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ABSTRACT OF THE DISSERTATION

Understanding and Taming Adversarial Actions against Internet Content Blockers

by

Shitong Zhu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2021

Dr. Zhiyun Qian, Chairperson

The Internet has never ceased to be a central battle for adversarial actors to launch various

attacks and abuses. More importantly, these actions have not received sufficient attention

they deserve in the community, as most threat detection and defense works are devoted

to tackle direct attacks/abuses instead of adversarial ones that enable and cloak direct

threats. A significant portion of adversarial actions on the Internet target content blockers,

which are primarily purposed to detect and overthrow unwanted and ill-intended Internet

resources and traffic, because of their ever-growing popularity and dominance. Given the

status quo, a more complete understanding of these threats is urgently needed, as well as

effectual countermeasures and defenses against them.

In this dissertation, I aim at demystifying emerging adversarial actions against

content blockers from different layers of the Internet, and design defenses for protecting

user security and privacy accordingly. For discerning and analyzing these actions, I propose

automated analysis, or learning-based methods as technical solutions, which range from

program analysis, software instrumentation to machine learning. I then develop platforms

ix



for measuring and detecting adversarial actions in the wild. At the core of my analysis, I

observe that the fundamental nature of adversarial actions lies in differential/conditional

reaction, which refers to how adversarial actors distinctly determine their behaviours de-

pending on what they perceive from the target content blocker. This is because unlike

other general attacks or abuses, adversarial actions, by definition, are specifically designed

to evade deployed detection and protections (i.e., content blockers). Moreover, I find that

such a unique differential behavioural pattern is best captured by examining and comparing

low-level/high-resolution contextual traces under different settings of the deployed

content blocking system. Therefore, I build platforms to define, extract and analyze such

signals from Internet data and code, and use them to discover adversarial activities. Fur-

thermore, in order to thwart unearthed adversarial actions, I design defenses that conceal

distinguishable traces from the system protected by content blockers to prevent adversaries

from activating their adversarial differential reactions.

In Chapter 2, 3 and 4 of this dissertation, I focus on the upper-level application

layer of the Internet, and tackle adversarial threats there from web advertising practi-

tioners. In Chapter 5, I turn to the lower-level infrastructure layer of the Internet, and

detect/counter evasions that are designed for eluding intrusion detection systems based on

packet inspections. In summary, by hardening layers of the Internet, I attempt to make it

a more secure and private place overall, through learning and other automated analysis ap-

proaches. At the end of this dissertation (Chapter 6), I conclude my research contributions

and highlight some open research questions that are worth investigating in the future.
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Chapter 1

Introduction

1.1 Research Problem

Internet, or cyberspace in general, faces a wide range of emerging adversarial ac-

tions nowadays. Unlike general attacks and abuses, these threats are specifically designed

to evade deployed detection and protections. In other words, they explicitly target vulner-

able components of existing security measures to bypass them. Since this is not a direct

attack on end users, but rather a paradigm to enable and cloak direct attacks and abuses,

adversarial actions are generally considered understudied in the community. Among these

adversarial threats, an increasingly present category is the ones that aim at subverting In-

ternet content blockers; these blockers are designed to detect and thwart Internet resources

and traffic that are considered unwanted and ill-intended. Adversarial actions are more and

more motivated to elude them, because content blockers have been proven critically effective

in curbing Internet attacks and abuses in various scenarios (e.g., adblocking and intrusion

detection/prevention). Moreover, these actions are not limited to any particular layer of the
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Internet. This is because as security and privacy gradually become an crucial aspect of the

Internet, protection measures such as content blocking have been widely deployed across

different layers, and adversaries are thus motivated to elude all of them for launching their

end attacks. Therefore, I in this dissertation aim at both developing a more comprehensive

understanding of adversarial actions/actors against Internet content blockers from different

layers of the Internet, and exploring defenses to avert them effectually and efficiently.

1.2 Research Challenges

A grand challenge of analyzing and discerning adversarial actions lies in their

stealthiness. Unlike direct or general-purpose attacks and abuses, adversarial actions are

conditional and differential. That is, adversarial actors determine and adjust their be-

haviours depending on the status and feedback from the target content blocker (e.g., anti-

adblockers only attempt to punish users when they detect that adblockers are installed and

blocking ads). This unique characteristic prevents many nondiscriminatory analysis ap-

proaches from working properly, because they cannot observe the adversarial actions at all.

In addition to the differential reaction, adversarial actions are stealthy also because they of-

ten only exhibit minute differences compared to benign actions (e.g., for evasion attacks

against packet inspection infrastructures, there can be only a few specially-crafted packet

headers), which is difficult to be captured by coarse-grained methods. Moreover, aligning

with their adversarial nature, adversarial actors are highly motivated to adapt their actions

and further evade analyses and defenses against them. Hence, my analyses and defenses

must be reasonably robust against adversarial adaption and secondary evasion.
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Besides the challenges in discerning and analyzing adversarial actions, I also need

to take unique properties of the Internet system into account while building detection and

defense platforms against them. Specifically, Internet handles a massive amount of data

constantly, which renders analyses that primarily rely on manual inspection implausible.

In other words, my analyses ought to be automated and scalable in order for being

applied to large-scale Internet data and code. Additionally, my analyses and defenses need

to be sufficiently performant to avoid disrupting functionalities of the Internet, if they are

expected to be deployed in real-time environments.

1.3 Technical Approaches

To address all research challenges presented above, and meet desirable properties

for solutions against adversarial actions, I leverage a wide spectrum of techniques. For

capturing the signature differential behavioural pattern of adversarial actions, I propose to

correspondingly apply differential testing 1, which essentially configures the protection

measure that adversaries aim at evading differently, and examines and compares behaviours

of the adversarial actor under different configurations. As explained in 1.1, this differential

examination strategy can best reveal the differential behavioural pattern from adversarial

actions themselves, as well as maximally expose signals that can be used to recognize them.

However, for certain adversarial threats (e.g., evasion attacks against packet inspection

systems, or packet content blockers), it is not immediately clear how one can coarsely

configure the entire protection measure. Instead, the differential behavioral pattern of these

1Also known as A/B testing in some literature.
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threats can be unraveled by analyzing high-resolution interrelationships among objects

that appear in low-level system traces. This is because in these traces, there exist micro

behavioral patterns where adversarial actors finely adjust their actions differentially (e.g.,

how to manipulate header fields of next packets), depending on what status and feedback

(e.g., whether a disallowed keyword in packet payload has been previously blocked by the

intrusion detector or not) they perceive from the target content blocker.

Collecting low-level system traces requires access to low-level internals inside Inter-

net components (i.e., various software systems), which is not typically feasible with public

software interfaces only (e.g., logging). Therefore, I leverage software instrumentation

as the means to gather needed runtime information for understanding relationships among

objects (e.g., packet or web element) in system traces. Additionally, in order to capture

minute signals buried in the large amount of Internet data and code, I need to engage auto-

mated analyses that scale well. For both upper- and lower-layers of the Internet, I find that

program analysis and machine learning can serve as two approaches to realize the goal

of efficient automated analysis. Specifically, recall that I need to analyze both Internet data

(e.g., webpages and network traffic) and code (e.g., JavaScript software), in which for the

former my analysis should be able to automatically extract and learn meaningful statistical

patterns from data samples, and for the latter the semantics of programs/code must be

understood and assessed; evidently these analysis objectives can be achieved via machine

learning and program analysis, respectively, with a sufficient level of efficiency.
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1.4 Dissertation Contributions

Now I discuss the specific problems I solve in this dissertation, under the general

theme of understanding and taming adversarial actions against Internet content blockers.

At a high level, as aforementioned, I tackle threats against content blockers from both

upper- and lower-layers of the Internet. Specifically, for the upper application layer of the

Internet, I focus on the emerging ecosystem of web advertising, where adversarial actors

aim to evade either manual blocklists or ML-based adblockers. For lower infrastructure

layer of the Internet, I focus on evasion attempts that are purposed to subvert Deep Packet

Inspection (DPI) systems. Note that although these two areas are only subsets of upper-

and lower-layers of the Internet, they represent typical emerging thrusts of adversarial

actions against the Internet and are thus considered generalizable to other threats in this

dissertation. In the remainder of this section, I summarize the contributions of chapters

in this dissertation in detail, categorized by the type of the Internet content blocker their

analyses intend to defend against adversarial actions.

1.4.1 Web Content Blocking

Modern Web is largely ad-powered. Instead of selling contents to users (e.g., via

subscriptions), many first-party content providers (e.g., news websites) turn themselves into

ads publishers, cooperate with ads exchange networks (e.g., Google), and sell users’ atten-

tion to third-party advertisers. Specifically, these publishers sell available slots on their

pages to be delegated by exchange networks, which are later bid by the advertisers with

highest offers. Moreover, these online advertisements heavily rely on web tracking technolo-
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gies, which essentially build user profiles by collecting the user browsing and page interaction

history across different sites and domains; these profiles are then used to personalize ads that

are chosen to be displayed for particular end users. Such precise and ubiquitous tracking

is often considered a major violation of user privacy. In addition, malvertising campaigns

that spread malicious code (e.g., Trojan horse programs) through seemingly-benign adver-

tisements have also been becoming a considerable security threat for Web users. Besides

privacy and security concerns, removing ads also helps significantly speed up page loads,

which brings about a faster web browsing experience.

Despite some regulatory or voluntary efforts that have never gone into meaningful

effect (e.g., Do Not Track [113]), adblocking remains as the only viable means for users to

resist excessive and intrusive web advertising on the Internet. Essentially, adblockers first

engage various approaches for identifying web resources that relate to ads and trackers,

then prevent these resources from loading (usually in the web browser). Next I will discuss

different methods to classify web resources for blocking ads, and how my analyses and

defenses can discern and hinder adversarial actions against such ads classification.

Blocklist-based Adblocking

The first, and more traditional thrust of recognizing and curbing ads resources is

using manually-curated blocklists. Voluntary users, along with a small group of experts

have founded and been maintaining a community where a set of lists that specify what web

resources should be blocked are created and being updated; these lists are referred to as

blocklists. Due to the rising popularity of blocklists, ads publishers have been increasingly

motivated and acting to counter adblocker uses to recover their revenue, which leads to
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adversarial actions against adblocking. One of the most noticeable types of such actions

is anti-adblocking, which deploys JavaScript code that can detect and/or respond to the

presence of adblockers at client-side (browser). For revealing anti-adblockers, I propose

a differential testing strategy in Chapter 2 that instruments the web browser, collects its

JavaScript execution traces under different adblocker settings (i.e., enabled and disabled),

and applies program analysis techniques to discover divergences between these two sets of

traces. With strictly controlled experimental variables (i.e., adblocker setting), any discov-

ery of such execution trace divergences indicates the presence of anti-adblockers because

they are the only possible remaining source to cause such bifurcation. Beyond detecting

and analyzing anti-adblockers, Chapter 2 also presents a preliminary solution based on

JavaScript API hooking to help adblocker users bypass anti-adblockers.

In seeking of stronger and more complete defenses against anti-adblocking, I find

the root cause that enables anti-adblockers to effectively probe the use of adblockers is the

changes of page states (e.g., presence/absence of blocked ads) introduced by adblockers.

In other words, anti-adblockers also engages some form of differential testing to detect the

existence of adblockers. Naturally, one of the most fundamental defenses against such a

differential-testing-based adversarial action is to conceal the changes of page states. Specif-

ically, in Chapter 3, I design a browser rendering framework that makes and maintains

two copies of the loaded page, adblocked-copy and shadow-copy ; where in the former ads

are blocked, and in the latter ads are still preserved. The key in this design is that I only

allow all JavaScript runtime APIs that can be used to probe page states to access states in

the shadow-copy, but render the adblocked-copy to end users. This way, users avoid both
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seeing ads in their viewpoints, and triggering anti-adblockers because they cannot perceive

the presence of adblockers, at the same time. In the meantime, I limit/minimize the the

scope of copied page states to ads elements only, to avoid prohibitive runtime overhead

for maintaining a large number of live state copies. This requires accurate and efficient

identifications of ads elements on webpages, which is extensively discussed along with other

technical details in Chapter 3.

ML-based Adblocking

Despite the undeniable success of blocklist-based adblockers (and the fact they

have become the de facto solution in the market), several inherent weaknesses of them have

also been surfacing. First, the volunteer-run community that backs blocklists is inevitably

prone to human errors (i.e., both misidentified benign web resources and missed ads), and

difficult to keep pace with ever-emerging web advertisements. Second, as explained in the

previous subsection, a number of adversarial actions against blocklist-based adblocking are

being increasingly deployed in the wild by ads publishers, which significantly jeopardize the

effectiveness of adblockers. To overcome these challenges, in recent years, some ads classi-

fiers that rely on machine learning models have been proposed in the research community.

Most notably, [80] presents a graph-based solution that translates the browser rendering

events and relations (e.g., how HTML element A is connected to HTTP request B) into a

graph representation; specifically, it instruments the browser core and collects/sequential-

izes HTML, HTTP(s) and JavaScript layers of the webpage, and eventually constructs the

graph with events from different layers as nodes, and the causal relations (i.e., one event
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causes another) as edges. Then [80] trains a tree-based classifier based on the labeling of

existing blocklists to recognize network requests that relate to ads and trackers.

In Chapter 4, given the growing popularity of ML-based adblockers, I explore an in-

teresting research question: Is it possible to craft adversarial examples that evade detection

but preserve page functionalities (including ads themselves)? Unlike adversarial machine

learning in less- or un-constrained domains (e.g., vision), webapges are inherently bounded

by various constraints that are necessary to ensure they are grammatically parsable and

semantically correct. These constraints can be easily violated if I blindly apply algorithms

(e.g., standard gradient-based descent) from unconstrained domains, because the generated

perturbations can be incompliant with domain constraints. Instead, Chapter 4 proposes

a new framework that by iterative correction and adaption, progressively crafts actionable

adversarial examples that can both evade ML-adblockers and avoid disrupting irrelevant

page semantics. Through the lens of these examples, I simulate and analyze the possible

routes that adversarial actors can take to overthrow learning-based adblockers, as well as

distill insights into safety and robustness of content blockers on Web, in general.

1.4.2 Network Content Blocking 2

Going deeper into the Internet hierarchy/stack, Deep Packet Inspection (DPI)

middleboxes are widely deployed as part of modern network security infrastructures. They

not only inspect individual packets, but also reassemble them to form stateful connections

2Note that even we use the term “content blocking” here, we are aware that technically, DPI itself is
exclusively responsible for detecting unwanted network traffic instead of blocking it. However, we believe
that in the context of network security and intrusion detection, because content detection is often the
necessary preceding step that leads to subsequent blocking/removal actions, it is generally acceptable to
interchangeably use the terms “blocking” and “detection”.
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defined by a network protocol (e.g., TCP). In recent years, a series of adversarial attacks

have emerged with the goal of evading such middleboxes; these DPI evasion attacks largely

involve subtle manipulations of packets to cause different behaviours at DPI and end hosts,

to cloak malicious network traffic that is otherwise detectable. As discussed previously,

these adversarial actions do not depend on coarse-grained differential reactions that are

conditioned on the overall DPI configuration (i.e., whether it is on or off); rather, adversaries

manipulate packet headers based on what previous packets they observe. To decipher and

analyze such stealthy manipulations, in Chapter 5 I propose a fully-automated, unsupervised

ML solution that leverages context learning models for extracting packet context that is

used to discover evasion packets. At a high level, ML models are trained to amplify and

learn minute interrelationships among packet headers in connections, and rely on these

relationships to discriminate adversarial packets from benign ones. I present more details

and how one can generally tackle adversarial actions against network infrastructures in

Chapter 5.
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Chapter 2

Measuring and Disrupting

Anti-Adblockers Using Differential

Execution Analysis

2.1 Introduction

The ad-powered Web keeps most online content and services “free”. However, on-

line advertising has raised serious security and privacy concerns. Attackers have repeatedly

exploited ads to target malware on a large number of users [125, 143]. Advertisers track users

across the Web without providing any transparency or control to users [68, 72, 91, 100, 122].

The popularity of adblockers is also rising because they provide a clean and faster browsing

experience by removing excessive and intrusive ads.
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Millions of users worldwide now use adblockers [130] that are available as browser

extensions (e.g., Adblock, Adblock Plus, and uBlock) and full-fledged browsers (e.g., Brave

and Cliqz). Even Chrome has now included a built-in adblocker in its experimental version

— Chrome Canary [7]. According to PageFair [28], 11% of the global Internet population

is blocking ads as of December 2016. A recent study by comScore [96] reported that 18% of

Internet users in the United States use adblockers. Moreover, the prevalence of adblockers

is much higher for certain locations and demographics. For instance, approximately half of

18-34 year old males in Germany use adblockers.

The online advertising industry considers adblockers a serious threat to their busi-

ness model. Advertisers and publishers have started using different countermeasures against

adblockers. First, some publishers such as Microsoft and Google have enrolled in the so-

called acceptable ads program which whitelists their ads. While small publishers can enroll

in the program for free, medium- and large-sized publishers have to pay a significant cut

of their ad revenue to enroll. Second, some publishers — most notably Facebook — are

manipulating ads that are harder to remove by adblockers [14]. However, adblockers have

been reasonably quick to catch up and adapt their filtering rules to block these ads as

well [3]. Third, many publishers have implemented anti-adblockers — JavaScript code that

can detect and/or respond to the presence of adblockers at client-side. While Facebook

is the only reported large publisher that has tried to use the second approach, a recent

measurement study of Alexa top-100K websites [104] reported that the third strategy of

anti-adblocking is more widely employed. Common anti-adblockers force users to whitelist

the website or disable their adblocker altogether.
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We want to develop a comprehensive understanding of anti-adblockers, with the

ultimate aim of enabling adblockers to be resistant against anti-adblockers. To this end,

we propose a system based on differential execution analysis to automatically detect anti-

adblockers. Our key idea is that when a website is visited with and without adblocker,

the difference between the two JavaScript execution traces can be safely attributed to anti-

adblockers. We use differential execution analysis to precisely identify the condition(s)

used by anti-adblockers to detect adblockers which helps us understand how they operate.

The experimental evaluation against a ground-truth labeled dataset shows that our system

achieves 87% detection rate with no false positives.

We employ our system on Alexa top-10K list and are able to detect anti-adblockers

on 30.5% websites. From manually checking one third (1000) of these detected websites, we

find that the number of websites that have no visible reactions versus is an order of magni-

tude higher than the ones that have visible warning messages. We not only discover anti-

adblocking walls (warnings) invoked after adblockers are detected, but also websites that

silently detect adblockers and subsequently either switch ads [126] or report adblock statis-

tics to their back-end servers. Our ability to detect visible as well as silent anti-adblockers

allows us to detect 5-52 times more anti-adblockers than reported in prior literature.

We further leverage our systematic detection of anti-adblockers using differential

execution analysis to help adblockers evade state-of-the-art anti-adblockers. First, since

we can precisely identify the branch divergence causing adblock detection, we propose to

use JavaScript rewriting to force the outcome of a branch statement for avoiding anti-

adblocking logic. Second, we propose to use API hooking in a browser extension to intercept
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and modify responses to hide adblockers. The evaluation shows that our current proof-of-

concept implementations, which still have room for engineering improvements, are able to

successfully evade a vast majority of the state-of-the-art anti-adblockers.

2.2 Background and Related Work

Adblockers rely on manually curated filter lists to block ads and/or trackers. Ea-

syList and EasyPrivacy are the two most widely used filter lists to block ads and trackers,

respectively. The filter lists used by adblockers contain two types of rules in the form of reg-

ular expressions. First, HTTP filter rules generally block HTTP requests to fetch ads from

known third-party ad domains. For example, the first filter rule below blocks all third-party

HTTP requests to doubleclick.com. Second, HTML filter rules generally hide HTML ele-

ments that contain ads. For example, the second filter rule below hides the HTML element

with ID banner div on aol.com.

||doubleclick.com^$third-party

aol.com###banner_div

It is noteworthy that filter lists may contain tens of thousands of filter rules that

together block ads/trackers on different websites. At the time of writing, EasyList contains

more than 63K filter rules and EasyPrivacy contains more than 13K filter rules. The filter

lists are maintained by a group of volunteers through informal crowdsourced feedback from

users [17]. As expected, adding new rules or removing redundant rules in the filter lists is

a laborious manual process and is prone to errors that often result in site breakage [22].

Adblocking browser extensions (e.g., Adblock, AdBlock Plus, uBlock) and full-

fledged browsers (e.g., Brave, Cliqz) are used by millions of mobile and desktop users
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around the world. According to PageFair [28], 11% of the global Internet population is

blocking ads as of December 2016. Adblocking results in billions of dollars worth of lost

advertising revenue for online publishers. Therefore, online publishers are fast adopting

different technical measures to counter adblockers.

First, publishers can manipulate ad delivery to evade filter lists. For example,

publishers can keep changing domains that serve ads or HTML element identifiers [14, 133]

to bypass filter list rules. Such manipulation forces filter list authors to update filter list

rules very frequently, making the laborious process even more challenging. To address this

problem, researchers [71] proposed a method based on network traffic analysis (e.g., iden-

tify ad-serving domains) for updating HTTP filter list rules automatically. This method,

however, does not address HTML manipulation by publishers (like recently done by Face-

book [14]). While adblockers have updated their filter rules to block Facebook ads for now

[3], Facebook can continuously manipulate their HTML to circumvent new filter rules. To

address this challenge, researchers [127] proposed a perceptual adblocking method for vi-

sually identifying and blocking ads based on optical character recognition and fuzzy image

matching techniques. The key idea behind the perceptual adblocking method is that ads

are distinguishable from organic content due to government regulations (e.g., FTC [13]) and

industry self-regulations (e.g., AdChoices [30]). Researchers [127] reported that perceptual

adblocking fully addresses the ad delivery manipulation problem.

Second, publishers try to detect and stop adblockers using anti-adblocking scripts.

At a high level, anti-adblockers check whether ads are correctly loaded to detect the presence

of adblockers [108]. After detecting adblockers, publishers typically ask users to disable
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adblockers altogether or whitelist the website. Some publishers also ask users for donation

or paid subscription to support their operation. Prior work [104] showed that 686 out Alexa

top-100K websites detect and visibly react to adblockers on their homepages.

Adblockers try to circumvent anti-adblockers by removing JavaScript code snippets

or by hiding intrusive adblock detection notifications. To this end, adblockers again rely

on crowdsourced filter lists such as Anti-Adblock Killer [12] and Adblock warning removal

list [19]. First, HTTP filter list rules block HTTP requests to download anti-adblock scripts.

For example, the first filter rule below blocks URLs to download blockadblock.js. Second,

HTML filter rules hide HTML elements that contain adblock detection notifications. For

example, the second filter rule below hides the HTML element with ID ad block msg on

zerozero.pt.

/blockadblock.js$script

zerozero.pt###ad_block_msg

Prior work [77] showed that these filter lists targeting anti-adblockers are main-

tained in an ad-hoc manner and are always playing catchup. Publishers can evade these

filter lists by either serving anti-adblocking scripts from first-party or by incorporating

them in the base HTML. Moreover, some third-party anti-adblocker services deploy fairly

sophisticated hard-to-defeat techniques to detect adblockers [104]. In sum, adblockers cur-

rently are simply not effective against anti-adblocking. For example, prior work showed

that adblockers remove less than 20% of the adblock detection warning messages shown by

anti-adblockers [104].

Prior research has proposed several solutions to detect and circumvent anti-adblockers.

One solution is to fingerprint third-party anti-adblocking scripts using static code signatures
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[127]. However, JavaScript fingerprinting is not scalable if code signatures are not auto-

matically derived. Manual JavaScript code analysis is much more challenging compared to

identifying ad-related URL or HTML elements. So even if the effort is crowdsourced, it is

unlikely to catch up with the quickly changing landscape of anti-adblockers. Worse, even

simple obfuscation techniques such as code minimization will likely substantially increase

the manual effort to rebuild these signatures. Similarly, the approach in [108] also bears

the above limitations even when they attempt to reduce the amount of manual work by

analyzing only commonly appeared scripts in clusters.

Researchers have proposed automated static JavaScript code analysis techniques

(based on syntactic and structural analysis) for malicious JavaScript detection [65, 84, 121].

Prior work has borrowed these techniques to automatically extract signatures for tracker

[76] and anti-adblock [77] detection. Ikram et al. [76] proposed syntactic and semantic

JavaScript static code features with one-class SVMs to detect tracking JavaScript programs.

Iqbal et al. [77] proposed syntactic JavaScript static code features with SVMs to detect

anti-adblocking scripts. However, it is challenging for static code analysis techniques to

truly capture JavaScript behavior, which is dynamic and can be easily obfuscated.

To aid future research on the arms race between adblockers and anti-adblockers, in

this paper we propose a dynamic code analysis approach to systematically characterize anti-

adblock behavior on a large scale. Our key idea is that differential execution analysis (i.e.,

with and without adblocker) will reveal anti-adblockers trying to detect adblockers. Our

proposed approach has three major advantages over prior work. First, it allows us to detect

anti-adblockers without prior knowledge about their behavior. Second, it is robust against
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simple (e.g., code minimization) and more advanced (e.g., runtime code generation) code

obfuscation techniques. Finally, unlike prior work [104] that only detects visible reactions

by anti-adblockers, it can identify whether there is an attempt to detect adblockers even if

there is no visible reaction.

2.3 Problem Formulation & System Overview

An anti-adblocker script consists of two main components: (1) trigger, which de-

tects the presence of adblockers (e.g., by checking the absence of an ad); (2) reaction, which

can display the adblock detection message and/or simply report the results to a backend

server. As discussed earlier, prior work [77, 104, 105, 108] has reported a wide range of

strategies used by different publishers to detect and react to adblockers. Some websites

use simple anti-adblock scripts, served from first-party domains, to check display-related

attributes of ads for detecting adblockers. Others use more sophisticated third-party anti-

adblocking services that may employ active baits, do continuous detection, or use cookies

track users’ adblock detection status across different visits. Therefore, it is challenging

to automatically detect diverse anti-adblocking behaviors used by different publishers and

third-party anti-adblocking services. The state-of-the-art solution in prior literature [104]

uses machine learning to automatically detect anti-adblockers that exhibit visible reactions.

However, this solution can largely underestimate the ubiquitous of anti-adblockers because

it cannot detect silent anti-adblockers or subtle reactions (more details in §2.5.2). In this

section, we formulate the anti-adblock detection problem. We then present the blueprint

for a program analysis based approach to automatically detect anti-adblockers.
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We start by providing a motivating example to introduce our key ideas. Our key

observation is that a website employing anti-adblocking would have a different JavaScript ex-

ecution trace if it is loaded with adblocker (positive trace) as compared to without adblocker

(negative trace). To illustrate the point, we consider a simple real-world anti-adblocking

example in Figure 2.1. We note that the anti-adblocking script embeds an empty div whose

class is set to banner ads which is a known class type that will trigger blocking. The code

then simply checks whether the ad frame is blocked to determine the presence of adblockers.

Specifically, when an adblocker is used, the ad frame will become undefined, and its length

and height values will be zero. The if condition in the anti-adblocking script checks the

values of these attributes. If the script detects that the value of either of these attributes is

zero, it detects adblocker and reacts by displaying an alert and subsequently redirecting the

user to a subscription page (code omitted for brevity). Without adblocker, the if condition

will not be satisfied.

It is noteworthy that the JavaScript execution trace will differ under A/B testing.

More specifically, since we are able to control two execution environments (i.e., browser

instances) where the only difference is the presence/absence of an adblocker, the execution

trace difference can be safely attributed to adblocking (barring some noise issues which

are discussed §2.4.2). Equipped with the knowledge of the trace difference, we can then

track the origin of the objects that are checked in the branch statements (e.g., which

objects/variables and what attributes), as well as understand the subsequent reactions.

Next, we provide more details of the differential execution analysis approach.
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1 <div class="banner_ads" >&nbsp;</div >
2 <script >
3 var ads = document.getElementsByClassName(’banner_ads ’),
4 ad = ads[ads.length - 1];
5 if (!ad || ad.innerHTML.length == 0 || ad.clientHeight === 0)
6 alert("We’ve detected an ad blocker running on your browser." + ...);
7 }
8 </script >

Figure 2.1: A simple anti-adblocking example from a real website

Differential Trace 
Analysis

Positive 
Traces

Negative
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branch divergences &  
conditions
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Figure 2.2: System overview

Given two traces, we define two types of execution differences [83]: flow differences

and value differences. A flow difference is caused by control flow divergence in the two

executions (i.e., with and without adblocker). A value difference is caused when a variable

in any statement has different values in the two executions. Note that anti-adblockers have

to execute some additional statements (after an adblocker is detected) such as displaying

warning messages or sending statistics to their backend servers. Thus, we can rely on

control flow differences to detect anti-adblockers without needing to track value differences.

A recent study [104] also reported that most anti-adblockers manifest themselves through

conditional branches. Therefore, in this work, we consider only the flow differences in

our differential trace analysis and leave value differences (which may be required for more

advanced anti-adblockers) for future work.

