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Abstract

Applications of counting and classifying states by symmetry in AdS/CFT

by

Shannon Wang

In the last few years, there has been a surge of interest in studying the AdS/CFT duality

through the generating functions for half and quarter BPS correlators in N = 4 SYM

theory. We arrive at these functions through representation theory; while the required

calculations usually involve combinatorics and are computationally tedious, an exact

formula– and in the case of quarter BPS correlators, an exact formula for the gauge

group SU(2) and a prescription for arriving at a more generic formula for N > 2– can be

found through the application of the Harish-Chandra-Itzykson-Zuber integral formula,

which makes use of the localization theorem. This thesis focuses on developing the

mathematical tools needed to probe AdS giant gravitons and their interpretations as

BPS coherent states.
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Chapter 1

Introduction

Over the last two decades, there has been a wealth of works exploring giant gravitons, par-

ticles that mediate gravity and appear in the framework of the Anti-de Sitter/Conformal

Field Theory (AdS/CFT) correspondence [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18]; in particular, research that interprets BPS coherent states as giant gravitons

[19, 20, 21, 22, 23, 24, 25] has gained interest. These objects are represented as matrix

integrals, which are laborious to compute; while there are combinatorial formulas that

may shed light on their behavior, they are still unwieldy and often intractable. More

recently, there has been a surge in effort to simplify these calculations using localization

[26, 27, 28, 21, 22, 25], which is shorthand for solving representation theory problems with

geometry [29, 30, 31]. This dissertation is devoted to the efforts to study the generating

functions of BPS coherent states through the application of the Harish Chandra integral

formula [32, 31], which yields a closed form solution through localization methods, to the

characters of irreducible unitary representations of different gauge groups.

In this introduction, we will briefly review the basics of the AdS/CFT correspondence.

We will start with an introduction to the concepts of conformal field theory before moving

on to a speedy review of the holographic duality; finally, we will discuss the operator-
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Introduction Chapter 1

state correspondence, which forms the bedrock of this dissertation. This sets the stage

for introducing the mathematics that we will explore over the next three chapters and

motivates the efforts to build mathematical tools for counting and classifying states by

symmetry.

1.1 Conformal Field Theory

We begin with the basics of conformal field theories, which are simply quantum field

theories with additional symmetries under conformal transformations. A conformal field

theory is a quantum field theory with scaling symmetry and usually involves an extended

symmetry group called the conformal group. The local operators in a CFT may be

decomposed into irreps of this group; we denote these operators as Oi and label them

with their weight ∆i, or their scaling dimension. The scaling symmetry comes from

conformal transformations, which occur through a change of coordinates xµ → x̃µ(x)

that leaves the infinitesimal line elements invariant up to a local scale factor Ω(x) [33]:

ηµνdx̃
µdx̃ν = Ω(x)2ηρσdx

ρdξσ (1.1)

Translations and rotations are examples of conformal transformations; invariant trans-

lations give rise to conserved currents. We consider the stress-energy tensor, which is the

matrix of such conserved currents and arises from an infinitesimal change to the metric.

Then for an arbitrary set of local operators {Oj(xj)}, where xj denotes the position of

the jth insertion, our stress-energy tensor operator can be defined as [33]:

δ (⟨O1(x1) · · · ON(xN)⟩g) =
∫ √

−g(x)(x)δgµν(x)⟨T µν(x)O1(x1) · · · ON(xN)⟩g (1.2)

2
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Computing the variations to the metric arising from infinitesimal Weyl rescalings

shows that the stress tensor must be traceless; this condition has led to the identification

of many conformal field theories.

We now focus on the infinitesimal generators that yield the conformal isometries of

flat space. They are given by [34]:

Pµ = ∂µ

Lµν = xµ∂ν − xν∂µ

(1.3)

We may show that the plane with the origin removed is equivalent to a cylinder with

a base that is a d − 1 dimensional sphere and a height of τ = log(r) [34], where r is as

defined in the original metric of the plane (missing its origin) [34]:

ds2 = r2
(
dr2

r2
+ dΩ2

)
(1.4)

Clearly the cylinder enjoys translation invariance under τ ; the generator for τ trans-

lations is then [34]:

D = ∂τ = xµ∂µ (1.5)

Finally, if we perform a space inversion such that τ → −τ and define a new radial

coordinate such that r̃ = 1/r, we may write the generator for translations as K. We will

see a similar set of generators appear in AdS physics later.

If we apply these generators to a correlator of two operators, ⟨O∆i
(xi)O∆j

(xj)⟩, we

arrive at the two point function [35]:

⟨O∆i
(xi)O∆j

(xj)⟩ = C∆i,∆j

δ∆i,∆j

|r|∆i+∆j
, (1.6)

3
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where the matrix Cij is the Zamolodchikov metric. We are mainly interested in the

two-point functions for BPS operators in N = 4 supersymmetric Yang-Mills, which have

chiral adjoint scalar fields X, Y, Z with respect to a N = 1 decomposition. They can be

computed as [36]:

⟨χR
(
Z̄
)
(x)χR′ (Z) (0)⟩ = 1

Cn|x|2n
δR,R′fR, (1.7)

where R,R′ are representations of U(N), Cn is the normalization constant, χR, χR′ are

characters of the representations, and fR =
∏

i,j∈boxes (N + i− j) is the product of all

the labels of the boxes of the Young diagram for R.

1.2 Anti-de Sitter Space

We may understand anti-de Sitter space, AdSd+1, as a hyperboloid embedded in R2,d,

whose coordinates are y−1, y0, · · · yd; y−1 and y0 are timelike and the rest are spacelike.

Then our constraint equation is [37]:

(
y−1
)2

+
(
y0
)2 −∑(

yi
)2

= 1 (1.8)

Our induced metric is as follows [37]:

ds2flat = −
(
y−1
)2 − (y0)2 + dy⃗ · dy⃗ (1.9)

In global coordinates, we have [37]:

ds2 = − cosh(ρ)2dt2 + dρ2 + sinh(ρ)2dΩ2
d−1 (1.10)

The two coordinate systems are related by the following mapping [34]:

4
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y−1 + iy0 = cosh(ρ) exp(it)

y⃗ = sinh(ρ)n̂ = ξ⃗,

(1.11)

where n̂ is a unit vector of the embedding of Ωd−1 into Rd in a unit sphere. We may

observe from the metric in global coordinates a time translation invarianace as well as

rotational symmetries of a sphere; the set of equations above then gives the rotation

group and a generator that commutes with the group. We can write down the following

generators [34]:

Rij ≡ xi∂j − xj∂i

H ≡ x−1∂0 − x0∂−1

K⃗ ≡ ξ∂⃗y − 2y⃗∂ξ̄

P⃗ ≡ ξ̄∂⃗y − 2y⃗∂ξ

(1.12)

Once we have established our generators, we may start reproducing the representation

theory we previously saw in the conformal field theory. We may do so by asserting that

the time translation we observe from the AdS metric maps to the time translation as

previously seen on the conformal field cylinder; the symmetry generators match. Then

the quantum theories are equivalent and the energy in CFT should be equivalent to the

energy in AdS [34]. If we attempt to solve the wave equation in AdS, we find that the

primary state, or the solution, is an eigenstate of i∂t with an eigenvalue of ∆ is mapped

to the definition of energy in the one-particle sector, which is to say that a representation

of a conformal group with conformal dimension ∆ can be mapped to a set of single

particle states in AdS. This establishes a correspondence between local operators and

single particle states, leading to what we call the operator state correspondence [34].

5
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1.3 The Operator State Correspondence

We start with an operator insertion at the origin, which is a singularity that we

can proceed to cut out by cutting a circle of radius r0 around the origin. As described

previously in our introduction to conformal field theory, we choose spherical coordinates

and rescale the AdS metric so that the volume is constant; then our metric becomes [34]:

ds̃2 ≡ r2
[
dr2

r2
+ dΩ2

D−1

]
= e2τ

[
dτ 2 + dω2

D−1

]
(1.13)

The right hand side of the metric describes the product of a sphere and a line, which

yields an infinite cylinder with a sphere as its base; in two dimensions, the sphere is a

circle and thus the base is flat. Thus we arrive at a relationship between a punctured

sphere and the cylinder SD−1 ×R. We can relate cutting the path integral along a fixed

r to cutting the path integral along a fixed τ on the cylinder. If we interpret τ as time,

we see that we relate infinite τ in the past to r = 0; likewise, τ = 0 relates to a point

at an infinite distance. When we insert an operator at the origin, we are really moving

it to the infinite past in τ . Our inserted operator changes quantum fields at the origin;

this can be represented by a quantum state of the Lorentzian cylinder corresponding to

this operator. This is the essence of the operator-state correspondence.

1.4 1/2 BPS States and Giant Gravitons

We start with the basis of the supersymmetry generators QA. The BPS bound is [38]:

{QA, Q
†
B} = EδAB −KAB, (1.14)

where E is the mass/energy operator and KAB is a matrix representing the charges.

6
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When some of the eigenvalues of KAB equal E, the corresponding components on the

right hand side of the equation vanish, and we have an annihilated state, which we call

a BPS state. When half of the generators annihilate the state, the state is a half-BPS

state. BPS primary operators are built from the traces of products of the scalar Z field.

Open strings end with Dirichlet boundary conditions on D-branes, which in turn emit

closed strings. A pointlike graviton, then, is a vibrational mode of a closed string, and

is thought to be an elementary particle carrying the gravitational field. We turn our

attention to the giant graviton, which carries the same quantum numbers as a pointlike

graviton, but rather than being emitted by a brane, it blows up into a spherical brane of

increasing size as its angular momentum increases [39]. The Pfaffian can be considered

half of a maximal giant graviton, which is identified as det(Λ), since the maximal giant

graviton wraps around the non-trivial cycle twice.

The giant graviton in AdS5 × S5/Z2, which is dual to N = 4 SYM, is a half BPS D3

brane wrapped around S3 ∈ S5 and rotating transversely in S5. The dual-giant graviton

is a half BPS D3 brane wrapped around S3 ∈ AdS5 and rotating in a maximal circle

around S5 [2, 5]. Counting half BPS states, then, is equivalent to counting multiple

graviton configurations.

1.5 Outline and Summary

In Chapter 2, we lay out the foundation of this dissertation. We start by introducing

coherent states averaged over a gauge group action– the unitary group in this chapter– to

study the correlators of half BPS states in N = 4 SYM theory. The resulting overlaps are

a generating function of correlators; if we rewrite them in terms of the Harish-Chandra-

Itzykzon-Zuber (HCIZ) integral, we find that this formula allows us to compute the

normalization of the two point functions with the characters obtained in [36]. We repeat

7
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these calculations and seek to extend these generalizations for An−1 quivers following from

solvable integrals over unitary groups. All of these computations make use of localization

methods.

We will show that when we promote the parameters of this generative function to

collective coordinates, the coherent states’ effective action is controlled by a dominant

saddle in the regime where the states describe single AdS giant gravitons, allowing us

to probe their physics. We then discuss methods to add open strings to these gravitons

and show that the resulting calculations rely on correlators of the matrix components of

the unitaries in the ensemble given by the HCIZ integral. Fnally, we will discuss how

Grassmann integrals give rise to sphere giants, how we may achieve dominant saddles,

how these saddles allow for a 1/N expansion that arises for open strings, and how to add

these open strings. We seek to generalize this coherent state formulation to 1/4 and 1/8

BPS states by framing them as more general integrals over unitary groups.

In Chapter 3, we seek to extend the analysis performed in Chapter 2 to Sp(2N),

SO(2N + 1), and SO(2N) gauge theories. We repeat the calculations and arrive at

generating functions for half BPS correlators in N = 4 SYM theories with gauge groups

Sp(2N), SO(2N + 1), and SO(2N) by computing the norms of the corresponding BPS

coherent states, which are built from operators involving Harish-Chandra integrals. These

operators may be interpreted as localized giant gravitons in the bulk of anti-de-Sitter

space.

We then choose our basis for the sector of states with no cross-caps to be ordinary

Schur functions; we may do this, because we are operating in theories that may be con-

structed as orientifold projections of a SU(2N) theory. This allows us to observe the

relations between the symmetric functions appearing in the expansion of our BPS coher-

ent states and symplectic Schur functions, thus allowing us to perform our calculations

using unitary characters, despite working with symplectic and orthogonal gauge groups.

8
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Finally, we make note of some connections to Schubert calculus and Gromov-Witten in-

variants and discuss how the Harish-Chandra integral may be extended to such problems.

In Chapter 4, we return to the topic in Chapter 2 and seek to extend our initial com-

putation over the unitary gauge group to quarter BPS states. We attempt to generalize

the HCIZ integral by adding multiple commuting matrices; this allows us to probe the

generating functions of 1/4-BPS states in N = 4 super Yang-Mills at finite N . The gen-

eralized result allows us to compute the overlaps of two or more generating functions; we

are interested in such overlaps because they describe two-point correlators in the free-field

limit.

We start with a discussion of the four-matrix HCIZ integral in the U(2) context. We

find a non-compact formula– through laborious means– for N = 3 and attempt to lay out

a prescription for solving a multi-matrix HCIZ integral for N > 2. We find that much of

the complexity arises from the connections to the restricted Schur polynomial operator

basis. Since we show that we may readily generalize our results to an arbitrary number

of matrices, we note that should we find a way to solve this integral– which is equivalent

to solving a Laplacian of commuting matrices– we may develop new tools to study more

generic BPS operators.

1.6 Permissions and Attributions

1. The content of chapter 1 is partially based on the results of collaborations with

David Berenstein, Adolfo Holguin, and Zi-Yue Wang, and has previously appeared

in the Journal of High Energy Physics [21, 22, 25]. It is reproduced here with

the permission of the International School of Advanced Studies: https://jhep.

sissa.it/jhep/help/JHEP/CR_OA.pdf.

2. The content of chapter 2 is the result of a collaboration with David Berenstein, and
9
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has previously appeared in the Journal of High Energy Physics [21]. It is reproduced

here with the permission of the International School of Advanced Studies: https:

//jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf.

3. The content of chapter 3 is the result of a collaboration with Adolfo Holguin, and

has previously appeared in the Journal of High Energy Physics [22]. It is reproduced

here with the permission of the International School of Advanced Studies: https:

//jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf.

4. The content of chapter 4 and Appendix A is the result of a collaboration with

Adolfo Holguin and Zi-Yue Wang, and has previously appeared in the Journal

of High Energy Physics [25]. It is reproduced here with the permission of the

International School of Advanced Studies: https://jhep.sissa.it/jhep/help/

JHEP/CR_OA.pdf.
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Chapter 2

BPS Coherent States and Localization

2.1 Introduction

There is a classic combinatorial result for two point functions of gauge invariant half

BPS operators in N = 4 SYM [36]. Let X, Y, Z be the chiral adjoint scalar field of N = 4

SYM with respect to an N = 1 decomposition. Let R,R′ be two different representations

of U(N) characterized by Young diagrams with n boxes and let χR be the character of

U(N) in the corresponding representation. Then the following is true:

⟨χR(Z̄)(x)χR′(Z)(0)⟩ = 1

Cn|x|2n
δR,R′fR, (2.1)

where C is a normalization constant that depends on conventions. The quantity fR is a

product over the labels of the boxes of the Young diagram associated to R, and is defined

as:

fR =
∏

i,j∈boxes
(N + i− j), (2.2)

where imoves to the right along the rows, j moves vertically downward along the columns,

and both indices start at (i, j) = (1, 1) in the leftmost upper corner.

11
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Various arguments suggest that this result is not renormalized [40, 41] (see also [42]

and references therein). These combinatorial calculations have been extended to other

(free field) quiver setups in the works [43, 44, 45] (the results are written succinctly in

[46] in terms of generalized free fermions).

Part of the importance of the characters, apart from their orthogonality, is that they

can also be interpreted geometrically in terms of D-branes, particularly, giant gravitons

[47]. Giant gravitons expanding along the sphere directions (sphere giants for us) arise

from column representations [3], and giant gravitons expanding in AdS [48, 49] (AdS

giants for us) arise from large row representations [36]. These have served as a starting

point to compute the anomalous dimensions of D-branes and the open strings ending on

them. There is a combinatorial formalism developed in the works [6, 50, 51, 52] to add

open strings. The main issue with these approaches is that they are computationally very

difficult to master; the required combinatoric calculus is laborious. We can ask if there

is another way to arrive at these results that might lessen the burden of computations

and provide additional intuition to the dynamics of these setups.

When one works in less supersymmetric situations, such as with 1/4 or 1/8 BPS

states, there are generalized orthogonal bases at zero coupling called restricted Schur

bases (see [53, 54] and references therein). However, as soon as one turns on the coupling

constant of N = 4 SYM, one expects that the dynamics (at least semiclassically) reduce

to some type of model of commuting matrices [14]. Such commuting matrix models are

an ad-hoc uncontrolled approximation of the dynamics; they can be used to mimic the

droplet picture of half BPS states in terms of free fermions in two dimensions [12] and

extend the picture to more complicated setups with less supersymmetry where there is

eigenvalue repulsion, but no fermions. The two dimensional droplet picture can also be

seen directly in supergravity solutions [55]. Is there a systematic way to do calculations

with these more general states that has less supersymmetry and embodies the spirit of

12
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commuting matrices, but is actually a complete field theory calculation that can be done

ab initio?

In this chapter, we will see that the answers to both of these questions is yes– we can

lessen the burden of computations for half BPS states (with strings attached) and find

an exact commuting matrix model that captures 1/4 and 1/8 BPS states. The technique

we introduce will reproduce all the results in equation (2.1) from a generating function.

Similarly, we will discover a generating function that captures all 1/4 and bosonic 1/8

BPS states that survive at one loop. In this second problem, the basis we find is implicit,

rather than the explicit character basis described above.

Let us write the basic idea. The first step is to realize that when studying local

operator insertions in the N = 4 conformal field theory, one can equally well describe

the states on the cylinder S3 × R for a real quantum system, rather than the Euclidean

formulation. That is, one uses radial quantization to turn the problem into quantum

mechanics. Following [12], one replaces the matrix scalar operator Z(0) ↔ a†z with the

raising operator of the s-wave of the field Z on the sphere including the matrix indices.

Here, these indices are implicit. The free field correlators of Z appearing in (2.1) can

equally well be described by overlaps of states in the Fock space of states of the a†Z that

are gauge invariant. At this stage, we have only applied the operator state correspondence

in the conformal field theory.

The next step is to think of the dynamics of the oscillators semiclassically by intro-

ducing coherent states. We start with the following object:

|Λ⟩ ∼ exp(tr(Λa†)) |0⟩ , (2.3)

where Λ is an N ×N matrix of parameters. The trace indicates that we have a general

linear combination of all possible raising operators.

13
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Coherent states have the property that they are overcomplete. They have minimal

uncertainty; they behave classically, but they are also eigenstates of the lowering oper-

ators. A formalism that can deal with these states is in principle able to deal with all

the information of the Hilbert space, because of overcompleteness. The obvious problem

with the object introduced in (2.3) is that it is not gauge invariant. We solve this issue

by projecting the answer onto gauge invariant states, which we achieve by introducing

an averaging over the gauge group. That is, we correct our naïve coherent state by the

following:

|Λ⟩ = 1∫
dU

∫
dU exp(tr(UΛU−1a†)) |0⟩ . (2.4)

Because we projected an overcomplete basis to the set of gauge invariant states, we

have an overcomplete basis of the gauge invariant states. One can check that the state

defined this way is still a coherent state as far as gauge invariant combinations of lowering

operators are concerned:

tr(anZ) |Λ⟩ = tr(Λn) |Λ⟩ (2.5)

These expressions only depend on the eigenvalues of Λ. At this stage, we can think of Λ

as a diagonal matrix without loss of generality.

The matrix integrals that appear are well known. If a† were a c-number matrix

rather than a set of operators, then these would be the integrals of Harish-Chandra-

Itzykson-Zuber [32, 56] (we will call this intgeral the HCIZ integral in this chapter).

Such integrals can be computed in a variety of ways. We refer the reader to the review

paper [57] (and also [58] ) for a list of methods and references. We will liberally make

use of the collected results in that paper. An important observation is that the HCIZ

integral can be computed by localization [29]. The overlaps

I(Λ′,Λ) = ⟨Λ′|Λ⟩ (2.6)
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can be computed exactly with the HCIZ integral. Upon writing equation (2.4) in a

character expansion, we can recover all of the overlaps in (2.1) by comparing it to the

character expansion of the overlap integral itself (2.6).

We are repackaging a lot of non-trivial combinatorial information in the manipulations

of the coherent state object itself. The fact that the final result is an exact sum over

saddles makes it possible to understand approximations to calculations that are not

apparent in the combinatorial expressions that were performed to arrive at (2.1). This

idea extends to insertions of open strings, which we will describe in this formalism as

well. The idea is to understand which saddle dominates and in what regimes. Once

we have the coherent states, we can promote the Λ eigenvalue parameters to collective

coordinates and find a coherent state effective action for the parameters Λ that describe

the dynamics we are interested in. We extend this idea to An−1 quiver theories and to

states that preserve less supersymmetry. The new idea is that for 1/4 and 1/8 BPS

states, we need to introduce more than one matrix ΛX,Y,Z . When we insist on the 1-loop

anomalous dimension of these states vanishing, we find that the three matrices must

commute and be able to be diagonalized simultaneously. We thus find a generalization

of the HCIZ integral that satisfies some of the conditions for evaluation by localization

and embodies the commuting matrix model reduction to eigenvalues. The point is that

the matrices that commute are not the original fields. They are the collective coordinate

parameters of the states in question.

The idea of localization in N = 4 SYM is important for many other observables. In

particular, Wilson loop correlators reduce to matrix model computations [59, 60]. These

are exact results, which arise from a localization argument [26]; all the important com-

putations are done with free fields. For the results leading to equation (2.1), this also

holds true: the computation arises from free fields. Thus in this chapter, we are seeing

a new application of the Harish-Chandra-Itzykson-Zuber integral; the fact that it can
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be described by localization arguments becomes important as we try to find approxima-

tions to the physics by looking at the dominant saddle. A general review of localization

methods can be found in [28].

The chapter is organized as follows. In section 2.2 we start with a model of a single

harmonic oscillator and a gauged pair of harmonic oscillators to establish the method we

will use later. The goal is to show that the denominators in a generating function of co-

herent states encode the information of the norms of states that are defined algebraically

from the vacuum. Then in section 2.3, we introduce the main types of objects we study

in this chapter: coherent states in matrix models averaged over a gauge orbit. We show

how to compute overlaps of these states in terms of the Harish-Chandra-Itzykson-Zuber

integrals and study various generalizations of these ideas to simply laced quivers. We

show that this method reproduces many results that are known in the literature. We

also discuss the fact that in the integral representation, one gets exact sums over saddles.

This becomes important later on when we discuss approximations of the dominant saddle

and other extensions of these ideas.

In section 2.4 we study generating functions made by determinants rather than coher-

ent states. These are related to sphere giant gravitons in AdS5×S5. The point is to show

that these objects admit an integral representation with a dominant saddle. The idea is

to introduce fermions so that the determinant arises from Grassman integrals. Overlaps

can be computed with the help of the Hubbard-Stratonovich trick and the fermions can

be eliminated completely in terms of a pair of complex auxiliary variables. The integral

over these variables reproduces many results. We show how these fermionic variables

allow us to introduce open strings attached to the giant gravitons and demonstrate how

this formalism simplifies other approaches in the literature. In section 2.5 we show how

the fact that there are dominant saddles in the integrals allow one to not only promote

the parameters of the gauge invariant coherent states to collective coordinates, but also
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calculate the effective action for them. In the HCIZ formula, these parameters are as-

sociated to multiple AdS giant gravitons. We explain how open strings are added to

these configurations as well. We then turn to the problem of studying multiple sphere

giant gravitons and argue that the correct multi-giant generalization involves products

of determinants. This uses additional information involving character formulas and the

Cauchy identity. We also explain how one has a Hilbert space of strings attached to mul-

tiple giants and explain the origin of the Gauss’ law constraint. In section 2.6 we extend

the idea of averaged coherent states to 1/4 and 1/8 bosonic BPS states. These require

matrix parameters that commute with each other as is expected from the moduli space of

vacua of these theories. We show that the saddles for half BPS states survive and focus

on the dominant saddle for a single large eigenvalue and explain some of the differences

that appear in the collective coordinate representation of these states. Finally, we close

with a brief discussion of our results and present a possible extension of the ideas we

discuss here in 2.7.

2.2 Warmup: the harmonic oscillator and the gauged

double harmonic oscillator

Let us start with the simplest problem of a single harmonic oscillator. This example

is intended to showcase the method we will use later in more complex settings. The idea

is to consider a harmonic oscillator in the Hamiltonian formalism, described by a Weyl

algebra constructed with a raising and a lowering operator, [a, a†] = 1. The ground state

is described by a |0⟩ = 0. Consider now the following generating function of states:

F [z] = |z⟩ = exp(za†) |0⟩ . (2.7)
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Because (a†)k |0⟩ is a complete basis of states, in principle F (Z) contains (all of the)

information about the full Hilbert space of states.

For the time being, the variable z is a formal parameter. If we call the non-normalized

state |n⟩ = (a†)n |0⟩, we can ask how to compute its norm from F [z] and indeed, the

overlaps ⟨m|n⟩ for all m,n. Once we decide that F [z] is well defined, we can think of it

like a state |z⟩ where z is an actual complex variable and not just a formal parameter.

The idea is to compute the overlap:

⟨ξ|z⟩ = F̄ [ξ̄] ∗ F [z] = ⟨0| exp(ξ̄a) exp(za†) |0⟩ , (2.8)

where F̄ is the adjoint of the generating function and ξ̄ is another formal parameter. We

should notice that in the bra-ket notation, (|ξ⟩)† = ⟨ξ| and includes an implicit complex

conjugation. We make this explicit in F̄ and implicit in ⟨ξ|. Hopefully, this will not lead

to confusion.

There are two ways to do the calculation. First, we can expand the double series to

obtain:

⟨ξ|z⟩ =
∞∑

m,n=0

ξ̄mzn

m!n!
⟨m|n⟩ . (2.9)

The other way to do the calculation is to contract the a† and the a (using the Baker-

Campbell-Hausdorff formula) to obtain:

⟨ξ|z⟩ = exp(ξ̄z) =
∞∑
n=0

ξ̄nzn

n!
. (2.10)

Comparing the two formulas, we find that the coefficient of ξ̄mzn for n ̸= m vanishes,

which is to say that the states |m⟩ and |n⟩ are orthogonal to each other if n ̸= m. We
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also find, comparing the coefficients of ξ̄nzn, that:

⟨n|n⟩
n!n!

=
1

n!
, (2.11)

so that ⟨n|n⟩ = n!. This can be proved immediately using the raising/lowering operator

algebra. The point is that n! is the denominator of the terms of ξ̄nzn in the exponential

function.

Now, because the exponential function has an infinite radius of convergence, the

overlaps are well defined for any value of the complex variables ξ̄, z. In particular, the

norm:

⟨z|z⟩ = exp(z̄z) > 0, (2.12)

is positive definite if z̄ is the complex conjugate of z and defines an L2 normalizable state

in the Hilbert space.

Coherent states also satisfy a |z⟩ = z |z⟩ ≃ ∂a†F [z], so it is easy to evaluate matrix

elements of (a†)kam from the generating function, giving us:

F̄ [ξ̄] ∗ (a†)kam ∗ F [z] = zmξ̄k ⟨ξ̄|z⟩ , (2.13)

which lets us identify operationally a† ∼ ∂z and a ∼ ∂ξ̄ as far as normal ordered compu-

tations go. The point is that the generating function is not only a generating function

of states, but can also be used to compute matrix elements by comparing the double

expansion (2.9) with the evaluation formula similar to (2.10).

We now go to our second example, where we have two oscillator algebras with raising

operators a†, b†, and consider the symmetry generator Q̂ = a†a− b†b. We want to build

a generating function as above, using gauge invariant states where Q = 0. A naïve guess
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is to do the following:

exp(zb†a†) |0⟩ . (2.14)

This turns out not to be optimal: the Baker-Campbell-Hausdorff trick doesn’t yield

a simple answer. Another option is to use a simple coherent state:

|α, β⟩ = exp(αa† + βb†) |0⟩ =
∑ (αmβn)

m!n!
|m⟩ ⊗ |n⟩ , (2.15)

but we notice that the generating function also contains non gauge invariant states. We

need to project them onto the n = m subset. Because we start with full coherent states,

we have all of the information of the Hilbert space, including the states that are not gauge

invariant. If we perform the correct projection, we should retain all the information that

is gauge invariant in the generating function.

This can be done if we notice that the formal parameters α, β can be made to

transform under a U(1) symmetry that tracks the charges of a† and b†. That is, we take

α → exp(iθ)α and β → exp(−iθ)β. Then we find:

|α, β, θ⟩ = exp(αeiθa† + βe−iθb†) |0⟩ =
∑ (αmβn)

m!n!
exp(i(m− n)θ) |m⟩ ⊗ |n⟩ , (2.16)

and if we seek to only obtain the states with n = m, we can average over θ. That is, we

consider a generating function of the form:

F [α, β] =
1

2π

∫ 2π

0

dθ exp(αeiθa† + βe−iθb†) |0⟩ , (2.17)

where we average over the group action on the operators. This formal functional is given

by:

F [α, β] =
1

2π

∫
dθ exp(iQ̂θ) exp(αa† + βb†) |0⟩ , (2.18)
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where Q̂ is the charge operator defined previously.

This is almost a coherent state, except for the group projection. It is straightforward

to compute the overlap:

F̄ [ᾱ, β̄] ∗ F [α, β] = 1

(2π)2

∫∫ 2π

0

dθ̃dθ exp
[
ᾱα exp(i(θ − θ̃)) + β̄β exp(i(θ̃ − θ))

]
(2.19)

We can now shift variables to θ′ = θ − θ̃, θ̃, so that one group integral becomes trivial,

leaving the other to be explicitly evaluated. We find that:

F̄ [ᾱ, β̄] ∗ F [α, β] =
∞∑
n=0

(ᾱαβ̄β)n

n!n!
= I0

(
2

√
ᾱαβ̄β

)
(2.20)

which only depends on the gauge invariant combination of parameters αβ and ᾱβ̄. It can

also be written explicitly in terms of a Bessel function. At this stage we can set α = β

if we want to, as they do not have an independent meaning any longer. We also find

through comparing coefficients that:

(⟨n| ⊗ ⟨n|) (|m⟩ ⊗ |m⟩) = (n!)2δn,m (2.21)

where again, the norm of the state is the denominator in the (integrated) generating

function.

