
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Efficient Tensor Operations via Compression and Parallel Computation

Permalink
https://escholarship.org/uc/item/2wm4k3sn

Author
SHI, YANG

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wm4k3sn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Efficient Tensor Operations via Compression and Parallel Computation

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Yang Shi

Dissertation Committee:
Professor Sameer Singh, Chair

Professor Animashree Anandkumar
Professor Gopi Meenakshisundaram

2019

© 2019 Yang Shi

DEDICATION

To my parents, Lifu Jin and Hongwei Shi.
To my kitties, Oreo and Reeses.

ii

Contents

Page

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Summary of Contributions . 3

1.1.1 Tensor Robust Principle Component Analysis 3
1.1.2 Higher-order Count Sketch . 4
1.1.3 Feature Pooling through Tensor Operations 5
1.1.4 Efficient Tensor Contraction Primitives 6

1.2 Tensor Preliminaries . 7
1.3 Organization of the Dissertation . 10

2 Robust Principle Component Analysis through Tensor Decomposition 11
2.1 Summary of Results . 12
2.2 Related Work . 15
2.3 Proposed Algorithm . 17
2.4 Theoretical Guarantees . 19
2.5 Experiments . 26

2.5.1 Synthetic Dataset . 26
2.5.2 Real-world Dataset . 28

2.6 Conclusion . 28

3 Higher-order Count Sketch 30
3.1 Summary of Results . 31
3.2 Related Work . 32
3.3 Preliminaries . 34

iii

3.4 Higher-order Count Sketch on Vector-valued Data 35
3.5 Higher-order Count Sketch on Tensors . 37

3.5.1 Tensor Product . 38
3.5.2 Tensor Contraction . 39
3.5.3 Tucker-form Tensor . 40

3.6 Experiments . 41
3.6.1 HCS for Unevenly-distributed Data 41
3.6.2 Tensor Operations . 42
3.6.3 Tensor Regression Network . 43

3.7 Conclusion . 44

4 Multi-modality Learning through Tensor Product 45
4.1 Summary of Results . 47
4.2 Related Work . 47
4.3 Question Type Guided Visual Attention . 51
4.4 Experiments . 53

4.4.1 Dataset . 53
4.4.2 Evaluation Metrics . 53
4.4.3 Feature Representation . 53
4.4.4 Models . 54

4.5 Results and Analysis . 56
4.5.1 Faster R-CNN and ResNet Features 56
4.5.2 Pre-trained and Jointly-trained Text Feature Extractors 57
4.5.3 QTA in Concatenation Models . 59
4.5.4 QTA in Pooling Models . 59
4.5.5 Multi-task Analysis . 61
4.5.6 Findings on TDIUC dataset . 61

4.6 Conclusion . 64

5 Extended BLAS Kernels for Tensor Contraction 65
5.1 Summary of Results . 66
5.2 Related Work . 67
5.3 Preliminaries . 68
5.4 Approach . 71

5.4.1 Motivating Observations . 72
5.4.2 Extended Notations . 74
5.4.3 BatchedGemm . 75
5.4.4 StridedBatchedGemm . 77
5.4.5 Exceptional Cases . 80
5.4.6 Generalization . 81

5.5 Results and Discussion . 82
5.5.1 Conventional Evaluation . 82
5.5.2 Extended BLAS Evaluation . 83
5.5.3 Machine Learning Application . 88
5.5.4 Evaluation Priorities . 89

iv

5.6 Conclusion . 89

6 Conclusion and Outlook 92
6.1 Conclusion . 92
6.2 Outlook . 93

Bibliography 94

A Appendix for Tensor Robusr Principle Component Analysis 102
A.1 Bounds for block sparse tensors . 102
A.2 Proof of Theorem 2.1 . 105

A.2.1 Short proof of Corollary 1 . 114
A.2.2 Some auxiliary lemmas . 114

A.3 Symmetric embedding of an asymmetric tensor 116
A.4 Proof of Theorem 2.2 . 117

A.4.1 Analysis of first phase of shifted power iteration 118

B Appendix for Higher-order Count Sketch 123
B.1 List of some algorithms mentioned in the chapter 123

B.1.1 Count sketch . 123
B.1.2 Higher-order count sketch . 124
B.1.3 Approximate Kronecker product . 124
B.1.4 Approximate Matrix product . 125

B.2 Proofs of some technical theorems/lemmas 125
B.2.1 Analysis of CS and HCS approximation error 125
B.2.2 HCS of the Kronecker product . 128
B.2.3 HCS of the matrix product . 129
B.2.4 Analysis of Kronecker product approximation error 130
B.2.5 Analysis of matrix product approximation error 131

v

List of Figures

Page

1.1 Trinity of AI. 2
1.2 Tensor robust principle component analysis. 4
1.3 Higher-order Count Sketch. 5
1.4 General VQA network with QTA. 6
1.5 Fibers and slices of a third-order tensor. 8
1.6 Tensor contraction example . 9
1.7 A third-order tensor decomposition example. 9

2.1 Error comparison of different RPCA methods 22
2.2 Running time comparison of different RPCA methods 23
2.3 Foreground filtering in the Curtain video dataset 26

3.1 Running time, memory and error comparison for unevenly-distributed data . 42
3.2 Running time, memory and error comparison for Kronecker product. 42
3.3 Running time, memory and error comparison for tensor contraction. 43
3.4 Tensor regression layer with sketching. 43
3.5 Test accuracy on CIFAR 10. 43

4.1 Concatenation model with QTA structure in VQA 52
4.2 Concatenation model with QTA structure in multi-task VQA 52
4.3 MCB model with QTA structure . 52
4.4 Evaluation of different ways to utilize information from question type. 58
4.5 Effects of weighting by QTA . 60

5.1 Running time analysis for the conventional approach. 71
5.2 The intensity of computing Gemms. 76
5.3 Performance comparison between the conventional approach and our proposed

approach. 83
5.4 Performance comparison between a BatchedGemm and a flattened Gemm. 85
5.5 Speedup comparison when batching inputs in different modes. 86
5.6 Speedup comparison when batching outputs in different modes. 86
5.7 GPU tiling parameter profile. 87
5.8 Benchmark of three evaluation strategies for Case 6.4 87
5.9 Performance on Tucker decompostion. 89

vi

List of Tables

Page

1.1 An example of tensor contraction computation procedure 7

3.1 Computation and memory analysis for tensor operation estimations 39
3.2 General tensor operation estimations . 41

4.1 Benchmark results of concatenation models on TDIUC dataset 57
4.2 QTA in concatenation models on TDIUC dataset 58
4.3 Results of QTA models on TDIUC dataset compared to state-of-art models . 60
4.4 Results of test-dev accuracy on VQA v1 . 62
4.5 Confusion matrix for question types prediction with absurd questions 63
4.6 Confusion matrix for question types prediction without absurd questions . . 63
4.7 Test accuracy with/without absurd questions in training 64

5.1 Mappings between tensor contractions with Blas expressions 75
5.2 List of single mode tneosr contraction and mappings to Blas routines 78

vii

List of Algorithms

Page
1 Tensor Robust PCA . 17
2 Gradient Ascent Method . 18
3 Tucker Decomposition Algorithm . 71
4 Single-mode Tensor Contraction . 90
5 Count Sketch . 123
6 Higher-order Count Sketch . 124
7 Compress/Decompress Kronecker Product 124
8 Compress/Decompress Matrix Product . 125

viii

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Animashree Anandkumar for her continuous
support and guidance. She has been an excellent model as a researcher and a mentor. I have
learned so much from her about how to be a good researcher: how to set a goal, make a plan
and accomplish it step by step. She has always been inspiring and uplifting. Her insightful
thoughts and advises always make me feel that I have so much to learn. I really appreciate
all the efforts she made to make me improve myself. I would also like to thank my co-advisor
Sameer Singh and my dissertation committee member Gopi Meenakshisundaram for their
great mentorship and insightful comments.

I would like to thank my collaborators, Niranjan UN, Preteek Jain, Cris Cecka, Sheng Zha
and Tommaso Furlanello. It was pleasant to work with them and learn from them. I would
also like to thank my labmates, Furong Huang, Majid Janzamin, Hanie Sedghi, Forough
Arabshahi, Kamyar Azizzadenesheli, Anqi Liu and Sahin Lale.

I would like to thank my friends for their company during my study journey. I would like to
thank Chengyan Xu, Chenyang Zhu, and Yang Feng.

Most importantly, I would like to thank my family. They have always been supportive. I
wish to thank my parents, Lifu Jin and Hongwei Shi, for their love and encouragement,
without whom I would never have accomplished so much.

I thank the proceedings of Machine Learning Research for giving me permission to include
Chapter 2 in my dissertation which was originally published therein. I thank Springer press
for permission to include Chapter 4. I thank IEEE for giving me permission to include
Chapter 5.

This dissertation was supported through Air Force grant FA9550-15-1-0221, NSF Career
Award CCF-1254106 and ONR Award N00014-15-1-2737.

ix

CURRICULUM VITAE

Yang Shi

EDUCATION

Doctor of Philosophy in Electrical and Computer Engineering 2019
University of California, Irvine Irvine, CA

Master of Science in Electrical and Computer Engineering 2014
University of Pennsylvania Philadelphia, PA

Bachelor of Science in Electrical Engineering 2012
Nanjing University of Science and Technology Nanjing, Jiangsu

RESEARCH & WORK EXPERIENCE

Graduate Research Assistant Jan. 2015–June. 2019
University of California, Irvine Irvine, CA

Applied Scientist Intern Jan. 2017–Dec. 2017
Amazon AWS Palo Alto, CA

Graduate Research Assistant Sept. 2013–June 2014
University of Pennsylvania Philadelphia, PA

Research Assistant March 2012–May 2012
Technical University of Munich Munich,Germany

TEACHING EXPERIENCE

Teaching Assistant 2013–2014
University of Pennsylvania Philadelphia, PA

x

REFEREED CONFERENCE PUBLICATIONS

Question-type-guided Attention in Visual Question An-
swering

Sept. 2018

Yang Shi, Tommaso Furlanello, Sheng Zha, Animashree Anandkumar
European Conference on Computer Vision

Tensor Contractions with Extended BLAS Kernel on
CPU and GPU

Dec. 2016

Yang Shi, U.N. Niranjan, Animashree Anandkumar, Cris Cecka
IEEE International Conference on High Performance Computing, Data and Analytics

Tensor vs Matrix Methods: Robust Tensor Decomposi-
tion under Block Sparse Perturbations

May 2016

Animashree Anandkumar, Prateek Jain, Yang Shi, U.N. Niranjan
Artificial Intelligence and Statistics Conference

REFEREED WORKSHOP PUBLICATIONS

Multi-dimensional Count Sketch: Dimension Reduction
That Retains Efficient Tensor Operations

Dec. 2018

Yang Shi, Animashree Anandkumar
NeurIPS Integration of Deep Learning Theories Workshop

Compact Tensor Pooling for Visual Question Answering July 2017
Yang Shi, Tommaso Furlanello, Animashree Anandkumar
CVPR Visual Question Answering Workshop

SOFTWARE

Question Type guided Attention for VQA Link
Python algorithm for VQA

A tutorial for VQA using MXNet Link
Jupyter notebook for VQA

Extended BLAS kernels for Tensor Contraction Link
C++ algorithm for tensor contraction

xi

https://github.com/shiyangdaisy23/QTA-in-VQA
https://github.com/shiyangdaisy23/vqa-mxnet-gluon
https://github.com/shiyangdaisy23/tensor-contraction

ABSTRACT OF THE DISSERTATION

Efficient Tensor Operations via Compression and Parallel Computation

By

Yang Shi

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2019

Professor Sameer Singh, Chair

Linear algebra is the foundation of machine learning, especially for handling big data. We

want to extract useful information that can represent the behavior of the data. For data with

underlying known structures, it is straightforward to apply algorithms that maintain that

structure. For instance, singular value decomposition (SVD) is one way to approximate low-

rank matrices. The generalized SVD, tensor decomposition, is the crux of model estimation

for tensors. However, not all data has a trivial structure. Multi-modality data that contains

information from different sources can be complex and hard to extract the structure. A

data-independent randomized algorithm, such as sketching, is the solution for this case.

Under both scenarios, the information extraction process may be statistically challenging

as the problems are non-convex optimization problems. More importantly, the large size

and the high-dimensionality of the data have been significant obstacles in discovering hidden

variables and summarizing them. Thus, how to improve high-dimensional data computation

efficiency is vitally important.

This thesis contains the theoretical analysis for learning the underlying information from

high-dimensional structured or non-structured data via tensor operations such as tensor

decomposition and tensor sketching. It is easy to consider tensors as multi-dimensional

vectors or matrices and apply vector/matrix-based algorithms to find the solution. However,

xii

these methods omit multi-dimensionality of the data and can be computational inefficient

than considering the tensor as a whole. We show the superiority of our approximation

algorithms over these methods from computation and memory efficiency point of views.

This thesis also discusses optimizing tensor operation computations from the high-performance

computing aspect. Conventional methods treat tensors as flattened matrices or vectors. Op-

erations between tensors may require lots of permutations and reshapes. We propose new

tensor algebra computation routines that avoid the prepossessing as much as possible. The

value of this approach and its applications are recognized by NVIDIA. The proposed interface

exists in the CuBlas 8.0.

xiii

Chapter 1

Introduction

The trinity of machine learning and deep learning consists of data, algorithm, and compu-

tation. Data is vitally important because without data, we can not verify the correctness of

the model we designed. The data is inherently multi-dimensional. We call multi-dimensional

data tensors. The algorithm is the core of the model. Different tasks and data require dif-

ferent algorithms. Last but not least, computation is gaining more attention. As the models

expand and more data be collected, computation power is the crux of modern technology

development. Specifically, how to approximate tensors with few parameters using different

algorithms and how to ensure efficient tensor computations in machine learning and deep

learning are the main concerns of this thesis.

Given the importance of data approximation in the aspect of computation efficiency and

privacy concerns, many methods have been developed to use fewer parameters in the es-

timation of the original data. As one might expect, data with a particular structure may

require a specific approximation method. Truncated singular value decomposition (SVD) is

an approximation method to represent the rotation and rescale of the data. Rotation and

rescale represent the structure of the data in such a case. However, this decomposition may

1

Figure 1.1: Trinity of AI.

not fit for specific data that has sparsity/non-negativity constraints. In contrast to matrix

techniques which make stringent assumptions on underlying structure, sketching is designed

for compressing vector-valued data with almost no assumptions.

In this thesis, we first discuss how to find hidden structures from high-dimensional data using

latent variable models. Specifically, we use the method of moment: a technique to discover

hidden parameters from the observed aggregated statistics of the data. This algorithm

requires tensor decomposition: decomposition of the higher-order moments. Secondly, we

propose a new sampling method that does not depend on the underlying data structure. This

hash-based sketching method shows advantages in many applications. In both cases, we focus

on comparing our algorithms with existing models which consider tensors as slices of matrices

and vectors. Thirdly, we present a real-world application: Visual Question Answering, where

data from different feature channels have to be combined through tensor operations. We

propose a new data structure so that it explores efficient feature representations for multi-

modality models.

Data dimensionality reduction is one way to improve computation efficiency when the data

is used in a huge network, such as deep neural nets. However, this might not satisfy the com-

putation speed requirement. Computation capability is the bottleneck. Conventional com-

puting methods treat tensors as flattened matrices or vectors. Operations between tensors

2

may require lots of permutations and reshapes. We propose new tensor algebra computation

routines that avoid the prepossessing as much as possible.

The rest of this chapter is organized as follows. We first summarize the problems we analyzed

and our contributions in Section 1.1. In Section 1.2, we provide background for tensor

algebra since it is fundamental for the whole thesis. Finally, we discuss the organization of

the dissertation in Section 1.3.

1.1 Summary of Contributions

1.1.1 Tensor Robust Principle Component Analysis

In Chapter 2, we consider the tensor robust principle component analysis, which recovers a

low rank tensor subject to gross corruptions. Given an input tensor T = L∗+S∗, we aim to

recover both L∗ and S∗, where L∗ is a low rank tensor with CP-form: L∗ =
∑r

i=1 σ
∗
i ui⊗ui⊗ui

and S∗ is a sparse tensor. The above problem arises in numerous applications such as image

and video denoising, multi-task learning, and robust learning of latent variable models with

grossly-corrupted moments.

One can solve the robust tensor problem using matrix methods. Robust matrix PCA can

be applied either to each matrix slice of the tensor or to the matrix obtained by flattening

the tensor. However, such matrix methods ignore the tensor algebraic constraints or the

CP-rank constraints, which differ from the matrix rank constraints.

We propose a non-convex iterative method, termed RTD, that maintains low rank and sparse

estimates L̂, Ŝ, which are alternately updated. The low rank estimate L̂ is updated through

the eigenvector computation of T − Ŝ, and the sparse estimate is updated through (hard)

thresholding of the residual T − L̂. As a main result, we prove convergence to the global

3

Figure 1.2: Tensor robust principle component analysis.

optimum {L∗, S∗} for RTD under an incoherence assumption on L∗, and a bounded sparsity

level for S∗. We compare our RTD method with matrix robust PCA, carried out either on

matrix slices of the tensor, or on the flattened tensor. We prove our RTD method is superior

and can handle higher sparsity levels in the noise tensor S∗, when it is block structured.

1.1.2 Higher-order Count Sketch

Sketching is a randomized dimensionality-reduction method that aims to preserve relevant

information in large-scale datasets. Count sketch(CS) is a simple popular sketch which

uses a randomized hash function to achieve compression. In Chapter 3, we propose a novel

extension known as Higher-order Count Sketch (HCS).

While count sketch uses a single hash function, HCS uses multiple (smaller) hash functions

for sketching. HCS reshapes the input (vector) data into a higher-order tensor and employs

a tensor product of the random hash functions to compute the sketch. This results in an

exponential saving (with respect to the order of the tensor) in the memory requirements

of the hash functions, under certain conditions on the input data. Furthermore, when the

input data itself has an underlying structure in the form of various tensor representations

such as the Tucker decomposition, we obtain significant advantages. We derive efficient

(approximate) computation of various tensor operations such as tensor products and tensor

contractions directly on the sketched data. Thus, HCS is the first sketch to fully exploit the

multi-dimensional nature of higher-order tensors.

We compare HCS and CS for tensor product and tensor contraction compression using

4

Reshape

HCS

Input

Output

Figure 1.3: Higher-order count sketch reshapes input vector into higher-order tensor and
sketches it into a (smaller) tensor of the same order.

synthetic data. HCS outperforms CS in terms of computation efficiency and memory usage:

it uses 200× less compression time and 40× less memory while keeping the same recovery

error, compared to CS. We apply HCS to tensorized neural networks where we replace fully

connected layers with sketched tensor operations. We achieve nearly state of the art accuracy

with significant compression on the image classification benchmark.

1.1.3 Feature Pooling through Tensor Operations

In Chapter 4, we consider a deep learning application, named Visual Question Answering

(VQA). VQA focus on providing a natural language answer given any image and any free-

form natural language question. It requires integration of feature maps with drastically

different structures and focus of the correct regions. Image descriptors have structures at

multiple spatial scales, while lexical inputs inherently follow a temporal sequence and natu-

rally cluster into semantically different question types.

A lot of previous works use complex models to extract feature representations but neglect

to use high-level information summary such as question types in learning. In this work,

we propose Question Type-guided Attention (QTA). It utilizes the information of question

type to dynamically balance between bottom-up and top-down visual features, respectively

extracted from ResNet and Faster R-CNN networks. We experiment with multiple VQA

5

Q: “What’s her
mustache made of?”

Vision Feature Extractor

Text Feature Extractor Combine

Predictor A: “Banana”

Question Type:
“Subordinate Object

Recognition”

Question Type Guided
Attention

Figure 1.4: General VQA network with QTA.

architectures with extensive input ablation studies over the TDIUC dataset and show that

QTA systematically improves the performance by more than 5% across multiple question type

categories such as “Activity Recognition”, “Utility” and “Counting” on TDIUC dataset. By

adding QTA on the state-of-art model MCB, we achieve 3% improvement in overall accuracy.

Finally, we propose a multi-task extension to predict question types which generalizes QTA

to applications that lack question type, with a minimal performance loss.

1.1.4 Efficient Tensor Contraction Primitives

In Chapter 5, we propose and study library-based communication-avoiding approaches for

performing tensor contractions. Conventional approaches for computing general tensor con-

tractions rely on matricization, the logical or explicit restructuring of the data so that the

computation can be performed with a sequence of Basic Linear Algebra Subroutine (Blas)

library calls.

We introduce a new Blas primitive, known as StridedBatchedGemm, that allows the

majority of tensor contractions to be computed without any explicit memory motion. We

begin by focusing on single-index contractions involving all the possible configurations of

second-order and third-order tensors. Through systematic benchmarking, we demonstrate

6

Table 1.1: An example of tensor contraction computation procedure using conventional and
our new tensor contraction primitive

Task Conventional Our method

Cmnp = AkmBpkn

Akm → Amk

Cm[n]p = ATkmB
T
pk[n]

Bpkn → Bkpn

Cmnp → Cmpn
Cmpn → AmkBkpn

Cmpn → Cmnp

that our approach can achieve 10x speedup on a K40c GPU and 2x speedup on dual-socket

Haswell-EP CPUs, using Mkl and CuBlas respectively, for small and moderate tensor sizes.

This is relevant in many machine learning applications such as deep learning, where tensor

sizes tend to be small, but require numerous tensor contraction operations to be performed

successively. We also demonstrate performance improvement using our approach in direct

benchmarks to an application study: the Tucker decomposition. We show that using our

kernels yields atleast an order of magnitude speedup as compared to state-of-the-art libraries.

1.2 Tensor Preliminaries

We denote vectors by lowercase letters, matrices and higher-order tensors(multi-dimensional

data structures) by uppercase letters. The order of a tensor is the number of modes it admits.

For example, T ∈ Rn1×···×nN is an Nth-order tensor because it has N modes. A scalar is a

zeroth-order tensor, a vector is a first-order tensor, a matrix is a second-order tensor with

the rows being the first mode and columns being the second mode, and a three-way array

(say A ∈ Rm×n×p) is a third-order tensor with the first, second and third modes indexed by

m, n, and p, respectively. fibers is the higher-order analogue of a matrix row or column in

tensors. A fiber is obtained by fixing all but one of the indices of the tensor. For example,

for a third order tensor T ∈ Rn×n×n, the mode-1 fiber is given by T (:, j, l). Similarly, slices

are obtained by fixing all but two of the indices of the tensor. For example, for the third

7

Mode-1 Fiber Mode-2 Fiber Mode-3 FiberT:jk Ti:k

Hoarizontal Slice Lateral Slice Frontal Slice

Tij:

T::kT:j:Ti::

Figure 1.5: Fibers and slices of a third-order tensor.

order tensor T , the slices along third mode are given by T (:, :, l). A flattening of tensor T

along mode k is a matrix M whose columns correspond to mode-k fibres of T . We show

different ways to slice a third-order tensor in Figure 1.5.

Matrix product between A ∈ Rm×r and B ∈ Rr×n is defined as C = AB =
∑r

i=1A:i⊗Bi:, C ∈

Rm×n. Tensor contraction (used more often as Einstein summation in physics community)

can be seen as an extension of matrix product in higher-dimensions. We define a general

tensor contraction between A ∈ Ra1×···×ap and B ∈ Rb1×···×bq as

CL = APBQ = AMRBRN =
∑
R

A:R ⊗BR: (1.1)

where P ,Q,L are ordered sequences of indices such that P = {a1 × · · · × ap}, Q = {b1 ×

· · · × bq}, L = (P ∪ Q)\(P ∩ Q), R = P ∩ Q, M = P\(P ∩ Q), N = Q\(P ∩ Q). The

indices in R are called contracted indices. The indices in L are called free indices. The

p-mode matrix product of a tensor T ∈ Rn1×···×nN with a matrix U ∈ Rm×np is denoted

by T×pUand is of size n1 × · · ·np−1 × m × np+1 × · · · × nN . Element-wise it calculates:

(T×pU)i1···ip−1jip+1···iN =
∑np

ip=1 Ti1···iNUjip .

Tensor product is known as outer product in vectors case. It computes every bilinear

composition from inputs. We denote the operation with ⊗. The tensor product result has

dimension equal to the product of the dimensions of the inputs. An Nth-order tensor is

a result of the tensor product of N vector spaces: A = v1 ⊗ · · · ⊗ vN ∈ Rn1×···×nN , where

8

Figure 1.6: Tensor contraction example: given A ∈ R2×2×3, u ∈ R2×1, v ∈ R2×1, A×1u×2v ∈
R1×1×3.

Figure 1.7: Tucker(left) and CP(right) decomposition of a third-order tensor.

vi ∈ Rni , i ∈ 1, . . . , N .

Tensor decomposition is an extension of matrix decomposition to higher orders. The

Tucker decomposition [98] is analogous to principal component analysis. It decomposes a

tensor as a core tensor contracted with a matrix along each mode. For instance, a third-order

tensor T ∈ Rn1×n2×n3 has the Tucker decomposition:

T = G×1U×2V×3W (1.2)

where G ∈ Rr1×r2×r3 , U ∈ Rn1×r1 , V ∈ Rn2×r2 , and W ∈ Rn3×r3 . CANDECOMP/-

PARAFAC(CP) [42] is a special case of a Tucker-form tensor, where the core tensor is a

sparse tensor that only has non-zero values on the superdiagnoal. It can be represented as

a sum of rank-1 tensors. In previous example, T =
∑r

i=1GiiiUi ⊗ Vi ⊗Wi. Figure 1.7 shows

the Tucker-form and the CP-form of a third-order tensor.

9

1.3 Organization of the Dissertation

In my thesis, I will first discuss about how to find hidden structures for low-rank tensors with

gross corruptions in Chapter 2. In Chapter 3, I propose Higher-order Count Sketch(HCS),

a data-independent algorithm that can find a compact representation of the original tensor.

Moreover, it allows for certain operations to be accurately carried out in the low-dimensional

sketched space. I will switch to analyze multimodality feature data in a real-world application

in Chapter 4. In particular, I work on data with visual and lexical information. I show how

to effectively find compact features for this type of data using sketching techniques. Finally, I

discuss efficient tensor contraction methods from high-performance computing view of point

in Chapter 5. This chapter introduces a new computing kernel, that allows the majority of

tensor contractions to be computed without explicit memory motion. Thus, it improves the

computation efficiency dramatically.

10

Chapter 2

Robust Principle Component Analysis

through Tensor Decomposition

In this chapter, we develop a robust tensor decomposition method, which recovers a low rank

tensor subject to gross corruptions. Given an input tensor T = L∗ + S∗, we aim to recover

both L∗ and S∗, where L∗ is a low rank tensor and S∗ is a sparse tensor.

T = L∗ + S∗, L∗ =
r∑
i=1

σ∗i ui ⊗ ui ⊗ ui (2.1)

The above form of L∗ is known as the Candecomp/Parafac or the CP-form. We assume that

L∗ is a rank-r orthogonal tensor, i.e., 〈ui, uj〉 = 1 if i = j and 0 otherwise. The above problem

arises in numerous applications such as image and video denoising [49], multi-task learning,

and robust learning of latent variable models (LVMs) with grossly-corrupted moments.

The matrix version of (2.1), viz., decomposing a matrix into sparse and low rank matrices,

is known as robust principal component analysis (PCA). It has been studied extensively [22,

20, 47, 75]. Both convex [22, 20] as well as non-convex [75] methods have been proposed

with provable recovery.

11

One can, in fact, attempt to solve the robust tensor problem in (2.1) using matrix methods.

In other words, robust matrix PCA can be applied either to each matrix slice of the tensor,

or to the matrix obtained by flattening the tensor. However, such matrix methods ignore the

tensor algebraic constraints or the CP rank constraints, which differ from the matrix rank

constraints. There are however a number of challenges to incorporating the tensor CP rank

constraints. Enforcing a given tensor rank is NP-hard [44], unlike the matrix case, where low

rank projections can be computed efficiently. Moreover, finding the best convex relaxation of

the tensor CP rank is also NP-hard [44], unlike the matrix case, where the convex relaxation

of the rank, viz., the nuclear norm, can be computed efficiently.

2.1 Summary of Results

Proposed method: We propose a non-convex iterative method, termed RTD, that

maintains low rank and sparse estimates L̂, Ŝ, which are alternately updated. The low rank

estimate L̂ is updated through the eigenvector computation of T−Ŝ, and the sparse estimate

is updated through (hard) thresholding of the residual T − L̂.

Tensor Eigenvector Computation: Computing eigenvectors of T − Ŝ is challenging

as the tensor can have arbitrary “noise” added to an orthogonal tensor and hence the tech-

niques of [8] and similar work do not apply as they only guarantee an approximation to the

eigenvectors up to the “noise” level. Results similar to the shifted power method of [56]

should apply for our problem, but their results hold in an arbitrarily small centered at the

true eigenvectors, and the size of the ball is typically not well-defined. In this work, we

provide a simple variant of the tensor power method based on gradient ascent of a regu-

larized variational form of the eigenvalue problem of a tensor. We show that our method

converges to the true eigenvectors at a linear rate when initialized within a reasonably small

12

ball around eigenvectors. See Theorem 2.2 for details. We believe that our method and

analysis for the tensor eigenvector computation should be of independent interest as well.