20



Figure 2.2 illustrates the overview of our proposed system of differential trace

analysis. First, we instrument the open-source Chromium [27] browser to collect execution

traces. Since we focus on the control flow of JavaScript, we collect traces for all branch

statements along with the call stack information which is needed for trace alignment (dis-

cussed later in §2.4). We discuss other details of the instrumentation later in §2.4.1. After

we collect the execution traces, we feed them to the differential execution analysis to identify

the diverging branches between the positive trace (with adblocker) and the negative trace

(without adblocker). The differential execution analysis outputs a list of branch divergences

and the conditions checked in those branch statements.

The produced result not only allows one to affirm the presence of anti-adblocking

logic but also helps us understand how they operate. As we will show later in §2.5, we

conduct both large-scale and small-scale evaluation and analysis of the identified anti-

adblocking scripts. Finally, in §2.6, we show how one can apply the learned knowledge

and use it against anti-adblockers.

2.4 Differential Execution Analysis

In this section, we describe the framework, building blocks, as well the method-

ology for differential execution analysis (branch divergence discovery). Overall, we need

to select one or more adblocker extensions for A/B testing, instrument Chromium, and

conduct the differential execution analysis.

Adblocker choice. As the A/B testing requires the collection of the Javascript execution

trace with and without an adblocker, we need to select an adblocker extension. We choose
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Adblock as it is one of the most popular. It is also possible to use Adblock Plus or uBlock,

as the way they operate is exactly the same — HTTP filters and HTML element hiding.

In fact, they share the same basic set of filter lists and we checked that they yield similar

results from our differential execution analysis.

2.4.1 Chromium Instrumentation

Prior work has proposed several instrumentation approaches to collect JavaScript

execution traces. These include JavaScript rewriting [142], JavaScript debugger inter-

face [75], and JavaScript engine-based approaches. In this paper, we use the last approach

which modifies the JavaScript engine to output the execution traces. We prefer this ap-

proach because it does not require any change to JavaScript code itself. Moreover, our

approach is transparent which makes it much more challenging for anti-adblocking scripts

to detect that they are being instrumented and possibly change their behavior.

We instrument the JavaScript engine for Chromium (V8 [24]). V8 generates an

abstract syntax tree (AST) for every function. The ASTs are then compiled into native

code (also called Just-In-Time code). Our instrumentation is embedded into the native

code generation process. Our instrumentation collects the source map information (e.g.,

the offset of the statement located within a script) as well as the JavaScript statement

information (e.g., whether a true/false branch is taken) for every statement of interest.

As we discuss later, we instrument only a subset of statements that are pertinent to anti-

adblockers. The information is stored into inlined variables. Before emitting the native

code for the statements, we modify the JIT engine to emit stub code, which at runtime will

access the inlined variables to record the executed JavaScript statements. The source map
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information is used as the ID of the executed statement (which is later required for trace

alignment). The JavaScript statement information simply records the branch outcomes, so

that we can perform the differential trace analysis to identify any branch divergence or flip

between two different execution runs (with and without adblocker).

Since we only monitor control flow differences to detect anti-adblockers, we monitor

all branch statements to record the control flow part of the execution trace. In JavaScript,

the branch statements include if/else (including else if), switch/case, and condition-

al/ternary operators (condition?expr1:expr2), for/while loop, and try/catch for ex-

ception handling. In addition, there are implicit branching expressions such as A && B;

where the outcome of A in fact determines whether B will be executed (i.e., if A is false,

B will not be executed). We currently monitor only the if/else and conditional/ternary

operators, which are reported to be most commonly used by anti-adblockers [104]. For

trace alignment (see §2.4.2), we also record all function call/ret statements and call stack

information for all branch statements to include their calling context.

2.4.2 Branch Divergence Discovery

We now explain our approach to discover branch divergences. We visit a website

to collect two sets of execution traces with (positive trace) and without (negative trace) the

adblocker. We then analyze their flow differences between the positive and negative traces.

Adblockers can be used in different ways based on their filter list configurations.

The default configuration on Adblock [16] includes two blacklists (EasyList to remove

ads and Adblock Warning Removal List to remove adblock detection responses) and one

whitelist (Acceptable Ads List to allow some ads). We choose a configuration that can
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maximize the likelihood of detecting anti-adblockers (which is also what was used in [104]).

We first disable the Acceptable Ads List, not allowing websites to show even the whitelisted

ads. Then we disable the Adblock Warning Removal List, allowing intrusive notifications

by some anti-adblockers. Finally we further remove the sections of rules in Easylist that

are specifically crafted against anti-adblockers. It is worth mentioning that Adblock, as

shown in a recent study [104], does not actually do a good job in defending against anti-

adblockers, but we disable these capabilities nevertheless to get a more complete picture of

anti-adblockers in the wild.

We need to align a positive trace and a negative trace to discover branch diver-

gences. Trace alignment is a well-research issue for comparing different execution traces

of the same program [83, 139]. To accurately align two execution traces, we can assign

each execution point an execution index while taking into account the program’s nesting

structure and the caller/callee relationship. We opt for the use of call stack information as

the calling context for each recorded statement. More specifically, two execution traces are

said to be aligned only when the following two conditions hold simultaneously:

1. the call stacks of all statements of both traces match perfectly; and

2. the identifiers of all statements (represented by their offset) of both traces match

perfectly.

The key challenge in aligning JavaScript execution traces is that JavaScript run-

time has a unique concurrency model [106]. More specifically, standard JavaScript execu-

tion for each web page is single-threaded and event driven. This means that each event

is processed independently and completely before any other event is processed. Instead of
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generating a single sequence of trace for each page visit, we are now forced to consider the

code executed to handle all events (e.g., on successfully loading an external resource) on

different sub-traces because they all start from the beginning of the event loop.

We address this challenge by aligning sub-traces in a disjoint manner. More specif-

ically, we slice a trace into sub-traces by recording all the function call/ret statements.

Whenever a ret statement is encountered where its call stack is empty (i.e., an iteration of

the event loop is about to end), we know that it is the end of a sub-trace. We align two

sets of positive and negative sub-traces separately in a pairwise manner. The number of

alignments is on the order of O(n×m) where n is the number of positive sub-traces and m

is the number of negative sub-traces.

Given a pair of aligned positive and negative traces, we next attempt to discover

and locate branch divergences. Basically, given a positive and a negative trace, we record all

encountered branches (with the same call stack at the same offset) with opposite outcomes.

In the example shown in Figure 2.1, the positive and negative traces will simply be (3, 4,

5-true, 6) and (3, 4, 5-false) respectively — the numbers here are statement identifiers. We

can therefore confirm the branch divergence at statement 5. The key technical challenge we

need to address is that a script can generate different execution traces due to external factors

(e.g., time) or other sources of randomness. We need to cater for this to avoid mistakenly

attributing branch divergences to adblockers which are actually completely unrelated.

Handling execution noises. The following example illustrates this problem. Two

different runs of the same code can possibly produce two different execution traces – one

with coinFlip() returning true and the other with coinFlip() returning false. If the two runs
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happen to occur when an adblocker is on and off respectively, we will mistakenly think that

the branch divergence is due to an adblocker.

1 function coinFlip () {
2 return Math.floor(Math.random () * 2);
3 }
4 if (coinFlip ()) {
5 // displayDynamicContent
6 }

To counter such “noises”, we generate redundant positive and negative traces with

the goal of identifying unrelated divergences. Based on our pilot experiments, we decide

to generate three runs of positive traces and three runs of negative traces to detect and

eliminate unrelated divergences.

Note that even though not incorporated yet, our system can generate these traces

from the same webpage (by simply forcing the same exact webpage and scripts to be

reloaded), thus avoiding the case where different runs encounter two different versions of

webpages or scripts. This means that even if a website intentionally tries to deliver a dif-

ferent webpage or script every time [133], we are still able to analyze one specific version

and determine if anti-adblocker is present.

Due to the nature of JavaScript runtime, we are unable to handle implicit branch-

ing caused by callbacks. The following example illustrates implicit branching. Depending

on whether the URL is successfully loaded, success() and error() will be invoked respec-

tively. It is important to note that the URL is pointing to an advertisement; therefore, if

it fails to load, it is indicative that an adblocker is present (and error() will be invoked

accordingly in reaction to it). However, since success() and error() are both invoked at

the beginning of the event loop (i.e., their call stack is empty), we are unable to correctly

align the two sub-traces and therefore will not discover the branch divergence. To address
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this issue, we will need to consider all callback functions for a same event (URL fetch) as

implicit branch statements. This means that if we see success() in a positive run but er-

ror() in a negative run, we can attribute it to a branch divergence. Our system currently

does not support this uncommon special case. We plan to address this limitation in our

future revisions.

1 $.ajax({
2 type: "GET",
3 url: "some_ads_url",
4 success: function (){ ## display ads },
5 error: function(XMLHttpRequest , textStatus , errorThrown) {
6 ## adblocker detected!
7 }
8 });

2.5 Evaluation

We first evaluate the timing requirements of our differential execution approach.

Recall that we visit each website three times with adblocker and three times without ad-

blocker. For each visit, we wait for 20 seconds before we stop the trace collection to ensure

the website finishes loading (Chromium loads websites slower with our instrumentation).

In addition, it takes less than a minute to perform the differential trace analysis. Overall

we need about 3 minutes per website on average to run our differential execution analy-

sis. Given a server with 32 cores, we need a little over 14 hours to process ten thousand

websites (assuming we schedule one Chromium instance per core). Therefore, our current

implementation is efficient enough to analyze Alexa top-10K websites on a daily basis using

only one server.

We next evaluate the accuracy of anti-adblocker detection on a small and large

scale data set. We have constructed an anonymous project website at https://sites.
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google.com/view/antiadb-proj/ to show some detailed cases studies of anti-adblocking

websites and scripts.

2.5.1 Small-Scale Ground Truth Analysis

For positive examples, we pick the list of 686 websites that were reported to use

anti-adblockers in February 2017 [104]. Since some websites may no longer be using anti-

adblockers now (August 2017), we manually re-analyze these 686 websites and shortlist

428 websites which still visibly react to adblockers. During manual screening, we at each

loaded mainpage manually for around 30s each without any clicking (but scrolling down is

also performed to be able to catch minor warning messages inserted in the middle of the

page). For negative examples, we manually select 100 websites (e.g., Wikipedia, academic,

and non-profit websites) that do not contain any ads. Thus, these websites do not trigger

adblockers and also do not contain anti-adblockers.

We evaluate the accuracy of our system in detecting anti-adblockers on the afore-

mentioned manually labeled set of websites. Our system achieves 86.9% (372/428) true

positive rate and 0% false positive rate. For the 100 labeled negative websites, our system

did not mistakenly detect any as using anti-adblockers. For the 56 false negative cases,

we identify that three main reasons: (1) incomplete instrumentation of branch statements;

(2) inherent randomness in website loading, and (3) incomplete blocking of ads by the

adblocker. We elaborate on these reasons below.

First, we note that websites can implement anti-adblock detection logic in JavaScript

(or any other Turing-complete programming language for that matter) using many differ-
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ent constructs that may not be covered by our current implementation. For example, the

presence of a bait object can be checked using

1 if (bait_is_absent ()) {
2 reaction_func ()
3 }

ternary operators,

1 bait_is_present () ? do_nothing () : reaction_func ()

callbacks,

1 <script onerror="reaction_func ()" src="/bait.js" ></script >

and && operator.

1 bait_is_absent () && reaction_func ()

Among these, our prototype implementation currently only covers the if/then/else clause

and ternary operators while leaving out callbacks. Moreover, some solutions (e.g., Block-

Adblock) utilize eval to wrap their anti-adblocking logic represented as a string, which is

not currently instrumented in our implementation. Finally, one website (expats.cz) imple-

ments anti-adblocking logic using non-control-flow paradigms (e.g., using an array element

to decide whether to trigger anti-adblock reaction). To tackle this issue, our system needs

to trace value difference [83] as well.

Second, several websites seem to be impacted by different sources of randomness

that can bypass our current implementation. These include (1) behavioral randomization

and (2) content randomization. In behavioral randomization, a website randomly activates

its anti-adblocking module which results in inconsistent positive/negative traces. Our sys-

tem rules out such inconsistencies as noise. In content randomization, a website may change

various page elements (e.g., DOM/variable/bait names) across multiple runs, thereby break-

ing our trace alignment (e.g., our current implementation requires the same variable name).
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1 if( window.advertsAvailable ===
undefined ){

2 // adblocker detected , show
fallback

3 jQuery(’.replace -me’).html(’<img
style ="width:auto;height:auto;
max -width :728px" id="
testreplace" src="/ images/
Burn_sad.gif" width ="728"
height ="90" alt=" Please
support us by allowing ads on
our site"/>’);

4 jQuery(’#testreplace ’).css(’
display ’,’block’);

5 }

(a) Switching ad sources upon detecting

any adblocker

1 var blockStatus = ’Unblocked ’;
2 var ad = $(’#adsense ’)[0];
3 if (!ad || ad.innerHTML.length == 0

|| ad.clientHeight === 0)
blockStatus = ’Blocked ’;

4 ga(’send’, ’event ’, ’Ad block
JavaScript ’, blockStatus , ’
Desktop ’, {nonInteraction: true})
;

5 ga(’theLocalNetwork.send’, ’event ’,
’Ad block JavaScript ’,
blockStatus , ’Desktop ’, {
nonInteraction: true});

(b) Reporting adblocker usage through

Google Analytics

Figure 2.3: Silent anti-adblocker (Left: memeburn.com. Right: englishforum.ch)

As mentioned earlier in §2.4.2, this is not a fundamental limitation of differential trace

analysis as we can force the same exact page to be loaded across multiple runs. However, it

is much more challenging to deal with behavioral randomization, which we discuss in §2.7.

Third, we also note a few special cases. For instance, one interesting case is that an

anti-adblock warning message (initially invisible) is placed behind the real ad, and becomes

visible when the ad in the front is blocked. In this case, no extra code is executed to conduct

anti-adblocking but its effect is still preserved (it’s arguable whether it should be considered

an anti-adblocker). The best solution is probably to let the adblocker block the warning

message as well.

We mentioned earlier that there are 428 out of 686 websites that have visible

anti-adblockers. We are curious about the remaining 258 websites — could it be that

they are simply performing anti-adblocking with no visible reactions? After running our
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(a) Original banner ads (shown when

there is no adblockers)

(b) Replaced banner ads (shown when

the original is blocked)

Figure 2.4: Ad switching behavior on memeburn.com

system on these websites, it turns out that most of them are actually flagged as positive

(with branch divergences under A/B testing). To understand if our results are correct,

we conduct small-scale manual verification. Specifically, we look at the branch divergence

and the triggered logic when an adblocker is detected. Interestingly, we indeed find many

websites that perform adblocker detection with minimal or no visible reactions. We illustrate

two interesting types of them from two websites memeburn.com and englishforum.ch in

Figure 2.3.

1. Switching ad sources: As shown in Figure 2.3(a), memeburn.com uses a first-party anti-

adblock script. Upon detecting an adblocker, it immediately replaces one of its banner ads

with a gif image (see Figure 2.4 for the visual differences). Interestingly, instead of switching

to external ads, in this case the website has chosen to advertise its own services (about its

tech news podcasts).

2. Collecting adblocker usage statistics: We find englishforum.ch has a first-party script

that detects adblockers yet does not exhibit any visible reaction. As shown in Figure 2.3(b),

the variable blockStatus indicates the presence of adblockers, which is set to true as soon

as an ad frame is found missing. The ga() function is of Google Analytics API that reports

events back to the website owner. As we can see in this case, there are no additional

reactions besides the silent recording of adblocker usage.
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2.5.2 Large-Scale Analysis of Alexa Top-10K Websites

We now conduct a large-scale in the wild evaluation of our system. Surprisingly, we

are able to detect anti-adblockers on 30.5% on the Alexa top-10K websites. Our results point

out that roughly one-third of the most popular websites are equipped with anti-adblockers.

Our investigation shows that 1238 websites use only if/else type of branch divergences, 473

use only ternary-type divergences, and the remaining 1344 are detected to contain both

divergences. This finding highlights that anti-adblockers implement their detection logic in

several different ways. Thus, as we expand support for other types of branch statements in

our implementation in future, our anti-adblock detection rate may further increase.

It is noteworthy that our results show that anti-adblockers are much more pervasive

than previously reported in prior work [104, 108]. An earlier study [108] published in May

2016 reported that 6.7% of Alexa top-5K websites use anti-adblockers. Our anti-adblock

detection results are approximately 5× more than theirs. Another study [104] conducted in

February 2017 reported that 0.7% of Alexa top-100K websites use anti-adblockers. Our anti-

adblock detection results are approximately 52× more than theirs. To better understand

the discrepancy, we should reiterate that an anti-adblocker has at least two components:

(1) adblocker detection and (2) subsequent reaction. The solution in [104] also leverages

A/B testing but it aims to detect HTML changes caused by anti-adblockers. It makes

the assumption that there will be a significant reaction (visible at the HTML level) after

an adblocker is detected. However, as we have shown earlier, this assumption may not

hold as many websites can have subtle or no visible changes at all while still having the

ability to detect adblockers. The authors in [108] relied on manual analysis and may miss
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Figure 2.5: Popularity of anti-adblockers by website ranking

some anti-adblockers that do not have obvious keyword in the scripts (e.g., obfuscated).

Moreover, the anti-adblock prevalence has likely increased [77] since more than a year ago

[108] when the study was conducted. In contrast to prior work, our approach is oblivious

to the reactions by anti-adblockers; instead, it essentially relies on catching the adblocker

detection logic that is evident by the discovered branch divergence. Later we will sample a

number of popular websites and scripts with manual inspection to validate our results.

In summary, our hypothesis is that a much larger fraction of websites than pre-

viously reported are “worried” about adblockers but many are not employing retaliatory

actions against adblocking users yet. To verify the hypothesis, we manually inspected 1000

websites out of the 3000+ detected websites. Following the same inspection methodology

described in §2.5.1, we find that there are only 66 (10 of them simply switch sources of the

ads) websites that do have visible reactions and 934 that do not, which indeed represents a

huge disparity. While it may be useful to conduct automated analysis of subsequent reac-

tions (e.g., whether they invoke APIs that have visual impact, or whether they send data

over to network to log adblocker usage), we leave this as future work.

We now attempt to categorize the websites that use anti-adblockers in the following

aspects. First, we are curious to see whether there’s any correlation between their popularity
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and the likelihood of them deploying anti-adblockers. Figure 2.5 shows that the higher

ranked websites are more likely to use anti-adblockers. This is somewhat counter-intuitive

as most top websites do not actually have any visible reactions to adblocker users, leaving

users the impression that they are not doing anything about adblockers. We find that

many popular websites are passively collecting statistics (to evaluate what they should do).

Second, our analysis of website categorization corroborate results reported in prior work

[104, 108] that “news and media” websites are much more likely to use anti-adblockers.

This is expected because online advertising is a key source of income for news and media

websites.

We investigate the source of anti-adblocking scripts used by websites. More specif-

ically, are they first-party vs. third-party scripts? Are there a small number of third-party

scripts that are widely deployed by many websites? Our results show that there are 422

websites that use only first-party anti-adblocking scripts while 2219 websites use only third-

party scripts (414 websites use both). This discrepancy shows that most websites choose to

outsource anti-adblocking to dedicated third-party anti-adblocking service providers such

as PageFair [26]. To better understand the small set of third-party anti-adblocking scripts,

we aggregate their sources using the domain and URL information. Table 2.1 reports the

third-party sources of the most popular anti-adblocking scripts. We note that analytics and

ads scripts by Google are the most popular source of anti-adblocking scripts. As expected,

we also note several other online advertising services such as Taboola and Outbrain using

anti-adblockers.
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To better understand popular third-party anti-adblocking scripts, we next inves-

tigate them using several different analysis approaches such as code base, network traffic,

cookie content, probing etc. For instance, if silent reporting exists, the network traffic

would contain at least some difference in the payload during A/B testing. Similarly, a

different cookie value set during A/B testing can also support silent reporting. These anti-

adblocking scripts are fairly challenging to analyze because they are large, complex, and

often use obfuscation. It is also challenging to analyze some of them because they do not

have visible reactions to adblocker detection. For example, 9 out of 13 most popular anti-

adblocking scripts, which account for almost one-third of the Alexa top-10K websites that

use anti-adblockers, detect adblockers silently.

Table 2.1 reports the detection mechanism and subsequent reactions of popular

anti-adblockers. They all check attributes of DOM elements in certain way (as opposed to

alternatives which are more common in less popular scripts. See §2.6.2 for details). Most

of the checked DOM elements are baits and a number of them are real ads. Specifically, we

are able to confirm DoubleClick detects adblockers by checking the height and length of

ad-related objects and sends view-status ad requests to the back-end server. Scripts from

PageFair and Taboola are also performing anti-adblocking, which is expected since both are

known to provide anti-adblocking services [11, 15]. In particular, PageFair [104] attempts

to craft a diverse set of baits and even probes into the extension folder 1. The probing

methodology is deprecated in newer browsers but still effective against older versions of

Chrome [9] to detect adblockers. Both scripts from PageFair and Taboola silently report

1Every extension in Chrome is organized in a folder with a globally unique extension ID assigned by
Google as the folder name
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adblocking statistics. It is noteworthy that PageFair has two types of scripts: one is analytics

which only collects adblocker usage; the other one has the ability to switch ad sources [1].

In our study, the analytics script is the one that showed up as top scripts, likely because it

is a free service while the other is not [1].

Being the biggest adblock-analytics-tech player in the market, PageFair meticu-

lously crafts a diverse set of baits to maximize its chances of detecting adblockers. Its

analytics script measure.min.js creates six different baits in total, with two of them be-

ing the <div> elements and the rest as images/scripts. Then the blocking status of these

six baits will be monitored and stored independently. Finally the script saves the status

into a local cookie for future use, and also sends it to back-end server with multiple fields

indicating the state of each bait and other statistics.

1 TRC.blocker.blockedState = TRC.blocker.getBlockedState(this.global["abp -
detection -class -names"] || ["banner_ad", "sponsored_ad"])

2
3 getBlockedState: function(a) {
4 return a && this.isBlockDetectedOnClassNames(a) ? this.states.

ABP_DETECTED : this.states.ABP_NOT_DETECTED
5 }

Figure 2.6: Taboola’s anti-adblocking script snippet

Next, we illustrate the anti-adblocking logic for Taboola, another big play in the

field, in Figure 2.6. We can see that the key function is getBlockedState() on line 4.

As we can see, multiple strings are passed as arguments. Notably, the “banner ad” and

“sponsored ad” are two known element ids that are filtered by Easylist. isBlockDetecte-

dOnClassNames() will create a DOM element for each string in the list. These elements
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serve as baits. Upon the detection of them being blocked, isBlockDetectedOnClass-

Names() returns true.

1 setTimeout(function () {
2 c.tj(a);
3 c.ba = (0 < c.gd).toString ();
4 d.h.log("AdBlock - finish long status check. adBlock = " + c.ba);
5 c.af = !0;
6 d.b.yh("OB-AD-BLOCKER -STAT", c.ba);
7 c.cd.o("onAdBlockStatusReady", [c.ba])
8 }, e)

Figure 2.7: Outbrain’s anti-adblocking script snippet

Finally, Outbrain’s anti-adblocking script is illustrated in Figure 2.7. We can see

the code is minified and the key check here is (0 < c.gd) that checks on variable c.gd

which stores the concatenated and encoded value of all deployed baits to determine if they

are still present. To validate our analysis we manually remove the filter rules associated with

DIV ids Ads 4, AD area, ADBox and AdsRec, and can indeed successfully flip the relevant

adblock status field in its reporting request. Outbrain also chooses to save the status in

browser’s cookie (OB-AD-BLOCKER-STAT).

Unlike the multiple-bait strategies used in PageFair and Taboola, some scripts use

the “pixel” technique [66], which loads a small, unobtrusive piece of image (i.e., pixel) and

then drops a browser cookie for future inter-domain ad re-targeting. This ad re-targeting

technique allows publishers to ensure that their ads are served only to people who have

previously visited their site. The pixel often contains ads-related keywords in its URL path,

and therefore can be used as a bait object to detect adblockers. Most of these scripts

also silently report adblocking statistics by using a query string (e.g., adblock=0/1) in the

HTTP request to load the next pixel. Yandex and Criteo also leverage the same “pixel”
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technique. mail.ru, Outbrain and Cloudflare instead create regular DOM baits and check

their presence to detect adblockers. It is noteworthy that Criteo, besides silent adblocker

reporting, also switches ads to acceptable ads [18].

Since many popular third-party anti-adblocking scripts are obfuscated and chal-

lenging to manually analyze, we randomly sample a few popular websites that use non-

obfuscated anti-adblocking scripts. Our goal is to (1) confirm that the identified websites

are not false positives, and (2) understand their detection approach and reaction to adblock-

ers. We select these websites from the Alexa top-1K list: businessinsider.com, nytimes.com,

cnn.com, aol.com, cnet.com, gmx.net, reddit.com, sourceforge.net, nba.com, glassdoor.com,

expedia.com, iqiyi.com, thefreedictionary.com, ria.ru, jeuxvideo.com, gamespot.com, in-

tel.com, nfl.com, myanimelist.net, kizlarsoruyor.com. All of these websites detect adblock-

ers and some even have visible reactions that were not reported in prior work [104]. This

demonstrates the usefulness of differential execution analysis in accurately pinpointing the

adblocker detection logic used on any website. Next we discuss in detail the the anti-

adblocking logic of a few interesting examples.

1 var setAdblockerCookie = function(adblocker) {
2 var d = new Date();
3 d.setTime(d.getTime () + 60 * 60 * 24 * 30 * 1000);
4 document.cookie = "__adblocker=" + (adblocker ? "true" : "false") + ";

expires=" + d.toUTCString () + "; path=/";
5 }
6 var s = document.createElement("script");
7
8 s.setAttribute("src","//www.npttech.com/advertising.js");
9 s.setAttribute("onerror","setAdblockerCookie(true);");

10 s.setAttribute("onload","setAdblockerCookie(false);");
11 document.getElementsByTagName("head")[0]. appendChild(s);

Figure 2.8: First-party anti-adblocking script in www.businessinisder.com
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The homepage of businessinsider.com is flagged by our system to have multiple

branch divergences. Surprisingly, we do not see any warning messages and the page seems

to be completely ad-free. Upon a closer look, we realize that the website has a first-party

script that silently detects the presence of adblocking and records the information into the

cookie. The code snippet is illustrated in Figure 2.8. We note that the website injects

a bait script at www.npttech.com/advertising.js and invokes the pre-defined callbacks

either onload() or onerror(), depending on whether the bait scripts gets blocked by

adblockers. As mentioned earlier, our instrumentation currently does not support callback-

based implicit branching which means this may be a false negative case. Fortunately, as we

can see inside setAdblockerCookie() (which is the registered callback in correspondence

with onload() and onerror()), there is a ternary operator that checks the value of variable

adblocker which allows us to correctly detect the branch divergence.

1 BlockAdBlock.prototype.on = function(detected , fn) {
2 return this._var.event[detected === !0 ? "detected" : "notDetected"].push(

fn), this._options.debug === !0 && this._log("on", ’A type of event "’
+ (detected === !0 ? "detected" : "notDetected") + ’" was added’),

this}

Figure 2.9: First-party anti-adblocking script in nytimes.com

1 var n=document.getElementById(t);
2 n&&0!=n.innerHTML.length &&0!==n.clientHeight &&0!==n.clientWidth &&0!==n.

offsetWidth?e.application.fire("adblock:detect" ,{enabled :!1}):e.
application.fire("adblock:detect" ,{enabled :!0}) ,$(i).empty()}

Figure 2.10: Third-party anti-adblocking script in aol.com

nytimes.com has a first-party script that logs adblocker usage (see Figure 2.9.

Similarly, aol.com includes a third-party script from blogsmithmedia.com that fires an

39



1 if (! window.isAdblockerDisabled) {
2 define(’expads ’, function () {
3 var displayFallbackImage = function (slotConfig) {
4 ...

Figure 2.11: First-party anti-adblocking script in expedia.com

application event when adblocker is detected (see Figure 2.10). Finally, expedia.com has

a first-party script that attempts to load a fallback image. Interestingly, we are unable to

see any fallback image (because even the fallback image is blocked by EasyList) when we

manually inspect the page.

2.6 Towards Improving Ad-blockers

In addition to leveraging differential execution analysis to detect anti-adblockers,

we are interested in understanding how this knowledge can help strength adblockers, making

them more resistant against anti-adblockers. As we mentioned earlier in §2.2, adblockers

are currently struggling to keep up with anti-adblockers due to the challenges in manu-

ally analyzing the anti-adblocking Javscript (which we find to be extremely diverse and

complex).

In this section, we attempt two such directions to help adblockers, with the help of

the comprehensive anti-adblocking knowledge. We describe our solutions, implementations,

and preliminary results.

