MaxDiff tasks.

In total, 730 workers participated in the experiments and provided 41,280 accepted

responses to annotation questions on the MTurk platform.

4.4.3 Experiment 1: Annotator Agreement

The first experiment evaluates each methodology by the workers’ IAA. The agreement

rates of the workers provides a measure of how easy the task is for the workers. How-

ever, we note that unlike the IAA of experts, worker IAA should not be considered

a final assessment of the annotation quality, as multiple workers’ responses are com-

bined together to produce the final sense annotation. Nevertheless, at least moderate

agreement is needed to demonstrate that the workers are not answering randomly.
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Results Table 4.6 reports the IAA for the workers participating in each annotation

methodology and the IAA for the GWS annotators on the same data set. Two findings

were observed. The first finding is that allowing workers to select more than a single

rating does improve IAA, which confirms our hypothesis. Consistent with other work

on crowdsourcing fine-grained sense annotations (Passonneau et al., 2012b), workers

had low IAA when using the single-sense methodology. The Single-sense α values

ranged in [0.007, 0.332], with only add.v and ask.v having an α above 0.1. Unlike

prior work, we did not observe any correlation between the degree of polysemy and

decreased IAA in the Single-sense annotation setting, which we attribute to worker

difficulty in choosing between the related senses of the adjectives and win.v.

In contrast to the IAA of Single-sense workers, IAA improved when workers were

allowed to explicitly select multiple senses, as in the Likert scale and Select methodolo-

gies. Furthermore, Likert scale IAA approaches (and for two words exceeds) the IAA

of the GWS annotators who used the same methodology during an in-person study

(Erk et al., 2009). This result is encouraging for two reasons. First, crowdsourcing is

a highly adversarial annotation environment compared with in-person studies. Second,

170 unique workers participated in the Likert rating annotation tasks and completed

on average 28 tasks, compared with the three GWS annotators who were able to build

expertise across all 400 instances and who could also revise their prior annotations to

improve consistency. The close IAA rates of the workers and GWS annotators demon-

strate that crowdsourced workers have similar capablities as in-person annotators on

the same task.

The second finding of the experiment is that the choice of annotation methodology

significantly impacts IAA. While both the Likert and S+R tasks have lower IAA than

the GWS annotators do, the MaxDiff tasks achieve higher IAA for almost all words.

We hypothesize that comparing senses for applicability is an easier task for the un-

trained worker, rather than having to construct a mental scale of what constitutes the

applicability of each sense.
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Figure 4.9: Median completion time for one task (four instances) with the Likert and

Select formats.

Surprisingly, the low IAA of the binary Select task suggests that it was more difficult

than the rating-based Likert-based setting. We hypothesize that Turkers were divided

over the choice in what constitutes the cutoff for applicability in the Select task, whereas

in the Likert task, questionably applicable senses could be assigned 1 or 2 without a

large penalty to IAA. As a way of estimating the task difficulty, we measured the time

taken to complete one HIT (four annotations) for both the Likert and Select ratings. Due

to the uncontrolled nature of the online setting9 we compare the median task completion

times as an estimate of difficulty instead of the mean times, which are more affected by

outlier completion times.

Figure 4.9 shows the median completion times for all approved annotations, reveal-

ing that the median duration of the Select methodology is often slightly longer than that

of the Likert task, despite Select having a simpler question format. The exception to

9In the MTurk platform, Turkers are free to take breaks during the task itself (e.g., making a phone
call, surfing the web) provided that their completion time is within the maximum allowed, which was set
at the default 30 minutes.
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Figure 4.10: The probability of each rating across all instances for the Likert and Rate

task setups.

this is annotations for “paper,” for which the median time was 50 seconds faster with

Select and had the highest IAA among all words for Select. As a whole, the similarity

of annotation times suggests that a binary decision in applicability is just as cognitively

demanding as rating the applicability itself.

Last, the Rate task has the lowest IAA, despite its similarity to the Likert task.

One potential explanation would be that because the Select subtask filters out all low-

applicability senses, annotators could have used very similar ratings for the remaining

senses and potentially had a lower α due to its correction for chance (i.e., when nearly

all ratings are the same, agreement is primarily due to chance). However, an inspection

of the ratings revealed no such trend. Figure 4.10 shows a comparison of the rating

distributions for the Rate and Likert on three words, revelaing that Turkers used the

whole rating scale in the Rate task. Furthermore, the use of the whole rating scale

indicates that some senses that were above the Select threshold were still considered

inapplicable.

4.4.4 Experiment 2: Aggregating Crowdsourced Annotations

The benefit of crowdsourcing is that while individual workers may make mistakes,

the combination of their responses produces an answer much closer to the correct an-

swer (Surowiecki, 2005). Therefore, in the second experiment, we evaluate aggregated
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add.v ask.v win.v argument.n interest.n paper.n different.j important.j avg.

Likert Mean 0.462 0.339 0.102 0.426 0.322 0.518 0.148 0.460 0.347

Likert Median 0.470 0.332 0.093 0.430 0.339 0.535 0.136 0.477 0.351

Likert Mode 0.500 0.369 0.083 0.445 0.388 0.518 0.124 0.516 0.369

S+R Mean 0.474 0.383 0.130 0.487 0.385 0.477 0.094 0.410 0.355

S+R Median 0.473 0.394 0.149 0.497 0.390 0.497 0.103 0.416 0.364

S+R Mode 0.461 0.398 0.159 0.493 0.389 0.472 0.108 0.418 0.362

MTurk MaxDiff 0.508 0.412 0.184 - 0.408 0.496 0.115 0.501 0.374

SampledBaseline 0.238 0.178 0.042 0.254 0.162 0.205 0.100 0.221 0.175

Random Baseline 0.239 0.186 0.045 0.249 0.269 0.200 0.110 0.269 0.196

Table 4.7: IAA between aggregated worker sense annotations and annotations of the

GWS annotators (S+R denotes Select and Rate).

worker responses by measuring the IAA of the aggregated sense annotations with the

annotations of the GWS annotators. For the scale-based ratings, Likert and Rate, we

considered three arithmetic operations for aggregating the worker responses to pro-

duce the final applicability rating of each sense: mode, median, and mean. MaxDiff

responses were aggregated using the counting procedure described in Section 4.3.5.

The worker IAA is compared with GWS annotators against sampled and random

sense annotation baselines. In the sampled baseline, each sense is assigned a rating by

sampling from the distribution of applicability rating used by the GWS annotators for

that sense. The randomized baseline is created by assigning each sense an applicability

uniformly sampled in [1, 5]. For each random baseline, we report the mean α across 50

sampled annotations of the data.

Results Table 4.7 reports the IAA between aggregated worker annotations and the

annotations of the GWS annotators. Three findings emerge. First, aggregated annota-

tions achieve moderate aggreement with the annotations of the GWS annotators. Fur-

thermore, IAA with the GWS annotators increases proportional to worker agreement

(cf. Table 4.6), indicating that when workers agree more, their combined annotations
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Figure 4.11: IAA between aggregated Likert and MaxDiff solutions, where the Likert

ratings are aggregated using one of three methods.

better correspond to those performed in-person. Of the three methods, MaxDiff pro-

duced aggregate annotations that were most similar to those of the GWS annotators.

Surprisingly, Select and Rate provided no advantage over Likert ratings, with half of

the terms performing slightly better with each. All three methodologies outperform the

baselines.

Second, for the scale-based annotation methodologies, the aggregation procedure

had only moderate impact on the results. For Likert annotations, select the mode rating

(i.e., most frequent) produced the highest average agreement. While for the Select and

Rate annotations, the median yielded the highest - though the mode rating was similar in

value. In both cases, the mean rating produced the worst performance, indicating that

the workers’ rating distributions often contained outlier ratings that distort the mean

value away from the rating assign by other annotators.

Third, the GWS annotators had considerably lower agreement for some words (e.g.,

win.v), indicating these words were more difficult to annotate. In such cases, one of

the GWS annotators could have a higher IAA individually with a method’s aggregated
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annotation, suggesting that that that annotator was producing more reliable annotations.

However, no such trend is observed. Therefore, as a further comparison, we computer

the IAA between the aggregated annotations of the Likert scale (with its mode rating)

and the MaxDiff annotations, shown in Figure 4.11.

The agreement shown in Figure 4.11 provides three insights. First, the low IAA for

win.v and difficult.j by the GWS annotators is not improved by using different annota-

tion methodologies. This universally-low IAA suggests that the annotation guidelines

themselves should be clarified, both for workers and annotators. Second, moderately-

high IAA between Likert scale and MaxDiff aggregate annotations indicates that the

different methodologies are capable of capturing the same information from workers.

Furthermore, the mode rating of the Likert scale produces significantly higher agree-

ment than the mean or median ratings, which further strengthens the case for using the

mode rating when aggregating. Third, the IAA for four words is at least 0.67, which

Krippendorff (1980) suggests as a minimum for drawing tentative conclusions, and ap-

proaches the level of agreement achieved for other sense-annotation experiments when

using trained annotators (Kilgarriff and Rosenzweig, 2000; Snyder and Palmer, 2004;

Mihalcea et al., 2004).

4.5 Experiment 3: Annotation Replicability

In the third experiment, we perform a replication study to assess the degree of repro-

ducibility of the sense annotations by a different set of workers: Given an independent

re-annotation of the same texts, what is the likely agreement between the two resulting

aggregated solutions? Replicating the annotation procedure with unique sets of work-

ers provides an indication of both the quality of the annotation and the clarity of the

annotation procedure itself (Kilgarriff, 1999).

Replication was performed by sampling annotations from disjoint sets of workers

and then aggregating each. Each question in the dataset was initially annotated by
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Figure 4.12: IAA between aggregated solutions produced from disjoint subsets of five

workers.

Annotators IAA Subset IAA†

Erk et al. (2009) annotators 0.349 0.418

MaxDiff� 0.373 0.419

Likert 0.241 0.295

Replicated Likert (Aggregated) 0.409 0.445

Replicated MaxDiff (Aggregated)� 0.815 0.880

Aggregated Likert and Aggregated MaxDiff� 0.472 0.649

† Excludes win.v and difficult.a, which had the lowest IAA
� Excludes agreement for argument.n, which was not annotated

Table 4.8: Worker and Annotator IAA rates for the GWS corpus

ten workers. Then, each item is assigned two sets of five worker annotations, sampling

without replacement from the original set of annotations. Aggregated sense annotations

are produced for each item from these two sets. We repeat this process 50 times and

report the mean agreement measured using all items.
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Results Figure 4.12 shows the mean α for each word when instance ratings are drawn

from disjoint sets of five workers. Table 4.8 shows the α of all words for each data set.

Two results are seen. First, MaxDiff annotations is highly replicable and five of the

seven words achieve an α ≥ 0.8, which Krippendorff (2004) suggests is necessary to

claim high-quality agreement. Indeed, when the lowest-performing lemmas of diffi-

cult.a and win.v are removed, α increases to 0.880 indicating that two independent sets

of annotators are highly likely to produce the same sense annotations.

In contrast, aggregated solutions from Likert ratings show much less agreement,

attaining an average alpha of only 0.472 and achieving an α ≥ 0.8 for only one word,

paper.n. However, this agreement surpasses that of the GWS annotators, suggesting

that the methodology would be expected to perform the same for both workers and

annotators. Using MaxDiff is more likely to generate a aggregated key with similar

or identical distributions, with an average improvement in α over Likert aggregated of

0.3. However, an additional caveat for the IAA of Likert ratings is that five ratings

may be too few to produce a reliable rating from the workers. Current approaches have

typically used more than five workers because of the difficulty of the task and further

work is needed to assess quality relative to the number of workers.

Second, MaxDiff replicability has agreement rates that are on par with those of pre-

vious expert-based annotation studies, shown in Table 4.9. While individual worker

agreement is moderate, their aggregated sense annotations are high quality and replica-

ble. In comparison with the studies in Table 4.9, the annotations from two independent

sets of MaxDiff ratings have the second-highest IAA for WordNet-based studies.

4.6 Conclusion

Word sense annotation is an important but laborious task. Due to the need for high-

quality annotations, experts and trained annotators have been responsible for creat-

ing all of the large-scale sense-annotated data sets in use, which creates a significant
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Corpus Sense Inventory IAA Measurement

SensEval-1 (Kilgarriff and Rosenzweig,

2000)

HECTOR 0.950 Replicability experiment (Kilgarriff,

1999)

OntoNotes (Hovy et al., 2006) OntoNotes ≥ 0.90† Pairwise agreement

SALSA (Burchardt et al., 2006) FrameNet 0.86 Percentage agreement

SensEval-2 Lexical Sample (Kilgarriff,

2002)

WordNet 1.7 0.853, 0.710, 0.673‡ Adjudicated Agreement

SemCor (Fellbaum et al., 1998) WordNet 1.6 0.786, 0.57? Percentage agreement

SensEval-3 (Snyder and Palmer, 2004) WordNet 1.7 0.725 Percentage agreement

MASC (Passonneau et al., 2012a) WordNet 3.1 -0.02 to 0.88/ Krippendorff’s α

with MASI (Passonneau et al., 2006)

MASC, single phase reported

in Passonneau et al. (2010)

WordNet 3.1 0.515 Krippendorff’s α

GWS Corpus (Erk et al., 2009) WordNet 0.349 Krippendorff’s α

† not all words achieved this agreement
‡ Kilgarriff (2002) use a multi-stage agreement procedure where two annotators rate each item, and in the case of disagreement,

a third annotator is added. If the third annotator agrees with either of the first two, the instance is marked as a case of

agreement. However, the unadjudicated agreement for the dataset was 67.3 measured using pairwise agreement. A re-

annotation by Palmer et al. (2004) produced a similar pair-wise agreement of 71.0.
? Ng et al. (1999) perform a re-annotation test of the same data using student annotators, finding this substantially lower

agreement of 0.57, compared with the original 0.725
/ IAA ranges for 37 words; no corpus-wide IAA is provided.

Table 4.9: Inter-annotator agreement for sense-annotated corpora (top) and agreement

for Turker-based annotations of the GWS corpus (bottom)

knowledge acquisition bottleneck. In this chapter, we test the potential for gathering

sense annotations using crowdsourcing, where untrained online workers perform the

annotation task. We propose two new annotation methodologies designed to simplify

the task itself for untrained workers: (1) a two-stage methodology where one group

of workers identifies potentially-applicable senses and then a second groups focuses

only on those senses to provide detailed applicability ratings, and (2) a MaxDiff-based

methodology where workers compare senses’ applicabilities without the need for a

rating scale. In three experiments, we compare our two new methododologies to the

traditional single-sense methodology and the Likert scale methodology of Erk et al.

(2009), providing two main contributions. First, we demonstrate that restricting work-
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ers to using a single sense in annotation produces low IAA; but, by allowing workers

to mark multiple senses, worker agreement rates rise substantially, approaching those

seen with in-person annotators. Second, we demonstrate that the choice in annotation

methodology significantly impacts the worker’s ability to produce correct annotations,

with MaxDiff offering superior performance. We demonstrate that MaxDiff produces

highly-replicable annotations, with agreement rates in replicability tests on par with

those seen between experts. Together, these results show the benefit of tailoring sense

annotation to the level of experience appropriate for a crowdsourced worker rather than

directly apply the common method used by experts.
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CHAPTER 5

An Analysis of Ambiguity in Sense Annotations

Summary Ambiguity as to which sense best applies to a usage is a major source

of difficulty for both annotators and WSD systems - especially when multiple senses

appear to be valid interpretations. To better understand the phenomena of ambiguity

between multiple senses, in this chapter we introduce a new WordNet sense-annotated

corpus where all such cases with multiple interpretations are explicitly annotated, which

was prepared as a part of SemEval-2013 Task 13 (Jurgens and Klapaftis, 2013). We then

use this corpus in our analysis of ambiguity, described in Jurgens (2014), to identify the

causes by which annotators perceive multiple senses, the frequency of those causes,

and how the ambiguity may be resolved. Our findings show that most ambiguity is due

to insufficient contextual cues within a sentence but that a sizable minority of instances

have contexts with distinct cues that each elicit different senses. Furthermore, we show

that using a more coarse-grain sense inventory with fewer sense distinctions can reduce

the need for multiple WordNet senses, but not eliminate it entirely.