We can check that this is an eigenstate of the gauge invariant composite ab operator,

finding that

abF [α, β] = αβF [α, β]. (2.22)

It is this property that makes these states more convenient: they act as coherent states

for the composite gauge invariant operators built from lowering operators. This property

can be readily used to compute matrix elements. In this example, the algebra is fairly
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straightforward, so the calculations can be done without the generating functions.

We can do one more variation on this calculation. The idea is to use the charge

Q = a†a − b†b − k where k is an integer. In this case, the state |0⟩ × |0⟩ has charge −k

and is not gauge invariant. The gauge invariant states are |k + n⟩ ⊗ |n⟩. In the double

sum of the coherent state:

|α, β, θ⟩ = exp(αeiθa† + βe−iθb†) |0⟩ =
∑ (αmβn)

m!n!
exp(i(m− n)θ) |m⟩ ⊗ |n⟩ , (2.23)

we need to project onto states where m − n = k. This is straightforward. We use the

Fourier transform coefficients of the generating function:

F̄ [α, β]k =
1

2π

∫ 2π

0

dθ exp(−ikθ) exp(αeiθa† + βe−iθb†) |0⟩ (2.24)

so that the overlap integral is

F [ᾱ, β̄]k ∗ F [α, β]k =
1

2π

∫ 2π

0

dθ exp(−ikθ) exp(ᾱαeiθ + β̄βe−iθ) (2.25)

=
∞∑
n=0

(ᾱα)n+k(β̄β)n

(n+ k)!n!
(2.26)

= (ᾱα)k
(√

ᾱαβ̄β

)−k/2

Ik

(
2

√
ᾱαβ̄β

)
(2.27)

Again, the norm of the fixed charge states is the denominator (n + k)!n! in the sum,

and the generating function can be explicitly written in terms of Bessel functions. It is

a convergent power series for all α, β in the complex plane. The norm is well defined

if α and ᾱ transform oppositely, which they do if they are complex conjugates of each

other. These are also coherent states in the sense of being an eigenvalue of the gauge

invariant composite ab operator with eigenvalue αβ. Notice that in this case, α and β

appear slightly differently in the overlap. We can think of this as an anomaly. We can
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also take states given by α−kF [α, β]k, which are still coherent states; in that case, the

final answer only depends on the product αβ, so we can take them to be equal to each

other if we want to.

2.3 Half BPS coherent states in N = 4 SYM and some

generalizations

We now turn to the problem of finding coherent states for the half BPS states N = 4

SYM that are gauge invariant. These states are special in that they are created by a single

matrix of raising operator (a†Z)
i
j. Under the operator state correspondence, the matrix

valued operator inserted at the origin is equivalent to the raising operators Z(0) ↔ a†Z ,

where a† is the raising operator for the s-wave of the field Z on S3, when studying N = 4

SYM on the cylinder [12]. We first consider a naïve coherent state:

F [Λ] = exp(tr(Λ · a†Z)) |0⟩ (2.28)

with a matrix valued Λ set of parameters. This is a coherent state for the gauge invariant

traces tr(ak), so that

tr(ak)F [Λ] = tr(Λk)F [Λ]. (2.29)

Since these traces generate all the gauge invariant states from the vacuum, we notice that

the only information that we get from Λ is contained in the traces of powers of Λ. This

is equivalent to knowing only the eigenvalues of Λ. In that sense, most of the parameters

are redundant. We take Λ to be diagonal in what follows. The next problem we have to

deal with is that this is not a gauge invariant state. We now introduce the U(N) group
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action on these states and average over the group. This will look as follows:

F [Λ] =
1

V ol(U(N))

∫
dU exp

(
Tr
(
UΛU−1a†Z

))
|0⟩ , (2.30)

where dU is the Haar measure. The volume of V ol(U(N)) =
∫
dU and we will call it V ol

for short. For fixed U , the integrand will have the same coherent state properties with

respect to Λ, Λ̃ if Λ → Λ̃ = UΛU−1 (they are related by conjugation), so that Λ̃ and Λ

have the same eigenvalues and traces. We can think either of the matrix Λ transforming

with U at fixed eigenvalues, or the matrix operator a†Z transforming with U . In the first

case, we can think of the combination tr(Λ ·a†Z) as being gauge invariant if both Λ and a†

transform opposite to each other. Diagonalizing Λ is a gauge choice and we are summing

over the gauge orbit. In the second case, we may think of this as transforming a† and

projecting onto the gauge invariant states at fixed Λ. Either way, we should think of this

integral as generating all of the possible half-BPS states.

Right now, we define Λ as an external matrix such that when we act on F , the lowering

operators act as aZ ∼ Udiag (λ1, ...λN)U
−1 = UΛU−1 at fixed U . The U disappear inside

traces. We now wish to find the inner product of F̄ [Λ̄′] and F [Λ]. Using Eqn. 2.30 and

the Baker-Campbell-Hausdorff formula, we arrive at:

F̄ [Λ̄] ∗ F [Λ] =
1

V ol2

∫
dU∗dU ⟨0| exp

(
Tr
(
U∗Λ̄′U∗−1aZ

))
exp

(
Tr
(
UΛU−1a†Z

))
|0⟩

=
1

V ol2

∫
dU∗dU exp

(
Tr
(
UΛU−1U∗Λ̄′U∗−1

))
) (2.31)

Here, there is an implicit convention for transposes in F̄ for the contraction of the rais-

ing/lowering operators that lets us concatenate the matrices in the order shown. Any

other way of doing the contraction will give a similar answer with U∗ either transposed
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or inverted in the formulas. They are all equivalent under a change of variables in the

Haar measure. Notice that the expression above depends only on the combination U−1U∗

and its inverse. We can therefore call a new group variable Ũ = U−1U∗ and still keep U .

Since the Haar measure is group invariant, at fixed U , we have dŨ = dU∗, which allows

us to write dUdU∗ = dUdŨ . The integral over U can then be done – it cancels one factor

of the volume. The end result is that the integral simplifies into:

F̄ [Λ̄] ∗ F [Λ] = 1

V ol

∫
dŨ exp

(
Tr
(
Ũ−1ΛŨ Λ̄′

))
(2.32)

This integral is of the same type as the original definition of the coherent state that gave

rise to (2.30), but it is now also a complex analytic function of Λ, Λ̄, instead of a formal

state in the Hilbert space. This is a well known integral: the Harish-Chandra-Itzykzon-

Zuber integral (HCIZ) whose value can be computed via localization [29]. This can not

be directly done in the original generating function of states because the operator matrix

(a†)ij cannot be diagonalized.

The integral localizes to solutions of:

Tr(Ũ−1[δU,Λ]Ũ Λ̄′) = 0 (2.33)

This is equivalent to:

[Λ, Ũ Λ̄′Ũ−1] = 0 (2.34)

so that Λ and ŨΛ′Ũ−1 are diagonalized simultaneously. This means that the labels of

diagonal components λi and λ′i differ by a permutation σ. We can take the matrices to

be diagonal and described by λi, λ
′
σ(i), which is to say that U is a permutation matrix.

The correct space for matrices U is U(N)/U(1)N , where the U(1)N can be taken as

the matrices that commute with Λ automatically. The saddle value of the integrand is
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λ⃗ · λ⃗′σ =
∑
λiλ

′
σ(i).

We know from [58] that we can expand our integrand from Eq. 2.30 through a char-

acter expansion, giving a formula of the type:

F [Λ] =
∑
R

1

fR
χR(Λ)χR(a

†
Z) |0⟩ , (2.35)

where we have a denominator fR that we will compute later. The denominator is found

in equation (34) of [58], or the denominator in equation (2.11b) of [57] if we divide by the

prefactor of the equation. We will recompute the answer by using the exact evaluation

of the integral.

We can do the same with the explicit HCIZ integral:

F̄ [Λ̄] ∗ F [Λ] =
∑
R

1

fR
χR(Λ̄)χR(Λ) (2.36)

Comparing coefficients of the characters of the matrices Λ to the double sum

F̄ [Λ̄] ∗ F [Λ] =
∑
R,R′

1

fRfR′
χR′(Λ̄)χR(Λ) ⟨0|χR′(a)χR(a

†)|0⟩ , (2.37)

we arrive at ⟨0|χR′(a)χR(a
†)|0⟩ = 0 if R ̸= R′, and we also find:

⟨0|χR(a)χR(a†)|0⟩
f 2
R

=
1

fR
(2.38)

That is, the characters are orthogonal to each other, and the norm of each of the

characters is the denominator fR. This should be contrasted with the explicit combina-

torial derivation in [36]. The reader can check that the answer quoted above and the

result of the combinatorial formula match each other.

Now, we will compute fR directly. This is something that can be done directly
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from the evaluation of the HCIZ integral. The first step is to understand that the

representations appearing in the equation are labeled by Young diagrams for U(N).

Each diagram is characterized by the length of the rows, which appear in descending

order j1 ≥ j2 ≥ . . . jN .

We need the explicit Weyl character formula:

χji(Λ) =
det
(
λji+N−i
k

)
∆(Λ)

, (2.39)

which is written as a ratio of determinants, where ∆(Λ) is the Vandermonde determinant

of Λ (we can also obtain it from the numerator by setting ji = 0 for all i).

The second item we need is the explicit value of the HCIZ integral:

I(Λ, Λ̄) =
1

V ol

∫
dŨ exp

(
Tr
(
Ũ−1ΛŨ Λ̄′

))
= Ω

det
(
exp(λiλ̄

′
j)
)

∆(Λ)∆(Λ̄′)
, (2.40)

where Ω is a normalization constant. The determinant in the numerator is a sum over

permutations, it is an explicit sum over all the N ! possible saddles that are solutions of

equations (2.34).

We can find fR by first multiplying the result by the product of the Vandermonde

determinants. This way, we obtain:

I(Λ, Λ̄)∆(Λ)∆(Λ̄′) = Ωdet
(
exp(λiλ̄

′
j)
)
=
∑
æ⃗

1

fæ⃗
det
(
λji+N−i
k

)
det
(
λ̄′ji+N−i
k

)
, (2.41)

where we are now labeling the representations R by the vector of values æ⃗ determining

the Young diagram. We will consider on the right hand side the monomials of the type

λr11 . . . λ
rN
N with r1 > r2 > · · · > rN . These monomials are in one to one correspon-

dence with the characters. This corresponds to the unique term in the numerator of the
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determinant that is the product of the diagonal entries:

det
(
λji+N−i
k

)
→
∏
i

λji+N−i
i + . . . (2.42)

Now, we expand the exponentials in the determinant det
(
exp(λiλ̄

′
j)
)

of the evaluated

HCIZ integral and use the multilinearity of the determinant to arrive at:

det
(
exp(λiλ̄

′
j)
)
=
∑
[n]

1

[n]!
det((λiλ̄

′
j)
ni) =

∑
[n]

1

[n]!
det(λ̄′ni

j )
∏
i

λni
i (2.43)

where [n] is the multi-index n1, . . . , nN , while [n]! is the product
∏

j nj!. Restricting to

the monomials with the correct descending order forces us to take n1 > n2 . . . in the

sum. We see that we get an explicit sum over characters if we set ni = ji +N − i, which

also have this descending value property. We therefore find that the denominators can

be readily computed:

fæ⃗ = [n]!Ω−1 = Ω−1
∏
i

(ji +N − i)!, (2.44)

Setting f0⃗ = 1 by using ⟨0|0⟩ = 1, we find Ω =
∏N

i=1(N − i)!.

This is the same answer that was obtained by direct combinatorial methods. Similar

localization formulas exist for other groups [29]. What is less straightforward is the

corresponding character expansion. This is explained cursorily in [57]. The goal would

be to reproduce the combinatorial formulas in [61, 62] and check if the bases agree. We

will not pursue this calculation in this chapter. Instead, we will look at other integrals

for simply laced quiver theories (An−1 quivers) to show how the method works in those

cases as well.

Let us start with a gauge theory of U(N1)×U(N2) matrices (we start with N1 = N2)

and consider a pair of bifundamental fields a†12, a
†
21 in the (N̄1, N2) and the (N2, N̄1)
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representations. We want to build the same type of coherent states as above. We start

with:

F [Λ] ∼ exp
(
Tr(Λ21 · a†12 + Λ12 · a†21)

)
|0⟩ (2.45)

The idea is that Λij is in the dual space of a†ji, so we reverse the order of the i, j labels.

In this sense, the lowering operators are also reversed aji = (a†ij)
†. Just like before, we

need to average over the group U(N1)×U(N2). This is done by the following procedure:

F [Λ] =
1∏
i V oli

∫ 2∏
i=1

dUi exp
(
Tr(Λ21U1a

†
12U

−1
2 + Λ12U2a

†
21U

−1
1

)
|0⟩ (2.46)

where all the contractions are matrix multiplications.

With the usual use of the Baker-Campbell-Hausdorff formula, we arrive at a formula

where we end up replacing a†12 by the Λ̄′
12 matrix. We obtain:

F̄ [Λ̄] ∗ F [Λ] = 1∏
i V oli

∫ 2∏
i=1

dUi exp
(
Tr(Λ21U1Λ̄

′
12U

−1
2 + Λ12U2Λ̄

′
21U

−1
1 )
)

(2.47)

These are well known generalizations of the HCIZ integral, first solved in [63]. We now

assume, without loss of generality, that the matrices Λ, Λ̄′ are diagonal. The eigenvalues

are:

Λ12 ≡ diag(λ1(12) . . . λ
min(N1,N2)
(12) ) (2.48)

Λ̄12 ≡ diag(λ̄1(12) . . . λ̄
min(N1,N2)
(12) ) (2.49)

Here, the (ij) label of the matrix is in the lower component, and the upper components

label the eigenvalues. If N1 ̸= N2, the matrix has diagonal entries to the extent that it

is permitted, and the off-diagonal elements vanish. Let Aα =
∏

ij λ
α
(ij) be the diagonal

product of the Λ matrices. Similarly Āβ =
∏

ij λ
β
(ij). The integral can also be done with
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localization methods. First, when N1 = N2, we need to be careful over what we mean

by localization. The original localization formula for the HCIZ integral is evaluated on

a compact complex manifold U(N)/U(1)N . It is important that we do the same here.

However, we are doing integrals over the full U(Ni) and not just U(Ni)/U(1)
Ni . We need

to separate the U(1)Ni explicitly. These are tori, so we have variables exp(iθαi ) for each

group. We choose these to be multiplying U on the left. We define U1 = diag(iθα1 ) ∗ Ũ1

where U∗
1 ∈ U(N1)/U(1)

N1 , which is a proper complex space on which localization can

be had.

When we do so, we get a similar equation to (2.34); this time, however, we need to

restrict ourselves to δU that are strictly off-diagonal (they need to be orthogonal to the

tori that we selected). The result is the same: Λ and a conjugate of Λ̄ are mutually

diagonal for all Λ. This gives rise to a common permutation of the λ variables. The

value of the “action" at the saddle is:

S =
∑
α

λαijλ̄
σ(α)
ji exp(iθαi − iθαj ), (2.50)

which still depends explicitly on the angles θi. The localization integral is over the off-

diagonal pieces. We still need to do an integral over the phases θαi . We may simplify the

integral by absorbing the phases into the λi. The denominator is computed using the

method of images, under the assumption that S is real. The result is:

√
det(δ2US) = ∆(A)∆(Ā), (2.51)

a product of Vandermonde determinants. The localization formula (for each saddle) we
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need is then given by the following integral:

Isad =
1

∆(A)∆(Ā)

∫ ∏
dθ exp

[∑
α,i

λαijλ̄
σ(α)
ji exp(iθαi − iθαj )

]
(2.52)

The integral is done by expanding the exponential as a series and using the binomial

expansion. We find:
1

∆(A)∆(Ā)

∑
[n]

1

[n]!2
A[n]Ā[n]

σ (2.53)

This can be understood as N copies of the computation in (2.19), so we get a product of

Bessel functions. Each saddle also has a sign, (−1)σ. We find that up to a normalization

constant Ω, we have:

F̄ [Λ̄] ∗ F [Λ] = Ω

∆(A)∆(Ā)
det

(
J0

[
2
√

(AαĀβ)

])
(2.54)

Because of the determinant structure, it admits a character expansion. This is another

way to arrive at the answer by a direct computation. Again, it is the denominator of the

characters that count. We replace [n]! → ([n]!)2 in all the formulas in (2.43).

fæ⃗ = [n]!2Ω−1 = Ω−1
∏
k

(jk +N − k)!2, (2.55)

including the normalization factor Ω, which is determined by f0⃗ = 1.

Once we go to more general An−1 quivers, with all groups of the same rank, the

integrals that need to be done are of the type (2.52), but with the sum over i containing

more terms, as many as there are in the An−1 quivers. The most general formulas obtained

this way contain different ranks for the different groups:

fæ⃗ = Ω−1
∏
i,k

(jk +Ni − k)!, (2.56)
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again normalized to f0⃗ = 0 (see [57, 58]). The Bessel function gets replaced by a gener-

alized hypergeometric series, given by:

Φ(AĀ) =
∑
m

1∏
i(m+Ni −N0)!

(AαĀσ(α))m (2.57)

where N0 = min(Ni) and the determinant that generalizes equation (2.54) is a determi-

nant of a N0 ×N0 matrix, so that the overlap reads:

F̄ [Λ̄] ∗ F [Λ] = Ω

∆(A)∆(Ā)
det
(
Φ
[
(AαĀβ)

])
(2.58)

When the ranks of the groups are not the same, the localization integral actually does

not work. Let us explain this in the simplest setup where we use a U(N)× U(1) quiver.

The integral we need to do is:

I =
1

2π

1

V ol

∫
dUdϕ exp

(
ā · U · a exp(iϕ) + exp(−iϕ)bU−1b̄

)
, (2.59)

where a is a column vector, and b is a row vector, given explicitly by:

a⃗ =


ã

0

...

 , b⃗ = (b̃, 0 . . . 0), (2.60)

where the product b⃗ · a⃗ = ãb̃ is gauge invariant. Notice that the vectors a⃗ and b⃗ are

invariant under a common U(N − 1) group. Thus, when we do the integral, we should

do the integral over the quotient space:

S2N−1 ∼ U(N)/U(N − 1), (2.61)
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which is a round sphere of dimension 2N − 1. This is not a complex manifold, but the

quotient CPN = S2N−1/U(1) is such a space. This complex geometry would be the one

where localization would take place. Instead of that, let us choose the metric of the

sphere as follows:

ds2 = cos2(θ)dϕ2
1 + dθ2 + sin2(θ)dΩ2

2N−3 (2.62)

The action has a pair of rotated vectors dotted into another such vector. This inner

product has a cos(θ) exp(iϕ1) factor in it. We find that:

I ∼
∫

sin(θ)2N−3 cos(θ)dθdϕ12 exp
(
¯̃aã cos(θ) exp(iϕ12) + b̃ cos(θ)¯̃b exp(−iϕ12)

)
(2.63)

where the angle θ ∈ [0, π/2] and ϕ12 is a relative angle. We can get the same type of

answers if we use Euler angle parameterizations in U(2) and U(3) (see [64, 65] to get

Euler angles for SU(3) and SU(N)).

We can do the integral explicitly in two different orders. We can expand the expo-

nential series and pick the Fourier terms that have vanishing momentum. We obtain:

I ∼
∑
n

∫
sin(θ)2N−3 cos(θ)dθ(¯̃aãb̃¯̃b)n

1

(2n)!

(
2n

n

)
cos(θ)2n (2.64)

The individual integrals can be written in terms of Γ functions. Up to a normalization

factor, we get:

I ∼
∑
n

(¯̃aãb̃¯̃b)n
1

n!n!

Γ[N − 1]Γ[n+ 1]

Γ[n+N ]
=
∑
n

(¯̃aãb̃¯̃b)n
1

n!

Γ[N − 1]

(n+N − 1)!
(2.65)

The denominator takes the form we expect: fn = (n + 1 − N0)!(n + N − N0)!, where

N0 = 1. Everything is fixed if we require that the leading term of the series is equal to

one. The second way to do the integral is to introduce a new variable x = cos(θ) and let

33



BPS Coherent States and Localization Chapter 2

y = ¯̃aã exp(iϕ12) + b̃¯̃b exp(−iϕ12). Then the integral takes the form:

I ∝
∫
dϕ

∫ 1

0

dx(1− x2)N−2x exp(xy) (2.66)

The first few of the answers, for N = 2, 3 are:

I2 =

∫
dϕ

(
1

y2
+
ey(y − 1)

y2

)
(2.67)

I3 =

∫
dϕy−4(−6 + y2 + 2ey(3− 3y + y2)) (2.68)

and this suggests that there are two saddles: one at θ = 0 and the other at θ = π/2. The

first saddle has action y, and the other has action 0. The measure factor from the saddle

should be the maximum inverse power of y in the expression. But we notice that there

are curious factors of y in the numerator. This is because the two endpoints of the θ

integral correspond to manifolds of different dimensions. For θ = 0 in (2.62) we get a circle

parametrized by ϕ1, whereas for θ = π/2, we get a sphere of dimension 2N−3. One of the

two “critical points" in S2N−3/U(1), if we can call them like that, is not isolated and the

other one is. In that sense, a naive notion of localization fails. The Duistermaat-Heckman

theorem requires isolated critical points. In the case of N = 2, both of the critical points

lead to circles shrinking to zero size, but these circles are not the same circles. The

theorem of localization only pertains to the fixed points under the same U(1) action.

In spite of this, because we can do the integral in the other order (where we integrate

the angle variables ϕ first), we get an expression that is a quotient of determinants that

admits a character expansion. That is enough to show the orthogonality of character

wave functions and compute the norm in terms of a denominator that fits the description

above. Since the expression looks like sums over saddles with denominators, we can abuse

the language of localization if need be.
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For conformal field theories in four dimensions, we usually find ourselves in cases

where all the Ni are equal to each other, so the process of localization is valid.

2.4 Determinants and strings attached to them

Consider the following gauge invariant object:

G[λ] = det(λ− a†) |0⟩ , (2.69)

where λ is a c-number formal variable. This expression can be expanded in characters

(more precisely, subdeterminants) as follows:

G[λ] =
N∑
n=0

(−λn)sdetN−n(a
†) (2.70)

We can consider the overlap:

Ḡ[λ̄] ∗W [λ] (2.71)

Our goal right now is to find an expression of this overlap that can be computed with sad-

dle point methods, as a saddle of a specific integral. The idea is to write the determinant

as a fermionic integral (we follow the setup [66, 67, 68, 69], see also [70]):

det(λ− a†) =

∫∫
dξ̄dξ exp(ξ̄(λ− a†)ξ), (2.72)

where the fermions ξ, ξ̄ are column and row vectors of size N . The determinant is

the result of a fermion integral over an auxiliary set of fermions that can be taken to

transform under U(N) as a fundamental or antifundamental. Notice that the term in

the exponential is again linear in a†. What this means is that we may apply the Baker-
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Campbell-Hausdorff trick again in the overlap computation. The overlap we need is of

the form:

Ḡ[λ̄] ∗G[λ] =
∫∫

dχ̄dχdξ̄dξ exp(ξ̄λξ + χ̄λ̄χ− χ̄ξξ̄χ), (2.73)

where the minus sign of the quartic term comes from a fermion sign.

As is standard, we use the Hubbard-Stratonovich trick by inserting a complex boson

Gaussian integral to find:

Ḡ[λ̄] ∗G[λ] =
∫∫

dχ̄dχdξ̄dξdϕ̄dϕ exp(ξ̄λξ + χ̄λ̄χ− ϕ̄ϕ+ iϕξ̄χ+ iϕ̄χ̄ξ) (2.74)

The fermion integral is now diagonal in the U(N) indices, so we get that:

Ḡ[λ̄] ∗G[λ] =

∫∫
dϕ̄dϕ exp(−ϕ̄ϕ) det

λ iϕ

iϕ̄ λ̄


N

(2.75)

=

∫∫
dϕ̄dϕ(λ̄λ+ ϕ̄ϕ)N exp(−ϕ̄ϕ) (2.76)

We can now do the integral by expanding the polynomial in λ̄λ using the binomial

theorem, finding that the integral over ϕ̄ϕ can be expressed in terms of of Γ functions:

Ḡ[λ̄] ∗G[λ] = Ω
N∑
k=0

(
N

k

)
(λ̄λ)kΓ[N − k + 1] = ΩN !

N∑
k=0

(λ̄λ)k

k!
(2.77)

up to a normalization constant of Ω, which has been implicit in the measure of the inte-

grals. We need to normalize the answer so that the term with (λ̄λ)N (the vacuum overlap)

has a coefficient equal to one. This means that Ω = 1. We find in a straightforward man-

ner that the subdeterminants are orthogonal and that their norm is |sdetN−K |2 = N !/k!;

we can compare this expression to the results in [3, 71].

The results presented here are very direct. We notice that because we have an integral
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expression, we can evaluate it using a saddle point approximation by varying over r = ϕ̄ϕ.

The saddle is the minimum of:

−ϕ̄ϕ+N log(λ̄λ+ ϕ̄ϕ) (2.78)

Equivalently, using r ≡ ϕ̄ϕ:

−1 +
N

r + λ̄λ
= 0, (2.79)

we find that r = N − λ̄λ. For the saddle point method to be a good approximation,

we need the saddle to be close to the positive real axis, which is the line over which we

integrate r. When λ̄ and λ are complex conjugates of each other, this requires that:

λ̄λ < N (2.80)

In this setup, ϕ̄ϕ is of order N . Necessarily, so is λ, which we think of as a parameter.

We find:

Ḡ[λ̄] ∗G[λ] ∼ Ω′ exp(−r) ≃ N ! exp(λ̄λ) (2.81)

If we compare this expression to (2.77), we see that the exact answer is a truncated

exponential, and that the saddle point approximation gives the exponential function.

This fact was first seen in [71], but not as a saddle point with respect to the integral

representation. The saddle makes it clear that we have a 1/N expansion, because of

the specific N dependence of the logarithm. This is induced when we integrate out the

fermions.
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2.4.1 Adding open strings

The idea of the saddle point calculation is that in the end, λ̄ and λ become complex

variables. The generating function G[λ] is to be considered as a state in the Hilbert space

of states. We can build other states around this state. Consider a collection of words Wj

made of raising operators different from a† (like the ones that appear in spin chains of

N = 4 SYM). We can consider more general states that are of the form:

G[λ,W ] =

∫
dξ̄dξ exp(ξ̄(λ− a†)ξ)

∏
j

(ξ̄Wjξ) |0⟩ . (2.82)

These are open words Wj with fermion flavors attached at the boundaries. The

boundary fermions on the words make these states gauge invariant as well: the ξ̄, ξ

transform under U(N). In this formalism, the introduction of the fermion variables

suggests that there are emergent degrees of freedom in the determinant. When we write

the determinant as an integral over the fermion variables, we “integrate out" these degrees

of freedom when we do the integral. This has been studied in [70, 72].

Keeping the fermions in more places than just the determinant allows us to affix

strings to the defect. Hence, the determinants behave like D-branes; indeed, they are

supposed to be sphere giant gravitons. Without the explicit fermions, one would get a

formalism similar to [71], which is more cumbersome. Attaching strings combinatorially

for single determinant branes was pioneered in [8, 4, 9]. This formalism with fermions

does the same work more economically and moreover has a well defined saddle, which

allows one to make approximations useful for computations.

Let us now show, mimicking [71], that any such W should not begin or end in the

letter a†, because we would be overcounting. Consider W = W ′a†. The idea is to write

a† = λ+(a†−λ). The term with just λ is a c-number, so it can be taken out and written

in terms of shorter words, in this case W ′. There is a second term, which can be written
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as a fermion derivative as follows:

G[λ,W ′(a† − λ)] = −
∫
dξ̄dξξ̄W ′∂ξ̄ exp(ξ̄(λ− a†)ξ) |0⟩ (2.83)

Now we integrate the fermion derivative by parts and find that:

G[λ,W ′(a† − λ)] = −
∫
dξ̄dξ exp(ξ̄(λ− a†)ξ)tr(W ′) |0⟩ , (2.84)

which is usually interpreted as the object G with a closed string tr(W ′). These ma-

nipulations are straightforward, whereas the original combinatorial calculation was more

challenging. The original combinatorial setup with the λ acting as collective coordinates

allows one to understand the boundary conditions for the closed spin chain in more detail

[16, 15, 17] and is useful at higher loop orders [73, 74, 75], but it becomes prohibitive to

understand how the various diagram contribute at various orders in 1/N . The saddle ap-

proximation and the introduction of fermions help facilitate the latter goal. The fermion

variables make it easy to generalize further beyond one string and should prove helpful to

understanding how strings split and join more generally once non-planar interactions are

added. These types of words with fermions can be generated by interactions; the Hamil-

tonian lowering operators can bring down powers of the ξ fermions. The integration by

parts can also act on other insertions of ξ̄, producing the splitting and joining of words.

Computing overlaps of states with strings will involve fermion correlators (this is how

computations are done in [69], for example). These are easy to compute at the saddle

point obtained at (2.34), and involve the 2 × 2 inverse of the quadratic form appearing

in the fermion integral. Namely, we have a Feynman rule for a fermion propagator that
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eliminates the fermion insertions in the strings. The fermion propagator is:

π =

λ iϕ

iϕ̄ λ̄


−1

(2.85)

Exploring these issues in detail is beyond the scope of the present chapter.

2.5 Collective coordinates

So far, we have defined coherent states labeled by either eigenvalue parameters Λ ∼

(λ1, . . . λN), or by a generating function made of a single parameter λ in the case of

determinants. In all of these cases we have found that the overlaps of these states with

different parameters can be well described by saddle points of an integral. When the

integral is done by localization, the expansion in terms of a sum over a finite number

of saddles is exact. When the states have the same parameters (that is, when we are

computing the norm of a state), there is usually a single saddle that dominates, as we

will describe. In such cases, the physics can become semiclassical. The parameters λi

that describe the individual state can be promoted to collective coordinates, which will

allow us to describe the dynamics of the state in terms of a simplified dynamics of the λ

parameters as functions of time. We will demonstrate this process in this section.