2.6.1 Avoiding Anti-adblockers with JavaScript Rewriting

The differential execution analysis enables us to understand which branches are

entered because of the presence/absence of adblockers. This knowledge can also naturally
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1 if (hasBlock ()) {
2 $(’.notification ’).

show();
3 }

(a) Original code

1 if (false) {
2 $(’.notification ’).

show();
3 }

(b) Condition rewrite (re-

placement)

1 if (hasBlock () &&
false) {

2 $(’.notification ’).
show();

3 }

(c) Condition rewrite

(append-only)

Figure 2.12: Choices of condition rewrite

help adblockers to evade anti-adblockers. The idea is to force the outcome of a branch state-

ment towards the one corresponding to the absence of adblockers, effectively avoiding any

anti-adblocking logic. However, forcing the outcome of a branch statement may also cause

unexpected side effects. Fortunately, since the execution path we are attempting to force

already occurs in the negative trace (without adblocker), it is unlikely the anti-adblocking

code we avoid will cause any breakage. In other words, we expect to not cause any program

inconsistency because the rest of the functionality on a web page is unlikely to depend on

the missed anti-adblocking code (as the example in Figure 2.1 illustrated). Note that our

JavaScript rewrite is targeting specific branches, as opposed to systematically exploring all

possible program paths (which is sometimes desired for malware analysis purposes [86]).

Much more care has to be given to ensure the reliability of such an exhaustive program

exploration (e.g., checkpointing and rollback are commonly required). In comparison, our

solution is much more lightweight and easier to implement.

There are two options for rewriting a condition in a branch: (1) we replace the

original condition completely with the desired branch outcome directly; or (2) we keep

the original condition but still force the outcome by appending true or false at the end.
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Figure 2.12 illustrates the differences. Figure 2.12(a) shows the original JavaScript code

that attempts to detect adblockers. Figure 2.12(b) and Figure 2.12(c) correspond to the two

rewrite choices above respectively (both can force branch outcome to false successfully). The

difference is that the first option prevents any original code in the condition to be executed

(i.e., hasBlock()), while the second option does allow the original function to be invoked.

For the first option of not allowing the adblocker detection code (hasBlock()) to execute,

it can potentially have negative impact on the remaining code. For instance, a variable may

be defined only inside the function. Without invoking the function, the subsequent access

to the variable may become undefined and cause site breakage. The second option avoids

this issue and we therefore prefer it.

We can even perform more fine-grained rewrite management, i.e., perform the

rewrite only when the call stack matches the ones collected in the trace. For instance, if

function A and B both call C, and a divergence is discovered in C only when A calls C.

Then the rewrite should rewrite the condition only when A calls C as well. The rewritten

code would look like the following for the same example as in Figure 2.12:

1 if (hasBlock () && matches(StackTrace.getSync (), recorded_stacktrace) &&
false) {

2 $(’.notification ’).show();
3 }

This allows condition rewrite to operate with more precision and is less likely to affect

other execution paths that happen to also depend on the same code block (and may be

incorrectly forced to either true or false all the time). Unfortunately, without instrumenting

the JavaScript execution engine, we cannot get call stack (or stack trace) in JavaScript

without relying on non-standard features [21]. Thus, this approach may not always work
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1 function checkAdVisible () {
2 if(isVisible(ad)) {
3 // pass
4 } else {
5 // penalizing user
6 }
7 }
8 function isVisible(obj) {
9 return (obj.offsetWidth == 0 && obj.offsetHeight == 0)? False: True;

10 }

Figure 2.13: Nested branch divergence example

even though most modern browsers such as Chrome and Firefox have some support for

it [23]. Therefore, we opt not to use it in our current implementation.

When two aligned traces are found to have multiple nested branch divergences, it is

important to decide whether to rewrite all of the branch outcomes or only a subset of them.

Taking the example in Figure 2.13, we can force either the return of isVisible() call or

condition of Width == 0 && Height == 0 to false. In general, we prefer to rewrite the con-

dition at the outer level, meaning isVisible(obj) will be rewritten to isVisible(obj) ||

true. This is because rewriting at lower level can potentially cause functionality breakage

as low-level functions tend to be reused for various purposes (potentially beyond adblocker

detection).

As mentioned earlier, a typical anti-adblocker requires conditional statements to

test whether the desirable ad-related elements are still present in page, and trigger anti-

adblocking behaviors accordingly. These elements can either be real ads, or sometimes

baits intentionally placed for adblocker detection [104]. It is possible that sophisticated

anti-adblocking scripts (such as PageFair) will conduct multiple rounds of such checks.
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1 $(window).load(function () {
2 if(typeof canRunAds != ’undefined ’){

// check level 1
3 var adFilled = $(’.adsbygoogle ’)

.find(’ins’).length;
4 if(adFilled !=0){ // check level

2
5 // return okay
6 } else {
7 $(’.layerPubAdBg ’).fadeIn ();
8 }
9 } else {

10 $(’.layerPubAdBg ’).fadeIn ();
11 }
12 });

2.No block?

4. Really 
no block?

10. Penalty

True False

7. Penalty5. Pass

True False

Figure 2.14: An example anti-adblocker with two levels of adblock detection

A simplified real example from www.pandajogosgratis.com is illustrated in Fig-

ure 2.14. We note that the first check considers whether the canRunAds element is blocked

or not (‘undefined’ means that it is blocked). If no blocking is detected, it continues with

a secondary check which looks at the length of an element. It is not hard to tell that the

positive trace (with adblocker) represented on the control flow graph would be (1:false) and

the negative trace (without adblocker) would be (1:true, 2:true). Now when we analyze the

two traces differentially, only the first branch divergence can be detected. Unfortunately it

is not enough to force only the first branch to be true, as the second branch will still turn

out to be false, resulting in adblock detection.

Our solution to this problem is to iteratively collect such nested divergences. More

specifically, once we finish one round of differential trace analysis (with the corresponding

JavaScript rewrite rules being produced), we deploy the rule and continue a new round of

instrumentation and differential analysis. This way, we will be able to capture the second
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branch divergence and incrementally include it in our rewrite rules. The iteration stops

when no more new divergences are detected.

Implementation and preliminary results. Ideally, we should be able to implement

JavaScript rewrite using a browser extension. Unfortunately, JavaScript rewrite is not

natively supported by most browser extension APIs. In lieu of that, we implement the

rewrite system using the mitmproxy [25]. The downside is that a user needs to install

an external program (and certificate) as opposed to only an extension. The benefit is

that this proxy-based solution is browser-independent and can be deployed across different

platforms. As mitmproxy already provides nice abstractions for HTTP(S) request and

response manipulation, our implementation of JavaScript rewrite is only less than 200 lines

of python code. The whole system is completely automated in rewriting the right conditions

without any human intervention.

To evaluate the effectiveness of the JavaScript rewrite, we choose to test the anti-

adblocking websites that are known to have visible reactions. After the JavaScript rewrite,

if the visible reactions are eliminated, we consider it a success. In addition, we will check

for any functionality breakage by interacting with the website with modified JavaScript.

Overall, for the 428 detected positive websites with visible reactions (from §2.5.1),

we find that the JavaScript rewrite can successfully evade 352 websites (82.2%), evident by

the lack of warning or popup messages after the rewrite. Here we follow the same manual

inspection methodology in §2.5.1. The failed cases are mostly due to the same reasons

as outlined in §2.5.1. Only one website is found to have broken functionality where the

JavaScript is mistakenly considered to be disabled.
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2.6.2 Hiding Adblockers with API Hooking

While JavaScript rewriting is a promising direction, it has several drawbacks and

limitations. First, it requires a MITM proxy (or with browser modification) and cannot

be implemented as a browser extension. Second, it is more intrusive and likely to cause

breakage of site functionality. We next consider an alternative solution that aims to address

the above shortcomings.

Our key observation is that all API calls used by publisher scripts to examine the

state of the page (e.g., whether an ad is visible) can be intercepted and modified by a browser

extension [8, 127]. In Chrome extensions, for example, a content script can run before the

page is loaded (no other script can run yet), i.e., document start. This allows one to

inject script in the page which can define wrapper functions for existing objects. However,

many objects are created on demand and therefore are not available for interception in the

beginning. Unfortunately, it may become too late to inject any script after a page is loaded,

i.e., document end as other scripts might have already executed (and race conditions may

occur). This makes API call interception a challenging task.

To understand how this problem can be overcome, we observe that there are

generally two sources of variables/objects that are checked for adblocker detection: (1)

DOM elements which are either statically or dynamically created; (2) variables unrelated

to DOM elements (defined elsewhere and potentially nested in other objects).

For (1) — DOM element checks, all objects are in fact retrieved through API calls

from the browser built-in object document such as document.getElementByName(arg).

This allows our injected script to intercept the element retrieval. If the object is deemed
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a bait or a real ad (based on its name, id, or source, etc.), we can simply return a fake

object prepared ahead of time. Later when the object is checked for size, visibility, and

other attributes, we can simply return the values according to what we have learned during

the analysis of anti-adblocking scripts. If the object is dynamically created, it is more

challenging to decide if it is an ad object (as its div id, class and other properties are all

dynamically assigned), and therefore may require more monitoring at runtime. An example

is shown below:

1 var bait = document.createElement (’div’) ;
2 bait.setAttribute (’class ’, this.options.baitClass);
3 bait = body.appendChild(bait);
4 if (bait == undefined || bait.height == 0) { /* adblock detected */ }

In this case, bait may become null and therefore trigger the adblock detection.

Unfortunately, we don’t know at the creation time whether the div will be blocked by

adblocker and cannot simply return a fake object (as it could be a useful div not related

to ads). However, it is possible that we still instrument document.createElement() and

inside of it we can add additional hooks to intercept future method invocations on this

object (e.g., setAttribute), which will allow us to determine the true class of the object.

Below is the code snippet to illustrate the instrumentation logic.

1 var old_createElement = document.createElement ();
2 document.createElement = function(type) {
3 var temp = old_createElement(type);
4 var old_setAttribute = temp.setAttribute ();
5 temp.setAttribute = function(key , value) {
6 // check if it is an ad-related element by consulting the adblocker

filter list
7 }
8 }

This allows us to keep monitoring the future development of a newly created

element. If it does turn out to become an ad-related element, we will mark it so. In the
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future, when the element is checked for its height or other attributes, we can similarly return

expected results from the offline knowledge.

Note that an ideal solution would require us to link the object used for adblock

detection to its name, id, or classname, etc. This way we will know precisely what values to

return when their properties are checked. For instance, if the condition is obj.height <=

20, then we need to fake a number that is larger than 20 for the specific obj. Such analysis

is more complex and will likely involve symbolic execution. We leave implementation of

this approach for future work.

For (2) — non-DOM element checks, if the checked variables are not related to

DOM elements, the only possibility we have observed is related to JavaScript blocking. In

such cases, there is typically a global variable (or a variable nested in other global objects)

defined in an ad-related script. If the script is blocked, then the variable becomes undefined

and therefore trips the adblocker detection. Fortunately, if the variable is a global one and

directly accessible from the browser built-in window object, we can intercept it and return

any expected result to pass the detection check with the following single line of code:

1 // intercept access to window.adblockV1 , and always return true;
2 window.__defineGetter__(’adblockV1 ’, function () { return true; });

However, if it is a nested variable defined in other objects, as mentioned earlier we

will not be able to intercept its accesses. As a workaround, we propose to let the ad-related

script load (instead of blocking it) and rely other adblocking filter rules to remove any

injected ads. After all, ads have to be inserted into the DOM tree in order to be rendered

(and trigger adblockers to block them). If the ad-related script is not injecting any ads

and instead only serving as a bait to define some variables, not blocking the script itself
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actually can already successfully avoid anti-adblocking. Interestingly, we find many bait

scripts such as the one at https://tags.news.com.au/prod/adblock/adblock.js that

do exactly this. In the more general case though, this transforms the problem into DOM

element checks which we already have a solution for.

Implementation and preliminary results. Without loss of generality, we have imple-

mented a proof-of-concept Chrome extension that works for a randomly selected subset of

websites and third-party scripts for which we have ground truth (able to manually analyze

the script and confirm their behaviors). We have picked 15 websites, 5 with popular third-

party scripts (silent reporting), 5 with less popular or custom scripts (silent reporting),

and 5 with visible reactions (ad switching or warning messages).2 Our solution works well

against all of these websites, i.e., it successfully avoids the anti-adblockers. Specifically,

we can always successfully either avoid the warning messages or change the reporting mes-

sages (e.g., from adp = 1 to adp = 0). We find that 8 websites (and their corresponding

scripts) check attributes of DOM elements and 7 websites check values of variables other

than DOM elements (e.g., defined or not). Out of the 7, 6 check a global variable such

as window.adblockV1 and therefore can be easily intercepted and tricked. One website,

however, checks a nested variable window.utag data.no adblocker. Interestingly, both

utag data and no adblocker are defined in a bait script. Simply allowing the script to

execute can trick the adblock detector without any other implications. We analyze a few

more scripts below as case studies.

2They are: popular third-party scripts: https://mc.yandex.ru/metrika/watch.js, http://

static.criteo.net/js/ld/publishertag.js, http://widgets.outbrain.com/outbrain.js, https://

cdn.taboola.com/libtrc/impl.254-8-RELEASE.js, http://asset.pagefair.com/measure.min.js; and
websites with less popular or custom scripts: philly.com, foxsports.com.au, cda.pl, bt.dk,
boredomtherapy.com; and websites with visible anti-adblockers (first with ad-switching and others with warn-
ing messages): memburn.com, pasty.link, exspresiku.blogspot.co.id, ani-short.net, gta.com.ua.
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One of the most popular anti-adblocking third-party scripts from Taboola has a

complex logic of adblock detection spanning several functions (the simplified code snippet

already explained in §2.5.2). Specifically, the script is written generically so that it can load

a list of bait DOM elements dynamically by iterating through a list of predefined element

ids (strings).3 Despite this, as soon as we can track the origin of the element ids in the

array, the rest can follow our procedure as described earlier (about how to deal with DOM

element checking).

As an interesting example, we show that memburn.com’s ad switching behavior

(described in Figure 2.3(a)) is now completely disabled as they are unable to detect the

failure of loading the initial ad through the simple check window.advertsAvailable ===

undefined. This is because we can intercept all accesses to window.advertsAvailable

and simply fake any arbitrary value. The page will now simply contain an empty white

space in place of the original ad frame.

Finally, we revisit the website bild.de for which JavaScript rewrite has caused

functionality breakage. By manual inspection, we have found that JavaScript rewrite tar-

geted a wrong function which is general and used by legitimate part of the website. By

applying the analysis procedure outlined in this section, we simply hook the access to win-

dow. art and provide a fixed constant to solve this issue.

Fundamentally, the API hooking based solution operates on the source of the

problem—DOM elements or ad-related scripts that get blocked by adblockers; it is therefore

more precise and less likely to cause side effects, compared to JavaScript rewrite. In addition,

3More details can be found in our project website at https://sites.google.com/view/antiadb-proj/.
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since our solution is readily deployable in a standard browser extension, it has potentials

to influence the future design of adblockers.

2.7 Limitations and Discussion

As we have seen, applying differential trace analysis to detect and analyze anti-

adblockers is a promising direction, and it has validated our idea to a large extent. Future

directions include improving the differential execution analysis by considering the value

differences, as well as investigating the feasibility of the techniques to hide adblockers.

Below we discuss the limitations of our solution at the implementation level and design

level.

Completeness of instrumentation. Our system is as good as the capability of the

instrumentation. At the moment, we do not cover all branch statements. It is especially

challenging to catch implicit branching operations such as callbacks (as mentioned in §2.4.1).

To overcome this, one strategy is to catch the registration of callbacks (e.g., onsuccess()

and onerror() that are associated to the same event. This way, we will be aware of which

one of the callbacks is taken in the A/B testing and catch the implicit branch divergence.

Nevertheless, in theory an our system becomes popular and the instrumentation details

are made known to the websites, they could easily counteract by hiding the adblocker

detection logic in the form that we do not capture. In addition, we also acknowledge

that in theory both flow differences and value differences need to be considered, as anti-

adblockers in theory can hide its logic without changing control flows. One other issue is
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the dynamically generated code through eval(), which can be addressed with improvement

of instrumentation as well — after all, we are instrumenting the JavaScript engine.

Robustness of differential execution analysis. Assuming a perfect instrumentation

capability, we should be able to catch most state-of-the-art anti-adblockers. However, we

point out three different cases where randomness can interfere or defeat our differential

analysis. First, we find that fluctuations in the network speed and system load can affect

the load time of the ads. Since adblocker detection in many cases is triggered by a timeout

callback (1s or 2s), an ad may or may not be completely loaded when the detection logic

is triggered, introducing randomness its execution trace. To mitigate this unintentional

randomness, we can force objects to be loaded from cache. Next, the randomization can

happen at two levels: (1) behavioral randomization — same script, different behavior; (2)

content randomization — different script, different behavior. For content randomization, as

we discussed, can be addressed by forcing the same exact webpage/scripts to be reloaded

during A/B testing. For behavioral randomization where multiple anti-adblocking modules

exist and one of them will be randomly selected in each run, we envision that it can be

addressed based on the following observation: the random selection of modules has to be

guided by some underlying source of randomness (e.g., system clocks, external network

packets). If we can force a random source in every run, then the random selection becomes

deterministic (e.g., a random coin flip becomes deterministic). This is very much similar

to virtual machine replay where all external non-determinism are recorded and replayed to

ensure the deterministic behavior of the VM. In summary, we argue that the two kinds of

randomization does not pose a fundamental threat to our differential analysis.
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Robustness of anti-adblocker evasion. Equipped with the result of differential analysis,

we have demonstrated the power of the JavaScript rewrite and API hooking based solutions.

They are subject to the ongoing arms race between adblockers and anti-adblockers. For

JavaScript rewrite especially, it is in general hard to estimate and contain the effect of

any code change, and therefore can hinder real-world deployment. Even worse, rewriting

JavaScript cannot be conducted in a browser extension and therefore further limits its uses.

For API hooking, as we discussed in §2.6.2, it is much more precise, close to the root, and

therefore much less likely to induce undesired side effects. The challenge of this approach

though is the reliance on the discovery of the exact DOM elements that are checked in

adblock detection (which may require further program analysis), and we leave as future

work.

In addition, both approaches share a fundamental limitation of webpage or JavaScript

content randomization. Unlike the task of anti-adblocker detection conducted in a controlled

environment, for which we can force not only the same page/script to be used but also the

execution to be deterministic (see discussion earlier), the task of anti-adblocker evasion

happens in real users’ browsers where we may not be able to contain randomization. For

instance, for content randomization (different pages/scripts are loaded in each visit), there

is no fixed page or script to learn from offline and every user will potentially obtain a unique

version that has never been observed in the past. Such frequent randomizations, however,

will likely hurt the web performance by effectively disabling caching. Users who are not

using adblockers will also be unnecessarily penalized.
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It is slightly easier to deal with behavior randomization where the same exact

script randomly selects anti-adblocking modules during different runs. In this case, since

different users will obtain the same copy of script, it is possible to learn which part of the

code is related to the random selection of anti-adblocking modules, and simply force the

outcome of that random outcome to eliminate this particular source of non-determinism.

2.8 Conclusions

We presented a differential execution analysis approach to discover anti-adblockers.

Our insight is that websites equipped with anti-adblockers will exhibit different execution

traces when they are visited by a browser with and without an adblocker. Based on this, our

system enables us to unveil many more (up to 52×) anti-adblocking websites and scripts

than reported in prior literature. Moreover, since our approach enables us to pinpoint

the exact branch statements and conditions involved in adblocker detection, we can steer

execution away from the anti-adblocking code through JavaScript rewriting or hide the

presence of adblockers through API hooking. Our system can bypass a vast majority of

anti-adblockers without causing any site functionality breakage (except one with JavaScript

rewriting).

We anticipate escalation of the technological battle between adblockers and anti-

adblockers — at least in the short term. From the perspective of security and privacy con-

scious users, it is crucial that adblockers are able to keep up with anti-adblockers. Moreover,

the increasing popularity of adblocking has already led to various reform efforts within the

online advertising industry to improve ads (e.g., Coalition for Better Ads [5], Acceptable
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Ads Committee [2]) and even alternate monetization models (e.g., Google Contributor [6],

Brave Payments [4]). However, to keep up the pressure on publishers and advertisers in

the long term, we believe it is crucial that adblockers keep pace with anti-adblockers in the

rapidly escalating technological arms race. Our work represents an important step in this

direction.
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Rank Script Source Detection

Trigger1

Reaction Count2

1 Google Analytics unknown unknown 614

2 Google DoubleClick real ads silent

reporting

403

3 YouTube real ads silent

reporting

311

4 Taboola baits silent

reporting

144

5 PageFair mixed baits

+ extension

probing

silent

reporting +

local storage

95

6 Chartbeat unknown unknown 82

7 Mail.ru baits silent

reporting

72

8 Addthis unknown unknown 61

9 Yandex baits silent

reporting

57

10 Cloudflare baits silent

reporting

51

11 Twitter unknown unknown 45

12 Criteo baits silent

reporting +

ads switching

32

13 Outbrain baits silent

reporting +

local storage

32

1 All scripts check attributes of DOM elements as opposed to others.

2 The number of websites that contain the script.

See cases for checks against other types of variables in §2.6.2

Table 2.1: Top origins of anti-adblocker scripts based on different sources
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Chapter 3

Lightweight and Stealthy

Adblocking

3.1 Introduction

The deployment of adblocking technology has been steadily increasing over the

past few years. PageFair reports that more than 600 million devices globally use adblockers

as of December 2016 [28]. Many reasons contribute to the popularity of adblocking. First,

lots of websites show flashy and intrusive online ads that negatively impact user experience.

Second, the pervasiveness of targeted or personalized ads has incentivized a global ecosystem

of online trackers and data brokers, which in turn raises concerns for user privacy. Third,

the inclusion of numerous advertising and tracking scripts causes excessive website bloat

resulting in slower page loads. The rise of adblocking has jeopardized the ad-powered
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business model of many online publishers. For example, U.K. publishers lose nearly 3

billion GBP in revenue annually due to adblocking [29].

In response to adblocking, many publishers have deployed JavaScript-based, client-

side anti-adblockers to detect and circumvent adblockers. An anti-adblocker typically con-

sists of two components: detection and reaction. For adblocker detection, common practices

include checking the absence of ad elements and proactively injecting bait ad elements [103].

Both practices exploit the fact that adblockers make observable changes to the DOM by

either blocking relevant requests or hiding DOM elements directly [128]. As a result, these

DOM changes can be perceived by the detection part of anti-adblockers through invocation

of JavaScript APIs such as getElementById(). After adblocker detection, the reaction

component can perform different subsequent operations. It can be aggressive paywalls that

prevent users from accessing the content or even switching ad sources.

Adblockers have addressed anti-adblockers in one of the following three ways: (i)

blocking the JavaScript code of anti-adblockers using filter lists [78], (ii) disrupting anti-

adblocker code based on program analysis [146], and (iii) hiding the trace of adblocking to

fool anti-adblockers [128]. The first countermeasure is currently adopted by the adblocking

community using filter lists such as Anti-Adblock Killer and Adblock Warning Removal [78].

However, the coverage and accuracy of these filter list is lacking. Our manual evaluation on

207 websites using anti-adblockers with visible reactions (i.e. warning message or paywall),

only less than 30% of them are correctly identified by Adblock Warning Removal [32] or

Anti-Adblock Killer [33]. This is likely due to the manual nature of filter list curation

and maintenance which is cumbersome and error-prone. The second countermeasure of
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rewriting JavaScript to deactivate anti-adblockers is prone to false positives causing site

breakage with unacceptable user experience degradation [146]. The third countermeasure

of hiding the trace of adblocking, as implemented in prior work [128], is not stealthy because

it injects new JavaScript which is easily detectable by anti-adblockers.

In this paper, we aim to completely hide the traces of adblocking in a stealthy

manner by going deep into the browser core. This is analogous to the rootkits in the OS

kernel where user applications are unable to detect the presence of a malicious process [123].

Since the browser core is at a lower level (more privileged), it is in theory capable of hiding

the states of adblockers from the anti-adblockers while presenting an ad-free view to the

user. Specifically, since anti-adblocker is implemented as client-side JavaScript, it can only

access web-page states through a number of predefined Web APIs including the ones used to

probe the the presence/absence of ad elements. These APIs are standardized by W3C and

implemented eventually by web browsers. ShadowBlock hooks any JavaScript API that

can potentially distinguish the difference before and after hiding ad elements, and assures

no information about the element hiding can be leaked through such API.

We tackle three major challenges in designing and implementing ShadowBlock.

First, existing adblockers’ model of blocking ad-related URLs (e.g., scripts, iframes, images)

does not fit well in our requirement of presenting the same exact DOM view as if no adblocker

is employed. For example, if a DOM element is not even retrieved, ShadowBlock would

have no way to fake its size, dimension, and other properties. Second, given that the

Web APIs suite and the rendering process implemented in modern web browsers are highly

complex and intertwined, there may exist unexpected channels that leak information about
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adblocking deployment. To achieve stealthy adblocking, we need to ensure that no such

channel discloses differentiable information about our element hiding action in a conclusive

way. Third, modern web browsers make significant efforts in improving their page loading

and rendering performance. As we develop ShadowBlock on open-sourced Chromium,

we need to minimize the overhead it incurs during the page load process.

Contributions. We summarize our key contributions as follows.

1. We design a well-reasoned solution where we present two different views to anti-

adblockers and users. On one hand, ad elements are never directly blocked (so they

remain visible to anti-adblockers); on the other hand, these ads are stealthily hidden

from users.

2. We reuse the rules from filter lists used by adblocking browser extensions to element

hiding decisions. On top of existing lists that are community-backed and have been

widely adopted, we replicate 98.3% of their ad coverage according to manual inspection

over Alexa Top 1K websites, with less than 0.6% breakage rate.

3. We design and implement a fully functional prototype which is open-sourced at the

time of publication. We evaluate the effectiveness of ShadowBlock prototype on

207 websites with visible anti-adblockers. We pick real anti-adblockers with different

trigger mechanisms and of different complexity. All of them are successfully evaded

by our new adblocker design.

4. Our performance evaluation of ShadowBlock shows that it loads pages comparably

fast as Adblock Plus on average, in terms of Page Load Time and SpeedIndex.
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3.2 Background and Related Work

3.2.1 Adblockers And Filter Lists

Mechanisms. Adblockers rely on manually curated filter lists to identify ads on web

pages. EasyList and EasyPrivacy are two most widely used filter lists to block online ads

and trackers, with about 71000 and 15000 rules [20], respectively. These lists consist of two

types of rules which are basically regular expressions. One of them is HTTP rules that block

HTTP requests to URL addresses that are known to serve ads. For example, the first filter

rule below blocks all third-party HTTP requests to amazon-adsystem.com, preventing any

resource on this domain from being downloaded. The other type is HTML rules, which

generally hides HTML elements that are identified as ads. For example, the second filter

below hides all HTML elements with ID promo container on wsj.com.

||amazon-adsystem.com^$third-party

wsj.com###promo_container

It is noteworthy that HTML rules are mostly only introduced to complement

HTTP rules while dealing with first-party text ads. This is because these text ads are di-

rectly embedded into the HTML itself with no associated additional resource loads, making

it inevitable to be included while the browser downloads the web page. Otherwise, HTTP

rules are preferred as they prevent ad resources from being loaded in the first place, saving

unnecessary network traffic and avoiding execution of ad-related scripts to speed up page

loading and rendering.

Limitations. A group of volunteers that maintain filter lists carry out the manual

process to add new rules, correct and remove erroneous or redundant rules all based on
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informal feedback from users [35]. Due to its crowd-sourced nature, this laborious effort faces

challenges from both the completeness and soundness. In the context of adblocking, the

former results in missed ads and the latter often translates to site breakage or malfunction

[49]. At the same time, as adblockers gain their popularity rapidly (11% of global Internet

population is blocking ads as of December 2016 [28]), online publishers are also fast adopting

countermeasures against adblockers that we summarize below.

3.2.2 Countermeasures Against Adblockers

Concealing ad signatures. First, online advertisers can bypass rules on filter lists

by concealing the signatures these lists use to identify ads. At a high level, this line of

countermeasures attempts include first-party advertising and rotation of ad serving domains.

First-party advertising exploits the fact that many rules on filter lists are designed to block

ads from being loaded from third-party servers. Instead, ads are served from the same

domain of the web page hosting them and their nature as ads is concealed as normal

content [38]. However, adblockers can easily hide any HTML element on a web page by

applying HTML rules that are crafted to target elements based on any combination of their

CSS/HTML properties. In other words, any CSS selectors used to create and/or locate ads

elements, can also let adblockers identify and hide these elements in turn.