Guaranteed recovery: As a main result, we prove convergence to the global optimum

{L∗, S∗} for RTD under an incoherence assumption on L∗, and a bounded sparsity level

for S∗. These conditions are similar to the conditions required for the success of matrix

robust PCA. We also prove fast linear convergence rate for RTD, i.e. we obtain an additive

ε-approximation in O(log(1/ε)) iterations.

Superiority over matrix robust PCA: We compare our RTD method with matrix

robust PCA, carried out either on matrix slices of the tensor, or on the flattened tensor. We

prove our RTD method is superior and can handle higher sparsity levels in the noise tensor S∗,

when it is block structured. Intuitively, each block of noise represents correlated noise which

persists for a subset of slices in the tensor. For example, in a video if there is an occlusion then

the occlusion remains fixed in a small number of frames. In the scenario of moment-based

estimation, S∗ represents gross corruptions of the moments of some multivariate distribution,

and we can assume that it occurs over a small subset of variables.

We prove that our tensor methods can handle a much higher level of block sparse perturba-

tions, when the overlap between the blocks is controlled (e.g. random block sparsity). For

example, for a rank-1 tensor, our method can handle O(n17/12) corrupted entries per fiber

of the tensor (i.e. row/column of a slice of the tensor). In contrast, matrix robust PCA

methods only allows for O(n) corrupted entries, and this bound is tight [75]. We prove that

even better gains are obtained for RTD when the rank r of L∗ increases, and we provide

precise results in this chapter. Thus, our RTD achieves best of both the worlds: better

accuracy and faster running times.

We conduct extensive simulations to empirically validate the performance of our method and

13

compare it to various matrix robust PCA methods. Our synthetic experiments show that our

tensor method is 2-3 times more accurate, and about 8-14 times faster, compared to matrix

decomposition methods. On the real-world Curtain dataset, for the activity detection or the

foreground filtering task, our tensor method obtains better recovery with a 10% speedup.

Overview of techniques: At a high level, the proposed method RTD is a tensor analogue

of the non-convex matrix robust PCA method in [75]. However, both the algorithm (RTD)

as well as the analysis of RTD is significantly challenging due to two key reasons: a) there

can be significantly more structure in the tensor problem that needs to be exploited carefully

using structure in the noise (for example, we propose and analyze a block structure on the

noise), b) unlike matrices, tensors can have an exponential number of eigenvectors [21].

In fact, for tensors, it is non-trivial to establish recovery of a given eigenvector using compu-

tationally efficient methods. It is not immediately clear how sparse perturbations S∗ affect

the recovery of the low rank tensor L∗, as our algorithm progresses.

We would like to stress that we need to establish convergence to the globally optimal solution

{L∗, S∗}, and not just to a local optimum, despite the non-convexity of the decomposition

problem. Intuitively, if we are in the basin of attraction of the global optimum, it is natural

to expect that the estimates {L̂, Ŝ} under RTD are progressively refined, and get closer to

the true solution {L∗, S∗}. However, characterizing this basin, and the conditions needed to

ensure we “land” in this basin is non-trivial and novel.

As mentioned above, our method alternates between finding low rank estimate L̂ on the

residual T−Ŝ and viceversa. The main steps in our proof are as follows: (i) For updating the

low rank estimate, we propose a modified tensor power method, and prove that it converges

to one of the eigenvectors of T − Ŝ. In addition, the recovered eigenvectors are “close” to the

components of L∗. (ii) When the sparse estimate Ŝ is updated through hard thresholding,

14

we prove that the support of Ŝ is contained within that of S∗. (iii) We make strict progress

in each epoch, where L̂ and Ŝ are alternately updated.

In order to prove the first part, we establish that the proposed method performs gradient

ascent on a regularized variational form of the eigenvector problem. We then establish

that the regularized objective satisfies local strong convexity and smoothness. We also

establish that by having a polynomial number of initializations, we can recover vectors that

are “reasonably” close to eigenvectors of T − Ŝ. Using the above two facts, we establish a

linear convergence to the true eigenvectors of T − Ŝ, which are close to the components of

L∗.

For step (ii) and (iii), we show that using an intuitive block structure in the noise, we can

bound the affect of noise on the eigenvectors of the true low-rank tensor L∗ and show that

the proposed iterative scheme refines the estimates of L∗ and converge to L∗ at a linear rate.

2.2 Related Work

Robust matrix decomposition: In the matrix setting, the above problem of decom-

position into sparse and low rank parts is popularly known as robust PCA, and has been

studied in a number of works ([22],[20]). The popular method is based on convex relaxation,

where the low rank penalty is replaced by nuclear norm and the sparsity is replaced by the `1

norm. However, this technique is not applicable in the tensor setting, when we consider the

CP rank. There is no convex surrogate available for the CP rank, and in fact, determining

the CP rank of a general tensor is NP-hard [44]. In this chapter, we consider non-convex

methods for robust tensor decomposition.

Recently a non convex method for robust PCA is proposed in [75]. It involves alternating

steps of PCA and thresholding of the residual. Our proposed tensor method can be seen as

15

a tensor analogue of the method in [75]. However, the analysis is very different, since the

optimization landscape for tensor decomposition differs significantly from that of the matrix.

Convex Robust Tucker decomposition: Previous works which employ convex surro-

gates for tensor problems, such as tensor completion or robust tensor decomposition, employ

a different notion of rank, known as the Tucker rank or the multi-rank, e.g. [97, 34, 48, 59,

39, 40, 36]. However, the notion of a multi-rank is based on ranks of the matricization or

flattening of the tensor, and thus, this method does not exploit the tensor algebraic con-

straints. The problem of robust tensor PCA is specifically tackled in [40, 36]. In [36], convex

and non-convex methods are proposed based on Tucker rank, but there are no guarantees

on if it yields the original tensors L∗ and S∗ in (2.1). In [40], Schatten-1 norm is used

for low rank part, and they prove success under restricted eigenvalue conditions. However,

these conditions are opaque and it is not clear regarding the level of sparsity that can be

handled. Moreover, computing the Schatten-1 norm for large tensors is infeasible. The other

works consider the recovery problem with missing entries. This is different from the robust

decomposition problem, where we do not know the locations of the corruptions.

Sum of squares: Barak et al [14] recently consider CP-tensor completion using algo-

rithms based on the sum of squares hierarchy. However, these algorithms are expensive (a

high order polynomial in the observed dimension, and possibly even exponential time when

there are many missing entries). In contrast, in this chapter, we consider simple iterative

methods based on the power method that are efficient and scalable for large datasets. It

is however unclear if the sum of squares algorithm improves the result for the block sparse

model considered here.

Robust tensor decomposition: Shah et al [86] consider robust tensor decomposition

method using a randomized convex relaxation formulation. Under their random sparsity

16

Algorithm 1 (L̂, Ŝ) = RTD (T, δ, r, β): Tensor Robust PCA

1: Input: Tensor T ∈ Rn×n×n, convergence criterion δ, target rank r, thresholding scale
parameter β. Pl(A) denote estimated rank-l approximation of tensor A, and let σl(A)
denote the estimated lth largest eigenvalue using Procedure 2. HTζ(A) denotes hard-
thresholding, i.e. Hζ(A))ijk = Aijk if |Aijk| ≥ ζ and 0 otherwise.

2: Set initial threshold ζ0 ← βσ1(T) and estimates S(0) = Hζ0(T − L(0)).
3: for Stage l = 1 to r do
4: for t = 0 to τ = 10 log

(
nβ
∥∥T − S(0)

∥∥
2
/δ
)

do

5: L(t+1) = Pl(T − S(t)).
6: S(t+1) = Hζ(T − L(t+1)).

7: ζt+1=β(σl+1(T−S(t+1)) +
(
1
2

)t
σl(T − S(t+1))).

8: If βσl+1(L
(t+1)) < δ

2n
, then return L(τ), S(τ), else reset S(0) = S(τ)

9: Return: L̂ = L(τ), Ŝ = S(τ)

model, their algorithm provides guaranteed recovery as long as the number of non-zeros per

fibre is O(
√
n). This is in contrast to our method which potentially tolerates upto O(n17/12)

non-zero sparse corruptions per fibre.

2.3 Proposed Algorithm

Notations: Let [n] := {1, 2, . . . , n}, and ‖v‖ denote the `2 norm of vector v. For a matrix

or a tensor M , ‖M‖ refers to spectral norm and ‖M‖∞ refers to maximum absolute entry.

RTD method: We propose non-convex algorithm RTD for robust tensor decomposition,

described in Algorithm 1. The algorithm proceeds in stages, l = 1, . . . , r, where r is the

target rank of the low rank estimate. In lth stage, we consider alternating steps of low

rank projection Pl(·) and hard thresholding of the residual, H(·). For computing Pl(L̃),

that denotes the l leading eigenpairs of L̃, we execute gradient ascent on a function f(v) =

L̃(v, v, v)− λ‖v‖4 with multiple restarts and deflation (see Procedure 2).

17

Procedure 2 {L̂l, (ûj, λj)j∈[l]} = Pl(T): GradAscent (Gradient Ascent Method)

1: Input: Symmetric tensor T ∈ Rn×n×n, target rank l, exact rank r, N1 number of
initializations or restarts, N2 number of power iterations for each initialization. Let
T1 ← T.

2: for j = 1, . . . , r do
3: for i = 1, . . . , N1 do
4: θ ∼ N (0, In). Compute top singular vector u of Tj(I, I, θ). Initialize v

(1)
i ← u.

Let λ = Tj(u, u, u).
5: repeat
6: v

(t+1)
i ← Tj(I, v

(t)
i , v

(t)
i)/‖Tj(I, v(t)i , v

(t)
i)‖2 . Run power method to land in

spectral ball
7: λ

(t+1)
i ← Tj(v

(t+1)
i , v

(t+1)
i , v

(t+1)
i)

8: until t = N2

9: Pick the best: reset i ← arg maxi∈[N1] Tj(v
(t+1)
i , v

(t+1)
i , v

(t+1)
i) and λi = λ

(t+1)
i and

vi = v
(t+1)
i .

10: Deflate: Tj ← Tj − λivi ⊗ vi ⊗ vi.
11: for j = 1, . . . , r do
12: repeat

13: Gradient Ascent iteration: v(t+1)
j ← v

(t)
j + 1

4λ(1+λ/
√
n)
·
(
T (I, v

(t)
j , v

(t)
j)− λ‖v(t)j ‖2v

(t)
j

)
.

14: until convergence (linear rate, refer Lemma 2.3).

15: Set ûj = v
(t+1)
j , λj = T (v

(t+1)
j , v

(t+1)
j , v

(t+1)
j)

return Estimated top l out of all the top r eigenpairs (ûj, λj)j∈[l], and low rank estimate

L̂l =
∑

i∈[l] λiûj ⊗ ûj ⊗ ûj.

Computational complexity: In RTD, at the lth stage, the l-eigenpairs are computed

using Algorithm 2, whose complexity is O(n3lN1N2). The hard thresholding operation

Hζ(T −L(t+1)) requires O(n3) time. We have O
(

log
(
n‖T‖
δ

))
iterations for each stage of the

RTD algorithm and there are r stages. By Theorem 2.2, it suffices to have N1 = Õ (n1+c)

and N2 = Õ (1), and where Õ(·) represents O(·) up to polylogarithmic factors and c is a

small constant. Hence, the overall computational complexity of RTD is Õ (n4+cr2).

18

2.4 Theoretical Guarantees

In this section, we provide guarantees for the RTD proposed in the previous section for RTD

in (2.1). Even though we consider a symmetric L∗ and S∗ in (2.1), we can easily extend the

results to asymmetric tensors, by embedding them into symmetric tensors, on lines of [84].

In general, it is not possible to have a unique recovery of low-rank and sparse components.

For example, if the input tensor T is both sparse and low rank, then there is no unique

decomposition (e.g. T = e⊗31). Instead, we assume the following conditions in order to

guarantee uniqueness:

(L) L∗ is a rank-r orthogonal tensor in (2.1), i.e., 〈ui, uj〉 = δi,j, where δi,j = 1 iff i = j and

0 o.w. L∗ is µ-incoherent, i.e., ‖ui‖∞ ≤ µ
n1/2 and σ∗i > 0, ∀1 ≤ i ≤ r.

The above conditions of having an incoherent low rank tensor L∗ are similar to the condi-

tions for robust matrix PCA. For tensors, the assumption of an orthogonal decomposition

is limiting, since there exist tensors whose CP decomposition is non-orthogonal [8]. We

later discuss how our analysis can be extended to non-orthogonal tensors. We now list the

conditions for sparse tensor S∗.

The tensor S∗ is block sparse, where each block has at most d non-zero entries along any

fibre and the number of blocks is B. Let Ψ be the support tensor that has the same sparsity

pattern as S∗, but with unit entries, i.e. Ψi,j,k = 1 iff. S∗i,j,k 6= 0 for all i, j, k ∈ [n]. We

now make assumptions on sparsity pattern of Ψ. Let η be the maximum fraction of overlap

between any two block fibres ψi and ψj. In other words, maxi 6=j〈ψi, ψj〉 < ηd. (S) Let d be

the sparsity level along any fibre of a block and let B be the number of blocks. We require

Ψ =
B∑
i=1

ψi ⊗ ψi ⊗ ψi, ‖ψi‖0 ≤ d, ψi(j) = 0 or 1,∀i ∈ [B], j ∈ [n],

d = O(n/rµ3)2/3, B = O(min(n2/3r1/3, η−1.5))

(2.2)

19

We assume a block sparsity model for S∗ above. Under this model, the support tensor Ψ

which encodes sparsity pattern, has rank B, but not the sparse tensor S∗ since the entries

are allowed to be arbitrary. We also note that we set d to be n2/3 for ease of exposition and

show one concrete example where our method significantly outperforms matrix based robust

PCA methods.

As discussed in the introduction, it may be advantageous to consider tensor methods for

robust decomposition only when sparsity across the different matrix slices are aligned/struc-

tured in some manner, and a block sparse model is a natural structure to consider. We

later demonstrate the precise nature of superiority of tensor methods under block sparse

perturbations.

For the above mentioned sparsity structure, we set β = 4µ3r/n3/2 in our algorithm. We now

establish that our proposed algorithm RTD recovers the low rank and sparse components

under the above conditions, thereby establishing convergence to the globally optimal solution.

Theorem 2.1 (Convergence to global optimum for RTD). Let L∗, S∗ satisfy (L) and (S),

and β = 4 µ3r
n3/2 . The outputs L̂ (and its parameters ûi and λ̂i) and Ŝ of Algorithm 1 satisfy

w.h.p.:

‖ûi − ui‖∞ ≤ δ/µ2rn1/2σ∗min, (2.3)

|λ̂i − σ∗i | ≤ δ, ∀i ∈ [n],
∥∥∥L̂− L∗∥∥∥

F
≤ δ, ‖Ŝ − S∗‖∞ ≤ δ/n3/2, (2.4)

and supp Ŝ ⊆ suppS∗. (2.5)

Comparison with matrix methods: We now compare with the matrix methods for

recovering the sparse and low rank tensor components in (2.1). Robust matrix PCA can be

performed either on all the matrix slices of the input tensor Mi := T (I, I, ei), for i ∈ [n],

20

or on the flattened tensor T (see the definition in Section 2.3). We can either use convex

relaxation methods [22, 20, 47] or non-convex methods [75] for robust matrix PCA.

Recall that η measures the fraction of overlapping entries between any two different block

fibres, i.e. maxi 6=j〈ψi, ψj〉 < ηd, where ψi are the fibres of the block components of tensor Ψ

in (2.2) which encodes the sparsity pattern of S∗ with 0-1 entries. A short proof is given in

Appendix A.2.1.

Corollary 1 (Superiority of tensor methods). The proposed tensor method RTD can handle

perturbations S∗ at a higher sparsity level compared to performing matrix robust PCA on

either matrix slices or the flattened tensor using guaranteed methods in [47, 75] when the

(normalized) overlap between different blocks satisfies η = O(r/n)2/9.

Simplifications under random block sparsity: We now obtain transparent results

for a random block sparsity model, where the components ψi in (2.2) for the support tensor

Ψ are drawn uniformly among all d-sparse vectors. In this case, the incoherence η simplifies

as η
w.h.p
= O(d

n
) when d >

√
n and η

w.h.p
= O (1/

√
n), o.w. Thus, the condition on B in (2.2)

simplifies as B = O(min(n2/3r1/3, (n/d)1.5)) when d >
√
n and B = O(min(n2/3r1/3, n0.75))

o.w. Recall that as before, we require sparsity level of a fibre in any block as d = O(n/rµ3)2/3.

For simplicity, we assume that µ = O(1) for the remaining section.

We now explicitly compute the sparsity level of S∗ allowed by our method and compare it

to the level allowed by matrix based robust PCA.

Corollary 2 (Superiority of tensor methods under random sparsity). Let DRTD be the num-

ber of non-zeros in S∗ (‖S∗‖0) allowed by RTD under the analysis of Theorem 2.1 and let

Dmatrix be ‖So‖0 allowed using the standard matrix robust PCA analysis. Also, let S∗ be

21

d

10 20 30 40

E
rr

o
r

0.4

0.5

0.6

Figure

d

10 20 30 40

E
rr

o
r

0.3

0.4

0.5

0.6

0.7

0.8

Figure

d

10 20 30 40

E
rr

o
r

10
0

Figure

Nonwhiten

Whiten(random)

Whiten(true)

Matrix(slice)

Matrix(flat)

d

10 20 30 40

E
rr

o
r

10
0

Figure

(a) (b) (c) (d)

Figure 2.1: (a) Error comparison of different methods with deterministic sparsity, rank 5, varying
d. (b) Error comparison of different methods with deterministic sparsity, rank 25, varying d. (c)
Error comparison of different methods with block sparsity, rank 5, varying d. (d) Error comparison
of different methods with block sparsity, rank 25, varying d. Error = ‖L∗−L‖F /‖L∗‖F . The curve
labeled ‘T-RPCA-W(slice)’ refers to considering recovered low rank part from a random slice of the
tensor T by using matrix non-convex RPCA method as the whiten matrix, ‘T-RPCA-W(true)’ is
using true second order moment in whitening, ‘M-RPCA(slice)’ treats each slice of the input tensor
as a non-convex matrix-RPCA(M-RPCA) problem, ‘M-RPCA(flat)’ reshapes the tensor along one
mode and treat the resultant as a matrix RPCA problem. All four sub-figures share same curve
descriptions.

sampled from the block sparsity model. Then, the following holds:

DRTD

Dmatrix

=

Ω
(
n1/6r4/3

)
, for r < n0.25, (2.6)

Ω
(
n5/12r1/3

)
, o.w. (2.7)

Unstructured sparse perturbations S∗: If we do not assume block sparsity in (S),

but instead assume unstructured sparsity at level D, i.e. the number of non zeros along any

fibre of S∗ is at most D, then the matrix methods are superior. In this case, for success of

RTD, we require that D = O
(√

n
rµ3

)
which is worse than the requirement of matrix methods

D = O(n
rµ2

). Our analysis suggests that if there is no structure in sparse patterns, then

matrix methods are superior. This is possibly due to the fact that finding a low rank tensor

decomposition requires more stringent conditions on the noise level. At the same time, when

there is no block structure, the tensor algebraic constraints do not add significantly new

information. However, in the experiments, we find that our tensor method RTD is superior

to matrix methods even in this case, in terms of both accuracy and running times.

22

d

10 20 30 40

T
im

e
(s

)

50

100

150

200

Figure

d

10 20 30 40

T
im

e
(s

)

10
2

10
3

Figure

d

10 20 30 40

T
im

e
(s

)

10
2

Figure

Nonwhiten

Whiten(random)

Whiten(true)

Matrix(slice)

Matrix(flat)

d

10 20 30 40

T
im

e
(s

)

10
2

10
3

Figure

(a) (b) (c) (d)

Figure 2.2: (a) Running time comparison of different methods with deterministic sparsity, rank 5,
varying d. (b) Running time comparison of different methods with deterministic sparsity, rank 25,
varying d. (c) Running time comparison of different methods with block sparsity, rank 5, varying d.
(d) Running time comparison of different methods with block sparsity, rank 25, varying d. Curve
descriptions are same as in Figure 1.

Analysis of Procedure 2 Our proof of Theorem 2.1 depends critically on an assumption

that Procedure 2 indeed obtains the top-r eigen-pairs. We now concretely prove this claim.

Let L̃ be a symmetric tensor which is a perturbed version of an orthogonal tensor L∗,

L̃ = L∗ + E ∈ Rn×n×n, L∗ =
∑

i∈[r] σ
∗
i u
⊗3
i , where σ∗1 ≥ σ∗2 . . . σ

∗
r > 0 and {u1, u2, . . . , ur}

form an orthonormal basis.

Recall that N1 is the number of initializations to seed the power method, N2 is the number

of power iterations, and δ is the convergence criterion. For any ξ ∈ (0, 1), and l ≤ r, assume

the following

‖E‖ ≤ O(σ∗l /
√
n), N1 = O(n1+c log(1/ξ)), N2 ≥ Ω(log (k) + log(σ∗max/‖E‖)) (2.8)

where c is a small constant. We now state the main result for recovery of components of L∗

when Procedure 2 is applied to L̃.

Theorem 2.2 (Gradient Ascent method). Let L̃ = L∗ + E be as defined above with ‖E‖ ≤

O(σ∗r/
√
n). Then, applying Procedure 2 with deflations on L̃ with target rank l ≤ r, yields

l eigen-pairs of L̃, given by (λ1, û1), (λ2, û2), . . . , (λl, ûl), up to arbitrary small error δ > 0

and with probability at least 1 − ξ. Moreover, there exists a permutation π on [l] such that:

∀j ∈ [l], |σ∗π(j) − λj| ≤ O (‖E‖+ δ) , ‖uπ(j) − ûj‖ ≤ O((‖E‖/σ∗π(j)) + δ).

23

While [8, Thm. 5.1] considers power method, here we consider the power method followed

by a gradient ascent procedure. With both methods, we obtain outputs (λi, ûi) which are

“close” to the original eigen-pairs of (σ∗i , ui) of L∗. However, the crucial difference is that

Procedure 2 outputs (λi, ûi) correspond to specific eigen-pairs of input tensor L̃, while the

outputs of the usual power method have no such property and only guarantees accuracy

upto O(‖E‖2) error. We critically require the eigen property of the outputs in order to

guarantee contraction of error in RTD between alternating steps of low rank decomposition

and thresholding.

The analysis of Procedure 2 has two phases. In the first phase, we prove that with N1

initializations and N2 power iterations, we get close to true eigenpairs of L∗, i.e. (σ∗i , ui) for

i ∈ [l]. After this, in the second phase, we prove convergence to eigenpairs of L̃.

The proof for the first phase is on lines of proof in [8], but with improved requirement on

error tensor E in (2.8). This is due to the use of SVD initializations rather than random

initializations to seed the power method, and its analysis is given in [9].

Proof of the second phase follows using two observations: a) Procedure 2 is just a simple

gradient ascent of the following program: f(v) = L̃(v, v, v) − 3
4
λ‖v‖42, b) with-in a small

distance to the eigenvectors of L̃, f(v) is strongly concave and as well as strongly smooth

with appropriate parameters. See below lemma for a detailed proof of the above claim.

Hence, using our initialization guarantee from the phase-one, Procedure 2 converges to a δ

approximation to eigen-pair of L̃ in time O(log(1/δ)) and hence, Theorem 2.2 holds.

Lemma 2.3. Let f(v) = L̃(v, v, v)− 3
4
λ‖v‖42. Then, f is σ∗i (1−

300σ∗r√
n

)-strongly concave and

σ∗i (1 + 300σ∗r√
n

) strongly smooth at all points (v, λ) s.t. ‖v − ui‖ ≤ 10√
n

and |λ− σ∗i | ≤
10σ∗r√
n

, for

some 1 ≤ i ≤ r. Procedure 2 converges to an eigenvector of L̃ at a linear rate.

24

Proof. Consider the gradient and Hessian of f w.r.t. v:

∇f = 3L̃(I, v, v)− 3λ‖v‖2v, (2.9)

H = 6L̃(I, I, v)− 6λvv> − 3λ‖v‖2I. (2.10)

We first note that the stationary points of f indeed correspond to eigenvectors of L̃ with

eigenvalues λ‖v‖2. Moreover, when |λ− σ∗i | ≤
10σ∗r√
n

and ‖v − ui‖ ≤ 10√
n
, we have:

‖H − (−3σ∗i I)‖2 ≤ 30
σ∗r√
n

+ 180
σ∗r√
n
.

Recall that L̃ = L∗+E, where L∗ is an orthogonal tensor and ‖E‖2 ≤ σ∗r/
√
n. Hence, there

exists one eigenvector in each of the above mentioned set, i.e., set of (v, λ) s.t. |λ−σ∗i | ≤
10σ∗r√
n

and ‖v − ui‖ ≤ 10√
n
. Hence, the standard gradient ascent procedure on f would lead to

convergence to an eigenvector of L̃. �

Extending to non-orthogonal low rank tensors: In (L), we assume that the low rank

tensor L∗ in (2.1) is orthogonal. We can also extend to non-orthogonal tensors L∗, whose

components ui are linearly independent. Here, there exists an invertible transformation

W known as whitening that orthogonalizes the tensors [8]. We can incorporate whitening

in Procedure 2 to find low rank tensor decomposition, within the iterations of RTD. The

performance of RTD will then depend on various norms of the whitening matrix W and the

sparsity level that can be handled is degraded, depending on the extent of non-orthogonality.

We leave the analysis for future work.

25

(a) (b) (c)

Figure 2.3: Foreground filtering or activity detection in the Curtain video dataset. (a):
Original image frame. (b): Foreground filtered (sparse part estimated) using tensor method;
time taken is 5.1s. (c): Foreground filtered (sparse part estimated) using matrix method;
time taken is 5.7s.

2.5 Experiments

We now present an empirical study of our method. The goal of this study is three-fold: a)

establish that our method indeed recovers the low-rank and sparse parts correctly, without

significant parameter tuning, b) demonstrate that whitening during low rank decomposition

gives computational advantages, c) show that our tensor methods are superior to matrix

based RPCA methods in practice.

Our pseudo-code (Algorithm 1) prescribes the threshold ζ in Step 5, which depends on the

knowledge of the singular values of the low rank component L∗. Instead, in the experiments,

we set the threshold at the (t+1) step of lth stage as ζ = µσl+1(T−S(t))/n3/2. We found that

the above thresholding, in the tensor case as well, provides exact recovery while speeding up

the computation significantly.

2.5.1 Synthetic Dataset

The low-rank part L∗ =
∑

i∈[k] λiu
⊗3
i is generated from a factor matrix U ∈ Rn×k whose

entries are i.i.d. samples from N (0, 1). For deterministic sparsity setting, supp(S∗) is gen-

erated by setting each entry of [n]× [n]× [n] to be non-zeros with probability d/n and each

26

non-zero value S∗ijk is drawn i.i.d. from the uniform distribution over [r/(2n3/2), r/n3/2]. For

block sparsity setting, we randomly select B numbers of [n] × [1] vectors vi, i = 1...B in

which each entry is chosen to be non-zero with probability d/n. The value of non-zero entry

is assigned similar to the one in deterministic sparsity case. Each of this vector will form a

subtensor(v⊗3i) and those subtensors form the whole S. For increasing incoherence of L∗, we

randomly zero-out rows of U and then re-normalize them. For the CP-decomposition, we

use the alternating least squares (ALS) method available in the tensor toolbox [13]. Note

that although we proposed and analyzed the gradient ascent method as in Procedure 2 for

performing tensor decomposition for obtaining spectral convergence guarantees, we use the

ALS procedure in practice since we found that empirically, ALS performs quite well and

is convenient to use. For whitening, we use two different whitening matrices: a) the true

second order moment from the true low-rank part, b) the recovered low rank part from a

random slice of the tensor T by using matrix non-convex RPCA method. We compare our

RTD with matrix non-convex RPCA in two ways: a) treat each slice of the input tensor as

a matrix RPCA problem, b) reshape the tensor along one mode and treat the resultant as a

matrix RPCA problem.

We vary sparsity of S∗ and rank of L∗ for RTD with a fixed tensor size. We investigate

performance of our method, both with and without whitening, and compare with the state-

of-the-art matrix non-convex RPCA algorithm. Our results for synthetic datasets is averaged

over 5 runs. In Figure 2.1, we report relative error (‖L∗−L‖F/‖L∗‖F) by each of the methods

allowing maximum number of iterations up to 100. Comparing (a) and (b) in Figure 2.1, we

can see that with block sparsity, RTD is better than matrix based non-convex RPCA method

when d is less than 20. If we use whitening, the advantage of RTD is more significant. But

when rank becomes higher, the whitening method is not helpful. In Figure 2.2, we illustrate

the computational time of each methods. Here we can see that whitening simplifies the

problem and give us computational advantage. Besides, the running time for the one using

tensor method is similar to the one using matrix method when we reshape the tensor as one

27

matrix. We note that doing matrix slices increases the running time.