So far, we have not discussed the Hamiltonian of the system. We have described

raising and lowering operators in a harmonic oscillator context, but at no point did we

make it explicit that these are solutions of the dynamics of a quantum system with a

Hamiltonian. We want to understand how to do this directly from the λ parameters.

Rather than solve the oscillator dynamics of a† and port it over to the λ, we want to

have an effective action for the λ itself that reproduces it. The reason for doing this is that

eventually the dynamics of BPS states get corrected when we add other oscillators. In
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that sense, we get an effective action of collective coordinates and additional excitations,

which interact with one another. These interactions lead to corrections of motion in λ,

but the fact that the saddles are in some sense strong saddles means that these can still

be treated semiclassically and the states will have big overlaps with the coherent states

described so far.

The effective action of the collective coordinates on their own is usually written as a

first order formulation as follows:

S =

∫
dt ⟨λ| i∂t |λ⟩ − ⟨λ|Ĥ|λ⟩ , (2.86)

where the first term is a Berry phase. The states |λ⟩ are required to be normalized. Apply-

ing the variational principle to the action produces an approximation to the Schrödinger

equation, restricted to the states of the prescribed form. Our idea is to use the saddle

point expressions directly to compute the effective action S. This is very similar to what

was done in [71] for a single sphere giant graviton.

The main idea behind computing Ĥ |λ⟩ is that the energy in the generating series

is equal to the number of raising operators in the expansion of the exponential. This is

identical to counting powers of Λ. In that sense, we take the un-normalized |λ⃗⟩, which is

strictly holomorphic, and find that:

Ĥ |λ⟩ =
∑

λi∂λi |λ⟩ (2.87)

After this evaluation, we can rescale the state by multiplying by a c-number (the square

root of the norm of the state). If we define the normalization constant as:

N(λ) = ⟨λ|λ⟩ = F̄ [Λ̄] ∗ F [Λ], (2.88)
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where Λ̄ is the complex conjugate matrix to the Λ diagonal matrix, we find after a

straightforward computation that:

⟨λ| Ĥ |λ⟩ =
∑

λi∂λi log(N(λ)) =
∑
i

λipi, (2.89)

where pi are a new set of variables, given by derivatives of K = log(N(λ)).

Similarly, the Berry phase term is given by:

lim
λ̃→λ

⟨λ̃|√
N(λ̃)

i∂t
|λ⟩√
N(λ)

= lim
λ̃→λ

⟨λ̃|λ⟩ 1√
N(λ̃)

i∂t
1√
N(λ)

+
1√

N(λ̃)N(λ)
⟨λ̃|i∂t|λ⟩

= i
∑
i

λ̇i∂i log(N(λ)) + total time derivative

≃
∑

ipiλ̇
i, (2.90)

where we drop the term that is a total derivative of log(N), since total derivatives do not

contribute to the action. The action we get is surprisingly simple:

S =

∫
dt
∑

ipiλ̇
i − piλi. (2.91)

In this equation, we should think of pi as the canonical conjugates of λi. Solving the

equations of motion immediately gives λi = λi(0) exp(−it), which is the correct classical

behavior for the coherent state fields. The λi are well defined for the HCIZ integral,

but when we consider some of the generalizations, we realize that we should use the Ai

variables rather than the λ directly. The Ai variables are products of Λ for a quiver; only

the A eigenvalues enter N . We want the pi variables to be independent variables, so we

rewrite the action in terms of the A variables:

S =

∫
dt
∑

ipiȦ
i − npiA

i, (2.92)
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where n is the number of nodes in the quiver diagram.

A more pressing question is evaluating pi. We turn to (2.41), which allows us to

compute pi. We want to express the result in the saddle point approximation and check

where it is valid. Consider a single large eigenvalue parameter of λ1 (and make the

others as small as needed). We want to know which saddles contribute. It is clear that

the exponential in the saddle satisfies the following inequality:

| exp(λ̄σ(1)λ1 + . . . )| < | exp(λ̄1λ1 + λ̄2λ2 + . . . )|, (2.93)

which can be proved by the Cauchy-Schwearz inequality. We see that we require π(1) = 1

. If we add more large eigenvalues, it becomes obvious that the dominant saddle is the

one of the identity permutations by the same method. Keeping in mind that the other λ

are small, our expression for the overlap is approximated by:

log(N(λ1, λ̄1)) ∼ λ1λ̄1 − (N − 1) log(λ̄1λ1), (2.94)

where we only take into account the λ1 dependence and the dominant saddle. We find

this way that:

p1λ
1 = λ̄1λ1 − (N − 1) (2.95)

We expect the energy of the configuration to be positive. This gives a lower bound on

the collective coordinate λ, as follows:

λ̄1λ1 > N, (2.96)

where we have taken the largeN approximation. This is the complementary regime to the

one found in (2.80). The analysis in [76] looked directly at the expansions of truncated
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exponentials to do this. Here, we see that the saddle point encodes this information

systematically. More importantly, if we say that λ ∼
√
N in a scaling sense, then the

energy stored in the state is of order N . This is usually associated with the energy

of a D-brane. Indeed, these eigenvalues must be collective coordinates for AdS giant

gravitons.

We also notice that λ̄λ is the Kahler potential of a flat manifold. This is recovered

easily in the present formulation. Let us define:

K = log(N(Λ̄,Λ)) (2.97)

The wave functions we constructed begin as holomorphic functions of the λi. There-

fore, they already represent a complex structure of the parameters. The action we wrote

induces a symplectic structure on the λ, p coordinates; we note that p is essentially λ̄.

We find that the symplectic form (expressed in terms of the z̄, z coordinates) is given by:

ω = d(
∑

pidz
i) = d

∑
∂iKdz

i = d(∂K) = (∂ + ∂̄)∂K

= (∂̄j∂iK)dz̄j ∧ dzi =
∑
i

dz̄i ∧ dzi (2.98)

We find from the dominant saddle point computation that if we include all eigenvalues,

the logarithmic correction to K does not affect the metric. The metric is flat. This

matches what we expect. The eigenvalues λ parametrize the coherent states we have

described. More importantly, in the semi-classical limit, the coherent states encode a

particular field theory configuration, where the field we are quantizing (Z in this case)

has a classical vacuum expectation value Z ∼ Λ. Notice that because the HCIZ inte-

gral is exactly a sum over saddles, all corrections to K that could further arise are the

contribution of other saddles: they are to be considered as a non-perturbative effect.
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A similar result holds for the determinant calculation, where we would again find

the flat Käler metric, as the overlap is a simple exponential. The one difference is how

to compute the energy. When we count powers of (a†)k in the determinant, they are

paired with powers of λN−k. In this case, the Hamiltonian is therefore N − λ∂λ. Putting

everything together, we find that the energy in this case is:

Hdet = N − λ̄λ = ϕ̄ϕ. (2.99)

For the energy to be greater than zero, we need λ̄λ < N , which coincides with the

condition that the Hubbard-Stratonovich field ϕ has a good saddle. Again, if we look at

the scaling of the energy, it scales like N . This again must be interpreted as a D-brane.

These are the sphere giant gravitons.

Let us now turn to the An−1 quivers. We need to understand the asymptotic expansion

of the generalized hypergeometric function (see also [57]) for the dominant saddle:

Φn(AĀ) =
∑
m

1

(m!)n
(AĀ)m, (2.100)

which replaces the exponential; in the denominator, we have (AĀ)N . Notice that since

this only depends on A =
∏n

i=1(λ
1
(i,i+1)), we can take all λ variables to be identical (we

should do this anyhow as they are not gauge invariant on their own). We can do the

same with λ̄. From our integral representation of Φ, we find that:

Φn(AĀ) =
1

(2π)n

∫∫ ∏
dθi exp(λλ̄ exp(i(θi − θi+1))) (2.101)

Now, λ̄λ should be large, so we can saddle the integral over the angles. The critical point

for the maximum is when all the angles are equal to one other. At this point, the saddle

is for real values of θ. If the λ are not equal to one other, then the saddles move in the
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complex plane, and we will need to worry about both the real and imaginary parts of

the variables θ.

Asymptotically, we find that:

Φn(AĀ) ∼ exp(nλλ̄) = exp(n(AĀ)1/n) (2.102)

We obtain two results from this. Our first result is:

p ∼ Ā(AĀ)1/n−1 −N/A, (2.103)

where we have included the measure term. In this case, p is not the complex conjugate

of A and a holomorphic correction. The energy function is
∑
λi,i+1∂i,i+1. This measures

the degree with respect to λ. Since A is composed of a product of n lambdas, we need to

multiply the degree of A by n to get the Hamiltonian. We find that the effective action

is

S = i

∫
pȦ− (n)pA =

∫
dt
(
ipȦ− n[(ĀA)1/n − (N − 1)]

)
(2.104)

as expected. The Kähler potential gives rise to a flat geometry, but the complex structure

is that of C/Zn, as one would expect from the quiver theory. We get a similar constraint

from the positive energy of a single large eigenvalue, namely that λ̄λ > N − 1. The

Kähler form we get for the one eigenvalue is:

ω =
1

n
(ĀA)1/n−1dĀ ∧ dA (2.105)

Notice that these coherent states also match the generalized coherent states introduced

in [46] that were constructed combinatorially. That the energy is essentially the Kähler

potential is a semiclassical result expected for BPS states [14, 77]
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Consider now a U(1)× U(N + 1) theory in the example where we showed that naive

localization does not work. We still get a function similar to ϕ, but now we have:

Φ =
∞∑
m=0

1

m!(m+N)!
(AĀ)m = (AĀ)−N/2IN(2

√
AĀ) (2.106)

and because one of the terms is a U(1), there is no denominator. The hypergeometric

function, when written in terms of Bessel functions, looks as if it does have a denom-

inator, with N/2 other eigenvalues. It is as if gauging U(N) only counts for half as

many eigenvalues. We want to understand the corresponding expressions at medium to

moderate large N .

There are two regimes we want to consider: large A and small A. For large A, we need

to use the asymptotic expansion of the Bessel function. This time, we choose to start

from a different integral representation of Iv(z) and use Watson’s lemma to compute the

asymptotic expansion of Iv(z). We begin with:

Iv(z) =
(2z)−1/2ez√
πΓ(v + 1

2
)

∫ 1

0

e−2zttv−
1
2 (1− t)v−

1
2dt, (2.107)

where we’ve stipulated that Re(v) > −1
2
. We use Watson’s lemma, which holds that an

integral Fλ(z), defined such that:

Fλ(z) =

∫ ∞

0

tλ−1f(t)e−ztdt, (2.108)

where Re(λ) > 0 and the function f(t) has a Taylor series expansion :

f(t) ≈
∞∑
n=0

ant
n, (2.109)
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as t→ 0+, can be approximated as:

Fλ(z) ≈
∞∑
n=0

an
Γ(n+ λ)

zn+λ
(2.110)

in the large argument limit for z. For our case, in the large argument limit, our asymptotic

expansion of Iv(z) becomes:

Iv(z) =
ez√

2πzΓ
(
v + 1

2

) ∞∑
k=0

(−1)k
(
v − 1

2

k

)
Γ
(
k + v + 1

2

)
zk

(2.111)

Putting it all together, we get that:

log(ϕ) ∼ 2(ĀA)1/2 − (N/2 + 1/2) log(AĀ)− 4N2 − 1

2
√
ĀA

, (2.112)

so for very large A, we once again arrive at the Kähler potential of C/Z2 when we are

allowed to ignore the 1/
√
AĀ term. The expression above is valid when the second term

is smaller than the first in the series (2.111), or when (4N2 − 1)/(2
√
ĀA)−1 < 1. So

AĀ ∼ N2 has a N2 scaling. This is equivalent to
√
A ∼

√
N , which gives the estimate

in terms of the naive eigenvalues λ, rather than the composite object A.

Notice, however, that there is a large correction at large N . For small A, we use the

series directly to find that:

Φ ∼
∑
n

1

n!Nn
(AĀ)n ∼ exp(AĀ/N), (2.113)

where we have used a large N approximation for the denominator. This way, we have:

log(Φ) ∼ (AĀ)/N, (2.114)
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so the metric becomes that of the flat complex plane, rather than a cone. This applies

so long as AĀ is not too large, so that the approximation of the denominators is valid

near the terms of the series that contribute the most. This means that the tip of the

cone is flattened (rounded) over a rather large range. We can think of this geometric

calculation as quantum effects deforming the singularity away in a manner analogous to

[78, 79], where the extra “fractional" branes at the tip of a cone lead to a measurable

deformation of the geometry.

This effect can be thought of as a toy model of geometric transitions. The crossover

from the small A to the large A happens when the formulas are roughly comparable to

each other; that is, when (ĀA)1/2 ∼ AĀ/N , or equivalently, where (AĀ)1/2 ∼ N , which

is the same estimate we obtained from the asymptotic series.

2.5.1 More open strings

In our discussion so far, we have been able to introduce open strings for the sphere

giant graviton D-brane (the determinant). We now want to do this for the coherent state

excitation parameterized by a few large eigenvalues λi. We notice that in the space of

matrices associated with Λ, we already have a diagonal matrix; to each eigenvalue, we

can associate an eigenvector |v⟩i. When we multiply the matrix by UΛU−1, this vector

is rotated to U |v⟩i. We can stretch a sting between eigenvalues ij if we add words W as

follows:

|Λ,W ⟩ ∼
∫
dU exp

(
tr(UΛU−1a†)

)
⟨v|j U

−1WU |v⟩i |0⟩ , (2.115)

We may add more words in a similar manner. Notice that we are still doing integrals over

U(N) and that now the vectors v transform with the phases of U(1)N that do not belong

to the coset space U(N)/U(1)N . The total phase must cancel, so we find that for each

|v⟩i, there must be another v̄i somewhere else, which is to say that we get the Gauss’ law
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constraint for U(1)N . This is as expected. The Coulomb branch in Z breaks the gauge

group to U(1)N , tied to diagonalizing the expectation values of Z. When we consider

saddles in the integral, the saddles in U are very pronounced if for a single eigenvalue

|λλ̄| that is large of order N . This means that we can ignore contributions from the W to

the saddles. Instead, we evaluate U in the corresponding permutation matrix and keep

the integration over the phases explicit. This procedure can lead to an effective action

of D-branes with strings. Let us understand this for a pair of large eigenvalues λ12 and

the word a†X . We need to add the contribution ⟨v|1 U−1a†XU |v⟩2. Now we act with the

1 loop effective Hamiltonian in N = 4 SYM, which is written as a contribution coming

strictly from F-terms as in [7] (here we use a slightly modified version of [80] with raising

and lowering operators, similar to the notation in [13]):

g2YMtr
(
[a†X , a

†
Z ][aZ , aX ]

)
(2.116)

When acting on the simple word, the extra lowering operator aZ brings down a copy of

UΛU−1, either to the left or to the right. For more general states, the reader may refer

to the works [81, 82] (see [83] for a review of the integrability program). These two pieces

come as:

g2YM ⟨v|1 U
−1UΛU−1[a†X , a

†
Z ]U |v⟩2 − ⟨v|1 U

−1[a†X , a
†
Z ]UΛU

−1 |v⟩2 (2.117)

Cancelling the U and noting that |v⟩12 are eigenstates of Λ, we obtain the answer:

g2YM(λ1 − λ2) ⟨v|1 U
−1[a†X , a

†
Z ]U |v⟩2 (2.118)

We now perform the same trick when computing with the dual vector, so that a†Z brings

down powers of Λ̄. Again, we obtain an integral that involves U∗−1, and we pick the
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identity saddle, so that we get:

H1−loop ∼ g2YM |(λ1 − λ2)|2 (2.119)

With the N scaling of λ, we get a finite contribution in the t’Hooft limit. This is

exactly what is expected from other approaches that are based on coherent states without

the U integral formalism [73, 76, 84, 85]. This should be contrasted with the difficult

combinatoric computations that lead to “open spring theory" [86], which contains the

same physics. More generally, such correlators of matrix elements of U have been studied

in [87, 88, 89], where some exact expressions can be found. It should be interesting to

develop that further.

Developing this idea further is beyond the scope of the present chapter. The eventual

goal of such a program would be to simplify the types of analysis found in the works

[90, 91]. It is likely that this basis is close to the so called Gauss graph basis described

in [92, 93].

There is a second problem we would like to discuss: how to include more than one

sphere giant graviton in this discussion. The idea of how to do it correctly should be

motivated by what we have seen already, namely, that there is a good character expansion

formalism. For sphere giants, we should have a generalization of the type:

G[M ] ∼
∑
R

1

sR
χR(a

†
z)χRT (M−1), (2.120)

where the characters of the generalized eigenvalues M involve the dual partition RT . We

are also including some denominator expressions sR in case they are needed. We should

also have inverse powers of M ; as in our example of a single sphere giant, counting a†

runs opposite to counting powers of λ. Alternatively, we can go ahead and introduce
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new variables u = 1/λ; then, counting powers of u counts the powers of a†. Curiously,

inversion of coordinates also seems to play an important role for the spin chain in the

SL(2) sector for open strings [85]. Based also on the introduction of fermions to deal

with a single determinant, we would expect that such a generalization involves a fermion

integral with more fermions. The proportionality constant in front of G should be λN

for a single eigenvalue (that is, when M is of rank 1). This suggests using (detM)N as

a normalization factor more generally, which is suggestive of an integral over fermionic

rectangular matrices of size rank(M)×N .

In the paper [71], multiple giants are introduced as products of determinants. We will

justify this idea further. There is an expansion in characters from an algebraic identity

(see for example [58]):

∑
R

χR(t)χR(a
†
Z) =

1

det
(
I ⊗ I − t⊗ a†Z

) (2.121)

where t is an arbitrary M ×M matrix that is tied to the “coordinates" of M AdS giant

gravitons. A straightforward evaluation of the norm of the left shows that the state is not

normalizable unless t = 0. This is because the operators a†Z are unbounded, so the Taylor

expansion around t = 0 is not convergent. In this sense, this is a formal expansion.

Because the formula is an inverse determinant, it can be written as a bosonic integral.

In the study of Wilson loops, it is noted that if one bosonizes a determinant Wilson loop,

one passes from single column Young tableaux to row Young tableaux [94], thus switching

between two types of “dual" D-brane representation: D5 and D3 branes. Here we see

how the same idea can be written; the idea is then to fermionize the determinant above

written as a bosonic integral to find:

det
(
I ⊗ I − t⊗ a†z

)
=

∫
dχ̄dχ exp

(
tr(χ̄χ− χ̄a†Zχt)

)
(2.122)
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In this case, to each eigenvalue ts, we associate a flavor of fermions. For each such ts

eigenvalue, we can isolate fermions on the left and and on the right, and thus get the open

strings attached to different giants. This would reproduce the ideas of [71], but would use

the fermion language. To generalize the calculation, when one considers the Hubbard-

Stratonovich trick, one should introduce anM×M collective field. One would like to have

a saddle of this field that aligns in the “identity" permutation. The t variables here are

exactly like the inverse of the λ parameters. Notice also that in matrix quantum models

of rectangular matrices with fermions, one usually ends up pairing representations with

dual young diagrams of the two groups under which the matrices transform [10, 53, 95].

We can also check that if we use the second Cauchy identity for Schur functions, we

arrive at: ∑
R

χR(t)χRT (a†Z) = det
(
1 + t⊗ a†Z

)
(2.123)

so that up to a sign, we get the correct generating series that we wanted in terms of

characters.

Now, adding open strings becomes very simple. In the basis where t is diagonal,

we can have fermions ψi and ψ̄j. Sandwiching words between these fermions allows one

to form general states with open strings. The Gauss’ law constraint becomes trivial:

there is a U(1)M charge under which the fermion integral is invariant. This symmetry

sends ψ̄j → exp(−iθj)θ̄j and ψj → exp(iθj)ψ
j, one for each parameter tj. We find that

there needs to be as many ψj as ψ̄j, that is, the same number of positively charged and

negatively charged particles with respect to the D-brane U(1) charge. When two of the t

coincide, there is an enhanced U(2) symmetry of the fermionic integral. This should be

the generating series counterpart of how to attach strings to sphere giants combinatorially

by adding boxes to Young diagrams [6, 50].

There should also be a more general theory of coherent states that has both sphere
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giants and AdS giants appearing more democratically, as one expects from the strict

infinite N limit, where they can be constructed directly by making note of the symmetry

between Young diagrams and their transposes [96]. In the strict N → ∞ limit this can be

made very precise. For example, the overlaps of multiple giants [19] are easily seen to be

given by formulae that can be expanded in terms of Cauchy’s character formulae. The

parameters of those coherent states play the role of eigenvalue collective coordinates.

A general setup for finite N that is democratic between these probably involves both

fermion and boson integrals. It is likely that there is a supermatrix model that does this.

2.6 Coherent states for 1/4 and 1/8 BPS states

We are now ready to tackle coherent states for 1/4 and 1/8 BPS bosonic states. The

idea, following our previous development, is to start with averaged coherent states:

F [ΛZ ,ΛX ,ΛY ] =
1

V ol

∫
dU exp

(
tr(UΛXU

−1a†X + UΛYU
−1a†Y + UΛZU

−1a†Z)
)
|0⟩

(2.124)

We now want to concentrate on the states that are 1/4 and 1/8 BPS at one loop order.

The effective Hamiltonian is given by:

H = tr
(
[a†X , a

†
Y ][aY , aX ]

)
+ cyclic, (2.125)

and since H is a sum of squares, we get H ≥ 0 as an operator. When we let H act

on F , we see that we get a result that is identically equal to zero when the Λ matrices

commute. We thus insist that the parameters ΛX ,ΛY , λZ are commuting matrices, as

they should be. The coherent states are a semiclassical approximation to expectation

values of fields. The moduli space of vacua occurs when the classical expectation values
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of the fields (after gauge fixing) commute. Namely, we need the expectation values to

commute: [X, Y ] = 0 . . . .

Now we perform our usual manipulations contracting a†X , aX etc, to find the overlap:

F̄ [Λ̄Z , Λ̄X , Λ̄Y ] ∗ F [ΛZ ,ΛX ,ΛY ] =
1

V ol

∫
dU exp

(
tr(UΛXU

−1Λ̄X + UΛYU
−1Λ̄Y + UΛZU

−1Λ̄Z)
)
|0⟩

(2.126)

This answer has a manifest U(3) symmetry of rotations where the matrices ΛX ,ΛY ,ΛZ

transform as a 3 of U(3), and the conjugate Λ̄ transform as the 3̄.

Here are a couple of observations. First, the action in the integral is also evaluated on

a U(N)/U(1)N geometry; thus, the phases of U acting on the left disappear. Some of the

critical points of U are the same as those in the HCIZ integral: permutation matrices.

There may be additional ones. The conditions for critical points are:

[Λ̄X , UΛXU
−1] + [Λ̄Y , UΛYU

−1] + [Λ̄Z , UΛZU
−1] = 0 (2.127)

It is clear that when U is a permutation matrix, they are critical points.

If Λ̄ and Λ are real, then the term in the exponential is real. In that case, Morse theory

for the compact manifold over which we are doing the integral suggests that for small

enough perturbations in ΛX ,ΛY slightly away from zero, the set of isolated critical points

does not change (these depend continuously on the action when thought of as a Morse

function on the manifold we are interested in). That means that we can evaluate a 1-loop

approximation around the same saddles and get an approximation for the overlap. These

should be dominant. If the integral above is localizable (which we have not proved), then

the sum over all saddles (including complex saddles) is exact. Considering that one can

localize on 1/8 BPS Wilson loops in [27], the idea that an integral like the one above or
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a variation of it is amenable to exact localization is very plausible. If additional saddles

are needed, they will be complex.

We will do the naive saddle sum now, over the saddles we know. We find that for

each saddle, we have a permutation matrix U ∼ P , and the saddle gives:

Sπ =
∑
i

λiX λ̄
π(i)
X + λiY λ̄

π(i)
Y + λiZ λ̄

π(i)
Z . (2.128)

The square root of the measure at the saddle is evaluated readily to a product:

µπ =
∏
i<j

(λ⃗i − λ⃗j) · (⃗̄λπ(i) − ⃗̄λπ(j)) (2.129)

Such measures appear in the computation of the volume of the gauge orbit in [14] (they

can also be extended to other orbifolds or more general setups [18, 77, 97]). Unlike in the

case of the HCIZ integral, this measure does not factorize holomorphically. Moreover,

different saddles have different denominators. This suggests that some poles will not

cancel to give rise to a polynomial in the λ variables. If the poles are not cancelled, then

there are two possibilities: either localization does not work, or there exist additional

complex saddles in the complexified U variables that need to be taken into account.

The measure does reduce to the product of Vandermonde determinants when we get

rid of the X, Y variables λX = λy = 0. It is also invariant under the SU(3) rotations in

X, Y, Z, so the answer is consistent from the SU(3) group theory considerations. Notice

that µ2 does change sign with the permutations in the same way the Vandermonde does,

so the accompanying sign in the saddle point evaluation at λx = λy = 0 should be kept.

We find an approximation given by

F̄ [Λ̄Z , Λ̄X , Λ̄Y ] ∗ F [ΛZ ,ΛX ,ΛY ] =
∑
π

(−1)π
exp(Sπ)

µπ
(2.130)
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We can also try to go to our collective coordinate formulation. In that case, Λ̄ is the

adjoint of Λ, and the trivial permutation dominates (which one can show by the Cauchy-

Schwarz inequality). In that limit, we find that:

F̄ [Λ̄Z , Λ̄X , Λ̄Y ] ∗ F [ΛZ ,ΛX ,ΛY ] ∼
exp(tr(Λ̄Λ))∏
i<j |λ⃗i − λ⃗j|2

, (2.131)

and that the energy would evaluate to:

tr(Λ̄Λ)− λ∂λ ln(
∏
i<j

|λ⃗i − λ⃗j|2) = tr(Λ̄Λ)−N(N − 1), (2.132)

where we are using the fact that the measure is a homogeneous function (see [14]). For a

single large eigenvalue to be well behaved, we require that the energy in that eigenvalue

(evaluated with N − 1 eigenvalues set to zero) is positive compared to the result when

N → N − 1. This gives a SU(3) covariant version of the eigenvalue being larger than N .

That is:

⃗̄λ · λ⃗ > N − 1 (2.133)

We know that the equation of motion of λi is iλ̇i = λi, and that the Hamiltonian is

essentially
∑
λ̄iλi up to a constant. This suggests that the canonical conjugate to λi is

λ̄i. Indeed, an action based on that prescription alone would give the correct equations

of motion. Moreover, the Kähler potential would be that of a flat geometry. Notice,

however, that we have a quantum correction from the measure.

This is important. One way of interpreting this correction has to do with the counting

of states. When we write the generating function for a single large eigenvalue, we get:

F̄ ∗ F ∼ exp(λ̄λ)/(λ̄λ)2 →
∞∑
m=0

N !
(λ̄λ)m

(m+N)!
, (2.134)
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where we only keep the regular part of the answer, as the full generating series has no

singularities at the origin. In this notation, we are suppressing the SU(3) labels, and

we only keep the polynomial part of the answer. We see that there is one state per

monomial λn1
X λ

n2
Y λ

n3
Z from expanding each of the terms of the sum; the expansion gives

a sum of squares. The number of states at energy k is the number of states of the k-th

completely symmetric representation of SU(3). This has dimension (1 + k)(2 + k)/2.

Semiclassically, this should be the volume of phase space between energy k and k + 1;

our phase space is the complex manifold we are discussing. We should now substitute

k = E ∼ λ̄λ − N = r2 − N , where r2 is the norm. We find that the volume at fixed r

scales like (r2 − N)2rdr/2, which is different from that of a flat geometry at the origin.

At large r, the correction does not matter and the metric becomes scaling, but at finite

r, we get the wrong counting of states. The representation theory has also been studied

directly in [98], using different methods.

If we have a few branes with large eigenvalues, the measure gets a correction from

the product of two measures that is singular when the large eigenvalues coincide. This

indicates the enhanced symmetry of the integral– when the eigenvalues coincide, the

critical point leaves SU(2) invariant, and the fixed point is not isolated. This is associated

with the enhanced gauge symmetry of coinciding branes.

The main point we are making is that the idea of saddles dominating is still accurate

and the type of constructions that are used for attaching strings to these setups still hold,

including energies like equation (2.119), properly covariantized to be U(3) invariant. The

BPS states here are only implicit. They are expressed as polynomials of the eigenvalues

λ multiplying functions of oscillators that we have not computed explicitly, and written

as integrals over the group. They are also invariant under combined permutations of the

eigenvalues. This should be contrasted with other approaches to this problem [99, 100].

Another option is to keep ΛZ finite and expand the exponential in the other variables
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ΛX,Y as a power series. Results to each order would then be given in terms of correlators

of U,U−1 matrix elements in the “HCIZ ensemble." Such correlators have been studied

in [87, 88, 89] and they do correspond to elaborate sums over the saddles. Such formal

expansions would add open strings to the eigenvalues of the ΛZ configuration and would

tie in with the open string formalism briefly mentioned in this chapter.

2.7 Discussion

In this chapter, we have discussed a new application of the Harish-Chandra-Itzykson-

Zuber integrals and their generalizations to study correlators of BPS states in N = 4

SYM. The main idea was to introduce coherent states and average them over a group

orbit to obtain gauge invariant states. We were able to reproduce various results that were

obtained originally from combinatorial arguments. We then promoted the parameters in

the generating function to collective coordinates of states. We exploited the fact that

the integrals in question are written as sums of saddles to find that there is a dominant

saddle. This allows one to make various approximations to find the effective action of

these collective coordinates directly. We showed how a similar structure could be found

with determinants that also lead to dominant saddles and explained why this is the

correct generalization in terms of the type of algebraic structure that arises.

We also showed how to introduce open strings in all of these these setups. We found

that computations done this way require knowledge of correlators of matrix elements

of unitary matrices in the HCIZ ensemble. This method provides a complementary ap-

proach to study anomalous dimensions of open strings that we are currently investigating.

Again, the fact that there is a dominant saddle for the setup allows simplifications to

be made in computations. We demonstrated that these open strings need to satisfy a

Gauss’ law constraint that becomes evident in the formulation, including the non-abelian
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enhancement that occurs when D-branes coincide.