Domain name rotation is another tactic for obfuscating advertising content. It

relies on ad rotation networks that serve ads from frequently-changing, or even automatically

generated [134] domain names, which overwhelms volunteers that maintain the filter lists so

they are hard to keep pace with the rule updates. This can result in, however, the indifferent
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blocking of all third-party resources on websites that show such ads [36]. By only whitelisting

legitimate scripts that support core functionalities, any possible ads or tracking JavaScript

are prevented from running, leaving no chance for loading domain rotating ads. Moreover,

AdBlock Plus recently launched its Anti-Circumvention Filter List [31] that specifically

counter “circumvention ads”, including ads adapting the two countermeasures above.

Deploying anti-adblockers. Second, many publishers choose to deploy anti-adblocker

JavaScript code to battle the rise of adblocking. Specifically, such client-side scripts consist

of two main components, trigger that detects the presence of adblockers by checking whether

ads or bait elements are still present, and reaction that can display warning messages and/or

simply report the results to a remote server [103, 146]. Prior work [78] showed that 686 out

of Alexa top-100K websites detect and visibly react to adblockers on their homepages. Even

worse, these visible ones only account for less than 10% of all anti-adblockers [146]. Zhu

et al. [146] showed that among Alexa top-10k websites, 30.5% are countering adblockers

in some form, with most of them being silent reporting. In summary, because of their

flexibility and ease of deployment, anti-adblockers are considered the most widely used

countermeasure against adblockers adopted by online publishers.

3.2.3 Countermeasures Against Anti-adblockers

Dedicated anti-adblocking filter lists. As a response, adblockers attempt to circum-

vent anti-adblockers by blocking their JavaScript code snippets, whitelisting bait scripts/ele-

ments, or hiding warning notifications. To this end, adblockers once again rely on manually

curated filter lists such as Anti-Adblock Killer [33] and Adblock Warning Removal [32].
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These lists either trick anti-adblockers’ trigger so they cannot detect adblockers, or mute

their reaction component to prevent responses after successful detection.

/kill-adblock/js/function.js$script

@@||removeadblock.com/js/show_ads.js$script

ilix.in,urlink.at,priva.us###blockMsg

For example, the first HTTP rule above blocks the code snippets containing implementation

of an anti-adblocking library KillAdBlock, and the second whitelists a bait script file named

show ads.js that is used to detect adblockers. The third HTML rule hides the warning

message with ID blockMsg issued by the associated anti-adblocker. However, our manual

evaluation (§4) shows that these lists targeting anti-adblockers are generally ineffective.

Only less than 30% of the anti-adblocking warning messages can be removed by the state-of-

the-art filter lists. This is again partly because of the crowdsourcing nature of these lists, and

also the rising popularity of third-party anti-adblocking services that deploy sophisticated

techniques dedicated for detecting/circumventing adblockers [103].

Disrupting anti-adblocker code. Other than the filter lists that have been offi-

cially adopted by adblockers, there are also research efforts for detecting and evading anti-

adblockers. One solution to measure the anti-adblockers is to perform program analysis

techniques that automatically determine if a script functions for anti-adblocking purposes.

Such analysis can be static that is based on syntactic and structural features extracted

from JavaScript code, and utilizes machine learning approaches to classify the code from

ground-truth-labeled training data [78]. It can also be dynamic that captures JavaScript be-

havior at runtime by collecting and analyzing differential execution trace with the adblocker

turned on and off [146]. After successfully pinpointing the critical conditions that are used
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by anti-adblockers to assert/react against the presence of adblockers, one can choose to

rewrite these conditions to prevent the anti-adblockers from functioning. This approach

is generally intrusive (patching Javascript can be tricky and cause breakage) and easy to

evade. Indeed, the overall success rate of this strategy is shown to be only less than 80%.

Hiding adblockers. Besides disrupting the functionalities of anti-adblockers, researchers

also have proposed a way to hide the trace of using adblockers, or known as stealthy ad-

blocking. In [128], Storey et al. created a shadow copy of the DOM that anti-adblockers

operate on before any adblocking actions take place, and then redirects all JavaScript APIs

(e.g. getElementById()) that can be used to detect the presence of ad elements to the

copy instead of the original DOM. However, this so-called rootkit-style stealthy adblocker

has inherent drawbacks. First, unless it lives in browser core and with significant engi-

neering efforts, the underlying DOM mirroring and propagation are difficult to be complete

in all cases. This is especially problematic in the context of web browsing as any site

breakage causes unacceptable user experience degradation. Second, even with a perfect im-

plementation, maintaining a live copy of complicated data structures such as DOM poses a

prohibitively high overhead onto the rendering performance of modern web browsers. Given

that modern browsers place significant emphasis on performance, heavy operations like such

at runtime are generally not acceptable.

3.3 ShadowBlock

In this section, we first provide an overview of ShadowBlock’s architecture. We

then discuss ShadowBlock’s two building blocks: (1) the identification of ad elements by
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translating filter list rules to per-element hiding decisions and (2) the concealment of our

hiding actions. Finally, we summarize the modifications we make in the relevant modules

of Chromium.

Ad elements
hiding & concealing

Ad elements 
identification

Ads-free web page

Anti-adblocking 
notifications 

avoided

Filter lists

Web page

Modified Chromium

Hiding action 
concealing

Element hiding

Figure 3.1: Architectural overview of ShadowBlock

3.3.1 ShadowBlock Overview

Figure 3.1 illustrates ShadowBlock’s architecture. It consists of two sub-systems:

one translates rules from filter lists and use them for identifying ad elements in DOM to

hide; the other hooks necessary points in Chromium to ensure that the hiding actions are

transparent to the trigger/detection component of anti-adblockers. Recall from Section

3.2.1 that filter lists contain tens of thousands of rules that either block HTTP requests to

fetch ad resources or hide HTML ad elements. To prevent exposing adblocking actions to

anti-adblockers, we need to hide the changes in DOM or other states (e.g. resource loads)
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introduced by adblocking because these changes can be detected by anti-adblockers through

JavaScript APIs such as getElementById(). In order to do so, we first allow all HTTP

requests to proceed, then mark any element that results in ads, and subsequently hide the

marked elements. It is important that we allow these elements to be retrieved so when

the anti-adblocking script queries the state of the element, ShadowBlock will be able to

generate valid responses (e.g., dimension of the element).

3.3.2 Identifying Ad Elements

Next, we explain our approaches for marking different types of ad elements. In

general, there are two types of elements: (1) those that are statically embedded in the

HTML, and (2) those that are dynamically created by JavaScript. First, some ad elements

are statically embedded in the HTML, including ad images, iframes, media files (i.e. video

and audio). Such ad elements can be typically identified by matching against the HTML

rules on filter lists. Second, ad scripts usually create new ad elements that display ad-

vertising content. These dynamically created elements should be identified, marked, and

hidden.

Ad elements loaded statically. ShadowBlock does not need to do anything special

for such elements. Ad filter lists already contain extensive rules that cover them. For ex-

ample, the rule ||googlesyndication.com/safeframe/ in EasyList blocks the HTML file

from https://tpc.googlesyndication.com/safeframe/1-0-23/html/container.html on

site cnbc.com, which prevents a container frame used by Google Ads from being loaded.

To hide such an ad element, ShadowBlock needs to first identify the iframe element with

the blocked URL as its source attribute and then hide it.
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Alternatively, Easylist rules may hide ads based on element properties (e.g., el-

ement id). We simply reuse these rules to match elements in the page, and mark them

accordingly.

Ad elements generated dynamically by ad scripts. There are generally two cases.

The easy and the hard. For the easy case, the dynamically generated ads may contain URLs

or ids that already show up on Easylist. This allows us to directly mark them as ads using

very much the same strategy as mentioned above.

For the hard case, the dynamically generated elements are not on Easylist. This

is because it is assumed that ad scripts are blocked upfront and therefore there is no need

to block the elements generated by them. In ShadowBlock, in contrast, we need to allow

ad scripts to load and execute, which mandates us to track such elements.

To identify elements dynamically created by ad scripts, we need to attribute each

element to the script that created it. More formally, we can define this process of attri-

bution as tracking the data provenance of HTML elements using taint analysis. Note that

there are in general two types of element creation that can be initiated by a script: (1)

control-flow-based creation, in which the script directly invokes JavaScript API (e.g. cre-

ateElement(tagName)) and only propagates data from itself into the new element; and

(2) data-flow-based creation, in which the script uses data from sources other than itself

into the new element (e.g. createElement(fetchTagNameFromServer())). Dynamic taint

analysis [85] can accurately track the data provenance through taint propagation for both

types. Simply put, taint analysis involves taint source (where data comes from), taint sink

(where data ends), and propagation policies that define how that tainted data are propa-
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gated through the program execution. In our case, all data derived from an identified ad

script as “tainted” (i.e., data downloaded through an ad URL, or retrieved/generated by an

ad script), then such data can be tracked standard taint analysis propagation policies for

JavaScript (e.g., [60]). Finally we will hide any tainted HTML elements (i.e. taint sinks).

Unfortunately, such dynamic taint analysis at runtime usually incurs significant

overhead for web browsing [85]. In addition, we argue that the cases where taint analysis

will be required are limited. Specifically, even if ad elements take dynamically fetched

data, e.g., createElement(fetchTagNameFromServer()), they are most likely created by

ad scripts. This is sufficient for us to mark the element and hide it (irrespective of what

data are actually fetched from the server). The reasoning is that if we consider extension-

based adblockers as our baseline, the dynamically created element wouldn’t even exist in

the first place (as the script as a whole would have been blocked). Based on the above, we

devise a simple technique which we call execution projection using the call stack information

extensively (which are used for various other purposes as well [79, 92]). At a high level, we

maintain an “execution stack” that keeps track of what scripts are being executed at any

given time point, and mark an element as ad if there is any ad script in the stack when

the element is being created. For example, consider a simple ad script ad loader.js in

Code 3.1.

1 var ad_img = document.createElement("img");
2 ad_img.src = "https :// some_ad_publisher.com/ad.jpg";
3 document.body.appendChild(ad_img);

Code 3.1: Example ad script ad loader.js

In this example, at the time of the image element creation, ad loader.js would

be at the top of the execution stack because it is being executed.

69



Ad Scripts

Non-ad 
Scripts

Create 
(e.g. via createElement())

Execution Stack

(bottom to top)

Elements marked as ad

Non-ad 
Scripts

Execution Stack

(bottom to top)

Elements marked as 
non-ad

Figure 3.2: Execution projection for marking script-created ad elements

After attributing elements to ad scripts, which are identified using filter lists, we

can mark all ad elements and hide them accordingly. We illustrate this projection/marking

process in Figure 3.2. In more complex cases, there can be many scripts in the executing

stack, because code in one script can invoke functions in other scripts, and so on. More

importantly, ad scripts can invoke non-ad libraries (e.g. jQuery) to create ad elements so

the top script in stack at the time of element creation is not necessarily ad script. To tackle

this challenge, we need to scan the entire execution stack. If there is any ad script in the

execution/invocation chain, ShadowBlock should mark the element being created as ad.

This is because any script (ad-related or not) invoked by a known ad script should never

have been executed in the first place, given that adblocking extensions simply block the

whole ad script altogether.

Note that our approximate solution does not handle a special case when an element

is created via a JavaScript API that gets overridden (hooked) by an ad scripts . Since client-

side JavaScript is allowed to override (i.e. injecting code containing a callback to its own)
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arbitrary JavaScript API functions (e.g. createElement()) with its own version, we would

see ad script in the stack when an element is being created via the API overridden by an ad

script. In this case, we may mistakenly mark a non-ad element as ad when the overriding

ad script does not propagate any data into the newly created element. To tackle this issue,

at the time of element creation, we would need to further check whether the code injected

by the overriding ad script alters the element. If it alters the element then we mark the

element as ad, and non-ad otherwise.

1 var original = document.createElement;
2 document.createElement = function (tag) {
3 new_elem = original.call(document , tag);
4 report_statistic_to_server(new_elem);
5 return new_elem;
6 };

Code 3.2: API overriding with the element intact

1 var original = document.createElement;
2 document.createElement = function (tag) {
3 new_elem = original.call(document , tag);
4 ad_elem = change_to_ad_elem(new_elem);
5 return ad_elem;
6 };

Code 3.3: API overriding with the element altered

3.3.3 Stealthily Hiding Ad Elements

After identifying ad elements, ShadowBlock needs to stealthily hide them so as

to not leaving its trace to anti-adblockers. Next, we discuss how we realize such stealthiness

through CSS property access API hooking.

Choice of hiding mechanism. We first need to decide how to hide ad elements within

Chromium. Given the complexity of modern web browsers and API standards, we can

hide an HTML element in several different ways. To better understand different hiding

mechanisms, we illustrate Blink’s rendering process in Figure 3.3 [43]. Blink’s rendering
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path, from parsing an HTML file to the pixel display on user’s screen, can be summarized

in the following phases.

1. Parse flat HTML and CSS in plain-text to DOM and CSS Object Model (CSSOM)

in tree structure.

2. Combine DOM and CSSOM to Render Tree, which captures all the visible DOM

content and all the CSSOM style information for each node.

3. Paint the rendered pixels to user’s display according to Render Tree.

DOM

CSSOM

Render Tree Rendered 
Page

Paint

C
om

bine

Parse

Parse

Figure 3.3: Rendering Path for Blink

In theory, each of these 3 phases contain APIs/modules that we can leverage for

hiding an HTML element (or in other words, preventing it from being rendered). We outline

different possible strategies to hide HTML elements below:

1. DOM/CSS layer: (i) remove the element from DOM; (ii) set the element’s style to

display:none, visibility:hidden or opacity:0

2. Render Tree layer: remove the LayoutObject (i.e. a styled node) from Render

Tree
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3. Paint layer: prevent the region in pixels associated with the element from being

painted

Note that generally, the higher-layer (i.e. closer to DOM/CSS layer) we tweak around

in the hierarchy, more engineering effort is required for ensuring its stealthiness against

anti-adblockers, while narrower gap we have to bridge for translating the identified ad

HTML elements to the data structure corresponding to that layer (e.g. CSS properties

for DOM/CSS layer, PaintBlock for Paint layer etc.). In contrary, the lower-layer (i.e.

closer to Paint layer) our modifications reside, fewer unexpected channels there are that

can potentially leak the hiding activities, but at the same time more engineering efforts are

required for translating the identified ad elements to that layer’s data structure.

After investigating different possibilities, we find the CSS property visibil-

ity:hidden achieves the most suitable trade-off for our objective. It persists in phase

(1), functions in phase (2) of the rendering path, and eventually affects both Render Tree

and painted/rendered page in phase (2) and (3). On one hand, visibility is a property

associated with every HTML element so we can easily identify after marking its effective el-

ement as ad, without the need of further tracing. On the other hand, unlike display:none,

it by design preserves the space taken up by the hidden element so it causes no side-effect

to the layout of the document, minimizing the impacted points that need to be hooked

for covering the hiding action. Figure 3.4 shows the visual difference between their respec-

tive effects. Compared to opacity:0 that also preserves the occupied space, visibility

is a categorical CSS property instead of numerical as opacity so its implementation in

Chromium is considerably less complex, simplifying our hooking logic as well.
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Figure 3.4: Comparison of toggling different CSS properties (Box 2 is hidden)

Hooking for concealing hiding actions. After hiding the target ad element by set-

ting its visibility CSS property value [47] to hidden, we next need to cover any traces

that result from this change of value and can be detected by anti-adblockers. Since anti-

adblocking scripts are client-side JavaScript code, which can only access the change of states

happened in the page through JavaScript Web APIs [48], we search through the source code

of Chromium, analyze relevant modules and locate the following three categories of APIs

that are impacted by the visibility CSS property:

• CSS/Style-related: changing a CSS property value immediately affects its own re-

turn value to JavaScript APIs via getComputedStyle(). We hook this value to vis-

ible to fool anti-adblockers. Fortunately, for our case, setting visibility:hidden

preserves the space the element occupies, so it does not collapse the page layout nor

affect other relevant CSS properties such as offsetHeight/offsetWidth.

• Event-related: flipping the visibility property prevents an element from receiving

some DOM events, such as onfocus. Since anti-adblockers can leverage these events
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as a side-channel to infer the real visibility of an element, we hook relevant modules

in Chromium so hidden elements can receive these events just like visible elements.

• Hit-testing-related: another effect of setting visibility:

hidden is Blink treats elements with it as inapplicable to Hit Testing, which checks if

an element is clickable by users in their viewpoints. This removes the hidden element

from return values to APIs like elementFromPoint(), which can potentially be used

by anti-adblockers to differentiate hidden elements from visible ones. We hook relevant

modules in Blink to cover it.

Since all JavaScript APIs, to our best knowledge, directly or indirectly rely on

the modules above to determine an element’s visibility, we ensure the completeness of our

hooking against potential information leakage to client-side anti-adblockers. It is worth not-

ing that to avoid affecting existing visibility:hidden CSS property value, in Chromium

we create a new visibility:fake-visible value that completely mimics what visibil-

ity:hidden behaves, except for the points that are intentionally hooked. Moreover, since

visibility is a CSS property that inherits from parent node to child nodes, we can make

the identified ad elements invisible to user’s display even though we only identify the top-

most element as ad according to filter lists.

3.3.4 Chromium Modification

Next, we describe our modifications to Chromium for implementing Shadow-

Block. We start with a brief introduction of Chromium’s architecture, then move to the

instrumentation we use for identifying ad elements, and lastly discuss the modules we lever-
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age for hiding identified ad elements and hook for eliminating the traces resulted from the

hiding action. We implement the prototype of ShadowBlock with 1307 LOC (1265 LOC

addition and 42 LOC deletion) in C++ on top of Chromium 1. Note that we re-use Sub-

resourceFilter [45] and libadblockplus [37] for parsing filter lists with production-level

robustness.

Chromium Architecture. Chromium’s rendering engine is called Blink and its JavaScript

engine is called V8. Blink [34] is responsible for fulfilling the rendering path shown in Fig-

ure 3.3, in which its core module renders all HTML elements and handles their visibility

CSS properties we use for hiding ad elements. V8 [24] handles the compilation and execu-

tion of all JavaScript code, including the ad scripts ShadowBlock needs to identify and

anti-adblocker scripts that intend to detect our hiding action over ad elements. Blink has a

bindings module to handle interactions between rendering and JavaScript execution. Ren-

dering related script tasks are passed through bindings module. For example, JavaScript

API calls such as getComputedStyle() are handled through the bindings module.

Instrumentation for identifying ad elements. As discussed in Section 3.3.2, there

are three types of ad elements ShadowBlock needs to identify.

First, for ad elements generated by ad scripts, we rely on execution projection. In

Chromium, we leverage blink::SourceLocation::Capture to capture the full v8::v8 -

inspector::V8StackTrace that includes the entire JavaScript call stack2 at any given time

1We open source our implementation at https://github.com/seclab-ucr/ShadowBlock to allow repro-
ducibility as well as help future extensions by the research community.

2We admit that there are cases where asynchronous tasks are not correctly captured by the default V8
call stack trace. However, we argue this incompleteness only translates to very limited number of missing
ads according to our manual evaluation in Section 3.4.2.
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point. It serves as the underlying stack tracing mechanism for V8’s debugger/inspector, and

has therefore been optimized with low overhead [46].

Second, we instrument the constructor of blink::Element class in Blink, which

captures the earliest point of creation event for all HTML elements. Because of V8’s single-

threading nature, we can safely associate the current stack trace to the element creation

event, and scan the stack to match the scripts in it against filter lists. If it is a match, we

then mark the element as ad. Additionally, we instrument the DispatchWillSendRequest

event in both blink::FrameFetchContext and blink::WorkerFetchContext to intercept

the point when an ad script loads another script, and mark the loaded script as ad script.

By adding such loaded ad scripts to a set, we match the stack trace against them as well

at element creation, ensuring we can mark all ad elements.

Third, for elements loaded with resources that match rules in the filter lists, we

intercept the AttributeChanged event in blink::Element and match the URL against

filter lists, if it is a match we mark this element as ad. For element hiding rules, we adopt

libadblockplus [37], a C++ wrapper library around the core functionality of Adblock Plus

to parse filter lists and generate the CSS selectors for matching ad elements for a particular

domain. Then, we mark the ad elements that match the generated CSS selectors by calling

ContainerNode::QuerySelectorAll().

Since many web pages are dynamic due to JavaScript execution over time, we also

need to monitor attribute changes of each element. For this purpose, we instrument the

AttributeChanged event and match any element with newly changed attributes against

CSS selectors from HTML rules. We mark an element as ad if it is a match, or un-mark the
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element if this element has been marked but it is not matched this time. Note that in order

for minimizing the number of matches needed to perform, we conduct the first batch match

(via QuerySelectorAll()) after the load event of DOM is fired, and then match elements

upon their attribute changes. This design choice leaves a short period of time (few millisec-

onds) between page navigation and load DOM event in which ads are displayed. We make

this trade off to reduce the overhead incurred by QuerySelectorAll(). In comparison,

adblocking extensions such as Adblock Plus inject CSS rules when document.readyState

turns interactive [52], which happens before the load event. However, it is important to

note that most ads in current web ecosystem are loaded in an asynchronous manner and

are unlikely to appear before the load event in first place.

Stealthy modifications for hiding ad elements. As mentioned earlier, we lever-

age visibility CSS property to hide identified ad elements by creating a new fake-

visible enumerate and visually hide elements with this enumerate, as if it behaves as

hidden. In the meantime, we hook relevant modules in both Blink and its bindings

with V8 to ensure the stealthiness of our hiding action. More specifically, for elimi-

nating traces accessible by CSS/Style-related APIs, we hook CSSComputedStyleDecla-

ration::GetPropertyCSSValue in Blink and force return visible to queries about hid-

den elements. For event-related APIs, we hook Element::IsFocusableStyle() and other

conditions that determine if an element can receive events. Lastly, we hook Computed-

Style::VisibleToHitTesting() so ad elements are still regarded “visible” from the view-

point perspective of Blink. In principle, our hooking guarantees that the identified ad
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elements are invisible to user’s display as pixels on screen but appear as visible to APIs

accessible to client-side JavaScript.

3.4 Evaluation

We evaluate ShadowBlock in terms of its (1) stealthiness against anti-adblockers,

(2) ad coverage, and (3) performance as as compared to adblocking extensions.

3.4.1 Stealthiness Analysis

Takeaway: ShadowBlock has 100% success rate against anti-adblockers whereas state-

of-the-art anti-adblocking filter lists have only 29% success rate.

Experimental Setup. To evaluate the stealthiness of ShadowBlock, we use previously

reported [146] 682 websites with visual anti-adblockers. We manually analyze these websites

and find that 207 of them still use visible anti-adblockers. For each website, we perform

stealthiness comparison as follows.

1. Open a website with four Chromium instances simultaneously. Each instance has a

different profile configuration: (i) no modification or extension; (ii) Adblock Plus ex-

tension with EasyList only; (iii) Adblock Plus extension with EasyList, Anti-Adblock

Killer list, and Adblock Warning Removal list; and (iv) ShadowBlock using Ea-

syList.

2. Scroll the page down to the bottom and wait for 30 seconds after the load event has

fired to ensure complete page load.
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Tool Notification Ad switching Crypto-mining

Total 201 5 1

ShadowBlock 201 (100%) 5 (100%) 1 (100%)

Filter lists 59 (29%) 1 (20%) 0 (0%)

Table 3.1: Breakdown of stealthiness analysis

3. Capture the full-page screenshots (including content after scrolldown) for all browser

instances.

4. Manually inspect the screenshots: compare (i) and (ii) to determine if the page has

visual anti-adblocker. If so, further compare (ii) and (iii) to check whether anti-

adblocking filter lists evade the anti-adblocker, compare (iii) and (iv) to check whether

ShadowBlock achieves the evasion.

Results. In addition to visible anti-adblocking notifications, we also consider ad switching

and crypto-mining reactions from websites. Table 3.1 compares ShadowBlock with anti-

adblocking filter lists for each of these anti-adblocking reactions. “Notification” refers to

websites that show anti-adblocking notifications such as paywalls. “Ad switching” refers to

websites that switch their ad sources upon detection of adblockers. “Crypto-mining” refers

to the websites that load crypto-mining scripts to mine crypto-currencies on detection of

adblockers [74]. We note that ShadowBlock has 100% success rate as compared to 29%

success rate of anti-adblocking filter lists.
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(a) Original ad

(b) Replaced ad

Figure 3.5: Ad switching behavior on golem.de

Case Studies. Below we discuss a few interesting examples of anti-adblockers that

ShadowBlock successfully handles but filter lists do not. Note that besides visible anti-

adblocking notifications, we also include one example discovered in the wild that uses non-

visual countermeasure against adblocker users.

Ad source switching. On detecting adblockers, some websites switch their ad sources to

sources that are currently not blocked by filter lists. Figure 3.5a and 3.5b show an example

from golem.de. Since ShadowBlock stealthily hides the original ads, the ad source

switching script is never triggered. Therefore, unlike what Figure 3.5b shows in which

adblocking extensions fail to remove the replaced ad, ShadowBlock successfully hides it.

Silent reporting. Besides visible reaction, anti-adblockers can also choose to silently report

the adblocking status to back-end servers to collect adblocking statistics. For example,

varmatin.com uses Code 3.4 to place a bait with keywords on EasyList to track adblocking
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users and report the status to back-end server. ShadowBlock handles such cases and

these statistics are never reported.

1 function checkAds () {
2 if ($(document.getElementById(’adsense ’)).css(’display ’) !== ’none’ && $(’

#myadsblock ’).length === 1) {
3 dataLayer.push({
4 ’DimAdBlock ’: ’Unblocked ’
5 });
6 window.adblockdetected = false;
7 } else {
8 dataLayer.push({
9 ’DimAdBlock ’: ’Blocked ’

10 });
11 window.adblockdetected = true;
12 }
13 }

Code 3.4: Code snippet on varmatin.com of silent anti-adblocker

Crypto-currency mining. Some websites have started to employ cryptojacking as a response

to adblocking [74]. To this end, websites use anti-adblockers to detect use of adblockers

and load scripts to mine a crypto-currency on user’s browser. Mining crypto-currencies

consumes processing power on user’s machine. For example, knowlet3389.blogspot.com

blocks organic content on detection of adblockers and asks users of allow crypto-currency

mining for monetization instead. Code 3.5 shows the crypto-currency mining script on

knowlet3389.blogspot.com.

1 setInterval(function () {
2 try {
3 var a3 = document.getElementById(’AdSense3 ’);
4 if (a3.offsetHeight < 33 || a3.clientHeight < 33) {
5 throw "Fuck U AdBlock!";
6 }
7 } catch (err) {
8 miner.start(CoinHive.IF_EXCLUSIVE_TAB);
9 }

10 }, 5487);

Code 3.5: Code snippet on knowlet3389.blogspot.com for mining crypto-currency

3.4.2 Ad Coverage Analysis

Takeaway: ShadowBlock achieves 97.7% accuracy, with 98.2% recall and 99.5% precision

in blocking ads on Alex top-1K websites.
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Experimental Setup. For ad coverage analysis, we use ShadowBlock on Alexa top-

1K sites and measure its accuracy in terms of true positive (TP), false negative (FN), true

negative (TN), and false positive (FP). We define TP, FN, TN, and FP as:

TP: All ad elements on a page are correctly hidden.

FN: At least one ad element on a page is not hidden.

TN: No non-ad element on a page is incorrectly hidden.

FP: At least one non-ad element on a page is incorrectly hidden.

For each website, we perform ad coverage comparison as follows.

1. Open a website with three Chromium instances simultaneously. Each profile has a

different profile configuration: (i) no modification or extension; (ii) Adblock Plus

extension with EasyList; and (iii) ShadowBlock using EasyList.

2. Scroll the page down to the bottom and wait for 30 seconds after the load event has

fired to ensure complete page load.

3. Capture the full-page screenshots (including content after scrolldown) for all browser

instances.

4. Manually inspect the screenshots: compare (i), (ii) and (iii) to determine if the website

has any FPs or FNs.

Results. Table 3.2 shows the breakdown of our manual analysis. We evaluate results in

terms of TPs, FNs, TNs, and FPs. Note that we are able to perform our analysis on 943
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(a) Adblock Plus (b) ShadowBlock

Figure 3.6: Minor visual breakage caused by ShadowBlock

out of Alexa top-1000 websites. The remaining websites failed to properly load primarily

due to server-side errors (e.g., 404).

False Positive Analysis. From Table 3.2, we note that ShadowBlock has only 0.5%

false positive rate. However, they are still critical as they might lead to user experience

degradation. We further investigate false positives to diagnose their root cause.

theatlantic.com is an example of false positive. Figure 3.6 shows that Shad-

owBlock incorrectly hides organic content at the bottom of the page. On further inves-

tigation, we find that an ad script ads.min.js loads another script script.js that hooks

JavaScript API methods. In this case, even when a non-ad element is being processed it

would go through same hooked JavaScript API methods. Since our ad marking heuristics

Event TP FN TN FP

Count 926 (98.2%) 17 (2.8%) 938 (99.5%) 5 (0.5%)

Table 3.2: Breakdown of ad coverage analysis
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check for the presence of ad scripts on execution stack it will incorrectly mark such ele-

ments as ads. In comparison, extension-based adblockers block the request for downloading

ads.min.js in the first place, so the hooking script never gets executed. As discussed in

Section 3.3.2, we can deal with this issue by checking whether or not the overridden API

alters the elements and hiding the elements altered by ad scripts.