2.5.2 Real-world Dataset

To demonstrate the advantage of our method, we apply our method to the so-called real-

world problem of activity detection or foreground filtering [64]. The goal of this task is to

detect activities from a video coverage, which is a set of image frames that form a tensor. The

people or objects moving in a video are said be engaging in some activities. In our robust

decomposition framework, these moving people or objects correspond sparse (foreground)

perturbations which we wish to filter out. The static ambient background is of lesser interest

since nothing changes and therefore is not interesting.

We selected one of datasets, namely the Curtain video dataset wherein a person walks in

and out of the room between the frame numbers 23731 and 23963. We compare our tensor

method with the state-of-the-art matrix method in [75] on the set of 233 frames where the

activity happens. In our tensor method, we preserve the multi-modal nature of videos and

consider the set of image frames without vectorizing them. For the matrix method, we follow

the setup of [75] by reshaping each image frame into a vector and stacking them together. We

set the convergence criterion to 10−3 and run both the methods. Our tensor method yields

a 10% speedup and obtains a noticeably better visual recovery for the same convergence

accuracy as shown in Figure 2.3, ie, the person entering the room is captured in entirety and

more detail by the tensor method as compared to the matrix method.

2.6 Conclusion

We proposed a non-convex alternating method for decomposing a tensor into low rank and

sparse parts. We established convergence to the globally optimal solution under natural

28

conditions such as incoherence of the low rank part and bounded sparsity levels for the

sparse part. We prove that our proposed tensor method can handle perturbations at a much

higher sparsity level compared to robust matrix methods. Our simulations show superior

performance of our tensor method, both in terms of accuracy and computational time. Some

future directions are analyzing: (1) our method with whitening (2) the setting where grossly

corrupted samples arrive in streaming manner.

29

Chapter 3

Higher-order Count Sketch

Modern machine learning involves processing of large-scale datasets. Dimensionality-reduction

methods attempt to compress the input data while preserving relevant information. Sketch-

ing is a popular class of such techniques which aims to reduce memory and computational

requirements by using simple randomized hash functions that map the input data to a

reduced-sized output space. Count Sketch (CS) [24] is a simple sketch that has been ap-

plied in many settings such as estimation of internet packet streams [30] and tracking most

frequent items in a database [29]. It uses a simple data-independent random hash function

and random signs to combine the input data elements. Despite its simplicity, it enjoys many

desirable properties such as unbiased estimation and the ability to approximately perform

certain operations directly on the low-dimensional sketched space, e.g., vector inner prod-

ucts and outer products. However, CS is memory inefficient when the data is large. The

bottleneck is that it needs to generate a hash table as large as the data size.

Another drawback of CS is that it assumes vector-valued data and does not exploit further

structure if data is multi-dimensional. But many modern machine learning and data mining

applications involve manipulating large-scale multi-dimensional data. For instance, data can

30

be multi-modal or multi-relational (e.g., a combination of image and text), and intermediate

computations can involve higher-order tensor operations (e.g., layers in a tensorized neural

network). Memory, bandwidth, and computational requirements are usually bottlenecks

when these operations are done at scale. Efficient dimensionality reduction schemes that

exploit tensor structures can significantly alleviate this issue if they can find a compact

representation while preserving accuracy.

3.1 Summary of Results

We extend count sketch to Higher-order Count Sketch (HCS), which is the first sketch to

fully exploit the multi-dimensional nature of higher-order tensors. It reshapes the input

(vector) data to a higher-order tensor of a fixed order. It utilizes multiple randomized hash

functions: one for each mode of the tensor. The mapping in HCS is obtained by the tensor

product of these hash functions. We show a memory saving in storing the hash map: if the

input data size is O(d) and HCS uses l-th order tensor for sketching, we reduce the hash

memory requirements from O(d) to O(l l
√
d), compared to the count sketch, under certain

conditions.

The conditions for obtaining the best-case memory savings from HCS are related to the

concentration of input entries with large magnitudes and require these large entries to be

sufficiently spread out. Intuitively, this is because the hash indices in HCS are correlated

and we cannot have all the input to be clustered together. If we are allowed multiple passes

over the input data , a simple (in-place) reshuffle to spread out the large entries will fix this

issue, and thus allows us to obtain maximum memory savings in storing hash functions.

When the input data has further structure as a higher-order tensor, HCS is able to exploit

it. HCS allows for efficient (approximate) computations of tensor operations such as tensor

31

products and tensor contractions by directly applying these operations on the sketched com-

ponents. We obtain exponential saving with respect to the order of the tensor in the memory

requirements for tensor product and contraction when compared to sketching using count

sketch. We also show O(rN−1) times improvement in computation and memory efficiency for

computing a Nth-order rank-r Tucker tensor when compared to applying CS to each rank-1

component. The computation and memory improvement over CS of these operations are

shown in Table 3.1.

We compare HCS and CS for tensor product and tensor contraction compression using syn-

thetic data. HCS outperforms CS in terms of computation efficiency and memory usage: it

uses 200× less compression time and 40× less memory while keeping the same recovery error,

compared to CS. Besides, we apply HCS for approximating tensor operations in tensorized

neural networks. These networks replace fully connected layers with multi-linear tensor al-

gebraic operations. Applying HCS to tensor operations results in further compression while

preserving accuracy. We obtain 90% test accuracy on CIFAR10 dataset with 80% memory

savings on the last fully connected layer, compared to the baseline ResNet18.

3.2 Related Work

Singular value decomposition (SVD) is perhaps the most popular dimensionality reduction

technique [32]. However, when data is not inherently low rank or has other constraints such

as sparsity and non-negativity, SVD is not suitable. Other matrix decomposition techniques

try to impose more structure on matrices [69, 19, 83].

In contrast to matrix techniques which make stringent assumptions on underlying structure,

sketching is designed for compressing vector-valued data with almost no assumptions [15,

5, 103]. Count Sketch (CS) [24] was proposed to estimate the frequency of each element in

32

a stream. Pagh [77] propose a fast algorithm to compute CS of an outer product of two

vectors using FFT properties. They prove that the CS of the outer product is equal to the

convolutions between the CS of each input. This allows for vector operations such as inner

product and outer product to be directly computed in the sketch space. Since then, many

variants of count sketch have been proposed that preserve different properties of underlying

data. Min-hash [17] is a technique for estimating how similar two sets of data are. An

extension of that is one-bit CP-hash [28] which generates concurrent hash table for multi-

core processors. To make use of parallel computing resources, 2-of-3 cuckoo hashing [6] is

proposed based on cuckoo hashing [78].

Sketching can also be applied to multi-dimensional data. Tensor sketch [82] is proposed to

approximate non-linear kernels. It has been applied to approximately compute tensor CP

decomposition [102, 107] and Tucker decomposition [70]. Gao et al [35] introduce compact

bilinear pooling to estimate joint features from different sources. In Visual Question An-

swering task, people use compact bilinear pooling to compute joint features from language

and image [33]. However, all these sketching techniques are sketching tensors into a vector,

which destroys their multi-dimensional structure. This does not make it possible to do tensor

operations efficiently in the sketched space.

In addition to sketching, efficient multi-dimensional data operation primitives can boost the

computation performance. A Low-overhead interface is proposed for multiple small matrix

multiplications on NVIDIA GPUs [50]. Ma et al [68, 87] optimize tensor matrix contraction

on GPUs by avoiding data transformation. High-Performance Tensor Transposition [91] is

one of the open-source library that performs efficient tensor contractions. In future, we can

leverage these advances to further speed up tensor sketching operations.

Important tensor applications: We focus on tensor sketching because data is inherently

multi-dimensional in many settings. In probabilistic model analysis, tensor decomposition

is the crux of model estimation via the method of moments. A variety of models such

33

as topic models, hidden Markov models, Gaussian mixtures etc., can be efficiently solved

via the tensor decomposition techniques under certain mild assumptions [7]. Papalexakis

et al [79] analyze spatio-temporal basketball data via tensor decomposition. Tensor methods

are also relevant in deep learning. Yu et al [109] learn the nonlinear dynamics in recurrent

neural networks directly using higher-order state transition functions through tensor train

decomposition. Kossaifi et al [58] propose tensor contraction and regression layers in deep

convolutional neural networks.

3.3 Preliminaries

Count Sketch Count Sketch(CS) [24] was first proposed to estimate most frequent data

value in a streaming data.

Definition 3.1 (Count Sketch). Given two 2-wise independent random hash functions h:[n]→

[c] and s:[n]→ {±1}. Count Sketch of a vector u ∈ Rn is denoted by:

CS(u) = {CS(u)1, · · · , CS(u)c} ∈ Rc

where CS(u)j :=
∑

h(i)=j s(i)ui.

In matrix format, we can write it as CS(u) = H(s ◦ u), where H ∈ Rc×n, H(j, i) = 1,

if h(i) = j, for ∀i ∈ [n], otherwise H(j, i) = 0, ◦ is the sign for element-wise product.

The estimation can be made more robust by taking b independent sketches of the input

and calculating the median of the b estimators. Pagh [24] prove that the CS is an unbiased

estimator with variance bounded by the 2-norm of the input. See Appendix B.2.1 for detailed

proof. [77] use CS and propose a fast algorithm to compute count sketch of an outer product

34

of two vectors.

CS(u⊗ v) = CS(u) ∗ CS(v) (3.1)

The convolution operation (represented using ∗) can be transferred to element-wise product

using FFT properties. Thus, the computation complexity reduces from O(n2) to O(n +

c log c), if the vectors are of size n and the sketching size is c.

Some notations we use in the following sections are: û: decompression of u, [n]: set of

{1, 2, . . . , n}.

3.4 Higher-order Count Sketch on Vector-valued Data

Higher-order Count Sketch(HCS) Given a vector u ∈ Rd, random hash functions hk:[nk]

→ [mk], k ∈ [l], random sign functions sk:[nk]→ {±1}, k ∈ [l], and d =
∏l

k=1 nk, we propose

HCS as:

HCS(u)t1,··· ,tl :=
∑

h1(i1)=t1,...,hl(il)=tl

s1(i1) · · · sl(il)uj (3.2)

where j =
∑l

k=2 ik
∏k−1

p=1 np + i1. This is the index mapping between the vector with its

reshaping result—a lth-order tensor with dimensions nk on each mode, for k ∈ [l].

Using tensor operations, we can denote HCS as:

HCS(u) = (S ◦ reshape(u))×1H1 . . .×lHl (3.3)

Here, S = s1 ⊗ · · · ⊗ sl ∈ Rn1×···×nl , Hk ∈ Rnk×mk , Hk(a, b) = 1, if hk(a) = b, otherwise

Hi(a, b) = 0, for ∀a ∈ [nk], b ∈ [mk], k ∈ [l]. The reshape(u) can be done in-place. We

35

assume u is a vectorized layout of a lth-order tensor. To recover the original tensor, we have

ûj = s1(i1) · · · sl(il)HCS(u)h1(i1),··· ,hl(il) (3.4)

Assume Tp is a pth-order tensor by fixing l − p modes of a lth-order tensor reshape(u) as

shown in Figure 1.5:

Theorem 3.1 (HCS recovery analysis). Given a vector u ∈ Rd, assume Tp is the max-

imum frobenium norm of all Tp, Equation 3.4 computes an unbiased estimator for uj∗ with

variance bounded by:

Var(ûj∗) = O(
l∑

p=1

T 2
p

mp
) (3.5)

Remarks Compared to CS, HCS requires less space for storing the hash functions. Each

mode only requires a mk × nk sized hash matrix with nk nonzero entries (nk = O(l
√
d)).

Thus, HCS required O(l l
√
d) for hash memory while CS requires O(d). If we choose l = o(d),

then O(d)� O(l l
√
d) and we save memory from using HCS.

The dominant term in Equation 3.5 will be ‖u‖22/ml as long as all large entries are not

clustered close to one another. Notice that CS has variance bounded by ‖u‖22 /c. We require

O(ml) = O(c) to guarantee the same recovery, and that will lead to a total output memory

O(c) for HCS. However, due to the correlations between hash indices across different modes,

HCS needs larger sketching space compared to CS if large entries are clustered. In the worst

case, when large magnitude data all locate in one fiber of reshape(u), HCS has variance

bounded by ‖u‖22 /m. We require O(m) = O(c) for the same recovery error. HCS output is

of size O(cl) while CS output’s size is O(c).

We present a simple way to reshuffle the data in-place. Step1: Sort u in descending order.

36

Step2: Rearrange sorted array in designed space n1 × . . . × nl such that it goes diagonally

from top to bottom and then consecutive anti-diagonally from bottom to top. Step3: Rear-

range the data according to Step2 (column-wise fiber by fiber). We assume all data is well

distributed in the rest analysis.

Another concern in HCS is how to choose the order of the reshaping tensor (parameter l).

If the data values are fairly evenly distributed, we should select l as large as possible (but

sublinear in d).

3.5 Higher-order Count Sketch on Tensors

In the previous section, we discuss how to sketch a vector-valued data using HCS. In this

section, we focus on tensor-valued data. In order to use CS on higher-order tensors, we either

view the tensor as a set of vectors and sketch along each fiber of the tensor or we flatten the

tensor as a vector and apply CS on it. Hence, CS do not exploit tensors. Moreover, operations

between tensors have to be performed on sketched vectors. This process is inefficient. But,

with the help of HCS, we can compute various operations such as tensor products and tensor

contractions by directly applying operations on the sketched components.

It is straightforward to apply HCS on tensors. Given a tensor T ∈ Rn1×···×nN , random hash

functions hk:[nk] → [mk], k ∈ [N], and random sign functions sk:[nk] → {±1}, k ∈ [N],

HCS computes: HCS(T) = (S ◦ T)×1H1 . . .×N HN . To recover the original tensor, we have:

T̂ = S ◦ HCS(T)×1H
T
1 , · · ·×N HT

N . S and Hi are defined as same as in Section 3.4.

37

3.5.1 Tensor Product

Tensor product is known as outer product in vectors case. It computes every bilinear com-

position from inputs. We denote the operation with ⊗. It has been used in a wide range of

applications such as bilinear models [95]. Pagh [77] shows that the count sketch of an outer

product equals the convolution between the count sketch of each input vector as shown in

Equation 3.1. Furthermore, the convolution operation in the time domain can be transferred

to the element-wise product in the frequency domain. We extend the outer product between

vectors to tensor product.

Lemma 3.2. Given a pth-order tensor A, a qth-order tensor B, assume p > q:

HCS(A⊗B) = HCS(A) ∗ HCS(B)

= IFFT (FFT (HCS(A)) ◦ FFT (HCS(B)))

(3.6)

FFT and IFFT are p-dimensional Fourier transform and inverse Fourier transform if the

input is a pth-order tensor. The proof is given in Appendix B.2.2.

We use the Kronecker product, which is a generalization of the outer product from vectors

to matrices to compare tensor product approximation using HCS and CS.

Assume inputs are A,B ∈ Rn×n: Given Lemma 3.2, this approximation requires O(n2) to

complete HCS(A), HCS(B) and O(m2 logm) to complete 2D Fourier Transform if the HCS

sketching parameter is m for each mode. It requires O(m2) memory for final representation

and O(n) for hashing parameters along each mode.

Baseline CS operation We flatten A and B as vectors and apply CS on the vector outer

product. The computation complexity is O(n2 + c log c) and the memory complexity is

O(c + n2). It needs O(n2) for hashing memory because we have O(n2) elements in the

vectorized matrix.

38

HCS requires approximately O(n) times less memory comparing to CS for two n×n matrix

Kronecker product. See Table 3.1 for detailed comparisons.

Table 3.1: Computation and memory analysis of various operation estimation (Results select
sketch size to maintain the same recovery error for CS and HCS)

Operator Computation Memory
CS(A⊗B) O(n2 + c log c) O(c+ n2)

HCS(A⊗B) O(n2 + c log c) O(c+ n)
CS(AB) O(nr + cr log c) O(c+ n+ cr)

HCS(AB) O(nr + cr) O(c+ n+
√
cr)

CS(Tucker(T)) O(nr3 + cr3 log c) O(c+ n+ cr3)
HCS(Tucker(T)) O(nr + cr3) O(c+ n+ 3

√
cr)

3.5.2 Tensor Contraction

Matrix product between A ∈ Rm×r and B ∈ Rr×n is defined as C = AB =
∑r

i=1A:i⊗Bi:, C ∈

Rm×n. Tensor contraction (used more often as Einstein summation in physics community)

can be seen as an extension of matrix product in higher-dimensions. It is frequently used in

massive network computing. It is defined in Section 1.2.

Lemma 3.3. Given tensors A ∈ RP , B ∈ RQ, contraction indices L, if hash matrices

Hi = I, ∀i ∈ L:

HCS(APBQ) = HCS(A)HCS(B) (3.7)

We require the hash matrices for the contraction modes be identity matrices. In other

words, we are not compressing along the modes that are being multiplied. The proof is in

Appendix B.2.3.

Baseline CS operation To apply CS on tensor contraction, we have to apply CS to each

39

addition term in Equation 1.1. Take matrix product as an example:

CS(AB) = CS(
r∑
i=1

A:i ⊗Bi:) =
r∑
i=1

CS(A:i ⊗Bi:) =
r∑
i=1

CS(A:i) ∗ CS(Bi:) (3.8)

We summarize computation and memory requirements for matrix product in Table 3.1.

3.5.3 Tucker-form Tensor

Tensor decomposition is an extension of matrix decomposition to higher-orders. Tensor

decomposition has been applied in many field such as data mining [57] and latent variable

models [7]. We define Tucker-form tensor decomposition in Section 1.2.

Lemma 3.4. Given a Tucker tensor T = G×1U×2V×3W ∈ Rn×n×n, where G ∈ Rr×r×r: The

higher-order CS of a Tucker-form tensor can be accomplished by performing HCS on each

factor:

HCS(T) = G×1HCS(U)×2HCS(V)×3HCS(W) (3.9)

Baseline CS operation To apply CS to a Tucker-form tensor, we rewrite the decomposition

as a sum of rank-1 tensors:

CS(T) =
r∑

a=1

r∑
b=1

r∑
c=1

GabcCS(Ua ⊗ Vb ⊗Wc) (3.10)

where Ua, Vb,Wc are ath, bth, cth column of U, V,W respectively.

We show computation and memory analysis in Table 3.1. In addition, a CP-form tensor can

be sketched in the same way as we described above when using HCS. For using CS: instead

of summing over all G values, we sum over only r number of G values. The analysis can also

be easily extended to higher-order tensors.

40

We summarize the general tensor product and tensor contraction estimation process in Ta-

ble 3.2.

Table 3.2: General tensor operation estimation (Assume A is a set of indices with length p,
B is a set of indices with length q, each index value O(n), assume the size of R is l with each
index value O(r), g = max(p, q))

Tensor Product: A ∈ RA, B ∈ RB

Operator Computation Memory

CS(A⊗ B) = CS(vec(A)⊗ vec(B)) O(ng + c log c) O(c+ ng)

HCS(A⊗ B) = HCS(A) ∗ HCS(B) O(ng + c log c) O(c+ gn)

Tensor Contraction: A ∈ RA, B ∈ RB with contraction indices R

Operator Computation Memory

CS(AB) =
∑

R CS(A:R ⊗BR:) O(rlng + crl log c) O(c+ crl + ng)

HCS(AB) = HCS(A)HCS(B) O(rlng + crl) O(c+ c
g

p+q rl + gn)

3.6 Experiments

The goals of this section are: evaluate HCS for data compression; demonstrate the advan-

tages of HCS in various tensor operation estimations, compared to CS; present potential

application of HCS in deep learning tasks. All synthetic data experiments are run on a

MAC with Intel Core i5 processor. Section 3.6.3 is run on a NVIDIA DGX station with

Tesla V100 Tensor Core GPU.

3.6.1 HCS for Unevenly-distributed Data

In Section 3.4, we point out that unevenly-distributed data value may affect the performance

of HCS. We generate a matrix A ∈ R50×50, where every entry is sampled from a uniform

41

distribution between −1 and 1, except the elements in the second column, which are filled

with value 100. We compress this data using HCS and CS. The compression ratio is cal-

culated as 2500/m2 where m is the sketching dimension along each two mode for HCS. CS

sketching dimension c = m2. We rearrange the data so that values in the matrix are evenly

distributed, and we run the HCS and CS again. We compare the relative error(
‖Â−A‖

F

‖A‖F
) in

Figure 3.1. HCS performs poorly before rearranging the data. But after the rearrangment,

HCS performs as good as CS, which corresponds to our analysis.

0.52 0.51 0.510.51 0.51
0.49

0.06 0.06 0.070.06 0.06 0.07

39 156 625

Co
m	
pr
es
s	T

im
	e
(S
ec
)

CS CS-Reshuffle HCS HCS-Reshuffle 2.6

0.7

0.3

2.6

0.8

0.20.1 0.1 0.10.1 0.1 0.1

39 156 625

H
as
h	
M
em
	o
ry
(M

B)
CS
CS-Reshuffle
HCS
HCS-Reshuffle

6.9

23.4

91.7

7.2

23.6

90.8

13.0

33.1

110.0

8.3

25.9

91.7

39 156 625

Re
la
tiv

e	
Er
ro
r

CS
CS-Reshuffle
HCS
HCS-Reshuffle

Figure 3.1: Running time, memory and error comparison for unevenly-distributed data (x-
axis shows the compression ratio).

3.6.2 Tensor Operations

Kronecker product: We compress Kronecker products using HCS and CS. We com-

pute A ⊗ B, where A,B ∈ R30×30. All inputs are randomly generated from the uniform

distribution[-5,5]. The result is obtained by independently running the sketching 20 times

and choosing the median. Keeping the same compression ratio, HCS has slightly higher

recovery error than CS. But HCS is systematically better in computation speed and memory

usage compared to CS in Figure 3.2.

19.8

6.1 4.9 4.2
1.5 0.5 0.5 0.3

8 40 67 162

Co
m	
pr
es
s	T

im
	e
(S
ec
) CS HCS 792.0

281.3 252.2

106.1
30.8 6.1 4.7 3.4

8 40 67 162

H
as
h	
M
em
	o
ry
(M

B) CS HCS

0.8
1.1

1.3

1.9

1.1
1.3

1.5

2.0

8 40 67 162

Re
la
tiv

e	
Er
ro
r

CS HCS

Figure 3.2: Running time, memory and error comparison for Kronecker product.

42

Tensor contraction: Given A ∈ R30×30×40, B ∈ R40×30×30, we compute AB ∈ R30×30×30×30:

the third mode of A contract with the first mode of B. We compress and decompress the

contraction as demonstrated in Section 3.5.2. All entries are sampled independently and

uniformly from [0,10]. We repeat the sketching 20 times and use the median as the final

estimation. Overall, HCS outperforms CS in time, memory and recovery error aspects as

shown in Figure 3.3. When the compression ratio is 8, HCS is 200x faster than CS and uses

40x less memory while keeping almost the same recovery error. HCS is more efficient in real

computation because it performs compact contraction in matrix/tensor format, while CS

requires computation on each slide of the input tensor.

122.1

30.9
15.0 8.4

0.6 0.5 0.5 0.5

5 21 55 123

Co
m	
pr
es
s	T

im
	e
(S
ec
)

CS HCS
2,197.5

539.5
308.4

140.255.0 32.1 26.6 23.3

5 21 55 123

H
as
h	
M
m	
or
y(
M
B) CS HCS

0.8
1.0

1.3

1.7

0.9 0.9 1.0 1.1

5 21 55 123

Re
la
tic
e	
Er
ro
r

CS HCS

Figure 3.3: Running time, memory and error comparison for tensor contraction.

Pixel ResNet
Tensor Regression
 Sketching Layer

Sketch()Sketch()

y:Cat

。。。

Feature

Weight

< , >

Figure 3.4: Tensor regression layer with sketching.

0.89

0.90

0.91

0.92

0.93

0.94

0 20 40 60 80 100

Te
st
	A
cc
ur
ac
y

Mem	ory	saving	(in	%)	

HCS	Tensorized
Tensorized
Baseline

Figure 3.5: Test accuracy on CIFAR 10.

3.6.3 Tensor Regression Network

To demonstrate the versatility of our method, we combine it by integrating it into a tensor

regression network for object classification. Tensor regression layer (TRL) [58] is proposed to

learn a Tucker-form tensor weight for the high-order activation tensor. We sketch the Tucker

tensor weight using Equation 3.9. We use a ResNet18, from which the fully-connected layers

43

are removed, and are replaced by our proposed sketched tensor regression layer. The network

structure is illustrated in Figure 3.4. The space saving is calculated as 1− PT

PB
where PT and

PB are the number of parameters in the last layer in the tensorized network and the baseline.

In Figure 3.5, tensorized network outperforms the baseline(original Resnet18) while using

50% less memory in the last layer. With HCS, we can further reduce 30% more memory

requirement while keeping the prediction as good as the baseline.

3.7 Conclusion

In this chapter, we extend count sketch to a new sketching technique, called higer-order count

sketching (HCS). HCS gains an exponential saving (with respect to the order of the tensor)

in the memory requirements of the hash functions and allows efficient approximation of

various tensor operations such as tensor products and tensor contractions. Some interesting

future works are how to choose the optimal tensor order for input (vector) data when we

have limited information about the data and how to extend other hash algorithms such as

simhash [26], minhash [17] and cuckoo hashing [78] to tensors. We are also interested in

analyzing the performance differences on sparse and dense tensors using various sketching

techniques. Providing HCS implementations within computation platforms such as MKL

and CUDA is also part of the future work.

44

Chapter 4

Multi-modality Learning through

Tensor Product

The relative maturity and flexibility of deep learning allow to build upon the success of com-

puter vision [61] and natural language [46, 71] to face new complex and multimodal tasks.

Visual Question Answering(VQA) [11] focus on providing a natural language answer given

any image and any free-form natural language question. To achieve this goal, information

from multiple modalities must be integrated. Image descriptors have structures at multiple

spatial scales, while lexical inputs inherently follow a temporal sequence and naturally clus-

ter into semantically different question types. Visual and lexical inputs are first processed

using specialized encoding modules and then integrated through differentiable operators.

Image features are usually extracted by convolution neural networks [31], while recurrent

neural networks [93, 46] are used to extract question features. Additionally, attention mech-

anism [105, 108, 106] forces the system to look at informative regions in both text and vision.

Attention weight is calculated from the correlation between language and vision features and

then is multiplied to the original feature.

45

Previous works explore new features to represent vision and language. Pre-trained ResNet [43]

and VGG [89] are commonly used in VQA vision feature extraction. The authors in [96] show

that post-processing CNN with region-specific image features [10] such as Faster R-CNN can

lead to an improvement of VQA performance. Instead of generating language feature from

either sentence-level or word-level using LSTM [46] or word embedding, Lu et al [66] propose

to model the question from word-level, phrase-level, and entire question-level in a hierarchical

fashion.

Through extensive experimentation and ablation studies, we notice that the role of “raw”

visual features from ResNet and processed region-specific features from Faster R-CNN is

complementary and leads to improvement over different subsets of question types. However,

we also notice that trivial information in VQA dataset: question/answer type is omitted in

training. Generally, each sample in any VQA dataset contains one image file, one natural

language question/answer and sometimes answer type. A lot of work use the answer type for

result analysis [11] but neglect to use it during learning. TDIUC [53] is a recently released

dataset that contains question type for each sample. Compared to answer type, question

type has less variety and is easier to interpret when we only have the question.

The focus of this work is the development of an attention mechanism that exploits high-

level semantic information on the question type to guide the visual encoding process. This

procedure introduces information leakage between modalities before the classical integration

phase that improves the performance on VQA task. Specifically, We introduce a novel

VQA architecture Question Type-guided Attention(QTA) that dynamically gates the

contribution of ResNet and Faster R-CNN features based on the question type. Our results

with QTA allow us to integrate the information from multiple visual sources and obtain gains

across all question types. A general VQA network with our QTA is shown in Figure 1.4.

46

4.1 Summary of Results

The contributions of this work are:(1) We propose question type-guided attention to balance

between bottom-up and top-down visual features, which are respectively extracted from

ResNet and Faster R-CNN networks. Our results show that QTA systematically improves

the performance by more than 5% across multiple question type categories such as “Activity

Recognition”, “Utility” and “Counting” on TDIUC dataset. By adding QTA to the state-of-

art model MCB, we achieve 3% improvement in overall accuracy. (2) We propose a multi-task

extension that is trained to predict question types from the lexical inputs during training time

that do not require ground truth labels during inference. We get more than 95% accuracy

for the question type prediction while keeping the VQA task accuracy almost same as before.

(3) Our analysis reveals some problems in the TDIUC VQA dataset. Though the “Absurd”

question is intended to help reduce bias, it contains too many similar questions, specifically,

questions regarding color. This will mislead the machine to predict wrong question types.

Our QTA model gets 17% improvement on simple accuracy compared to the baseline in [53]

when we exclude absurd questions in training.