We extended these ideas to more general group integrals for 1/4 and 1/8 BPS states.

We believe that because 1/8 BPS WIlson loops are computable using localization, one

can find a formalism where the correlators of these states are computed this way, rather

than the combinatorial approaches found in current literature.

It would be interesting if similar ideas can be used to study the ABJM theory [101]

correlators. In that case, Wilson loops can be computed with supermatrix models [102],

derived using localization methods [103]. The associated spin chain is integrable [104].

We have not yet applied our ideas to the study of higher point functions along the

lines of [105] which may also be computed using localization methods, nor to the fact

that the HCIZ integrals are also tau functions of integrable systems (see [58]). All of

these avenues suggest a rich setup of possible applications of the ideas presented in this

chapter to the computation of protected quantities in various setups.
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Chapter 3

Giant Gravitons, Harish-Chandra

integrals, and BPS states in symplectic

and orthogonal N = 4 SYM

3.1 Introduction

Recently, there has been a renewed interest in determinant operators in large N

holographic gauge theories and their string dual description as giant gravitons [66, 106,

70, 72, 107]; the dimension of these operators is order N , which makes them ideal to probe

sub-AdS physics. A natural basis for gauge invariant operators is the Schur functions,

which are characters of the unitary and symmetric groups. Combinatorial methods for

computing correlation functions in free N = 4 SYM were developed in [36, 108]. More

recent works have emphasized the utility of an effective action approach obtained by

recasting the determinant operators as fermionic integrals and integrating out the super

Yang-Mills fields. In this description, the non-perturbative physics of the problem can

be obtained from a saddle point approximation for an effective action in terms of a set
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of collective fields [66, 70].

A similar prescription for AdS giant gravitons was proposed in [21], where it was re-

alized that the norms of BPS states are encoded in the expansion of the Harish-Chandra-

Itzykson-Zuber (HCIZ) integral, which appears in the evaluation of the norms of a certain

class of gauge invariant coherent states:

OΛ(0) =

∫
SU(N)

dU exp
(
Tr
[
ΛUa†ZU

†
])
. (3.1)

This sheds light on why the group characters evaluated on the Yang-Mills fields may

serve as an orthogonal basis, even though they are only orthogonal with respect to the

Haar measure, and gives a different interpretation of the norms of BPS states as the

coefficients in the expansion of the HCIZ integral. This technique has the advantage

of repackaging the combinatorics of the Schur functions into integrals over the unitary

group.

The Harish-Chandra integrals have natural generalizations to the B, C, D series,

Sp(2N) and SO(M). For a choice of simple Lie group G, the HCIZ integral has an exact

formula in terms of a sum over the saddle points:

H(x, y) =

∫
e⟨Adg(x),y⟩dg = cg

∑
w∈W

ϵ(w)e⟨w(x),y⟩

∆g(x)∆g(y)
. (3.2)

Each saddle point of the integral corresponds to a Weyl reflection, and the denom-

inators are given by the discriminant of the Lie algebra. These integrals have received

less attention than the unitary HCIZ integral, which serves as a single plaquette model

in lattice gauge theory.

The bulk of the work on probing finite N physics is limited to field theories with

U(N) and SU(N) gauge groups (see [109, 110, 111, 112]), but more recently, there has
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been some interest in extending these studies to field theories with Sp(2N), SO(2N +1),

or SO(2N) gauge groups [113, 114, 115]. There is good reason for this surge of interest:

maximally supersymmetric Yang-Mills theory with symplectic and orthogonal groups are

dual to type IIB strings on AdS5 × RP5 [2]. Depending on the choice of the orientifold

projection, the gauge group of the theory is either Sp(2N), SO(2N + 1), or SO(2N);

S-duality relates the spectrum of the Sp(2N) and the SO(2N + 1) theories, while the

SO(2N) theories are self-dual. The exact matching of the spectrum for the symplectic and

orthogonal theories is poorly understood, due to the combinatorial difficulty associated

with constructing states of these theories.

In this chapter, we study BPS coherent states of N = 4 SYM for special orthogonal

and symplectic groups. The norms of such states are given precisely by a Harish-Chandra

integral over the corresponding group. By explicitly expanding the integral, we find that

these coherent states serve as generating functions for gauge invariant states in the gauge

theory, and the corresponding coefficients in the expansion give their norms. In principle,

this gives a way of constructing an orthogonal basis of states for these theories from

group theoretic data for the corresponding gauge group. We argue that these generating

functions are only able to capture information about the "unitary" part of the gauge

symmetry, which is to say that operators we find in the expansion match in form to

operators in the unitary theory. In section 3.2, we review the construction of gauge

invariant coherent states for the SU(N) theory. In section 3.3, we generalize this to the

symplectic case and argue that the odd special orthogonal case is related to the symplectic

case by a rank-level duality that exchanges a Young diagram with its conjugate diagram.

We repeat the calculations for the even orthogonal case. In section 3.4, we discuss other

attempts at finding an orthogonal basis for Sp(2N), SO(2N+1), or SO(2N) and how our

results can be interpreted in a relevant context. Finally, we conclude with a discussion

of a few open questions and future directions of work.
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3.2 Review of the U(N) case

We begin with a brief review of BPS coherent states in U(N). The same analysis

may be applied to any free gauge theory with an adjoint scalar field Z. We know from

[21] that given a naïve coherent state F [Λ] of the form:

exp(Tr(Λ · a†Z)) |0⟩ , (3.3)

where Λ is taken to be a diagonal matrix-valued set of parameters and a†z is the raising

operator for the s-wave of the field Z on S3 in [11], we may introduce an auxiliary U(N)

group action and average over the group, which allows us to rewrite a gauge invariant

coherent state as:

F [Λ] =
1

V ol(U(N))

∫
dU exp(Tr(UΛU−1a†Z)) |0⟩ , (3.4)

where dU is the Haar measure. Our normalization factor V ol(U(N)) =
∫
dU ; we can set

it equal to one for the sake of brevity. We may compute the overlap of F [Λ] as defined

in Eq. (3.4) with its adjoint F̄ [Λ̄] by evaluating the HCIZ integral:

F̄ [Λ̄] ∗ F [Λ] =
∫
dŨ exp

(
Tr
(
Ũ−1ΛŨ Λ̄′

))
. (3.5)

We see that we have sidestepped most of the Wick contractions of the matrix operators(
a†
)i
j
, which would make F [Λ] difficult to compute in the form it takes in Eq. (3.4). F [Λ]

can be evaluated through a character expansion, as described in [116]:

F [Λ] =
∑
R

1

fR
χR(Λ)χR(a

†
Z) |0⟩ (3.6)

We may also rewrite Eq. (3.5) through a character expansion:
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F̄ [Λ̄] ∗ F [Λ] =
∑
R

1

fR
χR
(
Λ̄
)
χR (Λ) (3.7)

We can then compare the coefficients of the characters from the equation above to

what we would obtain from multiplying Eq. (3.6) by its adjoint and find:

⟨0|χR(a)χR(a†) |0⟩ = fR (3.8)

It becomes obvious that we must compute fR to evaluate the overlap of χR(a) and

χR(a
†). The thing to keep in mind is that the representations R in the coherent state

F [Λ] correspond to Young diagrams for U(N), which are characterized by the indices

j1 ≥ j2 ≥ . . . jN , where each index ji iterates over row i. Because these are characters of

the unitary group, they may be rewritten with the Weyl character formula:

χji(Λ) =
det
(
λji+N−i
k

)
∆(Λ)

, (3.9)

where λk are the eigenvalues of Λ and ∆(Λ) is the Vandermonde determinant of Λ. Then

we may rewrite the HCIZ integral as a product of these expanded characters:

I(Λ, Λ̄) =

∫
dŨ exp

(
Tr
(
Ũ−1ΛŨ Λ̄′

))
= Ω

det
(
exp(λiλ̄

′
j)
)

∆(Λ)∆(Λ̄′)
(3.10)

where Ω is a normalization constant. We rewrite the numerator to reintroduce fR:

Ωdet
(
exp(λiλ̄

′
j)
)
=
∑
j⃗

1

fj⃗
det
(
λji+N−i
k

)
det
(
λ̄′ji+N−i
k

)
(3.11)

We have relabeled R with the indices j⃗, and have rewritten the equation above ac-

cordingly. The expressions inside the determinants are monomials and correspond to the

term
∏

i λ
ji+N−i
i + . . . in det

(
λji+N−i
k

)
. Thus we may expand the exponential in Eq.
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(3.11) as:

det
(
exp(λiλ̄

′
j)
)
=
∑
[n]

1

[n]!
det((λiλ̄

′
j)
ni) =

∑
[n]

1

[n]!
det(λ̄′ni

j )
∏
i

λni
i + . . . , (3.12)

where we have made use of the multilinearity of the determinant. The factor [n]

encapsulates n1, . . . , nN ; then [n]! =
∏

j nj!. We see that we are limited to n1 > n2 . . .

when we restrict ourselves to the monomials with the correct descending order; when

we set ni = ji + N − i, we arrive at an explicit sum over the characters. Thus our

denominator fj⃗ may be computed as:

fj⃗ = Ω−1
∏
i

(ji +N − i)!, (3.13)

We may set f0⃗ = 1, as ⟨0|0⟩ = 1. Then we arrive at:

Ω =
N∏
i=1

(N − i)! (3.14)

From this we can easily read off the norms of the states χR(a†):

⟨χR′(a)χR(a
†)⟩ = δR,R′

∏
i(ji +N − i)!∏N
i=1(N − i)!

, (3.15)

which agrees with the well-known result of [36].

3.3 Symplectic and orthogonal cases

Before repeating the analysis for the other simple lie groups, we should comment

on the interpretation of the Sp(2N) and SO(N) theories as orientifold projections of a
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unitary theory. To do this, we first consider a simple toy model correponding to a single

harmonic oscillator. As it turns out, this simple model captures a lot of the qualitative

behaviour of the answer for symplectic and orthogonal groups.

3.3.1 A toy model for the orientifold projection

As a warm-up, we consider a single quantum harmonic oscillator:

[a, a†] = 1. (3.16)

A natural basis of states for this system is the eigenstates of the occupation number

operator n̂ |n⟩ = n |n⟩. One thing that we may do with this system is to define a par-

ity operator Ω = (−1)n̂ and further divide the set of states into those that are mutual

eigenvectors of n̂ and Ω. This gives an orthogonal decomposition of the Hilbert space of

the harmonic oscillator into sectors of positive and negative parity H ∼= H+

⊕
H−, and

divides all the states into even and odd states under the orientation reversal transforma-

tion
P : x→ −x

P : p→ −p,
(3.17)

where x and p are the position and momentum operators. Because the raising operators

are monomials in x and p, the odd parity states are created with odd numbers of rais-

ing operators and vice versa. The operators 1
2
(1± Ω) respectively serve as orthogonal

projection operators into H+ and H−.

What we would like to do is build coherent states in each of these two sectors of the

theory. For instance, we can project a coherent state into the sector of positive parity by

applying the operator 1
2
(1 + Ω):
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1

2
(1 + Ω) |α⟩ = 1

2

(
1 + eπin̂

)
eαa

† |0⟩ = 1

2

(
eαa

†
+ e−αa

†
)
|0⟩ = cosh

(
αa†
)
|0⟩ . (3.18)

We call this state |α,+⟩. One nice property of this state is that it is an eigenstate of

a2 with eigenvalue α2. In this sense, we can call this a coherent state for the positive

chirality sector of the model. By a similar computation, the overlap between any two of

these coherent states is given by:

⟨β∗,+ |α,+⟩ = cosh (αβ) . (3.19)

The case for negative parity requires more care, and will be the case that is relevant

to the analysis of the Sp(2N) and SO(2N + 1) theories. If we project a coherent state

into the sector of negative chirality, we obtain the state:

1

2
(1− Ω) |α⟩ = sinh

(
αa†
)
|0⟩ . (3.20)

The issue is that this state is not a coherent state in the usual sense; when we act on

the state with a lowering operator, the state won’t return to the original state since the

minimum ocupation number that appears in the series is |1⟩. Rather, this state is also

an eigenvector of a2 with eigenvalue α2. Since the original vacuum state is annihilated

by the projector 1
2
(1− Ω), the true vacuum in this sector is the state occupation number

one |1⟩. By a relabeling of the states for the odd sector, the coherent state can be written

as

|α,−⟩ = −i sinc
(
iαa†

)
|0̃⟩ , (3.21)

where sinc(x) = sinx
x

, and the new vacuum is |0̃⟩ = |1⟩. A simple computation yields the
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norm of this coherent state:

⟨β∗,− |α,−⟩ = sinhαβ

αβ
. (3.22)

3.3.2 The symplectic HCIZ integral

We now seek to expand our definition for a well-defined BPS operator averaged over

the unitary group to the symplectic group:

FSp(2N)[Λ] =
1

Vol(Sp(2N))

∫
Sp(2N)

dg exp(Tr(gΛg−1a†Z)) |0⟩ , (3.23)

where dg is the Haar measure for the symplectic group and Vol(Sp(2N)) =
∫
Sp(2N)

dg

is a normalization factor, which we can always rescale to one. The group elements of

Sp(2N) can be represented by 2N × 2N matrices that are both unitary and symplectic:

g†g = 12N

gTΩg = Ω,

(3.24)

where Ω is a choice of anti-symmetric symplectic matrix:

Ω =

 0 1N

−1N 0

 . (3.25)

The symplectic condition (3.24) translates into the orientifold projection of the Chan-

Paton indices for the open strings ending on a stack of 2N D3 branes [2]. This forces the

raising and lowering operators of the Sp(2N) theory to satisfy the orientifold projection

condition:

Ω a†Z Ω = (a†Z)
T = −a†Z , (3.26)
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where the transpose is taken on the group indices, which we omit for clarity. This means

that any operator made from traces of odd numbers of fields will automatically vanish.

We choose to normalize the commutation relations for the raising and lowering operators

by a factor of 1
2
, which will make the computation of the norm of the coherent state more

transparent:

[(aZ)
i
j, (a

†
Z)

l
k] =

1

2

(
δljδ

i
k − ΩjkΩ

lj
)
. (3.27)

As with the unitary case, we wish to compute the overlap between two coherent states.

This is done by applying the Campbell-Hausdorff formula; since the raising and lowering

operators have different relations from the unitary case, we must check that commuting

the exponentials really simplifies the norm into the form where it can be evaluated by

a Harish-Chandra integral. After some algebra, we see that in the symplectic case, the

exponentials can be commuted as follows:

[
Tr
(
gazg

†Λ
)
,Tr

(
ha†zh

†Λ̄′)] = 1

2
Tr
(
ghΛ(gh)†Λ̄′)+ 1

2
Tr
(
gΛg†ΩhT Λ̄′T (hT )−1Ω

)
= Tr

(
ghΛ(gh)†Λ̄′) . (3.28)

The second term in (3.28) is equivalent to the first term after using the group relations

(3.24). This means that once again, we can compute the operator’s overlap with its

adjoint with the symplectic Harish-Chandra integral:

F̄Sp(2N)[Λ̄] ∗ FSp(2N)[Λ] =

∫
dg̃ exp

(
Tr
(
g̃−1Λg̃Λ̄′)) = HSp(2N)(Λ, Λ̄

′), (3.29)

where HSp(2N)(Λ, Λ̄
′) is given in [31]:

HSp(2N)(Λ, Λ̄
′) =

(
2N−1∏
p=1

(2p+ 1)!

)
det
[
sinh

(
2ΛjΛ̄

′
k

)]2N
j,k=1

∆(Λ(2))∆
(
Λ̄(2)

)∏2N
i=1 λiλ̄

′
i

. (3.30)
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The denominator in this formula is computed using the Weyl denominator formula

for the corresponding discriminant, as demonstrated in [117, 118]:

∆sp(2N)(λ) =
N∏
j

λj
∏

1≤j<k≤N

(
λ2j − λ2k

)
= det(Λ) ∆

(
Λ2
)

(3.31)

Thus we may rewrite Eq. (3.30) as:

∆sp(2N)(λ)∆sp(2N)(λ̄
′)HSp(2N)(Λ, Λ̄

′) =

(
N−1∏
p=1

(2p+ 1)!

)
det
[
sinh(2ΛjΛ̄

′
k)
]
. (3.32)

The numerator can be simplified by using the identity that sinh(2ΛjΛ̄
′
k) is a modified

Bessel function of the first kind of order ν = 1
2
, and expanding the determinant. We

know that:

sinh
(
2ΛΛ̄′) =√πΛΛ̄′ I 1

2

(
2ΛΛ̄′) = ∞∑

m=0

2m+1

m! (2m+ 1)!!

(
ΛΛ̄′)2m+1

(3.33)

Then we can use the Cauchy-Binet formula to expand the determinant:

det
[
sinh

(
2ΛiΛ̄′

j

)]
=
∑
mi

N∏
i

2mi+1

mi! (2mi + 1)!!
det
[
Λ2mi+1
j

]
det
[
Λ̄′2mi+1
j

]
(3.34)

Thus Eq. (3.30) becomes:

HSp(2N)(Λ, Λ̄′) =
∑
mi

N∏
i

2mi+1 (2i− 1)!

mi! (2mi + 1)!!

det
[
Λ2mi
j

]
det
[
Λ̄′2mi

j

]
∏

i<j(λ
2
i − λ2j)(λ̄

′2
i − λ̄′

2
j)

(3.35)

Once again, if we set mi = µi +N − i, we may rewrite Eq. (3.23) as an explicit sum
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over the Schur polynomials:

HSp(2N)(Λ, Λ̄
′) =

∑
µ

1

fµ
χµ(Λ

2)χµ(Λ̄
′2), (3.36)

where the coefficient in the expansion is given by

fµ =
N∏
i

(µi +N − i)! (2µi + 2N − 2i+ 1)!!

2µi+N−i+1 (2i− 1)!
, (3.37)

and the sum is taken over all integer partitions µ.

This form of the expansion is natural from the point of view of the orientifold projec-

tion, since we projected out all the states with an odd number of raising operators acting

on the vacuum state. Similarly, the operator that creates the coherent state must have

a formal expansion of a similar form:

OΛ =

∫
Sp(2N)

dg exp
(
Tr
(
gΛg−1a†Z

))
=
∑
µ

1

fµ
χµ(Λ

2)χµ(
(
a†Z

)2
) (3.38)

This indicates that just as in the unitary case, the norms of states are given by the inverse

of the coefficients that appear in the expansion of the Harish-Chandra integral.

3.3.3 Special orthogonal groups

Odd special orthogonal group

It is known that the Harish-Chandra integral for the odd orthogonal group is the same

as that for the symplectic group. This can be thought of as a result of the S-duality of

N = 4 super Yang-Mills theory; S-duality exchanges the Sp(2N) and SO(2N +1), while

SO(2N) is S-duality invariant [2]. This means that the spectrum of the Sp(2N) and the

SO(2N + 1) theories are related by a change of basis. We will argue that this change
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of basis is simply the transpose operation on the Young diagram µ associated to a given

representation.

One reason to suspect that this is the case comes from the Schur-Weyl duality for

odd orthogonal and symplectic groups. It is well-known that the centralizer algebra

associated to the k-fold tensor product of fundamental representations of SU(N) is the

group algebra of the symmetric group CSk. This means that the k-fold tensor product

of fundamental representations of SU(N) decomposes into tensor products of irreducible

representations of Sk and SU(N):

V ⊗k
SU(N)

∼=
⊕
λ

πλ ⊗ Uλ. (3.39)

This is more complicated for the symplectic and orthogonal groups, since the corre-

sponding centralizer algebra is no longer a group algebra, but rather the algebra asso-

ciated to the Brauer monoid. One way to understand this is that the symplectic and

orthogonal lie algebras have additional invariant tensors compared to the unitary case.

For tensor products of fundamental representations of unitary groups, the only invariant

tensors allowed are the identity and permutation operators:

I(Va ⊗ Vb) → Va ⊗ Vb

P(Va ⊗ Vb) → Vb ⊗ Va.

(3.40)

Clearly these operations are invertible and generate the symmetric group Sk. For

orthogonal groups, there is an additional invariant tensor, called the trace operation:

K(Va ⊗ Vb) → C. (3.41)

These tensors are well known in the integrable spin chain literature, and are the
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same kind of tensors that appear in the SO(6) integrable spin chain [83]. Unlike the

identity and permutation operators, the trace operation is not invertible, and together

with the identity, it generates the Temperley-Lieb algebra TLk(2N) [119, 120]; the linear

span of these three operations generates the Brauer algebra Bk(2N). The importance

of Brauer centralizer algebras has been emphasized in [121, 122], where they were used

to diagonalize two-point functions in the space of gauge theory operators and their ad-

joints. These operators correspond to bound states of non-holomorphic giants. Brauer

centralizer algebras have also been used to construct coherent states in [20].

Returning to the tensor decomposition of the k-fold tensor product of fundamentals

of SO(2N + 1), the corresponding decompostition is [120]:

V ⊗k
SO(2N+1)

∼=
⌊f/2⌋⊕
k=0

⊕
λ⊢f−2k

Dλ ⊗ Vλ, (3.42)

withDλ and Vλ respectively denoting the irreducible representations of the Brauer algebra

and SO(2N + 1). The analogous statement for the symplectic group Sp(2N) exchanges

N with −N and Vλ with WλT , where WλT is the irreducible representation of Sp(2N)

associated to the diagram conjugate to λ:

V ⊗k
Sp(2N)

∼=
⌊f/2⌋⊕
k=0

⊕
λ⊢f−2k

Dλ ⊗WλT . (3.43)

Since the Harish-Chandra integral involves group averages of powers of traces of the

form Tr (gΛg−1Λ′), it is natural to expect that every term in expansion for the odd

orthogonal groups should match to a term with the corresponding transposed Young

diagram in the expansion for the symplectic integral. This might appear surprising,

since the number of boxes that can appear in a column is bounded from above by N ,

while the number of boxes in a row can be arbitrary. One way of understanding this
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apperent mismatch is that the fundamental degrees of freedom in one description might

be mapped to a bound state by S-duality. In reality, representations with arbitrary

numbers of boxes in a column are possible, but will not be irreducible.

Special even orthogonal group

Extending our definition for a well-defined BPS operator to the even special orthogo-

nal group requires a little more work. We modify the definition of F [Λ] to reflect averaging

over the even special orthogonal group:

FSO(2N)[Λ] =

∫
dO exp(Tr(OΛO−1a†Z)) |0⟩ . (3.44)

As before, the overlap of F [Λ] and its adjoint is the corresponding Harish-Chandra

integral:

F̄SO(2N)[Λ̄] ∗ FSO(2N)[Λ] =

∫
dÕ exp

(
Tr
(
Õ−1ΛÕΛ̄′

))
= HSO(2N)(Λ, Λ̄

′), (3.45)

where HSO(2N)(Λ, Λ̄
′) is given by [31]:

HSO(2N)(Λ, Λ̄
′) =

(
N−1∏
p=1

(2p)!

)
det
[
cosh

(
2ΛjΛ̄

′
k

)]N
j,k=1

+ det
[
sinh

(
2ΛjΛ̄

′
k

)]N
j,k=1

∆(Λ(2))∆
(
Λ̄′(2)

) . (3.46)

We note that Eq. (3.44) is invariant under an additional symmetry:

O → ĨO, (3.47)

where Ĩ is a diagonal matrix with determinant equal to ±1. To get rid of this redundancy,
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we could integrate over the entire orthogonal group O(N). For SU(N), Sp(2N) and

SO(2N + 1), this process does not change the value of the integral. This is similar to

what happens in the Kazakov-Migdal model in [123], where the additional abelian part

of the gauge field decouples from the collective field effective action. We also note that

even though the whole integral is invariant under the parity transformation

P̃ : Λ → −Λ

P̃ : Λ′ → −Λ′,

(3.48)

the overlap is not invariant under the individual reflections of each of the eigenvalue

matrices. This is because the second term is odd under transformation by individual

reflections of the matrices Λ and Λ′. Since each state must be individually invariant

under this reflection, we choose to use the Harish-Chandra integral for O(2N):

HO(2N) =

(
N−1∏
p=1

(2p)!

)
det
[
cosh

(
2ΛjΛ̄

′
k

)]N
j,k=1

∆(Λ(2))∆
(
Λ̄′(2)

) . (3.49)

This is precisely the matrix analogue of the norm of the coherent state for the positive

parity states of a harmonic oscillator. The main difference between each of the orientifold

projections is that the vacuum of each theory is charged differently under parity; the

symplectic case formally begins at occupation number one of the parent theory, while

the even orthogonal case begins at occupation number zero.

We can now repeat the analysis of the previous sections with det
[
cosh

(
2ΛjΛ̄

′
k

)]N
j,k=1

. We know that:

cosh
(
2ΛΛ̄′) =√πΛΛ̄′I− 1

2

(
2ΛΛ̄′0

)
=

∞∑
m=0

2m

m! (2m− 1)!!

(
ΛΛ̄′)2m (3.50)

Applying the Cauchy-Binet formula yields:
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det
[
cosh

(
2ΛiΛ̄

′
j

)]
=
∑
mi

N∏
i

2mi

mi! (2mi − 1)!!
det
[
Λ2mi
j

]
det
[
Λ̄′2mi
j

]
(3.51)

Then the Harish-Chandra integral for O(2N) becomes:

HO(2N)(Λ,Λ
′) =

∑
mi

N∏
i

2mi(2i− 2)!

mi! (2mi − 1)!!

det
[
Λ2mi
j

]
det
[
Λ̄′2mi

j

]
∏

i<j(λ
2
i − λ2j)(λ̄

′2
i − λ̄′

2
j)

(3.52)

By setting mi = µi + N − i, the expression once again becomes a sum over Schur

polynomials:

HO(2N)(Λ,Λ
′) =

∑
µ

1

hµ
χµ(Λ

2)χµ((Λ
′)2), (3.53)

where the coefficient is now given by:

hµ =
(µi +N − i)! (2µi + 2N − 2i− 1)!!

2µi+N−i(2i− 2)!
. (3.54)

Once again, we can expand the operator itself as a formal sum:

∫
O(N)

dO exp
(
OΛOTa†Z

)
=
∑
µ

1

hµ
χµ(Λ

2)χµ((a
†
Z)

2), (3.55)

which implies that the norm of the states are given by hµ.

We chose to get rid of the redundancy by integrating over O(2N) rather than SO(2N);

in doing so, we have chosen a specific partition function. The drawback to choosing

O(2N) as our gauge group is that we eliminate the Pfaffian operator, which is defined

as:

Pf(Λ)2 = det(Λ), (3.56)

where Λ is a 2n × 2n skew-symmetric matrix. If we make another choice and integrate
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over SO(2N) instead, our Harish-Chandra integral becomes:

HSO(2N)(Λ,Λ
′) =

∑
mi

N∏
i

2mi(2i− 2)!

mi! (2mi − 1)!!

det [Λ2mi ] det
[
Λ̄′2mi

]
∏

i<j(λ
2
i − λ2j)(λ̄

′2
i − λ̄′

2
j))

+
∑
ni

N∏
i

2ni+1 (2i)!

ni! (2ni + 1)!!

det [Λ2ni+1] det
[
Λ̄′2ni+1

]
∏

i<j(λ
2
i − λ2j)(λ̄

′2
i − λ̄′

2
j))

(3.57)

We see that the Pfaffian of SO(2N), which changes sign under a single reflection,

makes an appearance in the term we previously discarded. If we write Λ = Xj + iXk,

where Xj and Xk are two of the six scalar fields Xi in the adjoint representation of

SO(2N) N = 4 SYM, then Pf(Λ) corresponds to a single BPS D3 brane wrapped

around the non-trivial three-cycle of RP5 [2, 5]. It can be considered half of a maximal

giant graviton, which is identified as det(Λ), since the maximal giant graviton wraps

around the non-trivial cycle twice.

3.4 A change of basis

One approach to diagonalizing two-point functions is to build an orthogonal basis

for Sp(2N) and SO(2N) using local operators, as done in [114, 115], which built on the

restricted Schur polynomials introduced in [110]. This is achieved by introducing a tensor

T in V ⊗2n that has 2n indices and taking the sum over Wick contractions as a sum over

permutations in V ⊗2n, or over Sn[S2]. T is then decomposed into irreducible components

that don’t mix under S2n when computing the two-point function. Operators are then

built using projectors that commute with all of the permutations; it can be shown that

these operators diagonalize the two-point function. Because these operators should be

invariant in SO(2N), their indices should contract in pairs. Each index corresponds to

a box in the Young diagram R for a tensor in representation R. The Young diagrams
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that correspond to non-zero, gauge-invariant operators have an even number of boxes in

each column and row, which is to say that 2n is divisible by 4, and that a square Young

diagram composed of four boxes may be used a building block for the Young diagram

R. Then the number of gauge invariant operators that can be built from n fields is the

number of partitions of n/2. We now reproduce the formula for computing two-point

functions in the operator basis defined in [114, 115] for both Sp(2N) and SO(2N):

⟨OR(Z)ŌS(Z)⟩ = δRS2
n

(
dR/4
dR

)2 ∏
i∈even boxes in R

ci, (3.58)

where R, S are Young diagrams with 2n boxes; R/4 is a Young diagram with n/2 boxes

that corresponds to the Young diagram R; dR/4, dR are respectively the dimensions of

the representations; and ci is the factor N + a − b assigned to each box, where a is the

column index and b is the row index.

It is difficult to match our results exactly to that of [114, 115], given the difference

in bases. Nevertheless, we may still observe a few similarities. A natural expectation is

that the HCIZ integral for a particular group has an expansion in terms of the irreducible

characters of the corresponding group. An argument for this would be as follows: first we

consider the exponential of the trace Tr
(
gΛg−1a†Z

)
. We can then expand this exponential

and exchange the order of the sum or integration to evaluate the Harish-Chandra integral

as in the unitary case:

OΛ =
∞∑
m=0

1

m!

∫
dgTr

(
gΛg−1a†Z

)m
. (3.59)

We may try to express each term as a character of the corresponding group by taking

traces of Eq. (3.42) or Eq. (3.43). Formally, this gives an expansion for the Harish-

Chandra integral as a sum of infinitesimal characters evaluated on the Lie algebra. For
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U(N), this is not a problem, because the formulas for Schur polynomials make sense when

evaluated on the Lie algebra. This does not seem to be the case for Sp(2N) and SO(N).