False Negative Analysis. From Table 3.2, it can be seen that ShadowBlock has only

2.8% FNs. We further investigate FNs and identify that they are again caused by corner

cases not covered by ShadowBlock and that they can be handled by performing taint

analysis.

sohu.com is an example of false negative. On further investigation, we find that

sohu.com uses a non-ad script (not on Easylist) to load both ads and non-ad content on the

page. Since ShadowBlock only attributes elements created by ad scripts as ads, it misses

dual-purpose scripts. It’s noteworthy that this should be a rare case, as it is contrary to

the common practice of using dedicated third-party scripts to create and load ad elements

that most ad publishers exercise today. These publishers normally deploy third-party ad

scripts because they have a complex bidding system and prefer dominant control over their

ad modules
1 "resource": {
2 "type": "text",
3 "text": "Guangzhou , Audi TT 82.2K RMB off",
4 "md5": "",
5 "click": "http :// dealer.auto.sohu.com /882054/ promotion/article?id =7360579"

,
6 "imp": [],
7 "clkm": [],
8 "adcode": "Guangzhou , Audi TT 82.2K RMB off",
9 "itemspaceid": "15770"

10 }

Code 3.6: JSON snippet on sohu.com for loading ads (translated from Chinese)
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We can tackle this issue by implementing the taint analysis approach discussed

in Section 3.3.2. Specifically, Code 3.6 shows the snippet of a JSON file on sohu.com

containing parameters required to create ad elements. In this case, we will need to first

mark the JSON object as ad-related, or tainted, and whenever any piece of the data derived

from it propagates to any element field (e.g. the URL in JSON’s click field is used to set

an element’s src attribute), we mark the element as ad. In comparison, extension-based

adblockers intercept the network request to load such ad JSON based on its URL in the

first place, which effectively prevents the resulting ad HTML element from being created.

Similarly, we observe FNs on youtube.com where ShadowBlock is unable to hide

all video ads. Our manual analysis shows that youtube.com leverages the Media Source

Extensions (MSE) API [51] to load video segments through AJAX requests as byte streams.

Unlike the standard HTML video tag that loads videos as HTTP requests, youtube.

com loads ad videos in Blob objects [50] which are downloaded by JavaScript on the fly.

ShadowBlock cannot identify video ads loaded as Blob objects, because both ad and

non-ad objects are generated by the same non-ad script and assigned to a single HTML

video element. Unlike our strategy that relies on differentiating ad scripts, extension-based

adblockers block the AJAX requests to fetch ad video segments based on their URLs, which

achieves the goal of ad removal. As discussed earlier, taint tracking can be used to address

this challenge.

Even through we show that tainting is the ultimate solution to the FN cases

encountered during our evaluation, we argue that it a comprehensive taint engine poses

prohibitively high runtime overhead in the context of web browsing [60, 85]. More im-
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portantly, our evaluations have shown the sufficient accuracy of ShadowBlock with the

lightweight stack-based execution approximation, as discussed in Section 3.3.2.

3.4.3 Performance

Takeaway: we use two web performance metrics: Page Load Time (PLT) and

SpeedIndex. ShadowBlock speeds up page loads by 5.96% in terms of median PTL and

6.37% in terms of median SpeedIndex, on Alexa top-1000 websites.

Page Load Time (PLT). PLT has been the de-facto standard metric for measuring web

performance. PLT can be computed by timing the difference between certain browser events

using the Navigation Timing API [39]. In order to minimize variations introduced by the

initial network setup (e.g., establishing TCP connection with server), we measure the time

between responseStart [42] and loadEventStart [41] events.

SpeedIndex. PLT does not capture a real user’s visual perception of webpage rendering

process. For example, two pages A and B can have exactly the same PLTs, but page A

can have 95% of its visual content rendered by a certain time point while page B has only

rendered 30%. From the user perception perspective, page A outperforms page B but they

are equally good in terms of PLT. To address this issue, SpeedIndex [44] was proposed to

capture the visual progress of above-the-fold content, i.e., content in the viewport without

scrolling. Unlike PLT, SpeedIndex measures how visually complete a webpage looks at

different points during its loading process. Specifically, the page loading process is recorded

as a video and each frame is compared to the final frame, for measuring completeness.

SpeedIndex is computed using the following formula:
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SpeedIndex =

∫ tend

tbegin

1− V isualCompleteness

100

, where tbegin and tend represent the time points of the start (i.e. responseStart event in

our case) and end (i.e. loadEventStart event in our case) of video recording, respectively.

V isualCompleteness measures the difference of the color histogram for each frame in the

video versus the histogram at frame tbegin, and compares it to the baseline (difference of

histogram at tbegin and tend) to determine how “complete” that video frame is.

We emulate DSL network condition by throttling Chromium [40] to 4 Mbps down-

link bandwidth and 5ms RTT latency for all responses to best mitigate measurement volatil-

ity across different browser instances. 3 For each site, we first load the webpage to generate

its resource cache, then we re-load the webpage 10 times and average the measured PLT

and SpeedIndex for each page load. Note that our warm-up strategy ensures most of the

static non-ad resources are cached, while ad resources dynamically generated by JavaScript

execution are not. This is intended, because we want to minimize the variability introduced

by irrelevant factors such as processing non-ad network traffic.

We compute relative ratio of PLT/SpeedIndex across two different configuration

pairs (A) ShadowBlock and vanilla Chromium; and (B) ShadowBlock and Adblock

Plus (EasyList + Anti-blocking lists), which are denoted as ConfA and ConfB, respectively.

PLTGroupA − PLTGroupB

PLTGroupB

3We also run another configuration with 750 Kbps downlink bandwidth and 100ms RTT latency to
emulate a regular 3G condition [40] and observe similar median trends for both PLT (DSL -5.96% vs 3G
+0.30%) and SpeedIndex (DSL -6.37% vs 3G -7.07%) with respect to Adblock Plus.
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Figure 3.7: CDF for performance metrics

SpeedIndexGroupA − SpeedIndexGroupB

SpeedIndexGroupB

Overall, both PLT and SpeedIndex show that ShadowBlock speeds up page load

time as compared to not only Adblock Plus but also vanilla Chromium. In comparison to

Adblock Plus, ShadowBlock speeds up page loads by 5.96% in terms of median PTL and

6.37% in terms of median SpeedIndex. In comparison to vanilla Chromium, ShadowBlock

speeds up page loads by 1.03% in terms of median PTL and 5.22% in terms of median

SpeedIndex.

The distributions of PLT and SpeedIndex in Figure 3.7, also confirm this trend. We

surmise that ShadowBlock’s speed up with respect to Adblock Plus is because Shadow-

Block’s in-browser modifications, versus Adblock Plus’s JavaScript-level implementation,
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inherently incur less overhead without the necessity of communications between browser

core and extension code. For the speed up with respect to vanilla Chromium, it can be

explained because ShadowBlock avoids the rendering and painting work for hidden ad

elements.

3.5 Discussions and Limitations

Hiding instead of blocking. As discussed in Section 3.3.3, ShadowBlock is designed

to visually hide ad elements. Compared to extension-based adblockers that prevent ad

resources from loading, ShadowBlock’s hiding strategy is inherently limited in two ways.

First, ShadowBlock loads the ads and then hides them, thus does not save any network

bandwidth. Second, it allows ad resources to load and ad-related scripts to execute, thus

exposes users to online tracking. However, we argue that ShadowBlock can complement

other tracker blocking approaches that obfuscate and anonymize user-identifiable data [107,

109] which do not require blocking ad requests or stopping script execution.

Completeness of implementation. As discussed in Section 3.3.2, a sufficiently complete

yet lightweight taint analysis engine is required to tackle all the FN cases we encounter dur-

ing ad element identification. However, given the adequate accuracy and practical runtime

overhead level, we consider our execution projection technique a sufficient and necessary

simplification of taint tracking conceptually.

Adversary from publishers. Modern websites enforce strong isolation among different

scripts running in the same document. Violating such policies would normally raise sub-

stantial awareness to owners of other scripts or the website itself. This isolation also helps
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establish the assumption that ad scripts should never interact with non-ad elements in the

same page. However, As soon as the publishers become aware of our approach, they might

attack ShadowBlock by pro-actively breaking this assumption to cause collateral dam-

age. For example, an ad script can intentionally modify an attribute of a non-ad element

without changing its semantics (e.g. by changing the text encoding). In this case, if we

blindly follow the taint tracking and mark the element with taint as ads, we might end up

hiding benign elements. To address this challenge, we will need an equivalence test on the

semantics of the cases with and without tainting.

Alternatively, an adversary may attempt to detect ShadowBlock. Even though

we have closed all normal channels (JavaScript APIs) from leaking information about the

presence of ShadowBlock. The adversary may still use more extreme means such as side

channels. For instance, if we conduct taint analysis, we slow down the JavaScript execution

and therefore they can potentially detect ShadowBlock by timing. However, we argue

that this will be extremely challenging if not impossible, because there exist many browsers

with different versions of JavaScript engines. There are simply too many possibilities if an

adversary observes that the execution is slightly slower (it can even be just a slow machine).

3.6 Conclusions

In this paper, we propose ShadowBlock— a Chromium based stealthy adblock-

ing browser. In addition to blocking ads it hides the traces of adblocking, making it insuscep-

tible to anti-adblocking. Compared to the current state-of-the-art adblocking extensions,
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that block resources, ShadowBlock allows resources to load and keeps track of them.

Later it hides the loaded resources and fakes their states to JavaScript APIs used by anti-

adblockers. Through manual evaluation, we find that ShadowBlock (i) achieves 100%

success rate in evading visual anti-adblockers; (ii) replicates 98.2% of ads coverage achieved

by adblocking extensions; and (iii) causes minor visual breakage on less than 0.6% of the

tested websites. In addition, we evaluate ShadowBlock’s performance and find that it

loads web pages as fast as adblocking extensions in terms of SpeedIndex and Page Load

Time, on average. In summary, ShadowBlock constitutes a substantial advancement for

building adblockers invisible to anti-adblockers and presents an important advancement in

the rapidly escalating adblocking arms race.
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Chapter 4

Eluding ML-based Adblockers

With Actionable Adversarial

Examples

4.1 Introduction

As adblockers have gained popularity in recent years [28], online advertisers have

started fighting back. Specifically, many techniques have emerged to circumvent the current

generation of adblockers. Notably, prior work [146] has shown that from among Alexa’s top

10K websites, more than 30% have JavaScript code that serve as countermeasures against

adblocker use.

Conventionally, adblockers rely on manually curated filter lists, with rules/sig-

natures that are matched against resource request URLs sent from the browser and the
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elements rendered in a web page. Unfortunately, manual maintenance of such filter lists

does not scale and is error-prone. Moreover, they are fairly easy to subvert (just as antivirus

signatures) [78, 103].

Given these limitations, several ML-based adblockers have recently emerged with

the goal of improving the effectiveness and accuracy over signature-based adblockers [53, 80,

128] . Such adblockers can be categorized into “perceptual” and “non-perceptual” classes.

Perceptual adblockers [53, 128] block ads by recognizing visual cues (e.g. “sponsored” or

other marketing keywords) in the web page. It is claimed that these are more robust because

some regulators (e.g. FTC) require publishers to disclose the ads and sponsored content.

However, recent research has shown that these vision-based adblockers can be easily fooled

by adversarial examples; this is a result of recent advances in adversarial machine learning

(AML) [131] where ML classifiers can be fooled with human-imperceptible perturbation to

the ad images.

In contrast, non-perceptual adblockers detect ads based on non-visual features

such as the URL contents and page structure. The state-of-the-art in non-perceptual ML-

based adblockers, arguably, is AdGraph 1 [80]. Improving on existing works that simply

analyze information in request URLs or HTML/JavaScript code, AdGraph builds a graph

representation of a web page load combining all this contextual information, and extracts

features from this graph structure to detect ad requests. AdGraph’s use of this contextual

information supposedly makes it robust because an advertiser needs to make non-trivial

changes to a web page, to in turn suitably perturb its graph structure, for circumvention.

1[124] extends AdGraph by combining visual and non-visual features. We believe that one can draw
similar conclusions as in this work, on attacking its non-visual features.
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Furthermore, the use of non-visual features inhibit the applicability of traditional adversarial

attack techniques from the unconstrained domain [131].

The main contribution of our work is that we show that it is in fact still possible

to craft adversarial ads to circumvent AdGraph. The feasibility of crafting adversarial

inputs in domains with stringent constraints (e.g., web pages) remains largely unexplored.

The main challenge is to preserve application semantics, which in this case is the visual

rendering of the web page. Since web pages are processed by the web browser prior to

user exposition (unlike images), rather than the magnitude of the perturbation being the

most important criterion, what matters is whether the rendered web page after applying

the perturbation presents the same look-and-feel and functionality. Thus, to make so-

called actionable perturbations, we need to principally rethink the constraints that must be

enforced while crafting adversarial samples.

Extending this insight to ML-based adblockers, given the goal of perturbing an

ad resource request to bypass the ML classifier: (i) the adversarial example should be

actionable in that it must be “mapped back” to the appropriate valid webpage and (ii) the

modified request must preserve its original functionality of directing the requester to the

remote ad server i.e., this requires the “functional” parts of the page to be equivalent before

and after modification. Our goal is to operationalize this insight by crafting such actionable

perturbations that can circumvent AdGraph. To this end, our challenge is to realize the

following properties.
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Feature-space actionability: First, any perturbation in the feature-space (in-

cluding features selected by the ML-based adblocker) must be bounded by domain-specific

constraints (e.g., number of child nodes of a DOM node cannot be negative).

Application-space actionability: Second, upon mapping the feature-space per-

turbations back to the application space (web page), the computed modifications may not

be perfectly translated, thererby requiring extra constraints to be satisfied.

As our primary contribution, we present A4: Actionable Ad Adversarial Attack

to craft perturbations that are actionable in both the feature- and the application-space. A4

needs minimal domain knowledge for providing a set of seed features that can be mapped

from the feature space back to the input or application space. Specifically, it has the

following desirable characteristics.

• Efficiency: Inspired by the widely used gradient-based attack, Projected Gradient De-

scent (PGD) [89], A4 iteratively searches for an adversarial example while accounting

for the unique constraints of the web domain. Our evaluations show that A4 achieves

a success rate of about 81% (evading AdGraph’s ad detection). In comparison, a naive

baseline cannot generate any viable example while two stronger baselines can achieve

success rates of only 33% or lower.

• Actionability: All perturbed web resources are guaranteed to comply with both the fea-

ture and application-space constraints. This compliance makes these examples practical,

i.e., they still retain their ad/tracker functionalities.
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• Stealthiness: A4 generates perturbations with low detectability (by adblockers) since

the perturbations are bounded and concealed with respect to the corresponding web page;

further, they are imperceptible to users (except for displaying the ads).

4.2 Background

In this section, we provide a brief background on adblockers and AML, and discuss

relevant related work.

Non-perceptual ML-based Adblocking. Because rule-based adblockers are plagued

by scale/errors and demonstrable attacks, ML-based adblockers are emerging. Previous

works leverage URL strings and JavaScript code as features to represent web resources in

ML models [57]. However, these attempts have low accuracy because the representations

used are incomplete in capturing the distinguishing characteristics of ad and non-ad re-

sources. This led to AdGraph [80], a recent work on identifying ad resources using a more

comprehensive set of features and is considered the state-of-the-art in this field, and also

our target in this paper.

AdGraph. By instrumenting the browser core, AdGraph collects a comprehensive set of

browser-internal events to stitch together a graph that represents the interactions among

the HTML page elements, network requests, and JavaScript executions (e.g., web element A

is dynamically created by script B). This representation is then used to train a classifier for

identifying advertising and tracking resources. With support from this rich loading context,

AdGraph extracts 65 features from a resource load, and classifies the request based on these

features. These features can be categorized into two types: structural and content-based.

Content-based features include (but not limited to) certain susceptible ad-related keywords
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in the URL and the requested resource type (e.g. image, iframe). AdGraph’s classifier uses

Random Forest as the underlying model, which is non-differentiable. As discussed later in

§4.3, this choice hinders traditional AML based attacks as they require the use of gradient

to guide the adversarial example generation. Moreover, from the 65 features AdGraph uses,

5 of them are categorical, i.e., will be converted into more than 250 sparse one-hot-encoded

features. Such sparsity not only poses new challenges for existing adversarial attacks that

expect dense data, but also requires additional constraints to ensure the validity of the

one-hot vectors (we discuss how A4 overcomes these in §4.3).

4.3 A4: Actionable Ad Adversarial Attack

Adversarial attacks on ML models. Formally, suppose a classifier defined by its

prediction function Pmodel and an input x with its malicious label lmal; an attacker needs

to find an adversarial transformation Tadv such that Pmodel(Tadv(xinput)) ̸= lmal. The AML

community defines different levels of model transparency to describe the knowledge that an

attacker possesses with regards to the target classifier:

• With White-box attacks, an attacker is assumed to know all the information about the

model, including but not limited to the model internals (e.g., the classifier model type,

parameters), the training dataset and feature definitions.

• With Grey-box attacks, the attackers do not know the internals of the model, but know

the training dataset and feature definitions. Further, the attacker can query the target

classifier about the label for a specific input.
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Gradient-based attacks. One popular attack is based on the Fast Gradient Sign Method

(FGSM) [59], which leverages the gradients derived from the target classifier to compute the

perturbation that maximizes its loss function with respect to the particular malicious input.

Given the loss function of the target model Lmodel, FGSM computes its perturbation η as

η = ϵ · sign(∇xLmodel), where ϵ is the norm constraint specified by the attacker. There are

also other variants [67] that follow the “loss-maximizing” philosophy used in FGSM. They

are generally referred to as gradient-based attacks. Since these attacks all use the gradient

information from the target model, they should be considered as white-box attacks.

Gradient-based attacks generate perturbations that are bounded based on different

Lp (ϵ above) norms (e.g. L0, L2 or Linf ). These traditional norms, bounds, or thresholds

(referred to as norms in the paper) measure the magnitude of the perturbation, and are thus

primarily suitable for visual domain applications (lower norms generally mean less visually-

detectable changes) wherein human imperceptibility is the auxiliary characteristic desired

in a perturbation. In the web space however, the perturbed page has complex structures

and is processed by the browser which parses and renders the page. Thus, the norms can no

longer capture what is a “desirable perturbation”. In other words, new metrics are needed

to effectively capture the properties of functionality preservation and stealthiness of the

perturbed web page.

Projected Gradient Descent. Being a single-step attack, FGSM suffers from low success

rates, especially when gradients cannot provide sufficiently accurate guidance (usually the

case for non-white-box attacks). One can improve the success rate by applying FGSM

iteratively; this is known as the Basic Iterative Method, or Projected Gradient Descent [89].
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Essentially, PGD performs FGSM multiple times with a smaller step-size, or α. Formally,

the search procedure can be expressed as:

x0 = xinput

xn+1 = Clipϵ(xn + α · sign(∇xLmodel))

(4.1)

where, for a given a given input vector A,

Clip(Ai, ϵmin, ϵmax) =



ϵmin, if Ai < ϵmin

ϵmax, if Ai > ϵmax

Ai, otherwise.

(4.2)

A4 is inspired by the iterative philosophy used in PGD, and extends its simple clipping

mechanism to an extensive feedback loop (§4.3), which seeks to produce actionable pertur-

bations targeting ML-based adblockers.

In this section, we describe how A4 crafts actionable and stealthy adversarial

examples. Being actionable in the both feature and application spaces refers to the following

(i) in the feature space, explicit numerical constraints defined based on domain knowledge

(to maintain the validity, functionality and stealthiness of the ad request) must be complied

with, by its perturbed adversarial feature vector; and (ii) in the application space, the

perturbed feature vector must be successfully mappable back to the original web page.

Note that actionable perturbations in the feature-space are not naturally actionable in

the application-space; implicit/unpredictable side-effects that occur when the feature-space

perturbations are mapped back to application-space (e.g., a feature space perturbation of

adding nodes to a page changes other features such as the average connection degree) must

be considered when crafting perturbations.
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4.3.1 Threat Model

Before diving into the details of A4’s algorithm, we first define our threat model.

As mentioned in §4.2, AdGraph is a full-fledged web browser with custom modifications for

blocking ad/tracker resources. Generally, there are three participants when a user visits a

website using AdGraph: a user, an ad publisher (1st party) website and an advertiser (3rd

party); their relationships are depicted in Figure 4.1. As shown, the objective of A4 is to

User w/ 
AdGraph

Publisher 
(1st Party)

Advertiser 
(3rd Party)

Ad Contents 
Recovered

Ad Contents 
Visit

Perturbation
Added by A4

Figure 4.1: Different participants in A4’s threat model

help the website recover its ad revenue lost due to ads getting blocked by AdGraph. A4

achieves this by adding perturbations to contents generated by the publisher, so that the

classifier used by AdGraph is fooled into mis-classifying the ad resource as a non-ad. We

assume a grey-box attack setup as elaborated in §4.2, because even though AdGraph has

been open-sourced, it is easy for other ML-based adblockers to hide their model internals.

Recall that A4 is a gradient-based attack which requires the knowledge of model

internals, which we do not assume to have. Thus, we make A4 a transfer-based attack

where the attacker is only aware of the training dataset and feature definitions (see §4.2)

such that we can reconstruct a surrogate model. Based on the above, our perturbations

should meet the following requirements from the practicality/usability perspective:
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• Easily deployable by advertisers: As a third-party who pays the publisher website

for displaying its ad contents, an advertiser is generally reluctant to drastically change

the way they operate their services.

• Easily deployable at the ad publisher: From the perspective of the publisher, the

process of injecting perturbations into the target page should be mostly automatic and

convenient. We envision an additional procedure in website deployment via which the

web pages will go through to make changes to the page.

4.3.2 Overview

Optimization problem formulation. Formally, consider the optimization problem:

minimize
xadv

Dist(xadv − xinput)

subject to Pmodel(xadv) ̸= Pmodel(xinput),

xadv ∈ Hfeature−space,

xadv ∈ Happlication−space,

(4.3)

where, Dist() measures the cost of adding the generated perturbation, Hfeature−space and

Happlication−space denote the hyperspace that actionable examples can exist in the feature

space and application space, respectively. Note that as discussed in §4.2, it is hard for

conventional Lp norms to capture the real cost of adding a perturbation. For this, we

also modify the Linf norm to take the domain uniqueness into account, as discussed in

the next subsection. We also point out that it is impractical to directly apply standard

combinatorial optimization techniques (e.g., mixed-integer programming) to exactly solve

Equation 4.3 due to computational inefficiency [59], especially in presence of complex target
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models (e.g., neural networks). Therefore, as discussed in §4.2, gradient-based solutions are

necessary and we build A4 on top of the state-of-the-art among them (i.e., PDG).

Iterative search. Since the optimization problem defined in Equation 4.3 does not have

an analytic solution [59], we instead approximate one iteratively through a search proce-

dure as captured in the pseudo-code in Algorithm 1. The search process not only enforces

Algorithm 1: A4: Actionable Ad Adversarial Attack

Input : target model M , ad request xinput, maximum iterations max iter,

maximum perturbation magnitude ϵ

Output: actionable adversarial example xadv

1 success←− False

2 curr iter ←− 0

3 xcurr ←− xinput

4 while curr iter < max iter and success ̸= True do

5 curr iter ←− curr iter + 1

6 pertcurr iter ←− GenerateFeatureSpacePerturbation(M,xcurr, ϵ)

7 xcurr ←− xinput + pertcurr iter

8 xcurr ←− EnforceFeatureSpaceConstraints(xcurr)

9 pageperturbed ←− MapBackToWebPage(xcurr − xinput)

10 xcurr ←− ExtractFeatureValues(pageperturbed)

11 success←− VerifyIfAdversarialOnTargetModel(xcurr)

12 end

13 return xcurr

the feature-space constraints, but also incorporates corrections to address application-space

side-effects that occur when mapping feature-space perturbations back to the web appli-

cation domain. The key guiding principle is to take small steps (in each iteration) and

corrective actions so that we are always on the right path. (details in the next subsection).
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Figure 4.2: Perturbation trajectory in hyperspace for a search iteration; refers to positions

in non-adversarial hyperspace; refers to positions in adversarial hyperspace that do not

satisfy constraints; refers to positions in adversarial hyperspace that satisfy constraints.

To better illustrate the framework, we show for each iteration, how the generated original

perturbation is moved in hyperspace to ensure its actionability in Figure 4.2. The intuition

is that errors may accumulate across multiple iterations and can mislead us if we do not

correct them at every step (and we take smaller steps for the same reason). Inspired by the

iterative philosophy that underpins PGD, A4 also divides the overall optimization problem

into multiple iterations. We would also like to point out that A4 is not a simple “trial-

and-error” framework, because at each iteration of the algorithm, gradients from the target

model provide feedback that guides Algorithm 1 what direction it should explore next.

Transfer-based attack. To craft a successful grey-box attack, we need to use the dataset

for training AdGraph to train a local surrogate model that is differentiable, and then use

this model to estimate the gradients and craft adversarial examples accordingly. These

type of attacks are considered “transfer-based” because the successful adversarial examples
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Figure 4.3: Transfer-based attack paradigm; steps 3○, 4○, and 5○ are executed in a loop.

crafted locally need to be adversarial on a remote target model that is different and possibly

unknown. We depict A4’s transfer-based attack generation in Figure 4.3. Prior research

[110] has shown that this so-called inter-model transferability exists in almost all modern

ML models (including non-differentiable ones such as Random Forest).

Perturbable feature selection. Before delving into the constraints, we need to first

manually identify what features to perturb. These features must be perturbable, i.e., the

attacker must know how to map the perturbations from the feature space back to concrete

changes in the application space, i.e., the web page. As mentioned in §4.2, AdGraph has

two categories of features: structural and content-based (URL-related). After systematically

analyzing all the 65 features used in AdGraph, we identify 19 seed features from both (8

URL and 11 structural) categories that the publisher of the ad request can control and

perturb in practice. Table A.5 in the appendix shows their semantics, data types (i.e.,

integer, binary or float) and categories (i.e., structural and URL).

105



4.3.3 Feature-Space Constraint Enforcement

In this subsection, we describe how A4 imbibes explicit numerical constraints in

the feature space. Since the constraints defined in this space could be for three different

purposes — validity, functionality and stealthiness, we need to enforce them differently.

This step corresponds to EnforceFeatureSpaceConstraints() in Algorithm 1.

Validity constraints. These constraints keep the perturbed features numerically valid

i.e., they guarantee that they fall within meaningful domains of definitions. For instance,

features #1 and #2 are counts of nodes and characters, and cannot be negative or non-

integers; binary features #4 to #5 should always take values of a 0 or a 1. These constraints

are enforced by projecting any perturbed value falling outside the meaningful domain of

definition back to the domain. Concretely, we define three projection operations for binary

and numerical types of perturbable features in EnforceFeatureSpaceConstraints() in

Algorithm 1:

xproj =



max(min(1, xpert), 0), if xpert ∈ Snumerical

0, if ∥xpert − 0∥ ≤ ∥xpert − 1∥

and xpert ∈ Sbinary

1, if ∥xpert − 0∥ > ∥xpert − 1∥

and xpert ∈ Sbinary

(4.4)

Through these operations, the perturbed features of our choice are guaranteed to be valid

in the feature space.
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Functionality constraints. Besides validity, A4 also needs to ensure that the generated

feature-space perturbations won’t break any functionality of the original ad request. Hence,

we also enforce functionality constraints onto the perturbed features. To do so, we follow two

principles which we refer to as non-decreasing and semantic equivalence. For counter-like

features like #1 and #2 (Type “I”/“F” in Table A.5), we limit their perturbed values to be

greater than or equal to the original values; otherwise, we project the modified value back to

its original value. We refer to this as the “non-decreasing principle.” This projection reflects

our assumption that adding information to the web page should not break any existing

functionality, but removing existing items might harm the semantics in an unpredictable

fashion. In Figure A.1 (in the appendix), we show one example DOM snippet before and

after introducing the structural perturbations. Note that the inserted DOM nodes can

be disguised as pertaining to regular content with random properties/text, to avoid being

detected by simple rule-based scans. We describe possible obfuscation strategies to disguise

inserted DOM nodes in more details in §A.1 (in the appendix).

For URL features (Category “U” in Table A.5), we need to ensure that after per-

turbation, the original functionalities/semantics of the request are preserved. Specifically,

features that detect predefined keywords/characters from the URL string (e.g., feature #5

and #6), can be simply replaced with unmarked sub-strings. Since AdGraph hardcodes

these keywords/characters, our URL manipulations can effectively bypass its detection over

all URL-related features. For feature #3, we choose to append random characters to in-

crease its value, and place the appended string as an unused query, which best avoids

disrupting other functional parts of the URL.
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We are aware that the above URL manipulations introduce changes to the request

received by 3rd-party advertisers, and therefore require cooperation from them. As dis-

cussed in §4.3.1, A4 is expected to enable easy deployment for both 1st-party publisher

websites and 3rd-party advertisers. Towards this, we believe the simplest solution is a

reverse proxy employed at advertiser servers, which translates perturbed URLs to their

unmodified version based on pre-negotiated protocols between publishers and advertisers.