5.1 Introduction

A word may take on a variety of meanings depending on the context. Word sense inven-

tories formalize these meanings into discrete units, known as senses. Annotators later

consult these senses to specify which meaning is present in a given context. In some

cases, a word’s senses may be related. For example, in the commonly used WordNet

(Fellbaum, 1998) and OntoNotes (Hovy et al., 2006) sense inventories, bank may refer
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to the financial institution, the building that the institution occupies, or an object used

to store money (e.g., a piggy bank). These related senses can cause difficulty for an-

notators when determining the particular sense of a word’s usage. Indeed, OntoNotes

even includes a special sense of bank to indicate when the usage is ambiguous between

the institution and building senses.

While most annotation efforts restrict usages to having a single sense even when

ambiguous, another possibility is to label such usages with multiple senses in order to

explicitly model the multiple interpretations. Previous annotation studies have shown

that annotators will use multiple senses if allowed (Véronis, 1998; Murray and Green,

2004; Erk et al., 2009; Passonneau et al., 2012b; Jurgens, 2013). However, little work

has assessed the underlying factors causing annotators to perceive multiple senses and

what the resulting interpretation of the usage is with its multiple labels. Furthermore,

no study has proposed guidelines for when annotators should use multiple senses, de-

spite expressing the need for them (Krishnamurthy and Nicholls, 2000; Langone et al.,

2004).

This chapter focuses on three open questions: (1) what is the frequency with which

a lemma may have valid, differing semantic interpretations, (2) what contextual factors

contribute to the perception of multiple senses and what are their relative frequencies,

and (3) what is the relationship between the annotation’s multiple senses and how is the

usage interpreted as a result. To answer these questions we constructed of a new sense-

annotated corpus used in SemEval-2013 Task 13 (Jurgens and Klapaftis, 2013) where

word usages are explicitly annotated with the applicability of each of its WordNet sense

in the given context.

Our work offers four main contributions. First, we produce a new multiple-sense

annotated corpus and describe its construction procedure. Second, we demonstrate that

contextual underspecification is responsible for instances with multiple sense annota-

tions in nearly two-thirds of the cases, while the remaining cases are due to syllepsis,
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where multiple contextual features each select different senses.1 However, verbs are

more likely to appear in sylleptic contexts. Third, we show that the fine granularity of

sense distinctions in WordNet is not completely responsible for the perception of mul-

tiple senses: While nearly all verb instances with multiple senses would be annotated

with a single OntoNotes sense, for nouns, conflicting interpretations or cases of regular

polysemy would still require the instance to have multiple OntoNotes senses in approx-

imately 23% of cases. Fourth, we propose a two-way classification scheme, which we

argue would serve sense annotators as a guideline when considering multiple senses for

a usage.

5.2 Related Work

Work on ambiguity in word sense annotation has often focused on techniques to reduce

ambiguity in the sense inventory in order to improve annotator agreement. Most work

has addressed the aspect of sense granularity, with many proposals for how to reduce

ambiguity by adapting a sense inventory to make its senses hierarchical (Edmonds and

Cotton, 2001), underspecified (Buitelaar, 2000), or more coarse-grained (Palmer et al.,

2004; Palmer et al., 2007). Other work has proposed creating new sense inventories

around annotators’ perceived distinctions in meaning (Rumshisky and Batiukova, 2008;

Biemann, 2012).

Several works have investigated allowing annotators to use multiple senses. Véronis

(1998) analyzed 600 hundred contexts each for 60 French words using a common

French dictionary to define their senses. The author notes that the average rate of multi-

sense annotation was low, with an average of 1.02 senses per instance, but was higher

1Here, syllepsis refers to the linguistic phenomena where a word is used in relation to two or more
parts of the sentence and must be understood differently in relation to each. For example, in the adage,
“Chocolate, coffee, and men: the richer the better,” the lemma rich is interpreted differently for each of
the three words it modifies. Syllepsis may also elicit significantly different interpretations of the same
word, e.g., “you are free to execute your laws and your citizens as you see fit,” (from Star Trek: The Next
Generation).
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for some words (e.g., an average of 1.311 senses per instance for the verb comprendre).

Furthermore, the author notes that disagreements were not resolved by merging simi-

lar senses, with most disagreement occurring between much coarser senses. To fully

capture all perceived senses, Erk et al. (2009) had three annotators label 50 contexts

each for eight words, rating all senses of the word using a scale from one (inapplicable)

to five (completely applicable). Their annotators readily used multiple senses per in-

stance, with 78.8% of usages having multiple senses rated at least a three on their scale.

Similar to the study of Véronis (1998), Erk et al. (2009) found that the presence of mul-

tiple sense could not be reduce to a single sense by grouping highly-correlated senses,

with over 40% of contexts having two senses that were not correlated. Last, Alonso et

al. (2013) asked crowdsourced workers and volunteers to annotate between literal and

metonymic senses, allowing them to select a third option of “both” in cases of under-

specification. Annotators for Danish, English, and Spanish all used the underspecified

option, demonstrating that, in conjunction with the French study of Véronis (1998), the

perception of multiple senses is common across languages and sense inventories.

The most similar to the proposed study is that of Passonneau et al. (2009), who ana-

lyzed factors contributing to annotator disagreement, finding that agreement was often

mediated by the lemma itself and its usages. Looking across multiple lemmas, they

found that the factors of sense similarity, contextual specificity, and sense concrete-

ness most affected agreement. The present work offers a complementary analysis for

understanding cases where multiple senses meaningfully apply, which potentially may

have been treated as cases of annotator disagreement when usages were required to be

labeled with a single sense.

5.3 Corpus Description

Nearly all sense-annotated corpora require annotators to use a single sense when an-

notating an instance. This single-sense annotation masks any potential alternate in-
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Number of Senses
Minimum Mean Maximum

Nouns 4 9.05 14
Verbs 4 8.60 22

Adjectives 4 7.60 10

Table 5.1: Polysemy statistics of the target words in SemEval-2013 Task 13

terpretations of a usage or ambiguity that an annotator might have. Therefore, as a

part of Samovar-2013 Task 13 (Jurgens and Klapaftis, 2013), we prepared a corpus of

multiple instances of fifty target words, allowing for annotators to label each instance

with multiple senses, weighted by their applicability. Following, we describe the target

words around which the corpus is built (Sec. 5.3.1) and then the annotation procedure

(Sec. 5.3.2).

5.3.1 Corpus and Target Words

To focus the corpus on lemmas that may have multiple interpretations, potential target

lemmas were drawn from two sources: (1) lemmas used in prior SemEval WSD tasks

that had related senses and that yielded lower performance for WSD systems was lower

than other lemmas in the task (Edmonds and Cotton, 2001; Snyder and Palmer, 2004;

Mihalcea et al., 2004; Navigli et al., 2007), and (2) lemmas that were annotated in

the MASC corpus (Passonneau et al., 2012a) and caused difficulties for that project’s

annotators.2 The final list of target lemmas was then selected from these potential

lemmas in order to balance the distribution of lemma polysemy, summarized in Table

5.1. Furthermore, while prior SemEval sense-based tasks have used only nouns and

verbs, we include adjectives in our target lemmas. Table 5.2 lists the fifty selected

target lemmas.

Contexts for the target lemmas were then drawn from the Open American National

2Rebecca Passoneau, personal communication.
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Nouns Verbs Adjectives

board paper add meet common
book part appear read dark
color people ask serve familiar
control power become strike late
date sight book suggest new
family sound dismiss trace poor
force state find transfer serious
image trace help wait severe
life way live win strong
number window lose write warm

Table 5.2: Target words used in SemEval-2013 Task 13

Corpus (OANC) (Ide and Suderman, 2004). Contexts were selected from multiple

genres, which enables measuring multiple-sense annotation rates in different contexts,

summarized in Table 5.3. An automatic process was used to sample an initial list of

usages for each of the target lemma, which were then manually inspected to ensure

that (1) the usage had not been automatically tagged with the wrong part of speech,

(2) the usage could be interpreted with at least one WordNet 3.1 sense, and (3) the

usage was not part of an idiomatic usage (e.g., “kick” in “kick the bucket”), named

entity (“family” in “ABC Family”) or similar types of non-compositional multiword

expressions. Ultimately, 4664 contexts were used as test data, with a minimum of

22 and a maximum of 100 contexts per word. Contexts were restricted to the sentence

containing the usage of the target lemma. This size matches common real-word settings

such as microtext domains like Twitter, where limited context for disambiguation is

available (Gella et al., 2014).

5.3.2 Sense Annotation

Usages of the target lemmas were annotated by the two organizers of Task 13 (Jur-

gens and Klapaftis, 2013). The first author (myself) annotated all instances and the
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Spoken Written
Genre Face-to-face Telephone Fiction Journal Letters Non-fiction Technical Travel Guides All

Instances 52 699 127 240 3 103 477 611 192 4664
Tokens 1742 30,700 3438 69,479 2238 11,780 17,337 4490 141,204
Word Types 577 3559 1498 14,084 854 3771 4771 2035 19707
Mean Tokens per Context 39.4 45.8 30.9 33.7 24.3 27.5 31.7 26.4 34.1
Mean senses/inst. 1.17 1.07 1.12 1.11 1.30 1.08 1.09 1.09 1.10

Table 5.3: Statistics for the annotated corpus used in Jurgens and Klapaftis (2013),

according by genre

second author annotated a 10% sample of each lemma’s instances in order to estimate

Inter-Annotator Agreement (IAA). Items were rated using the Likert scale annotation

procedure described in Chapter 4 Section 4.3.3), following the guidelines of Erk et al.

(2009). During this author’s annotation effort, all instances of a target lemma were an-

notated sequentially and then the same instances were rechecked to correct errors and

ensure a consistent application of the sense applicability ratings. IAA was calculated

using Krippendorff’s α for Likert scales as in Chapter 4.

The total IAA for the dataset was 0.504, and on individual words, ranged from 0.903

for number.n to 0.00 for win.v. While this IAA is less than the 0.8 recommended by

Krippendorff (2004), it is consistent with the IAA distribution for the sense annotators

working on other parts of the OANC corpus; Passonneau et al. (2012a) reports an α

of 0.88 to -0.02 for trained sense annotators in the MASC subset of the OANC. Fur-

thermore, a re-analysis of the annotations showed that disagreements were often due to

incorrect interpretations from the second author; thus, the annotation quality is likely

to be higher than indicated from IAA alone.

The bottom row of Table 5.3 summarizes the sense annotation statistics for the

data set. Rates of using multiple-sense annotations were similar across the genres of

the OANC. The rate of multiple sense annotation is weakly negatively correlated with

average context size across genre, with Pearson r = −0.374, though the number of

data points is too small to use in drawing statistically significant conclusions. Due

to the variety of genres from which contexts were drawn, all lemmas were observed
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Parallel Admissible Conflicting Total

Underconstrained 47 158 92 297

Sylleptic 122 26 15 163

Total 169 184 107 460

Table 5.4: Distribution of assignments to the Context and Sense Assignment classifica-

tions

with at least two distinct senses, with many lemmas with at least half of their senses

observed.

5.4 Classification Schema

The process of determining the appropriate sense for a usage is a function of both

the context and the options available in the sense inventory. Therefore, we analyze

each usage with a two-way classification schema that incorporates both factors. The

first classification axis assesses the type of semantic constraints put upon the usage

by the context. This axis captures cases of ambiguity from too few contextual cues

and cases of syllepsis where multiple dependent clauses or modifiers refer to differ-

ent meanings of the same usage. The second classification axis assesses the types of

senses that are elicited by the usage and how those senses together may be interpreted

within in the context. For example, this axis captures cases where the context evokes

highly-similar senses that do not change the overall meaning of the context. We refer

to these classification types as Context and Sense Assignment, respectively. Annota-

tion guidelines were developed for both types iteratively through a close analysis of

50 randomly-selected instances and then applied to annotate all instances. After a first

pass of annotation, each instance was then re-annotated to correct errors and ensure the

guidelines were clear. Following, we formalize the classifications and present examples

from the corpus. For clarity, the sense descriptions with each example also include the
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corresponding WordNet sense keys used in the dataset.

5.4.1 Context Classification

Contexts were divided into two classes: (1) those containing too few semantic cues to

constrain the usage to a single interpretation and (2) those exhibiting semantic syllep-

sis where the dependent clauses or modifiers of a usage require it to be interpreted

with different meanings. We refer to these classes as Underconstrained and Sylleptic,

respectively.

Underconstrained contexts may occur due to contexts having too little content as a

whole and due to contexts omitting specific information needed to distinguish between

related senses. We illustrate these through two examples. In the following context for

warm:

Rooms are classically decorated and warm.

the cues enable interpretations of a comfortable level of heat (warm%3:00:01::) and

being colored in such a way to evoke warmth (warm%3:00:03::), despite the large dif-

ference in the senses’ meanings. In contrast, consider the context for find.

The Random House lexicographer Jesse Sheidlower has found a reference

to it in a passage from Varieties of Religious Experience, in which William

James quotes words of Voltaire, for which he gives the date 1773: “All

comes out at the end of the day, and all comes out still more even when all

the days are over.”

The interpretation of find is dependent upon the mental state of the actor and state of

the passage in question. The context enables readings where the individual uninten-

tionally encountered the reference (find%2:40:02::), was actively seeking the reference

out (find%2:39:02::), or had rediscovered a lost reference (find%2:40:00::). For both
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example contexts, additional cues can restrict the interpretations to a single sense, e.g.,

adding “in winter” as a prepositional phrase modifying warm in the first example.

Sylleptic contexts frequently occur from two constructions. The first construction

occurs when a word is associated with multiple senses, each describing different as-

pects of the same concept. For example, chicken may refer to both the animal and the

food. In many cases, classes of words exhibit the same type of semantic distinctions

(e.g., Animal/Food), which are known as cases of regular polysemy (Apresjan, 1974;

Pustejovsky, 1995; Ravin and Leacock, 2000). These Sylleptic constructions evoke the

same concept through having clauses or modifiers refer to its different aspects. We

illustrate this construction with an example for book.

The fat book here surveys the hundreds of books and articles already writ-

ten about Rockefeller

The usage evokes both the physical object (book%1:06:00::) by means of the adjective

fat and the book’s role as a literary work (book%1:10:00::) by the discussion of its

content. This object-role sense distinction is seen in other lemmas with the same type

of regular polysemy, such as magazine or paper.

The second common type of Sylleptic construction comes from metaphoric usages

that evoke both literal and figurative meanings of the word. We illustrate this with an

example for dark.

We all are relieved to lay aside our fight-or-flight reflexes and to commem-

orate our births from out of the dark centers of the women, to feel the com-

plexity of our love and frustration with each other, to stretch our cognition

to encompass the thoughts of every entity we know.

