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ABSTRACT OF THE DISSERTATION

Essays in Econometrics: Causal Inference With Large Panel Data

by

Saman Banafti

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2022

Dr. Tae-Hwy Lee, Chairperson

This dissertation is concerned with econometric theory and its applications. More specifically, the

research issue of interest is the classic topic of estimation and inference in econometric models

where researchers wish to investigate causal relationships in the absence of a randomized control

trial. To overcome the problem of confounding effects we propose extensions of the recent Granular

Instrumental Variables (GIV) methodology.

In chapter 1 we provide a high-level introduction and motivate the topic in greater detail.

In chapter 2, we extend the GIV methodology by relaxing several strong assumptions imposed on

the error term and factor loadings and we further allow for asymptotic regimes where both the

cross-sectional dimension and time series dimension diverge jointly to infinity. Additionally, we

fully exploit the structure of the model and overidentify the parameters of interest. We illustrate our

contributions with an empirical application to the global crude oil market.

In the 3rd chapter, the GIV methodology is further developed to accommodate large dy-

namic panels with unit specific endogenous variates, which require unit-specific GIVs. We develop

a split-panel jackknife (SPJ) GMM-PCA iterative procedure to estimate the structural parameters

vi



of interest. Overidentification tests can be carried out to test model validity. We illustrate the SPJ

GMM-PCA procedure in two applications: (1) estimation of demand for new automobiles and (2)

estimation of the determinants of banks’ capital adequacy ratios.
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Chapter 1

Introduction

This dissertation is concerned with econometric theory and its applications. More specif-

ically, the research issue of interest is the classic topic of estimation and inference in econometric

models where researchers wish to investigate causal relationships in the absence of a randomized

control trial. Investigation of causal relationships is conducted through estimation and inference on

a range of causal model parameters. One such example of causal parameters of interest in economics

is elasticities.

Many researchers in economics do not have the resources to carry out a randomized ex-

periment. As such, we are left with economic theory, econometric theory and observational data

sets, such as survey data. Unfortunately, estimating causal relationships with survey data is not

readily feasible and many times it is never feasible. Why? Due to unobserved variables confound-

ing observed variables. All econometric models entail an observed dependent variable, a set of

observed independent variables and finally a set of unobserved variables. The reality of the matter

is that unobserved variables are correlated with our observed variables. Put differently, since the
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unobserved variables confound the variables we do observe, any subsequent claim that our indepen-

dent variables are causally related to our dependent variables is necessarily false, precisely due to

confounding.

Typically, to try and break the problem of confounding effects one must find a so-called

instrumental variable to provide an alternative identification mechanism for the causal parameters

of interest. The identification relies on two conditions: variation induced by the instrument on

the confounded independent variable; and another obvious condition that should be met is that the

instrument itself must not be confounded! In principle, when these two conditions are met, instru-

mental variables estimation solve the problem of confounding effects of unobserved variables. But

in practice, finding an instrument to satisfy both of the conditions above is no easy task. Moreover,

many clever instruments are quite controversial within the economics literature regarding whether

they satisfy the criteria or not. It would be quite nice to be able to systematically form instrumental

variables without having to come up with one in heroic fashion. Fortunately, a recent procedure

developed by [1] (hereafter GK) aims to solve that problem. GK remarkably invent a systematic

way to construct instruments from observational datasets. Their contribution, most importantly,

eliminates the need to find an instrument. Note that there are other methodologies which seek to

eliminate the need to find an instrument, e.g., [2], [3], [4], [5], [6] and have been well studied in the

literature.

What is GKs instrument? In short, it is a size-weighted average of idiosyncratic shocks.

An example should make it clearer. Suppose a researcher has a monthly panel (longitudinal) dataset,

consisting of the same 20 countries over a 30 year period. For simplicity, suppose the independent

variable is the price of oil and the dependent variable is demand for oil. The price of oil is corre-

2



lated with unobserved aggregate demand shocks, such as a stock market crash. Hence, aggregate

shocks to demand are confounding our analysis here where we would like to actually infer the causal

relationship between price and demand. However, if we consider idiosyncratic shocks to the indi-

vidual countries, they are, presumably by definition, uncorrelated with aggregate demand shocks.

Moreover, in this setting, idiosyncratic shocks to Saudi Arabia, Iran, Iraq, and so forth, do actually

induce variation on the price of oil. We can conclude that idiosyncratic shocks can serve as valid

instrumental variables as they satisfy the conditions stated earlier!

But idiosyncratic shocks are also unobserved? However, GK lay out a formulaic approach

to extract them from the data. As their instrument is a weighted average of these individual shocks,

they call it granular instrumental variables (GIV hereafter) as it is composed of the incompressible

grains of the economy, see [7] for more details on this notion albeit in a macroeconomic model and

not in an econometric framework. See also [8].

The econometric theory for classic instrumental variables (IVs) estimation is well estab-

lished. However, with GIVs in progress there are many questions that come to mind. Do GIVs share

the same statistical properties as IVs? The GIV extraction procedure initially involves estimation of

multiple nuisance parameters via principal components analysis, and the GIV itself is a generated

instrument. Considering this, the statistical properties of GIV should generally be different from the

properties of IVs. These are some of the issues that are addressed in this dissertation.

Scholars within the field of economics, government officials and policy makers will find

this work interesting and useful. Consider the example of elasticities and assume we have an accu-

rately measured estimate for an important elasticity, such as the elasticity of demand for oil or for

water. In principle, this means we know how consumer’s demand will adjust to unexpected changes
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in the price of oil or water (say due to a geopolitical event in the case of oil or due to a drought in

the case of water). These important examples, transcend the field of economics and academia in

general.

With this high-level motivation in place, we turn to a brief summary of the specific content

of the subsequent chapters:

As alluded to earlier, the GIV methodology exploits panels with factor error structures to

construct instruments to estimate structural time series models with endogeneity even after control-

ling for latent factors. In chapter 2, we extend the GIV methodology in several dimensions. First,

we extend the identification procedure to a large N and large T framework, which depends on the

asymptotic Herfindahl index of the size distribution of N cross-sectional units. Second, we treat

both the factors and loadings as unknown and show that the sampling error in the estimated instru-

ment and factors is negligible when considering the limiting distribution of the structural parameters.

Third, we show that the sampling error in the high-dimensional precision matrix is negligible in our

estimation algorithm. Fourth, we overidentify the structural parameters with additional constructed

instruments, which leads to efficiency gains. Monte Carlo evidence is presented to support our

asymptotic theory and application to the global crude oil market leads to new results.

In the 3rd chapter, the GIV methodology is further developed to accommodate large dy-

namic panels with unit specific endogenous variates, which require unit-specific GIVs. We develop

a split-panel jackknife (SPJ) GMM-PCA iterative procedure to estimate the structural parameters

of interest. Overidentification tests can be carried out to test model validity. We illustrate the SPJ

GMM-PCA procedure in two applications: (1) estimation of demand for new automobiles and (2)

estimation of the determinants of banks’ capital adequacy ratios.
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Chapter 2

Inferential Theory for Granular

Instrumental Variables in High

Dimensions

2.1 Introduction

In the absence of randomized control trials, finding valid and strong instruments to cir-

cumvent unobserved confounders is a very challenging task. The Granular Instrumental Variables,

hereafter GIV, methodology that [1] propose, establishes a systematic way to construct instruments

from suitably weighted idiosyncratic shocks, from observational datasets and use them as instru-

ments for aggregate endogenous variables.1

1We are grateful to Xu Cheng, Xavier Gabaix, Gloria Gonzalez-Rivera, Bruce Hansen, Jean Helwege, Bo Hon-
oré, Guido Imbens, Ralph Koijen, Andrew Patton, Markus Pelger, Hashem Pesaran, Ekaterina Seregina, Ruoyao Shi,
Aman Ullah, Qiankun Zhou, seminar participants at UC Riverside and JSM 2021 for helpful comments and suggestions.
We thank Michael Bates for providing access to UCR’s High Performance Computing Center to carry out simulations
efficiently.
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Constructing instruments. There are some existing methodologies which seek to

eliminate the need to find an instrument. A leading example is the [2] framework in the context

of estimating the speed of adjustment or state dependence parameters using dynamic panel data

models with fixed effects, in which higher order lags of the dependent variable serve as instruments

for the included lags of the dependent variable. The [3] methodology (aka shift-share estimators)

where instruments are constructed from identities involving the (endogenous) explanatory variable

whose shift component is interacted with shares. The [4] setting exploits the existence of structural

breaks in the conditional heteroskedasticity regime, which is common place in many applications

of interest. This allows one to bring a system with less equations than unknowns to a just identified

system with as many equations as unknowns. The [5] methodology lays out a panel simultaneous

equations model (similar to the model analyzed in this paper) where the estimated (strong) factors

can be used as instrumental variables under certain conditions. We will return to the [5] methodol-

ogy when we overidentify the structural parameters of interest as it is inspired by their framework.

The vast methodological refinements cited within the papers referenced above are not listed here for

brevity.

Microeconomic (granular) origins of aggregate fluctuations. How can idiosyn-

cratic shocks be relevant for endogenous aggregate variables? The literature on "granularity" traces

back to historic debates in macroeconomics; no attempt to fully catalog this debate is made here,

rather a concise summary is offered. [9] demonstrate that in a multisector stochastic neoclassical

growth model, sectoral shocks (as opposed to aggregate shocks) can potentially lead to GDP fluc-

tuations. Intuitively, complex production processes form sectoral linkages which in turn provide

a transmission mechanism of shocks across sectors. Subsequently, [10] and [11] debate whether

6



sectoral shocks decay according to 1√
N

as the central limit theorem would suggest. [7] provides

an initial theoretical solution to the debate by showing that when the firm size distribution is heavy

tailed, the central limit theorem does not apply and sectoral volatility decays much slower than 1√
N

.

[7] coins this mechanism as the so-called "granular" hypothesis, in which the economy is composed

of incompressible grains as opposed to infinitesimally small micro units. [12] formulates a net-

work approach to demonstrate that sectoral idiosyncratic shocks generate non-negligible aggregate

volatility when there exists sufficient asymmetry in the input-output relationships. [8] build off of

the theoretical approach of [12] and develop econometric theory to measure the degree of network

dominance and in their application they find some evidence of sector-specific shock propagation

albeit not overwhelmingly strong for the US input-output accounts data over the period 1972-2002.

See Figures 2.1 and 2.2 for empirical evidence of this notion of granularity. Figure 2.1 replicates

Figure 1 of [7] with additional recent data and Figure 2.2 replicates Figure 1 of [13] with additional

recent data as well. More empirical evidence for such propagation mechanism is presented in [14],

[15], [16], [17], [18], [19], [7], [20], [21], [13], [22] and [23].

GIV, Gabaix and Koijen (2021). In an econometric framework, GK illustrate that

when the market under consideration is sufficiently concentrated, then one can use the collection of

idiosyncratic shocks to individual micro units, at each time period t, as an instrument for endoge-

nous aggregate variables. The instrumental relevance follows heuristically from the paragraphs

above. The exogeneity condition, as in any instrumental variables procedure, requires assumptions

on unobserved random variables. However it should be noted that the exogeneity condition ex-

ploited in this framework is a relatively mild assumption that is often made in factor models (e.g.

[24]) for identification purposes. The insight and contribution of GK opens the doors to a wide
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possibility of ways in which one can continue building on the promising new GIV methodology.

Contributions of this paper. Our contributions to the GIV methodology are primar-

ily focused on the underlying econometric issues. First, we naturally extend GK’s identification

procedure to a large N and large T framework (GK formally introduced GIV for a fixed N and

large T ) by establishing and restricting the asymptotic behavior of the Herfindahl index for large

N markets as a function of the tail index of the size distribution. Given the large N and large T

framework, we treat both the factors and loadings as unknown and allow the idiosyncratic error

term to be weakly cross-sectionally correlated.2 As such, from our preliminary stage, we extract

not only the estimated factors but also the estimated loadings via principal components analysis,

PCA hereafter, or depending on the generality of the model (kx 6= 0 in our notation from Section

2.2), we use the iterative OLS-PCA method of [25]. Second, we show that the sampling error in the

estimated instrument and estimated factors is negligible when considering the limiting distribution

of the structural parameters of interest; that is, the estimator is robust to the latent factor structure.

Moreover, the exogeneity requirement for one of the structural parameters generally depends on

a potentially high dimensional precision matrix (the inverse of the covariance matrix). Third, we

show that the sampling error in the high dimensional precision matrix is negligible in our iterative

estimation algorithm for said structural parameter. Fourth, we overidentify the structural parameters

which leads to efficiency gains. This leads to new and improved results in our empirical application

of GIV to the global crude oil markets. Monte Carlo evidence is presented to confirm the finite

sample behavior of our estimators are well approximated by the asymptotic distributions. We label

our refinement to the GIV methodology as Feasible Granular Instrumental Variables or FGIV for

2GK treat the factor loadings as known and extract the factors via period-by-period cross-sectional regressions. While
they advocate extraction of latent factors via principal components analysis when loadings are unknown, they abstract
away from the corresponding sampling error. We will show that the sampling error is indeed negligible.
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short. Finally, an empirical application of the estimation methods to estimate demand and supply

elasticities of the global crude oil markets are presented to demonstrate the estimation procedures.

Notation. We distinguish vectors and matrices from scalars by making an object bold.

Let {Xit, i = 1, . . . , N ; t = 1, . . . , T} be a double index process of random variables where N de-

notes the number of cross-sectional units and T denotes the number of time periods. We frequently

stack across i, in which we obtain X·t
N×1

:=
(
X1t . . . XNt

)′
. Similarly, if we stack across t we

obtain Xi·
T×1

:=
(
Xi1 . . . XiT

)′
. When Xit is itself a vector, say of dimension k, then we obtain

a matrix when we stack across i or t, e.g. X·t
N×k

or Xi·
T×k

. DefineXwt as the cross-sectionally weighted

average of Xit, that is Xwt := w′X·t =
∑N

i=1wiXit. Common weights, w
N×1

= (wi), used fre-

quently throughout the paper are (1) the precision weights, E := Σ−1
u ι

ι′Σ−1
u ι

where Σu
N×N

:= E(u·tu
′
·t)

is the covariance matrix of the idiosyncratic error term, uit, ι
N×1

is a vector of ones and (2) the share

weights, which we simply refer to as size weights, S :=
(
S1 . . . SN

)′
. Let X̃it = Xit − X̄t,

where X̄t = 1
N

∑N
i=1Xit, denote a cross-sectionally demeaned variable. Unless otherwise speci-

fied, we denote the L2-norm as || · || or sometimes explicitly as || · ||2, the L1-norm as || · ||1 and the

Frobenius norm as || · ||F ; if another norm is used, it will be explicitly noted. Given a square matrix

A, let γmax(A) denote the maximum eigenvalue of A. Joint convergence of N and T will be de-

noted as (N,T )
j→∞ without any restriction on the relative rates; whenever restrictions on relative

rates of convergence are imposed, it will be explicitly noted. The expression
p→ denotes conver-

gence in probability while d→ denotes convergence in distribution. The equation y = Op(x) states

that the vector of random variables y is at most of order x in probability. The equation a = Θp(b)

states that a is stochastically bounded by b and b is stochastically bounded by a, hence a and b rise

jointly proportionally.

9



2.2 Model

A general formulation of the model examined in this paper is given in the following panel

simultaneous equations model with factor error structure

yit = Bxit +Cat + vit,

vit = Λ′iFt + uit,

where yit =
(
y1,it . . . yG,it

)′
is aG×1 vector of dependent variables, xit =

(
x1,it . . . xkx,it

)′
is a kx × 1 vector of strictly exogenous variables (which can be arbitrarily correlated with the com-

mon factors, Ft, and/or the loadings, Λi), at =
(
a1,t . . . aka,t

)′
is a ka× 1 vector of potentially

endogenous aggregate variables, vit is a G× 1 vector of composite error terms which admit a low-

rank plus sparse (factor structure) error decomposition, where Λi is an r×G matrix of latent factor

loadings and Ft is an r × 1 vector of latent factors.

In our exposition, we focus on the canonical setting of estimating the supply and demand

elasticities in the global crude oil market, so we set the dimension of G = 2 for supply and demand

variables respectively. We take kx = 0 for ease of exposition but we present a general estimation

algorithm for when kx 6= 0. Moreover, we assume that only one of the G = 2 variables has a panel

structure, whereas the other variable is an aggregate time series. That is, yit =
(
dt yit

)′
where dt

is the log change of aggregate crude oil consumption and yit is the log change of country i’s crude

oil production, at = pt, with ka = 1, is the log change of real crude oil price (where we deflate the

10



nominal oil price with the U.S. general price index).3,4 Given our stylizations the coefficient matrix

C and composite error, vit becomes

C =

φd 0

0 φs

 ,

vit = Λ′iFt + uit =

1 0

0 λi

εt
ηt

+

 0

uit

 ,

where the coefficients φd and φs denote the crude oil demand and supply elasticities, respectively,

and ηt,λi are r × 1 vectors of latent factors and latent loadings, respectively. Our stylized simulta-

neous equations model takes the simple form

dt = φdpt + εt (2.1)

yit = φspt + λ′iηt + uit. (2.2)

The global market clearing condition is given by ySt = dt, where ySt := S′y·t =
∑N

i=1 Siyit, S is

the N × 1 vector of shares that are normalized such that
∑N

i=1 Si = 1 and i and t take the values

i = 1, . . . , N and t = 1, . . . , T , respectively.5 Making use of the global market clearing condition

3One may wonder why pt is not disaggregated; in fact the pt we use can be considered as the weighted average of
country specific real oil prices (in changes). As shown in [26], for a proper global analysis, deflating the nominal oil
price in U.S. dollars by the U.S. price index is generally theoretically invalid unless the law of one price holds universally.
Namely, let Pit denote the general price index faced by country i, Eit denotes country i’s exchange rate measured as
units of country i’s currency per U.S. dollar, pit denote country specific log of real oil prices and p̃t denotes nominal
oil prices in U.S. dollars, if EitPUS,t = Pit ∀i; then it follows that

∑N
i=1 wipit = p̃t +

∑N
i=1 wilog(Eit/Pit) =

p̃t +
∑N
i=1 wilog(1/PUS,t) = p̃t − pUS,t := pt. As it turns out, pt = p̃t − pUS,t is an appropriate approximation as

documented in [26] for their long run analysis, in the sense that it respects the long-run equilibrium relationships. We
assume it is an appropriate approximation for our short-run analysis.

4The main results extend relatively naturally to the case where both variables have a panel model.
5As oil is a storable good, one could easily allow oil prices to adjust to the gap between supply and demand, e.g. as

in [26]. This introduces more complex notations without adding any substance to the main points of the paper.
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we see that

pt =
1

φd − φs
(
uSt + λ′Sηt − εt

)
, (2.3)

which makes the simultaneity clear, e.g., that prices are composed of size-weighted idiosyncratic

shocks, aggregate supply shocks and the demand shock. The objective of the GIV methodology is

to extract the idiosyncratic shocks and use them as instruments for price.

Demand estimation in the case of uniform loadings (λi = λ∀ i). To momen-

tarily fix ideas, it is helpful to consider a major simplification when constructing the instrument.

Suppose that the loadings are uniform, λi = λ ∀i. Then, the instrument, zt, can be formed as

zt = ySt −
1

N

N∑
i=1

yit = (φdpt + λ′ηt + uSt)− (φdpt + λ′ηt +
1

N

N∑
i=1

uit),

= uSt −
1

N

N∑
i=1

uit := uΓt, (2.4)

where Γ := S − ι/N is an N × 1 random vector such that ι′Γ =
∑N

i=1 Γi = 0, by construction.

Γi is random because we assume the shares follow a fat-tailed distribution, see Assumption 4.

Identification and estimation of demand by GIV requires that

E(ztεt) = E

(
N∑
i=1

ΓiE(uitεt|Γ)

)
= 0. (2.5)

(2.5) is our exogeneity condition and (2.3) gives E(ztpt) 6= 0, relevance. A sufficient condition

for the moment condition in (2.5) to be zero is E(uitεt|Γ) = 0, which effectively requires that

conditional on size, uit and εt are uncorrelated. Given relevance, exogeneity implies the following
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demand elasticity estimator φ̂d =
∑
t dtzt∑
t ptzt

. Intuitively, zt places larger weights on the idiosyncratic

shocks to larger oil producers, these granular shocks will shift the supply curve while keeping the

aggregate demand curve fixed since demand responds to these shocks only through their affects on

prices. This allows for consistent estimation of the demand elasticity. The uniform loadings as-

sumption in this case tremendously facilitate the analysis. Uniform loadings allow one to construct

the instrument, as in (2.4), from observables. In practice, uniform loadings are quite restrictive and

we subsequently relax this assumption. However, before moving on to the general case, we also

illustrate supply estimation under simplifying assumptions to fix ideas.

Supply estimation in the case of uniform loadings and uit i.i.d. Continuing on

with the uniform loadings case, remarkably, GK show that one can use the same instrument, zt, to

also estimate the supply elasticity using a cross-sectionally aggregated supply equation. Now, GK

further assume that uit are i.i.d., E(u·tu
′
·t) := Σu = σ2

uIN , where u·t :=
(
u1t . . . uNt

)′
and

IN is the identity matrix and define the N × 1 precision weight vector E := Σ−1
u ι

ι′Σ−1
u ι

which reduces

to ι/N when uit are i.i.d. across i. Aggregation of the supply equation is performed using the

vector E, we have that yEt = φspt + λ′ηt + uEt. Identification and estimation of supply by GIV

requires that the instrument satisfies exogeneity with respect to the composite error term6

E((λ′ηt + uEt)zt) = 0. (2.6)

The first term in (2.6) has similar interpretation as in (2.5), i.e., size-weighted idiosyncratic supply

shocks are uncorrelated with the aggregate supply component, λ′ηt. Miraculously, the second term

6In the general case to follow, we estimate the factors and thus only exploit E(uEtzt) = 0 to estimate φs.
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is exactly zero

E(uEtzt) = E(E′u·tu
′
·tΓ) = E(E′E(u·tu

′
·t|Γ)Γ) =

σ2
u

N
E(ι′Γ) = 0.7 (2.7)

The moment condition (2.7) is zero due to independence of Γi and uit by assumption and the sum-

to-zero property of Γ. For identification with large N , we assume size to follow a power law in tail

(see Assumption 4), thus Γi is stochastic and assumed to be independent of uit.8 So again, we have

E(ztpt) 6= 0 and for this simplified example, we avoid the need to estimate the factor structure since

(i) due to uniform loadings, zt is constructed from observables and (ii) zt is uncorrelated with the

composite error term. If either of (i) or (ii) fails to hold, estimation of the factor structure becomes

a preliminary step, as in our general procedure. Nevertheless, (2.6) leads to the following simple

supply elasticity estimator φ̂s =
∑
t yEtzt∑
t ptzt

. The intuition here is that, again, zt places larger weights

on the idiosyncratic shocks to larger oil producers, these granular shocks keep the simple average (or

more generally precision-weighted, i.e., weighted heavily towards more stable oil producers) supply

curve fixed. That is, on average, precision-weighted supply responds to these granular shocks only

through their effects on prices (due to E((λ′ηt + uEt)zt) = 0) and at the same time since smaller

oil producers take as given price changes caused by these granular shocks, it will shift their supply

curves which enables consistent estimation of the supply elasticity.