In order to do so, we preserve the basic components (i.e., scheme and host name) in the

URL and only perturb the remaining parts (i.e., path and query string) as guided by A4.

This way, the advertiser server is guaranteed to receive the requests, and can then easily

translate these perturbed URLs internally. We point out that similar setups have been

already practiced by publishers/advertisers and adblocking circumvention services to suc-

cessfully evade rule-based adblockers [64, 90]. We are also aware that despite available

deployment strategies, some publishers/advertisers might still be reluctant to altering their

system configurations; we anticipate though, given the gigantic revenue loss to publishers

due to adblocking ($16 billion to $78 billion in the year of 2020, as projected in [81]), a

considerable number of publishers/advertisers would be willing to do so in exchange of ad

revenue recovery.

Stealthiness constraints. Besides validity and functionality, the generated perturbations

should also achieve a high level of stealthiness. Specifically, the perturbations that A4

applies on features will have to be limited by a threshold. Conventionally, the perturbation

size is measured via the use of Lp norms. However, these norms are unsuitable for AdGraph’s

feature set. First, with many binary/categorical features, use of Lp norms blindly treats all
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features as having the same scale, which is not the case in reality. For example, changing

a binary feature from 0 to 1 means that the status it represents has flipped. This is

fundamentally different from an integer feature changing by the same amount; for the

latter, it could indicate that its real value has changed from a minimum to a maximum

value (due to data normalization happened in dataset pre-processing). Thus, if we set a

threshold Linf to 0.3, binary features can never be flipped (as the flipping threshold is 0.5),

whereas integer values can still change even if a normalization is applied. To account for

such differences, we propose a customized Linf norm which is defined as follows, we propose

a customized Linf norm which focuses on numerical features as defined in Equation 4.5.

The examples generated by A4 are bounded by this norm.

Lcustom inf (pert) = max(|perti| : i = 1, 2, . . . , n if perti ∈ Snumerical) (4.5)

Besides customizing the norm, we also slightly modify the operation for clipping

a perturbation within the norm. Specifically, conventional clipping functions (e.g., the one

used by PGD) regard the global range of a particular feature across the whole dataset as

the base of the clipping threshold, for conventional features. For web pages, such clippings

can easily lead to overly large perturbations as the ranges of many numerical features can

vary drastically from website to website. Therefore, we change the clipping from relying on

a global range to a local per-webpage range, as formally defined in Equation 4.6.

Clip′global local mixin(pert, ϵg, ϵl) =


Clip(pert, 0, ϵg · ri), if ϵg · ri < ϵl · pert

Clip(pert, 0, ϵl · pert), otherwise

(4.6)

where ϵg is the global threshold, ϵl is the local threshold, ri is the global range of xi

with respect to this particular feature in the training dataset, given by xmax
i − xmin

i , and
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Clip(xi, ϵmin, ϵmax) is the standard clipping operation defined in Equation 4.2. As shown

in §4.5, our customized norm along with the localized clipping operation, helps limit the

effective size of generated perturbations, and thus improves the stealthiness significantly

compared to the traditional setup of Linf norms and global clipping.

4.3.4 Application-Space Side-Effect Incorporation

Now that we have generated feature-space adversarial perturbations that comply

with manually-defined domain constraints, we need to map them back to concrete changes

in the web page representations. As discussed previously, ideally these perturbed feature

values should all be reflected accurately in the page. This can be overt if we can re-extract

the feature vector from the perturbed web page and verify that it matches the expected

one. This step corresponds to the combination of MapBackToWebPage(), ExtractFeatu

reValues() and VerifyIfAdversarialOnTargetModel in Algorithm 1.

However, introducing changes (e.g., total number of nodes) to the web page can

cause unpredictable offsets to values of other features not included in the feature-space per-

turbations. Specifically, there are several inter-dependent features considered by AdGraph

such as feature #19. As we add perturbations nodes to the page to perturb the feature

counting the total number of nodes in the graph, feature #19 might also nondetermin-

istically change as the maximum per-node connection degree is raised, which might end

up turning an adversarial perturbation into non-adversarial. More critically, such feature

value offsets/drifts are impossible to be predicted, and therefore cannot be pre-computed

in closed-loop formulas, which motivates our design of executing the feedback loop.
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Figure 4.4: Proposed feedback loop in A4’s each search iteration

Feedback loop. To incorporate such unpredictable side-effects, we passively observe how

changes in one feature causes changes in others. Specifically, we first map the controllable

feature-space perturbations back to the web pages by rendering the page and then re-extract

all the features to capture the side-effects. We verify if the final perturbation (with side-

effects) can still evade detection. If so, we are done; else, we continue the iterative search

procedure to find another candidate perturbation (we enlarge the current step size by a step

size to generate a new gradient). Effectively, we have created an automated feedback loop

as illustrated in Figure 4.4.

Diversified mapping-back strategies. For some features, there are multiple ways to

concretize the feature-space perturbations as changes to web pages (step 4 in Figure 4.4).

For instance, there are multiple ways to increase the total number of nodes in a page (feature

#1). We can choose to place these nodes either as the children of a single existing node
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(centralized strategy), or as the children of multiple existing nodes (distributed strategy), as

shown in Figure 4.5. These different mapping-back strategies introduce different side-effects

to the feature values, and can hence affect the effectiveness of the final adversarial example

(as depicted by the red and green points in Figure 4.2). One example is, again, that for

the feature #19 (average degree of connectivity), the centralized strategy is likely to lower

the feature value significantly after the map-back as the added nodes cause crowding and

thus, raise the current maximum number of connections per node in the graph; this is the

denominator in the formula that computes the average degree of connectivity for the page.

In contrast, the distributed strategy tends to have negligible side-effects with respect to

this feature. In order to maximize the chance of finding a successful adversarial example,

we apply all feasible mapping-back strategies in the feedback loop, and then verify their

results. These two diversified strategies help A4 discover as many green point cases as

possible (Figure 4.2).
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4.4 Implementation

We use the library Foolbox [117, 118] to compute the adversarial perturbations

numerically. Per our design in §4.3, we implement A4 as described in Algorithm 1, by

augmenting the standard PGD attack in Foolbox. We iteratively enforce the constraints in

both feature and application spaces with the feedback loop, as demonstrated in Figure 4.4.

For step 4○, 5○ and 6○ in Figure 4.4, we implement an HTML manipulator for reflecting the

computed numerical adversarial examples in the webpage representation (HTML), based

on the commonly used Python library BeautifulSoup [120]. As will be discussed in §4.5,

the current implementation of A4 handles static ad requests only, and therefore acts as a

proxy that can be deployed at publisher websites hosting ads. Specifically, A4 parses the

HTML containing ads, computes and inserts corresponding adversarial perturbations into

it, and delivers the perturbed HTML to users 2.

4.4.1 Model Training

We need to reproduce the classifier used in [80] following its revealed hyper-

parameters, on the newly collected dataset, since [80] did not release their trained models.

We use the popular open-source machine learning library scikit-learn to train a Random

Forest (RF) model based on the crawled training dataset. This is then used as the target

model that A4 queries, with each perturbed example, to verify the attack result. We show

the model’s hyper-parameters and classification accuracy metrics over the partitioned test-

ing set in Table A.1 in the appendix. As shown, the accuracy metrics with our reproduced

2We open source the implementation of A4 and its dataset at https://github.com/seclab-ucr/A4, for
reproducibility and future research extensions.
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RF model are close enough to the ones reported in [80], which validates our replication

effort.

We then need a local surrogate model that is differentiable (recall §4.3), to drive

our gradient-based attack. To this end, we use the Python-based deep learning library

Keras [63] to train a 3-layer Neural Network (NN) as the surrogate. NN is considered to

have the best model capacity [110] for imitating the decision boundaries of other models.

The hyper-parameters and accuracy metrics of this NN are in Table A.2 in the appendix.

Note that in order to best mimic the remote decision boundary, we use the dataset that

trains the target RF classifier and labels given by the target model, instead of ground-truth

labels, to train the local NN. Hence, the accuracy in Table A.2 represents the agreement

rate between two models.

4.4.2 Active Learning

Given that A4 trains a local surrogate model to imitate the decision boundary of

the target classifier in [80] and provide necessary gradients. Even though in §4.5 we show

the surrogate agrees with the classification outcome with the target model on testing set

sufficiently well (90% of the time), there can still be cases where two models disagree with

each other, which indicate local divergences of their decision boundaries. To further align

the decision boundaries and boost the effectiveness of A4, we apply active learning [111].

Specifically, upon encountering any ad request that is classified differently by the target

model and the surrogate, we train the local surrogate with the request and the label from

the target model. If one iteration of training (i.e., one pass of back-propagation) does not

address the divergence, we repeat 10 times at maximum.
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4.4.3 Hyper-parameters

Table 4.1 shows the hyper-parameters used in our implementation. Note that the

parameter enforcement interval here refers to the number of steps we take in the gradient-

based search before we enforce the constraints and consider these steps together as one

iteration of the feedback loop. We operate at units of intervals instead of steps, because

multiple steps are often required for binary features to be pushed across the flipping thresh-

old of 0.5, as discussed in §4.3.

Note that to avoid confusion, we use the term “iteration” to refer to an enforcement

interval. These parameters are empirically chosen, and we have varied and tuned them to

pick the best parameter set that are shown to yield best performances. We also would like

to point out that out of the different combinations of parameters, the improvement achieved

by A4 (as will be shown in §4.5) over baseline attacks are generally consistent.

Iterations (max iteration in Algorithm 1) 20

Step-size 0.07

Maximum global perturbation

threshold (ϵg in Equation 4.2) 0.3

Maximum local perturbation

threshold (ϵl in Equation 4.2) 0.5

Enforcement interval 15

Table 4.1: Hyper-parameters used for attacks
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4.5 Evaluation

4.5.1 Setup

Dataset. Since A4 primarily targets the current version of AdGraph [80], we first repro-

duce its pipeline using its open source implementation. Given that the web crawl conducted

in [80] was in early 2018, and is hence outdated, we carried out a new crawl on December

3, 2020 to collect the graph representation of the landing pages of Alexa’s top 10k websites.

Then, we processed these graphs and extracted 65 features to form the dataset ready for

ML tasks. Table A.3 lists some basic statistics from the crawled dataset.

From the 503,526 request records, we randomly pick 50,000 as the test set (i.e.,

the remaining 453,526 records are used as a training set). These are used to test the

accuracy of trained classifiers compared to the original AdGraph model. Other than these

50,000 samples, we additionally randomly pick 2,000 unique ad requests as the target ad

resources to be perturbed for evaluating the effectiveness of A4 in flipping classifications

for ad requests.

Attack variants. As discussed in §4.3, A4 picks 19 features to perturb in total. To

understand what roles these features play in achieving evasion, we conduct an ablational

analysis by grouping features into three subsets: (1) “All” includes all 19 features; (2) “Only

URL” includes 8 features in category “U” in Table A.5; (3) “Only Structural” includes 11

features in category “S” in Table A.5. We refer to these three variants as All, Only URL

and Only Structural hereon.
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Baseline attacks. For comparison, we consider two baseline attacks we describe below

(the descriptions also illustrate the necessity of our proposed solution).

• Baseline 1: In this attack, we apply the standard PGD without enforcing any feature-

space constraints, other than the basic perturbation size limit (ϵ in Equations 4.1 and

4.2) and a basic domain of definition (i.e., 0.0 < xi < 1.0).

• Baseline 2: In this attack, we generate uniformly random perturbations (i.e., using

perti ∈ U(−ϵg, ϵg) instead of 2○ in Figure 4.4) without relying on any guidance such as

gradients from the surrogate model. We enforce constraints and execute the remaining

feedback loop once on the random perturbation. The purpose of this setup is to assess

the effectiveness of one-step correction without the guidance of gradients. We antici-

pate subpar success rates as it is highly challenging to relocate random perturbations to

constrained adversarial space without iterative corrections.

• Baseline 3: In this attack, we apply A4 for one complete iteration (i.e., enforce con-

straints and execute the full feedback loop once), instead of performing iterative repeti-

tions. The purpose of this setup is to comprehensively validate the benefits/advantages

of the proposed iterative search framework, in presence of estimated gradients. Again,

without multi-iteration corrections, we anticipate difficulty in achieving high success rates,

mainly because even with some guidance of initial gradients, the single-step approach can

lead to application-space offsets that disrupt the adversarial nature of the example and

cannot be corrected in one iteration.
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4.5.2 Experimental Results

Ad coverage. Currently A4 handles only static requests that are embedded into the

HTML file of each webpage, which correspond to about 60% of all ad requests detected

by AdGraph (it operates at top of iframes and thus cannot detect/handle ad resources

inside these iframes). This is because of the implementation of current prototype. Due to

its prohibitively high overhead in computing adversarial examples (882 seconds on average

for generating one example, as will be shown in overhead evaluations), it is challenging to

envision a runtime solution (e.g., via injected JavaScript) that dynamically intercepts ad

requests and computes perturbations for them on the fly. Instead, perturbations need to

be computed offline by publisher websites and then statically inserted into webpages at the

moment. We will discuss possible future improvements for covering more ad requests in

§4.6. Note that all success rates in the following subsections are calculated with respect to

the covered ad requests (i.e., ∼60% of all ad requests).

Success rate. We summarize the success rates achieved by the three attacks in terms of

finding actionable adversarial examples from the 2,000 ad requests in the testing set, in Table

4.2. We see that A4 achieves the highest success rate in generating mis-classified examples

while guaranteeing their actionability in all attack variants. In All and Only URL attack

variants, it is over twice as successful (145.5% improvement) compared to Baseline 2 3 and 3.

Even using only parts of available features (i.e., Only URL and Only Structural), A4 can

achieve over or close to 60% success rates. From an ablation perspective, these results also

3Note that it is not a surprising finding that random perturbations can evade ML classifiers in cases. Prior
research [70, 73] shows that widely used and state-of-the-art image classification models (e.g., ResNet and
InceptionV3) are vulnerable to perturbations of additive random noises, and observe accuracy degradation
of over 30% if they are naturally trained with clean samples only.
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Feature Set/

Success Rate
All Only URL Only Structural

Baseline 1 0.00% 0.00% 0.00%

Baseline 2 32.67% 18.98% 32.65%

Baseline 3 33.02% 24.76% 32.42%

A4 81.18% 65.74% 58.62%

Partial Dataset 73.06% 55.91% 53.78%

Table 4.2: Breakdown of attack results; bold numbers indicate the best success rate in that

feature set

suggest thatA4 relies more on URL perturbations than structural ones in evading AdGraph.

Supporting this observation, we provide the information gain (i.e., feature importance [115])

ranking of top-5 perturbed features used in AdGraph’s random forest classifier in Table A.4

in the appendix, 4 of which are URL-related.

The large margin of improvement shows the power of the iterative search adopted

by A4. In comparison, Baseline 1 fails to produce any valid perturbation because if none of

the constraints is enforced, features of data types like binary or categorical, can be changed

into meaningless values (e.g. in a one-hot-encoded vector, more than one feature becomes

1). This makes it impossible for these perturbed examples to be rendered in the browser

at all. Therefore, we do not consider Baseline 1 in the further evaluations, and refer to

Baseline 3 as the only baseline hereon.

Partial training dataset. As explained in §4.2, we assume a Grey-box threat model

where the attacker knows the entire training dataset. Even though we believe this is prac-

tical as the training dataset [80] uses is from crawling open webpages (i.e., can be easily
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Feature

Set/Strategy
Centralized Distributed Both

All 13.94% 19.28% 66.78%

Only Structural 20.45% 32.24% 47.30%

Table 4.3: Mapping-back strategy significance analysis

replicated by crawling the top websites again), one might wonder what if attackers perform

their crawls at different time points and thus only have limited access to the original dataset

for building their surrogate NN models. We therefore evaluate A4 with its NN trained on

only one-third (i.e., 151,175 vs 453,526) of the dataset that is used for training the target

RF model. We report the success rates for this experiment in all three attack variants in

Table 4.2, and find that they only degrade insignificantly (<10 percentage points), which

suggests that even with partial knowledge of the training dataset, A4 remains sufficiently

effective in crafting adversarial samples in practice.

Mapping-back strategy significance. Table 4.3 reports the significance of different

mapping-back strategies that A4 tried in its feedback loop. Note we only evaluate strategies

for All and Only Structural variants, as Only URL does not involve structural manipu-

lations. As can be seen, in close to 50% and 70% of the successful perturbations, both

centralized and distributed mapping-back strategies are attempted (to a similar degree) to

craft actionable adversarial examples. However, for a significant portion of the test cases

in both variants, only one strategy succeeds. These cases show the advantage of applying

multiple strategies to cope with the unpredictable application-space side-effects into the

120



iterative search procedure used in A4. Essentially, more valid green points (as depicted in

Figure 4.2) can be discovered with additional strategies.

Attack convergence. In Figure 4.6, we show a histogram of the number of iterations

needed to reach convergence with all the successful adversarial perturbations generated by

A4, We see that most (>80%) of cases converge within 5 iterations; this shows that the

iterative feedback loop in A4 is extremely efficient in generating the adversarial examples.
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Figure 4.6: Attack convergence analysis

Node additions. Table 4.4 lists the average size for successful perturbations in terms of

their number of added DOM nodes. Recall that the perturbations A4 generates, for manip-

ulating structural features, primarily rely on adding/inserting DOM nodes into webpages.

We statistically analyze the node additions, and find that (1) they obey the local pertur-

bation threshold (i.e., 0.5) as defined in Table 4.1, confirming its effectiveness; and (2) over

70% of the time A4 only needs to inject <50% additional DOM nodes (as depicted in Fig-

ure 4.7c) to successfully evade the adblocker, indicating its economy/efficiency in leveraging

DOM node addition as the primary underlying manipulation mechanism. Note that the

perturbation size here does not translate to performance overhead A4 incurs, as perturbed

webpages need to be loaded and rendered.

Performance overhead. We evaluate the runtime performance overhead thatA4 imposes

on web browsing, in terms of page size increases (due to perturbations) and user-perceived
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All Only URL
Only

Structural

+49.00%

+5.41%
- -

+55.21%

+13.54%

Table 4.4: Perturbation size in terms of # of additional/inserted DOM nodes (first row in

each cell is the mean over all tested webpages; second row is the median); “-” means not

applicable as Only URL does not involve node additions.

Feature

Set/Overhead

Metric

All

(Baseline)
All (A4)

Only URL

(Baseline)

Only URL

(A4)

Only

Structural

(Baseline)

Only

Structural

(A4)

File Size
+22.11%

+13.61%

+27.64%

+18.59%

+12.19%

+10.09%

+17.97%

+12.78%

+12.51%

+7.65%

+14.32%

+8.85%

Page Load Time
-16.61%

-5.26%

+19.20%

+1.83%

-5.37%

-4.09%

+10.85%

-1.71%

+18.16%

-6.12%

+3.16%

-6.01%

Table 4.5: Breakdown of overhead analysis results (first row in each cell is the mean over

all tested webpages; second row is the median); bold numbers indicate the lowest overhead

in that metric.

Page Load Time (PLT) (following the standard method as used in [80]). Table 4.5 shows

the breakdown of the overhead results across different attack setups. Both metrics suggest

that A4 only incurs acceptable/insignificant performance overheads (i.e., <30% in all attack

variants) in web browsing. Figure 4.7c further shows the cumulative distribution function

of PLT measurements for different attack variants. It suggests that, for close to or more

than 90% of successful perturbations, A4 incurs <50% overhead in PLT.

We also evaluate the offline overhead for generating/computing the perturbations.

For All attack variant that achieves the highest success rate among all variants, A4 spends
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(a) CDF for file size over-

head

(b) CDF for page load time

overhead

(c) CDF for # of additional

nodes

Figure 4.7: Cumulative Distribution Function (CDF) for different measurements

882 seconds on average for computing a successful adversarial perturbation (on a single core

Xeon 6248 server). Note this computation is only needed once for a given ad request, and

is therefore considered acceptable for recovering its associated ad revenue.

Breakage analysis. As discussed in §4.3, A4 minimizes the risks of disrupting legitimate

webpage functionalities by selecting perturbation primitives that preserve functionality. To

validate this is indeed the case, we conduct manual inspection for breakages caused by

the perturbations. Specifically, we randomly sample 100 successfully perturbed (i.e., the

classification of target ad request has been flipped to a non-ad due to the perturbations)

webpages from the 2,000 tested ad requests in All attack variant. We then have four

student evaluators browse the original and perturbed versions of the same webpages, and

record their judgements of how A4 impacts the site’s functionality.

The following are the classification criteria to define different levels of breakages

and their respective results, in accordance to the breakage analysis methodology in [80].

4

4Note in this evaluation, we only account for differential breakages, which are breakages that exhibit on
the perturbed webpage only. There are common breakages on both versions in some cases due to the time
lag between web crawling and manual inspection, which are irrelevant to A4.

123



• No breakage (92%): There is no perceptual difference between the perturbed and

original versions of the webpage;

• Minor breakage (8.0%): The browsing experience is impacted, but the main objective

of the visit can still be accomplished;

• Major breakage (0.0%): The main objective of the visit is severely impacted and

cannot be completed;

• Crash (0.0%): The webpage cannot be opened/rendered.

Above shows that A4 achieves considerably low breakage. Note that A4 does

not cause any major breakage or crash in the evaluation. Upon a closer analysis, we find

these minor breakages are mostly cosmetic. To better demonstrate the breakages that A4

possibly introduces, Figure A.2 in the appendix shows an example with minor breakages

after adding the perturbations, from the 100 successfully perturbed webpages used in the

breakage analysis.

4.6 Discussions and Limitations

Deployability. As discussed in §4.5, A4’s current implementation can only cloak ad

requests that are statically embedded into the main HTML DOM; requests that are dy-

namically generated by JavaScript are unprotected. Even though A4 already covers more

than 60% of all ad requests detected by AdGraph, we plan to extend the coverage further

to dynamic ad requests in the future, following three routes. First, publishers can render

webpages at server-end so that A4 can access dynamically-generated ad requests and com-

pute perturbations for them. Note that in this case we believe the amount of page dynamics
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(i.e., page differences caused by distinct JavaScript execution outcomes across page loads)

is insignificant and should not reverse the adversarial-ness of pre-computed perturbations.

This is because as discussed in §4.5, AdGraph does not rely on contents inside iframes for

making adblocking decisions and a significant portion of 3rd-party web contents causing

page dynamics are loaded inside iframes [132]. Second, one can implement and mount

runtime solutions (e.g., via injected JavaScript) to perturb URL features only. This would

result in significantly less time in computing perturbations as compared to including ex-

pensive structural features for realizing on-the-fly perturbations, and still successfully evade

AdGraph ∼65% of times (as shown in §4.5). Third, if advertisers would fully collude with

publishers, they can act as adversaries and compute perturbations for themselves. Again,

we acknowledge such collusion requires additional efforts to implement and might hence

appear unattractive to some publishers/advertisers, but still anticipate voluntary adoptions

by those who prefer ad revenue over deployment cost (as discussed in §4.3.3).

Another challenge A4 faces is its current per-request perturbation generation. One

webpage can contain multiple ad requests whose features are co-dependent, mandating

dependencies across their adversarial perturbations. This will require a joint optimization

in generating per-page perturbations over multiple requests and is thus is left as a future

research direction.

Generalizability. Although A4 primarily targets an ML-based adblocker at this point,

we argue that its iterative search procedure and feedback loop are general enough to be

applied to other AML scenarios in the web domain, or even other domains. At a high level,

any ML task that requires (1) the generated examples be actionable in both the feature and
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application spaces, (2) is constrained in the feature-space due to the functionality require-

ments as discussed in §4.3, and (3) has associated side-effect offsets upon mapping from

the feature-space to application-space (as shown in Figure 4.2), can be viewed as compat-

ible with A4’s methodology. Examples include classifiers that operate in non-traditional

representations such as programs, network traffic [148] etc.

As noted in §4.3, currently A4 is designed to perturb at most 19 features from the

possible 65. Although this conservative limit makes our attack stealthier in practice, we

plan to explore perturbations on more features in the future and analyze their effectiveness.

Further, our current A4 implementation only has two mapping-back strategies (centralized

and distributed) as discussed in §4.3. While even with these two strategies, we can already

showcase the power of our proposed feedback loop, we will explore additional strategies

in the future to expand our search space. Also as mentioned in §4.3, A4 leverages HTML

DOM node addition as its underlying manipulation mechanism. We believe this is a general

solution to other web-based ML classifiers and even graph models.

Arms race between adblockers and advertisers/publishers. Our ability to sub-

vert AdGraph suggests that ML-based adblockers should be more careful in designing their

feature sets. During our analysis of AdGraph’s features, for example, we find that there

are several global features (e.g. #1/#2 in Table A.5) that encode the overall size of the

constructed graph. Since these features do not describe anything local with respect to the

request node being classified, they are of less importance, but leave perturbation space for

adversarial attacks. There is also rising trend of research on improving adversarial robust-

126



ness of models through blending adversarial samples into training datasets (i.e., adversarial

training) [70], and detecting them [94] from ML perspectives to consider.

From the adversarial perturbation generation perspective, our investigations sug-

gest that it is crucial to provide the necessary setups (e.g. proxy/rotating servers) to facili-

tate perturbations on URL-related features. As shown in §4.5, URL features are crucial in

helping A4 achieve high success rates. Proxy deployments are adopted by some websites

that counter rule based adblockers [146].

4.7 Related Work

Constrained adversarial examples. Existing research on AML has been dominantly

focused on domains where the adversary can exploit the unconstrained nature of the input

representation such as images – each feature (e.g., pixel) is fully under control of the adver-

sary. However, as ML models are increasingly being deployed in many constrained domains

(e.g., network intrusion and malware detection), it is important to explore their robustness

in such systems against adversarial attacks. In addition to the attack that is designed for

mainly webpages in this paper, we summarize some early explorations in other constrained

domains as follows.

[112] proposes adversarial samples against Android malware detectors. It codifies

the space of permissible adversarial examples, and then transplants code snippets from be-

nign Android software into given Android malware. Additionally, [112] creates opaque pred-

icates in perturbed malware so that the transplanted gadgets won’t be actually executed, to

preserve malware semantics. Following similar routes, [144] and [141] aim to craft adversar-
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ial examples for general ML-based code models. They apply different semantic-preserving

code transformations with the guidance of model gradients, and evade code models for var-

ious purposes. Beyond source code, [87] presents an attack against binary-based malware

detectors, by injecting unused bytes.

Adblocking and anti-adblocking. As briefly mentioned in §4.1, there has been a fierce

arms race between adblockers and their countermeasures. Besides concealing ad signa-

tures to combat rule-based adblockers, ad publishers have also been widely deploying anti-

adblockers [146] and other aggressive obstacles to avoid being detected. Recent research

[90] shows that a number of publishers/advertisers are actively circumventing adblockers

through various techniques including ad cloaking (e.g., unmonitored web APIs [56]), ob-

fuscation (e.g., ad element randomization [134]), and etc. We envision A4 advances the

state-of-the-art in this arms race and substitutes the first attempt for bypassing learning-

based adblockers.

4.8 Conclusions

In this paper, we present the design and implementation of A4 (ActionableAdversarial

AdAttack), a new adversarial attack targeting the state-of-the-art learning-based adblocker

AdGraph. Unlike previous work on generating adversarial samples on unconstrained do-

mains, A4, explicitly accounts for constraints that arise in the context of the web domain.

We show promising results in this unique domain which can have substantive implications

in online advertising and other future ML-based web applications.
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Chapter 5

Detecting DPI Evasion Attacks

with Context Learning

5.1 Introduction

Deep Packet Inspection (DPI) middleboxes are widely deployed as part of modern

network security infrastructures [140]. They are stateful , i.e., they not only inspect indi-

vidual packets, but also reassemble them to form stateful connections defined by a network

protocol (e.g., TCP), based on a predefined state machine. To do so, they (for ease of expo-

sition we refer to these as DPIs) need to include a custom network protocol implementation

that is often simplified compared to its counterpart on end point platforms (e.g. the OS

kernel) due to scarce computation capability, prohibitive overhead and sometimes the need

to provide generality in the presence of ambiguous network protocol specifications.
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Adversarial Packets. Since the advent of DPI, there have been multiple attacks to

circumvent them. These attacks exploit the discrepancies between the DPI’s and the OS-

level network protocol implementations, to craft subtle yet powerful packets which trigger

completely different behaviours on the DPI and at the endpoint (e.g., server). For example,

such a packet may be crafted so as to cause the DPI to ignore it, while it still reaches and

is accepted by the server. Such packets can potentially contain malicious payloads, and yet

successfully bypass the detection of the DPI (because their contents would not be inspected

at all). Even worse, prior work shows that in some cases, using only one such packet could

cause the DPI to disengage from monitoring of the associated connection, thereby allowing

follow-up packets in the connection to pass through without triggering alarms.