Even then, one may try to make sense of this formal expansion in order to get a formula

for the coefficients. If one extrapolates the answer for the unitary case, the expectation

would be that the coefficients are ratios of dimensions of irreducible representatiations of

the group and the corresponding centralizer algebra. This turns out to be partially true,

since the coefficient associated to single row representations in Eq. (3.36) seems to agree

precisely with the ratio of

cµ =
2mdµ

m!Dµ

, (3.60)

where µ is a partition of m, dµ is the dimension of the irreducible representation of the

symmetric group Sm, and Dµ is the dimension of the corresponding symplectic group

representation. This is clearly different from Eq. (3.58), but we note that the number

of partitions of n/2 is the dimension of Sn/2, which is equivalent to dR/4. Thus we have

preserved the characteristic of the coefficient as a function of the ratio of the dimension

of the irrep of the corresponding symmetric group to the dimension of the gauge group

representation.

We now make the observation that since we perform the character expansion using

Schur polynomials, which present as ratios of determinants, our basis is directly linked

to free fermions; after all, the Schur functions correspond to free fermion wave functions

[36, 11]. We return to the results of [115], where it is shown that the character of

the local operator can be written in terms of a Schur polynomial of the matrix of the

operator’s eigenvalues. Thus the character of the operator has the interpretation of the

Slater determinant of N/2 single particle wave functions, or N/2 fermions moving in an

external harmonic oscillator potential. So we may conclude that our basis describes the

same dynamics as the operator basis constructed in [114, 115].
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3.5 Discussion

In this chapter, we extended the method of computing the norms of half BPS coherent

states through localization [21] to theories with the gauge groups Sp(2N), SO(2N + 1),

and SO(2N). We did this by constructing coherent states averaged over a group orbit

from each group and computing the norm of these states through the symplectic and

special orthogonal Harish-Chandra integrals. The integration over the group may be

viewed as a sort of path integral over the emergent world-volume gauge symmetry of a

stack of N giant gravitons inside AdS5 × RP5; the norm of the state gives the effective

action of this theory. Curiously enough, these types of integrals first appeared in models of

induced QCD. By expanding the Harish-Chandra integrals, we found that each integral

admits an expression as a sum of unitary characters. This matches what one would

expect of an orientifold projection of a U(2N) gauge theory; all the states that are

spanned by the coherent states are "doubled" versions of those in the original theory.

In particular, the coherent states considered here do not span the complete spectrum

of the free Sp(2N) and SO(2N) theories. This is because the Harish-Chandra integral

is only able to capture information from tensor contractions of the invariant tensors of

the unitary group (meaning all products of traces). It is likely that some of the data

corresponding to worldsheets with cross-caps is missing.

As in the unitary case, the coefficient associated with the characters in this series

expansion computes the overlap of the corresponding Schur polynomials of the operators

(a)ij and (a†)ij. Our method should be contrasted to other constructions of basis of

operators for the Sp(2N) and SO(2N) theories [114, 115], since our construction uses

group theoretic objects more closely associated to each group. We conclude with some

comments and an outline of open questions.
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Connection to symplectic and orthogonal characters

A natural question is to ask is why Schur polynomials appear in the expansion for

the symplectic Harish-Chandra integral, as opposed to sympletic Schur polynomials. If

one tries to evaluate the symplectic Schur polynomials on a Cartan element of the Lie

algebra in the most naïve way,

spλ(X) =
det
[
xλi−i+1
j − x̄λi−i+1

1

]
det
[
xN−j+1
j − x̄N−j+1

1

] , (3.61)

by replacing x̄i with −xi instead of 1/xi, one obtains a suggestive formula:

spλ(X)spλ(Y ) ∼
det
[
xλb+N−b+1
a

]
∆(x2i )

∏N
c=1 xc

det
[
yλb+N−b+1
a

]
∆(y2i )

∏N
c=1 yc

. (3.62)

This can be recognized as the terms in the expansion for the function:

det (sinh(xiyj))

∆sp(n)(x)∆sp(n)(y)
∼ HSp(2N)(x, y). (3.63)

The main difficulty with making this a precise equality comes from the fact that the

denominator and numerator of Eq. (3.61) have zeros that need to cancel between each

other, leaving an ambiguity for the normalization of the symplectic characters. Another

issue is that different choices of representations appear to lead to the same polynomial.

This is expected, since irreducible representations can appear with multiplicities in the

decompostion of tensor products. However, by adding information from the centralizer

algebra, one should be able to differentiate between irreducible representations. This

additional data is precisely the 1/N corrections coming from cross-caps. This idea seems

to suggest that there might be a refined version of the Harish-Chandra integral that

takes into account the contributions from cross-cap states that are missing in the original
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integral. This would give an explicit connection between the representation theory of the

Weyl group of Sp(2N) [117], and the Brauer algebra [120].

Another connection between the symplectic Harish-Chandra integral and the sym-

plectic characters comes from their generalizations to continuous Schur polynomials. A

similar sinh[λjxi] term makes an appearance in the continuous symplectic Schur function,

which is defined in [124] as:

spcont
Λ (X) =

det [sinh (λjxi)]∏
1≤i<j≤N

(
λ2i − λ2j

)∏N
i=1 (λi)

. (3.64)

Notice that up to a factor of the discriminant of xi, the continuous Schur functions

agree with the symplectic Harish-Chandra integral. The continuous Schur function may

then be written in the form of Eq. (3.36), where the determinant is folded into the

coefficient fµ. The presence of the Harish-Chandra integral implies that localization

occurs in this calculation. An important point is that the continuous Schur functions are

defined by a diferent integral formula in [124]:

spcontΛ (X) =

∫
GT2N (X)

N∏
k=1

eλk(2|z2k−1|−|z2k−2|−|z2k|)dzi,j, (3.65)

where GT2N(Λ) is the set of all continuous Gelfand-Tsetlin patterns of shape Λ. Roughly,

speaking, an integer point µ in this space can be associated to a Young diagram µ. The

fact that this integral evaluates to what appears to be a sum of over integer points

(Young diagrams) seems to suggest that there is some sort of localization in this space.

Curiously enough, this integral is somewhat remniscient of a momentum space amplitude.

For instance, taking λ to be big with λx held fixed, the value of the integral divided by

the appropriate discriminant remains fixed, but the integration region shrinks to points

where

2|z2k−1| − |z2k−2| − |z2k| = 0. (3.66)
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Each of these points should correspond to a particular symplectic Schur polynomial .

This is somewhat suggestive of some sort of worldsheet localization for a tensionless

string [125, 126], where the integral over the worldsheet moduli space is expected to

localize to a certain set of integer points.

Connection to quantum Schubert calculus

It is well known that the Schur symmetric functions are related to Schubert classes,

which form an integer basis for the cohomology ring of the Grassmannian. The product

of two Schubert classes may be expanded as a linear combination of Schubert classes

summed over the given partitions ν [127]:

σλ · σµ =
∑
ν

cνλµσν . (3.67)

The different Schubert classes are represented by σµ, σν , σλ and cνλµ represent the

Littlewood-Richardson coefficients. A well-known result is that every Schubert class

can be associated with a Schur polynomial; the connection is seen by noting that the

cohomology product mirrors the way the product of two Schur functions can be expanded

as a linear combination of ordinary Schur functions [128]:

sλ · sµ =
∑
ν

cνλµsν . (3.68)

This is directly related to the three point function of coherent states for the U(N) theory.

This is because after applying the Campbell-Hausdorff formula, one obtains an integral

over a complex Grassmanian.

It should be noted that the skew Schur polynomial can be expanded in the same basis

in a similar way [128]:
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sλ/µ =
∑

T∈SSY T (λ/µ)

xT =
∑
ν

cλµνsν , (3.69)

where SSY T refers to the skew Schur Young tableaux. We note that the even sym-

plectic Schur functions we touch upon in the previous subsection can be written as a sum

of skew Schur functions summed over Frobenius coordinates.

We are interested in computing the Gromov-Witten invariants, which appear in the

quantum product of two Schubert classes, which is defined on the small quantum co-

homology ring of the Grassmannian, QH∗ (Grkn). QH∗ (Grkn) is defined as the tensor

product of the cohomology ring of the Grassmannian and the polynomial ring Z [q], where

q is a variable of degree n. The quantum product of two Schubert classes, then, is defined

in [127] as:

σλ ∗ σµ =
∑
d,ν

qdCν,d
λµ σν , (3.70)

where d is a non-negative integer such that |ν| = |λ| + |µ| − dn, and Cν,d
λµ are the

Gromov-Witten invariants. Toric Schur functions are defined in [127] to correspond

to cylindric diagrams of shape λ[r]/µ[s], which are defined as finite subsets of Cnk =

Z2/(−k, n − k)Z. We label these toric Schur functions with the shape λ/d/µ, where

d = r − s. Since skew Schur functions are toric Schur functions when d = 0, it should

not come as a surprise that toric Schur functions may be expanded in the Schur basis

just as the former are in [127]:

sλ/d/µ =
∑
ν

Cλ,d
µν sν (3.71)

The main difference is that the Gromov-Witten invariants have replaced the classical

Littlewood-Richardson coefficients. This replacement should correspond to replacing

85



Giant Gravitons, Harish-Chandra integrals, and BPS states in symplectic and orthogonal N = 4
SYM Chapter 3

a centralizer algebra by a Hecke algebra. Thus once again, it should not come as a

surprise that the Gromov-Witten invariants can be given as an alternating sum of classical

Littlewood-Richardson coefficients, as demonstrated in [129]. The problem with this

approach is that there are too many Littlewood-Richardson coefficients to keep track of,

which makes the computation unwieldy. It is known that Gromov-Witten invariants in

other contexts may be computed through localization [130, 131]. It would be interesting

if the Harish-Chandra integral can be extended to the toric Schur functions to obtain a

combinatorial formula for the Gromov-Witten invariants. This may also shed light on

the problem of computing the normalization of three-point functions, where the Gromov-

Witten invariants appear as coefficients.
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Chapter 4

Multi-matrix correlators and

localization

4.1 Introduction

Large operators in large N gauge theories are an important subject of study with

relevance to nuclear physics, theories of quantum gravity and strings. Although there

has been enormous success in computing the spectrum of anomalous dimensions of light

operators in models such as maximally supersymmetric Yang-Mills theory in the planar

limit, very little is known about how to tackle generic operators whose dimensions can

scale with a power of N . This is an interesting problem for holography [1] and for

understanding the structure of conformal field theories more generally [132]. One of

the difficulties one faces when trying to address these types of problems is that the

intuitions from the planar limit are often unjustified for large operators; one must sum

over both planar and non-planar diagrams and it is not a priori clear which diagrams

dominate in the large N limit. A promising approach is to replace single and multi-

trace operators with a different basis that is better behaved at finite N [36], and then
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perform a systematic expansion around protected states in the large N limit. In the case

of maximally supersymmetric Yang-Mills theory, this has been implemented at finite N

[50, 133, 15, 134]. Even though the expressions found through these techniques at finite

N are quite explicit, it is usually difficult to take the large N limit of such quantities.

More recently, there have been works showing that certain generating functions can

be used to perform computations in the free-field theory limit [66, 21, 106, 22, 135]. This

technique has been succesfully implemented in the computation of three-point correlators

involving large operators made out of a single matrix field [69, 136, 24], as in the half-

BPS sector of N = 4 SYM [12, 55], where the dual gravitational description is explicitly

realized from the gauge theory. An explicit mapping between BPS states made out of

more than one matrix and asymptotically AdS5 × S5 geometries is still lacking, though

a compelling description in terms of bubbling geometries seems to exist [14, 137, 138].

The study of generating functions for multi-matrix correlators was outlined in [106, 139]

for certain classes of operators, and more generally in [21]. Our goal is to elucidate

some of the details regarding the generating functions of 1
4

and 1
8
- BPS operators in

N = 4 SYM. We do this by proposing a fixed-point formula for the overlap of generic

coherent state generating functions; this gives us an integral formula that generalizes the

Harish-Chandra-Itzykson-Zuber (HCIZ) formula to multiple pairs of matrices. Integrals

of this type appear naturally in the study of multi-matrix models of commuting random

matrices.

This chapter is structured as follows. In section 4.2, we review the generating function

techniques, focusing on the case of 1
4

BPS operators in N = 4 SYM. We argue that the

form of these operators is protected, so we can restrict to eigenstates of the one-loop

dilatation operator. We then evaluate the norm of the generating function for the U(2)

theory by explicit integration to motivate our fixed point formula for general N . Finally,

we give a prescription for extending the HCIZ formula to the multiple-matrix model
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using the heat kernel method as outlined in [140]; we will discuss our results for U(2)

and U(3) and the insights we may glean from them to extrapolate a general formula

for U(N). In section 4.3, we connect our results to the construction of restricted Schur

polynomials and outline how to generalize to operators associated with Young diagrams

with arbitrary number of rows or columns. We will briefly discuss our attempts to arrive

at a general formula via the character expansion method. Finally, we conclude with some

future directions.

4.2 Multi-matrix Generating Functions

We are interested in studying operators in gauge theories that are made out of more

than one matrix-valued scalar field. In particular, we will work with 1
4
-BPS operators in

U(N) N = 4 SYM on the cylinder R × S3. At weak coupling, these operators can be

built out of symmetrized products of two of the three complex scalar fields of the theory

X, Y . Generalizing to more than two matrices is straightforward. This class of operators

transforms in the [p, q, p] representations of the SU(4)R symmetry, and the operators are

generically of multi-trace form. We will concentrate on scalar primary states at an equal

time slice for simplicity. Unlike 1
2
-BPS operators, which can be built explicitly in the

free theory, 1
4
-BPS operators of the interacting theory are different from those of the free

theory. The lifting of states due to non zero gauge coupling can be treated pertubatively

and the loop corrections to dilatation operators annihilate operators that are made out of

symmetric products of X and Y . This problem was studied in detail for small operators

in [141], but for generic large operators, explicit constructions in terms multi-traces are

cumbersome. An alternative expansion in terms of characters was introduced in [50],

which the authors call the restricted Schur polynomial basis. This basis is convenient for

dealing with the mixing between the different trace structures since it diagonalizes the
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matrix of two point functions for all values of N .

4.2.1 Generating 1
4 BPS States

Yet another way of generating 1
4
-BPS states can be found by studying operators of

the form:

|ΛX ,ΛY ⟩ =
1

Vol [U(N)]

∫
dU exp

(
Tr
[
UXU †ΛX + UY U †ΛY

])
|0⟩ . (4.1)

If we insist that the coherent state parameters ΛX and ΛY commute, |ΛX ,ΛY ⟩ is

annihilated by the one-loop dilatation operator; it was shown in [135] that this persists

to two-loop order. In [142], it was conjectured that the space of BPS states in N = 4 SYM

is given by the kernel of the one-loop dilatation operator at all values of the coupling;

we will take this as a working assumption and work with the set of states annihilated by

the Beisert one-loop dilatation operator:

D̂
SU(2)
2 = g2Tr [[X, Y ][∂X , ∂Y ]] . (4.2)

Because the states (4.1) are coherent states of X̄, Ȳ [21], they form an overcomplete

basis of states for any value of N . This has many computational advantages, mostly due

to the fact that taking the large N limit is very straightforward, but translating back

into a complete orthogonal basis of operators can be complicated. This may be solved

by computing the norm of the coherent states. By exploiting the Campbell-Hausdorff

formula, we arrive at an integral of the form:

⟨Λ̄X , Λ̄Y | |ΛX ,ΛY ⟩ =
1

Vol [U(N)]

∫
dU exp

(
Tr
[
U Λ̄XU

†ΛX + U Λ̄YU
†ΛY

])
. (4.3)
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Since we can in principle expand (4.1) in terms of an orthonormal basis, we may use

this overlap to determine the coefficients relating the multi-trace basis of operators to an

orthogonal basis by expanding in a series and matching the coefficients as done in [21].

The precise tool relating the multi-trace basis operators and the character expansion in

this case is the Weingarten calculus [143]; an example illustrating this technique can be

found in [144]. The main obstacle we face is evaluating the integral (4.3) for generic

coherent state parameters. To our knowledge, these types of integrals have not been

studied before, and a closed form expression for them is needed. Our main goal will be

to evaluate this class of integrals for any value of N . Although we only explicitly study

the case of U(N) integrals, the methods should apply generally and should generalize

to SO(N) and Sp(N) groups as well as to quivers. These types of integrals are also a

natural object to study in the context of matrix models, since they arise in the study of

multi-matrix models of commuting matrices.

4.2.2 The Four-Matrix Model in SU(2)

Before proceeding to the case of general N , we will study the following integral

I2 =

∫
SU(2)

dU eTr[UAU
†Ā+UBU†B̄] (4.4)

for commuting matrices A,B, Ā, B̄. We will first approximate I2 by a saddle point approx-

imation; the critical points of the function in the exponential are given by the solutions

to the equations

[A,U †ĀU ] + [B,U †B̄U ] = 0. (4.5)
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For generic enough matrices, this is only satisfied if each of the two terms vanishes

individually

[A,U †ĀU ] = [B,U †B̄U ] = 0. (4.6)

The only problematic cases occur when a subset of the eigenvalues of B is a permu-

tation of a subset of eigenvalues of −A. From here on, we assume that the eigenvalues

are generic enough that this does not happen. This means that, generically, the saddle

points are labelled by permutation matrices Uπ. We are then left with a Gaussian in-

tegral around each of the saddle points, which can be evaluated easily; this results in a

"one-loop determinant" factor given by:

D2(a, ā, b, b̄) = (a1 − a2) (ā1 − ā2) + (b1 − b2)
(
b̄1 − b̄2

)
(4.7)

This gives an approximate value for the integral (up to a convention dependent nor-

malization factor):

I2 ≃
ea1ā1+a2ā2+b1b̄1+b2b̄2 − ea1ā2+a2ā1+b1b̄2+b2b̄1

(a1 − a2) (ā1 − ā2) + (b1 − b2)
(
b̄1 − b̄2

) . (4.8)

At first sight, it is not clear that this approximation is reliable, since there is no large

parameter in the exponential. To gain more intuition, we evaluate I2 through an explicit

computation.

First, we must parameterize our unitary matrix U ; then, we need to compute the
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Haar measure. We start with the following matrices:

A =

a1 0

0 a2

 , B =

b1 0

0 b2


Ā =

ā1 0

0 ā2

 , B̄ =

b̄1 0

0 b̄2


(4.9)

We then seek to parametrize our unitary matrix. We know that any arbitrary SU(2)

matrix must meet the following conditions:

SU(2) =


 a b

−b∗ a∗

 ∈ C2×2
∣∣∣ |a|2 + |b|2 = 1

 (4.10)

For ease of computation, we choose to parameterize U with Euler angles:

U =

e−i γ+α
2 cos θ

2
−ei γ−α

2 sin θ
2

e−i
γ−α
2 sin θ

2
ei

γ+α
2 cos θ

2

 (4.11)

We seek to rewrite the Haar measure dU in terms of J(θ, γ, α)dθdγdα, where J(θ, γ, α)

is the Jacobian. We may do so by computing the inverse of the unitary matrix and

multiplying it by its partial derivatives with respect to the Euler angles. We start by

finding the inverse of U :

U−1 =

 ei
γ+α
2 cos θ

2
ei

γ−α
2 sin θ

2

−e−i γ−α
2 sin θ

2
e−i

γ+α
2 cos θ

2

 (4.12)

Then we calculate the partial derivatives with respect to γ, α, and θ and multiply by
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the inverse. We obtain:

U−1∂U

∂γ
=

− i
2

0

0 i
2


U−1∂U

∂α
=

 − i
2
cos θ i

2
eiγ sin θ

i
2
e−iγ sin θ i

2
cos θ


U−1∂U

∂θ
=

 0 −1
2
eiγ

1
2
e−iγ 0


(4.13)

We calculate the Jacobian matrix using the following basis ϵ1 =

i 0

0 −i

, ϵ2 =

 0 ieiγ

ie−iγ 0

, and ϵ3 =

 0 −eiγ

e−iγ 0

:

J =


−1

2
−1

2
cos θ 0

0 1
2
sin θ 0

0 0 1
2

 (4.14)

The Jacobian J(θ, γ, α) we seek is the determinant of J :

det(J) =
1

8
| sin θ| (4.15)

We see that it is only dependent on θ. Our integral becomes:

I2 =
1

8

∫ π

0

dθ

∫ 4π

0

dγ

4π

∫ 2π

0

dα

2π
| sin θ|eTr[ĀUAU†+B̄UBU†]

=
1

8

∫ π

0

dθ| sin θ|e
1
2((a1+a2)(ā1+ā2)+(b1+b2)(b̄1+b̄2)+((a1−a2)(ā1−ā2)+(b1−b2)(b̄1−b̄2)) cos θ)

(4.16)
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Our critical points are θ = 0 and θ = π, so we can remove the absolute value bars.

Then we evaluate our integral:

I2 =
1

8

∫ π

0

dθ sin θe
1
2((a1+a2)(ā1+ā2)+(b1+b2)(b̄1+b̄2)+((a1−a2)(ā1−ā2)+(b1−b2)(b̄1−b̄2)) cos θ)

=
ea1ā1+a2ā2+b1b̄1+b2b̄2 − eā1a2+a1ā2+b̄1b2+b1b̄2

4
(
(a1 − a2) (ā1 − ā2) + (b1 − b2)

(
b̄1 − b̄2

)) (4.17)

This is precisely the same result that the saddle point approximation yields. From

the intermediate steps, it is clear that there are never any terms that mix the eigenvalues

of A and B; if we set either A = 0 or B = 0, we immediately recover the HCIZ formula

for U(2).

4.2.3 Proof of Localization for U(2)

One important issue to understand is why the integral I2 has an exact saddle point

approximation, while the naive saddle point approximation for IN fails to be exact for

N > 2. The idea is to try to follow the proof [140] for the HCIZ integral and see exactly

how the analysis differs for multi-matrix models. One key observation is that the integral

IN(A,B, Ā, B̄) is an eigenfunction of a holomorphic Laplacian:

−
[

∂

∂Aij

∂

∂Aji
+

∂

∂Bij

∂

∂Bji

]
IN(A,B, Ā, B̄) = Tr[Ā2 + B̄2]IN(A,B, Ā, B̄). (4.18)

Before continuing, it is worthwile to explain what we mean by holomorphic in this context,

and why this is important. One way in which the integral IN appears is as the Jacobian

factor for a Gaussian matrix integral over a pair of commuting normal matrices

Z =

∫
[A,Ā]=0

[dAdĀ]

∫
[B,B̄]=0

[dBdB̄] exp

{
Tr[AĀ] + Tr[BB̄]

}
δ
(
[A,B]

)
=

∫
dµ(a, ā, b, b̄) IN(A,B, Ā, B̄)

(4.19)
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As it stands, this expression is formal unless we specify a contour of integration for the

eigenvalues of A, Ā and B, B̄. A choice of contour corresponds to a choice of polarization

in the space of eigenvalues; this makes the eigenvalues of A and Ā canonically conjugate.

This is quite natural from the interpretation of the integral as the norm of a coherent

state in matrix quantum mechanics, where the collective coordinates ai and bi are holo-

morphic phase space coordinates. The barred coordinates are then conjugate momentum

variables. Thus, the correct Laplacian operator has to be constructed from the metric of

the space of commuting normal matrices. This is exactly the quantization discussed in

[12].

We rescale the matrices by a constant factor t; the resulting equation implies that

the integral is related to a holomorphic heat kernel on the space of commuting matrices:

Kt(a, ā, b, b̄) = t−N
∫
dU exp

{
−1

t
Tr[UAU †Ā+ UBU †B̄]

}
(4.20)

As we take t to zero, the integral will be very well approximated by the saddle point ap-

proximation. We see that the integral approaches a delta function; we can use the kernel

itself to propagate this initial condition to a finite t. This would imply that the integral

comes from a sum over the real saddle points of the integral. If the kernel is a plane

wave, then the integral localizes, which is to say that the steepest descent contour gives

exactly a Gaussian integral centered around each saddle point. This occurs if the heat

equation for the kernel corresponds to a Schrödinger equation for an integrable system,

since we can in principle change the variables into a set of action-angle variables, where

the wavefunction is a plane wave. Whenever the kernel cannot be written this way, true

localization fails, and instead, the integral is given by a sum over thimbles, with the

kernel giving a parametrization of the integration contour.
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Now we review some coordinate transformations for the Laplacian in the space of

normal matrices. Given that the squared distance of two n × n normal matrices A and

A′ is d(A,A′) = Tr|A − A′|2 and invariant under unitary transformations A → UAU †,

the metric is:

ds2 =
∑
ij

|dAij|2. (4.21)

We know that the Laplace-Beltrami operator is:

∇2 =
1
√
g
∂i
(
gij

√
g∂j
)

(4.22)

We now perform a coordinate transformation A = UΩaU † to rewrite the matrix in

terms of its n eigenvalues ai and n(n− 1) angular variables θα. Setting dH = iU †dU , we

may rewrite our invariant distance as:

ds2 = gij̄daidāj + gαβdθ
αdθβ

=
∑
i

|dai|2 +
∑
i,j

|ai − aj|2dHijdHji,
(4.23)

where we have defined:

gαβ = 2
∑
i<j

|ai − aj|2Re(∂αHij)(∂βH
∗
ij) = (V DV †)αβ, (4.24)

where Vα,ij = ∂αHij and D is a diagonal matrix with elements |ai−aj|2. The square root

of the metric tensor’s determinant is then:

√
g = |∆|4| detV |, (4.25)

where ∆ is the Vandermonde determinant of the eigenvalues ai. Because the new metric
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tensor is block diagonal with an eigenvalue sector and a unitary sector, its inverse is block

diagonal as well with an eigenvalue sector and a unitary sector, and thus the Laplacian

may be separated into two operators, one for each sector. In its entirety, the Laplacian

is:

∇2
A =

1

|∆|4
∑
i

∂

∂ai
|∆|4 ∂

∂ai
+

1

|∆|2
1

det |V |
∑
α

∂

∂θα
(V −1)∗α,ij| detV |

∑
β

(V −1)ij,β
∂

∂θβ

(4.26)

We now consider the space of two N×N commuting normal matrices A and B. After

diagonalization the metric for this space becomes:

ds2 = |dai|2 + |dbi|2 +
∑
i,j

(
|ai − aj|2 + |bi − bj|2

)
dHijdHji, (4.27)

Then the square root of the metric tensor’s determinant becomes:

√
g =

∏
i<j

(
|ai − aj|2 + |bi − bj|2

)2 | detV | = µ2| detV |, (4.28)

and we rewrite
∏

i<j (|ai − aj|2 + |bi − bj|2) as µ.

We may rewrite the holomorphic Laplacian as [12]:

∇2
A,B =

1

µ2

[∑
k

∂

∂ak
µ2 ∂

∂ak
+
∑
k

∂

∂bk
µ2 ∂

∂bk

]

+
∑
i<j

1

µ2

1

det |V |
∑
α

∂

∂θα
(V −1)∗α,ij| detV |

∑
β

(V −1)ij,β
∂

∂θβ

(4.29)

Notice that all of the eigenvalue dependance is on the first two terms and because the

integral averages over the angular variables of A and B it is annihilated by the last term,

so we will omit it from now on. So now our problem is reduced to finding eigenfunctions

for this operator. As is common in matrix quantum mechanics, one can often reabsorb the

measure factor µ into the definition of the eigenfuntion, so we will express IN(A,B, Ā, B̄)
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in terms of an auxiliary function ΨN(A,B, Ā, B̄):

IN(A,B, Ā, B̄) = µΨN(A,B, Ā, B̄). (4.30)

After this rescaling, the Laplacian operator becomes a sum of two terms, one being the

flat space Laplacian and the other an effective potential:

∇2
A,B IN(A,B, Ā, B̄) =

1

µ

[
∇2
a +∇2

b

]
ΨN − 1

µ2

([
∇2
a +∇2

b

]
µ
)
ΨN =

λΨN

µ
. (4.31)

So far our discussion applies to general rank of matrices. Focusing on N = 2, we can

easily check that the potential term vanishes. This is because µ is linear in ai and bi. In

this case, the problem reduces to finding eigenfunctions for the Laplace operator in flat

space: [
∇2
a +∇2

b

]
Ψ2 = λΨ2. (4.32)

The solutions to this equation are plane waves:

Ψ2 ∼
∏
i

eaiāi+bib̄i . (4.33)

This ansatz does not respect the symmetry properties of the integral under simultaneous

permutations of ai and bi, so the correct solution is a symmetrized sum of plane waves:

Ψ2 = C2
1

2!

∑
π∈S2

(−1)π
∏
i

eaiāπ(i)+bib̄π(i) . (4.34)

After dividing by the measure factor, we reproduce the expected answer. At this point,

it becomes clear that the heat kernel proof works for the SU(2) integral, since the kernel

is Gaussian and the saddle point approximation as t → 0 can be propagated forward to
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obtain the integral for finite t. Intuitively, we should be able to localize the integral much

like the single matrix case, because the wavefunction Ψ2 is an eigenfuction of an integrable

(free) Hamiltonian. In the case where B = B̄ = 0, the measure factor µ reduces to a

Vandermonde determinant, which is also annihilated by the flat space Laplacian; thus

we see that the usual HCIZ integral is associated with a wavefunction of a free fermion

or boson. But this is not the case for B ̸= 0 and N > 2, since the potential term does

not vanish. Note that this does not necessarily mean that the integral is not localizable.

An example that comes to mind are the integrals of the Harish-Chandra type for the

symplectic groups, which are associated with the wavefunctions of integrable Calogero

models. While these integrals are known to localize by the heat kernel methods [30], in

this case, it was noted that the naive localization argument nevertheless still fails [145],

and that one must include additional instanton solutions to the WKB approximation.