Discussion. In the case of uniform loadings and uit i.i.d., the vector E and the instru-

ment are constructed from observables, the large sample properties of φ̂s and φ̂d only entail fixed

7One may wonder then why this particular form of Γ was selected. Appealing to Proposition 3 in GK, they establish
that Γ = S − E, for this example, turns out to be the optimal weight vector, amongst the class of weights which
sum-to-zero. Γ is optimal in the sense that it minimizes the asymptotic variance of the structural parameters.

8For a fixed N , it is not required to assume independence of Γi and uit because Γi can be treated as constant and
(2.7) is zero solely by virtue of the fact that ι′Γ = 0.
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N , large T asymptotics for which GK have laid out. In general, however, the cross-section will

need to be exploited to estimate E since one can not know if uit are i.i.d. across i. Indeed, the

factors typically take care of a substantial portion of the cross-sectional correlations but it is prudent

to allow for cross correlations in uit since the exogeneity condition for estimation of the supply

elasticity heavily exploits the structure of Σu. Therefore, it will be important to generally allow for

some weak cross correlations in Σu, which our algorithm accommodates, as discussed in Section

2.3 and Section 2.4.

Moreover,although homogeneous loadings was only an abstraction to illustrate the instru-

ment, GK advocate the use of yΓt = ySt − 1
N

∑
i yit in practice even when the loadings are not

uniform. In the general heterogeneous loadings case, their instrument becomes

Zt := yΓt = uΓt + λ′Γηt. (2.8)

They label this instrument with a capital case convention, to distinguish it because it is no longer

solely composed of weighted idiosyncratic shocks, uΓt, as the λ′Γηt term is contaminating the

instrument. However, this clever formulation is possible because they advocate estimation of the

factors in practice, which they augment to their structural equations, thereby controlling for the

second term which can potentially make their moment conditions different from zero.

2.3 Feasible Granular Instrumental Variables

Homogeneous loadings are overly restrictive but relaxing this can be easily accommo-

dated in practice via PCA or iterative OLS-PCA methods, e.g., [27] or [25] in a preliminary stage to
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construct an estimate of the instrument.9 Although in GK’s asymptotic theory they assume homo-

geneous loadings and that the instrument is exogenous with respect to the composite error, which

circumvents the need to estimate the factor structure, they indeed advocate augmenting their struc-

tural equations with estimated factors either via period-by-period cross sectional regressions when

the loadings are known or via PCA in the case of non-parametric (unknown) loadings. GK abstract

away from the sampling error in suggesting the use of augmented factors, which only vanishes for

both large N and T . [31] and [32] have developed the asymptotic distribution for structural param-

eters in factor augmented regressions in time series and panel models respectively. In this paper, a

variant of their corresponding result is established in showing the sampling error from estimating

the high dimensional precision matrix, the factors, as well as the instrument is negligible in the

asymptotic distribution of the structural parameters.

The general heterogeneous loadings case and uit non-i.i.d. Now we formulate

the estimation approach in the general case, which makes much heavier use of the cross-section.

When we cross-sectionally demean the supply equation and stack across i we obtain (recall X̃

denotes a generic demeaned variate)

ỹ·t = Λ̃ηt + ũ·t, (2.9)

which is estimable with vanilla PCA when the factor structure is strong.10 Letting Q = (IN −

9For our theory, we assume a balanced panel. However, in the case of unbalanced panels with data missing at
random (which is beyond the scope of this paper) one can instead use the [28] method or [29] method to estimate the
factor structure and the instrument. In the more realistic case where data are not missing at random, one can use the
methods developed in [30].

10Strong factors in the sense that Λ′Λ/N
p→ ΣΛ > 0; thus we assume the factors are strong/pervasive in the sense

that a significant fraction of cross-sectional units are affected by their presence. Consistent estimation of weak factors
is beyond the scope of this paper, see for example [33], [34] or [35] for suitable conditions for which it is possible.
Even when estimable, their convergence rates are slower relative to estimates of strong factors, e.g., see [36]. This will
generally require modifications to the limiting distributions we derive in this paper.
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Λ̃(Λ̃′Λ̃)−1Λ̃′), then Qỹ·t = Qũ·t, completely purges the process of the common factors through

the loading space. Premultiplying the share weights gives the instrument

zt := S′Qỹ·t, (2.10)

= S′Qũ·t := Γ′ũ·t, (2.11)

where Γ := QS is unknown because Q is unknown, but Q is easily estimated from data. Once we

have Q̂, which just replaces Λ̃ with ̂̃Λ, we form ẑt = S′Q̂ỹ·t from observables. Importantly, when

λi = λ∀i, then Γ = (IN − Λ̃(Λ̃′Λ̃)−1Λ̃′)S = S− ι/N as in the previous case with homogenous

loadings. This gives rise to a more general demand elasticity estimator

φ̂d = φ̂d(ẑ) =

∑
t dtẑt∑
t ptẑt

. (2.12)

In Section 2.6, we show that the demand elasticity can be estimated as if the infeasible instrument,

zt, is used.

In the case of the supply elasticity, the estimator will additionally depend on the estimated

(potentially high dimensional) precision matrix. That is, φ̂s = φ̂s(ẑ, Σ̂−1
u ). This creates the need to

jointly estimate Σ̂−1
u to form Ê in order to aggregate the panel to estimate φ̂s. We propose a simple

iterative procedure and show that the supply elasticity can be estimated as if the infeasible precision

matrix, Σ−1
u , and instrument, zt, were used. More specifically, let yEt = φspt + λ′Eηt + uEt :=

f ′tθ
s + uEt, where θs =

(
φs λ′E

)′
and ft =

(
pt η′t

)′
are (1 + r)× 1 vectors. The remarkable

result E(ztuEt) = 0, shown in (2.7) for the previous simple example with homogeneous loadings,

continues to hold in this setting as well, with zt = S′Qỹ·t = S′Qũ·t and Γ = QS (recall that
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ι′Γ = 0)

E(uEtzt) = E
(
E′u·tũ

′
·tΓ
)

= E(E′u·t(u·t − ūtι)′Γ) = E(E′u·tu
′
·tΓ)−E(E′u·tūtι

′Γ)

= E(E′E(u·tu
′
·t|Γ)Γ)− 0 =

1

ι′Σ−1
u ι

E
(
ι′Γ
)

= 0. (2.13)

So we have that (where the estimated factors self-instrument)

E

zt
ηt

 · uEt
 = E

zt
ηt

 · (yEt − φspt − λ′Eηt)
 = 0. (2.14)

However, given our interest lies in inference for φs, it is useful to stack over t, yE = pφs +

η λE + uE , where yE ,p, and uE are T × 1 vectors and y
Ê

is the feasible counterpart of yE . Let

Mη̂ = (IT − η̂(η̂′η̂)−1η̂′), then it follows from standard partitioned regression results that

φ̂s = φ̂s(ẑ, Σ̂−1
u ) =

ẑ
′
Mη̂ yÊ

ẑ ′Mη̂ p
. (2.15)

As Σ̂−1
u depends on φ̂s, (2.15) generally requires an iterative estimation procedure. To that end,

note that if φs were known, yit − ptφs = λ′iηt + uit follows an approximate factor structure. Thus,

a covariance estimator, Σ̂u, for the idiosyncratic part can be obtained following [37] by applying

thresholding to the eigenvalue decomposition, 1
T

∑T
t=1(y·t − ιptφs)(y·t − ιptφs)′ =

∑N
i=1 γiξiξ

′
i,

where γi and ξi are the eigenvalues (sorted in decreasing order) and corresponding eigenvectors,

respectively. More specifically, if φs were known, we have

Σ̂(y·t−ιptφs) :=

r∑
i=1

γ̂iξ̂iξ̂
′
i + Σ̂Tu , (2.16)

18



where Σ̂Tu =
∑N

i=r+1 γ̂iξ̂iξ̂
′
i = (σ̂Tu,ij)N×N ,

σ̂Tu,ij =


σ̂u,ii, i = j,

hij(σ̂u,ij), i 6= j,

(2.17)

and hij(·) is a generalized shrinkage function of [38].11 Of course, φs can not be known as it requires

an estimate of Σ−1
u . Thus, we now address joint estimation of φs and Σ−1

u in what follows and

subsequently establish that the sampling error in Ê is negligible given some regularity conditions.

The iterative procedure is summarized in Algorithm 1 presented below.

Algorithm 1 FGIV for φs (when kx = 0):

• Step 1: Run PCA on (2.9) and obtain ẑt = S′Q̂ỹ·t as the sample counterpart of (2.10).

• Step 2: Initialize Σ̂−1
u = IN .

• Step 3: Obtain y
Ê

(Σ̂−1
u ) and φ̂s(ẑ, Σ̂−1

u ) as in (2.15).

• Step 4: Update Σ̂−1
u by inverting Σ̂Tu defined in (2.17), y

Ê
(Σ̂−1

u ) and φ̂s(ẑ, Σ̂−1
u ).

• Step 5: Iterate Step 3 and Step 4 until convergence.

When r is unknown, one can augment Step 1 and estimate r using a procedure as in [24], [39] or

[40]; we use the ER and GR methods of [40] (hereafter AH). For more details of the ER and GR

methods, see Section 2.12.3 of the Supplementary Appendix.

FGIV algorithm accommodating cross-section specific covariates. When kx 6=

0 then the demeaning transformation from (2.9) results in ỹ·t = Λ̃ηt + x̃·tβ + ũ·t, where x̃·t is an

N × kx matrix, which leaves β
kx×1

as an additional parameter to estimate. β can be easily estimated

11Examples of hij(·) include hard thresholding hij(x) = x1(|x| ≥ τij) and soft thresholding hij(x) = sgn(x)(|x|−
τij)+. The entry dependent threshold, τij > 0, can be defined as CωT

√
α̂ij , where α̂ij = 1

T

∑T
t=1(ûitûjt − σ̂u,ij)2,

σ̂u,ij = 1
T

∑T
t=1 ûitûjt and ûit = yit−φspt− λ̂′iη̂t for some predetermined decreasing sequence ωT > 0 and C > 0.

The choice of C can be data driven; [37] choose C through multifold cross-validation to maintain positive definiteness
of Σ̂T

u (C). In our algorithm below, we make use of the R package for POET, written by the authors [37].
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by adapting the procedure of [41], which is generalizing [25], to handle endogeneity of prices even

after controlling for latent common factors. More specifically,

β(Λ̃,ηt,Σ
−1
u ) =

(
T∑
t=1

x̃′·tΣ
−1
u x̃·t

)−1 T∑
t=1

x̃′·tΣ
−1
u (ỹ·t − Λ̃ηt), (2.18)

(ỹ·t − x̃·tβ) = Λ̃ηt + ũ·t, (2.19)

since (2.19) follows a factor structure, the T × r factor matrix, η(β,Σ−1
u ), can be estimated using

the principal components estimator whose columns are the eigenvectors corresponding to the largest

r eigenvalues of the T × T matrix (ỹ·· − x̃··(β))Σ−1
u (ỹ·· − x̃··(β))′, where the T × N matrix

x̃··(β) :=
(
x̃1·β . . . x̃N ·β

)
and Λ̃(β,Σ−1

u ) = 1
T

∑T
t=1(ỹ·t − x̃·tβ)η′t(β,Σ

−1
u ). Thus, to deal

with general (strictly exogenous) covariates, xit, Algorithm 2 can be applied.

Algorithm 2 FGIV for φs (when kx 6= 0):

• Step 1: Initialize β̂ = 0, Σ̂−1
u = IN .

• Step 2: Run PCA on (2.19) to obtain η̂t(β̂, Σ̂−1
u ) and ̂̃Λ(β̂, Σ̂−1

u ) as explained above.

• Step 3: Update β̂ as the sample counterpart of (2.18).

• Step 4: Obtain ẑt = S′Q̂(ỹ·t − x̃·tβ̂).

• Step 5: Initialize y
Ê

(Σ̂−1
u ) and φ̂s(ẑ, Σ̂−1

u ) =
(
ẑ
′
Mη̂ p

)−1
ẑ
′
Mη̂ (y

Ê
− xi·β).

• Step 6: Update Σ̂−1
u by inverting Σ̂Tu defined in (2.17), where γ̂i and ξ̂i are the eigenvalues

and eigenvectors (sorted in decreasing order) corresponding to the sample analog of
1
T

∑T
t=1(y·t − ιptφs − x·tβ)(y·t − ιptφs − x·tβ)′ respectively.

• Step 7: Iterate Step 2 through Step 6 until convergence.

When r is unknown, one can augment Step 2 and iteratively estimate r using the ER and GR

methods of [40].

The main takeaway is that when both (N,T ) are large, one can generalize the GIV es-

20



timators proposed by GK along different dimensions; here we accommodate latent heterogeneous

loadings, latent factors and latent precision matrix (e.g., uit can be weakly cross-correlated and het-

eroskedastic). As mentioned earlier, we call the proposed estimators of the elasticities in (2.12),

Algorithm 1 and Algorithm 2 as FGIV estimators.

Remark 1 In principle, the theory for the estimators proposed in this paper allows for N �

T . This case is relevant in many empirical settings (e.g., empirical industrial organization and

finance). However, it may be beneficial to avoid estimating the precision matrix for cases where

N � T (e.g., empirical macro). But, as (2.7) and (2.13) show, to have a valid instrument for

which the moment equation is exactly zero, we must specify Σu correctly. This is the primary

motivation for estimating the general precision matrix in Algorithms 1 and 2. In order to avoid

estimating the precision matrix, we must assume (potentially erroneously) uit are cross-sectionally

independent. We now analyze the consequences of making this assumption when in fact uit are

cross-sectionally correlated. Suppose we erroneously assume cross-sectional independence, then

the vector E reduces to ι/N and we end up with the following moment equation

E(uEtzt) = E
(
E′u·tũ

′
·tΓ
)

= E(E′u·t(u·t − ūtι)′Γ)

= E(E′E(u·tu
′
·t|Γ)Γ)−E(E′u·tι

′Γ)ūt =
1

N
E(ι′ΣuΓ)− 0 = o(1). (2.20)

Hence, zt is not a valid instrument in the traditional sense because we allow E(uEtzt) 6= 0 for

any given sample. Nevertheless, this moment converges to zero for large N . Indeed, the moment

satisfies E(uEtzt) = o (1) under our regularity assumptions, and thus, zt is asymptotically a valid

instrument.12 This insight reveals that this moment is approaching zero, hence it may prove to

12It can be shown that ι′ΣuΓ = ι′ΣuQS ≤ ι′ΣuSγmax(Q) =
∑
i,j σu,ijSj ≤

(∑
i,j σ

2
u,ij

)1/2

||S||22 =
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be beneficial to aggregate the panel, yit, using weights ι/N regardless of the covariance struc-

ture. The immediate implication is that φ̂s = φ̂s(ẑ, IN ), so there is no need for an algorithmic

estimation procedure, the simple analytical formula for the supply elasticity estimator with poten-

tially misspecified covariance structure for uit is given by φ̂s(ẑ, IN ) =
ẑ
′
Mη̂ ȳ

ẑ ′Mη̂ p
, where ȳ stacks

ȳt = 1
N

∑N
i=1 yit for each t = 1, . . . , T ; this estimator is essentially Step 2 and Step 3 of Algorithm

1. Asymptotically, it holds that φ̂s(ẑ, Σ̂−1
u ) = φ̂s(ẑ, IN ) + op(1). However, regarding performance

in finite samples, when uit are not i.i.d. and when N � T , it is not clear ex-ante if φ̂s(ẑ, IN )

will outperform φ̂s(ẑ, Σ̂−1
u ). When N � T one would expect ex-ante that φ̂s(ẑ, IN ) will be less

efficient than φ̂s(ẑ, Σ̂−1
u ) since the former is not optimally weighting the observations, whereas the

latter is. When uit are indeed i.i.d. we would expect φ̂s(ẑ, IN ) to perform better.13

2.4 Efficient GMM Estimation: Factor-Augmented FGIV

We now proceed to overidentify the elasticities, which yields overidentified FGIV estima-

tors. We will refer to the overidentified FGIV estimators simply as efficient GMM estimators and

the just identified FGIV estimators simply as FGIV estimators. It will be of interest to practitioners

to see if overidentification is possible for the supply and demand equations. In this section, we show

that the system is indeed overidentified to varying degrees for the supply and demand equations.

Demand. It is common practice to assume uncorrelated aggregate supply and aggregate

demand shocks, that is E(ηtεt) = 0. When we are willing to entertain this, then our supply factors,

estimated via principal components, serve as valid instruments in estimation of the demand elas-

||Σu||F ||S||22 ≤ ||Σu||1||S||22 ≤ O(mN )Θp(1) = o(N)Θp(1) = o(N), where mN is defined in Assumption 3 and
mN = o(N).

13In unreported simulations where N � T and uit are non-i.i.d., we find that φ̂s(ẑ, Σ̂−1
u ) typically has a smaller

bias than φ̂s(ẑ, IN ) (in absolute terms, the bias of both estimators are very small) but with a slightly larger variance.
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ticity, rendering an overidentified parameter. In fact, the theory for using principal components as

instruments was laid out in [5] under strong instrument asymptotics, as well as [6] under many/weak

instrument asymptotics. In the remainder of this section, we let the GIV be denoted as zt,GIV := zt

to distinguish it from the full instrument vector we introduce with upper case conventions. Our full

instrument matrix for the demand equation is Zd
T×(1+r)

:=
(
zGIV η

)
with E(Zdtεt) = 0; Zdt

simply augments factors to be used as instruments. Making use of the (1 + r) × 1 dimensional

moment condition, the efficient GMM demand elasticity estimator is defined as

φ̂dGMM = argmin
φd

ε′Zd
T

Wd
Z ′dε

T
,

=
(
p′ Ẑd Ω̂−1

d Ẑ
′
dp
)−1

p′ Ẑd Ω̂−1
d Ẑ

′
dd, (2.21)

where Wd
(1+r)×(1+r)

is an arbitrary positive definite weight matrix, but is optimally set as Ŵd = Ω̂−1
d ,

where Ω̂d = 1
T

∑T
t=1 ẐdtẐ

′
dt(dt − ptφ̂d2SLS)2. It is clear that (2.21) nests the FGIV estimator for

the demand elasticity as a special case. In this sense, φ̂dGMM will be robust to scenarios where zt is

weaker.

Supply. In the same vein, the supply elasticity can always be overidentified given our

identifying assumptions becauseE(εtuEt) = 0 and thus εt can serve as an additional instrument. To

estimate the entire parameter vector for the supply equation, let Zs
T×(2+r)

:=
(
zGIV ε η

)
, where

the augmented factors self-instrument as they are part of the supply equation. Then yE = fθs+uE

and recall θs =
(
φs λ′E

)′
and ft =

(
pt η′t

)′
are (1 + r) × 1 vectors and the matrix f is

T × (1 + r), which stacks ft. We have E(ZstuEt) = 0; hence, making use of the (2 + r) × 1
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dimensional moment conditions, the efficient GMM supply elasticity estimator is defined as

θ̂sGMM = argmin
θs

u′EZs
T

Ws
Z ′suE
T

,

=
(
f̂ ′Ẑs Ω̂−1

s Ẑ
′
s f̂
)−1

f̂ ′Ẑs Ω̂−1
s Ẑ

′
syÊ . (2.22)

where Ws
(2+r)×(2+r)

is an arbitrary positive definite weight matrix, but is also optimally set as Ŵs =

Ω̂−1
s , where Ω̂s = 1

T

∑T
t=1 ẐstẐ

′
st(yÊt − f̂

′
t θ̂
s
GMM )2.14 It is clear that (2.22) nests the FGIV

estimator for the supply equation as a special case. As in the just identified case in (2.15), θ̂sGMM in

(2.22) depends on Σ̂−1
u , hence, will generally require an iterative estimation procedure. Algorithm

3 below generalizes Algorithm 1 by extending the joint estimation of the supply elasticity estimator

and the precision matrix to the overidentified case for when kx = 0. In view of Algorithm 2,

Algorithm 3 can be further extended to the case when kx > 0, but we omit the details for brevity.

Algorithm 3 Efficient GMM for φs (when kx = 0):

• Step 1: Run PCA on (2.9) and obtain ẑt = S′Q̂ỹ·t as the sample counterpart of (2.10).

• Step 2: Initialize Σ̂−1
u = IN .

• Step 3: Estimate (2.21) to obtain ε̂, initialize Ŵs = (Ẑ ′sẐs)
−1 and obtain θ̂s2SLS(Ẑs, Σ̂

−1
u ).

• Step 4: Obtain y
Ê

(Σ̂−1
u ).

• Step 5: Update Ŵs =
(

1
T

∑T
t=1 ẐstẐ

′
stû

2
Êt

)−1
, where û

Êt
= y

Êt
− θ̂sGMM (Ẑs, Σ̂

−1
u )′f̂t

and construct θ̂sGMM (Ẑs, Σ̂
−1
u ) as the sample counterpart of (2.22).

• Step 6: Update Σ̂−1
u by inverting Σ̂Tu defined in (2.17).

• Step 7: Iterate Step 4 through Step 6 until convergence.

In addition to efficiency gains, the efficient GMM estimators exhibit superior finite sample prop-

erties and are also robust to the GIV itself being a weak instrument. We illustrate these points in
14In the case of the demand elasticity estimator in (2.21) we use 2SLS residuals to construct Ω̂d. However, we

implement (2.22) via Algorithm 3 which, by iteration, renders the residuals used to construct Ω̂s to be GMM residuals.
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greater detail in Remark 5 and Section 2.7.

The intuition for the overidentified estimators can be seen from observing the reduced

form equation for (equilibrium) prices, pt = 1
φd−φs (uSt + λ′Sηt − εt). Clearly E(ptηt) 6= 0

and E(ptεt) 6= 0 and so instrumental relevancy is established. Thus, we are effectively back to

the classical approach of finding exogenous supply shifters, in this case εt, to estimate the supply

elasticity and finding exogenous demand shifters, in this case ηt, to estimate the demand elasticity.

With the exception that these shifters, ηt and εt are unobserved. In what follows, we show that

estimating ηt and εt has a negligible effect on the limiting distributions of the estimators of demand

and supply elasticities, respectively.

2.5 Assumptions

Below we lay out the assumptions needed to derive our main results. Assumption 1,

Assumption 2 and Assumption 3 are standard in the literature; see, for example, [27], [37] and [41],

but are relevant for a thorough understanding of the subsequent theorems. Whereas, Assumption 4

parts ii.) and iii.) are new so we provide more details.

Assumption 1 (Factor Error Structure) The composite error term in (2.2) is assumed to admit

an (approximate) factor structure representation vit := λ′iηt + uit, where ηt =
(
η1t . . . ηrt

)′
is an r × 1 vector of latent common factors and λi =

(
λ1i . . . λri

)′
is an r × 1 vector of latent

factor loadings. We assume the factors are pervasive in the sense that Λ′Λ/N converges to some

r × r positive definite matrix.

Assumption 2 (Strict Stationarity, Exponential Tails & Strong Mixing)

(A2i.) {ηt, uit, εt}t≥1 is strictly stationary and each with a zero mean.
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(A2ii.) ∃ c1, c2 > 0 with γmin(Σu) > c2, max
j≤N
||γj || < c1, c2 < γmin(cov(ηt)) ≤ γmax(cov(ηt)) <

c1.

(A2iii.) Exponential tail: ∃ r1, r2 > 0 and b1, b2 > 0, such that for any s > 0, i ≤ N and j ≤ r,

P(|uit| > s) ≤ exp(−(s/b1)r1)), and P(|ηt,j | > s) ≤ exp(−(s/b2)r2)).