Automated Discovery of Evasion Packets. In recent years, as network protocol stacks

have become increasingly complex with newly added features [116], a growing number of

vendor-specific implementations, and continually evolving specifications, there is a surge

in research [58, 93, 136] on automating the discovery of adversarial packets as described

above, to evade DPIs. By applying principled search [93], genetic mutation [58], or symbolic

execution [136], a vast assortment of adversarial packets can be found with little to no

manual intervention. While this works towards understanding attackers, it poses a hard

challenge from the defense perspective. As protocol stacks evolve and become more complex,

the potential discrepancies that may be discovered with automation can grow in theory,

and it becomes prohibitive to manually analyze these subtle implementation issues and

patch all of them in the code base; in addition it is hard to generate new hardcoded DPI
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policies to keep up with new discrepancies that may arise given the pace of rapidly evolving

implementations and protocol standards.

Existing Defenses. Given its difficulty, only a few limited countermeasures have been

proposed against adversarial packets. Notably, [88], Kreibich et al., apply traffic normaliza-

tion to mitigate the threats of adversarial packets. Specifically, a so-called traffic normalizer

is proposed, which acts as a network forwarding element preceding DPI middleboxes, and

alters/drops the packets going through the latter as per a predefined set of rules. These rules

are manually curated to describe the “normal traffic” (e.g., the IP header length field must

never be smaller or greater than the actual header length). This countermeasure unfortu-

nately, cannot scale in presence of automation – the achievable search space of all possible

adversarial packets can become large enough to make timely manual curation prohibitive.

Moreover, the ever-evolving protocol standards introduce false alarms – a previously cor-

rect rule can later cause incorrect decisions (e.g. normal packets being dropped) because of

updated implementations. It is also worth noting that as a normalizer, or more generally a

traffic shaper, [88] provides no detection ability; rather, it blindly alters the traffic stream.

Our Approach. Our goal in this paper is to design a practical defense to effectively

detect evasion attempts on DPI middleboxes. Instead of relying on significant manual

curation/analysis, we propose a novel, fully-automated (with minimum feature engineering)

Machine Learning (ML)-based approach calledCLAP (Context Learning basedAdversarial

Protection). CLAP learns the benign (what we call) context from only normal traffic traces

(i.e., unsupervised), and uses this learning to detect adversarial packets. In other words,

CLAP asserts whether the context of the unseen packets “fit” in the associated connection
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or not. Specifically, the context of a packet is composed of two types of sub-contexts to

describe the aforementioned “fitness” of a given packet:

• Inter-packet context, which captures the inter-relationships among different packets

in the connection in terms of how their header fields change/evolve over the trace; these

changes generally relate to the transitioning of states for a stateful network protocol (e.g.,

TCP);

• Intra-packet context, which captures the inter-relationships among different header

fields in a given packet (in terms of the combinations of their values).

By learning the joint distribution (i.e., the packet context) of the two (sub-)contexts from

benign traffic, CLAP automatically finds violations thereof, caused by adversarial packets.

Motivating Example. To showcase the intuition behind how CLAP works, we present

a concrete attack and its detection with CLAP. Bad-Checksum-RST is an attack that

has been reported in [58, 136] and shown to be effective against Great Fire Wall (GFW),

a state-of-the-art DPI-based censorship system. It injects an ill-formed RST packet with

a garbled TCP checksum value after the three-way handshake. Since common endhost

TCP implementations perform a rigorous checksum verification but the GFW does not,

this injected RST packet is dropped by the endhost but not GFW. As a result, upon

seeing a RST packet, GFW would disengage its monitoring of the connection, while the

communications between two endhosts would be allowed to continue.

By learning the benign context from a large set of clean network traces, CLAP

knows what requirements (inter- and intra-packet contexts) must be met by a packet at its

position in the connection (e.g., can it be a RST and if so, should its checksum be correct?);
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then, CLAP checks whether the packet conforms (fits in) to a benign packet context. In this

case, the RST packet with a bad checksum value that appears after three-way handshake

is asserted as violating both the inter- (RST should not take place at this point) and intra-

packet (checksum of RST packet should be correct) contexts (based on training) and thus,

the evasion attempt is detected.

Contributions. In brief, our contributions in this paper are:

1. We are the first to propose a fully-automated unsupervised learning approach to detect

adversarial packets that are crafted to elude DPI middleboxes.

2. Our evaluations on 73 state-of-the-art DPI evasion attacks over realistic backbone

traffic captures, show that by only learning from benign traffic, CLAP achieves an

overall detection AUC-ROC of over 0.963, with an average EER of only 0.061 (the

two most commonly used evaluation metrics for ML-based IDSs [54, 97, 98, 102]).

3. Our evaluations show that beyond detection, CLAP achieves an average Top-5 local-

ization accuracy (identifying a train of five packets most likely to contain the attack

vector) of 94.6% (Top-3 of 91.0%).

4. Our performance analysis shows that our pipeline can process over 2,100 packets per

second on a single CPU core, with linear scalability.

5. We will open source both our implementation of CLAP, and the used datasets, at

https://github.com/seclab-ucr/CLAP to allow reproducibility and future extensions.
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5.2 Related Work

ML-based Intrusion Detection System (IDS). As a critical and commonly deployed

network infrastructure, intrusion detection systems (IDSs) are designed to detect suspi-

cious traffic and flag them accordingly. Traditionally, IDSs are signature-based and catch

malicious traffic that violates a predefined set of rules. This type of IDSs face challenges

because their manually curated signatures cannot keep up with emerging threats. In con-

trast, anomaly-based IDSs do not rely on priori-created signatures; an anomaly-based IDS

inspects and classifies traffic by asserting whether it aligns with patterns observed in normal

traffic. More recently, ML techniques have been used for anomaly detection, as they are

efficient in learning patterns from benign traffic and then distinguishing between normal

and suspicious instances on unseen traffic [54, 97, 98, 102]. While with a similar general

goal (detecting suspicious traffic), CLAP is fundamentally different because it (1) spots

attacks that specifically seek to evade DPI detection, not for general malicious purposes

(e.g. DDoS); and (2) uniquely considers packet context that is critical for detecting DPI

evasion attacks, while context-agnostic ML-based IDS is unable to do so as will be shown

in our evaluations.

[82] is the only attempt towards using ML to discover DPI evasion attacks to our

best knowledge. However, the approach proposed in [82] relies on training its model on both

benign and malicious traffic traces, which renders a different threat model as compared

to what we assume in this paper, and is therefore not comparable directly. In fact, one

of the key attributes of CLAP is its ability to detect subtle evasion attacks without a

priori knowing about them. For an apples-to-apples comparison, we use a state-of-the-art
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unsupervised IDS [102] as one of the baselines in Section 5.4, and show that the state of the

art general-purpose IDS is ineffective/inaccurate in detecting DPI evasion attacks because

it does not consider context.

Context Learning. The general notion of using context has been explored in computer

vision for improving classifier performance [95, 129]. Context refers to co-occurrences of

objects that commonly appear together in the same scene, and aids detection/segmentation

tasks where certain objects lack inherent patterns to be recognized, but can be inferred

by occurrences of other easily-recognizable objects. Note that while these approaches, by

mainly characterizing spacial inter-relationships among different objects as context, are

generally appropriate for vision applications (i.e., objects in same scene), it cannot be

applied directly to network domain applications. Context inconsistency has also been very

recently considered for thwarting adversarial examples in computer vision [94] but has never

before considered in the network intrusion detection context. Remotely inspired by these

efforts, for the first time, we define packet context for network traffic data, and propose

CLAP to automatically learn and apply this to detect DPI evasion attacks. We consider

the unique characteristics of network traffic, and design our system accordingly.

5.3 System Design

5.3.1 Overview

As discussed earlier, CLAP draws on the fact that there are co-occurence rela-

tionships between packet fields (intra-packet), and across packets (inter-packet) in a single

TCP flow. To re-iterate, these relationships form the packet context. An evasion attack is
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likely to tamper with these relationships to confuse the DPI middlebox and CLAP seeks

to most efficiently learn and use the packet context to detect such tampering. Our design

of CLAP consists of 4 stages:

• (a) Learning benign inter-packet context by training a RNN model whose task is to

predict the transitions across a set of connection states (not only high-level TCP states

but also subtle verdicts/states, as described later), on benign traffic traces;

• (b) Fusing/concatenating the benign inter-packet context (i.e., as discussed later gate

weights from (a)’s RNN model represent inter-relationships among different packets) and

intra-packet context (i.e., combinations of packet header fields) to generate benign context

profiles;

• (c) Learning benign holistic packet context by characterizing the distribution of context

profiles generated in (b);

• (d) Detecting DPI evasion attacks by verifying whether the context profile of unseen

packet trains violates the distribution of benign context profiles as learned in (c).

We show diagrams that depict Stage (a)/(b)/(c) of CLAP in Figure 5.2, and (d) in Figure

5.3.

5.3.2 Threat Model

Before diving into the technical details of the design of CLAP, we establish the

threat model we consider. As previously mentioned, CLAP is designed to protect stateful

DPI middleboxes against evasion attacks. We capture the threat model associated with
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common DPI middleboxes relating to our work, and the role of CLAP in Figure 5.1. We

assume both the DPI middlebox and CLAP are located in between the client and server,

and capable of reading all packets going through. Commonly, DPI inspects payloads of these

packets and detects malicious contents in those payloads (i.e., “Other Attacks” in Figure

5.1). When the attacker launches the DPI evasion attack from client side, he/she injects

specially crafted packets (i.e., adversarial packets) to cause discrepancies in behaviours

between the DPI and the server. The discrepancies cause the follow-up malicious traffic to

not be inspected by the DPI (but can still reach the server). CLAP is designed to specifically

detect such adversarial packets. Note that we limit the scope of our target evasion attacks

to those that only involve header fields manipulations, due to (1) scarcity of payload-related

evasion strategies; and (2) prohibitive overheads in training for benign payloads. We only

focus on the TCP protocol in this work since it is arguably the most popular transport

layer protocol and is most commonly targeted in DPI evasion attacks. Since CLAP does

not depend on the DPI itself, it can function interdependently (for forensic analysis) and

does not rely on anything besides raw traffic that traverses the DPI middlebox (i.e., PCAP

captures). Hence, CLAP can not only be deployed as an online detector complementing

existing DPIs to detect evasion attacks (with affordable overhead as shown in Section 5.4.4),

but also be used as a forensic tool to analyze the traffic captures offline.

5.3.3 CLAP Design

Next, we describe the different components in CLAP that help achieve its over-

arching goal.
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(a) Learning Inter-packet Context.

Goal. The first stage of CLAP involves training a RNN model to drive it towards

learning the inter-packet context as defined previously. As established earlier, the inter-

packet context essentially captures the relationships among the header fields (co-occurrence)

in a train of packets. We reiterate that this context strictly describes the relations across

different packets, and therefore does not concern itself with any relations/combinations of

header fields within the same packet.

In order to capture these inter-packet relationships with a ML model, we need to

design a corresponding learning task. Since the transitions of a TCP state machine depend

on such relationships across a sequence of given packets, we use a ML classifier that predicts

these transitions; such a classifier will need to learn the temporal structure across packets.

The best option among various neural network choices for doing so is a GRU-based RNN

model. Based on this general architecture, we design a customized model that takes the

header fields of each packet as inputs, and predicts the corresponding states to which the

reference TCP state machine will transition as a result of this packet, as model output.

Note that we are not interested in the classification result of the RNN, but rather require

the distribution of the benign inter-packet contexts which we draw from the weights of

the gates in the neural network architecture, as discussed in the next subsection. This

requires exceptionally high performance for the task we design for RNN (connection state

prediction), which from our evaluations (detailed in Table A.7), is achieved with an overall

prediction accuracy over 0.99).
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RNN/GRU. RNNs are a class of neural networks that are widely used to model temporal

data. In brief, they contain a recurrent cell that processes one element in the input sequence

a time, considers both the current input and a memory state from the previous unit to

output a new memory state. Beyond accomplishing classification tasks, the chaining of

these repeated units in RNN models have also been highly successful [95, 129] in generally

modeling and encoding the interrelationships across the input sequence. Among RNN cells,

the Long Short-Term Memory Unit (LSTM) and the Gated Recurrent Unit (GRU) are

considered the state-of-the-art architectures. Both of them consist of a “gating” mechanism,

wherein gates that are in the cells update weights that represent the relationships across

input sequence. We pick GRU in this work as it provides performance that is comparable

with LSTM but incurs considerably lower overhead, and note that LSTM is also a viable

option.

Input Feature Set. In order to cover (1) all header fields that influence the transitions of the

TCP state machine and (2) header fields that can possibly be manipulated by DPI evasion

strategies (i.e., all non-tuple-related, non-optional IP/TCP headers, and a few common

TCP option headers, as specified in [114, 119]), we include 37 header field values as features

(7 for IP and 25 for TCP, full list in Table A.9) from the IP and TCP headers. To reiterate,

we do not consider payload-related features here because (1) they are irrelevant to TCP

state transitions; (2) there are only a very small fraction (7 out of 80 from [58, 93, 136])

of DPI evasion attacks that involve manipulating packet payloads; (3) it is prohibitively

challenging to learn distributions of unstructured data such as benign payloads; we leave

this as an open question to examine in the future; and (4) most public traffic archives
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(including what we use in the evaluations) strip payloads in the traces for privacy concerns.

We alto follow the general principle of using these fields in the raw form to the extent

possible to avoid heavy feature engineering (i.e., only need minimum pre-processing such

as validating checksum, as detailed in Table A.9), and show that the RNN is capable of

inferring the connection states without requiring extensive domain knowledge.

Labeling. According to the IETF standard [119], TCP defines 11 different states (e.g.

SYN SENT/SYN RECV/ESTABLISHED) that we refer to as master TCP states. In addition to

these states, in order to enrich the learned packet context, especially in the rather coarse

grained ESTABLISHED state, we also include the more subtle, in-/out-of-window states

(i.e., whether an incoming packet is within the recipient’s receive window) collected from

the reference TCP implementation to be part of the label. Therefore, the label we use to

train RNN is the concatenation of the master TCP state and the in-/out-of-window subtle

state 1, resulting in a total of 11 * 2 = 22 potential classes (an in-/out-of-window possibility

is included for each of the 11 master states); these are listed in Table A.9. In order to

collect reliable and accurate states for labeling the training data of our RNN, we resort to

OS-level (e.g. Linux) TCP stack implementations and instrument their relevant modules to

expose our desirable states (i.e., master TCP state and in/out-of-window subtle state). We

replay the benign training traffic captured on the instrumented platform to harvest their

corresponding states as labels (the details of the setup are in Section 5.4.1).

1Although, we are slightly misusing the term, when we refer to state from hereon, we not only include the
traditionally defined TCP states, but also a packet classification/verdict (in-window or out-of-window) that
strongly relates to inter-packet relationships, to better drive the RNN model to learn bengin inter-packet
contexts.
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Training. To put things together, we now formally describe how we train the RNN

model. Consider a benign network connection consisting of n packets P1...n, where Pi =

[F 1
IP , ..., F

8
IP , F

1
TCP , ..., F

29
TCP ] (i.e., F

i
IP represent the features from the corresponding packet’s

IP header fields, and F i
TCP , those from the TCP header fields). We train a RNN model

MGRU , with GRU as its cell architecture, by feeding P1...n and their corresponding ground-

truth labels (i.e., states from TCP state machine) L1...n, and executing standard error

back-propagation [62]. The standard multi-class cross entropy loss function in Equation

5.1, where Li and L̂i are the probabilities relating to class i of the ground-truth label vector

and the predicted label vector, respectively, is used as the loss function for training the

RNN. It measures the error between the current RNN model output (i.e., a vector of prob-

abilities) and the ground-truth label (i.e., a vector of values of 0 except that the index of

expected/ground-truth state is 1). The error is propagated back to the prior layers of the

RNN to update its parameters until the model produces the correct output. In the next

subsection, we describe how the intermediate/latent gate states of the training GRU are

used to build context profiles.

LossCrossEntropy(L, L̂) = −
∑
i

Lilog(L̂i),

where L̂ = MGRU (P )

(5.1)

(b) Fusing Inter- and Intra-packet Contexts.

Goal. Once the RNN model is trained, its gates contain the inter-packet context learned

from benign traffic traces (described in more detail in the next paragraph). Next, we

need to extract the intra-packet context and fuse it with the inter-packet context to form

the context profiles of a packet. Recall that the intra-packet context is defined by the
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relationship/combinations across header field features within the packet. We fuse the two

contexts by simply concatenating them (i.e., gate weights and header field values) into

a unified feature vector which is referred to as the context profile for that packet. This

fusion strategy enables the autoencoder in Stage (c) (to be described) to learn the joint

distribution of both contexts. By examining this joint distribution, CLAP is capable of

exposing attacks that violate (1) only the inter-packet context; (2) only the intra-packet

context; and (3) both sub-contexts simultaneously.

Gate Weights. Figure 5.4 provides a closer look at the internals of GRU cells. For one such

cell, besides the input (i.e., xt in Figure 5.4) and the output state (i.e., ht in Figure 5.4),

there are also “gates” for optionally letting information through [62] (i.e., reset and update

gates as marked in Figure 5.4). In order words, these gates explicitly control whether the

output classification (i.e., the TCP state described earlier) of a given packet strongly relates

to its previous packets, or not. Specifically, if at the current time step t1 the gate weights

with respect to a previous packet Pt2 at time step t2 are large, it means the features of Pt2

contribute greatly to the classification of the next output at t1 (and vice versa). As one can

see, the gate weights are ideal means to characterize the dependencies or inter-relationships

across the different packets in a connection, or in other words, capture the inter-packet

context.

Chain Graph. To visualize the context profile of a packet, we can represent the same as a

graph-based model wherein the packet header features are the graph nodes, and gate weights

are the edges connecting packets (nodes). Thus, the train of packets can be represented as a

chain-shaped graph. The packets header field features are the node features, and the edges
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Figure 5.4: Internals of GRU cell

Gate 
Weights

Packet
Features

Concatenated Context
Profile

Node
Edge

Figure 5.5: Representation of context profile as chain graph

between two adjacent nodes (consecutive packets) are the GRU gates that describe the

inter-relationship between the two packets. The resulting connected chain graph, models

the network trace. The gate weights (edges) in the graph, (which are learnt during training)

control the information propagation between the adjacent packets (nodes). We depict this

chain like graph model in Figure 5.5.

Amplification Features. While we have included all necessary packet header fields as the

feature set for learning the intra-packet context, we discover that some subtle context vi-
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olations are challenging to capture in practice with just these features. These relate to

extremely small perturbations in terms of the associated changes of certain features; these

help in successfully evading the DPI, but without amplification seem too insignificant for the

ML classifier (specifically the autoencoder) to recognize. To address this, we augment our

feature set with two types of amplification features, that are incorporated into the context

profile; these features, crafted based on domain knowledge, amplify the aforementioned sub-

tle context violations such that the distribution discrepancy they cause are easily captured

by the autoencoder that is described later when we discuss Stage (c). In particular, the

amplification features that we design are: (1) out-of-range features, which indicate whether

the packet’s associated numerical header field value is out of the range of what has been

observed in the benign training traces; and the (2) equivalence relation feature, which in-

dicates whether an expected equivalence relationship with respect to certain header field

values is maintained (e.g., TCP payload length = IP total length - IP header length - TCP

data offset) or not. We provide the full list of the 15 amplification features (all belonging

to the two types) with their semantics in Table A.9. We refer to the concatenation of the

raw header field value features and the amplification features as packet features.

Concatenation. We next provide details on “how exactly” we generate the context profile.

Consider a GRU taking n input features with its hidden state size also being n-dimensional;

in such a case, the size of its gates should be equal to the hidden state (i.e., n) [62]. As

previously discussed, the context profile is the concatenation of the packet features and

the gate weights, as defined in Equation 5.2. We provide a full list of all packet features

in Table A.9. Upon generating the context profiles for all the packets in a train, we can
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concatenate consecutive packet profiles to form a “stacked profile.” This design aggregates

multiple context profiles from consecutive packets, and therefore explicitly embeds inter-

packet relationships into the stacked profile (in addition to existing gate weights that are

also designed to capture inter-packet context); this in turn provides profiles with richer inter-

packet context encoded. As one might expect, we find that this helps improve performance

and eventually use it in our evaluations.

CxtProf = [PIP , PTCP , Pamp, Gforget, Gupdate]

StackedCxtProf = [..., CxtProft−1, CxtProft, CxtProft+1, ...]

(5.2)

(c) Learning the Joint (Context) Distribution.

Goal. Once the benign context profiles that contain both inter- and intra-packet contexts

are generated as described in (b), CLAP needs to learn their joint distribution so that it

can later detect suspicious packets that violate the benign context (i.e., joint distribution).

Autoencoder. Antoencoders are a class of neural networks that characterize the distribution

of given training samples by forcing the networks to reproduce the inputs themselves as

model outputs. In other words, they are tasked to encode a given input to a compressed

latent space (bottleneck layer), and decode it to recover the input as much as possible.

During this process, the autoencoder learns the compressed representation from the training

data (i.e., benign context profiles in our case) distribution as the features of its bottleneck

layer, and the reconstruction error between the real input and recovered input (model

output) is considered an ideal metric to characterize an input (context profiles) in terms of

how close it is to the learned distribution. If a context profile traversing an autoencoder
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trained on benign context profiles, exhibits a high reconstruction error, we infer that it

deviates from, or violates the benign context. Autoencoders are considered as the state-of-

the-art means for anomaly-detection tasks [145]. We use an autoencoder here to learn the

distribution of benign context profiles, and then determine if the context of unseen packets

is consistent with what is observed in benign packet traces in (d).

Training. We train the autoencoder with benign context profiles obtained. The L1 loss

function is used to measure the reconstruction error and is the sum of the all the absolute

differences between the true value (ground-truth context profile) and the predicted value

(reconstructed context profile). During training, by minimizing the L1 loss, the autoencoder

learns to characterize the distribution of benign context profiles. The choice of the L1 loss

function also relates to its excellent performance in handling dense input data, meaning data

wherein there is little to no sparsity (i.e., features with zeroes as values). This suits the

properties of the context profiles generated in Stage (b), because both the packet features

and the gate weights are dense and rarely have 0 as values.

LossL1(Xinput, Xoutput) =
1

n

n∑
i=1

|Xi
output −Xi

input|

where {Xinput, Xoutput} ∈ Rn

(5.3)

(d) Verification.

Goal. Lastly, CLAP with its trained RNN (to generate gate weights for context profiles)

and autoencoder (trained using those profiles), is to be deployed online (i.e., it encoun-

ters previously unseen packets) to detect possible DPI evasion attacks. Recall that the

autoencoder from Stage (c) can only compute the reconstruction error with respect to each

context profile. Given that the input to CLAP would be connections/sequences of packets
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and our goal is to provide a connection-level detection conclusion, we need to first determine

a strategy for CLAP to compute a score (which captures the likelihood of whether there

are evasion packets within the connection for a given connection that contains sequence

of reconstruction errors produced by the trained autoencoder. Then, CLAP must analyze

the context profiles for unseen packets (their conformance to benign profiles) and use the

chosen score (discussed below) to assert if this connection is adversarial.

Adversarial Score. Once the autoencoder is trained, it produces a numeric reconstruction

error for a given (stacked or non-stacked) context profile. Consider a connection that consists

of n packets in total. Let us assume that stacked context profiles containing t packets, are

generated in a sliding-window fashion (i.e., concatenation of every t consecutive single-

packet profiles from the beginning to the end of a unidirectional traffic sequence; these

profiles are overlapping) are obtained. Specifically, with this approach, CLAP generates

n − t + 1 such stacked profiles (i.e., leading to n − t + 1 tests and thereby, reconstruction

errors at the autoencoder stage) for the connection. This sliding window enumerates all

possibilities of temporal contexts, and can be expected to provide the best coverage. CLAP

now needs to capture a “summarized” value that characterizes the “overall profile” of the

connection, by means of these enumerated profiles. There is a spectrum of approaches for

characterizing a group of observations in general, ranging from basic statistical quantities

such as maximum/minimum, variance, mean, median, to more advanced methods such as

training a separate autoencoder for the summarization [99].

We examine the reconstruction error trends from adversarial connections, towards

empirically choosing a proper metric. An example is shown in Figure 5.6, where an ad-
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versarial packet introduces a spike in the error value (around the time it is encountered)

and then, the error level falls off to get closer to that with benign profiles. Based on this

observation (which is expected since the sliding windows closest to the adversarial packets

are likely to show the highest error), we propose a localize-and-estimate approach to choose

a metric; this maximizes our odds of distinguishing adversarial from benign connections

in the testing phase. Specifically, we first localize (identify the position within the sliding

window) the profile with the maximum reconstruction error in the connection; and (2) sam-

ple the mean reconstruction error over the window (of 5 profiles in this work) by choosing

the profile with the maximum reconstruction error as center. We refer to this mean as the

adversarial score for the connection. We believe this newly designed metric best captures

the most distinguishing (the spike) part of the reconstruction error sequence in a connec-

tion, provides the best detection performance. In addition to the score, to make a Boolean

classification (attack or no attack), we also need a threshold to determine at what level of

the adversarial score, do we consider the connection to be an attack. The choice of this

threshold will provide a trade-off between true and false positive rates. We leave the free-

dom of choosing the threshold to the deployer of CLAP towards achieving the appropriate

trade-off; however, our results in Section 5.4.2 offer possible choices for these thresholds (by

means of ROC curves).

Deployment. Lastly, with the 3-tuple {MGRU ,MAE , THAdv} (i.e., trained GRU-based

RNN model, trained autoencoder model and selected threshold for adversarial score) gen-

erated in the previous steps and an incoming (suspicious) connection CSus, the deployer of

CLAP first executes the pipeline in Figure 5.3 to compute the adversarial score for CSus,
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Injected
Adversarial Packet

Figure 5.6: Typical trend of reconstruction errors across a connection

and then compares it with THAdv to determine if the connection is adversarial or not. Note

that beyond binary classification (i.e., adversarial or benign), CLAP can also pinpoint the

most “suspicious” packets in a connection, by localizing the ones that bear the highest re-

construction error (i.e., the first step of “localize-and-estimate” approach). We will evaluate

both the detection and localization accuracies in the next section.

5.4 Evaluations

In this section, we provide comprehensive evaluation results with regards to dif-

ferent aspects of CLAP, viz.,: (1) effectiveness analysis in terms of how well it detects and

localizes adversarial packets, compared to other baselines; (2) case studies with in-depth

analysis on its performance on certain attacks; and (3) performance analysis in terms of

how fast it can process network traffic in practice.
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5.4.1 Setup

Dataset. We first describe the dataset used in our evaluations. For learning benign

packet contexts that are as complete and sound as possible, the dataset of benign traffic

traces must guarantee that it (1) only consists of benign (i.e., no DPI evasion attempts)

flows; and (2) is adequately representative i.e., non-adversarial packets including those with

uncommon but legitimate patterns are well-covered. Given these requirements, we select the

MAWI Traffic Archive [10] that provides PCAP captures of a backbone network in Japan.

MAWI traffic traces are considered one of the state-of-the-art long-term measurements

on wide-area/global Internet and have been used in prior networking/security research

[54, 61, 69]. Note that the payloads of MAWI traces (and most other public datasets)

are all stripped (payloads are not visible) for privacy concerns, making it impossible to

use for detecting payload-related attacks (e.g. segmentation-based attacks) – we adjust the

corpus of evaluated attacks accordingly. Table A.6 (in Appendix due to space limitation)

lists basic statistics of the traffic capture we use.

Recall that Stage 1 of CLAP needs a reference TCP implementation to generate

the internal states required for training the RNN model. We select the conntrack-tools

module [55] in Linux’s Netfilter sub-system that provides standard and reliable infras-

tructures for packet inspection. We instrument relevant code in Linux kernel version 5.6.3

to expose the required states, and use it as the traffic “replayer” for collecting labels for

RNN training.

Simulated Attacks. For generating the the traffic that seeks to evade the DPI middle-

box, and to include these to form the dataset, we adopt a simulation-based approach. We
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integrate these traffic flows into the benign MAWI traffic traces. Specifically, we thoroughly

analyze the evaluated 73 DPI evasion attacks proposed in [58, 93, 136], and implement a

simulator that injects the modifications incorporated in these to evade the DPI middlebox,

into the MAWI traffic traces (i.e., PCAP files). We acknowledge that this PCAP-level

simulation might potentially introduce some slight divergence in behaviors, compared to

what happens in live DPI evasion attacks (e.g. the timings associated with the injected

packets is estimated in our simulation, which could differ from the live case due to unpre-

dictable congestion effects). However, we argue that (1) these differences do not disrupt

the underlying mechanisms of DPI evasion attacks and thus, do not affect our evaluation

results/conclusions; and (2) the open-source implementations released by [58, 93, 136] do

not support a direct replay of the attack traces and, thus we are unable to verify those

directly; however, the simulations are a faithful reproduction of those attack behaviors and

we assume them to yield similar success against DPI middleboxes.