By their nature, the centers of women are devoid of light (dark%3:00:01::), but the

usage also allows a reading with a secretive connotation (dark%3:00:00:concealed:00)

to the role of the darkness.
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5.4.2 Sense Assignment Classification

The fine-grained sense inventory of WordNet permits some sense interpretations to be

concurrently true (e.g., describing a lemma’s purpose and physical properties). How-

ever, some contexts elicit conflicting interpretations. Therefore, the second classifi-

cation axis describes the consistency of the usage’s interpretation according to three

classifications: (1) the senses may be concurrently true (2) the senses are sufficiently

related to evoke a basic interpretation that could be further refined to one sense, given

more context, and (3) the senses describe conflicting interpretations of the usage in

context. We refer to these classifications as Parallel, Admissible, and Conflicting, re-

spectively, and following illustrate each with examples.

Parallel interpretations may be caused both by Underconstrained and Syllpetic con-

texts. Consider the usage of severe below.

The shock was severe enough to strike her dumb, and she was committed

to a London hospital.

The context allows interpretations of severe with respect to two aspects of the sentence,

describing the shock as intensely bad or unpleasant (severe%3:00:00:intense:00) or the

shock’s effects on the recipient as grievous or causing harm (severe%3:00:00:critical:03).

Both interpretations may be valid within the interpretation of the entire context.

Admissible interpretations reflect cases where a usage’s senses express fine-grained

distinctions or closely-related concepts. For example, consider the following use of

family.

He added that his wasn’t a dysfunctional family.

Here, the scope of family could refer to both the immediate family (family%1:14:00::)

or to a larger unit of blood relatives (family%1:14:01::). However, the context can still

be interpreted with approximately the same meaning without resolving the ambiguity,

i.e., family referring to people that are related in some way to the sentence’s subject.
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Nouns Verbs Adjs.

Context Sense Assignment % JCN % JCN %

Underconstrained Admissible 43.9 0.151 22.5 0.091 35.9

Underconstrained Conflicting 24.4 0.064 16.6 0.076 18.6

Underconstrained Parallel 4.9 0.131 5.2 0.101 21.4

Sylleptic Admissible 1.8 0.073 11.9 0.100 3.4

Sylleptic Conflicting 3.0 0.062 4.6 0.112 2.0

Sylleptic Parallel 22.0 0.098 39.1 0.065 18.6

Table 5.5: Distribution of assignments to the two-way classifications with the percent-

ages of total instances per part of speech and the average JCN similarity of senses

assigned to each instance having that classification.

In Conflicting cases, the ambiguity in a usage’s sense elicits distinct incompatible

interpretations. Consider the meaning of image below.

Thomason and the White House aren’t talking, so I consulted my own im-

age expert, Jackson Bain.

Without aid of further context, it is unclear whether the individual’s expertise pertains to

visual representations such as photographs (image%1:06:00::) or to managing a public

persona (image%1:07:00::).

5.5 Results and Discussion

The proposed annotation scheme was applied to all 542 instances with multiple sense

assignments in the dataset of Jurgens and Klapaftis (2013). During annotation, our

analysis suggested that 82 instances (15%) containing a sense rated as having low ap-

plicability should be excluded from the analysis, as these low-applicability sense would

not be considered valid interpretations of the usage according to our guidelines. The
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remaining 460 annotated instances were used in our analysis. Instances were approx-

imately equally distributed across part of speech classes, with 164, 151, and 145 in-

stances for noun, verb, and adjective lemmas, respectively. Table 5.4 shows the distri-

bution of instances across the two-way classification scheme.

Four analyses were performed to test (1) differences in ambiguity according to part

of speech, (2) the relationship between an instance’s senses’ similarity and its classifi-

cation type, (3) the effect of sense granularity on sense ambiguity, and (4) the presence

of lemma-specific preferences towards certain types of ambiguity. Following, we dis-

cuss general observations of the instances’ classifications and then describe the results

of each analysis. We conclude with a discussion of the how current sense annotation

guidelines might be improved.

5.5.1 General Observations

Three general trends appear across all instances. First, Underspecified contexts are

nearly twice as common as Sylleptic constructions. Because contexts are single sen-

tences, the high frequency of Underspecified contexts raises the possibility that the

majority of ambiguous cases could potentially be resolved to a single sense using addi-

tional context outside the sentence. Second, Underspecified and Sylleptic contexts can

cause all types of sense classifications, though each context type has a clear preference.

Third, only 23% of the instances have Conflicting semantic interpretations, suggesting

that in the majority of multiple-sense cases, a correct interpretation of the entire context

is not dependent upon refining the annotation to a single sense.

5.5.2 Part of Speech

The first analysis measures the differences in the classifications according to part of

speech. Table 5.5 shows the percentage of instances assigned to each. Clear distinctions

between part of speech classes emerge. Both nouns and adjectives are much more likely
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to be in Underconstrained contexts (73.2% and 75.9%, respectively), while verbs are

slightly more likely to be in Sylleptic contexts (55.6%).

Within the observed word types, we observed a trend in adjectives and nouns where

types had highly-related senses that were difficult to distinguish between with the avail-

able context. For example, in the following instance of new,

By reengineering business processes in conjunction with implementing

new technology, Owens Corning increased its ability to meet customer

needs.

the context makes it unclear whether the new technology has recently been invented

(new%3:00:00::) or is simply unlike the previous technology (new%3:00:00:other:00).

Similarly, in the early example of family, distinguishing between the immediate and

extended family senses is difficult in shorter contexts, though the former is a more

probable interpretation. However, the number of word types in the dataset is too small

to make strong generalizations about the behaviors of each part of speech class.

The frequency with which instances take on multiple senses also varies by part of

speech, with 10.1% of noun instances, 8.1% of verb instance, and 15.1% of adjective

instances having multiple instances. The increase in frequency for adjectives over the

rates for nouns and verbs is statistically significant at p<0.01. We hypothesize that

adjectives show an increased frequency because they may take on many different shades

meanings, depending on the noun (Pustejovsky, 1995) and sparse contexts increase the

difficulty in selecting only one of these related meanings.

Because the lemmas used in the dataset of Jurgens and Klapaftis (2013) were in-

tentionally selected based on having exhibited sense ambiguity in previous annotation

studies, the frequencies with which lemmas have multiple senses are likely to be higher

than those for a larger sample of lemmas. However, the frequencies may still provide

soft upper bounds for those expected in larger corpora and could be useful for identify-

ing annotators who are over-zealous in using multiple senses.
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5.5.3 Sense Similarity

Fine-grained sense distinctions are often reflected in the high degree of similarity be-

tween two senses of a word. We hypothesize that sense similarity may reveal whether

fine-grain distinctions contribute to certain types of ambiguity as expressed in the clas-

sifications. Therefore, in the second analysis, for each noun and verb instance, we

calculate the similarity of its senses using the Jiang and Conrath (JCN) similarity mea-

sure (Jiang and Conrath, 1997), which was shown to most-closely approximate human

similarity judgments (Budanitsky and Hirst, 2006). The JCN columns in Table 5.5

show the average similarity for nouns and verb instances assigned to each classification

type.

Among the nouns, two trends emerge. First, the selected senses are more similar

when a context is Underconstrained than when Sylleptic, which highlights the differ-

ences in the underlying mechanisms. In Underconstrained contexts, the lack of se-

mantic cues makes distinguishing between similar senses difficult, resulting in multiple

senses in the annotation, while Syllpetic contexts are more likely to evoke senses related

to a single concept which are not necessarily themselves similar. Second, instances with

a Conflicting annotation classification have sense with lower similarity than those of the

other two classifications; however, we note that the number of Sylleptic nouns instances

is too few to draw statistically significant conclusions with respect to sense similarity.

The sense similarity of verb instances did not show the same trends as noun in-

stances. Though minor difference in verb sense similarities are present, differences

between classifications are not significant at p<0.05.

5.5.4 Sense Granularity

In our third analysis, we consider whether multiple interpretations could be due to the

granularity of the sense inventory. To test this hypothesis, each instance’s WordNet an-

notation was evaluated to see whether its multiple senses were all subsumed by a single,

112



Context Sense Assign. Nouns Verbs

Underconstrained Admissible 90.3 97.1

Underconstrained Conflicting 57.5 100.0

Underconstrained Parallel 87.5 100.0

Sylleptic Admissible 100.0 100.0

Sylleptic Conflicting 60.0 100.0

Sylleptic Parallel 69.4 100.0

Table 5.6: Percentage of instances with multiple WordNet senses that would receive a

single OntoNotes sense label

more coarse-grained OntoNotes sense (Hovy et al., 2006), using the publicly-available

mapping between WordNet and OntoNotes senses for nouns and verbs. As OntoNotes

senses are more coarse-grained, frequently many WordNet senses are mapped into a

single OntoNotes sense Table 5.6 lists the percentage of instances for each classification

and part of speech whose multiple senses would be represented by a single OntoNotes

sense.

The percentages of instances that would be annotated with a single OntoNotes

sense, shown in Table 5.6, reveal two clear differences between parts of speech and

the classifications. First, nearly all verbs (99.3%) would be annotated with a single

OntoNotes sense. WordNet often contains fine-grain sense distinctions of a single ac-

tion for a verb, reflecting aspects such as the circumstances, effect, and implications

related to the action. For example, the verb transfer contains different senses for the ac-

tion of moving an object depending on whether the movement implies a change of own-

ership. In the following instance, it not clear whether the authorities provided copies of

their documents (transfer%2:40:01::) or provided the originals such that they no longer

have ownership (transfer%2:40:00::):

“The US Administration stated on January 12 that all documents on ‘the
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Iranian case’ have been transferred to the competent Russian agencies

through diplomatic channels,” Segodnya said.

Indeed, OntoNotes merges six WordNet senses of transfer relating to this action into

one sense. However, coarsening the senses loses information. In the above example, an

OntoNotes annotation would not longer convey whether documents were retained by

the US Administration, which could potentially affect downstream applications using

senses, such as Textual Entailment.

In the second difference between parts of speech, sense coarsening reveals that Ad-

missible contexts were nearly always represented with a single OntoNotes sense for

nouns and verbs, irrespective of the context classification, but in contrast, a large mi-

nority (23.2%) of Conflicting and Parallel noun instances would still require multiple

OntoNotes senses. The latter minority is due to cases where the instance requires sig-

nificantly different interpretations (e.g., the earlier example instance of image) or where

OntoNotes does not merge cases of regular polysemy into a single sense.

5.5.5 Distribution of Annotations

Given the differences in classification distribution per part of speech, in the fourth anal-

ysis, we assess whether the classification types were also unevenly distributed across

the lemmas themselves; i.e., whether all instances of a lemmas occurred with the same

classification type. Figure 5.1 shows the distribution of the six classification combina-

tions across all 49 lemmas having multiple sense annotations. Lemmas had on average

3.02 different classifications across their instances. Furthermore, the number of classes

seen was moderately correlated with the total number of instances per lemma, Pear-

son’s r=0.468, which is statistically significant at p<0.01. Together, these suggests that

most lemmas have sense distinctions that may be ambiguous in certain circumstances

and that given enough instances of the lemma, its usages expressing multiple interpre-

tations will be seen with a variety of classification types.
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Figure 5.1: A comparison of the number of unique Context-Sense Assignment classifi-

cations seen per lemma

5.5.6 Sense Annotation Recommendations

The two-way classification was designed with an additional motivation of providing

guidance to sense annotators when deciding whether an instance should have multiple

senses. While prior annotator efforts have allowed annotators to use multiple senses,

no guidelines have been proposed for when annotators should use them, despite an ex-

pressed need (Langone et al., 2004). For example, Krishnamurthy and Nicholls (2000)

note ambiguous sylleptic examples for onion, stating that during the annotation effort

for SensEval-1, annotators chose only a single sense of these using their own ad hoc

heuristics.

Our first recommendation is that sense annotators should be encouraged to assign

multiple senses but do so only in cases where they are able to additionally classify
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the usage according to our proposed classification schema. This recommendation is

motivated by two factors. First, the process of classifying the instance encourages

annotators to scrutinize the context in order to justify why multiple senses would be

present. This discourages the introduction of multi-sense annotations due to an annota-

tor accidentally overlooking sense-specific cues. However, the classification process is

sufficiently lightweight and related to the main task so as not to overburden annotators.

Second, the classifications can be important for later applications needing to interpret

the multiple senses. Similarly, the classifications can be of use for the evaluation of

Word Sense Disambiguation (WSD) systems. In cases of an Underspecified context,

a WSD system’s output could be considered correct if it contains any of the multiple

senses; however, in Sylleptic contexts, the WSD system would need to recognize all

the intended meanings.

Our second recommendation is that in cases of Underconstrained contexts, anno-

tators should be able to mark which sense is more likely. We motivate this with an

example for strike.

Traditionally eight bells are struck.

The likely meaning of the context is that the bells were hit to make a sound (strike%2:35:00::);

however, in certain domains, the eight bells could have been forged (strike%2:36:02::),

perhaps in commemoration. In the absence of available cues, annotators can use their

background knowledge to indicate which sense is more probable. We note that this

weighting differs from the sense applicability ratings used by Erk et al. (2009) for

labeling multiple senses per word; in our setting, both senses would already be applica-

ble, with the weight specifying only their likelihoods of being the correct interpretation.

The proposed weights could be used by downstream applications to select a single in-

terpretation and by WSD evaluations to favor a system that reports the more probable

sense, much like prior suggestions for evaluating based on sense similarity (Resnik and

Yarowsky, 2000) or applicability (Jurgens, 2012).
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5.6 Conclusion

Word sense annotation is a challenging task where annotators may find multiple valid

interpretations of a usage, leading to multiple senses in the same annotation. The

present study has analyzed 460 instances annotated with multiple senses from the

dataset of Jurgens and Klapaftis (2013). We then classified each according to a pro-

posed two-way classification to quantify (1) the contextual features contributing to the

multiple interpretations and (2) the impact of multiple senses on the interpretation of the

usage in context. Our work offers four main contributions. First, we developed a large

sense-annotated corpus comprising 4,664 instances for 50 target words total. Instances

are annotated with all applicable senses, with 11% having multiple senses. Second,

using the multiple-sense instances, we demonstrate that in two-thirds of those cases,

the lack of contextual cues causes the perception of multiple senses, whereas syllepsis

accounts for the remaining. However, verbs are still more likely have multiple senses

from sylleptic constructions, indicating that part of speech must be taken into account.

Third, analyzed the effects of fine-grained sense distinctions in WordNet, showing that

for all verbs, each verb instance with multiple WordNet senses would have only a single

OntoNotes sense. However, the same was not true for nouns, with approximately 23%

still requiring multiple OntoNotes senses. Last, we introduced a two-way classification

schema for labeling why an instance has multiple senses and how those senses may be

interpreted together. We propose that this schema would serve future sense annotators

as a guideline when considering whether to apply multiple senses for a usage, thereby

improving annotation quality.
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CHAPTER 6

Model Evaluation

Summary This chapter presents two experiments in quantitatively evaluating the per-

formance of Word Sense Induction (WSI) and Word Sense Disambiguation (WSD) sys-

tems, including the two WSI approaches described earlier in Chapter 2. The first exper-

iment analyzes performance on SemEval-2013 Task 13 (Jurgens and Klapaftis, 2013),

which includes (1) an evaluation measuring the ability of a WSI system to match lexi-

cographer performance at grouping usages according to their WordNet senses, and (2) a

WSD evaluation where instances may be labeled with multiple senses. In three analyses

on the data set, we demonstrate that WSID systems offer superior performance to both

unsupervised and supervised WSD systems. Furthermore, we show that our SWCD

achieves state-of-the-art WSI performance at grouping instances by senses. In the sec-

ond experiment, we evaluate the ensemble WSID approach of Chapter 3 on multiple,

diverse sets of WSI models and using both WordNet and OntoNotes sense inventories.