(A2iv.) Strong Mixing: ∃ r3, C > 0 ∀ T > 0, r−1
1 + r−1

2 + r−1
3 > 1, sup

A∈F0
−∞, B∈F∞T

|P(A)P(B)−

P(AB)| < exp(−CT r3), where F0
−∞ and F∞T denote the σ-algebras generated by {(ηt, uit, εt) :

t < 0} and {(ηt, uit, εt) : t > T} respectively.

Assumption 3 (Sparsity on Σu) Let Σu = (σu,ij), for some q ∈ [0, 1/2), define

mN = max
i≤N

N∑
j=1

|σu,ij |q. (2.23)

We require that there is q ∈ [0, 1/2) such that mNω
1−q
N,T = o(1), where ωN,T =

√
log(N)
T + 1√

N
.

Assumption 4 (Identification by GIV)

(A4i.) E(ztuEt) = E(ztεt) = E(ZstuEt) = E(Zdtεt) = 0.

(A4ii.) The sizes S1, . . . , SN are drawn i.i.d. from an arbitrary distribution for which the tail of the

size distribution (i.e. above some threshold) follows a power law, with tail index, µ ∈ (0, 1)

P(S > s) = cs−µ.

The tail index µ determines the probability of observing extreme values. We assume that Si is inde-

pendent of uit.

(A4iii.) Suppose the sizes are ordered in decreasing fashion as such: S(1) ≥ S(2) ≥ · · · ≥

S(N−1) ≥ S(N), and we partition the cross-section as, Ndominant := {1, . . . , N1} and Nfringe :=
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{N1 +1, . . . , N} such thatNdominant∪Nfringe := Nfull. Let Si = Si∑N
j=1 Sj

denote the normalized

shares such that
∑

i Si = 1. We assume ∀ i ∈ Nfringe, Si = Op
(

1
N

)
.

Remark 2 The first condition gives us instrumental exogeneity for the FGIV and efficient GMM

estimators. The second condition allows for instrumental relevance in the extension of a large N

framework. An important implication of the second condition is that the Herfindahl index, hN,µ,

has the following asymptotic property

√
hN,µ =

∣∣∣∣S∣∣∣∣
2

=


Θp (1) for µ ∈ (0, 1),

Op (gN,µ) for µ ∈ [1, 2),

withOp (gN,µ)� 1/
√
N . The variance of the just identified estimators is inversely proportional to

the Herfindahl index, that is V(φ̂jFGIV ) = O(h−1
N,µ) for j = s, d, reflecting the fact that the more

concentrated the market, the more precise the GIV methodology will be and also reflecting the fact

that if the Herfindahl converges to zero in the limit, the variance will diverge.15 However, if µ is

slightly greater than 1, theoretically identification breaks down for large N but in any finite sample

the GIV could be relevant (precisely due to Op (gN,µ) � 1
√
N ). Nevertheless, we rule this case

out for the purpose of asymptotic inference.16 The third condition is also a generalization of the

so-called "granular" weights in the panel data literature, say w
N×1

, which are typically assumed to

satisfy ||w||2 = O
(

1√
N

)
and wi

||w||2 = O
(

1√
N

)
∀ i. The third condition allows the share vector

to be partitioned into a dominant part and a fringe part. That is, S =
(
S′d S′f

)′
where Sd is

N1 × 1, is the dominant part and Sf is N2 × 1, is the fringe part; with N1 + N2 = N , the key
15The derivation of the asymptotic behavior of hN,µ can be found in Supplementary Appendix 2.12.2.
16For more details on instrumental relevance for large N , see Section 2.7.
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being that one can easily show that N1(N) = N1 is fixed while N2(N) → ∞ as N → ∞. This

assumption can be empirically justified in concentrated markets, see Section 2.9 as an example; as

well as mathematically justified, see [42].

Remark 3 Taking the variance of the equilibrium price process (assuming the covariances to be

zero for simplicity) we obtain V(pt) = 1
(φd−φs)2 (V(uSt) + V(λ′Sηt) + V(εt)) = Θ(1), where

the last equality follows by the second and the third conditions in Assumption 4, details can be

found in Lemma 1 in the Appendix. Without these conditions, one would obtain the unsatisfactory

result that V(pt) = O(N), that is, the variance of the price process is unbounded for each t as

N → ∞. Effectively, Assumption 4 allows the coexistence of a finite number of dominant units, in

terms of size, whose cardinality can not grow withN , while at the same time allowing for a bounded

variance for the aggregate endogenous variable pt.

2.6 Limiting Distributions

In this section, we first present the limiting distributions of the FGIV elasticity estimators,

corresponding to (2.12) and (2.15) with Algorithm 1. We then move on to the limiting distributions

of the efficient GMM elasticity estimators, corresponding to (2.21) and (2.22) with Algorithm 3.

Just identified demand elasticity. The just identified demand elasticity estimator in

(2.12) is given by

φ̂d(ẑ) =

∑T
t=1 ẑtdt∑T
t=1 ẑtpt

=

∑T
t=1

∑
i,j SiQ̂ij ỹjtdt∑T

t=1

∑
i,j SiQ̂ij ỹjtpt

.
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Hence,

φ̂d − φd =

(∑
t

ẑtpt

)−1(∑
t

ẑtεt

)
,

=

(
T−1

∑
t

ztpt + T−1
∑
t

(ẑt − zt)pt

)−1(
T−1

∑
t

ztεt + T−1
∑
t

(ẑt − zt)εt

)
.

From above, it is apparent we need to show 1
T

∑T
t=1(ẑt−zt)εt = 1

T

∑T
t=1 S

′(Q̂−Q)ỹ·tεt = op(1)

and 1
T

∑T
t=1(ẑt − zt)pt = 1

T

∑T
t=1 S

′(Q̂−Q)ỹ·tpt = op(1). Indeed, we show in Lemma 2, in the

Appendix, that

T−1
T∑
t=1

S′(Q̂−Q)ỹ·tεt = Op
(

1

min{N,T}

)
+Op

(
1

min{N,
√
NT}

)
= op(1), (2.24)

T−1
T∑
t=1

S′(Q̂−Q)ỹ·tpt = Op
(

1

min{N,T}

)
+Op

(
1

min{N,
√
NT}

)
= op(1). (2.25)

Thus, making use of (2.24) and (2.25) we obtain

φ̂d − φd =

(∑
t

ẑtpt

)−1(∑
t

ẑtεt

)
=

(
T−1

∑
t

ztpt

)−1

T−1
∑
t

ztεt + op(1). (2.26)

The order of the sampling error generally relies, in part, on the order of the Herfindahl. The order of

the Herfindahl, in turn, critically depends on µ, the tail index of the size distribution. Results on the

order of the Herfindahl as a function of the tail index parameter µ entails a total of six possible cases.

The results can be found in Table 2.6 of Supplementary Appendix 2.12.2. However, for inference,

we require µ ∈ (0, 1) (regularly varying tails) or µ→ 0 (slowly varying tails) as discussed in detail

in the previous section’s remarks. Given this, even after pinning down the order of the Herfindahl,

the panel dimensions can distinguish more cases as seen above. Nevertheless, as (2.24), (2.25) and
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(2.26) indicate, for consistency we have the following result:

Theorem 1 (Consistency of φ̂d) Under Assumptions 1-4, as (N,T )
j→∞, we have

φ̂d − φd p→ 0. (2.27)

Now, multiplying (2.26) by
√
T

√
T (φ̂d − φd) =

(
T−1

∑
t

ztpt

)−1(
1√
T

∑
t

ztεt +Op

( √
T

min{N,T}

)
+Op

( √
T

min{N,
√
NT}

))
,

(2.28)

we can state the following result for the limiting distribution:

Theorem 2 (Limiting distribution for φ̂d) Under Assumptions 1-4 as (N,T )
j→∞, we have that

when N ≥ T or N < T and
√
T/N → 0

√
T (φ̂d − φd) d→ N (0,vd) , (2.29)

where vd := m−2
zp vzε, vzε := E(z2

t ε
2
t ) and mzp := E(ztpt).

vzε can be consistently estimated with

v̂zε =


T−1

∑T
t=1 ẑ

2
t ε̂

2
t HC,

T−1
∑T

t=1 ẑ
2
t ε̂

2
t + 2 · T−1

∑m
j=1

(
1− j

m+ 1

)∑T
t=j+1 ẑtε̂tẑt−j ε̂t−j HAC,

(2.30)
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where HC and HAC denote heteroskedasticity-consistent and heteroskedasticity and autocorrelation

consistent estimators, respectively. Hence
√
T (φ̂d−φd)

v̂
1/2
d

∼ tdf
d→ N (0, 1), where v̂1/2

d = m̂−2
zp v̂

1/2
zε ,

with m̂zp = T−1
∑T

t=1 ẑtpt also consistent for mzp. We will see in Section 2.8 that the asymptotic

theory provides good approximations to the finite sample distribution.

Remark 4 As in GK, we express vd as inversely related to the Herfindahl, hN,µ, as claimed in

Remark 2, for insights on the role of market concentration on precision of the GIV. Assuming con-

ditional homoskedasticity of εt and homoskedasticity of uit, we have that

vzε = E(z2
t ε

2
t ) = σ2

ε · σ2
ũ ·E(S′QS). (2.31)

If λi = λ ∀i, then there is no need to purge the factor structure through the loading space. That

is, a simple cross-sectional demeaning transformation will suffice, Q = (IN − Λ̃(Λ̃′Λ̃)−1Λ̃′) =

(IN − ιι′

N
). We can simplify equation (2.31) to (where we make use of the normalization that

S′ι = 1)

vzε = σ2
ε · σ2

ũ ·
(
E(S′S)− 1

N

)
= σ2

ε · σ2
ũ ·
(
E(hN,µ)− 1

N

)
︸ ︷︷ ︸

E(z2
t )

,

whereas, mzp = E(ptzt) ∝ E(z2
t ). Hence,

vd ∝
σ2
ε · σ2

ũ ·
(
E(hN,µ)− 1

N

)[
σ2
ũ ·
(
E(hN,µ)− 1

N

)]2 =
σ2
ε

σ2
ũ ·
(
E(hN,µ)− 1

N

) . (2.32)

Thus, the more concentrated the market, the more precise the estimator. See Section 2.7 for a more

general treatment.
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Just identified supply elasticity. For the just identified supply elasticity estimator in (2.15),

upon convergence of Algorithm 1, we have that

φ̂s − φs =
(
T−1ẑ

′
Mη̂ p

)−1

︸ ︷︷ ︸
Â−1

T−1ẑ
′
Mη̂ η · λÊ︸ ︷︷ ︸
B̂

+
(
T−1ẑ

′
Mη̂ p

)−1
T−1ẑ

′
Mη̂ uÊ︸ ︷︷ ︸
Ĉ

. (2.33)

We can write the scalars Â, B̂ and Ĉ as follows

Â = T−1z′Mη p+ T−1(ẑ − z)′Mη̂ p︸ ︷︷ ︸
a1

+T−1z′ (Mη̂ −Mη)p︸ ︷︷ ︸
a2

, (2.34)

B̂ = T−1(ẑ − z)′Mη̂ ηλÊ︸ ︷︷ ︸
b1

+T−1z′ (Mη̂ −Mη)ηλÊ︸ ︷︷ ︸
b2

, (2.35)

Ĉ = T−1z′Mη uE + T−1(ẑ − z)′Mη̂ uÊ︸ ︷︷ ︸
c1

+T−1z′ (Mη̂ −Mη)uÊ︸ ︷︷ ︸
c2

+T−1z′Mη (u
Ê
− uE)︸ ︷︷ ︸

c3

.

(2.36)

It is shown in Lemma 3 of the Appendix that the terms ai, bi, cj are op(1) for i = 1, 2; j = 1, 2, 3,

such that

φ̂s − φs =
(
T−1z′Mη p

)−1 (
T−1z′Mη uE

)
+ op(1). (2.37)

We can now state the following result:

Theorem 3 (Consistency of φ̂s) Under Assumptions 1-4, as (N,T )
j→∞, we have

φ̂s − φs p→ 0. (2.38)
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Now, multiplying (2.37) by
√
T

√
T (φ̂s − φs) =

(
T−1z′Mη p

)−1

(
z′Mη uE√

T
+Op

( √
T

min{N,T}

)
+Op

( √
T

min{N,
√
NT}

)
+ . . .

· · ·+Op

(
mNω

1−q
N,T√
T

))
,

(2.39)

we can state the following result for the limiting distribution:

Theorem 4 (Limiting distribution for φ̂s) Under Assumptions 1-4, as (N,T )
j→∞, we have that

when N ≥ T or N < T and
√
T/N → 0

√
T (φ̂s − φs) d→ N (0,vs) , (2.40)

where vs := m
−2
zp̃ vzu, vzu := E(z 2

t (Mη uE) 2
t ) and mzp̃ = E(zt(Mη p)t).

vzu can be consistently estimated with

v̂zu =


T−1

∑T
t=1 ẑ

2
t (Mη̂ ûE) 2

t HC,

T−1
∑T
t=1 ẑ

2
t (Mη̂ ûÊ)2t + 2 · T−1

∑m
j=1

(
1− j

m+ 1

)∑T
t=j+1 ẑt(Mη̂ ûÊ)tẑt−j(Mη̂ ûÊ)t−j HAC.

(2.41)

Hence
√
T (φ̂ s−φs)
v̂

1/2
s

∼ tdf
d→ N (0, 1), where v̂1/2

s = m̂
−2
zp̃ v̂zu, with m̂zp̃ = T−1

∑T
t=1 ẑt(Mη̂ p)t

consistent formzp̃. We will see in Section 2.8 that asymptotic theory provides good approximations

to the finite sample distribution.

Overidentified demand elasticity. For the overidentified demand elasticity estimator
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in (2.21), recall the estimated instrument matrix consists of Ẑd =
(
ẑGIV η̂

)
. For the strong

factors, η̂, estimated via PCA, [5] showed that the generated regressors problem of [43] does not

arise when both N and T are large. Thus, the sampling error in η̂ is negligible in consideration of

the limiting distribution of the overidentified demand elasticity estimate. In the previous section,

we established that estimation of ẑGIV is also negligible under regularity, we can then use standard

asymptotic theory to also obtain asymptotic normality of the efficient GMM estimator in the case

of demand since

φ̂dGMM − φd =
(
p′ Ẑd Ω̂−1

d Ẑ ′d p
)−1

p′ Ẑd Ω̂−1
d Ẑ

′
d ε,

=
(
p′Zd Ω−1

d Z
′
d p
)−1

p′Zd Ω−1
d Z

′
d ε+ op(1). (2.42)

We can now state the following theorem:

Theorem 5 (Limiting distribution for φ̂dGMM ) Under Assumptions 1-4, with E(εtηt) = 0 ∀t, as

(N,T )
j→∞, we have that when N ≥ T or N < T and

√
T/N → 0

√
T (φ̂dGMM − φd)

d→ N
(

0,V(φ̂dGMM )
)
, (2.43)

where

V(φ̂dGMM ) =
(
m′Zdp Ω−1

d mZdp

)−1
, (2.44)

withmZdp = E(Zdt pt) and Ωd = plim T−1
∑T

t=1 ẐdtẐ
′
dt(dt − ptφ̂d2SLS)2.
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V(φ̂dGMM ) can be consistently estimated using 2SLS residuals with

V̂(φ̂dGMM ) =

(
p
′
Ẑd
T

Ω̂−1
d

Ẑ
′
d p

T

)−1

, (2.45)

where Ω̂d = T−1
∑T

t=1 ẐdtẐ
′
dt (dt − ptφ̂

d
2SLS)2. It is well known that V(φ̂dGMM ) attains the

semiparametric efficiency bound, as shown by [44], which reduces to (2.44) in the linear model.

Standard overidentification tests can be carried out since

Jd = T ·

(
T−1

T∑
t=1

Zdt εt(φ̂
d
GMM )

)′
Ω̂−1
d

(
T−1

T∑
t=1

Zdt εt(φ̂
d
GMM )

)
d→ χ2

dfd
, (2.46)

where the degrees of freedom is given by dfd = (1 + r) − kd = r and kd = 1 is the number of

endogenous regressors. We will see that simulation evidence shows that the size of the J-test is near

the nominal size when the true r is used and when rmax > r factors are used; which is important

in empirical work when r is typically estimated and it is generally known that an overestimate of r

is preferred in order to prevent an effect akin to omitted variable bias, see [45] who formalize this

notion.

Overidentified supply elasticity. The full instrument matrix for the overidentified

supply elasticity estimator in (2.22) consists of Ẑs =
(
ẑGIV ε̂ η̂

)
, (recall the factors self

instrument here, as they are part of the supply equation). We show that the sampling error in

Ẑs is indeed negligible. This is again due to both large N and T . As a result, Ωs
(2+r)×(2+r)

=

plim T−1
∑T

t=1 ẐstẐ
′
st(yÊt − f̂

′
t θ̂
s
GMM )2 is sufficient when constructing the efficient weighting

matrix, even though it does not take the sampling error in our estimate of φd into account (since
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ε̂ = ε(φ̂dGMM )). That is

θ̂sGMM − θs =
(
f ′ Ẑs Ω̂−1

s Ẑ
′
sf
)−1

f ′ Ẑs Ω̂−1
s Ẑ

′
suE ,

=
(
f ′Zs Ω−1

s Z
′
sf
)−1

f ′Zs Ω−1
s Z

′
suE + op(1). (2.47)

We can now state the following theorem:

Theorem 6 (Limiting distribution for θ̂sGMM ) Under Assumptions 1-4, as (N,T )
j→∞, we have

that when N ≥ T or N < T and
√
T/N → 0

√
T (θ̂sGMM − θs)

d→ N
(
0,V(θ̂sGMM )

)
, (2.48)

where

V(θ̂sGMM ) =
(
m′Zsf Ω−1

s mZsf

)−1
, (2.49)

withmZsf = E(Zstf
′
t) and Ωs = plim T−1

∑T
t=1 ẐstẐ

′
st(yÊt − f̂

′
t θ̂
s
GMM )2.

V(θ̂sGMM ) can be consistently estimated using GMM residuals with

V̂(θ̂sGMM ) =

(
f̂
′
Ẑs
T

Ω̂−1
s

Ẑ
′
s f̂

T

)−1

, (2.50)

where Ω̂s = T−1
∑T

t=1 ẐstẐ
′
st (y

Êt
− f̂ ′t θ̂sGMM )2. Just as in the case of the overidentified demand

elasticity estimator, (2.49) achieves the semiparametric efficiency bound. Overidentification tests
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can be carried out since

Js = T ·

(
T−1

T∑
t=1

Zst uÊt(θ̂
s
GMM )

)′
Ω̂−1
s

(
T−1

T∑
t=1

Zst uÊt(θ̂
s
GMM )

)
d→ χ2

dfs , (2.51)

where the degrees of freedom are given by dfs = 2− ks = 2− 1 = 1 and ks = 1 is the number of

endogenous regressors for the supply equation.

Remark 5 The asymptotic distribution of the FGIV and efficient GMM estimators of demand and

supply elasticities are established. However, the finite sample moments of these estimators, are un-

bounded to different degrees. The extensive literature on the classic simultaneous equations model

has documented this result in many forms, see [46], [47], [48], [49], [50], [51], [52] and [53].

A complete representation of the above results was given by [54]. Kinal’s result for 2SLS states

that, if the dependent variable, explanatory variables and instruments are jointly normal, then

E||φ̂j2SLS ||m < ∞ for m < `j − kj + 1, j = d, s, where `j is the number of instruments and

kj is the number of endogenous regressors.

Thus, the FGIV estimators for supply and demand exhibit no bounded absolute moments

since `j = kj = 1, j = d, s. Whereas, the efficient GMM estimators exhibits `d−kd = (1+r)−1 =

r bounded absolute moments in finite samples for the case of demand and `s − ks = 2 − 1 = 1

bounded absolute moment in finite samples for the case of supply. Hence, the efficient GMM elas-

ticity estimators (overidentified FGIV estimators) exhibit superior finite sample properties relative

to their (just identified) FGIV counterparts. Of course, in general, just identified instrumental vari-

ables estimators (with strong instruments) exhibit nice properties asymptotically.
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2.7 Weak Instruments

The classical weak instruments framework introduced by [55] has its analog in this frame-

work. Interestingly, here the "weak" aspect is partially linked to the Herfindahl index without mak-

ing the usual local-to-zero assumption as in [55]. Moreover, the traditional notion of local-to-zero

with 1√
T

scaling which matches the rate of convergence of the estimator need not necessarily ap-

ply here for weak instruments to arise. More specifically, the locality to zero can be expressed as

decaying functions of N , except in the case of µ ∈ (0, 1), which we require for inference under

our maintained strong instruments assumption; whereas the rate of convergence is at the
√
T rate.

To make things more clear, it is useful to see the reduced form, equilibrium price equation again.

Recall from (2.3), we have that pt =
1

φd − φs
(uSt + λ′Sηt − εt). Thus, it is clear that for finite N ,

Cov(pt, zt) > 0, which automatically renders the GIV as relevant. However, for large N , writing

zt = S′Qũ·t we observe that

V(S′Qũ·t) = E(S′QE(ũ·tũ
′
·t|Γ)QS) = E(S′QΣũQS), (2.52)

where Σũ := E(ũ·tũ
′
·t). The term inside the expectation can be simplified to

S′QΣũQS = S′QΣuQS +Op
(
N−1

)
≤ S′QS γmax(Σu) +Op

(
N−1

)
≤ S′S · γmax(Σu) · γmax(Q) +Op

(
N−1

)
= O (1)hN,µ +Op

(
N−1

)
, (2.53)
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where we make use of γmax(Σu) = O (1) and the fact that a symmetric idempotent matrix, such as

Q, has eigenvalues of 0 or 1 and so γmax(Q) = 1. Taken together, (2.52) and (2.53) imply

V(zt) ≤ O (1)E(hN,µ) +O
(
N−1

)
. (2.54)

As such, only when we are in a tail regime indexed by µ ∈ (0, 1) do we avoid the locality to zero.

For example, when µ > 2, we have that V(S′Qũ·t) ≤ O (1)E(hN,µ>2) = O
(

1
N

)
. As a result,

when µ > 2, we have that zt = S′Qũ·t = Op
(

1√
N

)
, so our equilibrium price equation simplifies

to the following large N representation

pt =
1

φd − φs
(
λ′Sηt − εt

)
+Op

(
1√
N

)
. (2.55)

This would render the GIV as very weak since Cov(pt, uSt) = Cov(pt, zt) = O
(

1
N

)
. Note that

the Cov(pt, uSt) and Cov(pt, zt) are of the same order precisely because γmax(Q) = 1. (2.55)

is effectively the relationship that was exploited by [26], who assumed the so-called "granular"

weights of order O
(

1
N

)
and used this weak correlation for large N to ultimately deduce that prices

can be treated as weakly exogenous.17

Consider the well documented and empirically relevant case where µ is just above 1

(Zipf’s law corresponds to µ = 1); when µ ∈ (1, 2) we have hN,µ∈(1,2) = Op
(

1/(N
2− 2

µ )
)

.

17"Granular" has a different definition in the panel data literature, which is referring to properties of weights and
heuristically, rules out the existence of dominant units, see e.g., [26] and Remark 2. On the contrary, our usage of the
term "granular" follows [7] and is essentially referring to the existence of dominant cross-sectional units, see Section 2.1.
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So,

pt =
1

φd − φs
(
λ′Sηt − εt

)
+Op

(
1

N
1− 1

µ

)
. (2.56)

Therefore, even though Cov(pt, zt) = O
(

1/(N
2− 2

µ )
)

, it is in fact decaying to zero so slowly for

µ near 1, that this potentially corresponds to a highly relevant instrument in any finite sample. That

is, Cov(pt, zt) = O
(

1/(N
2− 2

µ )
)

, is potentially consistent with zt accounting for large fractions

of aggregate variation, see [7].