Returning to our guess for ΨN , it becomes clear that a closed form for IN(A,B, Ā, B̄)

must include µ as its denominator. This is because µ is the natural integration measure

for the eigenvalues ai, bi. The fact that the eigenvalue is Tr[Ā2 + B̄2] also suggests that

the denominator should have an exponential factor:

µ IN(A,B, Ā, B̄) = ΨN ∼
∑
π∈SN

cπ
∏
i

eaiāπ(i)+bib̄π(i) χ(ai, bi, āπ(i), b̄π(i)). (4.35)

By a symmetry argument it is also plausible that the numerator is also given by a

determinant. We seek the missing factor in the numerator; we know that the Bethe

ansatz is unlikely to provide a solution to our differential equation, because our effective

potential appears to contain three-body interactions. Finding such a formula would

amount to finding eigenfunctions of ∇A,B along the lines of [12, 146], but in our case we

are only interested in the ground state wavefunction in the effective potential. While a

complete analysis is beyond the scope of this chapter, we may still lay out a prescription
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for finding an analytical solution to our modified integral. We previously argued that such

a solution must have µ as its denominator; following [12], the problem can be simplified

by rewriting the equation for IN and removing the effective potential in the Laplacian at

the cost of adding first order derivative terms. Thus we may rewrite (4.35) as:

ΨN =
∑
π∈SN

cπ
∏
i

eaiāπ(i)+bib̄π(i) ξ(ai, bi, āπ(i), b̄π(i))µ =
∑
π∈SN

fπξπµ, (4.36)

where we have set fπ = cπ
∏

i e
aiāπ(i)+bib̄π(i) . We see then that we have:

λΨN =
[
∇2
a +∇2

b

]
ΨN − 1

µ

([
∇2
a +∇2

b

]
µ
)
ΨN

= ∇a · ∇a

(∑
π∈SN

fπξπµ

)
+∇b · ∇b

(∑
π∈SN

fπξπµ

)

− 1

µ

([
∇2
a +∇2

b

]
µ
)(∑

π∈SN

fπξπµ

)

= ∇a ·

(
µ
∑
π∈SN

∇a (fπξπ) +∇a(µ)
∑
π∈SN

(fπξπ)

)

+∇b ·

(
µ
∑
π∈SN

∇b (fπξπ) +∇b(µ)
∑
π∈SN

(fπξπ)

)

−
([
∇2
a +∇2

b

]
µ
)(∑

π∈SN

fπξπ

)

(4.37)
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Expanding, we arrive at:

λΨN = 2∇a (µ) ·

(∑
π∈SN

∇a (fπξπ)

)
+ µ

∑
π∈SN

∇2
a (fπξπ) +∇2

a(µ)
∑
π∈SN

(fπξπ)

+ 2∇b (µ) ·

(∑
π∈SN

∇b (fπξπ)

)
+ µ

∑
π∈SN

∇2
b (fπξπ) +∇2

b(µ)
∑
π∈SN

(fπξπ)

−
([
∇2
a +∇2

b

]
µ
)(∑

π∈SN

fπξπ

)

= 2∇a (µ) ·

(∑
π∈SN

∇a (fπξπ)

)
+ µ

∑
π∈SN

∇2
a (fπξπ) + 2∇b (µ) ·

(∑
π∈SN

∇b (fπξπ)

)

+ µ
∑
π∈SN

∇2
b (fπξπ)

(4.38)

We compute the terms containing the second derivatives and find:

λΨN = 2
∑
π∈SN

(fπ∇aµ · ∇aξπ + ξπ∇aµ · ∇afπ + fπ∇bµ · ∇bξπ + ξπ∇bµ · ∇bfπ)

+ µ
∑
π∈SN

(
fπ∇2

aξπ + fπ∇2
bξπ + ξπ∇2

afπ + ξπ∇2
bfπ + 2∇aξπ · ∇afπ + 2∇bξπ · ∇bfπ

)
(4.39)

We know that µ
∑

π∈SN
ξπ∇2

afπ+ξπ∇2
bfπ = λΨN . Thus we can simplify our differential

equation:

0 = 2
∑
π∈SN

(fπ∇aµ · ∇aξπ + ξπ∇aµ · ∇afπ + fπ∇bµ · ∇bξπ + ξπ∇bµ · ∇bfπ)

+ µ
∑
π∈SN

(
fπ∇2

aξπ + fπ∇2
bξπ + 2∇aξπ · ∇afπ + 2∇bξπ · ∇bfπ

) (4.40)

We see then that we have a multivariable PDE; while there are numerical methods to

approximate an analytical solution, they are all computationally laborious and ill-suited

to solving PDEs containing more than two independent variables. Nevertheless, given
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the nature of the HCIZ integral, we note that there is another method to compute an

analytical expression for the missing factor that, while tedious, is still tractable. That

is to evaluate the integral explicitly and use this to determine the missing factors. We

solve the integral for U(3) in Appendix A.1. We will reproduce the result directly below:

I3 =
∞∑
q=0

∑
f+2p+4k=q
f,p,k≥0

k∑
m,n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

p+k∑
g=0

∑
r+s+t+h=g

0≤r≤p
0≤s≤j

0≤t≤m−j
0≤h≤k−m

16πew1

× 1

(k + 1)(k + 2)(p+ 4k − 2m− 2n+ 2)(q − 2m− 2g + 2)

× (−1)−l−hwf2w
r
3w

p−r
4 ws5w

j−s
6 wt7w

m−j−t
8 w

2(k−m)
9

22(k−m)+1f !(p− r)!r!(j − s)!s!(m− j − t)!t!l!h!(k −m− l)!(k −m− h)!

(4.41)

The expressions for wi are listed in (A.29); we see immediately that the ai and āj

eigenvalues do not mix with the bi and b̄j eigenvalues. We make note of the SU(2)

symmetry between ai and bi, and āj and b̄j; we note that if we remove the bi and b̄j,

we recover the expression for the two-matrix Harish-Chandra integral evaluated over the

U(3) group. Given that we may remove bi and b̄j, replace ai and āj with ui =

ai
bi


and ūj =

āj
b̄j

, and still recover the same expressions for wi, we could naively expect

to recover an expression similar to the original Harish-Chandra integral [140]:

I(u, ū) = Ω
det (exp(uiūj))

∆(u)∆(ū)
(4.42)

if we use ui and ūj in lieu of ai, āj, bi, and b̄j; set Ω as the normalization constant; and

specify that when multiplying the Vandermondes in the denominator, one must take the

dot product of (ui − uj) and (ūi − ūj). But upon this substitution, we find that we only
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recover:

I(u, ū) = Ω
det (exp(uiūj))

µ
(4.43)

We are missing the factors of χ(ai, bi, āj, b̄j) in the numerator. We can solve for the

missing factors by examining the case of U(3); given that the effective potential is the

same general form for N > 2, we may extrapolate the missing factor for a general U(N)

formula from the U(3) results.

In the case of U(3), we can expand the original HCIZ integral:

I(Λ, Λ̄) =

∫
dU exp

(
Tr
(
U−1ΛU Λ̄

))
= Ω

det
(
exp(λiλ̄j)

)
∆(Λ)∆(Λ̄)

(4.44)

until we arrive at a series that takes the form of (A.39) with modified wi to reflect the

omission of the bi and b̄j. We examine the effects of replacing ai and aj with ui and uj at

each step; we then compare the results to an expansion of (4.42). The additional terms

that replacing ai and aj with ui and uj yields must sum up to the missing factors. We

briefly sketch out the start of such an expansion. We note that for SU(3), we have:

det(exp(aiāj + bib̄j)) = −ea3ā1+a2ā2+a1ā3+b3b̄1+b2b̄2+b1b̄3 + ea2ā1+a3ā2+a1ā3+b2b̄1+b3b̄2+b1b̄3

+ ea3ā1+a1ā2+a2ā3+b3b̄1+b1b̄2+b2b̄3 − ea1ā1+a3ā2+a2ā3+b1b̄1+b3b̄2+b2b̄3

− ea2ā1+a1ā2+a3ā3+b2b̄1+b1b̄2+b3b̄3 + ea1ā1+a2ā2+a3ā3+b1b̄1+b2b̄2+b3b̄3

= −es1 + es2 + es3 − es4 − es5 + es6

(4.45)
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We have set:
s1 = a3ā1 + a2ā2 + a1ā3 + b3b̄1 + b2b̄2 + b1b̄3

s2 = a2ā1 + a3ā2 + a1ā3 + b2b̄1 + b3b̄2 + b1b̄3

s3 = a3ā1 + a1ā2 + a2ā3 + b3b̄1 + b1b̄2 + b2b̄3

s4 = a1ā1 + a3ā2 + a2ā3 + b1b̄1 + b3b̄2 + b2b̄3

s5 = a2ā1 + a1ā2 + a3ā3 + b2b̄1 + b1b̄2 + b3b̄3

s6 = a1ā1 + a2ā2 + a3ā3 + b1b̄1 + b2b̄2 + b3b̄3

(4.46)

If we expand each term as a Taylor series, we may rewrite our determinant as:

det(exp(aiāj + bib̄j)) =
∑
m

1

m!
(s2 − s1)

m−1∑
n=0

sn2s
m−n−1
1

−
∑
m

1

m!
(s4 − s3)

m−1∑
n=0

sn4s
m−n−1
3

+
∑
m

1

m!
(s6 − s5)

m−1∑
n=0

sn6s
m−n−1
5

(4.47)

We note that:
s2 − s1 = (a2 − a3)(ā1 − ā2) + (b2 − b3)(b̄1 − b̄2)

s4 − s3 = (a1 − a3)(ā1 − ā2) + (b1 − b3)(b̄1 − b̄2)

s6 − s5 = (a1 − a2)(ā1 − ā2) + (b1 − b2)(b̄1 − b̄2)

(4.48)

We see immediately that if we remove the bi and bj, the factors listed above cancel

out factors in the Vandermonde determinants of the original HCIZ integral; however,

once we add in bi and bj, some of the factors in (4.48) no longer cancel factors in µ. This

suggests that there are missing saddle points and that the missing factors should add

the terms needed to restore the overall factor of µ in the numerator. We note that our

results should generalize to an arbitrary number of matrices; we would simply modify µ

to account for the additional matrices and add the relevant derivative terms to (4.40), as
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well as modify ui and ūj to account for the new eigenvalues.

We leave off here and save this computation for future works.

4.3 Connection with Restricted Schur Polynomials and

Collective Coordinates

A natural question to ask is: what sort of basis of operators do the coherent states (4.1)

actually generate? This is quite non-trivial, since there are in principle many different

ways of orthogonalizing the two point function of 1
4
-BPS operators at finite N . As a

concrete example, we can take the simplest multi-matrix coherent state we obtain from

choosing the coherent state parameters to be rank one projectors for arbitrary N . These

states will describe semi-classical configurations of single quarter BPS giant gravitons.

Similar generating functions were introduced in [106, 23]; we will clarify the relationship

between them and the coherent states studied here. This should help in generalizing to

higher rank cases corresponding to bound states of AdS giants. The idea is to consider

the following state:

|λx, λy⟩ =
∫
CPN−1

dφ†dφ eλxφ
†Xφ+λyφ†Y φ |0⟩ . (4.49)

To evaluate this, we need a formula for the moments of φ†
iφj with respect to the flat

Haar measure on CPN−1. The measure can be rewritten as follows:

∫
CPN−1

dφ†dφ =

∫
iR
ds

∫
dϕ̄dϕ e−s(ϕ̄ϕ−1) =

∫
C
es
∫

dϕ̄dϕ e−sϕ̄ϕ. (4.50)

In other words, we can trade the integral over projective space for a regular Gaussian

integral at the cost of introducing an additional contour integral over an auxiliary param-
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eter s. Then the moments have a simple expression in terms of the projection operators

P(k) [106]:

∫
CPN−1

dφ†
k∏
l=1

(
φ†)il φjl = ∮ ds es

sN+k
k!
(
P(k)

)I
J
=

k!

(N + k − 1)!

(
P(k)

)I
J
. (4.51)

Borrowing the results of [106], we may rewrite the coherent state as a sum of the so-called

restricted Schur polynomial operators χ(k1+k2),(k1) (k2)(X, Y ):

|λx, λy⟩ =
∞∑
k1=0

∞∑
k2=0

λk1x λ
k2
2

(N + k1 + k2 − 1)!
χ(k1+k2),(k1) (k2)(X, Y ) |0⟩ . (4.52)

Now we would like to understand the analogue of this formula in the general case.

First, we need to recall the definition of the restricted Schur polynomials:

χR,(r,s)αβ(X, Y ) = Tr[PR,(r,s)αβX
n ⊗ Y m]. (4.53)

Here, R is a Young diagram associated with an irreducible representation of Sn+m; the

labels (r, s) correspond to an irreducible representation of Sn × Sm contained in R. The

object PR,(r,s)αβ can be understood as follows: starting with Sm×Sn ⊂ Sm+n, we can find

representations r × s sitting within R. Generically, the representation r × s can appear

more than once inside of R, so one needs to keep track of how one embeds r×s into R. If

the multiplicity of (r, s) is n(r,s) and its dimension d(r,s), then a generic element of Sn+m

will be block diagonalized into
(
n(r,s)d(r,s)

)
×
(
n(r,s)d(r,s)

)
blocks. The matrix indices α, β

keep track of this information, where α and β range from 1 to n(r,s). The PR,(r,s)αβ are

then intertwining operators between each of these blocks. More formally, we can label

each of the embeddings of r × s by an index γ and consider the space Rγ ⊂ R. The
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restricted Schur polynomial is then given by:

χR,Rγ (X, Y ) =
1

m!n!

∑
σ∈Sn+m

TrRγ [ΓR(σ)]Tr[σX
n ⊗ Y m], (4.54)

where ΓR(σ) is the matrix representing σ [50]. The most complicated part of the restricted

Schur polynomials is the evaluation of TrRγ [ΓR(σ)], which involves building Rγ explicitly.

By expanding the exponential and evaluating the unitary integrals, we obtain:

1

Vol [U(N)]

∫
dU exp

(
UXU †ΛX + UY U †ΛY

)
=∑

n,m

1

m!n!

∑
σ,τ∈Sn+m

Tr[σΛnX ⊗ ΛmY ]Tr[τX
n ⊗ Y m]Wg(στ−1, N),

(4.55)

where Wg(σ,N) is the Weingarten function. Explicit combinatorial formulas for Wein-

garten functions are well known from the work of Collins (see [143] for an elementary

introduction); before delving into specific details, we should contrast this with the sit-

uation where one of the ΛX,Y is zero. In this case, the resulting sum can be recast as

a diagonal sum of the products of unitary characters; right now, we have a complicated

sum of traces. For a moment, let us consider the situation for a single matrix. The

resulting sum is:

1

Vol [U(N)]

∫
dU exp

(
UXU †ΛX

)
=

∞∑
n=0

1

n!

∑
σ,τ∈Sn

Tr[σΛnX ]Tr[τ
−1Xn]Wg(στ−1, N)

=
∞∑
n=0

1

n!

∑
σ,τ∈Sn

Tr[σΛnX ]Tr[τ
−1Xn]

∑
λ⊢n

1

n! fλ
χλ(τ−1σ)χλ(1)

=
∞∑
n=0

∑
λ⊢n

1

fλ
sλ(X)sλ(ΛX).

(4.56)

The last line is obtained from the character expansion of the integral, which was

108



Multi-matrix correlators and localization Chapter 4

computed in [21]. Then for two matrices, we have:

1

Vol [U(N)]

∫
dU exp

(
UXU †ΛX + UY U †ΛY

)
=
∑
n,m

1

m!n!(n+m)!

∑
λ⊢n+m

1

fλ

∑
σ,τ∈Sn+m

χλ(σ)χλ(τ)Tr[σΛnX ⊗ ΛmY ]Tr[τX
n ⊗ Y m].

(4.57)

Clearly this has a similar structure to the definition of the restricted Schur polynomials

(4.54), but the restricted characters have been replaced with ordinary symmetric group

characters instead. We can always formally rewrite each of the terms in the series as a

sum over restricted characters by decomposing the trace over R into a sum of traces over

each of the Rγ :

χR(σ) = TrR[ΓR(σ)] =
∑
α

∑
(r,s)αα⊂R

Tr(r,s)αα [ΓR(σ)]. (4.58)

This allows us to rewrite the integral as a sum of restricted Schur polynomial operators.

However, this sum does not capture every restricted character; the problem comes from

elements σ ∈ Sn+m that are not elements of Sn × Sm. Generically, the representation

R of Sn will be expressed as a sum of the irreducible representations Rα of Sn × Sm

with multiplicities nα. This means that σ is not fully block diagonal on the space nαRα,

and indeed, restricted traces on each of these blocks lead to different orthogonal states

in the free theory. This is expected, since the coherent state only generates operators

that have vanishing one-loop anomalous dimension, and the dilatation operator acts non-

trivially on generic restricted Schur polynomial operators. This means that the operators

obtained from diagonal traces over nαRα have vanishing one-loop anomalous dimension,

while off-diagonal operators should be associated with excited states with open strings.

We expect that operators that are approximate eigenstates of the dilatation operator in

the large N limit take the form of open string modifications of these coherent states, and
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are likely more closely related to the Gauss graph operators as in [92].

An interesting direction to take would be to construct a generating function for all

restricted Schur polynomials. Clearly, something as simple as (4.1) cannot work. This

can be traced back to the fact that the sum over Sn+m has many redundancies owing to

the fact that we can conjugate by an element of Sn × Sm while leaving the traces fixed.

This is the statement that we can permute the n X’s and m Y ’s among themselves while

simultaneously permuting the ΛX,Y ’s. As explained in [147], there is an equivalence

relation between elements of Sn+m in such a way that

σ ∼ τ ⇔ Tr[σAn ⊗Bm] = Tr[τAn ⊗Bm], (4.59)

which happens exactly when σ can be conjugated into τ by an element of Sn × Sm. In

other words, the construction of restricted Schur polynomials is equivalent to construct-

ing generalized class functions on restricted conjugacy classes, which means that the

coherent state generating function (4.1) cannot differentiate between different restricted

Schur polynomials by itself for the simple reason that the Weingarten function is a class

function. If we want to replace the characters in (4.1) with restricted characters, we must

either change the domain of integration or integrate against an appropriate measure fac-

tor that is sensitive to this information. This is equivalent to finding an analytic formula

for restricted characters, which may be recast as a Schrödinger problem over the space of

commuting matrices [14, 146]. The point is that the norm of the quarter-BPS coherent

state is related to the heat kernel over the space of commuting matrices, or equivalently

to the Green’s function of the Schrödinger equation. In practice, the coherent states

still form an overcomplete basis of operators that can be used for computations, even

if we do not currently know how to project into a particular primary state; the leading

contribution at large N will come from the saddle point approximation.
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In Appendix A.2, we checked a few low order terms by explicit calculation and found

that the quarter-BPS coherent state generating function is given by a sum of product of

restricted Schur polynomials much like the half-BPS coherent state. As we explained, this

should hold for all the terms in the series, but checking higher order terms is difficult.

This can be taken as further evidence that the coherent states span all possible BPS

states and makes manifest many of the ideas in [14], since free field theory correlators

can be encoded in integrals of polynomial functions of the collective coordinates. In the

saddle point approximation, the integration measure is given by

∫
dΛ⃗ · d⃗̄Λ ⟨Λ̄X , Λ̄Y | |ΛX ,ΛY ⟩ ≃

∫ ∏
i

dλxi dλ̄
x
i dλ

y
i dλ̄

y
i

∏
i<j

(
λ⃗i − λ⃗j

)(
⃗̄λi − ⃗̄λj

)
eλ⃗i·

⃗̄λi .

(4.60)

After an appropriate choice of contour for which λ and λ̄ are canonically conjugate

variables, this reproduces the strong coupling ansatz in [14]. It should also be clear that

this measure describes the ground state wavefunction. Although our analysis is strictly

on the weak coupling regime, we note that the dilatation operator in the SU(2) sector

can only act by permutations; this sector is closed, so it is very plausible that the quarter-

BPS states are not renormalized. Even at weak coupling, the vacuum structure becomes

quite non-trivial, modifying the Coulomb branch analysis for small collective coordinates,

since the eigenvalues behave as strongly coupled bosons at low energies. This modifies the

topology of the moduli space of vacua near the center of mass of the eigenvalues, even for

half-BPS configurations. Since this sector preserves as much supersymmetry as N = 2

SYM, it is quite plausible that the gYM corrections are under control for sufficiently small

modifications of BPS operators. At strong coupling, the expectation is that such states

describe rotating strings propagating on bubbling geometries; the energy of these strings
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will follow the dispersion relation of a centrally extended BPS state

∆− J =
√
Q2 + |M |2, (4.61)

with the central charge M being related to the length of the string in the bubbling ge-

ometry times the string tension. This is purely a kinematic effect; all of the dynamics

should be encoded in the central charge M . Near the core of the geometry, the naive

Coulomb branch analysis certainly breaks down, but S-duality considerations suggest

that the string tension is not renormalized [148], so the corrections to curvature on the

moduli space should come from finite N effects. This should be captured by non-planar

corrections involving the exchange of gravitons between the background and a probe

string. Such geometries can be engineered by integrating against the wavefunctions that

break the SO(6)R symmetry of the vacuum. It is not hard to come up with such wave-

functions (for instance a non-symmetric Gaussian perturbation), and there is a schematic

mapping between the eigenvalue distribution at large N and bubbling geometry [137].

The relation (4.60) should be corrected with additional 1/N effects, since the naive sad-

dle point approximation fails to give the exact overlap, but these effects should only

be relevant when we try to probe eigenvalues are placed in non-generic configurations.

These should be thought of as microstate configurations for coarse-grained eigenvalue

droplet configurations associated to superstar geometries. For 1
8

BPS states, the analysis

is more subtle; we have to take into account the effects from fermions since we would be

working in a SU(2|3) subsector. One should be able to ignore the effect of the fermions

for large enough semiclassical operators. This makes this class of coherent states ideal for

studying near-BPS limits around large operators without having to deal with the mixing

of multi-trace structures.
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4.4 Discussion

In this chapter, we studied multi-matrix coherent states for bosonic matrices that

generate 1
4

and 1
8

BPS states in N = 4 SYM. We showed that the norm of these coherent

states admits a fixed point formula generalizing the Harish-Chandra-Itzykson-Zuber for-

mula for gauge group U(2), and provided evidence of an expansion in terms of restricted

Schur polynomials for U(N). This gives in principle a way of generating expressions for

BPS states for any value N in N = 4 SYM. One technical obstacle we face is that our

construction does not give an alternative construction of the so-called restricted Schur

polynomial operators [50]. This is related to the expectation that there is a hidden sym-

metry under which different operators are charged. One idea is that determining the

Casimir charges should be enough to differentiate between different operators, but this

problem is quite non-trivial even in the 1
2

BPS sector [149]. It is also unclear how to

implement this idea efficiently at large N since the number of Casimirs needed to distin-

guish between different operators grows with the complexity of the operators. Despite

this obstacle, our results are important for computing correlators of 1
4

and 1
8

BPS opera-

tors dual to bound states of giant gravitons [150] and generic bubbling geometries [137].

Understanding the precise map between the overcomplete ’eigenvalue basis’ of coherent

states and specific orthogonal bases of operators remains an important problem. We

conclude with a few more immediate directions for future work.

1
16 BPS States and Black Hole Microstate Operators

One of the more interesting generalizations would be to the case of 1
16

BPS operators.

By now, there is ample evidence that there exists a class of 1
16

BPS operators describing

the microstates of supersymmetric black holes in AdS5×S5 [151, 152, 153, 154]. Recently,

there have been some studies of these types of states for small values of N [155, 156];
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see [157] for a more general discussion. Our results imply that one should be cautious

in extrapolating results about operators for the U(2) theory, since multi-matrix states

appear to be qualitatively different for other values of N . We expect that most of the

interesting qualities of such operators are missing from the U(2) and SU(2) theory. It

would be nice to develop more systematic techniques to build these types of operators. In

principle, there are no obstructions to generalizing our techniques to this setup, with the

working assumption that finding states with vanishing one-loop anomalous dimension is

enough [142]. The idea would essentially be to build a superfield coherent state [158]:

∫
dU exp

{∫
d3θ

∫
dzTr

[
UΨU †Φ

]}
|0⟩ , (4.62)

where Ψ(z, θ) is the C2|3 superfield discussed in [158, 153], and Φ is an auxiliary superfield

of coherent state parameters. The combined effect of the exponentiation and integration

over the unitary matrices is to generate all possible gauge invariant tensor contractions.

One should expect that the operators generated by this generating function are general-

izations of the SU(2|3) restricted Schur polynomials constructed in [53]. Generically, the

terms in the expansion of (4.62) will not be of multi-graviton form, so they are natural

candidates for microstates of supersymmetric black holes. In practice, the main disad-

vantage of an expression like (4.62) is that it might not be practically useful, in the sense

that the expansion necesarily involves an infinite number of matrix fields associated with

covariant derivatives acting on the fields. One way of avoiding this difficulty is to use

generating functions such as the ones studied in [135]. Alternatively, one can view the

auxiliary superfield Φ as a full-fledged dynamical collective coordinate. One would then

hope that integrating out the SYM fields leads to an effective matrix quantum mechanics

describing (near)-BPS black hole microstates, with the lightcone coordinate z acting as

a time variable.
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Three Point Correlators, Bubbling Geometries, and Twisted Holog-

raphy

Although eventually we would like to study black holes, it is important to build intu-

ition from simpler examples. One class of such examples is the BPS bubbling geometries

[137] generalizing LLM geometries [55]. Although the droplet description of such states

in supergravity is compelling, a precise mapping between the weak coupling BPS states

is not fully developed1. The coherent states (4.55) have a more natural connection to

such geometries[24]. A worthwhile exercise would be to study correlators of single trace

chiral primaries in the background of heavy coherent states corresponding to both giant

gravitons or bubbling geometries; see [159] for some finite N results. The holographic

renomalization techniques of [160] are also applicable in these cases, but it would be

interesting to develop more efficient computational techniques in supergravity along the

lines of [161]. A good toy model for this would be to study these types of questions in

Twisted Holography [162]. In that set-up, the eigenvalue droplets should be related to

bubbling on a 2 dimensional complex base with holomorphic coordinates X, Y , with the

vacuum configuration being a droplet with the topology of S3; this is the deformed coni-

fold description of SL(2,C). More generic eigenvalue configurations should lead to other

non-compact Calabi-Yau threefolds such as in [163, 164]. The expectation is that the

geometry on both sides of the duality is encoded by a spectral curve [70] on which stacks

of branes are supported, which should appear as the spectral curve of the correspond-

ing matrix model. Understanding this could help in clarifying the dictionary between

collective coordinates and bubbling geometries in the AdS5 case.
1For instance, it is unclear whether the solutions found in [137] exhaust the set of all 1

4 and 1
8 BPS

states.
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Bound States of Giants and Branes at Angles

One reasonable goal would be to understand coherent states associated with pairs of

eigenvalues, which are built from simpler integrals over the Grassmanian Gr(2, N). The

main difficulty of such a character expansion already appears in this simpler case:

|λx, λy⟩ =
∫
Gr(2,N)

dV †dV eTr[V XV
†λx+V Y V †λy ], (4.63)

where the λα are not 2×2 diagonal matrices. The norm of this state has a rather explicit

integral form over 2 × 2 matrices over a compact domain; thus an explicit evaluation

should be feasible. We expect that this state has a non-trivial expansion in terms of

restricted Schur polynomials [106]. Since the domain of integration is simpler than that

of the general case, the integral might lead itself to a saddle point analysis. One might

be able to explicitly compute Lefshetz thimbles for this case and determine whether

localization fails or not, or whether complex saddle points are needed. It would be

interesting to construct multi-matrix analogues of the generating functions found in [139]

for determinant operators. This would help in constructing the precise operators dual

to intersecting giants [165], and particularly in understanding their integrable boundary

states [166].
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Appendix Title

A.1 The Four-Matrix Model in U(3)

We now consider the following integral:

I =

∫
dU(3) exp(Tr(ĀUAU †) + Tr(B̄UBU †)), (A.1)

for A =


a1

a2

a3

, Ā =

(
ā1 ā2 ā3

)
, B =


b1

b2

b3

, and B̄ =

(
b̄1 b̄2 b̄3

)
.

We know that we can parameterize our U(3) matrix as:

U = eiλ3αeiλ2βeiλ3σeiλ5θeiλ3aeiλ2beiλ3ceiλ8ϕ, (A.2)

where λi denotes the ith generators of U(3). We list the relevant SU(3) generators below
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[64]:

λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2


(A.3)

Because U(3) = SU(3)×U(1), we multiply U by an additional phase eiψ. This yields

the parameterization of U(3) that we will use to compute the argument of the exponential

in Eq. (A.1). Simplifying and expanding, we arrive at:

Tr
(
ĀUAU † + B̄UBU †) = (a3ā3 + b3b̄3) cos

2 θ + (a2ā2 + b2b̄2) cos
2 β cos2 b

+ (a1ā1 + b1b̄1) cos
2 β cos2 θ cos2 b+ (ā1a2 + b̄1b2) cos

2 b sin2 β

+ (a1ā2 + b1b̄2) cos
2 θ cos2 b sin2 β + (ā1a3 + b̄1b3) cos

2 β sin2 θ

+ (a1ā3 + b1b̄3) cos
2 b sin2 θ + (ā2a3 + b̄2b3) sin

2 β sin2 θ

+ (a1ā2 + b1b̄2) cos
2 β sin2 b+ (ā1a2 + b̄1b2) cos

2 β cos2 θ sin2 b

+ (a1ā1 + b1b̄1) sin
2 β sin2 b+ (a2ā2 + b2b̄2) cos

2 θ sin2 β sin2 b

+ (a2ā3 + b2b̄3) sin
2 θ sin2 b

− 1

4
(a1ā1 − ā1a2 − a1ā2 + a2ā2 + b1b̄1 − b̄1b2 − b1b̄2 + b2b̄2)

× e−2i(σ+a) cos θ sin 2β sin 2b

− 1

4
(a1ā1 − ā1a2 − a1ā2 + a2ā2 + b1b̄1 − b̄1b2 − b1b̄2 + b2b̄2)

× e2i(σ+a) cos θ sin 2β sin 2b

(A.4)

We plug this into the integral. We may use the method outlined in [64] to compute

the Haar measure; we arrive at:

dU = sin 2β sin 2θ sin 2b sin2 θdαdβdσdθdadbdcdϕdψ (A.5)
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We cite the angle limits from [64]:

0 ≤ α, σ, a, c, ψ < π

0 ≤ β, b, θ <
π

2

0 ≤ ϕ < 2π

(A.6)

We seek to integrate over σ and a first. We observe that:

−e2i(σ+a) − e−2i(σ+a) = −2 cos(σ + a) (A.7)

Returning to our integral, we note that rather than integrate over σ, we may perform

a change of variables and integrate over σ+a and change our integration limits to [0, 2π].