4.2 Related Work

VQA task is first proposed in [11]. It focuses on providing a natural language answer given

any image and any free-form natural language question. Collecting data and solving the

task are equally challenging as they require the understanding of the joint relation between

image and language without any bias.

Datasets VQA dataset v1 is first released by Antol et al [11]. The dataset consists of two

subsets: real images and abstract scenes. However, the inherent structure of our world is

biased and it results in a biased dataset. In another word, a specific question tends to have

47

the same answer regardless of the image. For example, when people ask about the color of the

sky, the answer is most likely blue or black. It is unusual to see the answer be yellow. This

is the bottleneck when we give a yellow color sky and ask the machine to answer it. Goyal

et al [38] release VQA dataset v2. This dataset pairs the same question with similar images

that lead to different answers to reduce the sample bias. Zhang et al [110] also propose to

reduce bias in abstract scenes dataset at question level. By extracting representative word

tuples from questions, they can identify and control the balance for each question. Vizwiz [41]

is another recently released dataset that uses pictures taken by blind people. Some pictures

are of poor quality, and the questions are spoken. These data collection methods help reduce

bias in the dataset.

Johnson et al [52] introduce Compositional Language and Elementary Visual Reasoning

(CLEVR) diagnostic dataset that focuses on reasoning. Strub et al [92] propose a two-

player guessing game: guess a target in a given image with a sequence of questions and

answers. This requires both visual question reasoning and spatial reasoning.

The Task Driven Image Understanding Challenge dataset(TDIUC) [53] contains a total

of over 1.6 million questions in 12 different types. It contains images and annotations from

MSCOCO [65] and Visual genome [60]. The key difference between TDIUC and the previous

VQA v1/v2 dataset is the categorization of questions: Each question belongs to one of the

12 categories. This allows a task-oriented evaluation such as per question-type accuracies.

They also include an “Absurd” question category in which questions are irrelevant to the

image contents to help balance the dataset.

Feature Selection VQA requires solving several tasks at once involving both visual and

textual input: visual perception, question understanding, and reasoning. Usually, features

are extracted respectively with convolutional neural networks [31] from the image, and with

recurrent neural networks [93, 46] from the text.

48

Pre-trained ResNet and VGG are commonly used in VQA vision feature extraction. The

authors in [96] show that post-processing CNN with region-specific image features [10] can

lead to a n improvement of VQA performance. Specifically, they use pre-trained Faster

R-CNN model to extract image features for VQA task. They won the VQA challenge 2017.

On the language side, pre-trained word embeddings such as Word2Vec [71] are used for

text feature extraction. There is a discussion about the sufficiency of language input for

VQA task. Agrawal et al [4] have shown that state-of-art VQA models converge to the same

answer even if only given half of the question compared to if given the whole sentence. Teney

et al [96] also questioned about the importance of word ordering in questions.

Generic Methods Information of both modalities are used jointly through means of com-

bination, such as concatenation, product or sum. In [11], authors propose a baseline that

combines LSTM embedding of the question and CNN embedding of the image via a point-

wise multiplication followed by a multi-layer perceptron classifier.

Pooling Methods Pooling methods are widely used in visual tasks to combine information

for various streams into one final feature representation. Common pooling methods such as

average pooling and max pooling bring the property of translation invariance and robustness

to elastic distortions at the cost of spatial locality. Bilinear pooling can preserve spatial

information, which is performed with the outer product between two feature maps. However,

this operation entails high output dimension O(MN) for feature maps of dimension M and

N . This exponential growth with respect to the number of feature maps renders it too costly

to be applied to huge real image datasets. There have been several proposals for new pooling

techniques to address this problem:

• Count sketch [25] is applied as a feature hashing operator to avoid dimension expanding

in bilinear pooling. Given a vector a ∈ Rn, random hash function f ∈ Rn: [n] → [b]

and binary variable s ∈ Rn: [n]→ ±1, the count sketch [25] operator cs(a, h, s) ∈ Rb

49

is:

cs(a, f, s)[j] =
∑
f [i]=j

s[i]a[i], j ∈ 1, · · · , b (4.1)

Gao et al [35] use convolution layers from two different neural networks as the local de-

scriptor extractors of the image and combine them using count sketch. “α-pooling” [88]

allows the network to learn the pooling strategy: a continuous transition between lin-

ear and polynomial pooling. They show that higher α gives larger gain for fine-grained

image recognition tasks. However, as α goes up, the computation complexity increases

in polynomial order.

• MCB [33] uses count sketch as a pooling method in VQA tasks and obtains the best

results on VQA dataset v1 in VQA challenge 2016. They compute count sketch ap-

proximation of the visual and textual representation at each spatial location. Given

text feature v ∈ RL and image features I ∈ RC×H×W , Fukui et al [33] propose MCB

as:

MCB(I[:, h, w]⊗ v)[t1, h, w]

= (cs(I[:, h, w], f, s) ∗ cs(v, f, s))[t1, h, w]

= IFFT1(FFT1(cs(I[:, h, w], f, s))[t1, h, w] ◦ FFT1(cs(v, f, s))[t1]

h ∈ {1, · · ·H}, w ∈ {1, · · ·W}, t1 ∈ {1, · · · , b}) (4.2)

⊗ denotes outer product. ◦ denotes element-wise product. ∗ denotes convolution

operator. This procedure preserves spatial information in image feature. While this

procedure preserves spatial information locally, outer-products are taken independently

for each fiber of the activation tensor, and therefore do not include spatial context.

Attention Focusing on the objects in the image that are related to the question is the key to

50

understand the correlation between the image and the question. Attention mechanism is used

to address this problem. There are soft attention and hard attention [106] based on whether

the attention term/loss function is differentiable or not. Yang et al [108] and Xu et al [105]

proposed word guided spatial attention specifically for VQA task. Attention weight at each

spatial location is calculated by the correlation between the embedded question word feature

and the embedded visual features. The attended pixels will be at the maximum correlation.

4.3 Question Type Guided Visual Attention

Question type is very important in predicting the answer regardless if we have the corre-

sponding image or not. For example, questions starting with “how many” will mostly lead

to numerical answers. Agrawal et al [4] have shown that state-of-art VQA models converge

to the same answer even if only given half of the question compared to if given the whole

sentence. Besides that, inspired by [96], we are curious about combining bottom-up and top-

down visual features in VQA task. To get a deep understanding of visual feature preference

for different questions, we try to find an attention mechanism between these two. Since ques-

tion type is representing the question, we propose Question Type-guided Attention(QTA).

Given several independent image features F1, F2, · · ·Fk, such as features from ResNet, VGG

or Faster R-CNN, we concatenate them as one image feature: F = [F1, F2, · · ·Fk] ∈ RM .

Assume there are N different question types, QTA is defined as F ◦WQ, where Q ∈ RN

is the one-hot encoding of the question type, and W ∈ RM×N is the hidden weight. We

can learn the weight by back propagation through the network. In other words, we learn a

question type embedding and use it as attention weight.

QTA can be used in both generic and complex pooling models. In Figure 4.1, we show a sim-

ple concatenation model with question type as input. We describe it in detail in Section 4.4.

51

Figure 4.1: Concatenation model
with QTA structure for VQA
task(CATL-QTAW in Section 4.4).

Figure 4.2: Concatenation model
with QTA structure for multi-
task(CATL-QTA-M-W2V in Sec-
tion 4.4).

Figure 4.3: MCB model with QTA structure(MCB3-A in Section 4.4).

To fully exploit image features in different channels and preserve spatial information, we also

propose MCB with question type-guided image attention in Figure 4.3.

One obvious limitation of QTA is that it requires question type label. In the real world

scenario, the question type for each question may not be available. In this case, it is still

possible to predict the question type from the text, and use it as input to the QTA network.

Thus, we propose a multi-task model that focuses on VQA task along with the prediction of

the question type in Figure 4.2. This model operates in the setting where true question type

is available only at training time. In Section 4.5, we also show through experiment that it is

a relatively easy task to predict the question type from question text, and thus making our

method generalizable to those VQA settings that lack question type.

52

4.4 Experiments

In this section, we describe the dataset in Section 4.4.1, evaluation metrics in Section 4.4.2,

model features in Section 4.4.3, and model structures are explained in Section 4.4.4.

4.4.1 Dataset

Our experiments are conducted on the Task Driven Image Understanding Challenge dataset

(TDIUC) [53], which contains over 1.6 million questions in 12 different types. This dataset

includes VQA v1 and Visual Genome, with a total of 122429 training images and 57565

test images. The annotation sources are MSCOCO (VQA v1), Visual genome annotations,

and manual annotations. TDIUC introduces absurd questions that force an algorithm to

determine if a question is valid for a given image. There are 1115299 total training questions

and 538543 total test questions. The total number of samples is 3 times larger than that in

VQA v1 dataset [11].

4.4.2 Evaluation Metrics

There are total 12 different question types in TDIUC dataset [53] as we mentioned in Sec-

tion 4.2. We calculate the simple accuracy for each type separately and also report the

arithmetic and harmonic means across all per question-type(MPT) accuracies.

4.4.3 Feature Representation

Image feature We use the output of ”pool5” of a 152-layer ResNet as an image feature

baseline. The output dimension is 2048 × 14 × 14. Faster R-CNN [85] focuses on object

53

detection and classification. Teney et al [96] use it to extract object-oriented features for

VQA dataset and show better performance compared to the ones using ResNet feature. We

fix the number of detected objects to be 36 and extract the image features based on their

pre-trained Faster R-CNN model. As a result, the extracted image feature is a 36 × 2048

matrix. To fit in MCB model, which requires spatial representation, we reshape it into a

6× 6× 2048 tensor.

Text feature We use common word embedding library: 300-dim Word2Vec [71] as pre-

trained text feature: we sum over the word embeddings for all words in the sentence. A

two-layer LSTM is used as an end-to-end text feature extractor. We also use the encoder

of google neural machine translation(NMT) system [104] as a pre-trained text feature and

compare it with Word2Vec. The pre-trained NMT model is trained on UN parallel corpus

1.0 in MXnet [27]. Its BLEU score is 34. The output dimension of the encoder is 1024.

4.4.4 Models

Baseline models We have following baseline models: CAT1: A fully connected network

classifier with one hidden layer with ReLu non-linearity, followed by a softmax layer. There

are 8192 units in the hidden state. (We name it one-layer MLP for all the following ex-

periments.) The input is a concatenated vector of one pre-trained question vector feature

and one pre-trained image vector feature. CAT1L: A one-layer MLP given concatenated

end-to-end 2-layer LSTM’s last hidden state and one pre-trained image vector feature. In

LSTM, the hidden state length is 1024. The word embedding dimension is 300. CATL:

A one-layer MLP with concatenation of two pre-trained image vector features from ResNet

and Faster R-CNN, and the last hidden layer of a 2-layer LSTM.

To check the complementarity of different features between ResNet and Faster R-CNN and

show how they perform differently across question types, we set up baseline CAT2: A one-

54

layer MLP given concatenated one pre-trained question vector feature and two independent

pre-trained image vector features from ResNet and Faster R-CNN.

To further exam and explain our QTA proposal, we use more sophisticate feature integration

operators as a strong baseline to compare with. MCB-A, as we mentioned in Section 4.2,

is proposed in [33]. RAU [76] is a framework that combines the embedding, attention and

predicts operation together inside a recurrent network. We reference results of these two

models from [53].

QTA models From the baseline analysis, we realize that ResNet and Faster R-CNN fea-

tures are complementary to each other. Using question type as guidance for image feature

selection is the key to make image feature stronger. Therefore, we propose QTA networks as

follows: CAT-QTA: A one-layer MLP given concatenated one pre-trained question vector

feature and two weighted pre-trained image vector features from ResNet and Faster R-CNN.

CATL-QTA: A one-layer MLP given concatenated output from a two-layer LSTM and

two weighted pre-trained image vector features. MCB-QTA: Two MCB([33]) with spa-

tial attention using ResNet and Faster-RCNN as image feature respectively. Text feature

is a concatenation of output from a two-layer LSTM and Word2Vec question embedding

and is shared for the two MCB parts. The out dimension of count sketch in the MCB is

8000. The resulting MCB outputs are then weighted by question type. Finally, the weighted

representation is concatenated with the text feature before feeding to a one-layer MLP.

To check whether the model benefits from the QTA mechanism or from added question type

information itself, we design a network that only uses question type embedding without

attention. CAT-QT: A one-layer MLP given concatenated one pre-trained question vector

feature, two independent pre-trained image vector features from ResNet and Faster R-CNN

and a 1024-dim question type embedding. CATL-QT: A one-layer MLP given concatenated

last hidden layer of a 2-layer LSTM, two independent pre-trained image vector features from

55

ResNet and Faster R-CNN and a 1024-dim question type embedding.

As mentions in Section 4.3, we propose a multi-task network for QTA in case we don’t have

question type label at inference. CATL-QTA-M:A multi-task model based on CATL-QTA.

Text feature is a concatenation of LSTM and Word2Vec embedding. The output of LSTM is

connected to a one-layer MLP to predict question type for the input question. The prediction

result is then fed into QTA part through argmax.

4.5 Results and Analysis

We first focus in sections 4.5.1 and 4.5.2 on results concerning the complementarity of dif-

ferent features across question category types. For the visual domain, we explore the use of

Faster R-CNN and ResNet features, while for the lexical domain we use NMT, LSTM and

pre-trained Word2Vec features. We then analyze in subsection 4.5.3 the effect of explicitly

introducing information about question type both as input and with QTA. Finally, in the

remaining subsections, we extend the basic concatenation QTA model to MCB style pooling,

introduce question type as both input and output during training such that the network can

produce predicted question types during inference, and study more in depth the effect of

the question category “Absurd” on the overall model performance across categories, which

makes QTA generalizable to VQA settings that lack question types at test time.

4.5.1 Faster R-CNN and ResNet Features

Table 4.1 reports our extensive ablation analysis of simple concatenation models using mul-

tiple visual and lexical feature sources. From the results in the second and third columns,

we see that overall the model with Faster R-CNN features outperform the one using ResNet

features when using NMT features. We show in column 4 that the features sources are com-

56

Table 4.1: Benchmark results of concatenation models on TDIUC dataset using different
image features and pre-trained language feature. 1: Use ResNet feature and SkipGram
feature 2: Use ResNet feature and NMT feature 3: Use Faster R-CNN feature and NMT
feature 4: Use ResNet feature and end-to-end LSTM feature 5: Use Faster R-CNN feature
and end-to-end LSTM feature. N denotes that additional NMT embedding is concatenated
to LSTM output. W denotes that additional Word2Vec embedding is concatenated to LSTM
output(Following tables also use the same notation)

Accuracy(%) CAT11 [53] CAT12 CAT13 CAT2 CAT1L4 CAT1L5 CAT1L4N CAT1L5N CAT1L4W CAT1L5W

Scene Recognition 72.19 68.51 68.81 69.06 91.62 92.27 91.16 92.33 91.57 92.45
Sport Recognition 85.16 89.67 92.36 93.15 90.94 93.84 89.62 93.52 90.77 94.05
Color Attributes 43.69 32.90 34.35 34.99 45.62 49.43 44.07 47.78 47.33 49.47
Other Attributes 42.89 38.05 39.76 39.67 40.89 43.49 39.60 42.35 41.92 45.19

Activity Recognition 24.16 39.34 45.75 46.87 42.95 49.25 40.12 44.11 42.13 49.25
Positional Reasoning 25.15 25.63 27.16 28.02 26.22 29.35 24.17 27.50 25.72 28.59

Sub. Object Recognition 80.92 83.94 85.67 86.78 82.20 85.06 81.85 84.47 82.52 85.05
Absurd 96.96 94.98 94.77 95.82 90.87 87.10 95.38 93.28 93.59 91.95

Utility and Affordances 24.56 25.93 27.78 27.16 15.43 25.93 25.31 18.52 16.05 17.28
Object Presence 69.43 77.21 77.90 78.29 89.40 91.14 90.13 91.95 91.08 91.81

Counting 44.82 48.46 52.18 52.57 45.95 50.27 44.26 49.24 44.93 51.30
Sentiment Understanding 53.00 43.45 46.49 47.28 46.49 48.72 41.85 42.81 44.89 46.01
Overall (Arithmetic MPT) 55.25 55.67 57.57 58.31 59.05 62.15 58.96 60.66 59.38 61.80
Overall (Harmonic MPT) 44.13 45.37 47.99 48.44 44.09 51.66 46.84 46.84 44.42 47.70

Overall Accuracy 69.53 71.41 72.44 73.05 77.55 78.66 78.35 79.94 78.94 80.16

plementary, and their combination is better across most categories (in bold) with respect to

the single source models of columns 2 and 3. In columns 5,6; 7,8 and 9,10 we replicate the

same comparison between ResNet and R-CNN features using more sophisticate models to

embed the lexical information. We reach more than 10 % accuracy increase, from 69.53 % to

80.16 % using a simple concatenation model with an accurate selection of the feature type.

4.5.2 Pre-trained and Jointly-trained Text Feature Extractors

The first four columns in Table 4.1 show the results of models with text features from NMT.

To fully explore the text feature extractor in VQA system, we substitute the NMT pre-trained

language feature extractor with a jointly-trained two layer LSTM model. The improved

performance of jointly-training text feature extractor can be appreciated by comparing the

results of the 4 left-most and right most columns. For example, comparing second column

and fifth column in Table 4.1, we get 6% improvement using LSTM while keeping image

57

Table 4.2: QTA in concatenation models on TDIUC dataset

Accuracy(%) CATL CATL-QTA CATLW CATL-QTAW

Scene Recognition 93.18 93.45 93.31 93.80
Sport Recognition 94.69 95.45 94.96 95.55
Color Attributes 54.66 56.08 57.59 60.16
Other Attributes 48.52 50.30 52.25 54.36

Activity Recognition 53.36 58.43 54.59 60.10
Positional Reasoning 32.73 31.94 33.63 34.71

Sub. Object Recognition 86.56 86.76 86.52 86.98
Absurd 95.03 100.00 98.01 100.00

Utility and Affordances 29.01 23.46 29.01 31.48
Object Presence 93.34 93.48 94.13 94.55

Counting 50.08 49.93 52.97 53.25
Sentiment Understanding 56.23 56.87 62.62 64.38
Overall (Arithmetic MPT) 65.62 66.34 67.46 69.11
Overall (Harmonic MPT) 55.95 54.60 57.83 60.08

Overall Accuracy 82.23 83.62 83.92 85.03

feature and network same.

We obtain the best model by concatenating the output of the LSTM and the pre-trained

NMT/Word2Vec feature, as shown in Table 4.1. It gives us 10% improvement for “Utility and

Affordances” when we look at the fifth and seventh column. We find the use of Word2Vec is

better than NMT feature in third and fourth columns in Table 4.3 and in last four columns in

Table 4.1. We think the better performance of Word2Vec with respect to the NMT encoder,

might be due to the more similar structure of single sentence samples of Word2Vec training

set with those from classical VQA dataset with respect to those used for training NMT

models.

Figure 4.4: Evaluation of different ways to utilize information from question type.

58

4.5.3 QTA in Concatenation Models

We use QTA in concatenation models to study the effect of QTA. The framework is in

Figure 4.1. We compare the network using a weighted feature(column 1 in Table 4.3) with

the same network using an unweighted concatenated image feature(column 4 in Table 4.1).

As we can see, the model using the weighted feature has more power than the one using

the unweighted feature. 9 out of 12 categories get improved results. “Color” and “Other

attributes” get around 9% accuracy increase.

To ensure that the improvement is not because of the added question type information but

the attention mechanism using question type, we show the comparison of QTA with QT in

Figure 4.4. With same text feature and image feature and approximately same number of

parameters in the network, QTA is 3-5% better than QT.

We show the effect of QTA on image feature norms in Figure 4.5. By weighing the image

features by question type, we find that our model relies more on Faster R-CNN features for

“Absurd” question samples while it relies more on ResNet features for “Color” questions.

The best setting we get in concatenation model is using a weighted image feature con-

catenated with the output of the LSTM and Word2Vec feature(CATL-QTAW). It gets 5%

improvement compared to a similar generic model without QTA and also shows better per-

formance than complicated deep network such as RAU and MCB-A in Table 4.3.

4.5.4 QTA in Pooling Models

To show how to combine QTA with more complicated feature integration operator, we pro-

pose MCB-QTA structure. Even though MCB-QTA in Table 4.3 doesn’t win with simple

accuracy, it shows great performance in many categories such as “Object Recognition” and

“Counting”. Accuracy in “Utility and Affordances” is improved by 6% compared to our

59

Figure 4.5: Effects of weighting by QTA. Top: raw feature norms, Middle: feature norms
weighted by QTA, Bottom: differences of norms after weighting vs before weighting. For
color questions, the feature norms shift towards ResNet features, while for absurd questions
they shift towards Faster-RCNN features.

Table 4.3: Results of QTA models on TDIUC dataset compared to state-of-art models

Accuracy(%) CATL-QTAW MCB-QTA MCB-A [53] RAU [53]

Scene Recognition 93.80 93.56 93.06 93.96
Sport Recognition 95.55 95.70 92.77 93.47
Color Attributes 60.16 59.82 68.54 66.86
Other Attributes 54.36 54.06 56.72 56.49

Activity Recognition 60.10 60.55 52.35 51.60
Positional Reasoning 34.71 34.00 35.40 35.26

Sub. Object Recognition 86.98 87.00 85.54 86.11
Absurd 100.00 100.00 84.82 96.08

Utility and Affordances 31.48 37.04 35.09 31.58
Object Presence 94.55 94.34 93.64 94.38

Counting 53.25 53.99 51.01 48.43
Sentiment Understanding 64.38 65.65 66.25 60.09
Overall (Arithmetic MPT) 69.11 69.69 67.90 67.81
Overall (Harmonic MPT) 60.08 61.56 60.47 59.00

Overall Accuracy 85.03 84.97 81.86 84.26

60

CATL-QTA model. It gets 8% improvement in “Activity recognition” compared to state-of-

art model MCB-A and also gets the best Arithmetic and Harmonic MPT value.

4.5.5 Multi-task Analysis

In this part, we will discuss how we use QTA when we have questions without specific

question types. It is quite easy to predict the question type from the question itself. We

use a 2-layer LSTM followed by a classifier and the accuracy for test question type is 96%

after 9 epochs. The problem is whether we can predict the question type while keeping the

same performance for VQA task or not. As described in Figure 4.2, we use the predicted

question type as input of the QTA network in a multi-task setting. We get 84.33% test

simple accuracy for VQA task as shown in Table 4.7. When we compare it to MCB-A or

RAU in Table 4.3, though accuracy gets a little affected for most of the categories, we still

get 2% improvement in “Sports Recognition” and “Counting”.

We fine-tune our model on VQA v1 using a pre-trained multi-task model that was trained

on TDIUC. VQA v1 doesn’t have question type information. We use the question type

predictor in the multi-task model as the input of QTA. Our model’s performance is better

than MCB in Table 4.4 with an approximately same number of parameters in the network.

4.5.6 Findings on TDIUC dataset

To further analyze the effects of the question type prediction part in this multi-task frame-

work, we list the confusion matrix for the question type prediction results in Table 4.5.

“Color” and “Absurd” question type predictions are most often bi-directionally confused.

The reason for this is that among all absurd questions, more than 60% are questions start

with “What color”. To avoid this bias, we remove all absurd questions and run our multi-

61

Table 4.4: Results of test-dev accuracy on VQA v1. Models are trained on the VQA v1 train
split and tested on test-dev

Accuracy(%)

Element-wise Sum [33] 56.50
Concatenation [33] 57.49

Concatenation + FC [33] 58.40
Concatenation + FC + FC [33] 57.10

Element-wise Product [33] 58.57
Element-wise Product + FC [33] 56.44

Element-wise Product + FC + FC [33] 57.88
MCB(2048 × 2048 → 16K) [33] 59.83

CATL-QTA-M + FC 60.32

task model again. In this setting, our question type prediction did much better than before.

Almost all categories get 99% accuracy as shown in Table 4.6. We also compare our QTA

models’ performance without absurd questions in Table 4.7. In CATL-QTA network, re-

moving absurd questions doesn’t help much because in test we feed in the true question

type labels. But it is useful when we consider the multi-task model. From third and fourth

columns, we see that without absurd questions, we get improved performance among all

categories. This is because we remove the absurd questions that may mislead the network

to predict “color” question type in the test.

Another concern we have is that since “Absurd” questions only have one unique answer which

is absurd and cover 20% of the questions in TDIUC dataset, is our model better than others

only because we feed 20% true answers to the model? The answer is no. From Table 4.7,

our QTA model gets 17% improvement on simple accuracy compared to the baseline in [53]

when we exclude absurd questions in training.

62

Table 4.5: Confusion matrix for test question types prediction in CATL-QTA-M using
TDIUC dataset. 1. Other Attributes 2. Sentiment Understanding 3. Sports Recogni-
tion 4. Position Reasoning 5. Object Utilities/Affordances 6. Activity Recognition 7. Scene
Classification 8. Color 9. Object Recognition 10.Object Presence 11.Counting 12. Absurd

Target Predicted Acc(%)

1 2 3 4 5 6 7 8 9 10 11 12 95.66

1 77.76 0.00 0.89 3.20 0.00 0.08 0.42 1.15 0.12 0.00 0.00 16.38
2 0.80 60.51 1.77 8.83 0.00 2.25 2.57 0.00 1.44 0.96 0.16 20.71
3 0.31 0.00 73.08 0.37 0.00 0.17 0.00 0.03 0.02 0.00 0.01 26.01
4 2.95 0.02 0.01 89.52 0.00 0.01 0.02 0.19 1.88 0.03 0.03 5.35
5 12.50 0.63 3.12 45.62 0.00 0.00 3.12 0.00 11.25 0.00 0.00 23.75
6 0.79 0.00 14.56 1.76 0.00 13.18 0.00 0.00 2.21 0.00 0.07 67.43
7 0.04 0.00 0.04 0.40 0.00 0.01 99.40 0.02 0.00 0.00 0.06 0.03
8 0.32 0.00 0.18 0.13 0.00 0.00 0.00 86.10 0.00 0.00 0.00 13.28
9 0.01 0.00 0.00 0.31 0.00 0.00 0.00 0.00 98.96 0.01 0.00 0.71
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00
11 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.02 0.05 99.90 0.00
12 0.35 0.00 0.18 0.41 0.00 0.03 0.00 3.18 0.40 0.00 0.00 95.46

Table 4.6: Confusion matrix for test question types prediction in CATL-QTA-M using
TDIUC dataset without absurd questions. Numbers represent same categories as in Ta-
ble 4.5

Target Predicted Acc(%)

1 2 3 4 5 6 7 8 9 10 11 12 99.50

1 98.39 0.00 0.07 0.15 0.00 0.13 0.08 0.63 0.55 0.00 0.00 N/A
2 0.16 84.03 3.67 0.00 0.00 3.35 5.59 0.00 0.48 0.00 2.72 N/A
3 0.00 0.08 97.31 0.00 0.00 2.37 0.01 0.00 0.10 0.02 0.11 N/A
4 1.01 0.00 0.00 98.07 0.00 0.01 0.00 0.51 0.41 0.00 0.00 N/A
5 8.64 3.70 14.81 0.00 0.00 59.26 7.41 1.23 4.94 0.00 0.00 N/A
6 0.45 0.15 31.42 0.00 0.00 67.39 0.04 0.04 0.45 0.00 0.07 N/A
7 0.02 0.03 0.00 0.00 0.00 0.03 99.86 0.02 0.00 0.00 0.04 N/A
8 0.06 0.00 0.00 0.13 0.00 0.04 0.07 99.70 0.00 0.00 0.00 N/A
9 0.06 0.00 0.13 0.01 0.00 0.02 0.00 0.00 99.76 0.01 0.00 N/A
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 N/A
11 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 99.98 N/A
12 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

63

Table 4.7: Results of test accuracy when question type is hidden with/without absurd ques-
tions in training. We compare them with similar QTA models. * denotes training and testing
without absurd questions

CATL-QTAW CATLW∗ CATL-QTAW∗ CATL-QTA-M CATL-QTA-M∗ CAT11∗ [53]

Scene Recognition 93.80 93.46 93.62 93.74 93.82 72.75
Sport Recognition 95.55 94.97 95.47 94.80 95.31 89.40
Color Attributes 60.16 57.84 58.63 57.62 59.73 50.52
Other Attributes 54.36 53.90 53.44 52.05 56.17 51.47

Activity Recognition 60.10 57.38 59.43 53.13 58.61 48.55
Positional Reasoning 34.71 33.98 34.63 33.90 34.70 27.73

Sub. Object Recognition 86.98 86.62 86.74 86.89 86.80 81.66
Absurd 100.00 N/A N/A 98.57 N/A N/A

Utility and Affordances 31.48 27.78 34.57 24.07 35.19 30.99
Object Presence 94.55 93.87 94.22 94.57 94.60 69.50

Counting 53.25 52.33 52.20 53.59 55.30 44.84
Sentiment Understanding 64.38 64.06 65.81 60.06 61.31 59.94
Overall (Arithmetic MPT) 69.11 65.11 66.25 66.92 66.88 57.03
Overall (Harmonic MPT) 60.08 55.89 58.51 55.77 58.82 50.30

Simple Accuracy 85.03 79.79 80.13 84.33 80.95 63.30

4.6 Conclusion

We propose a question type-guided visual attention (QTA) network. We show empirically

that with the question type information, models can balance between bottom-up and top-

down visual features and achieve state-of-the-art performance. Our results show that QTA

systematically improves the performance by more than 5% across multiple question type

categories such as “Activity Recognition”, “Utility” and “Counting” on TDIUC dataset.