Using prior SemEval WSI tasks, we demonstrate that our ensemble WSID configura-

tion consistently achieves a statistically significant performance improvement over the

best system and baselines for each task.

6.1 Introduction

Sense induction methods serve two purposes within NLP. First, a WSI method may act

as a computational lexicographer and group instances according to their senses. This

grouping process automatically annotates usages with induced senses and provides a
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Disambiguation
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Word Sense 
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induced
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Figure 6.1: A comparison of Word Sense Induction and Disambiguation systems, show-

ing the key components and outputs of each.

sense-annotated dataset for subsequent NLP applications that require senses or for lexi-

cographers wanting to analyze particular words. Second, the induced sense annotations

from WSI methods can be used as features for constructing WSID systems. These

WSID systems provides a solution to the knowledge acquisition bottleneck for WSD

by combining small amounts of manually-annotated data with the induced senses to

produce a high-performance semi-supervised WSID system without the need for creat-

ing a large sense-annotated corpus.

Accordingly, a WSI system may be evaluated according to each of its uses: (1) as

a system for grouping word usages according to their meaning, and (2) within a WSID

system for disambiguating usage. To highlight the differences between the uses of

WSI, Figure 6.1 illustrates the core components of WSI, WSID, and WSD systems and

their respective outputs.1 WSI systems produce induced sense annotations; therefore,

WSI evaluations test the quality of these automatically-learned senses by measuring the

degree of similarity between the sense distinctions found by the WSI system and those

found by lexicographers (i.e., the degree to which a WSI system and lexicographers

agree that certain usages have the same meaning). WSID and WSD systems produce

sense annotations from a reference sense inventory (shown as WordNet senses in Figure

1For the purposes of the example, WSID and WSD systems are shown producing WordNet senses;
however, senses from any other reference sense inventory, such as OntoNotes, could be used as well.
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6.1); therefore, both types of systems may be evaluated according to whether their

annotations exactly match the gold standard.

Previously, in Chapter 2, we proposed two WSI methods and then demonstrated

qualitatively that they identify meaningful sense distinctions. Then in Chapter 3, we

demonstrated using pseudoword data (1) that our SWCD method achieves the highest

performance of graph-based WSI methods and (2) that our ensemble WSID approach

provides a large performance improvement over WSD state of the art. In this chapter,

we perform two quantitative evaluations of the abilities of these model on real-world

data and compare their performance against current state-of-the-art WSI and WSD sys-

tems.

In the first evaluation, we test our WSI methods on SemEval-2013 Task 13 (Jurgens

and Klapaftis, 2013), which measures the systems’ ability in both WSI and WSID set-

tings. This evaluation compares our methods against the other WSI methods participat-

ing in Task 13 and also additional state-of-the-art supervised and unsupervised WSD

methods. In three analyses on the Task 13 data, we demonstrate that (1) our SWCD

method achieves state-of-the-art WSI performance at matching lexicographers’ gold-

standard groupings of instances according to sense, and (2) WSID methods, including

our SWCD and AWCD methods, offer substantial performance increases over existing

supervised and unsupervised WSD systems. In the second evaluation, we measure the

benefits of our ensemble approach on three heterogeneous groups of WSI systems and

two different sense inventories by using three SemEval WSI tasks (Agirre and Soroa,

2007; Manandhar et al., 2010; Jurgens and Klapaftis, 2013). We demonstrate that in all

three tasks, combining WSI systems using our ensemble approach achieves a statisti-

cally significant performance improvement over current state of the art.

In what follows, we first introduce the evaluation measures used in Task 13 for our

first experiment (Sec. 6.2). Then, after describing the data and systems used in our first

experiment, we perform three forms of analysis: (1) analyzing performance on the full

Task 13 data set, which includes instances labeled with multiple senses (Sec. 6.3.5),
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(2) analyzing performance on the subset of instances (89%) labeled with only a single-

sense using a modified test setup (Sec. 6.3.6), and (3) analyzing the sense mapping

function used in Task 13 compared with a linear kernel SVM (Sec. 6.3.7), which we

proposed in Chapter 3. Last, in our second experiment (Sec. 6.4), we demonstrate that

our ensemble WSID method provides a consistent performance improvement in tests

using multiple types of WSI systems and sense inventories.

6.2 Multi-Sense Evaluation Measures for WSI and WSD

As shown in Chapter 5, a usage of a word may have multiple interpretations, which can

be modeled by labeling the usage with more than one sense. However, prior evaluations

of WSI and WSD systems have use data that is annotated with only a single sense per

instance (Agirre and Soroa, 2007; Manandhar et al., 2010) with corresponding evalu-

ation measures that operate with only one sense per instance. Therefore, we propose

extensions to current methods for evaluating the quality of both WSI and WSD systems

when instances may be labeled with multiple senses, described next.

6.2.1 WSI Evaluation Measures

Word Sense Induction can be viewed as a clustering task: Given a set of instances,

group them into clusters such that instances having the same sense are in the same clus-

ter. To measure the quality of a WSI system, a comparison is made between the clusters

formed for a particular set of instances by the induced senses and the clusters formed

by the gold standard annotation of that data set. The degree of similarity between the

two groups of clusters, referred to as clusterings,2 reflects the ability of the WSI system

identify the same sense distinctions as in the gold standard.

Figure 6.2 illustrates this type of clustering comparison with a set of nine instances.

2For stylistic reasons, we will occasionally refer to a clustering as a “grouping” or “group of clusters,”
with no loss in meaning.

121



Figure 6.2a shows the nine instances clustered into one of three senses according to a

gold standard (i.e., all instances in a cluster are annotated with the cluster’s correspond-

ing sense). Figures 6.2b–6.2d show three alternate groupings of the same instances

according to how they were disambiguated with induced senses. Of the three induced

sense groupings, grouping #1 appears closest to matching the gold standard, differing

only for instance G. In contrast, grouping #2 merges Gold-standard Senses 1 and 2 as

well as an instance assigned to Gold Standard Sense 3, while induced sense grouping

#3 assigns many instances to their own senses.

The example in Figure 6.2 also highlights the difference between WSI evaluation

and WSID evaluation, which was used in Chapter 3. WSI evaluations seek to test the

degree to which the sense distinctions of the induced senses match those of the gold

standard. In contrast, WSID evaluations test the degree to which induced sense anno-

tations may be used to predict the gold-standard annotations. For example, although

Gold Standard Senses 1 and 3 are divided into fine-grain clusters in grouping #3 (i.e.,

instances B, D, G, H, I), the fine-grained induced senses would still have a direct

correspondence to a single gold-standard sense, which enable a correct prediction of

the gold-standard sense from the overly fine-grained induced senses.3 Hence, a WSI

system may produce clusters that are subsets of gold-standard clusters and have high

performance on WSID evaluations, even though its clusters are not similar to the gold

standard, giving it low performance on WSI clustering comparison evaluations.

In the simple example shown in Figure 6.2, visual inspection provides a reason-

able measure of the degree of correspondence; however, computational methods are

needed to quantitatively measure correspondence. For WSI systems, evaluations have

incorporated multiple types of methods for measuring the correspondence between the

gold-standard and induced sense clusterings:

• SemEval-2007 (Agirre and Soroa, 2007) used the FScore measure of Zhao and

3We note that in the WSID setups used in Chapter 3, clusters must have at least two instances, with
one used for training and the others for testing.

122



A

B

F
E

D

C

H

G
I

Gold-standard
Sense #1

Gold-standard
Sense #2

Gold-standard
Sense #3

(a) The gold standard grouping of instances

by sense

Induced Sense #1

Induced
Sense #2

Induced 
Sense #3

A

B

F
E

D

C

H

G
I

Induced 
Sense #4

(b) Induced sense instance grouping #1

Induced Sense #1

Induced 
Sense #2

A

B

F
E

D

C

H

G
I

(c) Induced sense instance grouping #2

Induced Sense #1

Induced
Sense #2

Induced 
Sense #5

A

B

F
E

D

C

H

G
I

Induced 
Sense #6

Induced 
Sense #4

Induced
Sense #3

Induced 
Sense #7

(d) Induced sense instance grouping #3

Figure 6.2: Examples of instances (represented as white circles labeled by letters) clus-

tered according to a gold standard (6.2a) and by induced senses (6.2b–6.2d).

Karypis (2005);

• SemEval-2010 (Manandhar et al., 2010) included the V-Measure (Rosenberg and

Hirschberg, 2007), paired FScore (Artiles et al., 2009) and then later reported

results for B-Cubed (Amigó et al., 2009) and Adjusted Mutual Information (Vinh

et al., 2010); and

• SemEval-2013 Task 11 (Navigli and Vannella, 2013) used the Rand Index (Rand,

1971), Adjusted Rand Index (Hubert and Arabie, 1985), F1 measure (van Rijs-

bergen, 1979), and Jaccard Index (Jaccard, 1901).
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Despite their variety, these clustering comparison measures fall into two general cat-

egories: (1) item-based comparison and (2) cluster-based comparisons. Item-based

comparisons such as B-Cubed and the paired FScore measure cluster correspondence

based on similarities in item’s cluster memberships in the two groupings. For example,

the paired FScore measures the number of item pairs in a cluster in Grouping A that

also appear together in a cluster in Grouping B. In contrast, cluster-based evaluations,

such as the V-Measure and Adjusted Mutual Information, measure the degree of cor-

respondence between clusters in each group as a whole. For example, the V-Measure

tests the degree to which instances in each cluster in Grouping A are members of the

same cluster in Grouping B (along with the reverse B-to-A comparison). We refer the

interested reader to Albatineh et al. (2006) and Meilă (2007) for reviews of cluster

comparison methods.

In general, the two types of measures provide complementary information about

the degree of correspondence between the WSI-based and gold-standard clusters. Be-

cause item-based measures test correspondence by the co-occurrence of items or pairs

in clusters, the alignment of larger clusters accounts for most of the degree of correspon-

dence by virtue of them having more items or pairs. In contrast, cluster-based methods

measure correspondence between clusters, and therefore clusters of all sizes contribute

equally to the degree of correspondence value. In this sense, the two measure serve

as approximations of macro-averaging, where performance is averaged across classes

(i.e., senses) and classes are treated equally, and micro-averaging, where performance

is averaged across instances.

In SemEval-2013 Task 13 (Jurgens and Klapaftis, 2013), WSI systems were eval-

uated on instances that may be labeled with (1) multiple senses and (2) with weights

for each sense, according to its applicability in the given context. This introduces two

issues with current cluster evaluation methods used in WSI evaluation. First, the cur-

rent comparison methods are only designed for comparing partitions of instances (also

known as hard clusterings), where each instance is assigned to only one cluster. Sec-
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Figure 6.3: Comparisons between hard (6.3a), soft 6.3b, and fuzzy clusterings 6.3c of

instances, depicted as white lettered circles.

ond, because an instance’s senses are labeled with weights, an instance may have only

a partial membership in a cluster. Figure 6.3 illustrates these two types of grouping

with respect to sense assignment. Figure 6.3a shows ten instances grouped into three

senses, where each instance is labeled with one sense. In Figure 6.3b, instance J has

been labeled with two senses and is a therefore a member of two clusters. SemEval-

2013 Task 13 allows for weights on sense assignments, which corresponds to Figure

6.3c in which (1) J is a member of two clusters because the instance was labeled with

two senses that were fully applicable, while (2) D is a full member of the cluster for

Sense #1 but a partial member of the cluster for Sense #2, because Sense #2 was not

weighted as fully applicable for instance D. Following convention, we refer to partial

clustering memberships as fuzzy memberships and a grouping of instances with fuzzy

memberships as a fuzzy clustering.4

To address this limitation of current evaluation methods, we propose extensions to

two prior methods, B-Cubed and Normalized Mutual Information (NMI), to evaluate

WSI systems producing fuzzy clusterings. B-Cubed and NMI were selected to provide

4We note that in the general fuzzy clustering setting, an instance could potentially not be a full
member of any cluster (i.e., have all of its memberships be weighted less than one). However, in our
sense annotated data set, at least one sense is fully-applicable for an instance, and therefore an instance
will always be a full member of at least one cluster.
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item-based and class-based evaluations, respectively, based on their prior performance

in WSI tasks. We describe the extensions to each method next in Sections 6.2.1.1 and

6.2.1.2.

6.2.1.1 Fuzzy B-Cubed

Bagga and Baldwin (1998) proposed a clustering evaluation known as B-Cubed, which

compares two clusterings by examining the similarity of cluster memberships for each

instance, rather than each class. Amigó et al. (2009) later extended the definition of

B-Cubed to compare overlapping clusters. We generalize B-Cubed further to handle

the case of fuzzy clusters.

B-Cubed is based on precision and recall, which estimate the fit from clustering X

to Y and Y to X , respectively. For an instance i, precision reflects how many instances

assigned to the same sense as i in X are also to the same sense in Y ; conversely, recall

measures how many instances assigned to the same sense as i in Y also have the same

sense assignment in X . The final B-Cubed value is the harmonic mean of the two

scores.

To generalize B-Cubed to fuzzy clustering, we adopt the formalization of Amigó et

al. (2009), who define item-based precision and recall functions, P and R, in terms of

a correctness function, C → {0, 1}. For notational brevity, let avg be a function that

returns the mean value of a series, and µx(i) denote the set of clusters in clustering X

of which item i is a member (i.e., the senses assignments of i). B-Cubed precision and

recall may therefore calculated over all n items as:

B-Cubed Precision = avg
i
[ avg
j 6=i∈∪µy(i)

P (i, j)] (6.1)

and

B-Cubed Recall = avg
i
[ avg
j 6=i∈∪µx(i)

R(i, j)]. (6.2)

When comparing clusterings where an instance is assigned to at most one sense, P

and R are defined as 1 if i and j are assigned to the same sense and 0 otherwise. For
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overlapping clusters, Amigó et al. (2009) redefine P and R using set-based operations

to achieve the same objective as the original definition: When a pair i, j are assigned to

more senses inX than in Y , precision decreases; conversely, when the pair are assigned

to more senses in Y than in X , recall decreases.

To generalize B-Cubed for fuzzy clustering, we redefine P and R to account for

differences in the partial cluster membership of instances. Let `X(i) denote the set of

senses to which i is assigned in X , and wk(i) denote the weight of sense k for instance

i. We therefore define the correctness function, C, of two items with respect to X as

C(i, j,X) =
∑

k∈`X(i)∪`X(j)

1− |wk(i)− wk(j)|. (6.3)

Equation 6.3 is maximized when i and j are assigned to the same senses in X and

have identical weights for those senses. Importantly, Equation 6.3 is equivalent to the

original B-Cubed correctness definition of Bagga and Baldwin (1998) when comparing

hard clusters and the extended definition of Amigó et al. (2009) when comparing soft

clusters. Item-based Precision and Recall are then defined using Equation 6.3 as

P (i, j,X) =
Min(C(i, j,X),C(i, j, Y ))

C(i, j,X)

and

R(i, j,X) =
Min(C(i, j,X),C(i, j, Y ))

C(i, j, Y )
.

These generalizations of precision and recall are used in Equations 6.1 and 6.2 to extend

B-Cubed for fuzzy clustering.