However, the case we theoretically entertain, for consistency and valid asymptotic infer-

ence, requires µ ∈ (0, 1), which in conjunction with the additional regularity assumptions, renders

Cov(pt, zt) = Θ(1) even as N →∞.

Rothemberg Representations. Moreover, to further assess the likelihood of weak in-

struments, we can analyze the efficient GMM estimator of the demand elasticity which uses both

the GIV and the factors as instruments and for comparison we can analyze the just identified de-

mand elasticity estimator which uses only the GIV as an instrument. We analyze the overidentified

case with conditional homoskedasticity (assuming only for remainder of this section). Define the

projection matrix PZd = Zd(Z
′
dZd)

−1Z ′d, the 2SLS estimator takes the form

φ̂dGMM − φd =
p′PZd ε

p′PZd p
. (2.57)
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Write the structural and reduced form equations as

d = pφd + ε

p = zπ′ + v, (2.58)

where z
T×(1+r)

=
(
uS η

)
, π

(1+r)×1
=
(

1
φd−φs

1
φd−φs · λ

′
S

)′
and v

T×1
= 1

φd−φs · ε.

Remark 6 The difference between z in (2.58) and our actual instrument, Zd, boils down to the

difference between their first columns, Zd[·, 1] = zGIV = ũ··QS and z[·, 1] = uS = u··S. In the

case of the demand equation, uS is ideal, whereas zGIV is a proxy. The reason the proxy is used

is simply due to a simpler theoretical exposition than a direct estimate for the ideal. Indeed zGIV

is in fact a good proxy. For example, the correlation between uS and zGIV is over 90% regardless

of the complexity of our DGP in Monte Carlo simulations even for small configurations of (N,T ).

Moreover, in the case of the supply equation, uS is no longer valid, whereas zGIV is; see (2.13).

Mathematically, S′u·t − S′Qũ·t = S′PΛ̃u·t = S′PΛ̃PΛ̃u·t for each t, where PΛ̃ is the symmet-

ric and idempotent projection matrix in the demeaned loading space. Hence, S′PΛ̃PΛ̃u·t is zero

when the loadings and the share vector are asymptotically uncorrelated and/or the loadings and

idiosyncratic errors are asymptotically uncorrelated; which explains why our simulations exhibit

near perfect correlation.

Then, it follows from [56] that (2.57) has the following illustrative representation

µd,GMM (φ̂dGMM − φd) =

(
σ2
ε

σ2
v

) 1
2 X + (ω1/µd,GMM )

1 + 2Y/µd,GMM + (ω2/µ2
d,GMM )

, (2.59)

where X = π′z′PZdε/(σ
2
επ
′z′zπ)

1
2 and Y = π′z′PZdv/(σ

2
vπ
′z′zπ)

1
2 are bivariate standard
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normal variates with correlation coefficient ρ. The random variable ω1 = v′PZdε/(σ
2
εσ

2
v)

1
2 has

mean equal to rank(PZd)ρ = (r + 1)ρ and variance equal to (r + 1)(1 + ρ2). The random variable

ω2 = v′PZdv/σ
2
v has mean equal to rank(PZd) = (r + 1) and variance equal to 2(r + 1). Finally,

µd,GMM is the square root of the so-called concentration parameter µ2
d,GMM = π′z′zπ/σ2

v for the

demand equation. µd,GMM plays the role of
√
T , that is, when µd,GMM is large, µd,GMM (φ̂dGMM−

φd) is well approximated by a N (0, 1) variate. Large values of µd,GMM are consistent with large

values of T , i.e., our typical large sample approximations. However, large values of µd,GMM are

also consistent with small values of σ2
v , regardless of the value of T , i.e., small-σ asymptotics,

as introduced originally by [57]. More insights can be gained by simplifying the concentration

parameter for the demand elasticity

µ2
d,GMM = π′z′zπ/σ2

v =
1

σ2
v

·
(
π1 π′2

)u′SuS u′Sη

η′uS η′η

π1

π2

 ≈ u′S uS + λ′SλS
σ2
ε

, (2.60)

where the approximation is due to ignoring the terms involving η′uS , which are zero only in ex-

pectation. (2.60) is very intuitive, if the proportion of the volatility in the GIV and size-weighted

common components dominate the volatility of the demand shocks, so that the ratio in (2.60) is

large, then the concentration parameter µd,GMM will be large and one should expect good approxi-

mations to the finite sampling distributions.

On the other hand, when only the GIV is used as an instrument, if we redefine z
T×1

= uS ,

π
1×1

= 1
φd−φs and v

T×1
= 1

φd−φs · (ε+ ηλS) from (2.58) and simply follow the logic above through

(2.60), we arrive at the following concentration parameter for the FGIV estimator

µ2
d,FGIV ≈

u′SuS
λ′SλS + σ2

ε

. (2.61)
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Thus, by inspection of (2.60) against (2.61) we can see that in the case of the just identified FGIV

estimator, we would need the volatility of just the GIV to drive up the ratio of the concentration

parameter, µ2
d,GIV , and the size-weighted common component would be working against us (in the

denominator), in this case, instead of working for us as in µ2
d,GMM .

Although the literature on granularity has demonstrated that idiosyncratic shocks alone

can be quite volatile, in this context, we advocate starting with the efficient GMM estimators, since

the J-test is well sized as illustrated with simulation evidence, because the efficient GMM estimators

can exhibit substantially improved finite sample properties relative to the just identified estimators

and are less likely to suffer from weak instrument issues as well.

2.8 Monte Carlo

We simulate the following panel simultaneous equations system with latent factor struc-

ture that was analyzed in the theoretical sections:

dt = φdpt + εt, yit = φspt + λ1iη1t + λ2iη2t + uit, ySt = dt,

pt =
1

φd − φs
(
uSt + λ′Sηt − εt

)
, Si =

(
i

N

)− 1
µ

, Si =
Si∑N
j=1 Sj

.

We consider two sets of simulated experiments. In Design 1, we let uit be i.i.d. to establish a set

of baseline results. In Design 2, we allow for sparse cross-sectional dependence in uit. In addition,

in unreported simulations, we simulate zt,GIV to be a weak instrument to illustrate that the efficient

GMM estimators are robust to this as they optimally shift their weights away from this point of

weakness, whereas the just identified estimators of GK and our FGIV will substantially deteriorate
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in their performances.

Design 1 - uit i.i.d. case. We set φs = 0.1 and φd = −0.3. We draw the supply

factors and loadings as, η
T×r

i.i.d.∼ N (0, Ir) and Λ
N×r

i.i.d.∼ N (0, σ2
ΛIN ), respectively, with r = 2.18

We draw the idiosyncratic supply shocks as u
T×N

i.i.d.∼ N (0, σ2
uIN ⊗ IT ) and aggregate demand

shocks as ε
T×1

i.i.d.∼ N (0, σ2
εIT ).

Design 2 - uit non-i.i.d. case. Everything is identical to Design 1, except that we

no longer set Σu = σ2
uIN for each t = 1, . . . , T . We generate a non-diagonal banded covariance

matrix; as such, it satisfies the sparsity requirement from Assumption 3.19 We consider the following

banded idiosyncratic covariance matrix with cross-sectional dependence and heteroskedasticity

σu,ij =


τ |i−j|

√
σu,iσu,j |i− j| ≤ k; k ≥ 0,

0 |i− j| > k,

(2.62)

with bandwidth k = 3 and σ2
u,i are drawn from U [0.5, 1].

Target parameterizations. The variance of the price process takes the following form

V(pt) = c · (V(uSt) +V(λ′Sηt) +V(εt)), where c =
1

(φd − φs)2
. This conveniently allows

us to parameterize the relative volatilities of the various components of equilibrium prices. We

parameterize the individual variances, σ2
u (for Design 1), σ2

Λ and σ2
ε such that ψu :=

V (
√
c · uSt)

V(pt)
∈

(0.15, 0.35), ψu+η :=
V (
√
c · (uSt + λ′Sηt))

V(pt)
∈ (0.45, 0.65), andψu+ε :=

V (
√
c · (uSt + εt))

V(pt)
∈

(0.45, 0.65).20 In Design 1, we achieve an average across simulations of ψ̄u ≈ 0.23, ψ̄u+η ≈ 0.58

18The results do not change significantly if we draw the loadings from a Uniform distribution with non-zero mean.
19In unreported simulations, we find that the results do not change significantly if we generate a dense, non-diagonal

Σu, such as one arising from a cross-sectional AR(p) process. This is because although the cross-sectional AR(p)
generates a dense matrix, it is not too dense since the off-diagonals decay exponentially fast to 0 as |i− j| → ∞.

20The interval forψu is consistent with the literature on granularity, which has documented the proportion of aggregate
fluctuations traced back to idiosyncratic shocks falling in this specified range.
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and ψ̄u+ε ≈ 0.65 which implies that ψ̄η = 0.35 and ψ̄ε = 0.42. That is, the idiosyncratic shocks

are not the dominating force in terms of observed price volatility; however, their granular role is

still substantial enough to draw inferences from when used as instruments. In Design 2, we achieve

an average across simulations of ψ̄u ≈ 0.27, ψ̄u+η ≈ 0.64 and ψ̄u+ε ≈ 0.63.

Let φ̂j(m), j = d, s, denote the estimate in themth monte carlo repetition, m = 1, ...,M .

We report the monte carlo bias: Bias(φ̂j) =

(
1

M

∑M
m=1 φ̂

j(m)− φj
)

for j = d, s; and square

root of the monte carlo MSE: RMSE(φ̂j) =

√
1

M

∑M
m=1(φ̂j − φj)2 for j = s, d. Additionally we

report the size of the t-test for all estimators and size of the J-test for the efficient GMM estimators.

The results are reported in Table 2.1 (Design 1) and Table 2.2 (Design 2). In Table 2.1, we multiply

the bias by 100 because all the estimators perform quite well in this ideal setting. For nearly each

configuration of (N,T ) the GMM estimators perform the best, in terms of bias and RMSE, as the

theory suggests. Importantly, the t-test and J-test is well sized even when rmax = 3 > r = 2

factors are used. In Table 2.2, we report the bias as is, and we find that for a given configuration of

(N,T ) the bias is two orders of magnitude larger in Design 2 relative to Design 1. Nevertheless, as

the theory would suggest, the efficient GMM estimators perform the best in terms of bias and RMSE.

There are some size distortions for the supply side estimators but the distortions are decreasing in

N for a given T .

2.9 Empirical Application to Global Crude Oil Markets

The data construction follows the recent literature: [58], [59], [60] (hereafter BH) and

GK. The following is a breakdown of the raw variables collected for Jan. 1985 - Dec. 2015 (T =

372 months): monthly oil production for N = 22 countries from the U.S. Energy Information
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Administration (hereafter EIA); world oil production from the U.S. EIA; monthly oil prices based

on the refiner acquisition cost of imported crude oil from the U.S. EIA; U.S. CPI from the St. Louis

FRED database; monthly change in inventories from BH; monthly industrial production index from

BH. The CPI is used to deflate nominal oil prices to arrive at the real price of oil, which is highly

non-stationary. Following the aforementioned literature, we take the logarithm of the real price

of oil series and then take first differences. We apply the same transformation to the monthly oil

production for each country. These transformations render the production and price series stationary

as confirmed by a host of Dickey-Fuller tests. For ensuring the tail index of the size-distribution, µ,

is in the region the theory requires, we provide visual evidence along with 6 estimates of µ that all

fall beneath 1, see Table 2.3. Also, see Figure 2.3, Figure 2.4 & Figure 2.5.

Let yit denote the log difference of the oil supply for country i at time t and pt denote the

log difference of the real price of oil. Following GK, we estimate an OPEC factor using information

on the cross-section of countries (i.e., known loadings). To that end, let oit denote a dummy variable

equal to 1 if country i is an OPEC member at time t and note that oit = oi for most i, with the

exception of Gabon and Ecuador in our sample. Finally, ct−1 denotes a 4 × 1 vector containing:

lagged pt, lagged world supply growth, lagged change in inventories, and lagged growth in industrial

production. The system is given as follows

yit = φspt + γ ′sct−1 + oitηOPEC,t + λ′iηt + uit, (2.63)

dt = φdpt + γ ′dct−1 + λdηOPEC,t + εt, (2.64)

N∑
i=1

Sit yit = dt; (2.65)

where we lose the observation t = 1 due to differencing. The cross-sectionally demeaned supply
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equation is given by the approximate factor model,

ỹit = yit −
1

N

∑
i

yit = õitηOPEC,t + λ̃′iηt + ũit = õitηOPEC,t + ẽit, (2.66)

where ẽit := λ̃′iηt+ũit. Note that (2.66) implies we can obtain the OPEC factor, ηOPEC,t, via cross-

sectional regression, for each t > 1, that is η̂OPEC,t = (õ′·tõ·t)
−1õ′·tỹ·t. Hence, in our preliminary

stage, we extract η̂OPEC,t and then run PCA on ̂̃eit = ỹit − η̂OPEC,t to extract the latent demeaned

loadings and latent factors. Define y∗·t := ỹ·t − x̃·tη̂OPEC,t, then we purge the latent factors via Q

as in the main text: Qy∗·t = Qũ·t. However, when forming the GIV, there is a minor difference

that we have time-varying size-weights, so we no longer construct zGIV with a time-invariant share

vector Si, but rather we weight each idiosyncratic component at time t with its corresponding share

from time t− 1 to avoid endogeneity issues arising from contemporaneous weighting

zGIV
(T−1)×1

=



S′·1Qỹ
∗
·2

S′·2Qỹ
∗
·3

...

S′·T−1Qỹ
∗
·T


. (2.67)

Besides these modifications from the stylized model in the theory, we estimate the elasticities using

the estimators outlined in the main text. The number of factors, r, is estimated via the AH pro-

cedures (as outlined in the Supplementary Appendix 2.12.3). The ER method of AH estimated

r̂ER = 1, while the GR method estimated r̂GR = 3; with kmax = 10. To be safe, we take

r̂ = r̂GR + 1.

Supply results. The results for the supply elasticity are presented in Table 2.4. In Table

2.4, the 2nd column displays GK’s results. The instrument GK use is given by (2.8) and their
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dependent variable is simply the cross-sectional average of the log difference of oil supply (i.e.,

E = ι/N ). Our results are in columns 3 and 4. In contrast to (2.8), the instrument we use in

column 3 purges the common factors through the loading space. The instrument we use in column

4 also adds an estimate of the unobserved aggregate demand shocks, ε̂t, to our FGIV. Moreover,

the dependent variable we use is weighted using the estimated precision vector Ê, which allows

for cross-sectional correlations and heteroskedasticity in uit. These differences lead to significantly

different results. Columns 2 and 3, which attempt to use only GIVs as instruments, both lead to weak

instruments as indicated by the first-stage F -statistics less than the rule of thumb, 10. Nevertheless,

the FGIV supply elasticity estimate (0.016) from column 3 (estimated via Algorithm 1) is roughly

one third that of GK’s (0.044). Whereas, our efficient GMM supply elasticity estimate (0.005) from

column 4 (estimated via Algorithm 3) is highly significant at the 1% level. Additionally, our results

reveal that using estimates of unobserved aggregate demand shocks as supply instruments indeed

renders a strong instrument as indicated by the first-stage F -stat of 14.33 in column 4. Moreover,

the p-value for the J-statistic (0.11) fails to reject the null hypothesis of a valid model. An F -stat

greater than 10, coupled with a small J-statistic provides statistical evidence in favor of our efficient

GMM point estimate for the supply elasticity.

Demand results. Turning now to the demand elasticity in Table 2.5, the dependent

variable GK use in this case is the same as the one we use. However, the instruments are different.

Column 2 displays GK’s demand elasticity (-0.463), again using the instrument as in (2.8). Column

3 presents our result when using only the FGIV as an instrument (-.0009), which is roughly 400

times smaller than GK’s estimate. Columns 4 through 7 sequentially add principal components to

the instrument vector for our efficient GMM estimator from column 3 until 4 principal components
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are used. Here we find that none of the models yield first-stage F -statistics greater than 10. It

is reassuring, however, that the J-statistic for columns 4 through 7 all fail to reject the null of a

valid model. Lastly, column 8 presents the [5] estimator which only includes the four principal

components but not the FGIV as instruments, nearly all statistics remain unchanged except that

inclusion of the FGIV increases the t-stat by about 25%.

Taken together, our empirical results suggest that supply shocks, whether they be aggre-

gate or idiosyncratic supply shocks, albeit valid, do not serve as strong instruments for estimation

of the demand elasticity. Whereas, aggregate demand shocks indeed seem to be a strong source of

exogenous variation to tease out the supply elasticity.

2.10 Concluding Remarks

In this paper, we have further developed the GIV methodology introduced by [1], which

takes advantage of panel data to construct instruments for estimation of structural time series regres-

sion models that involve endogenous regressors. This paper focuses on the underlying econometric

issues involved in developing FGIV in a large N and large T framework where the loadings are

treated as unknown parameters to be estimated before constructing the FGIV instrument. We fur-

ther demonstrate that the sampling error arising from estimating the instrument, factors and a high

dimensional precision matrix does not affect the limiting distribution for the structural parameters

of interest. We also overidentify the structural parameters, which leads to new and improved results

in the crude oil markets application and demonstrate that the J-test is well sized with simulation

evidence. Our Monte Carlo study illustrates that our estimators and algorithms exhibit desirable

performance with the finite sample distributions being well approximated by the asymptotic distri-
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butions.

More fruitful areas of research would be empirical applications of the theoretical results

derived in this paper. Interesting theoretical extensions would be to allow for random slope coeffi-

cients with correlated heterogeneity, the presence of weak factors and unbalanced panels with data

not missing at random. We are currently pursuing the dynamic panel data extension, as well as

adapting the GIV methodology for unit-specific endogenous variables.

Table 2.1: Bias×100, RMSE, size of t-test and size of J-test for design 1.

Finite sample properties for Design 1.

N T µ φ̂sFGIV φ̂sGK φ̂sGMM φ̂ s,rmaxGMM φ̂dFGIV φ̂dGK φ̂dGMM φ̂d,rmaxGMM
1 30 400 0.92 0.0612 0.0910 0.0164 0.0273 -0.2760 -0.2723 0.1100 0.2100

(0.0344) (0.0330) (0.0204) (0.0204) (0.0152) (0.0173) (0.0079) (0.0080)
[0.0635] [0.1205] [0.0830] [0.0830] [0.0570] [0.0510] [0.0685] [0.0735]
{N.A.} {N.A.} {0.0540} {0.0625} {N.A.} {N.A.} {0.0490} {0.0465}

2 50 400 0.85 0.0071 0.0774 0.0174 0.0224 -0.1803 -0.1649 0.1462 0.2306
(0.0313) (0.0292) (0.0200) (0.0200) (0.0106) (0.0186) (0.0058) (0.0059)
[0.0650] [0.2685] [0.0710] [0.0715] [0.0555] [0.0555] [0.0700] [0.0740]
{N.A.} {N.A.} {0.0520} {0.0510} {N.A.} {N.A.} {0.0480} {0.0550}

3 100 400 0.80 0.0059 0.0159 0.0070 0.0102 -0.1886 -0.1558 0.1449 0.2330
(0.0287) (0.0271) (0.0196) (0.0197) (0.0068) (0.0112) (0.0039) (0.0040)
[0.0610] [0.2505] [0.0585] [0.0615] [0.0515] [0.0540] [0.0705] [0.0790]
{N.A.} {N.A.} {0.0495} {0.0485} {N.A.} {N.A.} {0.0440} {0.0425}

4 200 400 0.77 0.0192 0.0246 -0.006 0.0010 -0.1896 -0.1713 0.0524 0.1409
(0.0276) (0.0263) (0.0188) (0.0188) (0.0046) (0.0080) (0.0027) (0.0027)
[0.0600] [0.2660] [0.0545] [0.0535] [0.0410] [0.0450] [0.0625] [0.0635]
{N.A.} {N.A.} {0.0590} {0.0620} {N.A.} {N.A.} {0.0495} {0.0425}

5 500 400 0.75 -0.0013 -0.0078 -0.0097 -0.0102 0.2501 0.2255 -0.0893 -0.1747
(0.0287) (0.0280) (0.0188) (0.0187) (0.0028) (0.0030) (0.0016) (0.0016)
[0.0545] [0.0840] [0.062] [0.0625] [0.0540] [0.0590] [0.0680] [0.0730]
{N.A.} {N.A.} {0.0560} {0.0535} {N.A.} {N.A.} {0.054} {0.051}

Notes: We report Bias×100, (RMSE), [t-test],and {J-test} (if applicable) with a nominal size of 5%. φ̂sFGIV , φ̂sGMM ,
φ̂s,rmaxGMM estimated with Algorithm 1, 3, 3 with r = 2 and rmax = 3, respectively and φ̂sGK , φ̂dGK both use (2.8) as an
instrument. φ̂dFGIV , φ̂dGMM , φ̂d,rmaxGMM estimated with (2.12), (2.21), (2.21) with r = 2 and rmax = 3, respectively. µ
set to maintain hN,µ = 0.12 across all configurations of (N,T ). ψ̄u = 0.23, ψ̄u+η = 0.58, ψ̄u+ε = 0.65.
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Table 2.2: Bias, RMSE, size of t-test and size of J-test for design 2.

Finite sample properties for Design 2.

N T µ φ̂sFGIV φ̂sGK φ̂sGMM φ̂ s,rmaxGMM φ̂dFGIV φ̂dGK φ̂dGMM φ̂d,rmaxGMM
1 30 400 0.92 0.0263 0.0225 0.0080 0.0089 -0.0021 -0.0016 0.0003 0.0009

(0.0365) (0.0259) (0.0150) (0.0151) (0.0371) (0.0368) (0.0148) (0.0161)
[0.2730] [0.2895] [0.12450] [0.1410] [0.0500] [0.0510] [0.0560] [0.0600]
{N.A.} {N.A.} {0.1895} {0.3035} {N.A.} {N.A.} {0.05200} {0.0465}

2 50 400 0.85 0.0144 0.0136 0.0058 0.0063 -0.0009 -0.0007 0.0007 0.0013
(0.0245) (0.0219) (0.0154) (0.0155) (0.0381) (0.0327) (0.0112) (0.0117)
[0.4030] [0.4090] [0.1245] [0.1410] [0.0465] [0.0490] [0.0705] [0.0735]
{N.A.} {N.A.} {0.1185} {0.1615} {N.A.} {N.A.} {0.0425} {0.0405}

3 100 400 0.80 0.0070 0.0065 0.0029 0.0031 -0.0006 -0.0004 0.0009 0.0014
(0.0221) (0.0196) (0.0137) (0.0139) (0.0117) (0.0196) (0.0068) (0.0069)
[0.1365] [0.3865] [0.0925] [0.0915] [0.0465] [0.0455] [0.0530] [0.0590]
{N.A.} {N.A.} {0.0895} {0.0955} {N.A.} {N.A.} {0.0495} {0.0510}

4 200 400 0.77 0.0031 0.0029 0.0015 0.0016 -0.0011 -0.0009 0.0006 0.0010
(0.0216) (0.0197) (0.0139) (0.0139) (0.0071) (0.0130) (0.0044) (0.0045)
[0.0950] [0.3645] [0.0745] [0.0760] [0.0400] [0.0455] [0.0640] [0.0665]
{N.A.} {N.A.} {0.0590} {0.0615} {N.A.} {N.A.} {0.0510} {0.0515}

5 500 400 0.75 0.0014 0.0014 0.0006 0.0006 -0.0011 -0.0009 0.0004 0.0008
(0.0218) (0.0209) (0.0141) (0.0141) (0.0037) (0.0042) (0.0024) (0.0024)
[0.0690] [0.1125] [0.0670] [0.0690] [0.0515] [0.0570] [0.0605] [0.0675]
{N.A.} {N.A.} {0.0535} {0.0520} {N.A.} {N.A.} {0.0575} {0.0555}

Notes: We report Bias, (RMSE), [t-test],and {J-test} (if applicable) with a nominal size of 5%. φ̂sFGIV , φ̂sGMM , φ̂s,rmaxGMM

estimated with Algorithm 1, 3, 3 with r = 2 and rmax = 3, respectively and φ̂sGK , φ̂dGK both use (2.8) as an instrument.
φ̂dFGIV , φ̂dGMM , φ̂d,rmaxGMM estimated with (2.12), (2.21), (2.21) with r = 2 and rmax = 3, respectively. µ set to maintain
hN,µ = 0.12 across all configurations of (N,T ). ψ̄u = 0.23, ψ̄u+η = 0.58, ψ̄u+ε = 0.65.