We consider the case when we don’t have question type for test and propose a multi-task

model to overcome this limitation by adding question type prediction task in the VQA task.

We get around 95% accuracy for the question type prediction while keeping the VQA task

accuracy almost same as before.

64

Chapter 5

Extended BLAS Kernels for Tensor

Contraction

Multilinear algebraic computations, are ubiquitous in multiple scientific domains such as

machine learning and modern data science [7], quantum chemistry and physics [55], signal

and image processing [37], chemometrics [16], and biochemistry [54]. The study of tensor

computations has a long and diverse history, as early as in the work by Hitchcock [45].

The domains and references provided herein are by no means exhaustive but merely a small

representative sample of the various flavors in which tensor computations are used in science.

Tensor contractions play a central role in a variety of algorithms and applications. However,

non-trivial performance bottlenecks in several application areas are encountered due to the

high space and time complexities associated with tensor computations. In this chapter,

motivated by the recent increased interest from machine learning and deep learning, we

propose and study library-based communication-avoiding approaches for performing tensor

contractions.

Conventional approaches for computing general tensor contractions rely on matricization,

65

the logical or explicit restructuring of the data so that the computation can be performed

with a sequence of Basic Linear Algebra Subroutine (Blas) library calls. The Blas routines

provide efficient and portable implementations of linear algebra primitives, with many fast

implementations existing across many architectures [18].

To this point, the GEneral Matrix Multiply (Gemm) primitive specified within the Blas

library is possibly the most optimized and widely used routine in scientific computing. Not-

ing that the basic theoretical computational and communication complexities of most tensor

contractions is equivalent to that of Gemm, these computations should scale equally well.

However, we find that existing tensor libraries such as the Tensor Toolbox and Cy-

clops Tensor Framework perform explicit data transposition to compute almost all

tensor contractions and the cost of data restructuring often dominates the cost of the actual

computation. Other approaches [63, 67] have previously proposed intrusive compiler and

static analysis solutions, whereas we provide a much simpler library-based solution.

5.1 Summary of Results

We introduce a new Blas primitive, known as StridedBatchedGemm, that allows the

majority of tensor contractions to be computed without any explicit memory motion. We

begin by focusing on single-index contractions involving all the possible configurations of

second-order and third-order tensors. We detail the so-called exceptional cases that cannot

be evaluated with StridedBatchedGemm and demonstrate that an efficient solution ex-

ists with another small extension to the primitive. Through systematic benchmarking, we

demonstrate that our approach can achieve 10x speedup on a K40c GPU and 2x speedup on

dual-socket Haswell-EP CPUs, using Mkl and CuBlas respectively, for small and moderate

tensor sizes. This is relevant in many machine learning applications such as deep learning,

where tensor sizes tend to be small, but require numerous tensor contraction operations to be

66

performed successively. We also demonstrate performance improvement using our approach

in direct benchmarks to an application study: the Tucker decomposition. We show that us-

ing our kernels yields atleast an order of magnitude speedup as compared to state-of-the-art

libraries.

Finally, the value of this approach and its applications are recognized by NVIDIA. The

proposed interface exists in the CuBlas 8.0.

5.2 Related Work

Peise et al [81] extended results from Napoli et al [73] in mapping tensor contractions to

sequences of Blas routines and modeling the performance of these mappings. In this work,

they systematically enumerate and benchmark combinations of possible Blas kernels one

could use to compute a given tensor contraction to conclude that the best performing algo-

rithms involve the Gemm kernel. Some evaluation strategies are neglected to be considered,

such as flattening or developing new, generic linear algebraic subroutines that could yield

improved performance.

Lu et al [67] produce an optimizing compiler to determine the number and sequence of

transpositions of a general tensor contraction so that the evaluation can be performed with

a Gemm call. Li et al [63] also recognizes the cost of explicit copies and proposes evaluation

strategies exactly comparable to the flattening and batching strategies addressed in this

chapter. Their discussion of loop modes and component modes map to our discussion of batch

modes and Gemm modes. However, Li et al do not discuss strategies beyond tensor-times-

matrix multiply. Furthermore, they only consider mode-n tensor-times-matrix contractions

of the form Yi1···in−1j···iN =
∑

in
Xi1···iNUjin , which avoids the more complicated cases in

this chapter. Abdelfattah et al [3] presents a framework using batched Gemm for tensor

67

contractions on GPUs. However, they focus on optimizing only limited number of tensor

contraction kernels on extreme small size tensors. Other works in [1] [74] improve the tensor

computation performance by doing loop reorganization and fusion.

The StridedBatchedGemm interface proposed in this chapter has previously been men-

tioned by Jhurani et al [51] as a low-overhead interface for multiple small matrices on

NVIDIA GPUs. Jhurani proposes the same interface for CuBlas that we propose and

focuses on implementation concerns. In this work, we treat StridedBatchedGemm as an

available primitive, benchmark evaluation strategies that utilize it, and examine how it may

be further extended for use in multi-linear algebra.

The Blas-like Library Instantiation Software (Blis) framework [99] offers Gemms which

support non-unit strides in both the row and column dimensions, which are attractive solu-

tions to some of the problems in this chapter. However, performance is expected to suffer

due to decreases in cache line utilization, and SIMD opportunities.

Recent improvements in parallel and distributed computing systems have made complex

tensor computation feasible. TensorFlow [2] can handle multi-linear algebra operations and

it is primarily a data-flow and task-scheduling framework for machine learning.

5.3 Preliminaries

Notation We follow Einstein summation convention to represent tensor contractions. A

general tensor contraction is written as

CC = αAABB + β CC (5.1)

68

where A,B, C are ordered sequences of indices such that C ≡ (A∪B) \ (A∩B). The indices

in A ∩ B are called contracted indices. The indices in C are called free indices.

Conventional Tensor Contraction The conventional approach for tensor contraction

is to matricize the tensors via transpositions and copies. Libraries such as Basic Tensor

Algebra Subroutines (Btas) [72], MATLAB Tensor Toolbox [13, 12], and Cyclops Tensor

Framework [90] all perform some version of matricization, which is typically performed in

four steps:

1. Consider a general tensor contraction of the form (5.1). Define the index sets K, I, J

as

K = A ∩ B, I = A \ (A ∩ B), J = B \ (A ∩ B)

2. Permute tensors A, B, and C into the form

CIJ = αAIKBKJ + β CIJ (5.2)

3. Evaluate (5.2) using one of four BLAS kernels:



Dot |K| = |A| and |K| = |B|

Ger |K| = 0

Gemv |K| = |A| xor |K| = |B|

Gemm else

4. Permute the result, CIJ , into the desired output, CC.

69

This approach to tensor contractions is completely general. It works for any two tensors

of arbitrary order and any number of contraction indices. However, for even the simplest

contractions, the cost of explicitly permuting the tensor data typically outweigh the cost of

the computation to be performed. See Section 5.4.1 for examples.

An Important Practical Application In unsupervised learning, tensor decomposi-

tion [7] is gaining a lot of attention and is the crux of model estimation via the method

of moments. A variety of problems such as topic model estimation, Gaussian mixtures

model estimation, and social network learning can be provably, consistently and efficiently

solved via the tensor decomposition techniques under certain mild assumptions.

The basic building blocks of these algorithms involve tensor contractions. Two frequently

used tensor decomposition methods are the CP decomposition [42] and the Tucker decompo-

sition [98]. In [100], the authors use the Tucker decomposition to extract new representations

of the face images despite different expressions or camera viewpoints. To illustrate the fun-

damental importance of tensor contractions, we will pick one of the most common tensor

decomposition algorithms, namely the higher-order orthogonal iteration (HOOI) [62] for

asymmetric Tucker decomposition, and use it as a case-study. In the Einstein notation, the

factorization of a third-order tensor T ∈ Rm×n×p is given by Tmnp = GijkAmiBnjCpk, where

G ∈ Ri×j×k is the core tensor, A ∈ Rm×i, B ∈ Rn×j, C ∈ Rp×k. From Kolda et al [94],

we summarize the algorithm for the third-order tensor case in Algorithm 3. Following their

notation, T(r) denotes the mode-r unfolding of tensor T . For further technical details, we

refer the reader to Kolda et al [94].

70

Algorithm 3 Tucker Decomposition Algorithm

Require: Tensor T ∈ Rm×n×p, core tensor size i, j, k, number of iterations T .
Ensure: Factors AT , BT , CT and core tensor G
1: Set t = 0;
2: Initialize A0 ← i leading left singular vector of T(1)
3: B0 ← j leading left singular vector of T(2)
4: C0 ← k leading left singular vector of T(3)
5: while t < T do
6: Ymjk = TmnpB

t
njC

t
pk

7: At+1 ← i leading left singular vector of Y(1).

8: Yink = TmnpA
t+1
mi C

t
pk

9: Bt+1 ← j leading left singular vector of Y(2).

10: Yijp = TmnpB
t+1
nj A

t+1
mi

11: Ct+1 ← k leading left singular vector of Y(3).

12: Gijk = TmnpA
T
miB

T
njC

T
pk

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

n

M
em

or
y

fr
ac

tio
n

(a) CPU

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

n

(b) GPU

Figure 5.1: The fraction of time spent in copies/transpositions when computing the contrac-
tion Cmnp = AmkBpkn using the conventional approach.

5.4 Approach

In this section, we present library-based evaluation strategies for performing general tensor

contractions in-place: without explicit copies and/or transpositions.

71

5.4.1 Motivating Observations

Case study 1 Consider Cmnp = AmkBnkp. The conventional approach presented in Sec-

tion 5.3 results in an evaluation wherein one switches, by means of explicit copy operations,

modes n and k in B to produce Cmnp = AmkBknp, which is now of the form (5.2) and can

be evaluated directly with a Gemm. Alternatively, we observe that we may perform the

computation without explicit copy by launching p individual Gemms.

Case study 2 Consider Cmnp = AkmBpkn. The conventional approach presented in

Section 5.3 results in an evaluation wherein we may require more than one transposition.

For concreteness, we analyzed how Btas performs this contraction. We observed that Btas

uses four explicit transpositions that results in the following algorithm:

1. Permute Akm to Amk.

2. Permute Bpkn to Bkpn.

3. Permute Cmnp to Cmpn.

4. Compute Cmpn = αAmkBkpn + βCmpn with Gemm.

5. Permute Cmpn to Cmnp.

Similarly, in the MATLAB Tensor Toolbox, the main idea is to reshape all tensors to matri-

ces. For instance, in Case 2.4 in Table 5.2, it reshapes Akm to Amk and reshapes tensor Bpkn

to matrix Bk(pn) with the first dimension as k and the second dimension as p ∗ n. Cyclops

also uses index reordering methods for fully dense tensors. The reordering is avoided only

in the more restrictive case of high-dimensional symmetric tensors.

We note that some of the steps in the above approach can certainly be avoided with an

improved algorithm that still implements the conventional approach. For example, Step 1

can be avoided by using a Gemm that implicitly transposes the first matrix via a CblasTrans

parameter or equivalent in Step 4. Another optimization would be to avoid Step 3 altogether

72

when β = 0. Other approaches require even fewer transposition steps. Ultimately, observe

that we may perform the computation without explicit copy by performing p individual

Gemms.

In Figure 5.1, we measure the cost of these explicit transpose operations in a representative

tensor contraction on CPU and GPU. Lines are shown with 1, 2, 3, and 6 total transpositions

performed on either the input or output. On the CPU we use Mkl’s mkl somatcopy and

cblas sgemm, and on the GPU we use CuBlas’s cublasSgeam and cublasSgemm to per-

form each required matrix transposition and Gemm respectively. Note that transposition

primitives are not specified in Blas, but are vendor-specific Blas-like extensions provided

to perform common transpose operations. For this reason, these optimized functions are

not typically used in tensor libraries with, instead, custom transposition implementations

taking their place. These custom implementations are likely not as optimized as the vendor

implementations.

As we can see from Figure 5.1, on the CPU, almost 40% of the time is used in copy and trans-

pose, even when only a single mode transposition is performed. Clearly, with more transpose

operations, the fraction is higher, requiring 60-80% of the total time. This correlates well

with data presented in [63] where it is reported that Tensor Toolbox takes approximately

70% of the total time performing copies and transpositions in one algorithm. By avoiding

these transpositions we may obtain 10x speedup on the GPU for small tensors with n . 100,

and more than 2x speedup on the CPU for almost all n.

Although the fraction of time spent in transposition will asymptotically approach zero as n

grows in both cases, the high bandwidth of the GPU allows the computation to dominate

the communication much more quickly. Indeed, the reported maximum bandwidth of the

K40c GPU is 288GB/sec and the dual-socket Xeon E5-2630 v3 CPU achieves 118GB/sec.

Additionally, that the gap between computational performance and communication perfor-

73

mance continues to increase, so the cost of transposition is likely to increase in the future.

Even now, especially for small tensor sizes, it is clear that the cost of performing explicit

copies and transpositions is significant and should be avoided.

5.4.2 Extended Notations

We would like to express evaluation strategies for tensor contractions succinctly, so we in-

troduce additional notation.

In this chapter, tensors are assumed to be stored in the column-major format. In other words,

the ith mode has a memory stride – termed “leading dimension” in Blas – denoted ld<i>

with ld<0> = 1. Using this notation, Amnp is stored as A[m+n∗ld<1>+p∗ld<2>]. Note that

the common packed-storage case is obtained when, for all i, we have ld<i> =
∏

0≤k<i dim<k>.

We now formalize three operations that are used in tensor contraction evaluations.

1. Batching: [i] denotes that mode i is batched, A batched mode is considered fixed.

2. Flattening: (ij) denotes that modes i and j are flattened, i.e., , modes i and j are now

considered together as a single mode. The combined mode h = (ij) is considered free.

3. Transpose: A>mn denotes a matrix transpose. Transposes may only be applied to tensors

with exactly two free modes.

The purpose of these notations is that they map directly to looped Blas calls and the

appropriate evaluation can often be read directly from the notated expression. Next, we

review some rules that the above notation must follow in order to obtain a well-formed

evaluation expression.

1. A batched mode [i] cannot be the first mode of any matrix term. That is, A[m]nk is not

allowed. Batching in the first mode would cause the m resulting logical n×k matrices

74

to be strided in both rows and columns and, therefore, cannot be used as a matrix in

any Blas routine.

2. A flattening (ij) requires that ld<j> = ld<i> dim<i>. Unfortunately, the notation alone

is therefore not sufficient to determine which modes may be flattened; it is contingent on

the representation as well. In the common packed-storage case, however, this flattening

condition is always true.

3. If a flattening operation occurs on the right side, it must occur on the left side with

the same modes in the same order. For example, Cm(np) = AmkBk(pn) is not allowed.

4. Standard transposition rules apply: C>nm = AmkBkn implies Cnm = B>knA
>
mk. However,

modes may not be swapped under transposition. For example, A>mk can not be replaced

with Akm.

This notation allows us to quickly read off the intended extended Blas evaluation expression

for arbitrary tensor contractions. See Table 5.1 for examples.

Table 5.1: Example mapping between tensor contractions with batched and flattened modes
in our notation and the corresponding Blas expression evaluation. Note that the appropriate
Blas primitive, transposition, matrix pointer, and leading dimension parameters to Gemm
can be read off directly from the notation

Contraction Blas Evaluation

Cm(np) = AmkBk(np) Gemm (’N’,’N’, m, np, k, 1, A, lda<1>, B, ldb<1>, 0, C, ldc<1>);

C(mn)p = B(mn)kA
>
pk Gemm (’N’,’T’, mn, p, k, 1, B, ldb<1> · ldb<2>, A, lda<1>, 0, C, ldc<1> · ldc<2>);

Cm[n]p = AmkBk[n]p for n in [0,n) Gemm (’N’,’N’, m, p, k, 1, A, lda<1>, B + n · ldb<1>, ldb<2>, 0, C + n · ldc<1>, ldc<2>);

Cmn[p] = B>k[p]mAkn for p in [0,p) Gemm (’T’,’N’, m, n, k, 1, B + p · ldb<1>, ldb<2>, A, lda<1>, 0, C + p · ldc<2>, ldc<1>);

C[n]p = BpkAk[n] for n in [0,n) Gemv (’N’, p, k, 1, B, ldb<1>, A+ n · lda<1>, 1, 0, C + n, ldc<1>);

5.4.3 BatchedGemm

Instead of relying on explicit mode transpositions, Peise et al [80, 81] considered mapping

tensor contractions to Blas primitives directly – enumerating all possible Blas primitives

that could be used and their nesting within loops. Of course, the evaluation strategies that

relied on level-3 Blas primitives (Gemm) rather than level-2 primitives (Gemv, Ger) were

75

0 200 400 600 800 1,000
0

500

1,000

Arithmetic Intensity (flop/word)

Pe
rf

or
m

an
ce

(G
flo

p/
s)

MKL GEMM

MKL BATCHEDGEMM

NVIDIA GEMM

NVIDIA BATCHEDGEMM

Figure 5.2: The arithmetic intensity of computing n Gemms of size n× n.

much more efficient. This often resulted in the need for many small Gemms to be performed,

which usually does not achieve ideal performance.

The need to compute many small Gemms has not gone unnoticed by the leading implemen-

tations of Blas. NVIDIA supplied the capability to multiply pairs of many small matrices

in CuBlas v4.1 [CUDA Toolkit v4.1] via the function cublasXgemmBatched. Similarly, as

of Mkl 11.3β, cblas Xgemm batch is available with a similar interface and is also specifically

optimized for small matrix sizes.

In Figure 5.2, we plot the achieved performance on CPU and GPU of these BatchedGemm

functions by evaluating n Gemms of size n × n using each strategy with Mkl 11.3.1 and

CuBlas 7.5. All experiments are performed on a K40c GPU and 16 cores (32 threads) of

a dual socket CPU. Note that there are much higher performance in both cases when n is

small. When n is large, there is clearly room for optimization in cublasSgemmBatched.

Both of these interfaces are based on pointers to matrix pointers, which often require al-

location and/or precomputation at the point-of-call. This makes them awkward to use in

the context of tensor contractions where the strides between matrices are regular and the

generality provided by these interfaces goes unused.

76

5.4.4 StridedBatchedGemm

Building on the BatchedGemm extensions to Blas, we propose StridedBatchedGemm

(Listing 5.1) which offers a simplified interface for the constant-strided BatchedGemm and

more optimizations opportunities for implementors. The interface and reference implemen-

tation of StridedBatchedGemm is provided in Listing 5.1. The lda, ldb, ldc parameters

are the standard “leading dimension” parameters that appear in level-3 Blas primitives and

denote to the stride between columns of the matrix. We refer to the new loa, lob, loc pa-

rameters as the “leading order” parameters and denote the stride between matrices of the

batch.

There are a number of advantages to a StridedBatchedGemm primitive. First, Strid-

edBatchedGemm is actually more restrictive than the BatchedGemm that has already

appeared in Mkl and CuBlas, but we argue that a BatchedGemm with a constant stride

between matrices is a common enough case to consider specializing for. By providing this

interface, the common case with constant strides between matrices is not forced to perform

allocations or precomputations as it currently must perform in order to use BatchedGemm.

Additionally, these extra restrictions provide additional knowledge of the memory layout of

the computation and offers additional optimizations opportunities in SIMDization, prefetch-

ing, and tiling. In other words, the ”batch-loop” in StridedBatchedGemm now directly

participates in the polyhedral computation as an affine for-loop. With the pointer-interface

in BatchedGemm, the ”batch-loop” cannot fully participate in a polyhedral model of the

computation and is certainly not a candidate for vectorization or cache blocking.

In Table 5.2, we have enumerated all unique single-mode contractions between a second-

order and third-order tensor using the notation from Section 5.4.2. All but 8 contractions

can be computed with only a single call to StridedBatchedGemm.

77

Table 5.2: List of 36 possible single mode contraction operations between a second-order
tensor and a third-order tensor and possible mappings to Level-3 Blas routines. Note
that 8 cases may be performed with Gemm, 28 cases may be performed with Strided-
BatchedGemm, and 8 cases remain exceptional

Case Contraction Kernel1 Kernel2 Kernel3

1.1 AmkBknp Cm(np) = AmkBk(np) Cmn[p] = AmkBkn[p] Cm[n]p = AmkBk[n]p

1.2 AmkBkpn Cmn[p] = AmkBk[p]n Cm[n]p = AmkBkp[n]

1.3 AmkBnkp Cmn[p] = AmkB
>
nk[p]

1.4 AmkBpkn Cm[n]p = AmkB
>
pk[n]

1.5 AmkBnpk Cm(np) = AmkB
>
(np)k Cmn[p] = AmkB

>
n[p]k

1.6 AmkBpnk Cm[n]p = AmkB
>
p[n]k

2.1 AkmBknp Cm(np) = A>kmBk(np) Cmn[p] = A>kmBkn[p] Cm[n]p = A>kmBk[n]p

2.2 AkmBkpn Cmn[p] = A>kmBk[p]n Cm[n]p = A>kmBkp[n]

2.3 AkmBnkp Cmn[p] = A>kmB
>
nk[p]

2.4 AkmBpkn Cm[n]p = A>kmB
>
pk[n]

2.5 AkmBnpk Cm(np) = A>kmB
>
(np)k Cmn[p] = A>kmB

>
n[p]k

2.6 AkmBpnk Cm[n]p = A>kmB
>
p[n]k

3.1 AnkBkmp Cmn[p] = B>km[p]A
>
nk

3.2 AnkBkpm Cmn[p] = B>k[p]mA
>
nk

3.3 AnkBmkp Cmn[p] = Bmk[p]A
>
nk

3.4 AnkBpkm TRANS(AnkB
>
pk[m]) C[m][n]p = Bpk[m]A[n]k

3.5 AnkBmpk Cmn[p] = Bm[p]kA
>
nk

3.6 AnkBpmk TRANS(AnkB
>
p[m]k) C[m][n]p = Bp[m]kA[n]k

4.1 AknBkmp Cmn[p] = B>km[p]Akn

4.2 AknBkpm Cmn[p] = B>k[p]mAkn

4.3 AknBmkp Cmn[p] = Bmk[p]Akn

4.4 AknBpkm TRANS(A>knB
>
pk[m]) C[m][n]p = Bpk[m]Ak[n]

4.5 AknBmpk Cmn[p] = Bm[p]kAkn

4.6 AknBpmk TRANS(A>knB
>
p[m]k) C[m][n]p = Bp[m]kAk[n]

5.1 ApkBkmn C(mn)p = B>k(mn)A
>
pk Cm[n]p = B>km[n]A

>
pk

5.2 ApkBknm Cm[n]p = B>k[n]mA
>
pk

5.3 ApkBmkn Cm[n]p = Bmk[n]A
>
pk

5.4 ApkBnkm TRANS(Bnk[m]A
>
pk) C[m]n[p] = Bnk[m]A[p]k

5.5 ApkBmnk C(mn)p = B(mn)kA
>
pk Cm[n]p = Bm[n]kA

>
pk

5.6 ApkBnmk TRANS(Bn[m]kA
>
pk) C[m]n[p] = Bn[m]kA[p]k

6.1 AkpBkmn C(mn)p = B>k(mn)Akp Cm[n]p = B>km[n]Akp

6.2 AkpBknm Cm[n]p = B>k[n]mAkp

6.3 AkpBmkn Cm[n]p = Bmk[n]Akp

6.4 AkpBnkm TRANS(Bnk[m]Akp) C[m]n[p] = Bnk[m]Ak[p]
6.5 AkpBmnk C(mn)p = B(mn)kAkp Cm[n]p = Bm[n]kAkp

6.6 AkpBnmk TRANS(Bn[m]kAkp) C[m]n[p] = Bn[m]kAk[p]

78

Listing 5.1: Interface and reference implementation of BLAS-like strided batched Gemm.

1 // C_p = alpha*opA(A_p)*opB(B_p) + beta*C_p

2 sb_gemm(op_type opA , op_type opB ,

3 int m, int n, int k,

4 T alpha ,

5 const T* A, int lda , int loa ,

6 const T* B, int ldb , int lob ,

7 T beta ,

8 T* C, int ldc , int loc ,

9 int batch_size)

10 {

11 // EXPOSITION ONLY

12 for (int p = 0; p < batch_size; ++p)

13 gemm(opA , opB ,

14 m, n, k,

15 alpha ,

16 A + p*loa , lda ,

17 B + p*lob , ldb ,

18 beta ,

19 C + p*loc , ldc);

20 }

79

Listing 5.2: Nested batching.

1 for (int q = 0; q < Q; ++q)

2 sb_gemm(OP_N , OP_T ,

3 M, N, K,

4 1,

5 A, lda <1>, lda <2>,

6 B+q*ldb <2>, ldb <1>, 0,

7 0,

8 C+q*ldc <3>, ldc <1>, ldc <2>,

9 P);

5.4.5 Exceptional Cases

The eight exceptional cases in Table 5.2 – Cases 3.4, 3.6, 4.4, 4.6, 5.4, 5.6, 6.4, and 6.6

– occur when batching forces the evaluation to either be a BatchedGemv or violate the

no-first-mode rule.

This can be resolved by making an extension to the operation parameters allowed for

BatchedGemm. Typically, the available operation parameters are “normal”, “transpose”,

“conjugate”, and “Hermitian”. To account for the exceptional cases, “extended X” could be

added to allow violations of the no-first-mode rule and consider all three modes involved in

the batching simultaneously.

For example, Case 3.6 and 6.4 could then be written as Cmn[p] = B[p]mk A
>
nk and Cm[n]p =

B>[n]kmAkp , and evaluated via

80

sb_gemm(OP_EX_N, OP_T,

M, N, K,

1,

B, ldb<1>, ldb<2>,

A, lda<1>, 0,

0,

C, ldc<1>, ldc<2>,

P);

sb_gemm(OP_EX_T, OP_N,

M, P, K,

1,

B, ldb<1>, ldb<2>,

A, lda<1>, 0,

0,

C, ldc<2>, ldc<1>,

N);

When the extended operation is passed, it is known that batching is in the first mode of

the input which always has leading dimension 1. Thus, the leading order parameter to

sb gemm contains no information. Instead, leading dimensions of the other two modes in

row-column order of the batched matrix are passed as the leading dimension and leading

order parameters.

The implementation of a computation like this is expected to perform a “3D” tiling of B

into cache in order to efficiently contract with the standard 2D cache tiling of A.

5.4.6 Generalization

In this section, we explain the generality of our approach and how it can be easily applied

and extended to single-mode contractions involving tensors of arbitrary order.

Consider an arbitrary single-mode tensor contraction of the form (5.1). It is straightforward

to see by simple counting that the number of unique contractions is [(|A|+ |B|−2)!] · |A| · |B|.

We note that Table 5.2 is obtained with |A| = 2 and |B| = 3. Of these contractions, all of

them may be performed without explicit mode transpositions by nesting the BatchedGemm

operations.

We observe that some single-mode contractions of two tensors of arbitrary order can be

evaluated by batching on different modes with the BatchedGemm operations. For example,

81

consider Cmn[p][q] = Amk[p]Bnk[q] wherein we can batch in either p and q. We prefer to choose

the mode with the larger dimension for the BatchedGemm batching loop over the other

(nested batching).

The nested-batching strategy in Listing 5.2 is general and extends to any two tensors of any

order. Algorithms and heuristics for choosing the looped, batched, and Gemm-ed modes are

provided in Section 5.5.4.

5.5 Results and Discussion

In this section, we benchmark varying evaluation strategies in order to define heuristics

for computing general tensor contractions without copy or transposition. Additionally, we

demonstrate the feasibility of the extended transpose parameter for exceptional case evalu-

ations.

All performance measurements are performed on a heterogeneous CPU-GPU system with a

dual-socket Intel Xeon E5-2630 v3 2.4GHz processor and an NVIDIA K40c GPU. Each CPU

socket has 8 cores and 16 threads with an 8× 256KB L2 cache and a 20MB L3 cache. The

K40c has 2880 streaming cores distributed across 15 multiprocessors operating at 0.75GHz

and a 1.5MB L2 cache.

All data used are randomized dense matrices. To eliminate noise from parallel competition

of multi-sockets, all CPU results are generated from serial runs (one core, one thread).