6.2.1.2 Fuzzy Normalized Mutual Information

Mutual information measures the dependence between two random variables (Danon

et al., 2005). In the context of comparing two clusterings X and Y , mutual information

reflects the information of the cluster memberships inX provide about the cluster mem-

berships in Y . When X and Y are highly dissimilar, mutual information is minimized,

whereas the value is maximized when the two are identical.
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Formally, mutual information may be defined as

I(X;Y ) = H(X)−H(X|Y ) (6.4)

where H(X) denotes the entropy of the random variable X that represents a particular

assignment of n instances into clusters. The entropy of a particular assignment, X , is

measured as
H(X) =

∑
xi∈X p(xi)log2(p(xi))

=
∑

xi∈X
freq(xi)

n
log2

(
freq(xi)

n

) (6.5)

where p(xi) denotes the probability of an item being assigned to cluster xi and freq(xi)

denotes the number of items that were assigned to cluster xi. Similarly, the conditional

entropy of X given Y is computed as

H(X|Y ) =
∑

xi∈X
∑

yj∈Y p(xi, yj)log2p(xi|yj)

=
∑

xi∈X
∑

yj∈Y p(xi, yj)log2
p(xi)
p(xi,yj)

=
∑

xi∈X
∑

yj∈Y
freq(xi,yj)

n
log2

(
freq(xi)

n
freq(xi,yj)

n

) (6.6)

Because the value of I(X;Y ) varies based on the clusters in X and Y , I(X;Y ) is typi-

cally normalized into [0, 1] to enable comparing mutual information values from differ-

ent clustering solutions on the same scale (Luo et al., 2009), with max(H(X), H(Y ))

being the recommended normalizing factor (Vinh et al., 2010). Hence, Normalized

Mutual Information (NMI) is defined as

NMI =
H(X)−H(X|Y )

max(H(X), H(Y ))
(6.7)

In its original formulation, NMI is defined only for comparing two hard clusterings.

Lancichinetti et al. (2009) extend this definition for for calculating NMI between soft

clusterings. In the original NMI definition for hard clusterings, each clustering is repre-

sented as a discrete random variable whose states denote the probability of an instance

being assigned to each cluster. In the overlapping cluster setting, rather than represent

the entire clustering as a single variable, Lancichinetti et al. (2009) define each cluster

xi as a separate Bernoulli distribution representing the probability of an instance being
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a member of that cluster; i.e., the cluster assignments for each instance is treated as a

sample from the variable X1...k where X denotes the entire clustering and the ith en-

try of X is the Bernoulli distribution for cluster i in X. We denote the distribution of

cluster i as Xi.

In the fuzzy clustering setting, an instance’s membership in a cluster is no longer

binary (i.e., either a member or not), but rather a continuous value in in [0, 1], reflecting

the degree of applicability of that cluster’s sense to the instance. Therefore, each cluster

Xi can be represented separately as a continuous random variable, with the entire fuzzy

clustering denoted as the variable X1...k, where the ith entry of X is the continuous

random variable for cluster i. This definition represents cluster membership in the con-

tinuous domain, which requires using differential entropy for the continuous variables.

However, differential entropy does not have the same behavior as entropy on discrete

variables and may have a negative value, which prevents calculating a meaningful value

of mutual information to compare fuzzy clusterings.

To compute mutual information for comparing fuzzy clusterings without requiring

differential entropy, we propose an alternative setup that discretizes the continuous val-

ues of Xi that represent cluster memberships. For the continuous random variable Xi

representing the distribution of memberships in cluster i, we discretize the value by

dividing the probability mass into discrete bins; that is, the support of Xi is partitioned

into disjoint ranges, each of which represents a discrete outcome of Xi that denotes an

assignment of an instance to cluster i with the outcome’s corresponding membership

weight. Because discretization produces a finite number of membership weights,Xi be-

comes a categorical distribution over a set of weights ranges {w1, . . . , wn} that denote

the weight of an instance’s membership in the cluster. With respect to sense annotation,

this discretization process is analogous to having an annotator rate the applicability of

a sense for an instance using a Likert scale instead of using a rational number within a

fixed bound.

Discretizing the continuous cluster membership ratings into bins allows us to avoid
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the need for differential entropy (which may be negative) and still extend the definition

of mutual information from a binary cluster membership to one of degrees. Using the

definition of Xi and Yj as a categorical variables over discrete ratings, we may then

estimate the entropy as follows.

H(Xi) =
n∑
i=1

p(wi)log2p(wi) (6.8)

where p(wi) is the probability of an instance being labeled with rating wi for the sense

denoted by Xi. Similarly, we may define the joint entropy of two fuzzy clusters as

H(Xk, Yl) =
n∑
i=1

m∑
j=1

p(wi, wj)log2p(wi, wj) (6.9)

where p(wi, wj) is the probability of an instance being labeled with rating wi in cluster

Xk and wj in cluster Yl, and m denotes the number of bins for Yl. The conditional

entropy between two clusters may then be calculated as

H(Xk|Yl) = H(Xk, Yl)−H(Yl).

Together, Equations 6.8 and 6.9 may be used in conjunction with the extension of Lan-

cichinetti et al. (2009) to define I(X, Y ) as in the original definition (Eq. 6.4). For

brevity, we omit the full details here and present a complete definition in Appendix

A. Based on our observations of the expected sense applicabilities in the corpus, we

selected uniformly distributed bins in [0, 1] at 0.1 intervals when discretizing an in-

stance’s weight for a given cluster. However, we note that other automatic techniques

exist for choosing the number and sizes of bins used with discretization (Liu et al.,

2002; Kotsiantis and Kanellopoulos, 2006).

6.2.2 WSD Evaluation Measures

Word Sense Disambiguation is traditionally evaluated using precision and recall. Pre-

cision is the percentage of disambiguated items that are correct and recall is the per-

centage of all items that are disambiguated correctly. The two values differ only when

a WSD system does not disambiguate all of the instances.
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In our work in Jurgens (2012) and for SemEval-2013 Task 13 (Jurgens and Kla-

paftis, 2013), we propose three objectives to evaluate WSD systems that report multi-

ple senses with respect to human judgments: (1) Detecting all applicable senses in a

given context, (2) Ranking all applicable senses by their applicability, and (3) Rating

each sense’s applicability. Each objective was then matched with a specific measure

to quantify the degree to which a WSD system meets the objective. Following, we

describe the three measures in Sections 6.2.2.1–6.2.2.3.

6.2.2.1 Jaccard Index

The Jaccard Index is used to measure the degree to which a WSD method identifies all

the applicable senses for an instance. Given two sets of senses assigned to an instance,

X and Y , the Jaccard Index measures the agreement as |X∩Y ||X∪Y | . The Jaccard Index is

maximized when X and Y have the same senses, and is minimized when the sets are

disjoint, i.e., use completely different senses.

6.2.2.2 Positionally-Weighted Kendall’s τ

Positionally-Weighted Kendall’s τ is used to measure the degree to which a WSD sys-

tem can correctly rank senses by their applicability, using the method of Kumar and

Vassilvitskii (2010). Given an instance, all senses are ordered by applicability, pro-

ducing a ranking where each sense occupies a position in the ranking and tied senses

may have the same position. In the original, unweighted version, given two rankings of

senses, Kendall’s τ distance is defined as the number of one-position swaps required to

turn one ranking’s ordering into the other. In the context of sense annotation, only a few

senses are generally applicable, which places a higher emphasis on producing a correct

ordering of the most-applicable senses. Therefore, we adopt the positionally-weighted

version of Kendall’s τ distance, which decreases the distance penalty for differences in

the lowest ranks, i.e., the distance between rankings is most affected by differences in
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rank among the most-applicable senses.

Formally, Kumar and Vassilvitskii (2010) extend the τ distance definition using a

variable penalty function δ for the cost of swapping two positions, which we denoteKδ.

By using an appropriate δ, Kδ can be biased towards the correctness of higher ranks by

assigning a smaller δ to lower ranks. Because Kδ is a distance measure, its value range

will be different depending on the number of ranks used. Therefore, to convert the

measure to a similarity we normalize the distance to [0, 1] by dividing by the maximum

Kδ distance and then subtracting the distance from one. Given two rankings x and y

where x is the reference by which y is to be measured, we may compute the normalized

similarity using

Ksim
δ = 1− Kδ(x, y)

Kmax
δ (x)

. (6.10)

Equation 6.10 has its maximal value of one when ranking y is identical to ranking x,

and its minimal value of zero when y is in the reverse order as x. We refer to this

value as the positionally-weighted Kendall’s τ similarity, Ksim
δ . As defined, Ksim

δ does

not account for ties. Therefore, we arbitrarily break ties in a deterministic fashion

for both rankings. This deterministic tie breaking ensures that if two items occur in

tied rank i in both rankings x and y, they will be assigned rank i and i − 1 in both

items, thereby preserving the intention of the evaluation measure, i.e., the score is not

penalized. Second, we define δ to assign higher cost to the first ranks: the cost to move

an item into position i, δi, is defined as n−(i+1)
n

, where n is the number of senses.

6.2.2.3 Weighted Normalized Discounted Cumulative Gain

Weighted Normalized Discounted Cumulative Gain (WNDCG) is used to measure the

ability of a WSD system to accurately estimate the applicability weights of senses for

a given instance. This measure is an extension of Discounted Cumulative Gain (DCG)

which is used in Information Retrieval settings to compare a method’s ranking against a

gold-standard baseline (Moffat and Zobel, 2008). Given (1) a gold-standard weighting
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of the k senses applicable to a context, where wi denotes the applicability for sense i in

the gold standard, and (2) a ranking of the k senses by a WSD system, the DCG may

be calculated as
k∑
i=1

2wi+1 − 1

log2(i+ 1)
.

DCG is commonly normalized to [0, 1] so that the value is comparable when computed

on rankings with different numbers of items (k) and weight values. To normalize, the

maximum value is calculated by first computing the DCG on the ranking when the k

items are sorted by their weights, referred as the Ideal DCG (IDCG), and then normal-

izing as DCG
IDCG

to compute the Normalized Discounted Cumulative Gain (NDCG).

The DCG only takes into account the weights assigned in the gold standard, which

potentially masks important differences in the weights assigned to the senses by the

WSD system. WSD systems producing the same ranking from their sense weights will

have identical DCG values, despite any differences in the systems’ weights. Therefore,

we propose weighting the DCG by the relative difference between the system’s and

gold-standard’s weights. Given an alternate weighting of the k items by the WSD

system, denoted as ŵi,

WDCG =
k∑
i=1

min(wi,ŵi)
max(wi,ŵi)

(2wi+1 − 1)

log2(i)
. (6.11)

The key impact in Equation 6.11 comes from weighting an item’s contribution to the

score by its relative deviation in absolute weight. A set of weights that achieves an

equivalent ranking may have a low WDCG if the weights are significantly higher or

lower than the reference. Equation 6.11 may be normalized in the same way as the

DCG. We refer to this final normalized measure as the Weighted Normalized Dis-

counted Cumulative Gain (WNDCG).
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6.3 Experiment 1: SemEval-2013 Task 13 Evaluation

The first experiment evaluates our all-words (AWCD) and single-word (SWCD) WSI

systems described in Chapter 2 on the SemEval-2013 Task 13 data set (Jurgens and

Klapaftis, 2013). Task 13 is a lexical sample WSI and WSD task, where system disam-

biguate multiple instances of a set of target words. Unlike prior WSI-based SemEval

tasks (Agirre and Soroa, 2007; Manandhar et al., 2010), Task 13 includes instances with

multiple sense annotations, which WSD systems should recognize as such. For com-

parison, our evaluation includes the systems that originally participated in the task and

four additional supervised and unsupervised WSD systems for measuring differences

between WSID and WSD.

Three forms of analysis were performed on this task. In the first, we report results

for all instances in the data set, examining the ability of systems to recognize multiple

senses. Second, we refine the evaluation setup to only the instances of Task 13 that

have a single sense annotation. This second analysis allows for a direct comparison

with WSD systems, which were not designed to recognize multiple senses. Third, we

test the performance impact of using the sense mapping function of Task 13 versus the

linear kernel SVM mapping function used in our pseudoword experiments (Ch. 3).

6.3.1 Data

Task 13 focuses on unsupervised learning and therefore includes no sense-annotated

training data. To create a reproducible evaluation setting, task participants were asked

to create their WSI models using the ukWaC corpus (Baroni et al., 2009). Previous

SemEval WSI tasks had provided participants with corpora specific to the task’s tar-

get terms; in contrast, this task opted to use a large corpus to enable WSI methods

that require corpus-wide statistics, e.g., Van de Cruys and Apidianaki (2011) and our

collocation-based methods.

Test data was drawn from the Open American National Corpus (Ide and Suderman,
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2004, OANC) across a variety of genres and from both the spoken and written portions

of the corpus, described earlier in Chapter 5, Section 5.3.1. The data set contains 4664

contexts for 50 terms, with a minimum of 22 and a maximum of 100 contexts per term.

6.3.2 Evaluation Setup

Task 13 includes two cluster evaluation measures for WSI systems: Fuzzy B-Cubed and

Fuzzy NMI (Sec. 6.2.1). For WSID and WSD systems, Task 13 uses three evaluation

measures: the Jaccard Index, Weighted Kendall’s τ , and Weighted NDCG (Sec. 6.2.2).

To create WSID systems, Task 13 uses an extension of the Agirre et al. (2006b)

mapping function proposed in Jurgens (2012) which takes into account sense appli-

cability weights in order to produce annotations with multiple weighted senses.5 We

follow the 80/20 setup of Manandhar et al. (2010), where the corpus is randomly di-

vided into five partitions, four of which are used to learn the sense mapping; the sense

labels for the held-out partition are then converted and compared with the gold standard.

This process is repeated so that each partition is tested once.

6.3.3 Baselines

Task 13 included four baselines based on modeling two different types of WSI and

WSD systems each. WSD systems were evaluated against two baselines: (1) SemCor

MFS which labels each instance with the most frequent sense of that lemma in SemCor

and (2) SemCor Frequency Weighted (SCFW) baseline, which labels each instance

with all of the target lemma’s senses that were seen in SemCor, weighted by the fre-

quency with which they were seen. SemCor MFS is a standard baseline that reflects the

expected performance of a system without any knowledge of the sense distribution of

the test corpus. The SCFW baseline simulates a system that expects all commonly-seen

senses, but with applicability proportional to their frequency.

5In the third analysis (Sec. 6.3.7), we measure the impact of using the Linear-kernel SVM mapping
function, used in the experiments in Chapter 3, instead of this mapping function.
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WSI performance was evaluated against two standard baselines: (1) 1c1inst which

labels each instance with a separate induced sense and (2) All-instances, One sense

which labels all instances with the same induced sense. These two baselines reflect

the extremes of different sense granularity, with the first indicating that each usage has

a distinct meaning, while the latter indicating all usages have approximately the same

meaning.

Because the sense induction baselines each behave consistently for all instances,

they perform in distinct ways when used in the WSID setting with the Task 13 mapping

function. The 1c1inst baseline always obtains a zero F1 value when used in the WSID

setting; because each sense appears only once, when instances are divided for training

and test sets, a sense in the test set will have never been seen in training, making it im-

possible for the mapping function (cf. Section 3.2.1) to produce a reference annotation

from the unseen induced sense. The All-instances, One Sense baseline will become

transformed into the average sense distribution of the training set.

6.3.4 Systems

Experiment 1 includes both WSI and WSD systems in the evaluation, described next.

6.3.4.1 WSI Systems

WSI systems include a system for each of the two methods proposed in this thesis in

Chapter 2 and the seven WSI systems submitted as a part of Task 13. We describe our

systems configurations next and then the submitted systems.