Table 2.3: Tail index estimates by various methods
Tail index estimator µ̂
MLE 0.4216
OLS 0.5095
Percentiles Method 0.8987
Modified Percentiles Method 0.9000
Geometric Percentiles Method 0.5208
Weighted Least Squares 0.3725

Notes: The estimates are for a month selected
at random. However, the estimates do not
change significantly if we estimate µ̂ for each
month and average across months.
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Table 2.4: Global crude oil market: supply elasticity
φ̂sGK φ̂sFGIV φ̂sGMM

Supply instruments ZGIV zGIV Zs = (zGIV , ε)

Dep. variable ȳ y
Ê

y
Ê

p 0.044 0.016 0.005

t-stat (1.43) (1.35) (4.32)

(N,T ) (21, 370) (21, 370) (21, 370)

J-stat p-value {N.A.} {N.A.} 0.11

First stage F -stat < 10 < 10 14.33

First stage R2 0.26 0.14 0.21

Notes: φ̂sGK is estimated using (2.8) as the instrument; whereas φ̂sFGIV ,
and φ̂sGMM are estimated using Algorithm 1 and 3 respectively. See
Section 2.9 for more details. The t-stat is reported in parenthesis below
coefficient estimates. The coefficient estimates on η̂t,η̂OPEC,t and ct−1

are omitted for brevity.

Table 2.5: Global crude oil market: demand elasticity

φ̂dGK φ̂dFGIV φ̂dGMM (r) FGMM, BN

Demand instruments ZGIV zGIV (zGIV ,η[, 1]) (zGIV ,η[, 1 : 2]) (zGIV ,η[, 1 : 3]) (zGIV ,η[, 1 : 4]) η[, 1 : 4]

Dep. variable d d d d d d d

p −0.463 −0.0009 −0.0009 −0.0003 −0.0003 −0.0003 −0.0003

t-stat (−3.54) (−0.88) (−0.89) (−0.87) (−0.93) (−1.01) (−0.80)

(N,T ) (21, 370) (21, 370) (21, 370) (21, 370) (21, 370) (21, 370) (21, 370)

J-stat p-value {N.A.} {N.A.} 0.83 0.67 0.85 0.93 0.98

First stage F -stat < 10 < 10 < 10 < 10 < 10 < 10 < 10

First stage R2 0.58 0.12 0.12 0.15 0.15 0.16 0.16

Note: φ̂dGK is estimated using (2.8) as the instrument; whereas φ̂dFGIV , and φ̂dGMM are estimated using (2.12) and (2.21) respectively. See Section 2.9
for more details. The t-stat is reported in parenthesis below coefficient estimates. The coefficient estimates on η̂OPEC,t and ct−1 are omitted for brevity.
The final column represents the [5] factor GMM estimator (FGMM).
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2.11 Appendix

In this appendix, we prove Theorems 1-6, which require 4 lemmas. Lemmas 1, 2 and 3

are included in this appendix while Lemma 4 is deferred to Appendix 2.12.2 of the Supplementary

Appendix.

Lemma 1 Under Assumptions 1-4, we have that

(i.)

(
1

T

T∑
t=1

ỹitεt

)2

= op (1) (2.68)

(ii.) V(pt) = Θ(1) (2.69)

(iii.)

(
1

T

T∑
t=1

ỹitpt

)2

= Op (1) (2.70)

(iv.)
N∑
i=1

N∑
j=1

(
1

T

T∑
t=1

Siỹjtεt

)2

= op(N). (2.71)

Proof of Lemma 1: For (i.), we have that for large T , the sum converges to its expected value of

zero. For (ii.), note that by Assumption 3 we can decompose our share vector into a dominant and

a fringe part: S =
(
S′d S′f

)′
where Sd is N1 × 1, is the dominant part and Sf is N2 × 1, is the

fringe part; with N1 + N2 = N . The key being that N1(N) = N1 is fixed while N2(N) → ∞ as

N →∞. Recall that prices are given by pt =
1

φd − φs
(uSt + λ′Sηt − εt). For simplicity, suppose

that supply and demand shocks are uncorrelated, so that (ignoring the squared constant term)

V(pt) = E(S′ΣuS) +E(S′ΛΛ′S) +V(εt) = E(S′ΣuS) +E(S′dΛdΛ
′
dSd) +E(S′fΛfΛ

′
fSf ) +V(εt)

≤ E(||S||22γmax(Σu)) +E(||Sd||22γmax(ΛdΛ
′
d)) +E(||Sf ||22γmax(ΛfΛ

′
f )) +O(1),
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by Assumption 3 and Assumption 4; the first term consists of ||S||2, which is Θp(1) for µ ∈ (0, 1),

see Lemma 1 in Appendix 2.12.2 of the Supplementary Appendix, and γmax(Σu) = O(1) by

assumption, the second term is O(1) by Assumption 4 and the third term is O( 1
N ) · O(N) = O(1)

by Assumption 4. For part (iii.),

(
1

T

T∑
t=1

ỹitpt

)
≤

(
1

T

T∑
t=1

ỹ2
it

) 1
2

·

(
1

T

T∑
t=1

p2
t

) 1
2

=

(
1√
T
||ỹi·||

)
·
(

1√
T
||p||

)
= Op(1).

For part (iv.), we have

N∑
i=1

N∑
j=1

(
1

T

T∑
t=1

Siỹjtεt

)2

= I + II + III + IV,
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where I = op(1), II = op(1), III = op
(

1
N

)
and IV = op(N) are show below

I =

N1∑
i=1

S2
i

N1∑
j=1

(
1

T

T∑
t=1

ỹjtεt

)2

= ||Sd||2 · op(N1) = op(1)

II =
N∑

i=N1+1

S2
i

N∑
j=N1+1

(
1

T

T∑
t=1

ỹjtεt

)2

= ||Sf ||2 · op(N2) = Op
(

1

N

)
op(N) = op(1)

III =
N∑

i=N1+1

S2
i

N1∑
j=1

(
1

T

T∑
t=1

ỹjtεt

)2

= ||Sf ||2 · op (N1) = op

(
1

N

)

IV =

N1∑
i=1

S2
i

N∑
j=N1+1

(
1

T

T∑
t=1

ỹjtεt

)2

= op (N) ,

by Assumption 4 and Lemma 1 part (i.) �

Lemma 2 Under Assumptions 1-4, we have that

1

T

T∑
t=1

(ẑt − zt)εt =
1

T

T∑
t=1

S′(Q̂−Q)ỹ·tεt = op (1) +Op
(

1√
N
· C−1

NT

)
= op(1) (2.72)

1

T

T∑
t=1

(ẑt − zt)pt =
1

T

T∑
t=1

S′(Q̂−Q)ỹ·tpt = op (1) +Op
(

1√
N
· C−1

NT

)
= op(1), (2.73)

where CNT = min{
√
N,
√
T}.

Proof of Lemma 2: For the first term, it is well known that the loadings are only identified up to
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scale, so the usual notion of consistency is altered to consider consistency up to a rotation instead.

For notational ease we will let Λ̃ be denoted by Λ. Recall, Q = IN − PΛH−1 is an idempotent

matrix spanned by the null space of ΛH−1 and is invariant to an orthogonal transformation. Let

D̂ =
Λ̂′Λ̂

N
=

1

N

∑N
i=1 λ̂iλ̂

′
i and D =

H−1′
(Λ′Λ)H−1

N
=

1

N
H−1′∑N

i=1 λiλ
′
iH
−1, then we

have (omitting subscripts on P )

Q̂−Q = P̂ − P

= N−1Λ̂

(
Λ̂′Λ̂

N

)−1

Λ̂′ −N−1ΛH−1

(
H−1′

(Λ′Λ)H−1

N

)−1

H−1′
Λ′

= N−1
[
Λ̂D̂−1Λ̂′ −ΛH−1D−1H−1′

Λ′
]

= N−1
[
(Λ̂−ΛH−1 + ΛH−1)D̂−1(Λ̂−ΛH−1 + ΛH−1)′ −ΛH−1D−1H−1′

Λ′
]

= N−1 [ (Λ̂−ΛH−1)D̂−1(Λ̂−ΛH−1)′ + (Λ̂−ΛH−1)D̂−1H−1′
Λ′ + . . .

· · ·+ ΛH−1D̂−1(Λ̂−ΛH−1) + ΛH−1(D̂−1 −D−1)H−1′
Λ′ ] .

Therefore, 1
T

∑T
t=1 S

′(Q̂−Q)ỹ·tεt = I + II + III + IV . Each term is analyzed below
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in order.21

I =
1

NT

T∑
t=1

S′(Λ̂−ΛH−1)D̂−1(Λ̂−ΛH−1)′ỹ·tεt

=
1

N

N∑
i=1

N∑
j=1

(λ̂i −H−1λi)
′D̂−1(λ̂j −H−1λj) ·

1

T

T∑
t=1

Siỹjtεt

≤

 1

N2

N∑
i=1

N∑
j=1

[
(λ̂i −H−1λi)

′D̂−1(λ̂j −H−1λj)
]2

 1
2

·

 N∑
i=1

N∑
j=1

(
1

T

T∑
t=1

Siỹjtεt

)2
 1

2

(2.74)

≤

 1

N2

N∑
i=1

N∑
j=1

||(λ̂i −H−1λi)||2 · ||D̂−1||2 · ||(λ̂j −H−1λj)||2
 1

2

· op (N)

= ||D̂−1|| ·

( 1

N

N∑
i=1

||(λ̂i −H−1λi)||2
)2
 1

2

· op (N) = Op(1) · Op(C−2
NT ) · op (N) = op (1) ,

where Op(C−2
NT ) follows from symmetry of Theorem 1 in [24], who show (while proving their

Lemma 2) ||D̂−1|| is Op(1) which again follows symmetrically here. Note, the first inequality

follows from Cauchy-Schwarz applied to the summation in (i, j); the second inequality follows

from Cauchy-Schwarz applied again but to the left most term’s inner term in brackets being squared,

21In this Appendix, we use the Frobenius norm of a matrixA is ||A||F = [tr(A′A)]
1
2 =

[∑
i

∑
j |aij |

2
] 1

2 , but omit
the subscript F for notational ease.
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in equation (2.74).

II =
1

NT

T∑
t=1

S′(Λ̂−ΛH−1)D̂−1H−1′
Λ′ỹ·tεt

=
1

N

N∑
i=1

(λ̂i −H−1λi)
′ D̂−1

N∑
j=1

H−1′
λj ·

1

T

T∑
t=1

Sj ỹitεt︸ ︷︷ ︸
ai
r×1

= Op
(
C−2
NT

)
, (2.75)

which is the same rate as I . In (2.75), we make use of the fact that N−1
∑

i(λ̂i −H−1λi)
′ai =

Op
(
C−2
NT

)
, which follows symmetrically from Lemma B.1 of [27]. The same logic leads to III =
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Op
(
C−2
NT

)
.

IV =
1

NT

T∑
t=1

S′ΛH−1(D̂−1 −D−1)H−1′
Λ′ỹ·tεt

=
1

N

N∑
i=1

N∑
j=1

Siλ
′
iH
−1(D̂−1 −D−1)H−1′

λj ·
1

T

T∑
t=1

ỹjtεt

≤

 1

N2

N∑
i=1

N∑
j=1

S2
i

[
λ′iH

−1(D̂−1 −D−1)H−1′
λj

]2

 1
2

· Op (1)

≤

 1

N2

N∑
i=1

N∑
j=1

S2
i · ||λ′iH−1||2 · ||D̂−1 −D−1||2 · ||H−1′

λj ||2
 1

2

· Op (1)

= Op(C−1
NT ) ·

(
1

N

N∑
i=1

S2
i · ||λ′iH−1||2

) 1
2

· Op(1) · Op (1)

= Op(C−1
NT ) ·

 1

N

 N1∑
i=1

S2
i · ||λ′iH−1||2 +

N∑
i=N1+1

S2
i · ||λ′iH−1||2

 1
2

· Op(1) · Op (1)

≤ Op(C−1
NT ) ·

 1

N

(
N1∑
i=1

S4
i

) 1
2

·

(
N1∑
i=1

||λ′iH−1||4
) 1

2

+
1

N

 N∑
i=N1+1

S4
i

 1
2

·

 N∑
i=N1+1

||λ′iH−1||4
 1

2


1
2

= Op
(
C−1
NT

)
·
(
Op
(
N1

N

)
+Op

(
1

N

)) 1
2

= Op
(
C−1
NT

)
· Op

(
1√
N

)
,

where ||D̂−1−D−1|| = Op(C−1
NT ) again follows symmetrically from [24]. All in all, we have that

1

T

T∑
t=1

S′(Q̂−Q)ỹ·tεt = Op
(
C−2
NT

)
+Op

(
1√
N
· C−1

NT

)
= op(1),

which is as the Lemma claimed. �

Proof of Theorem 1: In light of Lemma 2, the result follows immediately from (2.26) by observing

that 1
T

∑
t ptzt

p→ E(ptzt) > 0 for µ ∈ (0, 1). Similarly, 1
T

∑
t ztεt

p→ E(ztεt) = 0 by Assumption

4. �
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Proof of Theorem 2: Under Assumptions 1-4 and Lemma 2, the result follows immediately. �

As in the case of the demand elasticity, we need Lemma 3 before consistency and the

limiting distribution of the supply elasticity can be established.

Lemma 3 Under Assumptions 1-4, we have that the terms ai, bi, cj for i = 1, 2; and j = 1, 2;

defined in equations (2.34), (2.35) and (2.36) are op (1) + Op
(

1√
N
· C−1

NT

)
= op(1). While for

j = 3, c3 is Op
(
mNω

1−q
N,T

T

)
= op(1).

Proof of Lemma 3: The terms, a1, b1, and c1 follow very similarly as the proof for Lemma 2 and

hence are omitted and the terms a2, b2 and c2 follow symmetrically to the proof of Lemma 2 and

thus, they are also omitted. The term c3 is novel and warrants some further analysis. Recall c3 is

given by c3 = T−1z′Mη (u
Ê
− uE). Let us focus on (u

Ê
− uE) = u··(Ê − E) momentarily,

where u·· is the T × N matrix of idiosyncratic errors and Ê − E =
Σ̂−1
u ι

ι′Σ̂−1
u ι
− Σ−1

u ι

ι′Σ−1
u ι

. Let

Θu := Σ−1
u , C := ι′Θuι

N , then E = Θuι/N
C . We have that

Ê −E =

[
CΘ̂uι− ĈΘuι

]
/N

ĈC
=

[
CΘ̂uι− CΘuι+ CΘuι− ĈΘuι

]
/N

ĈC
,

=

[
C(Θ̂u −Θu)ι+ (C − Ĉ)Θuι

]
/N

ĈC
,

=⇒ ||Ê −E||1 ≤

[
C · ||(Θ̂u −Θu)ι||1 + |C − Ĉ| · ||Θuι||1

]
/N

|Ĉ|C
, (2.76)

where (2.76) follows from [61]. Let Θu,j denote the jth row of Θu written as a column vector.

Using Hölder’s inequality we have

|Ĉ − C| =
∣∣∣∣ι′(Θ̂u −Θu)ι

N

∣∣∣∣ ≤ ||(Θ̂u −Θu)ι||1 · ||ι||max
N

≤ max
1≤j≤N

||Θ̂u,j −Θu,j ||1 = ||Θ̂u −Θu||1.
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Thus,

||Ê −E||1 ≤

[
C · ||(Θ̂u −Θu)ι||1 + |C − Ĉ| · ||Θuι||1

]
/N

|Ĉ|C
,

≤

[
C · max

1≤j≤N
||Θ̂u,j −Θu,j ||1 + max

1≤j≤N
||Θ̂u,j −Θu,j ||1 · ||Θuι||1/N

]
|Ĉ|C

,

=

max
1≤j≤N

||Θ̂u,j −Θu,j ||1 [C ·+||Θuι||1/N ]

|Ĉ|C
≤

max
1≤j≤N

||Θ̂u,j −Θu,j ||1
[
C + max

1≤j≤N
||Θu,j ||1

]
|Ĉ|C

,

≤ ||Θ̂u −Θu||1 [C + ||Θu||1]

|C + op(1)|C
=
Op(mNω

1−q
N,T ) [Op(1) +Op(1)]

(Op(1) + op(1))Op(1)
= Op(mNω

1−q
N,T ),

(2.77)

where C ≥ γmin(Θu) > 0. Putting it all together for c3, we have that

c3 = T−1z′Mη(uÊ − uE) = T−1z′Mηu··(Ê −E) ≤ γmax(Mη) · T−1z′u··(Ê −E),

= T−1z′u··(Ê −E) ≤ T−1||u′··z||1 · ||Ê −E||1 ≤ T−1||u′··z||1 · Op(mNω
1−q
N,T ),

= T−1
N∑
i=1

|Si(u′··y··Q)i| · Op(mNω
1−q
N,T ) = Op

(
1

T

)
· Op(mNω

1−q
N,T ) = op(1),

which concludes the proof. �

Proof of Theorem 3: In light of Lemma 3, the result follows immediately from (2.37). �

Proof of Theorem 4: Under Assumptions 1-4 and Lemma 3, the result follows immediately. �

Proof of Theorem 5: In light of Theorem 2 and [5], the result follows immediately. �

Proof of Theorem 6: In light of the theorems in the just identified case and standard GMM theory,

we know that
√
T (θ̂sGMM − θs) is asymptotically, a normal variate. The question remains whether

using ε̂ = ε(φ̂dGMM ) introduces sampling error that will effect the standard error of θ̂sGMM . To
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that end, let gst
(2+r)×1

:= ZstuEt, we have that θ̂sGMM solves the following first-order condition with

probability approaching 1

0 =

(
1

T

T∑
t=1

∂

∂θs
gst(θ̂

s
GMM ; φ̂d)

)′
Ω̂−1
s

(
1

T

T∑
t=1

gst(θ̂
s
GMM ; φ̂d)

)
(2.78)

=

(
1

T

T∑
t=1

∂

∂θs
gst(θ̂

s
GMM ; φ̂d)

)′
Ω̂−1
s

(
1

T

T∑
t=1

gst(θ
s; φ̂d)

)

+

(
1

T

T∑
t=1

∂

∂θs
gst(θ̂

s
GMM ; φ̂d)

)′
Ω̂−1
s

(
1

T

T∑
t=1

∂

∂θs
gst(θ̄

s; φ̂d)

)
(θ̂sGMM − θs) (2.79)

= G′s Ω̂−1
s

(
1√
T

T∑
t=1

gst(θ
s; φ̂d)

)
+G′s Ω̂−1

s Gs

√
T (θ̂sGMM − θs) (2.80)

The basic idea of whether the sampling error from estimating φ̂d can be ignored, boils down to

whether the following expression holds: 1√
T

∑T
t=1 gst(θ

s; φ̂d) = 1√
T

∑T
t=1 gst(θ

s;φd) + op(1);

when this equation holds, then
√
T (θ̂sGMM − θs) will not asymptotically depend on

√
T (φ̂d− φd).

This can be easily seen if we take a mean value expansion of the left hand side of the expression

above around φd, we obtain

1√
T

T∑
t=1

gst(θ
s; φ̂d) =

1√
T

T∑
t=1

gst(θ
s;φd) + F

√
T (φ̂d − φd) + op(1), (2.81)

where F
(2+r)×1

:= E

[
∇φdgst(θs; φ̂d)

]
, is generally different from zero, but here we have F =

Op( 1√
N

). This implies the asymptotic variance of
√
T (θ̂sGMM − θs) need not take into account

the sampling error induced by φ̂d. To see why, we need to get an expression for
√
T (φ̂d − φd), let

gdt
(1+r)×1

= Zdtεt; then taking a similar mean value expansion (as above) of the first-order conditions
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that φ̂d solves with probability approaching 1

0 = G′dΩ̂
−1
d

(
1√
T

T∑
t=1

gdt(φ
d)

)
+G′dΩ̂

−1
d Gd

√
T (φ̂d − φd), (2.82)

hence, we obtain the usual influence function representation

√
T (φ̂d − φd) = − 1√

T

T∑
t=1

(G′dΩ
−1
d Gd)

−1G′dΩ
−1
d gdt(φ

d) :=
1√
T

T∑
t=1

rdt(φ
d). (2.83)

Making use of (2.83) in (2.81) we obtain

1√
T

T∑
t=1

gst(θ
s; φ̂d) =

1√
T

T∑
t=1

ǧst(θ
s;φd) + op(1), (2.84)

where ǧst(θs;φd) := gst(θ
s;φd) + F rdt(φ

d). Putting (2.84) and (2.80) together and solving for

√
T (θ̂sGMM − θs) gives

√
T (θ̂sGMM − θs)

d→ −(G′s Ω−1
s Gs)

−1G′s Ω−1
s

(
1√
T

T∑
t=1

gst(θ
s;φd) + F rdt(φ

d)

)
+ op(1),

(2.85)

= −(G′s Ω−1
s Gs)

−1G′s Ω−1
s

(
1√
T

T∑
t=1

gst(θ
s;φd) +Op

(
1√
N

)
Op (1)

)
+ op(1),

(2.86)

which gives the result. �
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2.12 Supplementary Appendices

Section 2.12.1 contain figures pertaining to the empirical work from Section 2.9. Section

2.12.2 contains theoretical results for Herfindahl’s in largeN markets along with Lemma 1. Section

2.12.3 contains the estimation methods we use when r is unknown. Section 2.12.4 contains Algo-

rithm 3′ which employs an alternative estimator for the precision matrix, which is a hybrid of the

factor approach and graphical models.