5.5.1 Conventional Evaluation

We further motivate the use of StridedBatchedGemm evaluations by plotting the speedup

of the conventional approach – transpositions until a single Gemm can be called – over a

82

0 100 200 300 400 500
0

0.5

1

1.5

2

n

B
at

ch
in

g
Sp

ee
du

p
(T

ra
ns

+F
la

t
/
[p
])

CPU
GPU

Figure 5.3: Performance ratio between the conventional approach with κ mode transposi-
tions over a BatchedGemm in [p] for Case 1.3. For color from deep to light, κ = 1, 2, 3, 6.
Performance on CPU using Mkl’s mkl somatcopy, cblas sgemm, and cblas sgemm batch.
Performance on GPU using CuBlas’s cublasSgeam, cublasSgemm, and our modified
cublasSgemmBatched.

single StridedBatchedGemm call in evaluation of Case 1.3 from Table 5.2 for tensors

of size n × n × n. Figure 5.3 shows that StridedBatchedGemm is significantly faster

than performing even a single transposition followed by a flattened Gemm, especially for

small matrices. Here, a single transposition means n calls to mkl somatcopy on CPU or

cublasSgeam on GPU in order to fully exchange two modes. The dark lines include only a

single transposition and the lighter lines include 2, 3, and 6 transpositions.

On CPU, the StridedBatchedGemm evaluation outperforms the conventional approach

for all n < 512. On GPU, the benefit from performing a single flattened Gemm eventually

outweighs the cost of performing the transposition and for n & 200 the conventional ap-

proach achieves a speedup over the StridedBatchedGemm. This speaks to the highly op-

timized Gemm in CuBlas and that, perhaps, additional optimization gains from CuBlas’s

BatchedGemm may be available.

5.5.2 Extended BLAS Evaluation

In this section, we compare evaluation strategies given the extended Blas kernels. On GPU,

the StridedBatchedGemm interface is provided by modifying cublasSgemmBatched from

CuBlas 7.5. On CPU, the StridedBatchedGemm interface is implemented in serial with

83

looped calls to cblas sgemm from Mkl 11.2. Both implementations thereby avoid additional

allocation and/or precomputation at the call site. The serial execution on CPU emphasizes

the cache effects discussed in the following sections.

Flattening Cases 1.1, 1.5, and 6.1 can be evaluated without explicit transpositions with

either a single flattened Gemm or a single BatchedGemm. We expect the flattened Gemm

evaluation to outperform the BatchedGemm evaluation due to the optimization level of

existing Gemms over that of the recently emerging BatchedGemm functions.

In Figure 5.4, we plot the speedup achieved by using a flattened Gemm evaluation over a

StridedBatchedGemm evaluation. In Figure 5.4, the speedup is greater than one when

FlattenedGEMM is faster than the StridedBatchedGemm. Clearly, most of the time,

flattened Gemm is faster. Furthermore, we note the CuBlas implementation of Strid-

edBatchedGemm is a great candidate for optimization as it appears to be significantly

underperforming with respect to Gemm.

We also note the dependence of the performance on the shape of the flattened Gemm and the

mode of the StridedBatchedGemm. On CPU, we find that the major determining factor

in performance is the batching mode of the output. That is, the StridedBatchedGemm

evaluation performs best when batched in the third mode of C – in Case 1.5 [p] and 1.1

[p]. On GPU, the output batching mode makes no difference. It is unclear why the batched

evaluation performs so well on Case 1.5 [p].

Batching In this section, we attempt to quantify the performance gain by batching in the

last mode versus an earlier mode and whether the input tensor or the output tensor should

be prioritized for this optimization.

Case 1.1 and 2.1 can both be batched in the second ([n]) or third ([p]) mode. In Figure 5.5,

84

0 100 200 300 400 500

1

2

3

n

Fl
at

te
ni

ng
Sp

ee
du

p
(B

at
ch

/
Fl

at
)

Case 1.1 [n]
Case 1.1 [p]
Case 1.5 [p]
Case 6.1 [n]

(a) CPU

0 100 200 300 400 500

1

2

3

n

(b) GPU

Figure 5.4: Performance ratio for a BatchedGemm over a flattened Gemm in evaluation
of Cases 1.1, 1.5, and 6.1.

we plot the speedup in performing the BatchedGemm in [p] over performing it in [n].

When the size of the tensor is small, n . 256, batching in the third mode is advantageous

and can result in up to 1.25x speedup on CPU. When n & 256, it is approximately 1.1x

faster to batch in the second mode rather than the third. We expect this is an effect of the

256KB L1 cache, which would house the contiguous Bkn submatrix for each p when n . 256.

Beyond that size both batching strategies will have forced cache misses within each Gemm,

but by batching in the middle mode more data is shared between individual Gemms.

On GPU, we see no discernible preference in the choice of batching mode. The GPU has a

much less sophisticated memory system with no prefetcher and the performance difference

is primarily determined by the number of global memory transactions issued. When n ≥ 32,

the coalescing width is reached so nearly the same number of transactions will be issued in

each case – with small differences caused by alignment. We confirmed this by profiling the

number of global memory reads and writes issued by each kernel and verifying that they

correlate with the small differences in performance observed.

Additionally, we consider the mixed-mode batching evaluations to determine if the input

or output array is the primary determination of batching performance. In Figure 5.6, we

plot the speedup in performing StridedBatchedGemm in the last mode of the output

85

0 100 200 300 400 500

0.9

1

1.1

1.2

n

L
as

t
M

od
e

Sp
ee

du
p

([
n
]

/
[p
])

(a) CPU

0 100 200 300 400 500

0.9

1

1.1

1.2

n

Case 1.1
Case 2.1

(b) GPU

Figure 5.5: Speedup obtained from batching in the last mode, [p], rather than the middle
mode, [n], for Cases 1.1 and 2.1.

0 100 200 300 400 500

0.9

1

1.1

1.2

n

L
as

t
O

ut
pu

t
M

od
e

Sp
ee

du
p

([
n
]

/
[p
])

(a) CPU

0 100 200 300 400 500

0.9

1

1.1

1.2

n

Case 1.2
Case 2.2

(b) GPU

Figure 5.6: Speedup obtained from batching in the last output mode, [p], rather than the
middle output mode, [n], for Cases 1.2 and 2.2.

but the middle mode of the input, [p], over performing it in the middle mode of the output

and the last mode of the input, [n], for Cases 1.2 and 2.2. The results are very similar to

those of Figure 5.5 indicating that batching mode of the output tensor C is more important

than the batching mode of the input tensor B on CPU. This is consistent with reference

implementations of Gemm which accumulate results directly into the output matrix.

Exceptional Cases In this section, we demonstrate the feasibility of evaluation strategies

for the exceptional cases.

86

(1,1) (2,1) (4,1) (8,1) (16,1) (32,1) (64,1) (128,1)
(1,1)

(2,1)

(4,1)

(8,1)

(16,1)

(32,1)

(64,1)

(128,1)

Blocking (m,n)

B
lo

ck
in

g
(p
,k
)

4.5

5

5.5

6

6.5

Figure 5.7: GPU tiling parameter profile from PPCG on K40c for Case 6.4. Performance
values are log10([µsec]) and tests performed for m = n = k = p = 256. White indicates the
run failed.

0 50 100 150 200 250

101

102

103

104

105

106

n

Ti
m

e
[µ

s]

PPCG
BATCHEDGEMV

BATCHEDGEMM

GEAM

Figure 5.8: Benchmark of three evaluation strategies for Case 6.4: A BatchedGemv,
a mode transposition followed by a BatchedGemm, and an extended transpose kernel
generated by PPCG.

The Polyhedral Parallel Code Generator (PPCG) [101] is a source-to-source compiler capable

of generating CUDA kernels from nested control loops in C. We use PPCG to generate a

CUDA kernel for exceptional Case 6.4 and compare its performance against other evaluation

strategies.

First, Case 6.4 has four nested loops and PPCG accepts a tiling parameter for each. We

search the parameter space (m,n, p, k) ∈ [1, 2, 4, 8, 16, 32, 64, 128]4 for the most efficient

variant in Figure 5.7. The kernels were generated with α = 1 and β = 0 statically known

as generated versions with dynamic α, β had significant branching and divergent overhead,

87

whereas we are primarily interested in the access patterns and tiling.

The tiling parameters that result in the highest performance are (16, 4, 32, 4). Via inspection,

we verify that the generated kernel is performing a 2D shared memory tiling for A, a “3D”

shared memory tiling for B, and accumulating the C results in registers.

Using the (16, 4, 32, 4) kernel, we benchmark against two possible evaluation strategies: (1)

A BatchedGemv which requires no explicit transposition, and (2) A mode transposition

in k and m followed by a BatchedGemm in [n]. In Figure 5.8, we show the execution time

for each with the explicit transposition/Gemm stacked to show their relative proportion in

the two-step evaluation. The PPCG kernel outperforms the explicit transposition/Gemm

evaluation for small matrices and remains within a factor of 2-3x as n grows. We expect an

expert implementation of the extended transpose parameter kernel would be able to close

this gap and remain competitive with BatchedGemm for all n.

5.5.3 Machine Learning Application

In this section, we present the benchmarking results for the application that we discussed

in Section 5.3. For simulations on the CPU, we compare the performance on the Tucker

decomposition using TensorToolbox, Btas, Cyclops and our StridedBatchedGemm.

For simulations on the GPU, we don’t have available GPU library to compare with, so we just

evaluate our GPU implementation against StridedBatchedGemm. We fix the number of

iterations as T = 200, set the core tensor size as i = j = k = 10, and set the dimensions

as m = n = p. From Figure 5.9, using our CPU StridedBatchedGemm, we obtain

more than 10 times speedup compared to Cyclops/TensorToolbox and almost four orders

of magnitude compared to Btas. Also, as expected, our GPU StridedBatchedGemm

confers further speedup.

88

20 40 60 80 100 120
10−2

100

102

104

n

Ti
m

e
(s

ec
)

TensorToolbox
BTAS

Cyclops
CPU Batched
GPU Batched

Figure 5.9: Performance on Tucker decompostion.

5.5.4 Evaluation Priorities

Rather than attempt to model the algorithm and machine as in [81, 73], we simply provide

evaluation guidelines based on the data provided. These are a number of heuristics that may

be important in constructing the most efficient evaluation strategy.

1. Flatten modes whenever possible. A single large Gemm is more efficient.

2. In the interest of performing the highest intensity computation within a BatchedGemm,

we recommend performing the largest Gemms possible within a BatchedGemm and

batching in the mode with largest dimension.

3. Preferring to batch in the last mode versus earlier modes can depend on the input

parameters and machine.

We summarize these evaluation guidelines with pseudocode for performing a single-index

tensor contraction without copy or transposition in Algorithm 4.

5.6 Conclusion

Our experience reveals that the emergence of BatchedGemm provides significant com-

putational advantages for multi-linear algebraic computations. The primitive allows us to

push a larger high intensity computations to vendor-provided implementations. Leading

89

Algorithm 4 Single-mode Tensor Contraction

1: In: Tensor AA, A = [a1, . . . , aM],
2: In: Tensor BB, B = [b1, . . . , bN], A ∩ B = {k}.
3: In, Out: Tensor CC, C = [c1, . . . , cN+M−2]. WLOG, c1 ∈ A.
4: Common substrings in A, B and/or C for flattening candidates.
5: Relabel flattened modes
6: Compute P = {ci | i 6= 1, ci 6≡ a1, ci 6≡ b1}
7: if |C \ P| = |{c1}| = 1. then
8: [Case Cc1··· = Ak···c1···Bk···]
9: Let c∗ ∈ P \ A be index with max dimension

10: Let c+ ∈ P \ {c1, c∗} be index with max dimension
11: Nested in all cj ∈ P \ {c∗, c+}, BatchedGemm in c1, c

∗, k, [c+]
12: else if |C \ P| = |{c1, cb}| = 2 then
13: [Case Cc1···cb··· = Ak···c1···Bcb···k···]
14: Let c∗ ∈ P be index with max dimension
15: Nested in all cj ∈ P \ {c∗}, BatchedGemm in c1, cb, k, [c

∗]
16: else if |C \ P| = |{c1, ca}| = 2 then
17: [Case Cc1···ca··· = Aca···c1···k···Bk···]
18: Let c∗ ∈ P \ A be index with max dimension
19: Nested in all cj ∈ P \ {c∗}, Ex. BatchedGemm in c1, c

∗, k, [ca]
20: else if |C \ P| = |{c1, ca, cb}| = 3 then
21: [Case Cc1···ca···cb··· = Aca···c1···k···Bcb···k···]
22: Nested in all cj ∈ P , Ex. BatchedGemm in c1, cb, k, [ca]

implementations already provide BatchedGemm on highly parallel machines. To sim-

plify their use and provide additional optimization opportunities, we propose Strided-

BatchedGemm and demonstrate its use for generalized tensor contractions. Calls to Strid-

edBatchedGemm have significant opportunity to perform at or near the performance of

Gemm and, by avoiding explicit transpositions or permutations of the data, accelerate these

computations significantly.

Our improvement is most significant on small and moderate sized tensors. This is very

important because in many applications, e.g. deep learning for training a recursive tensor

network, we require evaluating a large number of tensor contractions of small sizes.

Although we focused on single-node performance, these evaluations may be used as build-

ing blocks for distributed memory implementations, which we intent to pursue as part of

90

our future work. Further study into the optimized implementations, architecture-dependent

implementations, and performance of the exceptional case kernels is warranted. More com-

plicated contractions, such as multi-index contractions or sparse tensor algebra, also pose

challenging problems.

91

Chapter 6

Conclusion and Outlook

6.1 Conclusion

In the dissertation, we discuss about how tensor is involved in machine learning and specif-

ically how we can efficiently compute tensor operations in different machine learning ap-

plications. Tensor algebra, as an extension from vector and matrix algebra, provides more

flexible data operations. These operations build up better model representations. On one

hand, tensor product has been applied to multi-modality feature learning. On the other

hand, the tensor decomposition analysis, which is one important way in learning hidden

structure from large data, requires tensor contraction operations frequently.

We propose a dimensionality reduction method: higher-order count sketch. We show that

this operation retains efficient tensor product and tensor contraction by directly performing

the operations on the sketched components. We also demonstrate efficient tensor contraction

primitives that maximal utilize the parallel scheme. We apply both methods in different

machine learning tasks, such as video denoising and visual question answering.

92

6.2 Outlook

There are still so many unsolved problems in the machine learning field. Some of the top-

ics that I am interested in are: how to represent large-scale neural networks as sequential

tensor operations and how to apply tensor compression techniques to use less computation

resources while preserving performance. More generally, I am curious about what is the

optimal solution for different computations under specific conditions. For example, with

limited memory and bandwidth , how can we integrate efficient tensor operations with the

computing, learning and inference processes on edge devices. This relies on both software

(algorithm) and hardware optimization.

93

Bibliography

[1] G. B. A. Allam, J. Ramanujam and P. Sadayappan. Memory minimization for tensor
contractions using integer linear programming. IPDPS’06, 2006.

[2] M. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems.
Software available on tensorflow.org.

[3] B. M. D. V. D. J. E. C. F. J. H. A. K. I. K. T. M. I. T. S. Abdelfattah, A. High-
performance tensor contractions for gpus. ICCS’16.

[4] A. Agrawal, D. Batra, and D. Parikh. Analyzing the behavior of visual question
answering models. EMNLP 2016, 2016.

[5] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the fre-
quency moments. Journal of Computer and System Sciences, 58(1):137–147, February
1999.

[6] R. R. Amossen and R. Pagh. A new data layout for set intersection on gpus. In Pro-
ceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium,
IPDPS ’11, pages 698–708, Washington, DC, USA, 2011. IEEE Computer Society.

[7] A. Anandkumar, R. Ge, D. Hsu, S. Kakade, and M. Telgarsky. Tensor decompositions
for learning latent variable models. JMRL, 15(1):2773–2832, 2014.

[8] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decomposi-
tions for learning latent variable models. J. of Machine Learning Research, 15:2773–
2832, 2014.

[9] A. Anandkumar, R. Ge, and M. Janzamin. Guaranteed non-orthogonal tensor decom-
position via alternating rank-1 updates. ArXiv 1402.5180, 2014.

[10] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang.
Bottom-up and top-down attention for image captioning and VQA. arXiv:1707.07998,
2017.

[11] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh.
VQA: Visual Question Answering. In International Conference on Computer Vision
(ICCV), 2015.

94

[12] B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes for fast
algorithm prototyping. ACM Trans. Math. Softw., 32(4):635–653, 2006.

[13] B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.6. Available online,
http://www.sandia.gov/~tgkolda/TensorToolbox/, February 2015.

[14] B. Barak and A. Moitra. Tensor Prediction, Rademacher Complexity and Random
3-XOR. ArXiv e-prints 1501.06521, Jan. 2015.

[15] K. Bringmann and K. Panagiotou. Efficient sampling methods for discrete distribu-
tions. Algorithmica, 79(2):484–508, Oct 2017.

[16] R. Bro and H. A. Kiers. A new efficient method for determining the number of com-
ponents in parafac models. Journal of chemometrics, 17(5):274–286, 2003.

[17] A. Z. Broder. On the resemblance and containment of documents. IEEE:Compression
and Complexity of Sequences: Proceedings, Positano, Amalfitan Coast, Salerno, Italy,,
10:21–29, 1997.

[18] A. Buluç and J. R. Gilbert. The combinatorial blas:design, implementation, and ap-
plications. IJHPCA’11.

[19] C. F. Caiafa and A. Cichocki. Generalizing the column–row matrix decomposition to
multi-way arrays. Linear Algebra and its Applications, 433:557–573, Sept 2010.

[20] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis?
Journal of the ACM (JACM), 58(3):11, 2011.

[21] D. Cartwright and B. Sturmfels. The number of eigenvalues of a tensor. Linear algebra
and its applications, 438(2):942–952, 2013.

[22] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity
incoherence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596,
2011.

[23] K.-C. Chang, K. Pearson, T. Zhang, et al. Perron-frobenius theorem for nonnegative
tensors. Commun. Math. Sci, 6(2):507–520, 2008.

[24] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.
In Proceedings of ICALP’02, pages 693–703, 2002.

[25] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.
In Proceedings of ICALP’02, 2002.

[26] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Pro-
ceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC
’02, pages 380–388, New York, NY, USA, 2002. ACM.

95

http://www.sandia.gov/~tgkolda/TensorToolbox/

[27] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems. Neural Information Processing Systems, Workshop on Machine
Learning Systems 2015, 2015.

[28] T. Christiani, R. Pagh, and J. Sivertsen. Scalable and robust set similarity join. The
annual IEEE International Conference on Data Engineering, 2018.

[29] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most fre-
quent items dynamically. ACM Trans. Database Syst., 30(1):249–278, Mar. 2005.

[30] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Frequency estimation of inter-
net packet streams with limited space. In Proceedings of the 10th Annual European
Symposium on Algorithms, ESA ’02, pages 348–360, London, UK, UK, 2002. Springer-
Verlag.

[31] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf:
A deep convolutional activation feature for generic visual recognition. arXiv:1310.1531,
2013.

[32] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.
In Psychometrika. Springer-Verlag, 1936.

[33] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach. Multimodal
compact bilinear pooling for visual question answering and visual grounding. EMNLP
2016, 2016.

[34] S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery
via convex optimization. Inverse Problems, 27(2):025010, 2011.

[35] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact bilinear pooling. Computer
Vision and Pattern Recognition (CVPR), 2016, 2016.

[36] D. Goldfarb and Z. Qin. Robust low-rank tensor recovery: Models and algorithms.
SIAM Journal on Matrix Analysis and Applications, 35(1):225–253, 2014.

[37] N. Goyal, S. Vempala, and Y. Xiao. Fourier pca and robust tensor decomposition.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages
584–593.

[38] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the V in VQA
matter: Elevating the role of image understanding in Visual Question Answering. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[39] Q. Gu, H. Gui, and J. Han. Robust tensor decomposition with gross corruption. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 1422–1430. Curran As-
sociates, Inc., 2014.

96

[40] Q. Gu, H. Gui, and J. Han. Robust tensor decomposition with gross corruption. In
Advances in Neural Information Processing Systems, pages 1422–1430, 2014.

[41] D. Gurari, Q. Li, A. J. Stangl, A. Guo, C. Lin, K. Grauman, J. Luo, and J. P.
Bigham. Vizwiz grand challenge: Answering visual questions from blind people.
arXiv:1802.08218, 2018.

[42] R. Harshman. Foundations of the parafac procedure: Models and conditions for an
explanatory multi-model factor analysis. UCLA Working Papers in Phonetics, 16:1–84,
1970.

[43] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[44] C. J. Hillar and L.-H. Lim. Most tensor problems are np-hard. Journal of the ACM
(JACM), 60(6):45, 2013.

[45] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. J. of
Math.and Physics, 6(1):164–189, 1927.

[46] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[47] D. Hsu, S. M. Kakade, and T. Zhang. Robust matrix decomposition with sparse
corruptions. Information Theory, IEEE Transactions on, 57(11):7221–7234, 2011.

[48] B. Huang, C. Mu, D. Goldfarb, and J. Wright. Provable low-rank tensor recovery.
Preprint, 2014.

[49] H. Huang and C. Ding. Robust tensor factorization using r1 norm. In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,
2008.

[50] C. Jhurani and P. Mullowney. A gemm interface and implementation on nvidia gpus
for multiple small matrices. J. of Parallel and Distributed Computing, pages 133–140,
2015.

[51] C. Jhurani and P. Mullowney. A GEMM interface and implementation on NVIDIA
GPUs for multiple small matrices. J. of Parallel and Distributed Computing, 75:133–
140, 2015.

[52] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R. B.
Girshick. CLEVR: A diagnostic dataset for compositional language and elementary
visual reasoning. arXiv:1612.06890, 2016.

[53] K. Kafle and C. Kanan. An analysis of visual question answering algorithms. In ICCV,
2017.

97

[54] V. Kazeev, M. H. Khammash, M. Nip, and C. Schwab. Direct solution of the chemical
master equation using quantized tensor trains. ETH-Zürich, 2013.

[55] V. Khoromskaia and B. N. Khoromskij. Tensor numerical methods in quantum chem-
istry: from hartree–fock to excitation energies. Physical Chemistry Chemical Physics,
2015.

[56] T. G. Kolda and J. R. Mayo. Shifted power method for computing tensor eigenpairs.
SIAM J. Matrix Analysis Applications, 32(4):1095–1124, 2011.

[57] T. G. Kolda and J. Sun. Scalable tensor decompositions for multi-aspect data mining.
ICDM, 2008.

[58] J. Kossaifi, Z. C. Lipton, A. Khanna, T. Furlanello, and A. Anandkumar. Tensor
regression networks. 2017.

[59] N. Kreimer, A. Stanton, and M. D. Sacchi. Tensor completion based on nuclear norm
minimization for 5d seismic data reconstruction. Geophysics, 78(6):V273–V284, 2013.

[60] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis,
L. Li, D. A. Shamma, M. S. Bernstein, and F. Li. Visual genome: Connecting language
and vision using crowdsourced dense image annotations. arXiv:1602.07332, 2016.

[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097–1105. Curran Associates, Inc., 2012.

[62] L. Lathauwer, B. Moor, and J. Vandewalle. On the best rank-1 and rank-(r1,r2,...rn)
approximation of higher-order tensors. SIAM J. Matrix Anal. Appl., 21:1324–1342,
2000.

[63] J. Li, C. Battaglino, L. Perros, J. Sun, et al. An input-adaptive and in-place approach
to dense tensor-times-matrix multiply. In SC’15, pages 76:1–76:12.

[64] L. Li, W. Huang, I. Y.-H. Gu, and Q. Tian. Statistical modeling of complex back-
grounds for foreground object detection. Image Processing, IEEE Transactions on,
13(11):1459–1472, 2004.

[65] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: common objects in
context. In ECCV, 2014.

[66] J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical question-image co-attention for
visual question answering. In NIPS, 2016.

[67] Q. Lu, X. Gao, et al. Empirical performance model-driven data layout optimization and
library call selection for tensor contraction expressions. J. Parallel Distrib. Comput.,
72(3):338–352, Mar 2012.

98

[68] Y. Ma, J. Li, X. Wu, C. Yan, J. Sun, and R. Vuduc. Optimizing sparse tensor times
matrix on gpus. Journal of Parallel and Distributed Computingg, pages 99–109, 2019.

[69] M. W. Mahoney and P. Drineas. Cur matrix decompositions for improved data analysis.
Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.

[70] O. A. Malik and S. Becker. Low-rank tucker decomposition of large tensors using
tensorsketch. Neural Information Processing Systems, 2018.

[71] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representa-
tions of words and phrases and their compositionality. Advances in neural information
processing systems, pages 3111–3119, 2013.

[72] N. Nakatani, B. Verstichel, G. Chan, J. Calvin, et al. Btas v0.0.1. Available online,
https://github.com/BTAS/BTAS.

[73] E. D. Napoli, D. Fabregat-Traver, G. Quintana-Ort́ı, and P. Bientinesi. Towards an
efficient use of the BLAS library for multilinear tensor contractions. AMC, 235:454 –
468, 2014.

[74] T. Nelson, A. Rivera, P. Balaprakash, et al. Generating efficient tensor contractions
for gpus. ICPP’15.

[75] P. Netrapalli, U. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain. Non-convex
robust pca. In Advances in Neural Information Processing Systems, pages 1107–1115,
2014.

[76] H. Noh and B. Han. Training recurrent answering units with joint loss minimization
for vqa. arXiv:1606.03647, 2016.

[77] R. Pagh. Compressed matrix multiplication. ITCS, 2012.

[78] R. Pagh and F. F. Rodler. Cuckoo hashing. Lecture Notes in Computer Science, 2001.

[79] E. Papalexakis and K. Pelechrinis. thoops: A multi-aspect analytical framework for
spatio-temporal basketball data. ACM CIKM, 2018.

[80] E. Peise and P. Bientinesi. Performance modeling for dense linear algebra. In SC/12:
High Performance Computing, Networking Storage and Analysis.

[81] E. Peise, D. Fabregat-Traver, and P. Bientinesi. On the performance prediction of
BLAS-based tensor contractions. In PMBS’15.

[82] N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit feature maps.
KDD, 2013.

[83] S. S. A. A. P. J. Praneeth Netrapalli, U N Niranjan. Non-convex robust pca. Conference
on Neural Information Processing Systems, 2014.

99

https://github.com/BTAS/BTAS

[84] S. Ragnarsson and C. F. Van Loan. Block tensors and symmetric embeddings. Linear
Algebra and Its Applications, 438(2):853–874, 2013.

[85] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. arXiv:1506.01497, 2015.

[86] P. Shah, N. Rao, and G. Tang. Sparse and low-rank tensor decomposition. Advances
in Neural Information Processing Systems, 2015.

[87] Y. Shi, U. Niranjan, A. Anandkumar, and C. Cecka. Tensor contractions with extended
blas kernels on cpu and gpu. HiPC, 2016.

[88] M. Simon, E. Rodner, Y. Gao, T. Darrell, and J. Denzler. Generalized orderless pooling
performs implicit salient matching. 2017.

[89] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv:1409.1556, 2014.

[90] E. Solomonik, D. Matthews, J. R. Hammond, and J. Demmel. Cyclops tensor frame-
work: reducing communication and eliminating load imbalance in massively parallel
contractions. In Parallel & Distributed Processing, pages 813–824, 2013.

[91] P. Springer, T. Su, and P. Bientinesi. Hptt: A high-performance tensor transposi-
tion c++ library. Proceedings of the 4th ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming, 2017.

[92] F. Strub, H. de Vries, J. Mary, B. Piot, A. C. Courville, and O. Pietquin. End-to-end
optimization of goal-driven and visually grounded dialogue systems. In International
Joint Conference on Artificial Intelligence (IJCAI), 2017.

[93] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. arXiv:1409.3215, 2014.

[94] G. K. Tamara and W. B. Brett. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, Mar 2009.

[95] J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear
models. Neural computation, 12(6):1247–1283, 2000.

[96] D. Teney, P. Anderson, X. He, and A. van den Hengel. Tips and tricks for visual
question answering: Learnings from the 2017 challenge. arXiv:1708.02711, 2017.

[97] R. Tomioka, K. Hayashi, and H. Kashima. Estimation of low-rank tensors via convex
optimization. arXiv preprint arXiv:1010.0789, 2010.

[98] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311, 1966.

[99] F. G. Van Zee and R. A. van de Geijn. Blis: A framework for rapidly instantiating
blas functionality. ACM Trans. Math. Softw., 41(3):14:1–14:33, June 2015.

100

[100] M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensamble: Ten-
sorfaces. ECCV’02.

[101] S. Verdoolaege, J. C. Juega, and A. o. Cohen. Polyhedral parallel code generation for
cuda. ACM Trans. Archit. Code Optim., 9(4):54:1–54:23, Jan. 2013.

[102] Y. Wang, H.-Y. Tung, A. Smola, and A. Anandkumar. Fast and guaranteed tensor
decomposition via sketching. Proceedings of Advances in Neural Information Processing
Systems (NIPS), 2015.

[103] K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research, 10:207–244, 2009.

[104] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Lukasz Kaiser,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang,
C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and
J. Dean. Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv:1609.08144, 2016.

[105] H. Xu and K. Saenko. Ask, attend and answer: Exploring question-guided spatial
attention for visual question answering. European Conference on Computer Vision
2016, 2016.