Our SWCD system (cf. Sec. 2.3.1) constructed each word’s graph using the k-

neighbors method, where k = 1000 based on the method’s best performance in Chapter

3.6 Our AWCD system (cf. Sec. 2.3.2) constructed its graph from the 20,000 most-

6Additional testing on k = {500, 2000, 3000, 4000, 5000, 10000} show that 1000 provided the best
performance for most evaluations with Task 13, corroborating earlier tests with pseudoword tuning data
in Chapter 3.
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frequent POS-tagged lemmas in the ukWaC, which were restricted to nouns, verbs,

adjectives, and adverb lemmas and excluded a list of overly-common lemmas (i.e.,

stopwords). These 20K lemmas become vertices in the graph and then edges are added

to the 50 lemmas having the highest χ2 with each vertex. This produced a graph with

964,665 edges and 102,251 vertices. Parameter settings for AWCD were constrained by

the size of the graph, where including more initial vertices or more neighbors produced

graphs proved too computationally expensive to use with the system’s community de-

tection method.

Comparison WSI systems include the seven WSI systems submitted by three teams

to Task 13. The AI-KU team submitted three WSI systems with different parameter set-

tings of their algorithm, described earlier in Section 2.5.2. The University of Melbourne

(Unimelb) team submitted two WSI systems based on the topic-modeling approach of

Lau et al. (2012), also described earlier in Section 2.5.2.

The University of Sussex (UoS) team (Hope and Keller, 2013b) submitted two WSI

systems that use the MaxMax algorithm (Hope and Keller, 2013a). The UoS system

first constructs an undirected weighted graph of collocation using Normalized Point-

wise Mutual Information (NPMI) (Bouma, 2009). UoS then converts this graph into a

directed graph using the weights of the graph: Given two vertices, u and v, a directed

edge is added from u to v if the weight of the edge from u to v is maximal for all

edges incident on u. This directed graph is then converted into clusters by (1) identi-

fying all the root nodes in the directed graph and (2) putting a root node and all of its

descendants into a cluster. The clustering procedure has a tendency to generate many

small clusters, so an additional procedure is used to merge clusters containing similar

vertices, as measured using NPMI.
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6.3.4.2 WSD Systems

Two types of WSD systems are included: (1) the two systems submitted by the La

Sapienza team as a part of Task 13, which report multiple senses per instance and (2)

four additional publicly-available WSD systems, which report only a single sense. We

refer to the second group of WSD system as comparison WSD systems to distinguish

them from the La Sapienza systems. All publicly-available systems were applied using

their standard, off-the-shelf parameter settings. We describe the systems next.

The La Sapienza team submitted two unsupervised WSD systems based applying

Personalized PageRank (PPR) (Agirre and Soroa, 2009) over a WordNet-based net-

work. Using the method of Pilehvar et al. (2013), probability distributions are created

over the network’s nodes for (1) each sense of the target word to be disambiguated and

(2) the context containing the target word. These probability distributions reflect the re-

latedness of each node (i.e., sense) in the network to the sense or context, respectively.

The final sense annotation is computed by measuring the similarity of the distribution of

each of the target word’s senses with the context’s distribution and reporting all senses

with non-zero similarity, weighted according to their similarity.

The UKB system of Agirre and Soroa (2009) is an unsupervised graph-based WSD

system that uses the WordNet lexical network to perform all-words WSD. For a given

context, the senses of the context words are used to create a subgraph in an enriched ver-

sion of the WordNet network, which contains additional relations, such as those from

glosses. Personalized PageRank (Brin and Page, 1998) is then run, using the vertices

for the context’s senses to seed the initialization vector. After PageRank converges,

each lemma is assigned to its sense that had the highest PageRank value.

The WordNet::SenseRelate package of Pedersen and Kolhatkar (2009) contains

multiple unsupervised algorithms for WSD. We evaluate using the AllWords method,

which looks at all content words in a sentence. Each word is disambiguated by com-

paring its senses to those of content words in a window of ± three words.
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WSD F1 Cluster Comparison

Team System Jac. Ind. Ksim
δ WNDCG Fuzzy NMI Fuzzy B-Cubed #I #S

this work SWCD 0.195 0.603 0.339 0.085 0.551 1.67 6.52
this work AWCD 0.198 0.611 0.288 0.005 0.616 1.00 6.58
AI-KU base 0.196 0.615 0.387 0.065 0.390 7.76 6.42
AI-KU add1000 0.196 0.602 0.216 0.035 0.320 7.76 6.42
AI-KU remove5-add1000 0.244 0.639 0.332 0.039 0.451 3.12 5.21
Unimelb 5p 0.218 0.609 0.364 0.056 0.459 2.37 5.78
Unimelb 50k 0.213 0.615 0.369 0.060 0.483 2.48 5.92
UoS #WN Senses 0.191 0.592 0.314 0.047 0.201 8.08 6.57
UoS top-3 0.231 0.621 0.374 0.045 0.448 3.00 5.29
La Sapienza system-1 0.147 0.508 0.312 - - - 8.69
La Sapienza system-2 0.147 0.510 0.383 - - - 8.67

BabelNet-WSD 0.242 0.252 0.180 - - - 1.00
IMS 0.466 0.471 0.347 - - - 1.00
SenseRelate 0.329 0.342 0.245 - - - 1.00
UKB 0.185 0.204 0.139 - - - 1.00

All-instances, One sense 0.192 0.609 0.288 0.0 0.620 1.00 6.62
1c1inst 0.0 0.0 0.0 0.070 0.0 1.00 0.0
SemCor MFS 0.456 0.464 0.340 - - - 1.00
SemCor Sense Frequencies 0.203 0.584 0.413 - - - 6.11

Table 6.1: Performance on the five evaluation measures for all system and baselines.

Top system performances are marked in bold.

The unsupervised graph-based algorithm of Navigli and Ponzetto (2012b) disam-

biguates using the BabelNet semantic network (Navigli and Ponzetto, 2012a), a wide-

coverage encyclopedic dictionary built by merging WordNet with Wikipedia. We refer

to this method as BabelNet-WSD. The algorithm disambiguates using the Edge heuris-

tic of Navigli and Lapata (2010) for graph-based WSD in BabelNet, which examines

the connectivity of all the synsets of the content words in the context within the larger

BabelNet graph.

Last, we include the It Make Sense (IMS) system of Zhong and Ng (2010), which

was also used in the pseudoword experiments in Chapter 3. Unlike previous WSD

systems, IMS is supervised and was trained to perform WSD using the SemCor (Landes

et al., 1998) and DSO (Ng and Lee, 1996) sense-tagged corpora.
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6.3.5 Analysis 1: All Instances

Table 6.1 shows the results of all systems in their WSD performance on the full data

set. In addition to the WSI and WSD measures, we report the average number of

induced senses a WSI system used to label each instance as #I and the average number

of resulting WordNet senses produced by the corresponding WSID system for each

instance as #S. Note that #S is determined by the mapping function for WSID systems

and that WSD systems directly produce WordNet senses, so #I is not applicable. In

what follows, we first discuss the performances of all systems on WSD evaluations and

then discuss their performances on WSI evaluations.

WSD Performance Detecting multiple senses, measured using the Jaccard Index,

was the most difficult task both for system originally participating in Task 13 and for

our AWCD and SWCD systems. For WSID systems, the mapping function contributed

to the low-performance in detecting multiple senses. Nearly all WSI models produced

multiple induced senses for each instance, as seen in the #I column of Table 6.1. These

induced senses did not have a direct correspondence to WordNet senses and therefore

the mapping function in turn produced multiple WordNet senses for each instance, as

seen in the #S column. As a result, WSID systems consistently report too many senses

and are heavily penalized by the Jaccard Index. We also note that the La Sapienza

WSD system, which participated in Task 13, also predicted too many senses and was

similarly penalized.

The comparison WSD systems, shown in the middle group of Table 6.1, performed

much better at the Jaccard Index evaluation due to their original design of reporting only

a single sense per instance. Because 89% of the instances in the test data have only a

single sense annotation, the comparison WSD systems benefit from their conservative

design. However, most of the comparison WSD systems themselves are not accurate

at selecting the correct sense and only the supervised IMS system is able to surpass the

MFS baseline.
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The measures for ranking senses by applicability (Ksim
δ ) and quantifying their appli-

cability (WNDCG) provide more insight in the different systems’ performance. Both

measures consider the applicability weights assigned to each sense, so WSID and WSD

systems that correctly identify the most-applicable senses will not be penalized as much

as with the Jaccard Index if they incorrectly report additional senses that are assigned a

low weight. Indeed, the performance of WSID systems and the La Sapienza WSD sys-

tem (which reports multiple senses) increases significantly for the ranking and quanti-

fying evaluations, relative to that of the comparison WSD systems. Although the WSID

and La Sapienza systems reported more senses than were present, their relative ordering

and weighting most closely matched that of the gold standard, with many inapplicable

senses having low weights. The comparison WSD systems performed relatively poorly

at ranking and quantifying sense applicability because their single-sense annotation of

an instance was often incorrect. Of the comparison WSD systems, only the supervised

IMS system achieves performance comparable to the semi-supervised WSID system;

the higher performance of the IMS system is due to it correctly identifying the most-

applicable sense.

Examining only the WSID systems, no one WSID system performs best on all met-

rics. The AI-KU systems perform strongly, though the team’s different configurations

reveal that the algorithm is susceptible to lower performance with certain parameters

(i.e., the “add1000” system). Similarly, the systems of the Unimelb team perform well,

despite the simple approach of inducing senses using an off-the-shelf topic modeling

algorithm. Our AWCD and SWCD systems perform competitively but do not attain

state-of-the-art performance in the WSD evaluations, though the SWCD system does

outperform all systems in the WSI evaluations (discussed below). All WSID systems

were competitive against the two WSI baselines, except in the case of detecting multiple

sense, where the WSID systems reported too many instances. The higher performance

of WSID systems at ranking and quantifying sense applicability indicates that the sys-

tems are accurate at identifying the most-applicable senses. Hence, performance could
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potentially be increased in future systems by suppressing low-weighted senses from

being reported in WSID output.

WSI Performance Clustering comparison tests a WSI system’s capability at produc-

ing sense distinctions similar to those of lexicographers’ in the gold standard, which

differs from the capability tested in the WSID evaluation, discussed above. Though

systems may do well in both types of evaluation, the results of our clustering compar-

ison evaluation reveal that WSI systems differ in their capabilities on the two tasks,

with the systems performing best at clustering comparison differing from those best

for WSID. Figure 6.4 visualizes the WSI systems’ performances on both clustering

comparison metrics, also reported in Table 6.1, where systems increase in performance

as they move up and to the right. The two WSI baselines, All Instances, One Sense

(AIOS) and 1c1inst, appear on the axes as they reflect the extreme behaviors of an

WSI system, respectively: (1) labeling all instances with the same induced sense or

(2) labeling each instance with a different sense. WSI systems which produce coarse-

grained senses whose clusters combine the instances of multiple gold-standard senses

will tend towards the performance of the AIOS baseline; in contrast, WSI systems that

produce finer-grained senses that subdivide the clusters for gold-standard senses will

tend towards the performance of 1c1inst.

Examining the performance of the WSI systems, our SWCD system attains the

highest Fuzzy NMI and second-highest Fuzzy B-Cubed scores, demonstrating that the

system comes closest to matching human lexicographers’ groupings of instances with-

out being biased towards the performances of the baselines. Indeed, the SWCD sys-

tem is the only system to outperform the 1c1inst baseline on Fuzzy NMI. In contrast,

the systems that performed better for WSID, such as the AI-KU systems, attain lesser

scores on the clustering evaluations. Examining the number of induced senses pro-

duced per instance (Table 6.1, column #I) shows that systems producing large numbers

of induced senses per instance perform well for WSID but worse on these two cluster
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Figure 6.4: Performance of WSI systems according to two clustering comparison mea-

sures on all instances of Task 13

comparison measures, where as SWCD and the Unimelb system produce fewer senses

per instance and score higher on the clustering comparison measures.

Our AWCD method produces a single sense for nearly all instances; though the

AWCD method uses multiple induced senses, these become sense-mapped to the same

WordNet sense, causing the system to perform similarly to the All Instances, One

Sense baseline. A further analysis of the system revealed that AWCD produced highly-

accurate induced senses, represented as clusters of collocations; however, the clusters

contained only a tens of collocations, which limited the number of contextual features

that the system could match with its senses’ features when disambiguating. The inabil-

ity to match contextual features resulted in the algorithm frequently using its back-off

strategy of labeling an instance with the sense having the most features. This lower

performance supports our earlier hypothesis in Chapter 2 Section 2.4 that suggested

AWCD could have reduced disambiguation capabilities because of the smallness of its

clusters. The size of the clusters and subsequent lower performance was largely due to
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the computational complexity of community detection method used by AWCD, Ahn et

al. (2010), which limited the size of the graph from which collocations clusters could be

found. However, this computational limitation raises the possibility that performance

might be improved with future, more-scalable community detection methods that could

be run on larger graphs in order to produce clusters with more collocations.

This difference in performance between WSI-based evaluations and WSID evalua-

tions suggests that future researchers may be better served by choosing the WSI system

that matches their intended use case: lexicographers looking to use a WSI system to

group contexts by senses (e.g., the KWIC in Chapter 2) may prefer to use a system

such as SWCD, while researchers building a WSID system may prefer to use a system

such as AI-KU that offers better features for learning a mapping to a reference sense

inventory.

6.3.6 Analysis 2: Single-sense Instances

In the second analysis, we restrict the data to only the subset of instances labeled with

single sense. Furthermore, we modified the test setting to have systems also label in-

stances with a single sense: (1) the sense mapping function for WSI systems (Jurgens,

2012) was modified so that after the mapping, only the highest-weighted WordNet sense

was reported, and (2) the La Sapienza system output was modified to report only the

highest-weighted sense from its annotation. In the single-sense setting, the mapping

function converts the All Instances, One Sense baseline into the most-frequent sense in

the test data (compared with that in SemCor). WSID Systems are evaluated using the

standard WSD Precision and Recall measures (Sec. 6.2.2) and we report the F1 mea-

sure of Precision and Recall. WSI systems are evaluated using the original definitions

of B-Cubed and NMI for hard clusterings. This second analysis removes the additional

difficulty of recognizing multiple senses and also enables directly comparing WSID

methods with the WSD methods that had been designed to produce only a single sense.
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Team System F1 NMI B-Cubed

this work SWCD 0.577 0.065 0.499
this work AWCD 0.570 0.004 0.563
AI-KU base 0.641 0.045 0.351
AI-KU add1000 0.601 0.023 0.288
AI-KU remove5-add1000 0.629 0.026 0.421
Unimelb 5p 0.596 0.035 0.421
Unimelb 50k 0.605 0.039 0.441
UoS #WN Senses 0.574 0.031 0.180
UoS top-3 0.600 0.028 0.414
La Sapienza System-1 0.204 - -
La Sapienza System-2 0.217 - -

BabelNet-WSD 0.256 - -
IMS 0.491 - -
SenseRelate 0.338 - -
UKB 0.189 - -

All-instances, One sense 0.569 0.0 0.570
1c1inst 0.0 0.048 0.0
SemCor MFS 0.477 - -

Table 6.2: System performance in the single-sense setting. Top system performances

are marked in bold.