2.12.1 Figures
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Figure 2.1: Sum of the sales of top non-energy firms in Compustat as a fraction of GDP
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Figure 2.2: Quantile-quantile plots of US output fluctuations
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Figure 2.3: Temporal variation of production shares in global crude oil market
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Figure 2.4: Distribution of production shares in global crude oil market
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Figure 2.5: Size-Rank plot of crude oil production in global crude oil market (log-log scale)
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2.12.2 Herfindahl’s in Large N Markets

In this appendix we provide some basic information about properties of random variables

that follow a power law and then we conclude with the statement of Lemma 1 and its proof. The

following draws on [62], [63], [64], [42], [18], [7] and [65] for the i.i.d. case presented below and

can be adapted to allow for dependence over t using results from [66], [67], [68], and [69]. Recall,

the sizes S1, . . . , SN are drawn i.i.d. from a distribution for which the tail follows a power law, with

tail index, µ > 0. Note that the first and second moments can potentially diverge

E(S) =

∫ ∞
1

sµs−µ−1ds =

∫ ∞
1

µs−µds =
µ

1− µ
s1−µ

∣∣∣∣∞
1

=


∞ for µ ∈ (0, 1]

− µ

1− µ
for µ ∈ (1,∞)

(2.87)

E(S2) =

∫ ∞
1

s2µs−µ−1ds =

∫ ∞
1

µs1−µds =
µ

2− µ
s2−µ

∣∣∣∣∞
1

=


∞ for µ ∈ (0, 2]

− µ

2− µ
for µ ∈ (2,∞)

(2.88)

as a result of (2.87) and (2.88), E(S) is bounded for µ > 1, while V(S) is bounded for µ > 2.

The literature refers to the cases µ ≤ 2 as thick tail regimes since the variance is infinite, rendering

extreme tail events more likely. In light of this, there are some important cases to distinguish from

one another when considering the limiting behavior of hN,µ, which are outlined in Table 2.6 below.
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Table 2.6: Limiting behavior of the asymptotic Herfindahl index
Tail

index
regime

Tail variation
First

moment
Variance Op (gN,µ)

Case I µ > 2 Exponential E(S) <∞ V(S) <∞ 1√
N

Case II µ = 2
Regularly
varying

E(S) <∞ V(S) =∞
√

log(N)

N

Case III µ ∈ (1, 2)
Regularly
varying

E(S) <∞ V(S) =∞ 1

N
1− 1

µ

Case IV µ = 1
Regularly
varying

E(S) =∞ V(S) =∞ 1

log(N)

Case V µ ∈ (0, 1)
Regularly
varying

E(S) =∞ V(S) =∞ Θp(1)

Case VI µ→ 0
Slowly
varying

E(S) =∞ V(S) =∞ Θp(1)

The Herfindahl is given by

hN,µ =
N∑
i=1

S 2
i =

N∑
i=1

(
Si∑N
j=1 Sj

)2

, (2.89)

and the object of interest is the asymptotic Herfindahl and from (2.89), it can readily be written as

hµ := lim
N→∞

hN,µ = lim
N→∞

N∑
i=1

(
Si∑N
j=1 Sj

)2

= lim
N→∞

1

N

N−1
∑N

i=1 S
2
i(

N−1
∑N

j=1 Sj

)2 := lim
N→∞

1

N

aN
bN

.

(2.90)

In Case I, when E(S),E(S2) < ∞, the usual LLN and continuous mapping theorem

gives us aN
p→ a = E(S2) and bN

p→ b = (E(S))2. Therefore, hN,µ → hµ = 0, for thin tailed

regimes.22 We will skip further details regarding Cases II-IV and state Lemma 1 which is pertaining

to Cases V and VI.

22As we saw in (unreported) simulation evidence, a Herfindahl converging to zero in the large N limit, should not
rule out identification by GIV; although theoretically it does. As illustrated in Remark 4, the variance of the elasticities
diverges.
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Lemma 1 Under Assumption 4 (ii.), we have that

√
hN,µ = ||S||2 = Θp(1) µ ∈ (0, 1). (2.91)

Proof of Lemma 1: Note that P(S > s) = s−µ and hence, P(S−µ > s) = s. Or, put differently

P(S−µ > s) ∼ U[0, 1]; which is equivalently denoted as Ui := 1 − FS(si) = s−µi , where FS(si)

denotes the CDF of si. As a result, U1, . . . , UN are an i.i.d. sample from U[0, 1]. It is well known

that order statistics, denoted as U(i) = 1− FS(s(i)), of the uniform distribution on the unit interval

have marginal distributions belonging to the Beta distribution family. Hence, the PDF of the ith

order statistic, U(i),N ∼ Beta(α, β), with α = i and β = N − i + 1. Finally, the size of the ith

largest unit out of N can be found by manipulating the expected value of the ith order statistic,

given by

E(U(i),N ) = E(S−µ(i),N ) =
α

α+ β
=

i

N + 1
, (2.92)

hence, the size of the ith largest unit is

S(i),N =

(
i

N + 1

)− 1
µ

'
(
i

N

)− 1
µ

, (2.93)

where the approximation is negligible for large N . Furthermore, S2
i has tail index µ

2 ≤ 1, since
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P(S2 > s) = P(S > s
1
2 ) = s−

µ
2 . Plugging (2.93) into (2.90), we obtain

lim
N→∞

1

N

N−1
∑N

i=1 S
2
i(

N−1
∑N

j=1 Sj

)2 = lim
N→∞

1

N

N−1
∑N

i=1

(
i

N

)− 2
µ

(
N−1

∑N
j=1 Sj

)2 = lim
N→∞

1

N2

1

N
− 2
µ

∑N
i=1 i

− 2
µ(

N−1
∑N

j=1 Sj

)2

= lim
N→∞

1

N
2− 2

µ

∑∞
i=1 i

− 2
µ(

1

N
1− 1

µ

∑∞
j=1 j

− 1
µ

)2 = lim
N→∞

1

N
2− 2

µ

∑∞
i=1 i

− 2
µ

1

N
2− 2

µ

(∑∞
j=1 j

− 1
µ

)2 = lim
N→∞

∑∞
i=1 i

− 2
µ(∑∞

j=1 j
− 1
µ

)2

=
ζ( 2
µ)(

ζ( 1
µ)
)2 (2.94)

Where ζ(·) denotes the Riemann-zeta function. Therefore, we have just showed that for µ ∈ (0, 1),

hN,µ → hµ > 0. �

2.12.3 Estimating the Number of Factors

Generally, since the number of factors, r, is unknown we must estimate it. There are many

estimators for r in static approximate factor models. Some examples are [24], [39] and [40]. We

make use of the ER(k) and GR(k) estimators proposed by [40] (hereafter AH), which have been

shown to outperform the existing estimators in the literature, particularly when the idiosyncratic

errors are not i.i.d., which is likely to be the more relevant case.

The estimators below can be used in (2.12) for estimation of the demand elasticity without

affecting inference, and in Algorithm 1, 2, or 3 for estimation of the supply elasticity; again without
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affecting inference. The AH estimators are given by maximizing the following criteria

ER(k) =
µ̃NT,k
µ̃NT,k+1

k = 1, . . . , kmax (2.95)

GR(k) =
ln [V (k − 1)/V (k)]

ln [V (k)/V (k + 1)]

=
ln(1 + µ̃∗NT,k)

ln(1 + µ̃NT,k+1)
k = 1, . . . , kmax, (2.96)

where µ̃NT,k := ψk [XX ′/(NT )] = ψk [X ′X/(NT )], X denotes a T × N matrix and ψk(A)

denotes the kth largest eigenvalue of a positive semidefinite matrixA. V (k) =
∑m

j=k+1 µ̃NT,j and

µ̃∗NT,k = µ̃NT,k/V (k). Where V (k) is the sample mean of the squared residuals from the time se-

ries regressions of individual response variables on the first k principal components ofXX ′/(TN).

Hence, the estimators are

r̂ER = argmax
1≤k≤kmax

ER(k), (2.97)

r̂GR = argmax
1≤k≤kmax

GR(k). (2.98)

The basic idea behind maximizing the ER(k) and GR(k) criteria is that
µ̃NT,j
µ̃NT,j+1

= Op(1) for

j 6= r, while
µ̃NT,r
µ̃NT,r+1

= Op(CNT ). This effective idea stems from the seminal paper of [70], who,

among other things, demonstrate that only the r eigenvalues arising from the common component

remain unbounded as the sample size tends to infinity, while those from the idiosyncratic part remain

bounded. In particular, see their Theorem 4. Lastly, some recommendations on the choice of kmax

are provided by AH to avoid choosing r̂ < r wpa 1.

The important fact is that the limiting distribution of the elasticities remain unchanged so
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long as we use a consistent estimator for r. Let φ̂ jr̂ , for j = s, d, denote the FGIV or efficient GMM

estimator, using a consistent estimator for r, such as the AH estimator. It is easy to show that φ̂ jr̂

has the same limiting distribution as φ̂ jr , for j = d, s:

P

(√
T (φ̂ jr̂ − φ

j) ≤ x
)

= P

(√
T (φ̂ jr̂ − φ

j) ≤ x|r̂ = r
)
·P(r̂ = r)

+P
(√

T (φ̂ jr̂ − φ
j) ≤ x|r̂ 6= r

)
·P(r̂ 6= r) (2.99)

→ P

(√
T (φ̂ jr̂ − φ

j) ≤ x|r̂ = r
)

(2.100)

= P

(√
T (φ̂ jr − φ j) ≤ x

)
. (2.101)

From (2.99) to (2.100) we make use of the fact that r̂ is a consistent estimator for r, i.e. P(r̂ =

r) → 1. From (2.100) to (2.101) we make use of the fact that conditional on r̂ = r, φ̂ jr̂ = φ̂ jr .

Therefore,

∣∣∣∣P(√T (φ̂ jr̂ − φ
j) ≤ x

)
−P

(√
T (φ̂ jr − φ j) ≤ x

) ∣∣∣∣→ 0. (2.102)

2.12.4 Estimation of the High-Dimensional Precision Matrix via `1-Penalized Breg-

man Divergence

An alternative to using the POET like procedure of [37] to estimate a high dimensional

precision matrix is to use graphical Lasso methods, as in [71]. One thought would be to directly

estimate the precision matrix using graphical models, say by applying the graphical Lasso procedure

to the composite error, vit = λ′iηt + uit, or by using a local (nodewise) graphical method as in [61]

and applying to it vit.
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However, these approaches rule out the presence of an approximate factor structure, as

they assume unconditional sparsity of the composite error term vit. It is clear that sparsity of vit

fails given our (pervasive) factor structure, as pointed out by [72], [73] and [74].

An alternative, hybrid, approach to estimation of high dimensional covariance matrices

is to adopt an approximate factor structure, thereby decomposing the process into a low rank part

(common component), plus a sparse part (idiosyncratic component) like the approach we adopted in

the main text of the paper. Except now we will use a graphical model in estimation of the precision

matrix, as opposed to the POET estimation procedure. Thus, we can employ a hybrid approach

known as the factor-adjusted graphical lasso model or simply FGL of [75]. The FGL approach

imposes conditional sparsity similar to POET with the exception that sparsity is imposed on the

precision matrix, Σ−1
u , of the idiosyncratic term rather than the covariance matrix, Σu. That is,

once the low dimensional common factors are conditioned on, Σ−1
u is assumed to be sparse in the

sense that many of the off-diagonal elements are zero. Note that with FGL, sparsity is assumed

on the precision matrix, Σ−1
u , for the idiosyncratic term and not on the precision matrix of the

composite error, Σ−1
v as in a traditional graphical method.

Along the POET procedures, [37], [76] and [41] amongst others, estimate the high di-

mensional covariance matrix via thresholding techniques and then invert the estimate to obtain an

estimate of the precision matrix. Whereas, graphical methods directly estimate the precision matrix.

The FGL approach is essentially a hybrid of the two approaches. We adopt the FGL approach of

[75], although in their paper endogeneity is not a concern. To that end, suppose momentarily that
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the idiosyncratic error is observed

uit = yit − λ′iηt − φspt,

= yit −ψ′ift, (2.103)

where ψi :=
(
λ′i φs

)′
and ft is defined as in the main text. We apply the graphical Lasso

procedure of [71] to (2.103), to obtain Σ̂−1
u as the solution to the `1-penalized Bregman Divergence.

Bregman divergence is simply a measure of distance between two objects defined in terms of a

strictly convex function, say f(·). Introduce S++ as the set of symmetric positive definite matrices,

then, forA1,A2 ∈ S++, the Bregman Divergence in this context, is defined as

df (A1,A2) := f(A1)− f(A2)− 〈∇f(A2),A1 −A2〉 (2.104)

where f(·) is strictly convex and continuously differentiable. The Bregman Divergence, df , can

be viewed as the difference of f(A1) from the first-order approximation of f(A1) around A2.

Moreover, (2.104) nests some important loss functions as special cases for particular choices of

f(·), e.g. when f(x) = x′Bx, df becomes the Mahalanobis distance, which reduces to the squared

norm whenB = I and when f(x) =
∑

i xilogxi, we obtain df as the Kullback-Leibler divergence.

When one sets f(A) = −log det(A), then∇f(A) = −A−1
2 ,23 and the Bregman Divergence takes

23See Section A.4.1 of [77] for an elegant derivation of this gradient.
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the following familiar form forA1 = Σ−1
u andA2 = Σ̂−1

u

df (Σ−1
u , Σ̂−1

u ) = −log det(Σ−1
u ) + 〈Σ̂u,Σ

−1
u − Σ̂u〉+ c1

= −log det(Σ−1
u ) + tr(Σ̂uΣ

−1
u ) + c2 (2.105)

where (2.105) can be viewed as the negative Gaussian log-likelihood of the data, partially maxi-

mized with respect to the mean parameter. Adding an `1-penalty on the off-diagonal elements of

Σ−1
u to (2.105) gives us Σ̂−1

u as the solution to the `1-penalized Bregman Divergence

Σ̂−1
u (ρ) = arg min

Σ−1
u ∈S++

{−log det(Σ−1
u ) + tr(Σ̂uΣ

−1
u ) + ρ||Σ−1

u ||1}, (2.106)

where ρ is the tuning hyperparameter and only here ||Σ−1
u ||1 :=

∑
i 6=j |Σ

−1
u,ij | is defined to not penal-

ize the diagonal elements. The routine can be easily implemented in the R package glassoFast

or CVglasso.

However, as noted in [78], there are theoretical and practical benefits to modify (2.106) to

the so-called weighted FGL (effectively just adaptive Lasso)

Σ̂−1
u (ρ) = arg min

Σ−1
u ∈S++

{−log det(Σ−1
u ) + tr(Σ̂uΣ

−1
u ) + ρ

∑
i 6=j

ŴiiŴjj |Σ−1
u,ij |}, (2.107)

where Ŵ 2 = diag(Σ̂u). We suggest iterating between estimation of Σ−1
u by optimizing (2.107)

with the graphical Lasso algorithm and estimation of φs(z,Σ−1
u ) as in (2.15) in Algorithm 3′ below.

For each iteration, we optimally select the penalty hyperparameter, ρ, via cross-validation.

We do not explore the theoretical properties of the sampling error induced by this weighted
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FGL estimation procedure, but in some unreported Monte Carlo evidence we find that it performs

well. The algorithm below details the overidentified estimation procedure for the case when kx = 0.

Algorithm 3′ Efficient GMM-FGL for φs (when kx = 0):

• Step 1: Run PCA on (2.9) and obtain ẑt = S′Q̂ỹ·t as the sample counterpart of (2.10).

• Step 2: Initialize Σ̂−1
u = IN .

• Step 3: Estimate (2.21) to obtain ε̂, initialize Ŵs = (Ẑ ′sẐs)
−1 and obtain θ̂s2SLS(Ẑs, Σ̂

−1
u ).

• Step 4: Obtain y
Ê

(Σ̂−1
u ).

• Step 5: Update Ŵs =
(

1
T

∑T
t=1 ẐstẐ

′
stû

2
Êt

)−1
, where û

Êt
= y

Êt
− θ̂sGMM (Ẑs, Σ̂

−1
u )′ft

and construct θ̂sGMM (Ẑs, Σ̂
−1
u ) as in (2.22).

• Step 6: Construct the sample counterpart of (2.103) to update Σ̂−1
u via (2.107) and update

y
Ê

(Σ̂−1
u ).

• Step 7: Iterate Step 4 through Step 6 until convergence.

Note, to obtain ψ̂i in the sample counterpart of (2.103), we have Λ̂ = T−1y′..η̂ and φ̂sGMM is an

element of θ̂sGMM . In view of Algorithm 2, Algorithm 3′ can be further extended to the case when

kx > 0. However, for brevity we omit the details.
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Chapter 3

Unit-specific GIVs with Applications to

the Automobile and Banking Industries

3.1 Introduction

Economic phenomena are inherently dynamic in nature. A natural justification for in-

teremporal relationships in economics is simply due to state dependence; which is the notion that

the probability of experiencing an event today depends on whether the event was experienced yes-

terday. Dynamic relationships have allowed researchers to tease out speed of adjustment estimates,

e.g., in financial settings: capital structure dynamics towards target leverage, amongst many other

structural estimates. Moreover, misspecified models which ignore dynamics can lead to inconsis-

tent estimates. Although the benefits of incorporating dynamics are important, weakly exogenous

regressors impose a cost as well.

Dynamic panels with incidental parameters. The inclusion of weakly exogenous
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regressors generally leads to considerable challenges for estimation. In the panel data framework,

this was analytically established in the seminal work of [79] for the case of a lagged dependent

variable with individual fixed effects with N large and T fixed. In the fixed-T regime, the problem

is more severe in that the structural estimates of interest are inconsistent in the presence of incidental

parameters; this negative result is not surprising in light of the seminal work of [80]. Fortunately,

when T is also large, the asymptotic bias (inconsistency) can be consistently estimated. This lead

to generalizations of the so-called Nickell-bias in more recent work on large N and T panels by

[81] who derive an analytical formula for the bias with general weakly exogenous regressors with

individual and time effects and also by [82] who derive an analytical formula for the bias with a

lagged dependent variable and interactive effects (factor error structure). An alternative approach

to consistently estimating the bias based on an analytical expression entails employing jackknife

techniques which also perform automatic bias reduction, yet do not require an analytical formula

for the bias. Jackknife techniques date back to the seminal work of [83] to overcome time series

bias of order 1/T and were generalized to the large N and T panel data context by [84]. To that

end, [85] develop both analytical and jackknife bias correction techniques for large nonlinear panel

data models with individual and time effects.

In the fixed-T case, the common approach to deal with this bias is the use of GMM

techniques on suitably transformed equations which rid the problem of incidental parameters, as in

[2], [86] and [87] who make use of internal instruments under a fixed T and large N asymptotics.

These procedures can suffer from the many/weak instruments problem as T grows. Nevertheless,

[88] derive the asymptotics for both T and N large for these approaches.

Constructing (granular) instrumental variables. In this paper, we consider a large
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dynamic panel data model with factor error structure and endogeneity even after controlling for

common factors and propose the use of internal instruments to overcome the endogeneity problem.

There are some existing methodologies which seek to eliminate the need to find an instrument (i.e.,

by using internal instruments). A leading example is the [2] framework in the context of estimating

the speed of adjustment or state dependence parameters using dynamic panel data models with fixed

effects (i.e., no cross-sectional dependence), in which higher order lags of the dependent variable

serve as instruments for the included lags of the dependent variable. [1] (hereafter GK) illustrate that

when the market under consideration is sufficiently concentrated, then one can use size-weighted

idiosyncratic shocks to individual micro units, at each time period t, as an instrument for endogenous

aggregate variables. This instrument was coined as the Granular Instrumental Variables approach

(hereafer GIV) where "granular" is referring to the notion of dominant units having non-negligible

affects on aggregate outcomes, see [7]. GK formulate their asymptotics under a fixed N large

T regime under some strong assumptions, such as known factor loadings and i.i.d. idiosyncratic

errors. These assumptions were subsequently relaxed in [89] who allowed unknown factor loadings

and a general covariance matrix for the idiosyncratic errors when both N and T to grow jointly

to∞ jointly. At the same time, to maintain instrumental relevance of the GIV, i.e., size-weighted

idiosyncratic shocks, as N →∞, [89] assume that the size-distribution of the cross-sectional units

follows a strictly stationary power-law in tail. Additionally, [89] also overidentified the structural

parameters which enables standard overidentification tests to be carried out to asses model validity.

[89] labeled their refinement to the GIV methodology as Feasible Granular Instrumental Variables or

FGIV for short. However, both GK and [89] consider GIVs for aggregate endogenous variables. In

many contexts, indeed the endogenous variables may be unit-specific, which limits the applicability

82



of the GIV/FGIV in their current forms. This paper aims to fill that gap.

Contributions. In this paper, we generalize the set of admissible DGPs in our FGIV

framework by allowing weakly exogenous covariates, although we will focus on the special case

of a lagged dependent variable, in the presence of a pervasive factor error structure (i.e., incidental

parameters). A novel iterative estimation approach is developed to achieve unbiased estimation of

the structural parameters because we can no longer simply cross-sectionally demean our structural

model to get rid of our endogenous variable to form the instrument using PCA as we did in [89]

because in this paper, the endogenous variable is unit-specific, so the aforementioned demeaning

procedure does not leave us with a simple factor structure. It is well known that estimation of

the factor structure in the presence of covariates, xit, generally leads to biased estimates, see [25]

or [82]. However, by overidentifying the system, we find that heteroskedasticity along the cross-

sectional dimension no longer leads to an asymptotic bias as it does in [25] and [82]. We propose

an iterative GMM-PCA approach with a split-panel jackknife (SPJ) bias-correction technique to

correct for the bias of order 1/T arising from the lagged dependent variable. We call this iterative

estimation algorithm the SPJ GMM-PCA approach.

Notation. Throughout, let Xwt denote the cross-sectionally weighted average of a (ran-

dom) variable Xit, Xwt =
∑N

i=1wiXit. Weights used frequently throughout the paper are the

share weights, or relative size weights, but which we simply refer to as size weights, S
N×1

:=

(S1, S2, . . . , SN ). Unless otherwise specified, we denote the L2-norm as || · || or sometimes just

|| · ||2; if another norm is used, it will be explicitly noted. Given a square matrix A, γmax(A) de-

notes the maximum eigenvalue ofA. Joint convergence ofN and T will be denoted as (N,T )
j→∞

while restrictions on relative rates of convergence will be explicitly noted. The operation
p→ denotes
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convergence in probability while the operation d→ denotes convergence in distribution. The equation

yn = Op(xn) states that the vector of random variables yn is at most of order xn in probability;

an = O(bn) states that the deterministic sequence {an} is at most of order bn.

3.2 Model

In this paper we accommodate a unit specific endogenous covariate, where the endogene-

ity can arise due to an omitted variable problem, simultaneity (although we focus on estimation

of a single equation) or spillover effects. We will overcome this endogeneity problem using a

unit-specific GIV approah. The unit specific approach is in contrast to [1] and [89], where the en-

dogenous object was an aggregate variate (e.g., size-weighted yield spreads, rSt, or global crude

oil price, pt). The model we consider is given by the following panel autoregressive distributed lag

(hereafter ARDL) model with multifactor error structure

yit = δxit + γyit−1 +ψ′wit + vit, (3.1)

vit = λ′ift + uit, (3.2)

where the scalar xit is our endogenous variate. We abstract away from the presence of strictly

exogenous covariates (whether they be aggregate, cross-section specific, or general), by setting

ψ = 0 in our exposition, as they introduce unnecessarily cumbersome notations. We also set the

lag order of the dependent variable to 1 and the lag order of the covariates, xit,wit to 0 without loss
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of generality. As such, we can write the model compactly as

yit = β′Xit + λ′ift + uit, (3.3)

where β
2×1

=
(
δ γ

)′
and Xit

2×1
=
(
xit yit−1

)′
. At first glance, (3.3) resembles the model of

[90] and [25] if Xit is strictly exogenous or [91] and [82] if Xit is weakly exogenous.1 Strict

exogeneity is formally expressed as E(uit|Xi·,λi,f) = 0 ∀ i, t, where Xi·
T×2

=
(
xi· yi·,−1

)′
,

yi·,−1 =
(
yi0 . . . yT−1

)′
and f

T×r
=
(
f1 . . . fT

)′
, which of course would imply that

E(uitXi·|λi,f) = 0 ∀ i, t, i.e., the idiosyncratic errors, uit, are uncorrelated with all leads and

lags of Xit, once we condition on the factors and loadings. This condition simply cannot hold for

weakly exogenous regressors because of feedback, which we will explicitly see shortly. Moreover,

we allow the first column ofXit, namely xit, to be endogenous, that is E(uitxi·|yi·,−1,λi,f) 6= 0.