We would integrate over a twice, but the integral over a is trivial; as long as we note

that the integral over the angular variable a is normalized to 1, we may proceed with

integrating. Then the relevant integral is:

Iσ =

∫ 2π

0

e(−
1
2
(a1ā1−ā1a2−a1ā2+a2ā2+b1b̄1−b̄1b2−b1b̄2+b2b̄2) sin 2β sin 2b cos θ sin(σ+a))dσ

= 2πI0

(
1

2
(a1ā1 − ā1a2 − a1ā2 + a2ā2 + b1b̄1 − b̄1b2 − b1b̄2 + b2b̄2) sin 2β sin 2b cos θ

)
(A.8)

where I0 is the modified Bessel function of the first kind of order zero. There are no

factors of a left in the integrand; as long as
∫ π
0
da is normalized by a factor of π, we may

consider the previous integral to have simultaneously integrated over both σ and a.

We now seek to integrate over θ. First, we collect the relevant terms and group the
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coefficients for simplicity’s sake. We have:

v1 = sin 2β sin 2b

v2 = (a2ā2 + b2b̄2) cos
2 β cos2 b+ (ā1a2 + b̄1b2) cos

2 b sin2 β

+ (a1ā2 + b1b̄2) cos
2 β sin2 b+ (a1ā1 + b1b̄1) sin

2 β sin2 b

v3 = (a3ā3 + b3b̄3) + (a1ā1 + b1b̄1) cos
2 β cos2 b+ (a1ā2 + b1b̄2) cos

2 b sin2 β

+ (ā1a2 + b̄1b2) cos
2 β sin2 b+ (a2ā2 + b2b̄2) sin

2 β sin2 b

v4 = (ā1a3 + b̄1b3) cos
2 β + (a1ā3 + b1b̄3) cos

2 b

+ (ā2a3 + b̄2b3) sin
2 β + (a2ā3 + b2b̄3) sin

2 b

v5 =
1

2
(a1ā1 − ā1a2 − a1ā2 + a2ā2 + b1b̄1 − b̄1b2 − b1b̄2 + b2b̄2) sin 2β sin 2b

(A.9)

Our integral over θ thus becomes:

Iθ = 2π

∫ π
2

0

v1e
v2+v3 cos2 θ+v4 sin

2 θI0(v5 cos θ) sin 2θ sin
2 θdθ, (A.10)

where Iθ is the integral over θ in I from eq. (A.1) and vi denote the grouped coefficients.

We now observe that we may rewrite sin 2θ as 2 sin θ cos θ. Then our integral becomes:

Iθ = −4π

∫ π
2

0

v1e
v2+v4+(v3−v4) cos2 θI0(v5 cos θ) cos θ(1− cos2 θ)d cos θ, (A.11)

Setting x = cos θ, our integral becomes:

Iθ = 4π

∫ 1

0

v1e
v2+v4+(v3−v4)x2I0(v5x)x(1− x2)dx

= 4πv1e
v2+v4

∫ 1

0

e(v3−v4)x
2

I0(v5x)x(1− x2)dx

(A.12)

120



Appendix Title Chapter A

We find the Taylor expansion of e(v3−v4)x2 :

e(v3−v4)x
2

=
∞∑
k=0

(v3 − v4)
k x2k

k!
(A.13)

Now, we expand the Bessel function in series. We find that:

I0(v5x) =
∞∑
m=0

1

m!Γ(m+ 1)

(v5x
2

)2m
(A.14)

Putting everything together, we arrive at:

Iθ = 4πv1e
v2+v4

∫ 1

0

(
∞∑
k=0

(v3 − v4)
k x2k

k!

)(
∞∑
k=0

1

k!Γ(k + 1)

(v5x
2

)2k)
x(1− x2)dx

= 4πv1e
v2+v4

×
∫ 1

0

∞∑
k=0

k∑
m=0

(
(v3 − v4)

m

m!

)(
v
2(k−m)
5

22(k−m)(k −m)!Γ(k −m+ 1)

)
x2k+1(1− x2)dx

= 4πv1e
v2+v4

∞∑
k=0

k∑
m=0

1

2(k + 1)(k + 2)

(
(v3 − v4)

m

m!

)(
v
2(k−m)
5

22(k−m)(k −m)!Γ(k −m+ 1)

)
(A.15)

We now seek to integrate over β. Before we start, we first examine the combinations
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v2 + v4 and v3 − v4:

v2 + v4 = (a2ā2 + b2b̄2) cos
2 β cos2 b+ (ā1a2 + b̄1b2) cos

2 b sin2 β

+ (a1ā2 + b1b̄2) cos
2 β sin2 b+ (a1ā1 + b1b̄1) sin

2 β sin2 b

+ (ā1a3 + b̄1b3) cos
2 β + (a1ā3 + b1b̄3) cos

2 b

+ (ā2a3 + b̄2b3) sin
2 β + (a2ā3 + b2b̄3) sin

2 b

=
(
(a2ā2 + b2b̄2) cos

2 b+ (a1ā2 + b1b̄2) sin
2 b+ ā1a3 + b̄1b3

)
cos2 β

+
(
(ā1a2 + b̄1b2) cos

2 b+ (a1ā1 + b1b̄1) sin
2 b+ ā2a3 + b̄2b3

)
sin2 β

+ (a1ā3 + b1b̄3) cos
2 b+ (a2ā3 + b2b̄3) sin

2 b

(A.16)

We note that v1 = sin 2β sin 2b, which means we can repeat the process of rewriting

sin 2β as 2 sin β cos β, but absorbing cos β behind the derivative instead. Then we rewrite

the expression above as:

v2 + v4 =
(
(a2ā2 + b2b̄2) cos

2 b+ (a1ā2 + b1b̄2) sin
2 b+ ā1a3 + b̄1b3

) (
1− sin2 β

)
+
(
(ā1a2 + b̄1b2) cos

2 b+ (a1ā1 + b1b̄1) sin
2 b+ ā2a3 + b̄2b3

)
sin2 β

+ (a1ā3 + b1b̄3) cos
2 b+ (a2ā3 + b2b̄3) sin

2 b

= ā1a3 + b̄1b3 +
(
a1ā3 + b1b̄3 + a2ā2 + b2b̄2

)
cos2 b

+
(
a2ā3 + b2b̄3 + a1ā2 + b1b̄2

)
sin2 b

+
(
ā2a3 + b̄2b3

)
sin2 β

+
(
(ā1a2 + b̄1b2 − a2ā2 − b2b̄2) cos

2 b+ (a1ā1 + b1b̄1 − a1ā2 − b1b̄2) sin
2 b
)
sin2 β

(A.17)
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We then turn to v3 − v4:

v3 − v4 = (a3ā3 + b3b̄3) + (a1ā1 + b1b̄1) cos
2 β cos2 b+ (a1ā2 + b1b̄2) cos

2 b sin2 β

+ (ā1a2 + b̄1b2) cos
2 β sin2 b+ (a2ā2 + b2b̄2) sin

2 β sin2 b

− (ā1a3 + b̄1b3) cos
2 β − (a1ā3 + b1b̄3) cos

2 b

− (ā2a3 + b̄2b3) sin
2 β − (a2ā3 + b2b̄3) sin

2 b

= (a3ā3 + b3b̄3)− (a1ā3 + b1b̄3) cos
2 b− (a2ā3 + b2b̄3) sin

2 b

+
(
(a1ā1 + b1b̄1) cos

2 b+ (ā1a2 + b̄1b2) sin
2 b− (ā1a3 + b̄1b3)

) (
1− sin2 β

)
+
(
(a1ā2 + b1b̄2) cos

2 b+ (a2ā2 + b2b̄2) sin
2 b− (ā2a3 + b̄2b3)

)
sin2 β

= a3ā3 + b3b̄3 − ā1a3 − b̄1b3 + (a1ā1 + b1b̄1 − a1ā3 − b1b̄3) cos
2 b

+ (ā1a2 + b̄1b2 − a2ā3 − b2b̄3) sin
2 b

+
(
(a1ā2 + b1b̄2 − a1ā1 − b1b̄1) cos

2 b+ (a2ā2 + b2b̄2 − ā1a2 − b̄1b2) sin
2 b
)
sin2 β

+
(
ā1a3 + b̄1b3 − ā2a3 − b̄2b3

)
sin2 β

(A.18)

We once again regroup and relabel our coefficients for ease of computation:

u1 = ā1a3 + b̄1b3 + (a1ā3 + b1b̄3 + a2ā2 + b2b̄2) cos
2 b+ (a2ā3 + b2b̄3 + a1ā2 + b1b̄2) sin

2 b

u2 = ā2a3 + b̄2b3 + (ā1a2 + b̄1b2 − a2ā2 − b2b̄2) cos
2 b+ (a1ā1 + b1b̄1 − a1ā2 − b1b̄2) sin

2 b

u3 = a3ā3 + b3b̄3 − ā1a3 − b̄1b3 + (a1ā1 + b1b̄1 − a1ā3 − b1b̄3) cos
2 b

+ (ā1a2 + b̄1b2 − a2ā3 − b2b̄3) sin
2 b

u4 = ā1a3 + b̄1b3 − ā2a3 − b̄2b3 + (a1ā2 + b1b̄2 − a1ā1 − b1b̄1) cos
2 b

+ (a2ā2 + b2b̄2 − ā1a2 − b̄1b2) sin
2 b

u5 = (a1ā1 − ā1a2 − a1ā2 + a2ā2 + b1b̄1 − b̄1b2 − b1b̄2 + b2b̄2) sin 2b

(A.19)
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We set y = sin β. Then our integral over β becomes:

Iβ = 8π sin 2b

∫ 1

0

eu1+u2y
∞∑
k=0

k∑
m=0

1

2(k + 1)(k + 2)

(
(u3 + u4y

2)
m

m!

)

×


(
u5y
√

1− y2
)2(k−m)

22(k−m)(k −m)!Γ(k −m+ 1)

 ydy

(A.20)

We now examine (u3 + u4y
2)
m. We know that we can use the binomial expansion to

express it as: (
u3 + u4y

2
)m

=
m∑
j=0

(
m

j

)
uj3
(
u4y

2
)m−j (A.21)

Then we have:

(u3 + u4y
2)
m

m!
=

m∑
j=0

1

(m− j)!j!
uj3
(
u4y

2
)m−j (A.22)

We then examine
(
y
√

1− y2
)2(k−m)

. First, we note that we can rewrite this expres-

sion as (y2 − y4)
k−m. Then, using the binomial series, we find:

(
y2 − y4

)k−m
=

k−m∑
l=0

(
k −m

l

)
(−1)k−m−ly2ly4(k−m−l)

=
k−m∑
l=0

(
k −m

l

)
(−1)k−m−ly4k−4m−2l

(A.23)

Then we have:

(
u5y
√
1− y2

)2(k−m)

22(k−m)(k −m)!Γ(k −m+ 1)
=
u
2(k−m)
5

∑k−m
l=0

(
k−m
l

)
(−1)k−m−ly4k−4m−2l

22(k−m)(k −m)!Γ(k −m+ 1)

=
k−m∑
l=0

(−1)k−m−lu
2(k−m)
5 y4k−4m−2l

22(k−m)l!(k −m− l)!Γ(k −m+ 1)

(A.24)
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We now expand:

∞∑
k=0

k∑
m=0

1

2(k + 1)(k + 2)

(
m∑
j=0

uj3u
m−j
4

(m− j)!j!
y2(m−j)

)

×

(
k−m∑
l=0

(−1)k−m−lu
2(k−m)
5 y4k−4m−2l

22(k−m)l!(k −m− l)!Γ(k −m+ 1)

)

=
∞∑
k=0

k∑
m=0

y4k−2m

2(k + 1)(k + 2)

(
m∑
j=0

uj3u
m−j
4

(m− j)!j!
y−2j

)

×

(
k−m∑
l=0

(−1)k−m−lu
2(k−m)
5 y−2l

22(k−m)l!(k −m− l)!Γ(k −m+ 1)

)

=
∞∑
k=0

k∑
m=0

k∑
n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

1

2(k + 1)(k + 2)

uj3u
m−j
4

(m− j)!j!

(−1)k−m−lu
2(k−m)
5 y4k−2m−2n

22(k−m)(l)!(k −m− l)!Γ(k −m+ 1)

(A.25)

Finally, we note that we can expand eu2y using the Taylor series:

eu2y =
∞∑
p=0

up2y
p

p!
(A.26)

Then Iβ evaluates to:

8π sin 2beu1
∫ 1

0

∞∑
p=0

up2y
p

p!

∞∑
k=0

k∑
m=0

k∑
n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

1

2(k + 1)(k + 2)

uj3u
m−j
4

(m− j)!j!

(−1)k−m−lu
2(k−m)
5 y4k−2m−2n+1

22(k−m)(l)!(k −m− l)!Γ(k −m+ 1)
dy

= 8π sin 2beu1
∞∑
q=0

∑
p+4k=q
p,k≥0

k∑
m=0

k∑
n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

up2
(k + 1)(k + 2)p!(q − 2m− 2n+ 2)

uj3u
m−j
4

(m− j)!j!

× (−1)k−m−lu
2(k−m)
5

22(k−m)+1(l)!(k −m− l)!Γ(k −m+ 1)
(A.27)
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Finally, we integrate over b. As before, we take sin 2b and rewrite it as 2 sin b cos b.

Then we absorb cos b behind the derivative and set z = sin b. We now integrate over z

from 0 to 1. We rewrite ui to reflect this change:

u1 = ā1a3 + b̄1b3 + a1ā3 + b1b̄3 + a2ā2 + b2b̄2

+ (a2ā3 + b2b̄3 + a1ā2 + b1b̄2 − a1ā3 − b1b̄3 − a2ā2 − b2b̄2) sin
2 b

u2 = ā2a3 + b̄2b3 + ā1a2 + b̄1b2 − a2ā2 − b2b̄2

+ (a1ā1 + b1b̄1 − a1ā2 − b1b̄2 − ā1a2 − b̄1b2 + a2ā2 + b2b̄2) sin
2 b

u3 = a3ā3 + b3b̄3 − ā1a3 − b̄1b3 + a1ā1 + b1b̄1 − a1ā3 − b1b̄3

+ (ā1a2 + b̄1b2 − a2ā3 − b2b̄3 − a1ā1 − b1b̄1 + a1ā3 + b1b̄3) sin
2 b

u4 = ā1a3 + b̄1b3 − ā2a3 − b̄2b3 + a1ā2 + b1b̄2 − a1ā1 − b1b̄1

+ (a2ā2 + b2b̄2 − ā1a2 − b̄1b2 − a1ā2 − b1b̄2 + a1ā1 + b1b̄1) sin
2 b

u5 = (a1ā1 − ā1a2 − a1ā2 + a2ā2 + b1b̄1 − b̄1b2 − b1b̄2 + b2b̄2) sin 2b

(A.28)

We set:

w1 = ā1a3 + b̄1b3 + a1ā3 + b1b̄3 + a2ā2 + b2b̄2

w2 = a2ā3 + b2b̄3 + a1ā2 + b1b̄2 − a1ā3 − b1b̄3 − a2ā2 − b2b̄2

w3 = ā2a3 + b̄2b3 + ā1a2 + b̄1b2 − a2ā2 − b2b̄2

w4 = a1ā1 + b1b̄1 − a1ā2 − b1b̄2 − ā1a2 − b̄1b2 + a2ā2 + b2b̄2

w5 = a3ā3 + b3b̄3 − ā1a3 − b̄1b3 + a1ā1 + b1b̄1 − a1ā3 − b1b̄3

w6 = ā1a2 + b̄1b2 − a2ā3 − b2b̄3 − a1ā1 − b1b̄1 + a1ā3 + b1b̄3

w7 = ā1a3 + b̄1b3 − ā2a3 − b̄2b3 + a1ā2 + b1b̄2 − a1ā1 − b1b̄1

w8 = a2ā2 + b2b̄2 − ā1a2 − b̄1b2 − a1ā2 − b1b̄2 + a1ā1 + b1b̄1

w9 = 2(a1ā1 − ā1a2 − a1ā2 + a2ā2 + b1b̄1 − b̄1b2 − b1b̄2 + b2b̄2)

(A.29)
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Then our integral becomes:

Ib = 16πew1

∫ 1

0

ew2z2

×
∞∑
q=0

∑
p+4k=q
p,k≥0

k∑
m=0

k∑
n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

(w3 + w4z
2)p(w5 + w6z

2)j(w7 + w8z
2)m−j

(k + 1)(k + 2)(q − 2m− 2n+ 2)p!j!(m− j)!

× (−1)k−m−l(w9z
√
1− z2)2(k−m)

22(k−m)+1l!(k −m− l)!Γ(k −m+ 1)
zdz

(A.30)

As before, we note that:

(w3 + w4z
2)
p

p!
=

p∑
r=0

1

(p− r)!r!
wr3
(
w4z

2
)p−r (A.31)

and
(w5 + w6z

2)
j

j!
=

j∑
s=0

1

(j − s)!s!
ws5
(
w6z

2
)j−s (A.32)

and
(w7 + w8z

2)
m−j

(m− j)!
=

m−j∑
t=0

1

(m− j − t)!t!
wt7
(
w8z

2
)m−j−t (A.33)
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We find that:

(w3 + w4z
2)p(w5 + w6z

2)j(w7 + w8z
2)m−j

p!j!(m− j)!
=

(
p∑
r=0

wr3w
p−r
4

(p− r)!r!
z2p−2r

)

×

(
j∑
s=0

ws5w
j−s
6

(j − s)!s!
z2j−2s

)

×

(
m−j∑
t=0

wt7w
m−j−t
8

(m− j − t)!t!
z2m−2j−2t

)

=

p+m∑
g=0

∑
r+s+t=g
0≤r≤p
0≤s≤j

0≤t≤m−j

wr3w
p−r
4 ws5w

j−s
6

(p− r)!r!(j − s)!s!

× wt7w
m−j−t
8 z2(p+m−g)

(m− j − t)!t!

(A.34)

We also know that
(
z
√
1− z2

)2(k−m)
can be written as:

(
z
√
1− z2

)2(k−m)

=
k−m∑
h=0

(
k −m

h

)
(−1)k−m−hz4k−4m−2h (A.35)

Then we have:

(−1)k−m−l(w9z
√
1− z2)2(k−m)

22(k−m)+1l!(k −m− l)!Γ(k −m+ 1)
=

(−1)k−m−lw
2(k−m)
9

22(k−m)+1l!(k −m− l)!Γ(k −m+ 1)

×
k−m∑
h=0

(
k −m

h

)
(−1)k−m−hz4k−4m−2h

=
k−m∑
h=0

(−1)−l−hw
2(k−m)
9 z4k−4m−2h

22(k−m)+1l!h!(k −m− l)!(k −m− h)!

(A.36)
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We compute:

∞∑
q=0

∑
p+4k=q
p,k≥0

k∑
m=0

k∑
n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

1

(k + 1)(k + 2)(q − 2m− 2n+ 2)

×


p+m∑
g=0

∑
r+s+t=g
0≤r≤p
0≤s≤j

0≤t≤m−j

wr3w
p−r
4 ws5w

j−s
6 wt7w

m−j−t
8

(p− r)!r!(j − s)!s!(m− j − t)!t!
z2(p+m−g)


×

(
k−m∑
h=0

(−1)−l−hw
2(k−m)
9 z4k−4m−2h

22(k−m)+1l!h!(k −m− l)!(k −m− h)!

)

and arrive at:

∞∑
q=0

∑
p+4k=q
p,k≥0

k∑
m=0

k∑
n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

1

(k + 1)(k + 2)(q − 2m− 2n+ 2)

×
p+k∑
g=0

∑
r+s+t+h=g

0≤r≤p
0≤s≤j

0≤t≤m−j
0≤h≤k−m

(−1)−l−hwr3w
p−r
4 ws5w

j−s
6 wt7w

m−j−t
8 w

2(k−m)
9

22(k−m)+1(p− r)!r!(j − s)!s!(m− j − t)!t!l!h!(k −m− l)!(k −m− h)!

× z2(2k+p−m−g)

Once again, we expand ew2z using the Taylor series:

ew2z =
∞∑
f=0

wf2z
f

f !
(A.37)
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Then our integral becomes:

16πew1

∫ 1

0

(
∞∑
f=0

wf2z
f

f !

)
∞∑
q=0

∑
p+4k=q
p,k≥0

k∑
m=0

k∑
n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

1

(k + 1)(k + 2)(q − 2m− 2n+ 2)

×
p+k∑
g=0

∑
r+s+t+h=g

0≤r≤p
0≤s≤j

0≤t≤m−j
0≤h≤k−m

(−1)−l−hwr3w
p−r
4 ws5w

j−s
6 wt7w

m−j−t
8 w

2(k−m)
9

22(k−m)+1(p− r)!r!(j − s)!s!(m− j − t)!t!l!h!(k −m− l)!(k −m− h)!

× z2(2k+p−m−g)zdz

This is a hideous series, and we would be forgiven for thinking that we should define

a new index that matches 2(2k + p − m − g). But q does the job, if more subtly, and

so we will retain q and rewrite 2(2k + p −m − g) as 2(q − 2k −m − g). Then we can
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integrate over z and find:

16πew1

∫ 1

0

∞∑
d=0

∑
2q−4k+f=d
p+4k=q
q,k,p,f≥0

k∑
m=0

k∑
n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

1

(k + 1)(k + 2)(q − 2m− 2n+ 2)

×
p+k∑
g=0

∑
r+s+t+h=g

0≤r≤p
0≤s≤j

0≤t≤m−j
0≤h≤k−m

(−1)−l−hwf2w
r
3w

p−r
4 ws5w

j−s
6 wt7w

m−j−t
8 w

2(k−m)
9

22(k−m)+1f !(p− r)!r!(j − s)!s!(m− j − t)!t!l!h!(k −m− l)!(k −m− h)!

× zd−2m−2g+1dz

= 16πew1

∞∑
q=0

∑
2p+4k+f=q
k,p,f≥0

k∑
m,n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

p+k∑
g=0

∑
r+s+t+h=g

0≤r≤p
0≤s≤j

0≤t≤m−j
0≤h≤k−m

1

(k + 1)(k + 2)(p+ 4k − 2m− 2n+ 2)

× (−1)−l−hwf2w
r
3w

p−r
4 ws5w

j−s
6 wt7w

m−j−t
8

22(k−m)+1(q − 2m− 2g + 2)f !(p− r)!r!(j − s)!s!(m− j − t)!t!l!h!

× w
2(k−m)
9

(k −m− l)!(k −m− h)!
(A.38)

For clarity, we rewrite our integral as:

I =
∞∑
q=0

∑
f+2p+4k=q
f,p,k≥0

k∑
m,n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

p+k∑
g=0

∑
r+s+t+h=g

0≤r≤p
0≤s≤j

0≤t≤m−j
0≤h≤k−m

16πew1

(k + 1)(k + 2)

× 1

(p+ 4k − 2m− 2n+ 2)(q − 2m− 2g + 2)

× (−1)−l−hwf2w
r
3w

p−r
4 ws5w

j−s
6 wt7w

m−j−t
8 w

2(k−m)
9

22(k−m)+1f !(p− r)!r!(j − s)!s!(m− j − t)!t!l!h!(k −m− l)!(k −m− h)!

(A.39)

We now seek to simplify this answer. First, starting from q = 0, we list the first few

possible combinations for q, f , p, and k; the results can be found in table A.1.

We see that if we hold all the other indices constant and expand the sum over q and
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q f p k

0 0 0 0
1 1 0 0
2 0 1 0
2 2 0 0
3 1 1 0
3 3 0 0
4 0 0 1
4 0 2 0
4 2 1 0

q f p k

4 4 0 0
5 1 0 1
5 1 2 0
5 3 1 0
5 5 0 0
6 0 1 1
6 0 3 0
6 2 2 0
6 4 1 0

q f p k

6 6 0 0
7 1 1 1
7 1 3 0
7 3 2 0
7 5 1 0
7 7 0 0
8 0 0 2
8 0 2 1
8 0 4 0

q f p k

8 2 1 1
8 2 3 0
8 4 0 1
8 4 2 0
8 6 1 0
8 8 0 0
9 1 0 2
9 1 2 1
9 1 4 0

Table A.1: We list the first few combinations of q, f, p, and k that satisfy the constraints
on the indices.

f , then we may extract a factor of 1
q−2m−2g+2

wf
2

f !
from the terms associated with the set

of fixed indices. Since q− f = 2p+4k, we may rewrite this factor as 1
f+2p+2k−2m−2g+2

wf
2

f !
.

Summing from zero to infinity, we find that:

∞∑
f=0

1

f + 2p+ 4k − 2m− 2g + 2

ωf2
f !

= (−w2)
−2p−4k+2m+2g−2Γ(2p+4k−2m−2g+2, 0,−w2)

(A.40)

Then we have:

I =
∞∑

p,k≥0

k∑
m,n=0

∑
j+l=n
0≤j≤m

0≤l≤k−m

p+k∑
g=0

∑
r+s+t+h=g

0≤r≤p
0≤s≤j

0≤t≤m−j
0≤h≤k−m

πew1Γ(2p+ 4k − 2m− 2g + 2, 0,−w2)

(k + 1)(k + 2)(p+ 4k − 2m− 2n+ 2)

× 1

(−w2)2p+4k−2m−2g+2

× (−1)−l−hwr3w
p−r
4 ws5w

j−s
6 wt7w

m−j−t
8 w

2(k−m)
9

22(k−m)−3(p− r)!r!(j − s)!s!(m− j − t)!t!l!h!(k −m− l)!(k −m− h)!

(A.41)
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A.2 Expansion in Terms of Restricted Characters

We seek to compute our four-matrix Harish-Chandra integral through a character

expansion. We start with:

IR,R′ =

∫
δU χR(UXU

†X̄)χR′(UY U †Ȳ ) (A.42)

If we have A ∈ Hom(V, V ), A′ ∈ Hom(V ′, V ′), then:

TrVA TrV ′A′ = TrV⊗V ′A⊗ A′ (A.43)

We arrive at:

IR,R′ =

∫
δU χR⊗R′

(
UR ⊗ UR′ XR ⊗ YR′ U †

R ⊗ U †
R′ X̄R ⊗ X̄R′

)
(A.44)

Now we may decompose our product representation into irreducible representations:

IR,R′ =
∑

S∈R⊗R′

∫
δU χS

(
USZSU

†
SZ̄S

)
(A.45)

where

ZS ∈ XR ⊗ YR′ (A.46)

For example, if we set R = , R′ = , then we have:

x ⊗ y = x y ⊕ x
y

(A.47)
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x y =
1

2
([x][y] + [xy]) , x

y
=

1

2
([x][y]− [xy]) (A.48)

From here on out, we use symbols interchangeably to represent both the representation S

and the character χS(ZS) associated with it. We write the trace of the fundamental rep-

resentation matrices as [x] ≡
∑N

i=1 xi. We see then that S could be the symmetric/anti-

symmmetric combination of X and Y in its fundamental representation. If we seek to

evaluate our integral with the Young diagrams we listed earlier, we arrive at:

IR,R =
1

DS

χS(X ⊗ Y )χS(X̄ ⊗ Ȳ ) +
1

DS′
χS′(X ⊗ Y )χS′(X̄ ⊗ Ȳ ), S = x y , S ′ = x

y

(A.49)

where DS is the dimension of the R representation of the GL(|R|) group.

We now compute our second example, where we hae set R = , R′ = . Then we

have:

x x ⊗ y = x x y ⊕ x x
y

(A.50)

x x y =
1

6

(
[x]2[y] + [x2][y] + 2[x][xy] + 2[x2y]

)
, (A.51)

x x
y

=
1

3

(
[x]2[y] + [x2][y]− [x][xy]− [x2y]

)
(A.52)
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1

IR,R′ =
1

DS

χS (X ⊗ Y )χS
(
X̄ ⊗ Ȳ

)
+

1

DS′
χS′ (X ⊗ Y )χS′

(
X̄ ⊗ Ȳ

)
(A.54)

S = x x y , S ′ = x x
y

(A.55)

Similarly, if R = , R′ = , then

x
x
⊗ y = x y

x
⊕ x
x
y

(A.56)

x y
x

=
1

3

(
[x]2[y]− [x2][y] + [x][xy]− [x2y]

)
x
x
y

=
1

6

(
[x]2[y]− [x2][y]− 2[x][xy] + 2[x2y]

)
2

These diagrams describe what are called the restricted Schur polynomials in literature.

1We must be careful about how we project our tensors onto the Young tableaux. We have:

T ab = T ba, T ab|c = T abc
S + T ab,c

S′ T abc
S =

1

3
(T ab|c + T bc|a + T ca|b), T ab,c

S′ =
1

3
(2T ab|c − T bc|a − T ca|b)

where TS is totally symmetric as expected. However, projecting TS′ requires more delicate handling.
The tensor satisfies

T ab,c
S′ + T bc,a

S′ + T ca,b
S′ = 0 (A.53)

2Similarly,

T ab = −T ba, T ab|c = T abc
S + T ab,c

S′ (A.57)

T abc
S =

1

3
(T ab|c + T bc|a + T ca|b), T ab,c

S′ =
1

3
(2T ab|c − T bc|a − T ca|b) (A.58)
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We have dealt with each term seperately; we now combine our results for different

representations to compute the initial four-matrix Harish-Chandra integral. We find:

I =
∑
R,R′

dRdR′

∫
δU χR(UXU

†X̄)χR′(UY U †Ȳ ) (A.59)

=
∑
R,R′

dRdR′

∑
S∈R⊗R′

∫
δU TrS

[
USZSU

†
SZ̄S

]
(A.60)

=
∑
R,R′

dRdR′

∑
S∈R⊗R′

1

DS

TrS(ZS)TrS(Z̄S), Z = XR ⊗ YR′ (A.61)

where dR is the dimension of R representation of S|R| group, divided by |R|!.

Equivalently, the integral can also be written as:

I =
∞∑

m,n=0

1

m!n!

∫
δU
(
Tr[UXU †X̄]

)m (
Tr[UY U †Ȳ ]

)n (A.62)

=
∞∑

m,n=0

1

m!n!