Table 6.2 shows the systems’ performance on single-sense instances, revealing three

main insights. First, WSID systems have a substantial increase in performance and

improvement over the MFS baseline compared with the multiple sense settings. All of

the WSID systems surpass the performance of every unsupervised and supervised WSD

system we tested and surpassed the average performance of many supervised WSD

systems tested in previous WSD evaluations (Kilgarriff, 2002; Mihalcea et al., 2004;

Pradhan et al., 2007; Agirre et al., 2010). Similar to the results of the pseudoword

experiment in in Chapter 3 Section 3.5, the high performance of the WSID systems

suggest that the combination of a small amount of sense-annotated data with a WSI

model trained on a large amount of data can produce a semi-supervised WSID system

that outperforms current WSD state of the art. Indeed, WSID systems were trained with
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an average of 66.0 instances per lemma, which is within the range of training data sizes

where WSID systems outperformed the supervised WSD system in the pseudoword

experiments.7 Among the WSD systems, the supervised IMS system performed best,

with the unsupervised approaches performing less well. However, all WSID based

systems outperform IMS by at least 0.079.

Second, among the WSID and WSD systems, the distributional systems that use

positional or syntactic information as features (AI-KU, Unimelb, SenseRelate, and

IMS) perform better than graph-based approaches (AWCD, SWCD, UoS, La Sapienza,

BabelNet-WSD, UKB), which only use collocation features. The AI-KU and Unimelb

WSID systems and the SenseRelate and IMS WSD systems all use information on

which lemmas appear in the immediate context of the target word being disambiguated,

while the remaining graph-based systems ignore syntactic information and simply use

the occurrences of lemmas anywhere in the context. Although the distributional ap-

proaches vary in how the positional and syntactic features are used, the performance

difference between distributional and graph-based approaches suggests that syntactic

and positional information is important for attaining high WSD performance and that

future graph-based approaches would be served well by incorporating it into their fea-

tures.

Third, similar to what was observed in the full data set, WSI systems vary in their

performances based on the evaluation, with our SWCD method attaining superior per-

formance on the WSI-based clustering comparison evaluations, while the AI-KU sys-

tems attain superior performance on the WSID evaluations. Despite these differences,

all systems were able to surpass the SemCor MFS baseline and most systems were able

to surpass the more-competitive All Instances, One Sense baseline,8 demonstrating that

7We note that in the pseudoword experiments, the supervised IMS system and WSID systems were
trained on the same sense-annotated data. In contrast, in the current evaluation, WSID systems and IMS
used different training data: the WSID systems were trained as a part of the cross-validation procedure
on the Task 13 data set while IMS was used with its off-the-shelf trained models which incorporate
significantly more training data from multiple corpora.

8As noted earlier, the All Instances, One Sense baseline is equivalent to the most frequent sense in the
training data and represents the best performance that any system could obtain if a single sense is used
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F1 per mapping function
Team System Jurgens (2012) Linear-kernel SVM Performance Difference

SWCD 0.577 0.577 0.000
AWCD 0.570 0.570 0.000

AI-KU base 0.641 0.634 -0.007
AI-KU add1000 0.601 0.601 0.000
AI-KU remove5-add1000 0.628 0.635 +0.007
Unimelb 5p 0.596 0.600 +0.004
Unimelb 50k 0.605 0.603 -0.002
UoS #WN Senses 0.574 0.599 +0.025
UoS top-3 0.600 0.604 +0.004

Table 6.3: WSD performance on single-sense instances where WSID systems were

built using either the mapping function of Jurgens (2012) or the linear-kernel SVM

described in Section 3.2.1.

the WSID systems are identifying salient distinctions in the word’s usages.

6.3.7 Analysis 3: Impact of the Mapping Function

The third analysis measures the impact of the sense mapping function on WSID per-

formance in Task 13. Task 13 uses the mapping function of Jurgens (2012), which

extended the method of Agirre et al. (2006b) for producing sense annotations with

multiple senses. However, in Chapter 3, we demonstrated that a linear-kernel SVM

produces superior performance to the method of Agirre et al. (2006b) on data anno-

tated with a single sense. Therefore, to test the difference between the two, we repeat

the single-sense setup of the previous analysis (Sec. 6.3.6) and measure performance of

each system with the two mapping functions.

Table 6.3 shows the F1 score of each WSID system with both mapping functions

and in the third column shows the performance difference. Consistent with the pseu-

doword experiments in Chapter 3, the results here show that using a linear kernel SVM

for a mapping function improves performance for the majority of systems. System F1

for all instances of a lemma. In this setting, the baseline could be thought of as a supervised baseline
with knowledge of the expected sense distribution in the test data.
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scores increase by an average of 0.005, though the top-performing system, AI-KU base,

does decrease in performance. Labeling instances with only a single sense is most often

the correct behavior for a WSD system (as shown in Chapter 5) and therefore the linear

kernel SVM could be considered as an effective mapping function for most instances,

given that a usage may only rarely have multiple senses.

6.4 Experiment 2: Ensemble WSID Performance

The second experiment evaluates the ensemble WSID setup described in Chapter 3 Sec-

tion 3.2.3 on real-world sense-annotated data instead of pseudowords. This experiment

is test the performance of ensembles built from a variety of WSI models using multiple

sense inventories.

6.4.1 Experimental Setup

To evaluate the ensemble WSID setup with sense-annotated data, we use the three Se-

mEval tasks have included WSID evaluation: SemEval-2007 Task 2 (Agirre and Soroa,

2007), SemEval-2010 Task 10 (Manandhar et al., 2010), and SemEval-2013 Task 13

(Jurgens and Klapaftis, 2013). We repeat each task’s exact evaluation setup, with the

exception of substituting the task’s mapping function with a linear kernel SVM when

constructing the ensemble.

Two significant differences exist in the tasks’ setups compared with the pseudoword

experiments in Chapter 3. The 2007 and 2010 tasks use OntoNotes senses (Hovy et al.,

2006), which are known to be more coarse-grained than the WordNet senses which the

pseudowords approximate. Second, the 2013 task evaluates models when the annota-

tion is potentially ambiguous and includes gold standard data where the instances have

multiple sense labels. Because we consider only instances labeled with a single sense

in the pseudoword experiments, we restrict our analysis of the 2013 task to only those

instances with a single sense label.
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Ensemble systems were created using the induced sense answers from the systems

that participated in each task and a linear kernel SVM to perform the sense mapping.

We intentionally use the original WSI models rather than the five models used in our

earlier experiments in order to test the benefits of the proposed WSID configuration

with a wider variety of systems. For each task, we consider two ensembles: (1) the

outputs of all WSI systems, and (2) the outputs of the best configuration of each system,

measured according to their WSID performance in the original task. We note that the

2007 task allowed only one configuration per system, so only one ensemble is produced

for that task. Additionally, we exclude the Duluth-R systems’ results in the 2010 task

because these systems were intentionally submitted as random baselines.

6.4.2 Results

Table 6.4 shows the ensembles’ performances in all three tasks and includes the scores

of best-performing system in each task originally and the task’s MFS baseline. In each

task, our ensemble WSID configuration shows performance improvements over the

best-performing system and MFS. Improvements over MFS and the best-performing

system were all significant at p < 0.01 using McNemar’s test for significance. We

also note that all ensemble performance improvements over the best-performing system

are larger than the differences between the performances of the best and second-best

systems in each task. These results demonstrate consistent performance improvements

for an SVM-based ensemble WSID model even when using different sense inventories

and entirely different sets of WSI systems.

6.5 Conclusion

This chapter has presented a quantitative evaluation of WSI, WSID, and WSD systems,

including the WSI systems presented in Chapter 2. In our first experiment, we test

systems on the SemEval-2013 Task 13 data set (Jurgens and Klapaftis, 2013), which
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Ensembles
SemEval MFS Best System All-Systems Best-Configuration

2007 0.787 0.816 0.828 -
2010 0.587 0.624 0.680 0.670
2013 0.477 0.641 0.644 0.657

Table 6.4: A comparison of the best-performing system in each SemEval WSID task

and our proposed ensemble method.

includes instances labeled with multiple senses and perform three analyses. In the first

analysis, we demonstrate that WSID systems offer superior performance to unsuper-

vised and supervised WSD systems and surpass the competitive MFS baseline. Fur-

thermore, we show that our SWCD WSI system achieves state-of-the-art performance

at matching gold-standard groupings of instances according to their WordNet senses,

providing a valuable tool for assisting lexicographers. In the second analysis, we eval-

uate on only the single-sense instances of Task 13 and demonstrate that WSID systems

outperform both supervised and unsupervised WSD systems in this setting. The results

of the second analysis show that in cases of limited training data, WSID can achieve

superior performance even to a supervised system trained on more sense data, further

confirming the pseudowords results in Chapter 3 with performance on real-world data.

In the third analysis, we test the impact of the sense-mapping function on real-world

data, showing that WSID systems using a linear kernel SVM mapping function im-

proves the performance of most WSID systems. This third result suggests that the

linear kernel SVM should be adopted as the standard sense mapping function both for

WSID systems and SemEval-like evaluation setups.

The second experiment tested our procedure from Chapter 3 for constructing en-

semble WSID systems. Using multiple ensembles constructed from the systems of

three SemEval WSI tasks (Agirre and Soroa, 2007; Manandhar et al., 2010; Jurgens

and Klapaftis, 2013), we demonstrate that in all tasks, our ensemble WSID procedure

provided a statistically significant performance improvements over the best system and
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MFS baseline for each task.
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CHAPTER 7

Conclusion

7.1 Summary and Contributions

Word Sense Disambiguation (WSD) is an important but notoriously challenging task

in NLP where the particular meaning of a word in context must be identified (Ide and

Véronis, 1998; Navigli, 2009). Two key aspects of WSD increase its difficulty. First,

due to the time and costs required to produce high-quality sense-annotated corpora,

currently-available sense annotated data is sparse, often with only a few hundred exam-

ples at most for any give meaning of a word. Second, the different meanings of a word

may be related, which increases the difficulty of distinguishing between such senses,

especially given that related senses may appear in similar types of contexts (Palmer et

al., 2007).

This dissertation has addressed these two challenges in three ways. First, we pro-

pose new unsupervised WSI methods (Ch. 2 and (Jurgens, 2012)) and semi-supervised

WSID methods (Ch. 3) for making better use of the limited sense-annotated data. To-

wards this first goal, we provide three contributions. First, we introduce two novel

graph-based WSI methods, which we demonstrate as identifying meaningful senses

and providing superior performance to other graph-based WSI approaches. In particu-

lar, our SWCD method achieves new state-of-the-art performance, surpassing all types

of WSI systems at matching gold-standard instance groupings in SemEval-2013 Task

13 (Jurgens and Klapaftis, 2013). Second, we proposed a new method for produc-

ing semi-supervised WSID systems and demonstrate that our new method produces a
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state-of-the-art WSID performance on multiple benchmarks. Furthermore, as a part of

our WSID analysis, we produced a new pseudoword evaluation, which closely approxi-

mates WSD performance on polysemous WordNet nouns. Our new evaluation provides

two orders of magnitude more data and precise controls for the frequency of senses,

which enables testing WSID systems with varying amounts of data and sense distri-

butions. Third, using our novel pseudoword evaluation, we quantify the performance

differences between WSID and fully supervised WSD, showing that our novel WSID

ensemble setup attains superior performance to a state-of-the-art supervised WSD sys-

tem when limited sense-annotated data is available. Our third contribution enables ex-

perimenters to choose the appropriate learning algorithm (WSID or supervised WSD)

given the amount of training data available to them.

In the second focus of the dissertation, we propose to reduce data sparsity by

new methods for gathering high-quality sense annotations at a reduced cost from non-

experts. We propose and evaluate new annotation procedures for use in crowdsourcing

(Ch. 4 and Jurgens (2013)). In our analysis of prior methods and our novel annota-

tion methods, we demonstrate that our MaxDiff-based annotation procedure enables

untrained workers to produce sense annotations that are highly replicable and achieve

agreement rates on part with those seen in expert-based corpora. Furthermore, our anal-

ysis shows that although workers had difficulties with the traditional annotation method

of requiring one sense per instance, workers were much more accurate when the task

allowed them to express their uncertainty about the correct annotation by marking all

the senses that they thought were appropriate.

In the third focus, we analyze cases of ambiguity in annotation in order to identify

the causes behind the difficulty and how future efforts may reduce their errors (Ch. 5

and Jurgens (2014)). As a part of this analysis, we (1) generated the largest corpus

of instances annotated with all applicable WordNet senses, weighted according to the

senses’ applicabilities and (2) provided new evaluation measures for testing WSI and

WSD systems on multiple-sense instances. In our analysis, we demonstrate that most
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ambiguity is due to the usage’s containing sentence having too few semantic cues; how-

ever, a sizable minority of instances are ambiguous due to syllepsis, where contextual

cues have elicited different senses. Further, we demonstrate that using a coarse-grained

sense inventory such as OntoNotes (Hovy et al., 2006) can remove the need for using

multiple sense in most cases – though nearly a quarter of ambiguous noun instances

would still need multiple coarse-grained senses.

7.2 Future Work

The research in this dissertation has inspired several other currently-ongoing research

projects as future work, three of which we highlight here.

7.2.1 Sense Annotating via Video Games with a Purpose

Crowdsourcing provide one means of gathering new sense annotated data for WSD.

However, crowdsourcing still costs money, which limits the amount of sense anno-

tated data that can be produced based on the available financial resources. An alternate

method of gathering sense annotated data is to use Games with a Purpose, where a task

(such as sense annotation) is turned into a game objective. Players play the game and

as a result complete the annotation task implicitly, often without being aware of the

annotation task. If the game is sufficiently fun in its own right, players may continue

to play for free, removing the financial limitations on the amount of data that can be

produced.

Within NLP, several works have proposed using games for tasks such as anaphora

resolution (Hladká et al., 2009; Poesio et al., 2013), paraphrasing (Chklovski and Gil,

2005), term associations (Artignan et al., 2009), and WSD (Seemakurty et al., 2010;

Venhuizen et al., 2013). Notably, all of these linguistic games focus on users interacting

with text, in contrast to other highly successful games with a purpose such as Foldit

(Cooper et al., 2010), in which players fold protein sequences, and the ESP game (von
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(a) The context and target word

are shown to the player before

the start of gameplay

(b) Players destroy image by

clicking or touching, which an-

notates the usage.

(c) The round-over summary

provides feedback to the players

on their accuracy.

Figure 7.1: Screenshots of the three key elements of the Ka-boom! video game, which

performs word sense annotation.

Ahn and Dabbish, 2004), where players label images.

Two prior works have investigated using games to perform WSD: Wordrobe (Ven-

huizen et al., 2013) and Jinx (Seemakurty et al., 2010). Wordrobe asks players to

disambiguate nouns and verbs using multiple choice questions where each option is a

sense definition, making the game appear very similar to a standard sense annotation

task and likely less appealing to players. Jinx uses two players who both have to in-

dependently provide lexical substitutes of an ambiguous word and are then scored on

the basis of their shared substitutes. Jinx has a more game-like feel than Wordrobe.

However, the substitutes do not directly produce sense annotations, which must be gen-

erated from a heuristic search based on the locality of the substitutes in the WordNet

hypernym graph.

In our ongoing work, we have proposed a radical shift in game design for NLP and

propose annotating using video games, where players engage in graphical environments

and play games resembling those on common video game platforms. In our initial

games, we have produced two video games to construct a mapping between words and

WordNet senses (Vannella et al., 2014). Further, we produced a third game, Ka-boom!,

that produces fine-grained sense annotations as a result of image-based game play.