[106] K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio. Show,
attend and tell: Neural image caption generation with visual attention. International
Conference on Machine Learning, 2015.

[107] B. Yang, A. Zamzam, and N. D. Sidiropoulos. Parasketch: Parallel tensor factorization
via sketching. SIAM International Conference on Data Mining, 2018.

[108] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked attention networks for image
question answering. arXiv:1511.02274, 2015.

[109] R. Yu, S. Zheng, A. Anandkumar, and Y. Yue. Long-term forecasting using tensor-
train rnns.

[110] P. Zhang, Y. Goyal, D. Summers-Stay, D. Batra, and D. Parikh. Yin and Yang:
Balancing and answering binary visual questions. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

101

Appendix A

Appendix for Tensor Robusr Principle

Component Analysis

A.1 Bounds for block sparse tensors

One of the main bounds to control is the spectral norm of the sparse perturbation tensor

S. The success of the power iterations and the improvement in accuracy of recovery over

iterative steps of RTD requires this bound.

Lemma A.1 (Spectral norm bounds for block sparse tensors). Let M ∈ Rn×n×n satisfy the

block sparsity assumption (S). Then

‖M‖2 = O(d1.5‖M‖∞). (A.1)

Proof. Let Ψ ∈ Rn×n×n be a tensor that encodes the sparsity of M i.e. Ψi,j,k = 1 iff S∗i,j,k 6= 0

102

for all i, j, k ∈ [n]. We have that

‖M‖ = max
u:‖u‖=1

∑
i,j,k

Mi,j,ku(i)u(j)u(k)

= max
u:‖u‖=1

∑
i,j,k

Mi,j,kΨi,j,ku(i)u(j)u(k)

≤ max
u:‖u‖=1

∑
i,j,k

|Mi,j,kΨi,j,ku(i)u(j)u(k)|

≤ ‖M‖∞ max
u:‖u‖=1

∑
i,j,k

|Ψi,j,ku(i)u(j)u(k)| = ‖M‖∞‖Ψ‖,

where the last inequality is from Perron Frobenius theorem for non-negative tensors [23].

Note that Ψ is non-negative by definition. Now we bound ‖Ψ‖ on lines of [9, Lemma 4].

Recall that ∀i ∈ [B], j ∈ [n],

Ψ =
B∑
i=1

ψi ⊗ ψi ⊗ ψi, ‖ψi‖0 ≤ d, ψi(j) = 0 or 1.

By definition ‖ψi‖2 =
√
d. Define normalized vectors ψ̃i := ψi/‖ψi‖. We have

Ψ = d1.5
B∑
i=1

ψ̃i ⊗ ψ̃i ⊗ ψ̃i

Define matrix ψ̃ := [ψ̃1|ψ̃2, . . . ψ̃B]. Note that ψ̃>ψ̃ ∈ RB×B is a matrix with unit diagonal

entries and absolute values of off-diagonal entries bounded by η, by assumption. From

Gershgorin Disk Theorem, every subset of L columns in ψ̃ has singular values within 1±o(1),

where L < 1
η
. Moreover, from Gershgorin Disk Theorem, ‖ψ̃‖ <

√
1 +Bη.

For any unit vector u, let S be the set of L indices that are largest in ψ̃>u. By the argument

above we know ‖(ψ̃S)>u‖ ≤ ‖ψ̃S‖‖u‖ ≤ 1 + o(1). In particular, the smallest entry in ψ̃>S u is

at most 2/
√
L. By construction of S this implies for all i not in S, |ψ̃>i u| is at most 2/

√
L.

103

Now we can write the `3 norm of ψ̃>u as

‖ψ̃>u‖33 =
∑
i∈S

|ψ̃>i u|3 +
∑
i 6∈S

|ψ̃>i u|3

≤
∑
i∈S

|ψ̃>i u|2 + (2/
√
L)3−2

∑
i 6∈S

|ψ̃>i u|2

≤ 1 + 2
√
η‖ψ̃‖2 ≤ 1 + 2Bη1.5.

Here the first inequality uses that every entry outside S is small, and last inequality uses the

bound argued on ‖(ψ̃S)>u‖, the spectral norm bound is assumed on ASc . Since B = O(η−1.5),

we have the result. �

Another important bound required is ∞-norm of certain contractions of the (normalized)

sparse tensor and its powers, which we denote by M below. We use a loose bound based on

spectral norm and we require ‖M‖ < 1/
√
n. However, this constraint will also be needed for

the power iterations to succeed and is not an additional requirement. Thus, the loose bound

below will suffice for our results to hold.

Lemma A.2 (Infinity norm bounds). Let M ∈ Rn×n×n satisfy the block sparsity assumption

(S). Let u, v satisfy the assumption ‖u‖∞, ‖v‖∞ ≤ µ
n1/2 . Then, we have

1. ‖M(u, v, I)‖∞ ≤ κµ
n1/2‖M‖∞, where κ := Bd2µ√

n
.

2. ‖[M(u, v, I)]p‖∞ ≤ κµ‖M‖∞‖M‖p−1 for p > 1.

3.
∑

p≥1 ‖[M(u, I, I)]pv‖∞ ≤ κµ√
n
‖M‖∞ · ‖M‖1−‖M‖ when ‖M‖ < 1/

√
n.

Proof. We have from norm conversion

‖M(u, v, I)‖∞ ≤ ‖u‖∞ · ‖v‖∞max
j
‖M(I, I, ej)‖1 (A.2)

≤ µ2

n
·Bd2‖M‖∞, (A.3)

104

where `1 norm (i.e. sum of absolute values of entries) of a slice M(I, I, ej) is Bd2, since the

number of non-zero entries in one block in a slice is d2.

Let Z = M(u, I, I) ∈ Rn×n. Now, ‖M(u, I, I)pv‖∞ = ‖Zpv‖∞ = ‖Zp−1a‖∞ where a = Zv.

Now,

‖Zp−1a‖∞ = max
j
|eTj Zp−1a| ≤ ‖Zp−1‖2‖a‖2 ≤ ‖Z‖p−12 ‖a‖2 ≤ ‖M‖p−1

√
n‖a‖∞ ≤ κµ‖M‖∞‖M‖p−1.

Hence,
∑

p≥1 ‖[M(u, I, I)]pv‖∞ ≤ κµ‖M‖∞ · ‖M‖21−‖M‖2 . �

A.2 Proof of Theorem 2.1

Lemma A.3. Let L∗, S∗ be symmetric and satisfy the assumptions of Theorem 2.1 and let

S(t) be the tth iterate of the lth stage of Algorithm 1. Let σ∗1, . . . , σ
∗
r be the eigenvalues of

L∗, such that σ∗1 ≥ · · · ≥ σ∗r ≥ 0 and λ1, · · · , λr be the eigenvalues of T − S(t) such that

λ1 ≥ · · · ≥ λr ≥ 0. Recall that E(t) := S∗ − S(t). Suppose further that

1. ‖E(t)‖∞ ≤ 8µ3k
n3/2

(
σ∗l+1 +

(
1
2

)t−1
σ∗l

)
, and

2. suppE(t) ⊆ suppS∗.

Then, for some constant c ∈ [0, 1), we have

(1− c)

(
σ∗l+1 +

(
1

2

)t
σ∗l

)
≤

(
λl+1 +

(
1

2

)t
λl

)
≤ (1 + c)

(
σ∗l+1 +

(
1

2

)t
σ∗l

)
. (A.4)

Proof. Note that T − S(t) = L∗ + E(t). Now,

∣∣λl+1 − σ∗l+1

∣∣ ≤ 8
∥∥E(t)

∥∥
2
≤ 8d3/2‖E(t)‖∞ ≤

8µ3rγt
n3/2

d3/2,

105

where γt :=
(
σ∗l+1 +

(
1
2

)t−1
σ∗l

)
. That is,

∣∣λl+1 − σ∗l+1

∣∣ ≤ 8µ3r
(
d
n

)3/2
γt. Similarly, |λl − σ∗l | ≤

8µ3r
(
d
n

)3/2
γt. So we have:

∣∣∣∣∣
(
λl+1 +

(
1

2

)t
λl

)
−

(
σ∗l+1 +

(
1

2

)t
σ∗l

)∣∣∣∣∣ ≤ 8µ3r

(
d

n

)3/2

γt

(
1 +

(
1

2

)t)

≤ 16µ3r

(
d

n

)3/2

γt

≤ c

(
σ∗l+1 +

(
1

2

)t
σ∗l

)
,

where the last inequality follows from the bound d ≤
(

n
c′µ3k

)2/3
for some constant c′. �

Lemma A.4. Assume the notation of Lemma A.3. Also, let L(t), S(t) be the tth iterates of

rth stage of Algorithm 1 and L(t+1), S(t+1) be the (t + 1)th iterates of the same stage. Also,

recall that E(t) := S∗ − S(t) and E(t+1) := S∗ − S(t+1).

Suppose further that

1. ‖E(t)‖∞ ≤ 8µ3r
n3/2

(
σ∗l+1 +

(
1
2

)t−1
σ∗l

)
, and

2. suppE(t) ⊆ suppS∗.

3. ‖E(t)‖2 <
Cσ∗l√
n
, where C < 1/2 is a sufficiently small constant.

Then, we have:

‖L(t+1) − L∗‖∞ ≤ 2
µ3r

n3/2

(
σ∗l+1 +

(
1

2

)t
σ∗l

)

Proof. Let L(t+1) =
∑l

i=1 λiu
(t+1)
i be the eigen decomposition obtained using the tensor power

method on (T−S(t)) at the (t+1)th step of the lth stage. Also, recall that T−S(t) = L∗+E(t)

where L∗ =
∑r

j=1 σ
∗
ju
⊗3
j . Define E(t) := S∗ − S(t). Define Ei := E(t)(u

(t+1)
i , I, I). Let

‖E(t)‖2 := ε.

106

Consider the eigenvalue equation (T − S(t))(u
(t+1)
i , u

(t+1)
i , I) = λiu

(t+1)
i :

L∗(u
(t+1)
i , u

(t+1)
i , I) + E(t)(u

(t+1)
i , u

(t+1)
i , I) = λiu

(t+1)
i

r∑
j=1

σ∗i

〈
u
(t+1)
i , uj

〉2
uj + E(t)(u

(t+1)
i , u

(t+1)
i , I) = λiu

(t+1)
i

[λiI − E(t)(u
(t+1)
i , I, I)]u

(t+1)
i =

r∑
j=1

σ∗i

〈
u
(t+1)
i , uj

〉2
uj

u
(t+1)
i =

[
I +

∑
p≥1

(
Ei

λi

)p] r∑
j=1

σ∗i
λi

〈
u
(t+1)
i , uj

〉2
uj

Now,

‖L(t+1) − L∗‖∞ ≤

∥∥∥∥∥∥
∑
i∈[l]

λi(u
(t+1)
i)⊗3 −

∑
i∈[l]

σ∗i ui
⊗3

∥∥∥∥∥∥
∞

+

∥∥∥∥∥
r∑

i=l+1

σ∗i ui
⊗3

∥∥∥∥∥
∞

≤
∑
i∈[l]

∥∥∥λi(u(t+1)
i)⊗3 − σ∗i ui⊗3

∥∥∥
∞

+
r∑

i=l+1

∥∥σ∗i ui⊗3∥∥∞
For a fixed i, using λi ≤ σ∗i + ε [8] and using Lemma A.8, we obtain

∥∥∥λi(u(t+1)
i)⊗3 − σ∗i ui⊗3

∥∥∥
∞
≤
∥∥∥(σ∗i + ε)(u

(t+1)
i)⊗3 − σ∗i ui⊗3

∥∥∥
∞

≤
∥∥∥σ∗i (u(t+1)

i)⊗3 − σ∗i ui⊗3
∥∥∥
∞

+ ε
∥∥∥(u

(t+1)
i)⊗3

∥∥∥
∞

≤ σ∗i

∥∥∥(u
(t+1)
i)⊗3 − ui⊗3

∥∥∥
∞

+ ε
∥∥∥(u

(t+1)
i)⊗3

∥∥∥
∞

≤ σ∗i [3‖u
(t+1)
i − ui‖∞‖ui‖2∞ + 3‖u(t+1)

i − ui‖2∞‖ui‖∞

+ ‖u(t+1)
i − ui‖3∞] + ε‖(u(t+1)

i)⊗3‖∞

≤ 7σ∗i ‖u
(t+1)
i − ui‖∞‖ui‖2∞ + ε‖(u(t+1)

i)‖3∞

107

Now,

∥∥∥u(t+1)
i − ui

∥∥∥
∞

=

∥∥∥∥∥(
r∑
j=1

σ∗i
λi

〈
u
(t+1)
i , uj

〉2
uj − ui) +

r∑
j=1,p≥1

σ∗i
λi

〈
u
(t+1)
i , uj

〉2
(Ei)puj

∥∥∥∥∥
∞

≤
∥∥∥∥(1− σ∗i

λi

〈
u
(t+1)
i , ui

〉2
)ui

∥∥∥∥
∞

+

∥∥∥∥∥∑
j 6=i

σ∗i
λi

〈
u
(t+1)
i , uj

〉2
uj

∥∥∥∥∥
∞

+

∥∥∥∥∥∑
p≥1

σ∗i
λi

〈
u
(t+1)
i , ui

〉2(Ei

λi

)p
ui

∥∥∥∥∥
∞

+

∥∥∥∥∥∑
p,j 6=i

σ∗i
λi

〈
u
(t+1)
i , uj

〉2(Ei

λi

)p
uj

∥∥∥∥∥
∞

For the first term, we have

∥∥∥∥(1− σ∗i
λi

〈
u
(t+1)
i , ui

〉2
)ui

∥∥∥∥
∞
≤

(
1− σ∗i

σ∗i + ε

(
1−

(
ε

σ∗i

)2
))
‖ui‖∞

≤
(

1−
(

1− ε

σ∗i

))
µ

n1/2

≤ µ

σ∗i n
1/2
ε ≤ Cµσ∗l

σ∗i n

where we substitute for ε in the last step.

For the second term, we have

∥∥∥∥∥∑
j 6=i

σ∗i
λi

〈
u
(t+1)
i , uj

〉2
uj

∥∥∥∥∥
∞

≤ σ∗i
σ∗i − ε

(
ε

σ∗i

)2

‖ui‖∞ ≤ 2

(
ε

σ∗i

)2
µ

n1/2
,

which is a lower order term.

Next,

∥∥∥∥∥∑
p≥1

σ∗i
λi

〈
u
(t+1)
i , ui

〉2(Ei

λi

)p
ui

∥∥∥∥∥
∞

≤

∥∥∥∥∥∑
p≥1

σ∗i
λi

(
Ei

λi

)p
ui

∥∥∥∥∥
∞

≤
∑
p≥1

σ∗i
λi

∥∥∥∥(Ei

λi

)p
ui

∥∥∥∥
∞

≤ σ∗i
λi
· µ√

n
· ‖E

(t)‖2
√
n/λi

1− ‖E(t)‖2
√
n/λi

≤ 2

(1− C)

κtµ

λi
√
n
‖E(t)‖∞

108

from Lemma A.2, and the assumption on spectral norm of ‖E(t)‖2, where

κt :=
Bd2µ√
n
.

For the remaining terms, we have

∥∥∥∥∥∑
p,j 6=i

σ∗i
λi

〈
u
(t+1)
i , uj

〉2(Ei

λi

)p
uj

∥∥∥∥∥
∞

≤
∑
j 6=i

σ∗i
λi

〈
u
(t+1)
i , uj

〉2 ∥∥∥∥∥∑
p≥1

(
Ei

λi

)p
u1

∥∥∥∥∥
∞

≤ σ∗i
λi

∥∥∥∥∥∑
p≥1

(
Ei

λi

)p
u1

∥∥∥∥∥
∞

(
ε

σ∗i

)2

,

which is a lower order term.

Combining the above and recalling ε� σ∗i , ∀i ∈ [l]

∥∥∥u(t+1)
i − ui

∥∥∥
∞
≤ 8

(1− C)

κtµ

λi
√
n
‖E(t)‖∞.

Also, from Lemma 1

|λi − σ∗i | ≤ 8‖E(t)‖2 ≤ 8ε

Thus, from the above two equations, we obtain the bound for the parameters (eigenvectors

and eigenvalues) of the low-rank tensor
∥∥∥u(t+1)

i − ui
∥∥∥
∞

and ‖λi − σ∗i ‖∞. We combine the

individual parameter recovery bounds as:

∥∥∥∥∥∥
∑
i∈[l]

λi(u
(t+1)
i)⊗3 −

∑
i∈[l]

σ∗i ui
⊗3

∥∥∥∥∥∥
∞

≤ r[7σ∗i ‖u
(t+1)
i − ui‖∞‖ui‖2∞ + ε‖(u(t+1)

i)‖3∞]

≤ 224

1− C
κtµ

3r

n1.5
‖E(t)‖∞ (A.5)

109

and the other term

r∑
i=l+1

‖σ∗i u⊗3i ‖∞ ≤ σ∗l+1

rµ3

n1.5
.

Combining bound in (A.5) with the above, we have

‖L(t+1) − L∗‖∞ ≤
rµ3

n1.5

(
224

1− C
κt‖E(t)‖∞ + σ∗l+1

)
<

1

4
‖E(t)‖∞.

where the last inequality comes from the fact that rµ3

n1.5σ
∗
l+1 ≤

‖E(t)‖∞
8

and the assumption

that C < 1/2, and we can choose B and d s.t.

448rµ3

n1.5
κt <

1

8
.

This is possible from assumption (S). �

The following lemma bounds the support of E(t+1) and ‖E(t+1)‖∞, using an assumption on

‖L(t+1) − L∗‖∞.

Lemma A.5. Assume the notation of Lemma A.4. Suppose

‖L(t+1) − L∗‖∞ ≤ 2
µ3r

n3/2

(
σ∗l+1 +

(
1

2

)t−1
σ∗l

)
.

Then, we have:

1. suppE(t+1) ⊆ suppS∗.

2. ‖E(t+1)‖∞ ≤ 7 µ3r
n3/2

(
σ∗l+1 +

(
1
2

)t
σ∗l

)
, and

Proof. We first prove the first conclusion. Recall that,

S(t+1) = Hζ(T − L(t+1)) = Hζ(L
∗ − L(t+1) + S∗),

110

where ζ = 4 µ3r
n3/2

(
λl+1 +

(
1
2

)t
λl

)
is as defined in Algorithm 1 and λ1, · · · , λn are the eigen-

values of T − S(t) such that λ1 ≥ · · · ≥ λn.

If S∗abc = 0 then E
(t+1)
ijk = 1∣∣∣L∗abc−L(t+1)

abc

∣∣∣>ζ · (L∗abc − L
(t+1)
abc). The first part of the lemma

now follows by using the assumption that ‖L(t+1) − L∗‖∞ ≤ 2 µ3r
n3/2

(
σ∗l+1 +

(
1
2

)t
σ∗l

) (ζ1)

≤

4 µ3r
n3/2

(
λl+1 +

(
1
2

)t
λl

)
= ζ, where (ζ1) follows from Lemma A.3.

We now prove the second conclusion. We consider the following two cases:

1.
∣∣∣Tabc − L(t+1)

abc

∣∣∣ > ζ: Here, S
(t+1)
abc = S∗abc + L∗abc − L

(t+1)
abc . Hence, |S(t+1)

abc − S∗abc| ≤

|L∗abc − L
(t+1)
abc | ≤ 2 µ3r

n3/2

(
σ∗l+1 +

(
1
2

)t
σ∗l

)
.

2.
∣∣∣Tabc − L(t+1)

abc

∣∣∣ ≤ ζ: In this case, S
(t+1)
abc = 0 and

∣∣∣S∗abc + L∗abc − L
(t+1)
abc

∣∣∣ ≤ ζ. So we have,∣∣∣E(t+1)
abc

∣∣∣ = |S∗abc| ≤ ζ +
∣∣∣L∗abc − L(t+1)

abc

∣∣∣ ≤ 7 µ3r
n3/2

(
σ∗l+1 +

(
1
2

)t
σ∗l

)
. The last inequality

above follows from Lemma A.3.

This proves the lemma. �

Theorem A.6. Let L∗, S∗ be symmetric and satisfy (L) and (S), and β = 4 µ3r
n3/2 . The outputs

L̂ (and its parameters ûi and λ̂i) and Ŝ of Algorithm 1 satisfy w.h.p.:

‖ûi − ui‖∞ ≤
δ

µ2rn1/2σ∗min

, |λ̂i − σ∗i | ≤ δ, ∀i ∈ [n],∥∥∥L̂− L∗∥∥∥
F
≤ δ, ‖Ŝ − S∗‖∞ ≤

δ

n3/2
, and supp Ŝ ⊆ suppS∗.

Proof. Recall that in the lth stage, the update L(t+1) is given by: L(t+1) = Pl(T − S(t))

and S(t+1) is given by: S(t+1) = Hζ(T − L(t+1)). Also, recall that E(t) := S∗ − S(t) and

E(t+1) := S∗ − S(t+1).

111

We prove the lemma by induction on both l and t. For the base case (l = 1 and t = −1),

we first note that the first inequality on ‖L(0) − L∗‖∞ is trivially satisfied. Due to the

thresholding step (step 3 in Algorithm 1) and the incoherence assumption on L∗, we have:

‖E(0)‖∞ ≤
8µ3r

n3/2
(σ∗2 + 2σ∗1) , and suppE(0) ⊆ suppS∗.

So the base case of induction is satisfied.

We first do the inductive step over t (for a fixed r). By inductive hypothesis we assume

that: a) ‖E(t)‖∞ ≤ 8µ3r
n3/2

(
σ∗l+1 +

(
1
2

)t−1
σ∗l

)
, b) suppE(t) ⊆ suppS∗. Then by Lemma A.4,

we have:

‖L(t+1) − L∗‖∞ ≤
2µ3r

n3/2

(
σ∗l+1 +

(
1

2

)t
σ∗l

)
.

Lemma A.5 now tells us that

1. ‖E(t+1)‖∞ ≤ 8µ3r
n3/2

(
σ∗l+1 +

(
1
2

)t
σ∗l

)
, and

2. suppE(t+1) ⊆ suppS∗.

This finishes the induction over t. Note that we show a stronger bound than necessary on

‖E(t+1)‖∞.

We now do the induction over l. Suppose the hypothesis holds for stage l. Let T denote the

number of iterations in each stage. We first obtain a lower bound on T . Since

∥∥T − S(0)
∥∥
2
≥ ‖L∗‖2 −

∥∥E(0)
∥∥
2
≥ σ∗1 − d3/2‖E(0)‖∞ ≥

3

4
σ∗1,

we see that T ≥ 10 log (3µ3rσ∗1/δ). So, at the end of stage r, we have:

1. ‖E(T)‖∞ ≤ 7µ3r
n3/2

(
σ∗l+1 +

(
1
2

)T
σ∗l

)
≤ 7µ3rσ∗l+1

n3/2 + δ
10n

, and

112

2. suppE(T) ⊆ suppS∗.

Recall,
∣∣σr+1

(
T − S(T)

)
− σ∗r+1

∣∣ ≤ ∥∥E(T)
∥∥
2
≤ d

n

(
µ3r

∣∣σ∗r+1

∣∣+ δ
)
. We will now consider two

cases:

1. Algorithm 1 terminates: This means that βσr+1

(
T − S(T)

)
< δ

2n3/2 which then

implies that σ∗r+1 <
δ

6µ3r
. So we have:

‖L̂− L∗‖∞ = ‖L(T) − L∗‖∞ ≤
2µ3r

n3/2

(
σ∗r+1 +

(
1

2

)T
σ∗r

)
≤ δ

5n3/2
.

This proves the statement about L̂ and its parameters (eigenvalues and eigenvectors).

A similar argument proves the claim on ‖Ŝ−S∗‖∞. The claim on supp Ŝ follows since

suppE(T) ⊆ suppS∗.

2. Algorithm 1 continues to stage (r + 1): This means that βσr+1

(
L(T)

)
≥ δ

2n3/2

which then implies that σ∗r+1 >
δ

8µ3r
. So we have:

‖E(T)‖∞ ≤
8µ3r

n3/2

(
σ∗r+1 +

(
1

2

)T
σ∗r

)

≤ 8µ3r

n3/2

(
σ∗l+1 +

δ

10µ3rn3/2

)
≤ 8µ3r

n3/2

(
σ∗l+1 +

8σ∗l+1

10n

)
≤ 8µ3r

n3/2

(
σ∗l+2 + 2σ∗l+1

)
.

Similarly for ‖L(T) − L∗‖∞.

This finishes the proof. �

113

A.2.1 Short proof of Corollary 1

The state of art guarantees for robust matrix PCA requires that the overall sparsity along

any row or column of the input matrix be D = O(n
rµ2

) (when the input matrix is Rn×n).

Under (S), the total sparsity along any row or column of Mi is given by D := dB. Now,

Theorem 2.1 holds when the sparsity condition in (2.2) is satisfied. That is, RTD succeeds

when

D = O(d ·B) = O

(
min

(
n4/3

r1/3µ2
,
n2/3

r2/3µ2
(
n

r
)1/3
))

= O

(
n

rµ2

)
.

Hence, RTD can handle larger amount of corruption than the matrix methods and the gain

becomes more significant for smaller η.

A.2.2 Some auxiliary lemmas

We recall Theorem 5.1 from [8]. Let ε = 8‖E(t)‖2 where E(t) := S∗ − S(t).

Lemma A.7. Let L(t+1) =
∑k

i=1 λiu
(t+1)
i be the eigen decomposition obtained using Algo-

rithm 2 on (T − S(t)). Then,

1. If ‖u(t+1)
i − ui‖2 ≤ ε

σ∗min
, then dist(u

(t+1)
i , ui) ≤ ε

σ∗min
.

2.
∑

j 6=i

〈
u
(t+1)
i , uj

〉2
≤
(

ε
σ∗min

)2
.

3. ‖u(t+1)
i ‖∞ ≤ µ

n1/2 + ε
σ∗min

.

4. |σ∗i | − ε ≤ |λi| ≤ |σ∗i |+ ε.

114

Proof. 1. Let z ⊥ u and ‖z‖2 = 1.

u
(t+1)
i =

〈
u
(t+1)
i , ui

〉
ui + dist(u

(t+1)
i , ui)z

‖u(t+1)
i − ui‖22 = (

〈
u
(t+1)
i , ui

〉
− 1)2‖ui‖22 + dist(u

(t+1)
i , ui)‖z‖22 + 0

≥ (dist(u
(t+1)
i , ui))

2

Then using Theorem 5.1 from [8], we obtain the result. Next, since 〈u(t+1)
i , ui〉2 +

dist(u
(t+1)
i , ui)

2 = 1, we have 〈u(t+1)
i , ui〉2 ≥ 1−

(
ε

σ∗min

)2
.

2. Note that

u
(t+1)
i =

k∑
j=1

〈
u
(t+1)
i , uj

〉
uj + dist(u

(t+1)
i , U)z

where z ⊥ U such that ‖z‖2 = 1. Using ‖u(t+1)
i ‖2 = 1 and the Pythagoras theorem, we

get

1−
〈
u
(t+1)
i , ui

〉2
=
∑
j 6=i

〈
u
(t+1)
i , uj

〉2
+ dist(u

(t+1)
i , U)2.1 ≥

∑
j 6=i

〈
u
(t+1)
i , uj

〉2

Using part 1 of Lemma A.7, we get
∑

j 6=i

〈
u
(t+1)
i , uj

〉2
≤
(

ε
σ∗min

)2
.

3. We have

u
(t+1)
i =

〈
u
(t+1)
i , ui

〉
ui + dist(u

(t+1)
i , ui)z

‖u(t+1)
i ‖∞ ≤ |

〈
u
(t+1)
i , ui

〉
|‖ui‖∞ + | dist(u

(t+1)
i , ui)|‖z‖∞ ≤ 1.

µ

n1/2
+

ε

σ∗min

4. This follows from Theorem 5.1 from [8], i.e., ∀i, ||λi| − |σ∗i || ≤ ε.

�

Lemma A.8. Let a = b+ε.
−→
1 where a, b are any 2 vectors and ε > 0. Then, ‖a⊗3−b⊗3‖∞ ≤

‖a− b‖∞.‖b‖2∞ +O(ε2).

115

Proof. We have

‖a⊗3 − b⊗3‖∞ = ‖(b+ ε
−→
1)⊗3 − b⊗3‖∞

Let (i, j, k) be the maximum element. Therefore,

‖(b+ ε
−→
1)⊗3 − b⊗3‖∞ = (bi + ε)(bj + ε)(bk + ε)− bibjbk

= ε(bibj + bjbk + bkbi) + ε2(bi + bj + bk) + ε3

With bi ≤ c ∀i for some c > 0 and ε = ‖a− b‖∞, we have ‖a⊗3 − b⊗3‖∞ ≤ 3εc2 +O(ε2) �

A.3 Symmetric embedding of an asymmetric tensor

We use the symmetric embedding sym(L) of a tensor L as defined in Section 2.3 of [84].