∑
S∈V ⊗m⊗V ⊗n

1

DS

TrS(ZS)TrS(Z̄S) (A.63)

The first few terms are:

I = 1 + x 2
+ y 2

+ x y 2
+ x
y

2
+

1

2
x x 2

+
1

2
x
x

2
+

1

2
y y 2

+
1

2
y
y

2 (A.64)

+
1

3!

x x x 2
+ 2x x

x
2
+ x
x
x

2

+
1

2!

x x y 2
+ x x
y

2
+ x y
x

2
+ x
x
y

2

 (A.65)

+
1

2!

x y y 2
+ y y
x

2
+ x y
y

2
+ y
y
x

2

+
1

3!

 y y y 2
+ 2 y y

y
2
+ y
y
y

2

+ ... (A.66)

where the square of a Young diagram represents the product of the character of X ⊗ Y

and the character of the same representation of X̄ ⊗ Ȳ , divided by the dimension DR of
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this representation, e.g.

x y 2 ≡ 1

DS

χS(ZS)χS(Z̄S) (A.67)

=
2

(N + 1)N

[X][Y ] + [XY ]

2

[X̄][Ȳ ] + [X̄Ȳ ]

2
, (A.68)

S = x y (A.69)

The expansion above matches (4.17), the N = 2 integral formula, precisely.
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[37] J. B. Griffiths and J. Podolskỳ, Exact space-times in Einstein’s general relativity.
Cambridge University Press, 2009.

[38] M. Bertolini, “Lectures on supersymmetry.” June, 2022.

[39] J. McGreevy, L. Susskind, and N. Toumbas, Invasion of the giant gravitons from
anti-de Sitter space, Journal of High Energy Physics 2000 (2000), no. 06 008.

[40] S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, Three point functions of
chiral operators in D = 4, N=4 SYM at large N, Adv. Theor. Math. Phys. 2
(1998) 697–718, [hep-th/9806074].

[41] M. Baggio, J. de Boer, and K. Papadodimas, A non-renormalization theorem for
chiral primary 3-point functions, JHEP 07 (2012) 137, [arXiv:1203.1036].

[42] L. Rastelli and X. Zhou, Mellin amplitudes for AdS5 × S5, Phys. Rev. Lett. 118
(2017), no. 9 091602, [arXiv:1608.0662].

[43] T. K. Dey, Exact Large R-charge Correlators in ABJM Theory, JHEP 08 (2011)
066, [arXiv:1105.0218].

140

http://xxx.lanl.gov/abs/1608.0295
http://xxx.lanl.gov/abs/hep-th/0111222
http://xxx.lanl.gov/abs/hep-th/9806074
http://xxx.lanl.gov/abs/1203.1036
http://xxx.lanl.gov/abs/1608.0662
http://xxx.lanl.gov/abs/1105.0218


BIBLIOGRAPHY

[44] P. Caputa and B. A. E. Mohammed, From Schurs to Giants in ABJ(M), JHEP
01 (2013) 055, [arXiv:1210.7705].

[45] J. Pasukonis and S. Ramgoolam, Quivers as Calculators: Counting, Correlators
and Riemann Surfaces, JHEP 04 (2013) 094, [arXiv:1301.1980].

[46] D. Berenstein, Extremal chiral ring states in the AdS/CFT correspondence are
described by free fermions for a generalized oscillator algebra, Phys. Rev. D 92
(2015), no. 4 046006, [arXiv:1504.0538].

[47] J. McGreevy, L. Susskind, and N. Toumbas, Invasion of the giant gravitons from
Anti-de Sitter space, JHEP 06 (2000) 008, [hep-th/0003075].

[48] M. T. Grisaru, R. C. Myers, and O. Tafjord, SUSY and goliath, JHEP 08 (2000)
040, [hep-th/0008015].

[49] A. Hashimoto, S. Hirano, and N. Itzhaki, Large branes in AdS and their field
theory dual, JHEP 08 (2000) 051, [hep-th/0008016].

[50] R. de Mello Koch, J. Smolic, and M. Smolic, Giant Gravitons - with Strings
Attached (I), JHEP 06 (2007) 074, [hep-th/0701066].

[51] R. de Mello Koch, J. Smolic, and M. Smolic, Giant Gravitons - with Strings
Attached (II), JHEP 09 (2007) 049, [hep-th/0701067].

[52] D. Bekker, R. de Mello Koch, and M. Stephanou, Giant Gravitons - with Strings
Attached. III., JHEP 02 (2008) 029, [arXiv:0710.5372].

[53] R. de Mello Koch, P. Diaz, and N. Nokwara, Restricted Schur Polynomials for
Fermions and integrability in the su(2|3) sector, JHEP 03 (2013) 173,
[arXiv:1212.5935].

[54] P. Mattioli and S. Ramgoolam, Gauge Invariants and Correlators in Flavoured
Quiver Gauge Theories, Nucl. Phys. B 911 (2016) 638–711, [arXiv:1603.0436].

[55] H. Lin, O. Lunin, and J. M. Maldacena, Bubbling AdS space and 1/2 BPS
geometries, JHEP 10 (2004) 025, [hep-th/0409174].

[56] C. Itzykson and J. B. Zuber, The Planar Approximation. 2., J. Math. Phys. 21
(1980) 411.

[57] P. Zinn-Justin and J. B. Zuber, On some integrals over the U(N) unitary group
and their large N limit, J. Phys. A 36 (2003) 3173–3194, [math-ph/0209019].

[58] A. Y. Morozov, Unitary Integrals and Related Matrix Models, Theor. Math. Phys.
162 (2010) 1–33, [arXiv:0906.3518].

141

http://xxx.lanl.gov/abs/1210.7705
http://xxx.lanl.gov/abs/1301.1980
http://xxx.lanl.gov/abs/1504.0538
http://xxx.lanl.gov/abs/hep-th/0003075
http://xxx.lanl.gov/abs/hep-th/0008015
http://xxx.lanl.gov/abs/hep-th/0008016
http://xxx.lanl.gov/abs/hep-th/0701066
http://xxx.lanl.gov/abs/hep-th/0701067
http://xxx.lanl.gov/abs/0710.5372
http://xxx.lanl.gov/abs/1212.5935
http://xxx.lanl.gov/abs/1603.0436
http://xxx.lanl.gov/abs/hep-th/0409174
http://xxx.lanl.gov/abs/math-ph/0209019
http://xxx.lanl.gov/abs/0906.3518


BIBLIOGRAPHY

[59] N. Drukker and D. J. Gross, An Exact prediction of N=4 SUSYM theory for
string theory, J. Math. Phys. 42 (2001) 2896–2914, [hep-th/0010274].

[60] J. K. Erickson, G. W. Semenoff, and K. Zarembo, Wilson loops in N=4
supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155–175,
[hep-th/0003055].

[61] P. Caputa, R. de Mello Koch, and P. Diaz, A basis for large operators in N=4
SYM with orthogonal gauge group, JHEP 03 (2013) 041, [arXiv:1301.1560].

[62] P. Caputa, R. de Mello Koch, and P. Diaz, Operators, Correlators and Free
Fermions for SO(N) and Sp(N), JHEP 06 (2013) 018, [arXiv:1303.7252].

[63] A. D. Jackson, M. K. Sener, and J. J. M. Verbaarschot, Finite volume partition
functions and Itzykson-Zuber integrals, Phys. Lett. B 387 (1996) 355–360,
[hep-th/9605183].

[64] M. Byrd, The Geometry of SU(3), arXiv e-prints (Aug., 1997) physics/9708015,
[physics/9708015].

[65] T. E. Tilma and G. Sudarshan, Generalized Euler angle parametrization for
SU(N), J. Phys. A 35 (2002) 10467–10501, [math-ph/0205016].

[66] Y. Jiang, S. Komatsu, and E. Vescovi, Structure constants in N = 4 SYM at finite
coupling as worldsheet g-function, JHEP 07 (2020), no. 07 037, [arXiv:1906.0773].

[67] Y. Jiang, S. Komatsu, and E. Vescovi, Exact Three-Point Functions of
Determinant Operators in Planar N = 4 Supersymmetric Yang-Mills Theory,
Phys. Rev. Lett. 123 (2019), no. 19 191601, [arXiv:1907.1124].

[68] G. Chen, R. De Mello Koch, M. Kim, and H. J. R. Van Zyl, Structure constants
of heavy operators in ABJM and ABJ theory, Phys. Rev. D 100 (2019), no. 8
086019, [arXiv:1909.0321].

[69] P. Yang, Y. Jiang, S. Komatsu, and J.-B. Wu, D-branes and Orbit Average,
SciPost Phys. 12 (2022) 055, [arXiv:2103.1658].

[70] K. Budzik and D. Gaiotto, Giant gravitons in twisted holography, arXiv:2106.1485.

[71] D. Berenstein, Giant gravitons: a collective coordinate approach, Phys. Rev. D 87
(2013), no. 12 126009, [arXiv:1301.3519].

[72] D. Gaiotto and J. H. Lee, The Giant Graviton Expansion, arXiv:2109.0254.

[73] D. Berenstein and E. Dzienkowski, Open spin chains for giant gravitons and
relativity, JHEP 08 (2013) 047, [arXiv:1305.2394].

142

http://xxx.lanl.gov/abs/hep-th/0010274
http://xxx.lanl.gov/abs/hep-th/0003055
http://xxx.lanl.gov/abs/1301.1560
http://xxx.lanl.gov/abs/1303.7252
http://xxx.lanl.gov/abs/hep-th/9605183
http://xxx.lanl.gov/abs/physics/9708015
http://xxx.lanl.gov/abs/math-ph/0205016
http://xxx.lanl.gov/abs/1906.0773
http://xxx.lanl.gov/abs/1907.1124
http://xxx.lanl.gov/abs/1909.0321
http://xxx.lanl.gov/abs/2103.1658
http://xxx.lanl.gov/abs/2106.1485
http://xxx.lanl.gov/abs/1301.3519
http://xxx.lanl.gov/abs/2109.0254
http://xxx.lanl.gov/abs/1305.2394


BIBLIOGRAPHY

[74] D. Berenstein and E. Dzienkowski, Giant gravitons and the emergence of
geometric limits in beta-deformations of N = 4 SYM, JHEP 01 (2015) 126,
[arXiv:1408.3620].

[75] E. Dzienkowski, Excited States of Open Strings From N = 4 SYM, JHEP 12
(2015) 036, [arXiv:1507.0159].

[76] D. Berenstein, On the central charge extension of the N = 4 SYM spin chain,
JHEP 05 (2015) 129, [arXiv:1411.5921].

[77] D. Berenstein, Strings on conifolds from strong coupling dynamics, part I, JHEP
04 (2008) 002, [arXiv:0710.2086].

[78] I. R. Klebanov and M. J. Strassler, Supergravity and a confining gauge theory:
Duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000)
052, [hep-th/0007191].

[79] R. Gopakumar and C. Vafa, On the gauge theory / geometry correspondence, Adv.
Theor. Math. Phys. 3 (1999) 1415–1443, [hep-th/9811131].

[80] N. Beisert, C. Kristjansen, J. Plefka, and M. Staudacher, BMN gauge theory as a
quantum mechanical system, Phys. Lett. B 558 (2003) 229–237, [hep-th/0212269].

[81] J. A. Minahan and K. Zarembo, The Bethe ansatz for N=4 superYang-Mills,
JHEP 03 (2003) 013, [hep-th/0212208].

[82] N. Beisert, The complete one loop dilatation operator of N=4 superYang-Mills
theory, Nucl. Phys. B 676 (2004) 3–42, [hep-th/0307015].

[83] N. Beisert et. al., Review of AdS/CFT Integrability: An Overview, Lett. Math.
Phys. 99 (2012) 3–32, [arXiv:1012.3982].

[84] D. Berenstein and A. Holguin, Open giant magnons suspended between dual giant
gravitons in N = 4 SYM, JHEP 09 (2020) 019, [arXiv:2006.0864].

[85] D. Berenstein and A. Holguin, Open giant magnons on LLM geometries, JHEP
01 (2021) 080, [arXiv:2010.0223].

[86] R. de Mello Koch, G. Kemp, and S. Smith, From Large N Nonplanar Anomalous
Dimensions to Open Spring Theory, Phys. Lett. B 711 (2012) 398–403,
[arXiv:1111.1058].

[87] S. L. Shatashvili, Correlation functions in the Itzykson-Zuber model, Commun.
Math. Phys. 154 (1993) 421–432, [hep-th/9209083].

[88] A. Morozov, Pair correlator in the Itzykson-Zuber integral, Mod. Phys. Lett. A 7
(1992) 3503–3508, [hep-th/9209074].

143

http://xxx.lanl.gov/abs/1408.3620
http://xxx.lanl.gov/abs/1507.0159
http://xxx.lanl.gov/abs/1411.5921
http://xxx.lanl.gov/abs/0710.2086
http://xxx.lanl.gov/abs/hep-th/0007191
http://xxx.lanl.gov/abs/hep-th/9811131
http://xxx.lanl.gov/abs/hep-th/0212269
http://xxx.lanl.gov/abs/hep-th/0212208
http://xxx.lanl.gov/abs/hep-th/0307015
http://xxx.lanl.gov/abs/1012.3982
http://xxx.lanl.gov/abs/2006.0864
http://xxx.lanl.gov/abs/2010.0223
http://xxx.lanl.gov/abs/1111.1058
http://xxx.lanl.gov/abs/hep-th/9209083
http://xxx.lanl.gov/abs/hep-th/9209074


BIBLIOGRAPHY

[89] B. Eynard and A. P. Ferrer, 2-matrix versus complex matrix model, integrals over
the unitary group as triangular integrals, Commun. Math. Phys. 264 (2006)
115–144, [hep-th/0502041].

[90] R. de Mello Koch, J.-H. Huang, M. Kim, and H. J. R. Van Zyl, Emergent
Yang-Mills theory, JHEP 10 (2020) 100, [arXiv:2005.0273].

[91] R. de Mello Koch, E. Gandote, and A. L. Mahu, Scrambling in Yang-Mills, JHEP
01 (2021) 058, [arXiv:2008.1240].

[92] R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in
AdS/CFT, JHEP 06 (2012) 083, [arXiv:1204.2153].

[93] R. de Mello Koch and L. Nkumane, From Gauss Graphs to Giants, JHEP 02
(2018) 005, [arXiv:1710.0906].

[94] J. Gomis and F. Passerini, Wilson Loops as D3-Branes, JHEP 01 (2007) 097,
[hep-th/0612022].

[95] D. Berenstein and R. de Mello Koch, Gauged fermionic matrix quantum
mechanics, JHEP 03 (2019) 185, [arXiv:1903.0162].

[96] D. Berenstein and A. Miller, Superposition induced topology changes in quantum
gravity, JHEP 11 (2017) 121, [arXiv:1702.0301].

[97] D. E. Berenstein and S. A. Hartnoll, Strings on conifolds from strong coupling
dynamics: Quantitative results, JHEP 03 (2008) 072, [arXiv:0711.3026].

[98] I. Biswas, D. Gaiotto, S. Lahiri, and S. Minwalla, Supersymmetric states of N=4
Yang-Mills from giant gravitons, JHEP 12 (2007) 006, [hep-th/0606087].

[99] J. Pasukonis and S. Ramgoolam, From counting to construction of BPS states in
N=4 SYM, JHEP 02 (2011) 078, [arXiv:1010.1683].

[100] C. Lewis-Brown and S. Ramgoolam, Quarter-BPS states, multi-symmetric
functions and set partitions, JHEP 03 (2021) 153, [arXiv:2007.0173].

[101] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10
(2008) 091, [arXiv:0806.1218].

[102] N. Drukker and D. Trancanelli, A Supermatrix model for N=6 super
Chern-Simons-matter theory, JHEP 02 (2010) 058, [arXiv:0912.3006].

[103] N. Drukker, M. Marino, and P. Putrov, From weak to strong coupling in ABJM
theory, Commun. Math. Phys. 306 (2011) 511–563, [arXiv:1007.3837].

144

http://xxx.lanl.gov/abs/hep-th/0502041
http://xxx.lanl.gov/abs/2005.0273
http://xxx.lanl.gov/abs/2008.1240
http://xxx.lanl.gov/abs/1204.2153
http://xxx.lanl.gov/abs/1710.0906
http://xxx.lanl.gov/abs/hep-th/0612022
http://xxx.lanl.gov/abs/1903.0162
http://xxx.lanl.gov/abs/1702.0301
http://xxx.lanl.gov/abs/0711.3026
http://xxx.lanl.gov/abs/hep-th/0606087
http://xxx.lanl.gov/abs/1010.1683
http://xxx.lanl.gov/abs/2007.0173
http://xxx.lanl.gov/abs/0806.1218
http://xxx.lanl.gov/abs/0912.3006
http://xxx.lanl.gov/abs/1007.3837


BIBLIOGRAPHY

[104] J. A. Minahan and K. Zarembo, The Bethe ansatz for superconformal
Chern-Simons, JHEP 09 (2008) 040, [arXiv:0806.3951].

[105] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, and B. C. van Rees,
Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015),
no. 3 1359–1433, [arXiv:1312.5344].

[106] G. Chen, R. de Mello Koch, M. Kim, and H. J. R. Van Zyl, Absorption of closed
strings by giant gravitons, JHEP 10 (2019) 133, [arXiv:1908.0355].

[107] S. Murthy, Unitary matrix models, free fermion ensembles, and the giant graviton
expansion, arXiv:2202.0689.

[108] S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for
BPS correlators in N=4 SYM theory, Nucl. Phys. B 641 (2002) 131–187,
[hep-th/0205221].

[109] T. W. Brown, P. Heslop, and S. Ramgoolam, Diagonal multi-matrix correlators
and bps operators in n= 4 sym, Journal of High Energy Physics 2008 (2008),
no. 02 030.

[110] R. Bhattacharyya, S. Collins, and R. de Mello Koch, Exact multi-matrix
correlators, Journal of High Energy Physics 2008 (2008), no. 03 044.

[111] T. W. Brown, P. Heslop, and S. Ramgoolam, Diagonal free field matrix
correlators, global symmetries and giant gravitons, Journal of High Energy
Physics 2009 (2009), no. 04 089.

[112] Y. Kimura, Correlation functions and representation bases in free n= 4 super
yang–mills, Nuclear Physics B 865 (2012), no. 3 568–594.

[113] P. Caputa, C. Kristjansen, and K. Zoubos, On the spectral problem of N = 4 sym
with orthogonal or symplectic gauge group, Journal of High Energy Physics 2010
(2010), no. 10 1–22.

[114] P. Caputa, R. de Mello Koch, and P. Diaz, A basis for large operators in n= 4
sym with orthogonal gauge group, Journal of High Energy Physics 2013 (2013),
no. 3 1–28.

[115] P. Caputa, R. de Mello Koch, and P. Diaz, Operators, correlators and free
fermions for so (n) and sp (n), Journal of High Energy Physics 2013 (2013),
no. 6 1–39.

[116] A. Y. Morozov, Unitary integrals and related matrix models, Theoretical and
Mathematical Physics 162 (2010), no. 1 1–33.

145

http://xxx.lanl.gov/abs/0806.3951
http://xxx.lanl.gov/abs/1312.5344
http://xxx.lanl.gov/abs/1908.0355
http://xxx.lanl.gov/abs/2202.0689
http://xxx.lanl.gov/abs/hep-th/0205221


BIBLIOGRAPHY

[117] W. Fulton and J. Harris, Representation theory: a first course, vol. 129. Springer
Science & Business Media, 2013.

[118] J. de Gier and A. Ponsaing, Separation of variables for symplectic characters,
Letters in Mathematical Physics 97 (2011), no. 1 61–83.

[119] G. Benkart and D. Moon, Tensor product representations of temperley-lieb
algebras and chebyshev polynomials, Representations of Algebras and Related
Topics, in: Fields Inst. Commun., Amer. Math. Soc., Providence, RI 45 (2005)
57–80.

[120] A. Ram, Characters of brauer’s centralizer algebras, Pacific journal of
Mathematics 169 (1995), no. 1 173–200.

[121] Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in
gauge-gravity duality, JHEP 11 (2007) 078, [arXiv:0709.2158].

[122] S. Ramgoolam, Schur-Weyl duality as an instrument of Gauge-String duality, AIP
Conf. Proc. 1031 (2008), no. 1 255–265, [arXiv:0804.2764].

[123] V. Kazakov and A. Migdal, Induced gauge theory at large n, Nuclear Physics B
397 (1993), no. 1-2 214–238.

[124] E. Bisi and N. Zygouras, Point-to-line polymers and orthogonal whittaker
functions, Transactions of the American Mathematical Society 371 (2019), no. 12
8339–8379.

[125] R. Gopakumar, From free fields to AdS: III, Phys. Rev. D 72 (2005) 066008,
[hep-th/0504229].

[126] S. S. Razamat, On a worldsheet dual of the Gaussian matrix model, JHEP 07
(2008) 026, [arXiv:0803.2681].

[127] A. Postnikov, Affine approach to quantum schubert calculus, Duke Mathematical
Journal 128 (2005), no. 3 473–510.

[128] I. G. Macdonald, Symmetric functions and Hall polynomials. Oxford university
press, 1998.

[129] A. Bertram, I. Ciocan-Fontanine, and W. Fulton, Quantum multiplication of
schur polynomials, Journal of Algebra 219 (1999), no. 2 728–746.

[130] C. Liu, Localization in gromov-witten theory and orbifold gromov-witten theory,
handbook of moduli, volume ii, 353425, adv. lect. math.,(alm) 25, 2013.

[131] A. Bertiger, D. Ehrlich, E. Milićević, and K. Taipale, An equivariant quantum
pieri rule for the grassmannian on cylindric shapes, arXiv preprint
arXiv:2010.15395 (2020).

146

http://xxx.lanl.gov/abs/0709.2158
http://xxx.lanl.gov/abs/0804.2764
http://xxx.lanl.gov/abs/hep-th/0504229
http://xxx.lanl.gov/abs/0803.2681


BIBLIOGRAPHY

[132] S. Hellerman, D. Orlando, S. Reffert, and M. Watanabe, On the CFT Operator
Spectrum at Large Global Charge, JHEP 12 (2015) 071, [arXiv:1505.0153].

[133] R. Bhattacharyya, S. Collins, and R. de Mello Koch, Exact Multi-Matrix
Correlators, JHEP 03 (2008) 044, [arXiv:0801.2061].

[134] W. Carlson, R. de Mello Koch, and H. Lin, Nonplanar Integrability, JHEP 03
(2011) 105, [arXiv:1101.5404].

[135] H. Lin, Coherent state excitations and string-added coherent states in
gauge-gravity correspondence, Nucl. Phys. B 986 (2023) 116066,
[arXiv:2206.0652].

[136] A. Holguin and W. W. Weng, Orbit averaging coherent states: holographic
three-point functions of AdS giant gravitons, JHEP 05 (2023) 167,
[arXiv:2211.0380].

[137] B. Chen, S. Cremonini, A. Donos, F.-L. Lin, H. Lin, J. T. Liu, D. Vaman, and
W.-Y. Wen, Bubbling AdS and droplet descriptions of BPS geometries in IIB
supergravity, JHEP 10 (2007) 003, [arXiv:0704.2233].

[138] H. Lin, Studies on 1/4 BPS and 1/8 BPS geometries, 2010.

[139] W. Carlson, R. de Mello Koch, and M. Kim, Generating functions for giant
graviton bound states, JHEP 01 (2023) 104, [arXiv:2212.0673].

[140] C. Itzykson and J.-B. Zuber, The planar approximation. II, Journal of
Mathematical Physics 21 (1980), no. 3 411–421.

[141] A. V. Ryzhov, Quarter BPS operators in N=4 SYM, JHEP 11 (2001) 046,
[hep-th/0109064].

[142] L. Grant, P. A. Grassi, S. Kim, and S. Minwalla, Comments on 1/16 BPS
Quantum States and Classical Configurations, JHEP 05 (2008) 049,
[arXiv:0803.4183].

[143] B. Collins, S. Matsumoto, and J. Novak, The weingarten calculus, 2021.

[144] P. Diaz, Orthogonal Schurs for Classical Gauge Groups, JHEP 10 (2013) 228,
[arXiv:1309.1180].

[145] E. Brézin and S. Hikami, An extension of the harishchandra-itzykson-zuber
integral, Communications in Mathematical Physics 235 (Apr., 2003) 125–137.

[146] V. G. Filev and D. O’Connor, Commuting Quantum Matrix Models, JHEP 03
(2015) 024, [arXiv:1408.1388].

147

http://xxx.lanl.gov/abs/1505.0153
http://xxx.lanl.gov/abs/0801.2061
http://xxx.lanl.gov/abs/1101.5404
http://xxx.lanl.gov/abs/2206.0652
http://xxx.lanl.gov/abs/2211.0380
http://xxx.lanl.gov/abs/0704.2233
http://xxx.lanl.gov/abs/2212.0673
http://xxx.lanl.gov/abs/hep-th/0109064
http://xxx.lanl.gov/abs/0803.4183
http://xxx.lanl.gov/abs/1309.1180
http://xxx.lanl.gov/abs/1408.1388


BIBLIOGRAPHY

[147] R. Bhattacharyya, R. de Mello Koch, and M. Stephanou, Exact multi-restricted
schur polynomial correlators, Journal of High Energy Physics 2008 (jun, 2008)
101–101.

[148] D. Berenstein and D. Trancanelli, S-duality and the giant magnon dispersion
relation, Eur. Phys. J. C 74 (2014) 2925, [arXiv:0904.0444].

[149] G. Kemp, A generalized dominance ordering for 1/2-BPS states, arXiv:2305.0676.

[150] A. Mikhailov, Giant gravitons from holomorphic surfaces, JHEP 11 (2000) 027,
[hep-th/0010206].

[151] F. Benini and E. Milan, Black Holes in 4D N=4 Super-Yang-Mills Field Theory,
Phys. Rev. X 10 (2020), no. 2 021037, [arXiv:1812.0961].

[152] A. Cabo-Bizet, D. Cassani, D. Martelli, and S. Murthy, Microscopic origin of the
Bekenstein-Hawking entropy of supersymmetric AdS5 black holes, JHEP 10 (2019)
062, [arXiv:1810.1144].

[153] C.-M. Chang and Y.-H. Lin, Words to describe a black hole, JHEP 02 (2023) 109,
[arXiv:2209.0672].

[154] S. Choi, S. Kim, E. Lee, S. Lee, and J. Park, Towards quantum black hole
microstates, arXiv:2304.1015.

[155] K. Budzik, H. Murali, and P. Vieira, Following Black Hole States,
arXiv:2306.0469.

[156] C.-M. Chang, L. Feng, Y.-H. Lin, and Y.-X. Tao, Decoding stringy
near-supersymmetric black holes, arXiv:2306.0467.

[157] K. Budzik, D. Gaiotto, J. Kulp, B. R. Williams, J. Wu, and M. Yu, Semi-Chiral
Operators in 4d N = 1 Gauge Theories, arXiv:2306.0103.

[158] C.-M. Chang and X. Yin, 1/16 BPS states in N= 4 super-Yang-Mills theory,
Physical Review D 88 (2013), no. 10 106005.

[159] R. Suzuki, Three-point functions in N = 4 SYM at finite Nc and background
independence, Journal of High Energy Physics 2020 (2020), no. 5 1–54.

[160] K. Skenderis and M. Taylor, Anatomy of bubbling solutions, JHEP 09 (2007) 019,
[arXiv:0706.0216].

[161] J. Abajian, F. Aprile, R. C. Myers, and P. Vieira, Holography and Correlation
Functions of Huge Operators: Spacetime Bananas, 2023.

[162] K. Costello and D. Gaiotto, Twisted Holography, arXiv:1812.0925.

148

http://xxx.lanl.gov/abs/0904.0444
http://xxx.lanl.gov/abs/2305.0676
http://xxx.lanl.gov/abs/hep-th/0010206
http://xxx.lanl.gov/abs/1812.0961
http://xxx.lanl.gov/abs/1810.1144
http://xxx.lanl.gov/abs/2209.0672
http://xxx.lanl.gov/abs/2304.1015
http://xxx.lanl.gov/abs/2306.0469
http://xxx.lanl.gov/abs/2306.0467
http://xxx.lanl.gov/abs/2306.0103
http://xxx.lanl.gov/abs/0706.0216
http://xxx.lanl.gov/abs/1812.0925


BIBLIOGRAPHY

[163] J. Gomis and T. Okuda, Wilson loops, geometric transitions and bubbling
Calabi-Yau’s, JHEP 02 (2007) 083, [hep-th/0612190].

[164] N. Halmagyi and T. Okuda, Bubbling Calabi-Yau geometry from matrix models,
JHEP 03 (2008) 028, [arXiv:0711.1870].

[165] A. Holguin, Giant Gravitons Intersecting at Angles from Integrable Spin Chains,
arXiv:2111.0598.

[166] L. Piroli, B. Pozsgay, and E. Vernier, What is an integrable quench?, Nucl. Phys.
B 925 (2017) 362–402, [arXiv:1709.0479].

149

http://xxx.lanl.gov/abs/hep-th/0612190
http://xxx.lanl.gov/abs/0711.1870
http://xxx.lanl.gov/abs/2111.0598
http://xxx.lanl.gov/abs/1709.0479

	Curriculum Vitae
	Abstract
	Introduction
	Conformal Field Theory
	Anti-de Sitter Space
	The Operator State Correspondence
	1/2 BPS States and Giant Gravitons
	Outline and Summary
	Permissions and Attributions

	BPS Coherent States and Localization
	Introduction
	Warmup: the harmonic oscillator and the gauged double harmonic oscillator
	Half BPS coherent states in N=4 SYM and some generalizations 
	Determinants and strings attached to them
	Collective coordinates
	Coherent states for 1/4 and 1/8 BPS states
	Discussion

	Giant Gravitons, Harish-Chandra integrals, and BPS states in symplectic and orthogonal N=4 SYM
	Introduction
	Review of the U(N) case
	Symplectic and orthogonal cases
	A change of basis
	Discussion

	Multi-matrix correlators and localization
	Introduction
	Multi-matrix Generating Functions
	Connection with Restricted Schur Polynomials and Collective Coordinates
	Discussion

	Appendix Title 
	The Four-Matrix Model in U(3)
	Expansion in Terms of Restricted Characters

	Bibliography