Indeed, controlling for common factors in the composite error term can take care of a substantial

portion of the endogeneity in uit. Nevertheless, there are ample circumstances in economics where

this assumption is too strong, e.g., [1] and [89] to name a few.

The dynamic nature of the panel renders the second column of Xit, namely yit−1, as

weakly exogenous, i.e., there is feedback from previous period’s idiosyncratic shocks into future

values of the dependent variable. To see why yit−1 is weakly exogenous, one can recursively sub-

stitute into (3.1) to arrive at

yit = γtyi0 + δ

t−1∑
j=0

γjxit−j + λ′i

t−1∑
j=0

γjft−j +
t−1∑
j=0

γjuit−j , (3.4)

1The CCE frameworks of [90] and [91] allow slope heterogeneity, weak factors and the number of factors need not
be known but at the cost of imposing restrictions on the DGP of the covariates.
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which makes it explicitly clear that the regressor yit−1 exhibits E(yit−1uis|xi·,λi,f) 6= 0 ∀ s < t.

Note that we assume that the process started long ago in the past to abstract away from issues

pertaining to initial conditions. That is,

yit = δ

∞∑
j=0

γjxit−j + λ′i

∞∑
j=0

γjft−j +

∞∑
j=0

γjuit−j . (3.5)

As mentioned above, we relax the strict exogeneity assumption on xit, by allowing for

endogeneity of xit to persist even after controlling for common factors. This is our primary point

of departure from the aforementioned papers. However, various types of this endogeneity problem

have been investigated in (large) linear dynamic panels with multifactor error structure (aka interac-

tive effects). [92] allow for endogenous covariates by assuming the existence of external instruments

and develop an estimation procedure that relies on specifying a linear DGP for the covariates and

then proxying the common factors as in [90]. On the other hand, [93] examine the case where yit−1

is measured with error, thus rendering it an endogenous variate and develop a minimum distance

least squares (MD-LS) iterative approach. We don’t consider measurement error in this paper, thus

our endogeneity problem is more similar to that of [92] except that we do not impose any restric-

tions on the generating process of xit and we propose the use of internal instruments to overcome

our endogeneity problem using a suitably modified GIV/FGIV method as opposed to assuming the

existence of external instruments, which we detail in Section 3.3.

3.3 Estimation

OLS-PCA The typical estimation approach for (large) linear dynamic panels with multi-

factor error structure entails an iterative principal components and least-squares approach (hereafter
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OLS-PCA), [25], [82]. This stems from the observation that if β were known, then we are left with

the problem of estimating an approximate factor model and if the interactive effects, λ′ift, were

known we are left with a linear regression problem. That is,

y∗it(β) := yit − β′Xit = λ′ift + uit, (3.6)

y∗it(Cit) := yit − Cit = β′Xit + uit, (3.7)

where we let Cit := λ′ift represent the interactive effects, which is also freqeuntly referred to as the

common component in the literature. This gives rise to the OLS-PCA iterative procedure

β̂ols =

(
N∑
i=1

X ′i·Xi·

)−1 N∑
i=1

X ′i·y
∗
i·(Ĉols), (3.8)[

1

NT

N∑
i=1

y∗i·(β̂ols)y
∗′
i· (β̂ols)

]
f̂ = f̂ VNT , (3.9)

Λ̂′ =
1

T
f̂
′
y∗i·(β̂ols), (3.10)

where VNT is the r×r diagonal matrix of eigenvalues ordered from greatest to smallest.2 The prop-

erties of the OLS-PCA estimator are well understood, e.g., [25] and [82]. An alternative approach

is to use the CCE estimators of [90] (in the static case) or [91] (in the dynamic case), which proxy

the factor structure using cross-sectional averages of the dependent and independent variables under

suitable restrictions.3

2The scaling (NT )−1 in (3.15) is to ensure a proper limit for VNT and does not affect f̂ , see Proposition A.1 in
[25].

3More specifically in the static case without endogeneity wrt uit, when N is large ūt → 0, which implies that
λ̄′ft = ȳt − β′X̄t. When Xit = Γift + eit, ft is sufficiently approximated by linear combinations of the dependent
variable and importantly the independent variables as well when dim(Xit) + 1 ≥ r or cov(Γi,λi) = 0, then [90]
established regressions augmented with aforementioned cross-sectional averages behave as if the factors are controlled
for, i.e., the unobserved cross-sectional dependence is accounted for. The CCE estimators of Pesaran enjoy excellent
finite sample properties when the restrictions onXit are imposed and satisfied.
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GMM-PCA However, the OLS-PCA and CCE estimators are inconsistent in this frame-

work. In what follows, we construct internal instruments and develop a novel iterative GMM-PCA

approach.

To that end, let W be an ` × ` arbitrary positive definite weight matrix, but is optimally

set as Ŵ = Ω̂−1, where Ω̂ = (NT )−1
∑N

i=1

∑T
t=max{Lf ,Lu} ẐitẐ

′
itû

2
it, with the unit specific

instruments given by

Zit
`×1

:=
(
yit−1 zGIV,it zGIV,it−1 . . . zGIV,it−Lu ft−1 . . . ft−Lf

)′
, (3.11)

where the number of instruments is given by ` := (dim(Xit) + Lu + rLf ) (where the lagged

dependent variable self-instruments), dim(Xit) = 2 in our exposition and Ẑit places a hat on all

but the first element of Zit. Now, the unit specific instrument matrix stacks the elements of (3.11)

across t and is given by

Zi·
T ∗×`

:=
(
yi·,−1 zGIV,i· zGIV,i·,−1 . . . zGIV,i·,−Lu f−1 . . . f−Lf

)
, (3.12)

with T ∗ := T −max{Lf , Lu}, and Lu and Lf determine the number of lagged GIVs, zGIV,it, and

lagged factors to include as instruments, respectively. Note, for a generic variate xit, we define

xi·,−L :=
(
xi1 . . . xiT−L

)′
to be lagged L periods and stacked over t. Turning now to the unit-

specific GIV, letQ := (IN −Λ(Λ′Λ)−1Λ′) and consider a generalization4 of the unit-specific GIV

4The leave-one-out peers’ GIV we formulate in (3.13) is a generalization of that introduced in [1] in the sense that
our estimator incorporates dynamics and allows for unknown loadings.
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introduced in [1]

zGIV,it = S′(−i)Q(−i)y
∗
(−i),·t(β) (3.13)

=
∑

j,k:,j,k 6=i
SjQjky

∗
kt(β),

which is a leave-one-out GIV that collects peers’ idiosyncratic shocks, where

S(−i) :=
(
S1 . . . Si−1 Si+1 . . . SN

)′
y∗(−i),·t(β) :=

(
y∗1t(β) . . . y∗i−1t(β) y∗i+1t(β) . . . y∗Nt(β)

)′
Q(−i) := (Qjk)j,k 6=i,

are the corresponding (N −1)×1 vectors and (N −1)× (N −1) matrix which has removed the ith

datum. It is apparent that the degree of overidentification is given by `− (No. of endog.) = `−1 =

1+Lu+rLf . One could treat the triple (r, Lu, Lf ) as hyperparameters and conduct a grid search to

see which triple yields the smallest value of the loss function. In this paper, we assume that Lu and

Lf are independent of (N,T ) and we set Lu = Lf = 1 from here on out for ease of exposition.5

The estimator is made feasible much like the OLS-PCA estimator. The factor structure is

estimated iteratively along with the regression coefficients, β. The iterative GMM-PCA procedure

5One could let the number of moments grow, as in [2], but we do not pursue the moment proliferation extension in
this paper.
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is then concisely given by iterating the following equations

β̂gmm =

(
N∑
i=1

X ′i·Ẑi·Ω̂
−1Ẑ ′i·Xi·

)−1 N∑
i=1

X ′i·Ẑi·Ω̂
−1Ẑ ′i·y

∗
i·(Ĉi·), (3.14)[

1

NT

N∑
i=1

y∗i·(β̂gmm)y∗i·(β̂gmm)′

]
f̂ = f̂ VNT , (3.15)

Λ̂′ =
1

T
f̂
′
y∗··(β̂gmm), (3.16)

where the estimators for the factors, loadings (and therefore the common component) and the r× r

matrix of ordered eigenvalues, VNT , are all functions of β̂gmm. Whereas, in the OLS-PCA proce-

dure the estimators for the factors, loadings and VNT are all functions of β̂ols, but in both cases we

supress this dependence for notational ease. The system governed by (3.14), (3.15) and (3.16) is

generalizing the OLS-PCA procedure in the sense that endogeneity is allowed to persist even after

controlling for interactive effects. We now list the detailed steps of this iterative procedure below in

Algorithm 5.

Interpretation of the instruments. We begin by interpreting the leave-one-out GIV,

zGIV,it. This instrument is composed of peers’ idiosyncratic shocks, i.e., zGIV,it = zGIV,it(ukt) ∀ k 6=

i. Thus, it is clear that we must further assume now that uit and ujt are uncorrelated for all i 6= j,

which gives instrumental exogeneity, E(zGIV,ituit) = 0 ∀ i, t.6 We argue that exogeneity is plausi-

ble because having controlled for observables, dynamics and latent common factors, zGIV,it is then

6We require a diagonal covariance matrix for the idiosyncratic errors in this framework, which is in contrast to [89],
who allowed for a non-diagonal covariance matrix for the idiosyncratic errors, i.e., E(u·tu

′
·t) = Σu, such that the rate

at which the off-diagonals are growing in N is suitably restricted, e.g., using assumptions as in [37]. The reason a non-
diagonal covariance matrix is possible in [89] is because the endogenous object was an aggregate variate and thus the
moment used for estimation entailed aggregating the panel using precision weights; this aggregation remarkably rendered
the aggregated regression error used in estimation as orthogonal to the instrument regardless of the covariance structure
in uit, see [89] for more details. Here, however, we do not aggregate the panel such that a non-diagonal covariance matrix
is allowed and hence the assumption that E(u·tu

′
·t) = diag(σ2

1 , . . . , σ
2
N ) is necessary for instrumental exogeneity and

can not be relaxed.
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Algorithm 5 FGIV GMM-PCA

1: OLS initialization: ignore the factor structure and initialize β̂gmm as in (3.8), with Ĉit = λ′ift =
0 ∀ i, t.

2: while true do
3: Update y∗it(β̂gmm) = yit − β̂′gmmXit.
4: if T < N then
5: PCA: take eigendecomposition of the T × T matrix (NT )−1

∑N
i=1 y

∗
i·(β̂gmm)y∗i·(β̂gmm)′ and

obtain f̂ =
√
T × (r eigenvectors corresponding to the r largest eigenvalues) and obtain Λ̂′ =

T−1f̂ ′y∗··(β̂gmm).
6: else
7: PCA: take eigendecomposition of the N ×N matrix (NT )−1

∑T
t=1 y

∗
·t(β̂gmm)y∗·t(β̂gmm)′ and

obtain Λ̂ =
√
N × (r eigenvectors corresponding to the r largest eigenvalues) and obtain f̂ =

N−1y∗··(β̂gmm)Λ̂.
8: end if
9: Update Cit = λ′ift and y∗it(Ĉit) = yit − Ĉit.

10: Construct instruments: obtain Q̂ = IN − Λ̂(Λ̂′Λ̂)−1Λ̂′ and form the unit specific GIV as the
sample counterpart of (3.13). For given r, Lu and Lf , form the full unit specific instrument matrix
as the sample counterpart of (3.12).

11: Initialize Ω̂ = (NT )−1
∑N

i=1

∑T
t=max{Lf ,Lu} ẐitẐ

′
it and obtain β̂gmm as in (3.14).

12: GMM: obtain Ω̂ = (NT )−1
∑N

i=1

∑T
t=max{Lf ,Lu} ẐitẐ

′
it(yit − β̂′gmmXit − Ĉit)

2 and update

β̂gmm as in (3.14).
13: end while
14: end
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hopefully providing a meaningful source unit-specific exogenous variation. Moreover, regarding

instrumental relevance, we take E(zGIV,itxit) 6= 0 ∀ i, t, as given and we believe it is a rather mild

assumption since idiosyncratic shocks have been shown to be important drivers of firm-level dy-

namics, e.g., [94], [95], [96] and [97] to name a few. Furthermore, the literature on granularity, e.g.,

[7], [12], [13] and [98], have further demonstrated that idiosyncratic shocks are important drivers of

aggregate dynamics, let alone firm-level dynamics.

Turning now to interpretation of the lagged common factors as instruments. This is similar

in spirit to [89], [5] and [6], who also use common factors as instruments. In our case, we use

lagged factors as instruments; the use of lagged model objects as instruments is in some sense

similar to [2], where higher order lagged dependent variables are used as instruments. However,

in this setting, lagged dependent variables do not satisfy exogeneity, whereas lagged factors do,

i.e., E(ft−suit) = 0 ∀s ≥ 1. Lagged factors are also relevant instruments under relatively mild

conditions, (1) either the endogenous covariate contains autoregressive terms in its DGP (which we

otherwise do not restrict) and/or (2) the factors are serially correlated. Both of these aforementioned

conditions for relevance of the lagged factors as instruments are likely to be the rule rather than the

exception in many economic applications. Either one of these conditions indeed leed to relevance,

E(ft−sxit) 6= 0 ∀ i, t, ∀s ≥ 1.

The omitted variable interpretation and the hidden factor. To illustrate the omit-

ted variable interpretation in this setting we follow a two-stage least squares formulation and set

Lf = Lu = 0 (this parameterization yields the just identified case). Consider the linear projection
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of the endogenous covariate, xit, onto everything that is exogenous with respect to uit

xit = α0 + α1yit−1 + α2λ
′
ift + πzit + ζit, (3.17)

= α′git + πzit + ζit, (3.18)

where α :=
(
α0 α1 α2

)′
and git :=

(
1 yit−1 λ′ift

)′
and zit is the part of xit that is un-

correlated with uit: E(uitgit|λi,f ,yi·,−1) = E(uitzit|λi,f ,yi·,−1) = 0. Whereas, ζit is the part

of xit that is correlated with uit: E(uitζit|λi,f ,yi·,−1) 6= 0. This follows simply from the prop-

erties of linear projections and the fact that we allow endogeneity: E(uitxit|λi,f ,yi·,−1) 6= 0.

Finally, zit is the instrumental variable that satisfies exogeneity with respect to uit and ζit. We take

zit = S′(−i)u(−i),·t to be peers’ size-weighted idiosyncratic shocks, with the ith datum removed,

which we proxy as in (3.13). In principle, one could construct zit using idiosyncratic shocks from

other external sources, e.g., as in [96], so long as it satisfies instrumental relevancy. One could in-

terpret the size-weighted idiosyncratic shocks themselves, uSt := ft,hidden as a hidden factor, from

which we construct a unit-specific exogenous source of variation. That is,

xit = α0 + α1yit−1 + α2λ
′
ift + πuSt + ζ∗it, (3.19)

= α0 + α1yit−1 + α2λ
′
ift + π u(−i),St︸ ︷︷ ︸

:= zit

+ ζ∗it + Siuit︸ ︷︷ ︸
:= ζit

, . (3.20)

(3.20) makes it clear that the projection error, ζit, is composed of an exogenous component, ζ∗it, and

an endogenous component, Siuit. (3.20) also shows that ζit is very likely to be heteroskedastic.
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3.4 Asymptotic Theory

OLS-PCA. From (3.8), we have

β̂ols − β = A−1

M̂X

(
1

NT

N∑
i=1

X ′i·Mf̂
fλi +

1

NT

N∑
i=1

X ′i·Mf̂
ui·

)
, (3.21)

where M
f̂

:= (IT − f̂ f̂ ′) and A
M̂X

:= 1
NT

∑N
i=1X

′
i·Mf̂

Xi·. Considerable manipulation of

(3.21) leads to the following representation

(β̂ols − β) = A−1
QXM

[
1

NT

T∑
t=1

N∑
i=1

X̃ituit +
B1

T
+
B2

N
+
B3

T

]
+ op

(
1√
NT

)
. (3.22)

= A−1
QXM

[
1

NT

T∑
t=1

N∑
i=1

X̃ituit +Op(T−1) +Op(N−1) +Op(T−1)

]
+ op

(
1√
NT

)
(3.23)

where the biases,Bj = Op(1) are due to [25] (his Proposition A.2 and Lemma A.8) and [82] (their

Theorem 4.1 and Corollary 4.2). Let X̃c, ..
N×T

:= QΛX
′
c,··Mf for each covariate c = 1, . . . , k, where

QΛ is defined in (3.13) and Xc,··
T×N

is covariate specific but stacked over i and t. Then define X̃it
k×1

for

a given (i, t) by X̃it :=
(
X̃1,it . . . X̃k,it

)′
. Finally, AQXM

k×k
:= 1

NT

∑T
t=1

∑N
i=1 X̃itX̃

′
it. Thus,

multiplying (3.23) by
√
NT we have

√
NT (β̂ols − β) = A−1

QXM

[
1√
NT

T∑
t=1

N∑
i=1

X̃ituit +Op

(√
N

T

)
+Op

(√
T

N

)
+Op

(√
N

T

)]
+ op(1).

(3.24)
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(3.24) makes it clear that sequences of (N,T ) such that N/T → κ2 > 0 are required. Unfortu-

nately, this gives rise to a limiting distribution of
√
NT (β̂ols − β) that is generally not centered at

zero due to the three Op(1) bias terms that will not vanish in (3.24). The asymptotic distribution is

given by

√
NT (β̂ols − β)

d→ N
((
κb1 + κ−1b2 + κb3

)
,V(β̂ols)

)
, (3.25)

where κbj = plim
(N,T )→∞

A−1
MXM κBj for j = 1, 3 and κ−1b2 = plim

(N,T )→∞
A−1
MXM κ−1B2.

(3.25) may seem like a negative result, however it is an improvement compared to the

fixed T case. In particular, the biases arise due to the incidental parameter problem of [80]. See

[99] for a survey of the problem. When T is large, the general inconsistency problem associated

with incidental parameters is transformed to an asymptotic bias problem which can be taken care of

analytically or via split-panel jackknife.

Some interesting special cases exist, in which the biases are exactly zero: (1) when the

panel model is static (no weakly exogenous regressors) then b1 = 0; (2) when uit are homoskedastic

and uncorrelated across i, then b2 = 0; (3) when uit are homoskedastic and serially uncorrelated

over t, then b3 = 0. The second and third cases are rather intuitive, when uit is homoskedastic

or uncorrelated over i or t, there are no incidental parameters along the cross-sectional or time

dimensions, respectively.

Bias-corrections. As (N,T )
j→∞, such that N/T → κ2 > 0 we have

(β̂ols − β) =
b1

T
+
b2

N
+
b3

T
+ op

(
1

NT

)
+ op

(
1√
NT

)
(3.26)

95



[25] developed an analytical bias corrected estimator by constructing consistent estimates

of b2 and b3. [82] extended Bai’s static panel to a dynamic panel, which gives rise to b1 and they

subsequently developed an analytical bias corrected estimator for this term. It is well known that

an alternative approach to analytical bias correction is to use a nonparametric estimator for the

resulting biases by using the so-called split-panel jackknife (SPJ hereafter) approach of [84], based

on the seminal work of [83], in a time series context. The SPJ is also employed by [85] and [81] to

name a few.

In this context, the SPJ estimator reduces biases of Op(N−1) + Op(T−1) to o(C−2
NT )

where CNT = min{
√
N,
√
T}. This has been shown to provide substanial benefits in numerous

econometric models, [84]. In contrast to analytical formulae for the biases, the SPJ recenters the

limiting distribution at zero by using a linear combination of subpanels to nonparameterically esti-

mate the biases. The SPJ recenters the distribution obtained in (3.25) around zero, such that the SPJ

estimator satisfies

√
NT (β̂spjols − β)

d→ N
(

0
k×1

,V(β̂ols)

)
, (3.27)

where β̂spjols := 3β̂ols − β̄N,T/2 − β̄N/2,T with β̄N,T/2 := 1
2

(
βN,:T/2 + βN,T/2:

)
where βN,:T/2

denotes the least squares estimator using all cross-sectional units and only the first half of the panel’s

time dimension and similarly βN,T/2: is using all cross-sectional units and only the second half of

the panel’s time demnsion; β̄N/2,T is defined similarly with respect to the cross-seciton. To see why
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SPJ works, note that the SPJ can be rewritten as

β̂spjols = 3β̂ols − β̄N,T/2 − β̄N/2,T

(β̂spjols − β) = (β̂ols − β)− (β̄N,T/2 − β̂ols)− (β̄N/2,T − β̂ols)

=

[
b1

T
+
b2

N
+
b3

T
+ op

(
1

NT

)]
−
[
b1

T
+
b3

T
+ op

(
1

NT

)]
−
[
b2

N
+ op

(
1

NT

)]
= op

(
1

NT

)

Unfortunately, in practice, partitioning the cross-section to respect the cross-sectional de-

pendence and/or clusters is not trivial since no natural ordering exists in the cross-section, as it does

in the time dimension, i.e. if |i − j| is large in magnitude, it need not imply that units i and j are

uncorrelated. [85] suggest clustering when possible and taking the average of P random partitions

to remove the effects of taking only a single arbitrary cross-sectional split. This approach, albeit

valid, can be computationally cumbersome.

Bai and Liao (2017) An alternative approach entails using large covariance matrices to

remove the b2 term from the limiting distribution using the so-called efficient principal components

approach (hereafter EPC) of [41]. Their approach is motivated by the special case where b2 is 0

when uit are homoskedastic and uncorrelated across i. As such, [41] altered the OLS-PCA objective

function in a similar spirit to that of generalized least squares (hereafter GLS)7

β̂epc(Σ
−1
u ) = arg min

β
min

Λ,{ft}

T∑
t=1

(y·t −X·t −Λft)
′Σ−1

u (y·t −X·t −Λft), (3.28)

where the objective function for OLS-PCA did not take the cross-sectional correlation structure in

7[41] refrain from referring to (3.28) as a GLS estimator since they allow uit to be serially correlated over t. If uit
were i.i.d. over t then (3.28) is indeed a GLS estimator.
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uit into account. That is, β̂ols = β̂epc(IN ). For a real symmetric positive definite matrix Σ−1
u ,

there exists a unique matrix C := Σ
−1/2
u such that CC = Σ−1

u . Then (3.28) is optimizing over

transformed sum of squared errors
∑T

t=1 u
∗′
·tu
∗
·t where u∗·t := Cu·t and most importantly we have

E(u∗·tu
∗′
·t ) = CΣuC = IN , by construction, which renders b2 = 0. Note that the EPC is generally

not a GLS estimator unless uit are serially uncorrelated and homoskedastic over t. [41] proceed to

formulate an analytical bias-corrected estimator to correct for the b3 term and they do not consider

weakly exogenous regressors, therefore a b1 term does not arise in their setting.