We focus on third order tensors which have low CP-rank. We have three properties to derive

that is relevant to us:

1. Symmetry: From Lemma 2.2 of [84] we see that sym(L) for any tensor is symmetric.

2. CP-Rank: From Equation 6.5 of [84] we see that CP-rank(sym(L)) ≤ 6.CP-rank(L).

Since this is a constant, we see that the symmetric embedding is also a low-rank tensor.

3. Incoherece: Theorem 4.7 of [84] says that if u1, u2 and u3 are unit modal singular

vectors of T , then the vector ũ = 3−1/2[u1;u2;u3] is a unit eigenvector of sym(T).

Without loss of generality, assume that T is of size n1 × n2 × n3 with n1 ≤ n2 ≤ n3.

In this case, we have

‖ũ‖∞ ≤
µ

(3n1)1/2
(A.6)

116

and

‖ũ‖∞ ≤
µ̃

(n1 + n2 + n3)1/2
(A.7)

for µ̃ = cµ for some constant c to be calculated. Equating the right hand sides of

Equations (A.6) and (A.7), we obtain c = [(n1 + n2 + n3)/(3n1)]
1/2. When Θ(n1) =

Θ(n2) = Θ(n3), we see that the eigenvectors ũ of sym(T) as specified above have the

incoherence-preserving property.

A.4 Proof of Theorem 2.2

Let L̃ be a symmetric tensor which is a perturbed version of an orthogonal tensor L∗,

L̃ = L∗ + E ∈ Rn×n×n, L∗ =
∑

i∈[r] σ
∗
i u
⊗3
i , where σ∗1 ≥ σ∗2 . . . σ

∗
r > 0 and {u1, u2, . . . , ur}

form an orthonormal basis.

The analysis proceeds iteratively. First, we prove convergence to eigenpair of L̃, which is

close to top eigenpair (σ∗1, u1) of L∗. We then argue that the same holds on the deflated

tensor, when the perturbation E satisfies (2.8). from This finishes the proof of Theorem 2.2.

To prove convergence for the first stage, i.e. convergence to eigenpair of L̃, which is close

to top eigenpair (σ∗1, u1) of L∗, we analyze two phases of the shifted power iteration. In the

first phase, we prove that with N1 initializations and N2 power iterations, we get close to

true top eigenpair of L∗, i.e. (σ∗1, u1). After this, in the second phase, we prove convergence

to an eigenpair of L̃.

The proof of the second phase is outlined in the main text. Here, we now provide proof for

the first phase.

117

A.4.1 Analysis of first phase of shifted power iteration

In this section, we prove that the output of shifted power method is close to original eigenpairs

of the (unperturbed) orthogonal tensor, i.e. Theorem 2.2 holds, except for the property that

the output corresponds to the eigenpairs of the perturbed tensor. We adapt the proof of

tensor power iteration from [8] but here, since we consider the shifted power method, we

need to modify it. We adopt the notation of [8] in this section.

Recall the update rule used in the shifted power method. Let θt =
∑k

i=1 θi,tvi ∈ Rk be the

unit vector at time t. Then

θt+1 =
k∑
i=1

θi,t+1vi := (T̃ (I, θt, θt) + αθt)/‖(T̃ (I, θt, θt) + αθt)‖.

In this subsection, we assume that T̃ has the form

T̃ =
k∑
i=1

λ̃iv
⊗3
i + Ẽ (A.8)

where {v1, v2, . . . , vk} is an orthonormal basis, and, without loss of generality,

λ̃1|θ1,t| = max
i∈[k]

λ̃i|θi,t| > 0.

Also, define

λ̃min := min{λ̃i : i ∈ [k], λ̃i > 0}, λ̃max := max{λ̃i : i ∈ [k]}.

118

We assume the error Ẽ is a symmetric tensor such that, for some constant p > 1,

‖Ẽ(I, u, u)‖ ≤ ε̃, ∀u ∈ Sk−1; (A.9)

‖Ẽ(I, u, u)‖ ≤ ε̃/p, ∀u ∈ Sk−1 s.t. (u>v1)
2 ≥ 1− (3ε̃/λ̃1)

2. (A.10)

In the next two propositions (Propositions A.4.1 and A.4.2) and Lemmas A.4.1, we analyze

the power method iterations using T̃ at some arbitrary iterate θt using only the property (A.9)

of Ẽ. But throughout, the quantity ε̃ can be replaced by ε̃/p if θt satisfies (θ>t v1)
2 ≥ 1 −

(3ε̃/λ̃1)
2 as per property (A.10).

Define

Rτ :=

(
θ21,τ

1− θ21,τ

)1/2

, ri,τ :=
λ̃1θ1,τ

λ̃i|θi,τ |
,

γτ := 1− 1

mini 6=1 |ri,τ |
, δτ :=

ε̃

λ̃1θ21,τ
, κ :=

λ̃max

λ̃1

(A.11)

for τ ∈ {t, t+ 1}.

Proposition A.4.1.

min
i 6=1
|ri,t| ≥

Rt

κ
, γt ≥ 1− κ

Rt

, θ21,t =
R2
t

1 +R2
t

.

Proposition A.4.2.

ri,t+1 ≥ r2i,t ·
1− δt + α

λ̃1θ1,t

1 + κδtr2i,t + α

λ̃iθi,t

, i ∈ [k], (A.12)

Rt+1 ≥= Rt ·
1− δt + α

λ̃1|θ1,t|

1− γt +

(
δt + α(1−θ1,t)1/2

λ̃1θ21,t

)
Rt

≥
1− δt + α

λ̃1|θ1,t|

κ
R2

t
+ δt + α(1−θ1,t)1/2

λ̃1θ21,t

. (A.13)

Proof. Let θ̌t+1 := T̃ (I, θt, θt) + αθt, so θt+1 = θ̌t+1/‖θ̌t+1‖. Since θ̌i,t+1 = T̃ (vi, θt, θt) =

119

T (vi, θt, θt) + αθt + E(vi, θt, θt), we have

θ̌i,t+1 = λ̃iθ
2
i,t + E(vi, θt, θt) + αθ>t vi, i ∈ [k].

By definition, we have θi,t = θ>t vi. Using the triangle inequality and the fact ‖E(vi, θt, θt)‖ ≤

ε̃, we have

θ̌i,t+1 ≥ λ̃iθ
2
i,t − ε̃+ αθi,t ≥ |θi,t| ·

(
λ̃i|θi,t| − ε̃/|θi,t|+ α

)
(A.14)

and

|θ̌i,t+1| ≤ |λ̃iθ2i,t|+ ε̃+ αθi,t ≤ |θi,t| ·
(
λ̃i|θi,t|+ ε̃/|θi,t|+ α

)
(A.15)

for all i ∈ [k]. Combining (A.14) and (A.15) gives

ri,t+1 =
λ̃1θ1,t+1

λ̃i|θi,t+1|
=

λ̃1θ̌1,t+1

λ̃i|θ̌i,t+1|

≥ r2i,t ·
1− δt + α

λ̃1θ1,t

1 + ε̃

λ̃iθ2i,t
+ α

λ̃iθi,t

= r2i,t ·
1− δt + α

λ̃1θ1,t

1 + (λ̃i/λ̃1)δtr2i,t + α

λ̃iθi,t

≥ r2i,t ·
1− δt + α

λ̃1θ1,t

1 + κδtr2i,t + α

λ̃iθi,t

.

Moreover, by the triangle inequality and Hölder’s inequality,

(n∑
i=2

[θ̌i,t+1]
2

)1/2

=

(n∑
i=2

(
λ̃iθ

2
i,t + E(vi, θt, θt) + αθi,t

)2)1/2

≤
(n∑
i=2

λ̃2i θ
4
i,t

)1/2

+

(n∑
i=2

E(vi, θt, θt)
2

)1/2

+

(k∑
i=2

α2θ2i,t

)1/2

≤ max
i 6=1

λ̃i|θi,t|
(n∑
i=2

θ2i,t

)1/2

+ ε̃+

(
α2

k∑
i=2

θ2i,t

)1/2

= (1− θ21,t)1/2 ·
(

max
i 6=1

λ̃i|θi,t|+ ε̃/(1− θ21,t)1/2 + α
)
. (A.16)

120

Combining (A.14) and (A.16) gives

|θ1,t+1|
(1− θ21,t+1)

1/2
=

|θ̌1,t+1|(∑n
i=2[θ̌i,t+1]2

)1/2 ≥ |θ1,t|
(1− θ21,t)1/2

· λ̃1|θ1,t| − ε̃/|θ1,t|+ α

maxi 6=1 λ̃i|θi,t|+ ε̃/(1− θ21,t)1/2 + α
.

In terms of Rt+1, Rt, γt, and δt, this reads

Rt+1 ≥
1− δt + α

λ̃1|θ1,t|

(1− γt)
(

1−θ21,t
θ21,t

)1/2
+ δt + α(1−θ1,t)1/2

λ̃1θ21,t

= Rt ·
1− δt + α

λ̃1|θ1,t|

1− γt +

(
δt +

α(1−θ21,t)1/2

λ̃1θ21,t

)
Rt

=
1− δt + α

λ̃1|θ1,t|

1−γt
Rt

+

(
δt +

α(1−θ21,t)1/2

λ̃1θ21,t

) ≥ 1− δt + α

λ̃1|θ1,t|

κ
R2

t
+ δt +

α(1−θ21,t)1/2

λ̃1θ21,t

where the last inequality follows from Proposition A.4.1. �

Lemma A.4.1. Fix any ρ > 1. Assume

0 ≤ δt < min
{ 1

2(1 + 2κρ2)
,

1− 1/ρ

1 + κρ

}

and γt > 2(1 + 2κρ2)δt.

1. If r2i,t ≤ 2ρ2, then ri,t+1 ≥ |ri,t|
(
1 + γt

2

)
.

Proof. By (A.12) from Proposition A.4.2,

ri,t+1 ≥ r2i,t ·
1− δt + α

λ̃1θ1,t

1 + κδtr2i,t + α

λ̃iθi,t

≥ |ri,t| ·
1

1− γt
·

1− δt + α

λ̃1θ1,t

1 + 2κρ2δt + α

λ̃iθi,t

≥ |ri,t|
(

1 +
γt
2

)

where the last inequality is seen as follows: Let

ξ = 2.
1− δt + α

λ̃1θ1,t

1 + 2κρ2δt + α

λ̃iθi,t

Then, we have γ2t + γt − 2 + ξ ≥ 0. The positive root is −1+(9−4ξ)1/2
2

. Since γt ≥ 0, we have

121

(9−4ξ)1/2 ≥ 1, so we assume ξ ≤ 2 for the inequality to hold, i.e., α

λ̃1θ1,t
− α

λ̃iθi,t
≤ (1+2κρ2)δt.

�

The rest of the proof is along the similar lines of [8], except that we use SVD initialization

instead of random initialization. The proof of SVD initialization is given in [9].

122

Appendix B

Appendix for Higher-order Count

Sketch

B.1 List of some algorithms mentioned in the chapter

B.1.1 Count sketch

Algorithm 5 Count Sketch

1: procedure CS(x, c) . x ∈ Rn

2: s ∈Maps([n]⇒ {−1,+1})
3: h ∈Maps([n]⇒ {0, · · · c})
4: for i:1 to n do
5: y[h[i]]+ = s[i]x[i]

6: return y

7: procedure CS-Decompress(y)
8: for i:1 to n do
9: x̂[i] = s[i]y[h[i]]

10: return x̂

123

B.1.2 Higher-order count sketch

Algorithm 6 Higher-order Count Sketch

1: procedure HCS(T,Mlist) . T ∈ Rn1×···×nN

2: . Mlist contains sketching parameters: m1 . . .mN

3: Generate hash functions s1, · · · sN , h1, · · ·hN given Mlist

4: Compute hash matrices S, H1, · · ·HN

5: return (S ◦ T)(H1, · · · , HN)

6: procedure HCS-decompress(HCS(T))
7: return S ◦ HCS(T)(HT

1 , · · · , HT
N)

B.1.3 Approximate Kronecker product

Algorithm 7 Compress/Decompress Kronecker Product

1: procedure Compress-KP(A,B,m1,m2) . A ∈ Rn1×n2 , B ∈ Rn3×n4

2: for X in [A,B] do

3: XHCS = HCS(X, [m1,m2])

4: FFT2(AHCS),FFT2(BHCS)

5: P=IFFT2(AHCS ◦ BHCS)

6: return (P)

7:

8: procedure Decompress-KP(P)

9: C = zeros(n1n3, n2n4)

10: for w,q,o,g:=1 to n1, n2, n3, n4 do

11: k = (hA1[w] + hB1[o]) mod m1

12: l = (hA2[q] + hB2[g]) mod m2

13: tmp = sA1[w]sA2[q]sB1[o]sB2[g]P [k, l]

14: i = n3(w − 1) + o

15: j = n4(q − 1) + g

16: Cij = tmp

17: return (C)

124

B.1.4 Approximate Matrix product

Algorithm 8 Compress/Decompress Matrix Product

1: procedure Compress-MP(A,B,m1,m2,m3) . A ∈ Rn1×k, B ∈ Rk×n2

2: AHCS = HCS(A, [m1,m2]) . Choose hash matrix along k mode be identity matrix

3: BHCS = HCS(B, [m2,m3])

4: P=AHCS BHCS

5: return (P)

6:

7: procedure Decompress-MP(P)

8: C = zeros(n1, n2)

9: for i,j:=1 to n1, n2 do

10: k = hA1[i]

11: l = hB2[j]

12: Cij = sA1[i]sB2[j]P [k, l]

13: return (C)

B.2 Proofs of some technical theorems/lemmas

B.2.1 Analysis of CS and HCS approximation error

Theorem B.1 ([24]). Given a vector u ∈ Rn, CS hashing functions s and h with sketching

dimension c, for any i∗, the recovery function ûi∗ = s(i∗)CS(u)(h(i∗)) computes an unbiased

estimator for ui∗ with variance bounded by ||u||22/c.

Proof of Theorem B.1. For i ∈ {1, 2, · · ·n}, let Ki be the indicator variable for the event

125

h(i) = h(i∗). We can write ûi∗ as

ûi∗ = s(i∗)
∑
i

Kis(i)ui (B.1)

Observe that Ki = 1, if i = i∗, E(s(i∗)s(i)) = 0, for all i 6= i∗, and E(s(i∗)2) = 1, we have

E(ûi∗) = E(s(i∗)Ki∗s(i
∗)ui∗) + E(s(i∗)

∑
i 6=i∗

Kis(i)ui

= ui

(B.2)

To bound the variance, we rewrite the recovery function as

ûi∗ = s(i∗)Ki∗s(i
∗)ui∗ + s(i∗)

∑
i 6=i∗

Kis(i)ui (B.3)

To simplify notation, we assign X as the first term, Y as the second term. Var(X) = 0, and

COV (X, Y) = 0 since s(i) for i ∈ {1, 2, · · ·n} are 2-wise independent. Thus,

Var(X + Y) =
∑
i 6=i∗

Var(Kis(i
∗)s(i)ui) (B.4)

E(Kis(i
∗)s(i)ui) = 0 for i 6= i∗. Consequently,

Var(Kis(i
∗)s(i)ui) = E((Kis(i

∗)s(i)ui)
2) = E(K2

i)u2i = u2i /c (B.5)

The last equality uses that E(K2
i) = E(Ki) = 1/c, for all i 6= i∗. Summing over all terms,

we have Var(ûi∗) ≤ ||u||22/c. �

Proof of Theorem 3.1. For simplicity, we assume u ∈ Rd is reshaped into a second-order

tensor A ∈ Rn1×n2 in the following proof. But the analysis can be extended to reshaping u

into any order tensor.

For i ∈ {1, 2, · · ·n1}, j ∈ {1, 2, · · ·n2}, let Kij be the indicator variable for the event h1(i) =

126

h1(i
∗) and h2(j) = h2(j

∗). We can write Âi∗j∗ as

Âi∗j∗ = s1(i
∗)s2(j

∗)
∑
ij

Kijs1(i)s2(j)Aij (B.6)

Notice that A = reshape(u), we know the index mapping: Ai∗j∗ = ut∗ , where t∗ = n2i
∗+ j∗.

Observe that Kij = 1, if i = i∗, j = j∗. E(s1(i
∗)s1(i)) = 0, E(s2(j

∗)s2(j)) = 0, for all i 6= i∗,

j 6= j∗, and E(s1(i
∗)2) = 1, E(s2(j

∗)2) = 1, we have

E(Âi∗j∗) = E(s21(i
∗)s22(j

∗)Ki∗j∗Ai∗j∗ + E(s1(i
∗)s2(j

∗)
∑

i 6=i∗orj 6=j∗
Kijs1(i)s2(j)Aij)

= Ai∗j∗

(B.7)

To bound the variance, we rewrite the recovery function as

Âi∗j∗ = s21(i
∗)s22(j

∗)Ki∗j∗Ai∗j∗ + s1(i
∗)s2(j

∗)
∑

i 6=i∗orj 6=j∗
Kijs1(i)s2(j)Aij (B.8)

To simplify notation, we assign X as the first term, Y as the second term. Var(X) = 0, and

COV (X, Y) = 0 since s1(i) and s2(j) for i ∈ {1, 2, · · ·n1}, j ∈ {1, 2, · · ·n2} are both 2-wise

independent. Thus,

Var(X+Y) = Var(X)+Var(Y)−2 Cov(X, Y) =
∑

i 6=i∗orj 6=j∗
Var(Kijs1(i

∗)s2(j
∗)s1(i)s2(j)Aij)

(B.9)

E(Kijs1(i
∗)s2(j

∗)s1(i)s2(j)Aij) = 0 for i 6= i∗ or j 6= j∗. Therefore, Equation B.9 becomes:

∑
i 6=i∗orj 6=j∗

E((Kijs1(i
∗)s2(j

∗)s1(i)s2(j)Aij)
2) =

∑
i 6=i∗orj 6=j∗

E(K2
ij)A

2
ij

=
∑

i 6=i∗,j 6=j∗

A2
ij

m1m2

+
∑

i 6=i∗,j=j∗

A2
ij

m1

+
∑

i=i∗,j 6=j∗

A2
ij

m2

(B.10)

127

This is because E(K2
ij) = E(Kij) = 1/(m1m2), for all i 6= i∗, j 6= j∗. E(K2

ij) = E(Kij) =

1/(m1), for all i 6= i∗, j = j∗. E(K2
ij) = E(Kij) = 1/(m2), for all i = i∗, j 6= j∗.

If any fiber of A has extreme large data value, or max(‖Ai‖2) ≈ ‖u‖2, where Ai is any

row or column of A, we can omit the first term, Var(Âi∗j∗) ≤ ‖u‖2F /(min(m1,m2)). Oth-

erwise, if ‖u‖2 � max(‖Ai‖2), we can omit the second and third terms and Var(Âi∗j∗) =

Ω(‖u‖22 /(m1m2)). �

B.2.2 HCS of the Kronecker product

For simplicity, we show proof for Kronecker product here. But this can be extended to

general tensor product.

Lemma B.2. Given two matrices A ∈ Rn×n, B ∈ Rn×n,

HCS(A⊗B) = HCS(A) ∗HCS(B)

= IFFT2(FFT2(HCS(A)) ◦ FFT2(HCS(B)))

(B.11)

Proof of Lemma B.2. The Kronecker product defines (A⊗B)n3(p−1)+h n4(q−1)+g = ApqBhg.

Thus:

∑
pqhg

(A⊗B)abs1(p)s2(q)s3(h)s4(g)wt1ha+t2hb

=
∑
pqhg

ApqBhgs1(p)s2(q)s3(h)s4(g)wt1ha+t2hb

=
∑
pq

Apqs1(p)s2(q)w
t1h1(p)+t2h2(q)

∑
hg

Bhgs3(h)s4(g)wt1h3(h)+t2h4(g)

= FFT2(HCS(A)) ◦ FFT2(HCS(B)) (B.12)

where a = n3(p− 1) + h, b = n4(q − 1) + g, ha = h1(p) + h3(h), hb = h2(q) + h4(g).

Assign i = n3(p − 1) + h, j = n4(q − 1) + g, s5(i) = s1(p)s3(h), s6(j) = s1(q)s3(g), h5(i) =

128

h1(p) + h3(h) and h6(i) = h2(q) + h4(g), we have

∑
pqhg

(A⊗B)abs1(p)s2(q)s3(h)s4(g)wt1ha+t2hb

=
∑
ij

(A⊗B)ijs5(i)s6(j)w
t1h5(i)+t2h6(j)

= FFT2(HCS(A⊗B))

= FFT2(HCS(A)) ◦ FFT2(MS(B)) (B.13)

Consequently, we have HCS(A⊗B) = IFFT2(FFT2(HCS(A)) ◦ FFT2(HCS(B))). The

recovery map is

Â⊗Bn3(p−1)+h n4(q−1)+g = s1(p)s2(q)s3(h)s4(g)HCS(A⊗B)(h1(p)+h3(h))mod m1 (h2(q)+h4(g))mod m2

(B.14)

for p ∈ [n1], q ∈ [n2], h ∈ [n3], g ∈ [n4]. �

B.2.3 HCS of the matrix product

Higher-order tensor contraction can be seen as a matrix product by grouping all free indices

and contraction indices separately. We show the proof for Lemma 3.3 in matrix case.

Lemma B.3. Given two matrices A ∈ Rn×n, B ∈ Rn×n, HCS(A) = H1(s1 ⊗ s2 ◦ A)HT
2 ,

HCS(B) = H2(s2 ⊗ s3 ◦B)HT
3 , then

HCS(AB) = HCS(A)HCS(B) (B.15)

if HT
2 H2 = I.

129

Proof of Lemma B.3. The compact HCS representations for A and B are HCS(A) =

H1(s1 ⊗ s2 ◦ A)HT
2 , HCS(B) = H2(s2 ⊗ s3 ◦ B)HT

3 as described in Section 3.4. Here H1 ∈

Rm1×n1 , H2 ∈ Rm2×r, H3 ∈ Rm3×n2 , s1 ∈ Rn1 , s2 ∈ Rr and s3 ∈ Rn2 . Assume HCS(AB) =

H4(s4 ⊗ s5 ◦ AB)HT
5 .

If H2 is orthogonal, or HT
2 H2 = I,

HCS(A)HCS(B) = H1(s1 ⊗ s2 ◦ A)HT
2 H2(s2 ⊗ s3 ◦B)HT

3

= H1(s1 ⊗ s2 ◦ A)(s2 ⊗ s3 ◦B)HT
3

= H1(s1 ⊗ s3 ◦ AB)HT
3

(B.16)

By setting H4 = H1, H5 = H3, s4 = s1 and s5 = s3, we have HCS(AB) = HCS(A)HCS(B).

�

B.2.4 Analysis of Kronecker product approximation error

Theorem B.4 (CS recovery analysis for Kronecker product). Suppose Ĉ is the re-

covered tensor for C = A⊗ B after applying CS on A⊗ B with sketching dimension c. We

suppose the estimation takes d independent sketches of A ⊗ B and then report the median

of the d estimates. If d = Ω(log(1/δ)), c = Ω(
‖C‖2F
ε2

), then with probability ≥ 1 − δ there is

|Ĉij − Cij| ≤ ε.

Proof. CS(C) = CS(vec(A)⊗ vec(B)). Given Theorem B.1, we have E(Ĉ) = C = vec(A)⊗

vec(B), Var(Ĉij) ≤ ‖vec(A)⊗ vec(B)‖22 /c = ‖C‖2F /c. From Chebychev’s inequality, if we

run this sketch d times, where d = Ω(log(1/δ)), we can get the desired error bond with

probability at least 1− δ. �

Theorem B.5 (HCS recovery analysis for Kronecker product). Suppose Ĉ is the

130

recovered tensor for C = A ⊗ B after applying HCS on A ⊗ B with sketching dimension m

along each mode. We suppose the estimation takes d independent sketches of A ⊗ B and

then report the median of the d estimates. If d = Ω(log(1/δ)), m2 = Ω(
‖C‖2F
ε2

), then with

probability ≥ 1− δ there is |Ĉij − Cij| ≤ ε.

Proof. We have shown in Lemma B.2 that HCS(C) = HCS(A)∗HCS(B). Given Theorem 3.1,

we have E(Ĉ) = C = A⊗B, Var(Ĉij) ≤ ‖C‖2F /m2 (We assume C is well-distributed). From

Chebychev’s inequality, if we run this sketch d times, where d = Ω(log(1/δ)), we can get the

desired error bond with probability at least 1− δ. �

B.2.5 Analysis of matrix product approximation error

Theorem B.6 (CS recovery analysis for matrix product). Suppose Ĉ is the recovered

tensor for C = AB after applying CS on AB with sketching dimension c. We suppose the

estimation takes d independent sketches of AB and then report the median of the d estimates.

If d = Ω(log(1/δ)), c = Ω(
‖C‖2F
ε2

), then with probability ≥ 1− δ there is |Ĉij − Cij| ≤ ε.

Proof. CS(C) =
∑r

i=1 CS(Ai ⊗Bi). Thus,

E(Ĉ) =
r∑

k=1

E(CS(Ak ⊗Bk)) =
r∑

k=1

Ak ⊗Bk = C (B.17)

131

Var(Ĉij) =
r∑

k=1

Var((ÂikB̂kj))

=
r∑

k=1

E2(Âik) Var(B̂kj) + E2(B̂kj) Var(Âik) + Var(Âik) Var(B̂kj)

≤
r∑

k=1

Aik ‖Bk‖22 /c+Bkj ‖Ak‖22 /c+ ‖Ak‖22 ‖Bk‖22 /c
2

≤
r∑

k=1

‖Ak‖22 ‖Bk‖22 (
1

c
+

1

c2
)

≤ 3 ‖AB‖2F /c

(B.18)

From Chebychev’s inequality, if we run this sketch d times, where d = Ω(log(1/δ)), we can

get the desired error bond with probability at least 1− δ. �

Theorem B.7 (HCS recovery analysis for matrix product). Suppose Ĉ is the recovered

tensor for C = AB after applying HCS on AB with sketching dimension m along each mode.

We suppose the estimation takes d independent sketches of AB and then report the median

of the d estimates. If d = Ω(log(1/δ)), m2 = Ω(
‖C‖2F
ε2

), then with probability ≥ 1− δ there is

|Ĉij − Cij| ≤ ε.

Proof. We have shown in Section 3.5.2 that HCS(AB) = HCS(A)HCS(B). Given The-

orem 3.1, we have E(HCS(AB)) = AB, Var(ÂBij) ≤ ‖AB‖2F /m2 = ‖C‖2F /m2. From

Chebychev’s inequality, if we run this sketch d times, where d = Ω(log(1/δ)), we can get the

desired error bond with probability at least 1− δ. �

132

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Summary of Contributions
	Tensor Robust Principle Component Analysis
	Higher-order Count Sketch
	Feature Pooling through Tensor Operations
	Efficient Tensor Contraction Primitives

	Tensor Preliminaries
	Organization of the Dissertation

	Robust Principle Component Analysis through Tensor Decomposition
	Summary of Results
	Related Work
	Proposed Algorithm
	Theoretical Guarantees
	Experiments
	Synthetic Dataset
	Real-world Dataset

	Conclusion

	Higher-order Count Sketch
	Summary of Results
	Related Work
	Preliminaries
	Higher-order Count Sketch on Vector-valued Data
	Higher-order Count Sketch on Tensors
	Tensor Product
	Tensor Contraction
	Tucker-form Tensor

	Experiments
	HCS for Unevenly-distributed Data
	Tensor Operations
	Tensor Regression Network

	Conclusion

	Multi-modality Learning through Tensor Product
	Summary of Results
	Related Work
	Question Type Guided Visual Attention
	Experiments
	Dataset
	Evaluation Metrics
	Feature Representation
	Models

	Results and Analysis
	Faster R-CNN and ResNet Features
	Pre-trained and Jointly-trained Text Feature Extractors
	QTA in Concatenation Models
	QTA in Pooling Models
	Multi-task Analysis
	Findings on TDIUC dataset

	Conclusion

	Extended BLAS Kernels for Tensor Contraction
	Summary of Results
	Related Work
	Preliminaries
	Approach
	Motivating Observations
	Extended Notations
	BatchedGemm
	StridedBatchedGemm
	Exceptional Cases
	Generalization

	Results and Discussion
	Conventional Evaluation
	Extended BLAS Evaluation
	Machine Learning Application
	Evaluation Priorities

	Conclusion

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Appendix for Tensor Robusr Principle Component Analysis
	Bounds for block sparse tensors
	Proof of Theorem 2.1
	Short proof of Corollary 1
	Some auxiliary lemmas

	Symmetric embedding of an asymmetric tensor
	Proof of Theorem 2.2
	Analysis of first phase of shifted power iteration

	Appendix for Higher-order Count Sketch
	List of some algorithms mentioned in the chapter
	Count sketch
	Higher-order count sketch
	Approximate Kronecker product
	Approximate Matrix product

	Proofs of some technical theorems/lemmas
	Analysis of CS and HCS approximation error
	HCS of the Kronecker product
	HCS of the matrix product
	Analysis of Kronecker product approximation error
	Analysis of matrix product approximation error