Ka-boom! is an action game in the style of the popular Fruit Ninja game: pictures

155



are tossed on screen from the boundaries of the screen, which the player must then

selectively destroy in order to score points. Prior to the start of a round of game play,

players are shown a sentence with a word in bold (Fig. 7.1a) and asked to envision

pictures related to that word’s meaning in the context. Players are then instructed to

destroy pictures that do not remind them of the meaning of the word in bold (i.e., to

allow all the pictures showing the word’s concept to survive). Following, players begin

a round of game play, seen in Figure 7.1b, where pictures depicting both (1) images

for each sense of the word and (2) images for unrelated lemmas. After the round ends

(Fig. 7.1c), players see (1) how accurate they were at destroying unrelated images and

consistently choosing images associated with a single sense and (2) all of the pictures

that they destroyed, both of which allows them to assess their performance and improve

in future rounds. Our experiments show that Ka-boom! produces more accurate anno-

tations than the current state-of-the-art game, Wordrobe (Venhuizen et al., 2013), and

the highly-competitive MFS baseline. Because video games are an appealing past-time

to many, this work raises the possibility of tapping a larger pool of video game players

who may play games like Ka-boom! for free, significantly lowering the cost of an-

notation compared with that of crowdsourcing or that of trained annotators. In future

work, we plan to scale up video game-based word sense annotation to both (1) increase

the amount of sense-annotated data available for use and (2) explore the relationship

between word senses and their visual representations.

7.2.2 Combining Distributional Semantics with Word Senses

Word meaning has typically been represented in two distinct forms: either with word

senses (Navigli, 2009) or distributional representations (Turney and Pantel, 2010; Ju-

rgens and Stevens, 2010b). The former divides meaning into discrete semantic units

(i.e., senses), which are defined independently of how a word may be used. The latter

representations builds upon the Distributional Hypothesis (Firth, 1957) to represent a

word’s meaning according to contextual features of its occurrences. While both repre-
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sentations have proven highly useful to NLP, each comes with its own limitations, such

as being unable to represent novel meanings within a fixed sense inventory (Lau et al.,

2012), or using a single distributional representation that conflates multiple word mean-

ings (Schütze, 1998). Accordingly, recent work has attempted to push each representa-

tion into a flexible middle ground, such as by allowing word usages to be represented

with multiple senses (Erk et al., 2012; Jurgens, 2012), or by modifying a distributional

representation based on the context of a particular usage (Erk and Padó, 2008; Dinu

and Lapata, 2010). Nevertheless, models remain disconnected, forcing downstream

applications to work either with senses or vectors.

In our ongoing work, we seek to bridge this divide by providing a flexible semantic

representation that can operate as (1) a standard distributional vector, (2) a vector tuned

to a word’s meaning in context, (3) a distribution over word senses, or (4) even a single

sense. Our hybrid approach leverages existing semantic networks over concepts and

then enriches the network with distributional information. Our initial results show that

this type of joint distributional- and sense-based representation can perform competi-

tively on a wide variety of semantic tasks requiring either presentation and therefore

offers the possibility of bridging the two representational divide.

7.2.3 Wikification and WSD

Wikipedia is a collaboratively-constructed encyclopedia where article texts commonly

contain references that link to other articles within the encyclopedia. An ambiguous

term such as “apple” is linked to the appropriate page, such as the company or fruit,

based on its usage. Both Wikipedia and the process of linking a term to the appropriate

page, also known as wikification, are close analogs of a word sense inventory and word

sense disambiguation.

In our on-going work, we aim to link the tasks of wikification and WSD through

alignments between Wikipedia pages and WordNet senses (Navigli and Ponzetto, 2010;
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Niemann and Gurevych, 2011). Such an alignment enables gathering large amounts of

manually sense-annotated data from the already-wikified links in Wikipedia, which can

potentially alleviate the knowledge acquisition bottleneck for some words and also en-

rich the sense inventory with new senses from collaborative-constructed knowledge in

Wikipedia. Conversely, WSID and WSD systems can be trained on Wikipedia as a

sense inventory, providing a novel and potentially high-performance method of wikifi-

cation.

7.2.4 Uncertainty and Underspecification in Sense Disambiguation

Our experiments with pseudowords and sense-annotated data have shown that linear

kernel SVMs provide a consistent performance benefit for mapping induced senses into

senses of a reference inventory. However, a potential downside to using this SVM setup

is that the output always consists of a single sense label, which as we demonstrated

in Chapter 5, is not always the most accurate representation of a particular usage’s

meaning. Two potential solutions could be explored in future work.

First, extensions to SVM have been proposed for multi-class classification (Knerr et

al., 1990; Platt et al., 1999; Vural and Dy, 2004), where the SVM may report multiple

labels. Furthermore, Wu et al. (2004) have proposed a method for estimating a prob-

ability distribution over all the labels. Such models could be applied to the mapping

function to detect cases where the classifier identifies multiple senses for output.

Second, as we showed in Chapter 5, much of the need for having multiple Word-

Net senses label the same instance comes from WordNet’s fine-grained distinctions

in meaning. When we compared the multi-sense annotations with the annotation that

would be made for the same instance with the more coarse-grained OntoNotes sense

inventory, only a single OntoNotes sense annotation was needed in most cases. A sec-

ond possibility for using single-sense classifiers like the linear kernel SVM is to use a

two-pass approach to sense disambiguation where, first, the usage is disambiguated to
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a single coarse-grained sense, and second, the sense label is refined to a fine-grained

sense, if possible. The coarse-grain sense captures much of the ambiguity that would

require multiple-fine grained senses.
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APPENDIX A

Derivation of Fuzzy Normalized Mutual Information

This appendix chapter overviews the full derivation of mutual information described in

Chapter 6 Section 6.2.1.2, which is used the evaluation of WSI systems in Section 6.3.5.

This appendix provides additional details on the extension of Lancichinetti et al. (2009)

and how our further extension for fuzzy clustering is incorporated. We begin by briefly

reviewing the calculating of mutual information for hard (non-overlapping) clusterings

and then describe the method of Lancichinetti et al. (2009). After, we describe our

extension and how it may be computed.

Mutual information measures the dependence between two random variables and

may be defined equivalently as

I(X : Y ) = H(X, Y )−H(X|Y )−H(Y |X)

= H(X)−H(X|Y )

= H(Y )−H(Y |X)

(A.1)

where H(X) denotes the entropy of the random variable X that represents a partition,

i.e., the sets of instances assigned to each sense, andH(X|Y ) is the conditional entropy.

In comparing hard clusterings, each clustering is treated as a discrete random vari-

able that has been sampled N times where N is the number of items and where each

outcome over the variable is an assignment to one of its clusters. The entropy of a

particular assignment, X , may then be measured as follows,

H(X) =
∑

xi∈X p(xi)log2(p(xi))

=
∑

xi∈X
freq(xi)

N
log2

(
freq(xi)

N

)
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where p(xi) denotes the probability of an item being assigned to cluster xi and freq(xi)

denotes the number of items that were assigned to cluster xi. Similarly, for two parti-

tions, X and Y , we may compute the conditional entropy as

H(X|Y ) =
∑

xi∈X
∑

yj∈Y p(xi, yj)log2p(xi|yj)

=
∑

xi∈X
∑

yj∈Y p(xi, yj)log2
p(xi)
p(xi,yj)

=
∑

xi∈X
∑

yj∈Y
freq(xi,yj)

N
log2

(
freq(xi)

N
freq(xi,yj)

N

) (A.2)

The conditional entropyH(Y |X) may be calculated in a similar manner, which enables

calculating the mutual information (Eq. A.1).

To handle the case of mutual assignments, Lancichinetti et al. (2009) propose an ex-

tension to Eq. A.2 for calculating the normalized mutual information between soft clus-

terings, where items may be in more than one cluster. Rather than represent the entire

clustering as a single variable, each cluster xi is represented as a separate Bernoulli dis-

tribution; that is, the cluster assignments for each item is represented as a sample from

the variable X1...k denoting the clustering, where the ith entry of X is the Bernoulli

distribution for cluster i. We denote the distribution of cluster i as Xi. Using the cluster

labels for the N instances, we may easily compute the values of each component as

P (Xi = 1) = ni

N
where ni is the number of items labeled with cluster i, and 1 denotes

an instance is assigned to cluster i.
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Given two soft clusterings, X and Y, we can define the joint probability distri-

bution between two of their individual clusters, Xi and Yj , respectively, using their

assignments. Let SXi
denote the set of items in cluster Xi. The joint probabilities for

the values of clusters Xi and Yj may be calculated as

P (Xi = 1, Yj = 1) =
|SXi
∩ SYj |
N

(A.3)

P (Xi = 1, Yj = 0) =
|SXi
| − |SXi

∩ SYj |
N

(A.4)

P (Xi = 0, Yj = 1) =
|SYj | − |SXi

∩ SYj |
N

(A.5)

P (Xi = 0, Yj = 0) =
N − |SXi

∩ SYj |
N

(A.6)

Equations A.3–A.6 can then be used to calculate the conditional entropies of the two

senses, i.e., for H(Xi|Yj), the amount of information that cluster Yj gives us about the

assignments of Xi.

H(Xi|Yj) = H(Xi, Yj)−H(Yj)

= (h[P (Xi = 1, Yj = 1)] + h[P (Xi = 1, Yj = 0)]

+h[P (Xi = 0, Yj = 1)] + h[P (Xi = 0, Yj = 0)])

− (h[P (Yj = 0)] + h[P (Yj = 1)])

(A.7)

In Equation A.7 and what follows, we adopt the shorthand of Lancichinetti et al. (2009)

to denote h(x) as −xlogx. Note that this value does not necessarily correspond the

information that Yj gives us about its items being in cluster Xi; the information from

Yj may also be high Xi is the complement. Figure A.1 illustrates the case where the

conditional entropy is minimized both when the sense assignments are identical, shown

in Figure A.1a and A.1b; however the conditional entropy is also minimized when the

compared cluster is the complement, such as when comparing the clusters in Figure

A.1a and A.1c. Therefore, Lancichinetti et al. (2009) impose the constraint that the

conditional entropy is only defined if h(p(Xi = 1, Yj = 1)) + h(p(Xi = 0, Yj =

0)) ≥ h(p(Xi = 1, Yj = 0) + h(p(Xi = 0, Yj = 1)), i.e., that the majority of the

information is due to the degree of alignment rather than the degree of complement.

162



1 32 4

(a) Xi

1 32 4

(b) Yj

1 32 4

(c) Yk

Figure A.1: A cluster Xi in clustering X compared to two clusters, Yj and Yk in clus-

tering Y, where Yj is identical to Xi and Yk is the complement.

Under this constraint, the conditional entropy is minimized only when the two clusters

are identically aligned. For example, in Figure A.1 the conditional entropy would be

defined when comparing the clusters in Figures A.1a and A.1b, but not when comparing

either to the cluster in Figure A.1c.

From Eq. A.7, we then define the conditional entropy from an individual cluster Xi

to a clustering Y with n clusters as the minimum entropy from Xi to any of the clusters

in Y:

H(Xi,Y) = min
j∈1,2,...,n

H(Xi|Yj) (A.8)

Should Eq. A.7 not be defined for all clusters in Y due to the matching constraint,

H(Xi,Y) = H(Xi). Summing across the clusters in X, the conditional entropy be-

tween X and Y is defined as

H(X|Y) =
∑
i

H(Xi|Y) (A.9)

Finally, we may use the definition of conditional entropy between two soft cluster-

ings (Eq. A.9) to compute the mutual information as defined in Eq. A.1. Lancichinetti

et al. (2009) propose a normalization based on the variation of information (VI) crite-

rion (Meilă, 2003):
1

2

(
X|Y
X

+
Y|X
Y

)
However, as McDaid et al. (2011) note, this normalization unintentionally generates

higher than expected values when both clusterings have clusters that contain the ma-

jority of the elements. To correct this issue, McDaid et al. (2011) propose an alternate

method of normalizing suggested by Vinh et al. (2010) in their analysis of normaliz-
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ing factors for mutual information. For two clusterings X , Y , the Normalized Mutual

Information is defined as

NMI =
I(X,Y)

max(H(X), H(Y))
(A.10)

In the fuzzy clustering setting, an instance’s membership in a cluster is no longer

binary (i.e., either a member or not), but rather a continuous value in in [0, 1], reflect-

ing the degree of applicability of that cluster’s sense to the instance. Directly using

continuous membership values when computing conditional entropy between clusters

requires using differential entropy, which potentially produces negative values, creating

problematic interpretations for comparing clusters. Therefore, instead of representing

each cluster as a continuous random variable, the range of cluster membership values

is discretized into disjoint subranges. In the case of sense annotation, this discretization

is analogous to having annotators rate sense applicability with a Likert scale (i.e., a

discrete value) rather than with a rational number within a fixed bound (e.g., [0, 1]).

Using the framework of Lancichinetti et al. (2009), discretization results in a cluster

being represented as a categorical distribution with states denoting membership weights

instead of a Bernoulli distribution whose 0/1 states denote member/not-member states.

Using the definition of Xi and Yj as a categorical variables over discrete ratings, we

may then estimate the entropy and joint entropy as follows.

H(Xi) =
n∑
i=1

p(wi)log2p(wi) (A.11)

where p(wi) is the probability of an instance being labeled with rating wi. Similarly,

we may define the joint entropy of two fuzzy clusters in separate clusterings as

H(Xk, Yl) =
n∑
i=1

m∑
j=1

p(wi, wj)log2p(wi, wj) (A.12)

where p(wi, wj) is the probability of an instance being labeled with rating wi in cluster

Xk and wj in cluster Yl, and m denotes the number of ratings bins for Yl. Based on

the limited range of fuzzy memberships in [0, 1], we selected uniformly distributed
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bins in [0, 1] at 0.1 intervals when discretizing the applicability weights of the sense

annotations. The conditional entropy may then be calculated as was defined in Equation

A.7:

H(Xk|Yl) = H(Xk, Yl)−H(Yl).

Together, Equations A.11 and A.12 maybe be used with the procedure of (Lancichinetti

et al., 2009) for computing conditional entropies (Eqs. A.7 and A.9) to define I(X, Y )

for fuzzy clusters.
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Barbora Hladká, Jiřı́ Mı́rovskỳ, and Pavel Schlesinger. 2009. Play the language:
Play coreference. In Proceedings of the 2009 Joint Conference of the Annual Meet-
ing for the Association for Computational Linguistics and the International Joint
Conference on Natural Language Processing, pages 209–212. Association for Com-
putational Linguistics.

Jisup Hong and Collin F. Baker. 2011. How Good is the Crowd at “real” WSD?
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics (ACL). ACL.

David Hope and Bill Keller. 2013a. MaxMax: A Graph-Based Soft Clustering
Algorithm Applied to Word Sense Induction. In Proceedings of the Conference on
Intelligent Text Processing and Computational Linguistics (CICLing), pages 368–
381.

David Hope and Bill Keller. 2013b. UoS: A Graph-Based System for Graded Word
Sense Induction. In Proceedings of the Seventh International Workshop on Semantic
Evaluations (SemEval), pages 689–694.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph
Weischedel. 2006. OntoNotes: the 90% solution. In Proceedings of the Human
Language Technology Conference of the North American Chapter of the Association
for Computational Linguistics (HLT-NAACL), pages 57–60. ACL.

Lawrence Hubert and Phipps Arabie. 1985. Comparing partitions. Journal of Clas-
sification, 2(1):193–218.

Nancy Ide and Keith Suderman. 2004. The american national corpus first release.
In Proceedings of the Fourth International Conference on Language Resources and
Evaluation (LREC), pages 1681–1684.
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