GMM-PCA. In light of [41], we see that weighting the observations inversely propor-

tional to their cross-sectional covariances eliminated the b2 term from the limiting distribution. We

argue that since our GMM-PCA procedure, defined in (3.14), is weighting the observations by the

variance of the moment condition used in estimation, Ω−1, that the corresponding b2 term will also

be zero here. Indeed, our simulations lend credence to this argument. Intuitively, we note that the

weight matrix in GMM can be thought of as a GLS estimator in this transformed regression which

is potentially heteroskedastic over i

Z ′i·yi·
`×1

= Z ′i·Xi·β +Z ′i·fλi +Z ′i·ui·, (3.29)

since V(Z ′i·ui·|Zi·) = Ω, thus Ω−1V(Z ′i·ui·|Zi·) = I`, by construction. This suggests that b2

should theoretically be zero and this is what we numerically confirm via simulations.

As in the OLS-PCA case, let X̃c, ..
N×T

:= QΛX
′
c,··Mf for each covariate c = 1, . . . , k,

where Xc,··
T×N

is covariate specific but stacked over i and t, then define X̃it
k×1

for a given (i, t) by

X̃it :=
(
X̃1,it . . . X̃k,it

)′
.

In light of [41] and [89], it can be shown that the estimator defined in (3.14) has the
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following representation

β̂gmm − β =

(
1

NT

N∑
i=1

X̃ ′i·Zi·Ω
−1Z ′i·X̃i·

)−1(
1

NT

N∑
i=1

X̃ ′i·Zi·Ω
−1Z ′i·ui· +

B1

T

)
+ op

(
1√
NT

)
,

thus,

√
NT (β̂gmm − β) =

(
1

NT

N∑
i=1

X̃ ′i·Zi·Ω
−1Z ′i·X̃i·

)−1(
1√
NT

N∑
i=1

X̃ ′i·Zi·Ω
−1Z ′i·ui· + κB1

)
+ op (1) ,

d→ N
(
κb1,V(β̂gmm)

)
, (3.30)

where κb1 = plimA−1
ΩZXκB1 with A−1

ΩZX :=
(

1
NT

∑N
i=1 X̃

′
i·Zi·Ω

−1Z ′i·X̃i·

)−1
and the k × k

covariance matrix is given by

V(β̂gmm) =
(
E(X̃itZ

′
it) Ω−1

E(ZitX̃
′
it)
)−1

. (3.31)

Given (3.30), the SPJ GMM-PCA estimator defined as

β̂spjgmm = 2β̂gmm − β̄N,T/2, (3.32)

satisfies

√
NT (β̂spjgmm − β)

d→ N
(

0
k×1

,V(β̂gmm)

)
, (3.33)

notably, the theoretical variance does not change in the presence of bias-correction and can be
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estimated with

V̂(β̂gmm) =

(
1

NT

N∑
i=1

T∑
t=1

̂̃
XitẐ

′
it Ω̂

−1 1

NT

N∑
i=1

T∑
t=1

Ẑit
̂̃
X
′
it

)−1

, (3.34)

where ̂̃Xit is the sample counterpart of X̃c, ..
N×T

:= QΛX
′
c,··Mf and uses the sample values of QΛ

andMf , respectively.

3.5 Monte Carlo

In the experiments below, the first 1000 observations are discarded for each simulation to

ensure stationary data. The model is given by

yit = 2xit + 0.6yit−1 + λ1if1t + λ2if2t + uit,

where β =
(
δ γ

)′
=
(

2 0.6

)′
and the loadings λ1i, λ2i are generated as N (3, 1). The endoge-

nous regressor and factors are generated according to

xit = γxxit−1 + c1λ1if1t + c2λ2if2t + c3uSt + eit,

= 0.6xit−1 + 0.50λ1if1t + .50λ2if2t + 1.5uSt + eit,

fjt = ϕjfjt−1 + εjt j = 1, 2,

with γx = ϕj = 0.6, and εjt is generated as N (0, 1− ϕ2
j ) for j = 1, 2.
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Design 1 For Design 1, the idiosyncratic errors are generated as

uit
eit

 ∼ N
0,

 σ2
u σue

σue σ2
e

 , (3.35)

with σ2
u = 4, σ2

e = σue = 1; thus, ρue = 0.5. Note that σue controls the degree of endogeneity.

Design 2 Whereas, for Design 2 we consider heteroskedasticity over i by defining vit ∼

N (0, σ2
vi) where σ2

vi ∼ U [0.8, 1.2], eit ∼ N (0, 1) and uit = σueeit + vit = eit + vit. Then,

ρue ≈ 0.5.

The market share weights are given by

Si =
Si∑
j Sj

(3.36)

Si =

(
i

N

)− 1
µ

. (3.37)

We use the SPJ GMM-PCA estimator defined in (3.32) to estimate δ and γ. The results are reported

in Table’s 3.1 and 3.2.

3.6 Empirical Application to the Demand for New Automobiles

Logit demand with factor structure In the traditional logit demand case without

random coefficients the problem from moving from individual to aggregate demand is solved ana-

lytically and not via simulation. More specifically, let Uijt denote the utility derived by consumer

i from consuming product j in the market at time t, εijt denotes the unobserved idiosyncratic error

in consumer utility, δjt denotes the mean utility level which consists of the usual vector of observed
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product characteristics for this application xjt (taken to be strictly exogenous), prices pjt (taken

to be endogenous) as well as unobserved product characteristics ξjt. As δjt is generally unknown,

we follow the literature and assume εijt has Weibull (or type 1 extreme value) distribution func-

tion, i.e., e−e
εijt . This assumption yields the traditional logit model for BLP market shares, i.e.,

sjt =
exp(δjt)

1+
∑J
k=1 exp(δkt)

. The analytically tractable case enables us to treat estimation as a standard

linear panel regression model with interactive effects because in this case δjt = log(sjt)− log(s0t)

and there is no need to solve for the mean utility by numerical methods , see [100] for more details.

As this application is primarily for illustration purposes, we proceed with this simplified model

even though the implied substitution patterns are generally restrictive and unrealistic. The demand

system is then given by

Uijt = δjt + εijt (3.38)

δjt = log(sjt)− log(s0t) = x′jtβ − αpjt + ξjt (3.39)

ξjt = αj + θt + λ′jft + ujt. (3.40)

Following [101] we assume that the unobserved product characteristics in the mean utility follow

a factor model but we explicitly allow for two-way fixed effects, where αj denote the product

fixed effects and θt denote the time effects. To accommodate the two-way fixed effects, before

applying our iterative GMM-PCA procedure, for a generic ajt, we transform all observables to

ȧjt := ajt − āt − āj + ā, where āj = 1
T

∑T
t=1 ajt, āt = 1

N

∑N
j=1 ajt and ā = 1

NT

∑T
t=1

∑N
j=1 ajt.

In terms of the dotted variables, the model is essentially as our theoretical exposition with

the cross-sectional index now representing products j = 1, . . . , J . As the method in this paper

requires a balanced panel, we follow [102] and [101] and aggregate the index j from individual
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car make (which exhibits entry and exit) to manufacturer-size level and assume that consumers

choose between aggregate composites of cars. More specifically, the manufacturers are GM, Ford,

Chrysler and Other (this group includes Toyota, Volkswagon, Datsen/Nissan, Honda, Suburu and

’Rest’ taken as all other manufacturers). Within a manufacturer, the makes are aggregated to the

segment level. For example, within GM the makes are aggregated to Chevy, Oldsmobile, Pontiac,

Buick and Cadillac. Finally, within a segment, either it is partitioned to form another product based

on a size class of ’small’, ’large’ or ’all’ where ’all’ denotes no partiioning by size because cars in

this segment level are primarily uniformly sized. In total, this yields J = 23 product aggregates for

the years 1973-1988 (T = 16), which can be seen in Table 3.3.

GIV shares vs BLP shares Moreover, the BLP market shares corresponding to make-

size, are not the appropiate shares in terms of forming the GIV. More specifically, the BLP shares

are formed as

sjt =
qjt

#householdsjt
, (3.41)

where qjt denotes the quantity of product j purchased in the national automobile market (year)

t and #householdsjt denotes the number of households (approximately on the order of 100

million). These shares are appropiate for the BLP model formulation as they capture the outside

option available to households, namely, to not purchase an automobile, i.e., since it is a durable

good. However, for the purpose of constructing the GIV we form the normalized shares as

Sjt =
qjt∑
i qit

, (3.42)
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and refer to the latter shares as GIV shares (uppercase convention) and the former shares as BLP

shares (lowercase convention). We form the GIV as

zjt =
∑

k,i,t:k,i6=j
Si,t−1Qkiẏ

∗
kt(β), (3.43)

where Si,t−1 is different from our theoretical exposition in Section 3.3 in so far as the shares are

now time-varying so we use peers’ one-period lagged shares in the formulation of the instrument.

Results. The results are in Table 3.4. The J-statistic has a p-value of 0.096 which

indicates that we fail to reject the null hypothesis of a valid model at the 1% and 5% significance

levels. Moreover, both the robust- and effective-F statistics are above the benchmark value of 10,

suggesting that the strength of the instruments are a major concern. In column (1) we estimate

the parameters using OLS, in column (2) we estimate the parameters using SPJ OLS-PCA and in

column (3) we estimate the parameters using SPJ GMM-PCA. In column (1), we find that OLS is

not getting the magnitudes correct as it estimates a positive demand elasticity and the space and

air conditioning product characteristics yield negative marginal utilities (although insignificant).

In column (2), we find that the demand elasticity is negative as one would expect, but it is not

significant. In column (3), we find that all product characteristics yield positive marginal utility and

demand elasticity is more negative and significant at the 1% level. Taken together, we find that the

SPJ GMM-PCA delivers promising results in estimating the demand for new automobiles.
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3.7 Empirical Application to Determinants of Banks’ Capital Ade-

quacy Ratios

In this empirical application, we illustrate the SPJ GMM-PCA procedure in estimation of

the determinants of banks’ capital adequacy ratios. The panel is from a random sample of 300 U.S.

banks, with each bank observed over 56 quarters from 2006 Q1 - 2019 Q4. The data are publicly

available for download at the FDIC website; but we obtained it directly from the Stata package due

to [103]. Consider the following model

yit = δ0xit + δ1xit−1 + γyit−1 +ψ′0wit +ψ′1wit−1 + λ′ift + uit, (3.44)

where yit = CARit, xit = liquidityit, wit :=
(
ROAit sizeit

)′
. The variable CARit denotes

the capital adequacy ratio, which is proxied by the ratio of tier 1 (core) capital over risk-weighted

assets. liquidityit is proxied by the loan-to-deposit ratio. Thus, higher values of the variable

liquidityit actually represent lower levels of liquidity. ROAit denotes return on assets at time t,

defined as annualized net income expressed as a percentage of average total assets, it is a measure

of profitability. sizeit is proxied by the log of bank’s total assets at time t.

The coefficients can be interpreted as follows: the coefficient γ reflects state dependence.

That is, it reflects the adjustment costs that prevents banks from achieving optimal levels of capital

adequacy instantaneously. The coefficient δ0 measures the effect of liquidity on capital adequacy

behavior. If δ0 > 0, this implies that lower liquidity levels nudge banks to raise their capital reserves,

possibly to offset their risk exposure. This would imply that the Basel III implementation is having

effects in the right direction.
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In (3.44), we posit that liquidity is correlated with uit even after controlling for common

factors and we form the unit-specific GIV as

zGIV,it =
∑

k,j,t:k,j 6=i
Sj,t−1Qkjy

∗
kt(β), (3.45)

which is how we formed the GIV in the previous empirical application as well, to accommodate

time varying shares.

Descriptive statistics and structural break. As the SPJ procedure splits the panel

along the time series dimension, it is important that we have stationarity over t. However, our

sample entails a structural break which can be seen in the summary statistics in Table 3.5. As a

result, we work with the Post-Great Recession Sample from 2009 Q4 - 2019 Q4, which amounts to

discarding the first 16 quarters of data.

Results. The results are in Table 3.6. The J-statistic has a p-value of 0.249 which

indicates that we fail to reject the null hypothesis of a valid model at all conventional significance

levels. When it comes to the F -statistic, we have a robust-F of 14.563, which is above the threshold

of 10; whereas, the effective-F is only 5.840, which suggests that weak instruments are of concern

in this application, see [104] who show that the robust-F may be high even when instruments

are weak. Nevertheless, columns (1), (2) and (3) indicate that although all methods estimate a

positive effect of liquidity on capital adequacy ratios, that OLS may be underestimating the effect

of liquidity. Focusing on column (2), the point estimate for liquidity is 5.429, thus, on average, a 1

standard deviation increase in liquidity leads to approximately a 1/3 standard deviation increase in

capital adequacy ratios. This implies that when banks face a liquidity squeeze they tend to partially

absorb that by raising equity. This implies that the Basel III implementation is having effects in the
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right direction.

3.8 Concluding Remarks

In this paper, the GIV methodology introduced by [1] has been further developed to ac-

commodate large dynamic panels with unit specific endogenous variates, which require unit-specific

GIVs. We develop a SPJ GMM-PCA iterative procedure to estimate the structural parameters of in-

terest. Overidentification tests can be carried out to test model validity. In the first application

to the demand for new automobiles we fail to reject the null hypothesis of a valid model and the

procedure estimates a downward sloping demand curve as economic theory would suggest. More-

over, the product characteristics yield positive marginal utilities, again as expected. Whereas, the

other estimation techniques were less favorable. In the second application to the determinants of

banks’ capital adequacy ratios the procedure results in weak instruments; whereas the OLS-PCA

method seems to be taking care of the endogeneity by estimating the interactive effects. Neverthe-

less, across numerous estimation techniques we find evidence which suggests that banks respond to

liquidity crunches by raising their capital adequacy ratios. Future research which further develops

the SPJ GMM-PCA asymptotics would be of interest along with considerations of weak factors,

slope heterogeneity and unbalanced panels with data not missing at random.
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Table 3.1: Mean point estimates and RMSE for design 1.
Finite sample properties for Design 1

N T δ̂spjols δ̂spjgmm γ̂spjols γ̂spjgmm

1 300 60 3.7682 1.974 1.0083 0.594
(0.2375) (0.342) (0.0821) (0.061)

2 300 100 3.7294 1.998 0.9997 0.596
(0.2492) (0.266) (0.0896) (0.046)

Notes: We estimate the SPJ GMM-PCA using (3.32) with the full sample
estimate coming from Algorithm 5 while the half-panel estimate is the
simple average of discarding the first half of the time series observations
for each i and running Algorithm 5 and discarding the second half of
the time series observations for each i and running Algorithm 5. The
SPJ OLS-PCA is estimated similarly, except we iterate (3.8), (3.9) until
convergence. For SPJ GMM-PCA, we set Lf = Lu = 1, yielding a total
number of instruments for xit as 4.

Table 3.2: Mean point estimates and RMSE for design 2.
Finite sample properties for Design 2.

N T δ̂spjols δ̂spjgmm γ̂spjols γ̂spjgmm

1 300 60 4.078 1.951 0.971 0.6016
(0.321) (0.876) (0.102) (0.100)

2 300 100 3.974 1.968 0.995 0.601
(0.220) (0.687) (0.068) (0.083)

Notes: We estimate the SPJ GMM-PCA using (3.32) with the full
sample estimate coming from Algorithm 5 while the half-panel esti-
mate is the simple average of discarding the first half of the time se-
ries observations for each i and running Algorithm 5 and discarding
the second half of the time series observations for each i and run-
ning Algorithm 5. The SPJ OLS-PCA is estimated similarly, except
we iterate (3.8), (3.9) until convergence. For SPJ GMM-PCA, we set
Lf = Lu = 1, yielding a total number of instruments for xit as 4.
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Table 3.3: Summary statistics for product-aggregates for automobile demand application

Product Make Size Manuf. GIV Mkt. BLP Mkt. Price hp/weight MP$ Size
No. Class Share % Share %

(avg) (avg) (avg) (avg) (avg) (avg)

Product-aggregate characteristics

1 CV (Chevrolet) small GM 7.454 0.783 7.251 0.364 2.45 1.136
2 CV large GM 10.043 1.099 8.829 0.378 1.714 1.472
3 OD (Oldsmobile) small GM 0.834 0.087 7.18 0.359 2.136 1.209
4 OD large GM 7.897 0.863 10.701 0.376 1.637 1.556
5 PT (Pontiac) small GM 2.117 0.226 6.597 0.349 2.364 1.177
6 PT large GM 4.985 0.541 8.412 0.363 1.693 1.499
7 BK (Buick) all GM 7.861 0.838 9.914 0.373 1.705 1.474
8 CD (Cadillac) all GM 2.760 0.292 19.688 0.383 1.536 1.505
9 FD (Ford) small Ford 7.625 0.823 6.049 0.347 2.27 1.188
10 FD large Ford 7.907 0.859 8.692 0.354 1.641 1.553
11 MC (Mercury) small Ford 1.283 0.133 7.039 0.381 2.301 1.203
12 MC large Ford 3.461 0.379 8.920 0.349 1.712 1.537
13 LC (Lincoln) all Ford 1.440 0.158 19.354 0.376 1.416 1.670
14 PL (Plymouth) small Chrys 2.795 0.292 6.407 0.366 2.374 1.16
15 PL large Chrys 1.939 0.220 7.839 0.333 1.618 1.554
16 DG (Dodge) small Chrys 2.859 0.302 6.984 0.37 2.516 1.153
17 DG large Chrys 1.942 0.218 7.854 0.331 1.611 1.552
18 TY (Toyota) all Other 5.201 0.5433 8.507 0.400 2.361 1.110
19 VW (Volkswagen) all Other 1.521 0.167 8.974 0.365 2.346 1.062
20 DT/NI (Datsen/Nissan) all Other 3.960 0.411 8.959 0.418 2.338 1.108
21 HD (Honda) all Other 3.901 0.409 7.397 0.370 2.667 1.036
22 SB (Subaru) all Other 0.949 0.100 6.255 0.379 2.855 1.034
23 REST all Other 6.487 0.691 17.687 0.399 1.992 1.221

Sample characteristics

N 23
T 16
Total observations 368
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Table 3.4: Parameter estimates of demand for new automobiles

Estimators:

OLS OLS-PCA GMM-PCA

(1) (2) (3)

Parameter estimates and standard errors:

(x1) Horsepower/weight 2.582∗∗ -4.348 0.570
(1.253) (5.234) (1.819)

(x2) Air conditioning indicator -0.735 -0.326 1.389∗
(0.235) (0.878) (0.748)

(x3) Miles per dollar 0.035 0.185 0.549∗∗∗
(0.108) (0.537) (0.199)

(x4) Space -0.867∗∗∗ 0.262 1.299∗
(0.317) (1.092) (0.752)

(x5) Price 0.089∗∗∗ -0.043 -0.382∗∗∗
(0.017) (0.061) (0.114)

Model statistics:

(N,T ) (23, 16) (23, 16) (23, 16)
No. of factors, r 0 5 5
No. of instruments for price 0 0 4
J-statistic p-value 0.096

First stage statistics:

Robust F -statistic 10.030
Effective F -statistic 14.469
Adjusted R2 0.455

* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table 3.5: Summary statistics for banking application

Pre/Great Recession Post-Great Recession Full Sample

2006Q1-2009Q3 2009Q4-2019Q4

Mean Median SD Mean Median SD Mean Median SD
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Banks’ characteristics

Capital adequacy ratio (CAR) 11.283 10.002 4.584 11.162 10.276 3.508 11.197 10.213 3.846
Size 11.930 11.910 1.244 12.300 12.174 1.365 12.194 12.083 1.342
Return on assets (ROA) 0.930 0.916 0.837 0.936 0.946 1.178 0.932 0.924 0.947
Return on equity (ROE) 9.130 8.593 10.160 8.437 8.434 8.047 8.635 8.467 8.708
Liquidity 0.819 0.833 0.255 0.765 0.774 0.216 0.780 0.793 0.229

Sample characteristics

N 300 300 300
T 16 40 56
Total observations 4,800 12,000 16,800
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Table 3.6: Determinants of banks’ capital adequacy ratios

Estimators:

OLS OLS-PCA GMM-PCA

(1) (2) (3)

Parameter estimates and standard errors:

(x1) Lagged CAR 0.932∗∗∗ 0.844∗∗∗ 0.269∗∗∗
(0.014) (0.193) (0.067)

(x2) Lagged size 0.360 0.251 0.007
(0.142) (0.419) (0.075)

(x3) Lagged ROA -0.038 0.155 0.220∗∗∗
(0.112) (0.232) (0.068)

(x4) Lagged liquidity -1.530∗ -0.036 -2.679
(0.812) (2.077) (2.358)

(x5) Size -0.383∗∗∗ -1.558∗∗ -0.384
(0.141) (0.709) (0.466)

(x6) ROA 0.111 0.043 0.182
(0.149) (0.280) (0.160)

(x7) Liquidity 1.717∗∗ 5.429∗∗ 7.606∗
(0.816) (2.564) (4.560)

Model statistics:

(N,T ) (300, 40) (300, 40) (300, 40)
No. of factors, r 0 3 3
No. of instruments for liquidity 0 0 5
J-statistic p-value 0.249

First stage statistics:

Robust F -statistic 14.563
Effective F -statistic 5.840
Adjusted R2 0.9164

* significant at 10%, ** significant at 5%, *** significant at 1%.
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3.9 Supplementary Appendix

3.9.1 Figures

Figure 3.1: Banking industry Herfindahl over time
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Figure 3.2: Pairwise plots of financial variables for Pre/Great Recession vs. Post-Great Recession
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Chapter 4

Conclusions

This dissertation has developed econometric theory along with numerous applications for

large panel data models that aim to quantify causal relationships in the absence of a randomized

control trial. More concretely, investigation of causal relationships is conducted through estimation

and inference using the granular instrumental variables methodology that has been extended along

numerous dimensions in each chapter.

In Chapter 2, we further developed the GIV methodology by allowing latent loadings

which are treated as unknown parameters to be estimated before constructing the Feasible GIV in-

strument. We further demonstrate that the sampling error arising from estimating the instrument,

factors and a high dimensional precision matrix does not affect the limiting distribution for the

structural parameters of interest. We also overidentify the structural parameters, which leads to new

and improved results in the global crude oil markets application and demonstrate that the J-test is

well sized with simulation evidence. Our Monte Carlo study illustrates that our estimators and algo-

rithms exhibit desirable performance with the finite sample distributions being well approximated
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by the asymptotic distributions.

In Chapter 3, the GIV methodology has been further developed to accommodate large dy-

namic panels with unit specific endogenous variates, which require unit-specific GIVs. We develop

a SPJ GMM-PCA iterative procedure to estimate the structural parameters of interest. Overiden-

tification tests can be carried out to test model validity. In the first application to the demand for

new automobiles we fail to reject the null hypothesis of a valid model and the procedure estimates

a downward sloping demand curve as economic theory would suggest. Moreover, the product char-

acteristics yield positive marginal utilities, again as expected. Whereas, the other estimation tech-

niques were less favorable. In the second application to the determinants of banks’ capital adequacy

ratios the procedure results in weak instruments; whereas the SPJ OLS-PCA method seems to be

taking care of the endogeneity by estimating the interactive effects. Nevertheless, across numerous

estimation techniques we find evidence which suggests that banks respond to liquidity crunches by

raising their capital adequacy ratios.

More fruitful areas of future research would be additional empirical applications of the

theoretical results derived in this dissertation. Interesting theoretical extensions would be to al-

low for random slope coefficients with correlated heterogeneity, the presence of weak factors and

unbalanced panels with data not missing at random.
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