Baselines. We compare CLAP’s performance with that of 2 baselines to showcase its

effectiveness. Baseline #1 reuses the same pipeline as CLAP, but (1) removes all gate

weight features from its context profiles, (2) limits the length of the profile to single packet.

In other words, only intra-packet context features are considered to eliminate inter-packet

context information. One can think of this as a “temporal context” agnostic version of

CLAP. Baseline #2 is the faithful reproduction of a state-of-the-art anomaly-detection-

based IDS [102]. This IDS also leverages autoencoders as its underlying model and the

paper claims that it targets a broad spectrum of attacks. We will show the results with

these baselines, in comparison with those with CLAP’s in Figures 5.7, 5.8 and 5.9.
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5.4.2 Effectiveness Analysis

Takeaway : CLAP achieves an average AUC-ROC score of 0.963 (vs. 0.846 [-

12.1%] for Baseline #1 and 0.498 [-48.3%] for #2), Equal Error Rate (EER) of 0.061

(vs. 0.198 [+224.6%] for Baseline #1 and 0.502 [+723.0%] for #2) in detecting attacks;

it also achieves a 94.6% Top-5 (meaning the localized packet is within a window of five

packets from the identified point), 91.0% Top-3 (the localized packet is within a window

of 3 packets), and 76.8% Top-1 (exactly identify the position of the adversarial packet)

accuracy in localizing the positions of injected adversarial packets.

Evaluation Metrics. For our evaluations of CLAP, we use the following, most commonly

adopted metrics in the state-of-the-art ML-based networked systems research [54, 97, 98,

102]. “Area Under of the Receiver Operating Characteristic Curve” (AUC-ROC) is our

first metric of interest; it captures the trade-off between the True Positive Rate (TPR)

and the False Positive Rate (FPR) by considering a comprehensive set of reconstruction

error thresholds, and is considered a comprehensive metric for evaluating binary classifiers.

The higher the AUC-ROC, better the classifier. Complementary to AUC-ROC, EER is

the point on ROC curve where the False Positive Rate is equal to the False Negative

Rate; this metric is sometimes considered to be a more balanced metric to evaluate a

classifier compared to AUC-ROC. The lower the ERR, the more accurate the detection.

Lastly, Top-N Hit Rate is defined by the percentage of the connections where the context

profiles with the N -highest reconstruction errors produced by CLAP, intersect with actual

injected adversarial packets from among all tested connections. In other words, it measures

the accuracy of the localization step in CLAP’s “localize-and-estimate” adversarial score
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Results/

Approach

Mean AUC-ROC

for [136]

Mean EER

for [136]

Mean AUC-ROC

for [93]

Mean EER

for [93]

Mean AUC-ROC

for [58]

Mean EER

for [58]

CLAP 0.953 0.072 0.952 0.082 0.988 0.024

Baseline #1 0.829 (-13.0%) 0.218 (+202.8%) 0.805 (-15.4%) 0.232 (+182.9%) 0.913 (-5.9%) 0.133 (+454.2%)

Baseline #2 0.501 (-47.4%) 0.501 (+595.8%) 0.500 (-47.5%) 0.500 (+509.8%) 0.491 (-50.3%) 0.504 (+2000%)

Table 5.1: Breakdown of average detection performance for strategies in [58, 93, 136]

generation approach, in terms of how well top candidates marked by CLAP capture the real

adversarial packets. With accurate localization, CLAP can pinpoint the exact positions of

adversarial packets for the purposes of forensic analyses. The higher the hit rate, the more

accurate the localization.

Detection Performance. For evaluating CLAP’s detection accuracy, we must first

inject the attacks into the benign traffic dataset to form its adversarial counterpart for

the testing samples. As previously discussed, DPI evasion attacks all function by either

injecting new packets, or modifying existing packets in a connection. However, the exact

injection and modification methods differ from attack to attack. We therefore provide a

breakdown/taxonomy of the evaluated attacks and the projects they were discovered from.

Figure 5.7 shows the evaluation results of attacks presented in [136]. Since all of

these attacks work at TCP layer by modifying the TCP header fields of injected or existing

packets, they can be categorized based on (1) the type (i.e., TCP flags) of the packets that

are injected or altered, and (2) the exact header modifications. In Figure 5.7, for each

attack (i.e., the title of each bar plot), the first line is the key TCP flag (e.g., SYN) in the

injected/altered packets, and the second line indicates how header fields are modified (e.g.,

Bad SEQ means changing the SEQ number to an invalid value). As shown in Table 5.1,
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Figure 5.7: Per-strategy detection accuracy of CLAP in detecting the different attacks

(shown in title) from [136]

CLAP outperforms both baselines in detecting evasion strategies from [136] by a significant

margin.

Figure 5.8 shows the results relating to attacks proposed in [93]. Unlike [58, 136],

these attacks target DPI-based traffic classification systems (e.g., is it YouTube traffic or

not?) by manipulating header fields across the TCP/IP layers in certain packets in a

connection; these classifiers make decisions by examining an arbitrarily long subset of data

packets called the matching packets, which are transferred after the initial TCP handshake.

To evade the classifier, evasion packets are inserted in front of all of these matching packets.

However, without knowing what classification possibilities the attacker is trying to evade

we cannot know the exact number of evasion packets that are inserted (i.e., they vary

depending on the content that requires evasion). Hence, we simulate two extreme cases

wherein there is (a) a single matching packet min and (b) where there are a max = 5

matching packets as considered in the [93] paper. Note that these packets are sent after the

connection transitions into the ESTABLISHED state. With the above strategies we show the
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Figure 5.8: Per-strategy detection accuracy of CLAP in detecting the different attacks

(shown in title) from [93]

corresponding detection accuracies in Figure 5.8. Again, CLAP outperforms both baselines

in detecting evasion strategies from [93] by a significant margin, as reported in Table 5.1

Lastly, Figure 5.7 reports the detection accuracies with respect to attacks from

[58]. Unlike [136] and [93], these attacks (1) are executed/injected rather blindly and

all data packets (i.e., packets transferred in ESTABLISHED TCP state after completing the

handshake) are altered; and (2) consist up to 2 different modifications in one attack strategy.

Therefore, in Figure 5.9, when labeling each attack, the first and second lines describe the

first and second modification type (“/” means only one modification for that strategy),

respectively. We again observe significant gains in terms of detection performance, with

CLAP over the other baselines. Once again, CLAP wins over both baselines in terms

of the detection accuracy against attack strategies from [58] by a considerable margin, as

shown in Table 5.1.

Analysis. From the detection performance results, alluded to above, across different evasion

strategies, we have the following observations: (1) CLAP consistently outperforms both

Baselines #1 and #2, in terms of all the considered metrics and across all attack strategies;

(2) all evaluation metrics indicate that CLAP tends to perform exceptionally well on all
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Figure 5.9: Per-strategy detection accuracy of CLAP in detecting the different attacks

(shown in title) from [58]

evasion strategies that involve inter-packet context violations (e.g., Pure RST strategy from

[136] with an AUC-ROC of 0.999, positioned at row #2 column #7 in Figure 5.7) and

most strategies that involve intra-packet context violations (e.g., Invalid Data Offset/Bad

TCP Checksum from [58], positioned at row #1, column #1 in Figure 5.9); however, the

performance is not as good on a small fraction of strategies involving intra-packet context

violations (e.g., SYN w/ Payload attack from [136] with an AUC-ROC of 0.782, positioned at

row #3, column #7 in Figure 5.7 and, Low TTL attack (min) from [93] with an AUC-ROC

of 0.851, positioned at row #1, column #7 in Figure 5.8). We believe that this is because,

for these intra-packet context violations, even with amplification features, the quantum of

the adversarial perturbation/modification imposed onto the packet is still considered too

insignificant by the autoencoder in CLAP, to be spotted. Note however that, even so,

CLAP still (1) detects a large fraction of evasion attempts of these types (an AUC-ROC ¿

0.75); and (2) provides considerable improvements (¿ 30%) over both baselines.

Localization Accuracy. Next, we evaluate the accuracy of CLAP in localizing the

injected adversarial packets; this is the first step of the “localize-and-estimate” approach

in computing the adversarial score for a given connection (see Section 5.3.3). Here, our

goal is: (1) evaluating the localization ability of CLAP, and (2) providing an analysis of
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Figure 5.10: Per-strategy localization accuracy of CLAP in detecting the different attacks

(shown in title) from [136]

Figure 5.11: Per-strategy localization accuracy of CLAP in detecting the different attacks

from [93]

the design choice made in CLAP in association with the computation of adversarial score.

We do not consider baseline approaches for localization evaluations, because neither of

the baselines are sufficiently accurate in detecting adversarial packets in the first place and

furthermore, do not consider the temporal dependencies across a train of packets (indicating

their inadequacy in terms of localization abilities). As previously discussed, we use the Top-

N hit rate as the metric to measure the localization accuracy. We report the Top-5, Top-3

and Top-1 rates in Figure 5.10, 5.11 and 5.12 with the same categorizations adopted in the

detection accuracy evaluations. Specifically, the three bars in each plot from left to right

correspond to Top-5, Top-3 and Top-1 rates, respectively.
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Figure 5.12: Per-strategy localization accuracy of CLAP in detecting the different attacks

from [58]

Analysis. Our general observations with regards to the localization results are as follows:

(1) as one might expect, the accuracy varies when we require different levels of localization;

specifically, achieving Top-1 (with an average accuracy across all strategies of 76.8%) local-

ization (as expected) is much more challenging than Top-5 (average accuracy 94.6%) and

Top-3 (average accuracy 91.0%) localization. This in a way highlights the importance of

our design choice with regards to using the “mean across a sliding window” surrounding the

context profile with the maximum reconstruction error as the adversarial score described

previously; (2) the better the localization, the better the detection performance, as more

accurate localization yields richer and more directive context information for CLAP to

utilize.

5.4.3 Case Studies

Having provided a holistic picture of the performance of CLAP across a large

set of DPI evasion attacks, we now pick two concrete attacks to exemplify why CLAP can

detect them accurately. Specifically, we pick an attack that is discovered due to violations of

the inter-packet context and an attack that is caught for violating the intra-packet context.

These case studies also serve to validate the core design of CLAP.
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Note here that we have undertaken a careful analysis of all the attacks reported

and are able to reason about them; we believe that the two attacks that we choose to

magnify in this section are representative of the entire set. We also provide a summarized

categorization of all 73 evaluated strategies from [58, 93, 136] into the two context violation

types, in Appendix A.10. Recall that our Baseline #1 approach does not account for

inter-packet context since it only considers single-packet features (gate weights from RNN

are ignored). In other words, it only captures intra-packet context towards detecting DPI

evasion attacks; thus, any evasion strategy that exhibits disparity between CLAP and

Baseline #1, is considered as one that invokes a inter-packet violation for evasion. Following

this principle, if the AUC-ROC disparity between CLAP and Baseline #1 is greater than

a chosen threshold THinter (we pick 0.15 here), we categorize the attack as one invoking an

inter-packet context violation; otherwise, the attack is considered as causing an intra-packet

context violation. Based on this rule of thumb, we categorize 27 out of the 73 evasion attack

strategies as primarily inter-packet violations, and 49 as primarily intra-packet violations.

Note that this does not mean these two categories are strictly disjoint. While some strategies

violate both contexts, we categorize them based on the main violation (manifested by the

significant accuracy discrepancy).

Inter-packet context violation. Recall that the inter-packet context refers to the

inter-relationships across different packets in a connection. Among all evaluated attacks,

there are many that evade DPI detection by injecting manipulated packets that cause a

behavioural discrepancy between the DPI and endhost only when the TCP state machine

is in a specific state. For example, the RST with Bad Timestamp strategy from [136]
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Category/

Metric

Inter-packet

Context Violation

(24 Strategies)

Intra-packet

Context Violation

(49 Strategies)

CLAP Basline #1 CLAP Baseline #1

Mean

AUC-ROC

0.925

(+37.6%)

0.672
0.980

(+6.2%)

0.923

Mean

EER

0.109

(-70.0%)

0.364
0.039

(-68.3%)

0.123

Table 5.2: Breakdown of inter vs intra-packet violation detections

injects a RST packet with an invalid TCP timestamp option value, specifically when the

target connection is in the SYN RECV state. Since this evasion packet is then only dropped

by endhost, but accepted by target DPIs (e.g. Zeek and GFW), it tricks the DPI into

disengaging the monitoring subsequently. The end host, which is in exactly SYN RECV TCP

state, receives the follow-up packets that effectively bypass DPI detection. We determine

that this strategy primarily violates the inter-packet context because it (1) it is successful

only when the current TCP state is in a specific state (i.e., a Bad Timestamp RST packet

would not cause behavioural discrepancy between DPI and endhost in ESTABLISHED state)

and, (2) the validity of the TCP timestamp option is determined by the timestamps in

previous packets. In other words, in order to detect this strategy accurately, CLAP must

utilize the inter-packet context/relationship. It asserts if a given packet (1) bears a bad

timestamp relative to previous packets, and (2) if the current TCP state is SYN RECV. As
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expected, in this case, Figure 5.2 shows that CLAP performs much better than Baseline

#1 (¿ 35%).

Intra-packet context violation. Recall that the intra-packet context captures the

relationships across different header fields in the same packet. Several evaluated attacks

inject shadow packets in front of legal data packets. In these shadow packets, certain

TCP/IP header field values are altered such that they are rejected by end point’s rigorous

TCP implementation but accepted by DPI’s simplified version. This way, the data packets

that follow the injected shadow packets are cloaked and evade DPI detection. For example,

the Invalid IP Version attack from [93] injects packets with an incorrect IP Version header

value (e.g 5 as there is no IPv5) to trigger the discrepancy between the DPI and endhost.

CLAP detects this attack by learning the intra-packet context i.e., legitimate packets should

not have a IP Version of 5; it is thus able to flag any packet that violates this requirement.

The aggregate accuracies in Table 5.2 show that CLAP performs considerably better than

Baseline #1.

5.4.4 Runtime Overhead Analysis

Finally, we evaluate how efficiently CLAP processes network traffic streams with

our current implementation. Given that the training phase of CLAP is completely offline,

the critical overhead would be its runtime overhead, i.e., the model processing efficiency

of CLAP’s testing phase (Stage (d)). For reference, we also measure the runtime model

inference overhead of the open-source version released by [102], which is considered to be

the state-of-the-art autoencoder-based IDS, and show that CLAP achieves a significantly
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higher inference/processing speed. We use the default hyper-parameters to train the model

from [102], as detailed in Table A.8.

Setup. We run the pipelines of both CLAP and [102] on a desktop with Intel Xeon

E3-1225 Processor (3.2Ghz, 4 cores), 20GB RAM and disabled GPU support. We constrain

both pipelines to only use one logical core for fair comparison. We note that [102] claims

a higher processing throughput using a C++ implementation, but find that its released

Python version [101] is much slower. Furthermore, it is fair to compare our Python-based

prototype implementation with its Python-based baseline counterpart – we leave the task of

re-implementing CLAP in more efficient languages (e.g. C/C++) for improving its overhead

performance as future work. Our test adversarial traffic corpus consists of 92,262 packets

and 6,424 connections.

Throughput. We compare the model processing throughputs of CLAP and [102] in

Table 5.3. We see that CLAP outperforms [102] by a margin of ≈ 50%, while detecting DPI

evasion attacks with much higher accuracies, as shown in previous subsections. However,

we acknowledge that CLAP is not designed for detecting other network attacks, that are

captured by [102]. We believe that the performance disparity is because [102] uses an

ensemble (forest) of 10 small autoencoders to process subsets of different features pertaining

to different attacks (details in Table A.8); it merges the separate reconstruction errors into

an aggregate error with another autoencoder, making it overall a heavy procedure i.e., it

cannot process packets as fast as CLAP (with only one autoencoder).
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Model/

Metric

CLAP [102]

Packets/Second 2,162.2 (+49.7%) 1,444.5

Connections/Second 97.0 (+49.7%) 64.8

Table 5.3: Model processing throughput

5.5 Discussion

Ethical Implications. In recent years, DPI evasion attacks have been considered as a

means to bypass censorship systems [58, 93, 135, 136]. This is because, censors are essen-

tially DPI middleboxes. We acknowledge that malicious DPI evasion attacks cannot be fully

separated from censorship circumvention practices (since they rely on DPI evasion attacks).

However, while CLAP can inherently enable censorship i.e., potentially expose censorship

circumvention, we do not advocate censorship and our work is completely inspired by re-

search questions.

Feature Completeness. Currently, CLAP covers all non-optional, non-tuple-related

header fields. One might wonder if new evasion strategies that are outside our current

feature set are viable. Since CLAP currently does not consider (1) uncommon IP and

TCP option fields that are variable-sized (i.e., hard to encode as fix-sized features); and (2)

payloads as they are unstructured data (i.e., with no fixed formats), we envision that these

are the most likely surfaces that future emerging evasions can manipulate. To tackle this

challenge, we plan to explore the remaining headers (TCP/IP options) and payload contents,
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possibly via embedding techniques [138] that can map unstructured/variable-sized inputs

to fix-sized vectors in future work.

Generalizability. In this work, we focus on evasions via attacks of TCP/IP protocols as

these protocols are the most popular/common parts of most network protocol suites used

today, and thus attract the vast majority of evasion efforts. However, we believe that the

pipeline and core design of CLAP can be easily transferred and applied to other stateful

protocols (e.g., HTTP) with minimum effort. As long as one can define the internal states

inside the protocol implementation, CLAP is expected to learn packet contexts that help

enable adversarial evasions.

Deployability. As shown in Section 5.4.4, the model inference time for CLAP is con-

siderably faster than the prototype released by a state-of-the-art ML-based IDS, making

CLAP potentially deployable on middleboxes on low-workload networks. We acknowledge

that compared to signature-based general-purpose IDSs such as Zeek, our overall processing

speed is considerably slower, but argue that (1) we target specifically DPI evasion attacks

that cannot be captured by general-purpose IDS; (2) a re-implementation of CLAP in more

efficient languages (e.g. C/C++) can greatly help reduce its overhead (this is left to future

work); and (3) the rising trend of GPU-based ML acceleration can also be of great help in

boosting the runtime performance of CLAP, which is again, part of our future plan.

We acknowledge that even though we have demonstrated that CLAP comes with

very low error rates in both detection and localization tasks in Section 5.4, there can still be a

number of false alarms that might be generated. However, we emphasize that CLAP can be

tuned using a pre-defined adversarial score threshold (see Section 5.3.3), which would allow
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the deployers of CLAP the flexibility to freely choose the desired trade-off between true

positive and false positive rates. In addition, one can down sample the alarms generated by

CLAP, and only selectively inspect/analyze those packets that have the highest associated

adversarial scores. We believe these two strategies can significantly control the number/ratio

of false alarms.

Attacker Adaptation. We are aware of the emerging research that exploits inherent

vulnerabilities against ML models such that specifically crafted inputs, known as adversarial

examples, can bypass ML models with minimum differences compared to its benign coun-

terparts. We envision the possibility that attackers could generate such examples (packets)

to hide from CLAP’s detection. However, we point out that most of the adversarial exam-

ple attacks from the adversarial ML community, consider end-to-end models so that it is

rather easy to obtain the gradients from such end-to-end models to guide the generation of

adversarial examples. In CLAP our design choices of using a multi-step pipeline (i.e., RNN

+ autoencoder) makes it extremely challenging, if possible at all.

5.6 Conclusions

In this paper, we design and implement a framework (called CLAP) for detecting

DPI evasion attacks that have emerged recently. The key observation that drives the design

of CLAP is that these attacks often violate either legitimate relationships between the

headers within a packet, or relationships across headers in a train of packets. We construct

a packet context-profile that captures these relationships and train a set of appropriate ML

models to learn the legitimate (benign) distributions of such profiles. During test time,
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CLAP checks if encountered packets conform with these distributions and flags those that

do not as evasion attempts. Our comprehensive evaluations on a large variety of attacks

from three different recent efforts show that CLAP (a) is extremely effective in detecting

evasion patterns, and (b) significantly outperforms ML methods agnostic to packet context-

profiles.
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Chapter 6

Conclusion

6.1 Future Work

I discuss concrete future research directions in Chapter 2, 3 4 and 5 for each

specific research thrust, respectively. In this section, I summarize some overarching future

work routes to offer insights and suggestions towards endgame solutions.

Deep and Hybrid Adblocking. As shown previously, for identifying and resisting adversarial

actions from the web advertising ecosystem, defenders need higher privileges to be able to

intercept necessary information and carry out necessary countermeasures, before adversaries

can intervene and manipulate. Since ads publishers and advertisers exist as JavaScript code

and other web resources, their privilege level is limited to the web browser runtime. In this

case, to be in the advantageous position, defenders need to go deeper into the browser

core, and complete their instrumentation and modifications there. Fortunately, users with

privacy and security concerns are motivated to allow such deep modifications to their web
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browsers. In fact, this is well supported by the rapidly growing number of privacy-oriented

(e.g., Brave and Firefox) browser (with deep instrumentation and modifications) users in

recent years.

Besides going deeper, adopting hybrid solutions to identify ads and tracker re-

sources is also a future research avenue to consider. I notice that both blocklist- and

ML-based adblockers have their own pros and cons. For instance, blocklists are prone to

human errors, but are considerably low-overhead to deploy; in comparison, ML models are

strong in avoiding human mistakes, but vulnerable to carefully-crafted adversarial samples.

Therefore, an intuitive improvement over using them individually is to combine these two

approaches. For example, one can turn current binary (i.e., allowed/disallowed) blocklists

into multi-class ones, so that they can be first used as quick filters that identify and remove

ads only with very high confidence; then a potent ML model kicks in and classifies remain-

ing web resources. Using this hybrid strategy, the entire pipeline of adblocking can be more

effective, efficient and robust at the same time.

Regulatory Resolutions. Beyond technical solutions presented in this dissertation, I believe

a greater space for improving the current web advertising ecosystem resides in regulatory

and legislative efforts. Specifically, cyber privacy should be seen as one of the basic human

rights and protected by laws, and mass web surveillance and tracking should be hence

regulated in a stricter fashion. There is no doubt pursuing these regulatory resolutions

requires considerable efforts and cooperation from multiple parties. I look forward to seeing

more success in this space in the near future.
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Automated DPI Patching. Even though my ML-based DPI evasion detector and localizer

achieve sufficient accuracy performance, their runtime overhead is yet ideal for real-time

applications that require ultra-low latency. Given this, I believe a more practical solution

to address adversarial actions against DPI systems that suit real-time applications, for

the time being, is through automated discovery and patching. Essentially, DPI code can

be analyzed by program analysis and other techniques to discover ambiguities compared

with endhost implementations; then, according to these ambiguities, code patches can be

automatically generated. I am happy to have been participating in a series of works along

this research vision [136, 137].

6.2 Concluding Remarks

This dissertation shows that, adversarial actions on the Internet launched to bypass

deployed content blockers, are growingly pervasive and sophisticated. More importantly,

through appropriate and efficient modeling and analyses (as demonstrated in this disserta-

tion), these threats can be accurately detected and effectually prevented. The guiding prin-

ciples for doing so are carefully designing differential tests to trigger conditional behaviours

of adversarial actors, and analyzing minute, low-level and contextual interrelationships from

objects in system traces to discern them; such analyses should be fully-automated, and are

generally realized through learning signals and patterns from Internet data and code. For

defending against these actions, it is needful to build platforms that conceal traces left by

content blockers which adversarial actions target, so that these actions cannot be activated
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anymore. I hope the vision and insights in this dissertation can be applied to and help other

domains that also face the pressing threat of adversarial actions.
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Appendix A

Appendix

A.1 Disguising DOM Perturbations for Chapter 4

As discussed in §4.3, A4 can disguise its DOM manipulations to avoid being de-

tected by simple rule-based checks and perceived by users. Specifically, we propose the

following strategies to obfuscate and conceal inserted DOM nodes.

• Randomized node types: Inserted nodes can be of any DOM element type that

supports the visibility property (e.g., <p>, <div>, <table>).

• Randomized node properties: Inserted nodes can have random property keys

and values that do not conflict with functional ones (e.g., rand prop Aft4A: "rand -

value SzJd2"). This also includes random node text because inserted nodes are set

to be invisible.

• Randomized local node placement: Besides the two mapping-back strategies in

§4.3, inserted nodes can be organized arbitrarily inside each insertion site (e.g., for
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centralized strategy, inserted nodes can be cascaded in randomized topologies as a

sub-tree and then attached to the insertion site).

Note that the first and second DOM perturbation strategies above can also be written and

hidden into existing CSS style sheets (via class or id selectors) so that simple scans over

inserted DOM nodes themselves would not raise suspicion.

A.2 Additional Tables and Figures for Chapter 4

1 <script async="" src="https ://
publisher.com/adscript.js
></script >

Code A.1: Original DOM snippet

1 <script async="" src="https ://
publisher.com/adscript.js ></
script >

2 <p hidden="" rand_prop_1="1">
RANDOM TEXT 1</p>

3 <p hidden="" rand_prop_2="2">
RANDOM TEXT 2</p>

4 <p hidden="" rand_prop_3="3">
RANDOM TEXT 3</p>

Code A.2: Perturbed DOM snippet

Figure A.1: Example DOM snippet with structural perturbations (inserted invisible sibling

nodes)

# trees 100

Split criterion entropy

Maximum tree depth unlimited

Precision 0.87

Recall 0.88

Accuracy 0.93

Table A.1: Reproduced target RF’s hyper-parameters and accuracy metrics
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# hidden layers 3

# neurons (1024, 512, 128)

# epochs 30

Dropout rate 0.1

Accuracy (agreement rate) 0.90

Table A.2: Local surrogate NN’s hyper-parameters and agreement rate

(a) Unperturbed gamepedia.com

(b) Perturbed gamepedia.com (w/

minor breakage)

Figure A.2: Example webpage with minor breakage

A.3 MAWI Traffic Dataset Statistics Chapter 5

As described in Section 5.4.1, here we list the basic statistics of the dataset used

in our evaluations in Table A.6.
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A.4 RNN Prediction Accuracy for Chapter 5

We present the per-label accuracy breakdown along with the number of samples

(packets) in Table A.7. Overall, the RNN model in CLAP achieves an accuracy of 0.995

on its testing set.

A.5 Feature Set for Chapter 5

Here we list the features we used in building context profiles in Table A.9. As

previously described, only TCP and IP layer header features (i.e., #1-#32) are used for

training the RNN model.

A.6 Per-context Categorization of Evasion Strategies for Chap-

ter 5

We categorize the 73 evasion strategies that were evaluated in Section 5.4.2 in

Table A.10 according to the context they primarily violate, using the categorization scheme

proposed previously.

A.7 Model Hyper-parameters for Chapter 5

We list hyper-parameters used in training the RNN/autoencooder models inCLAP,

and the autoencoder models used in Baseline #1 and #2 in evaluations, in Table A.8.
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# successfully crawled records (distinct requests) 503,526

# successfully crawled websites (distinct domains) 8,121

# features before one-hot encoding 65

# features after one-hot encoding 312

# categorical features 5

# binary features 36

# numeric features 25

# records to perturb (distinct requests) 2,000

Table A.3: Dataset statistics

Rank
Feature No. #

(from Table A.5)

Category

1 19 Structural

2 3 URL

3 5 URL

4 7 URL

5 4 URL

Table A.4: Information gain ranking of top-5 perturbed features
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No. # Meaning Type Category No. # Meaning Type Category

1
Total number of nodes in the graph at the time

of classification
I S 10

Presence of ad keyword attributes in ascendant

nodes
B S

2
Total number of edges in the graph at the time

of classification
I S 11

Presence of screen dimension keywords in

query string
B U

3 Length of request URL I U 12 Presence of ad dimension keywords in full URL B U

4 Presence of ad keywords B U 13 Number of siblings of current node I S

5 Presence of special characters B U 14 Number of siblings of parent node I S

6 Presence of semicolons B U 15
Presence of siblings of parent node with ad

keyword attributes
B S

7 Presence of base domain in query string B U 16 Number of inbound connections of parent node I S

8
Presence of ad dimension keywords in query

string
B U 17

Number of outbound connections of parent

node
I S

9 Number of inbound and outbound connections I S 18
Number of inbound and outbound connections

of parent node
I S

19
Average degree of connectivity for all nodes in

current page
F S

Table A.5: List of perturbed features; Type includes – I: integer, B: binary, F: float;

Category includes – S: structural, U: URL

Original Trafffc Archive

Capture

Timestamp

04/07/2020 14:00 JPT # Packets 111,851,572

# TCP/IPv4

Packets

51,692,562 /

Sampled (Used) Dataset

# TCP/IPv4

Packets

540,353
# TCP/IPv4

Connections

37,622

# TCP/IPv4

Packets (Training)

448,091
TCP/IPv4

Connections (Training)

31,198

# TCP/IPv4

Packets (Testing)

92,262
# TCP/IPv4

Connections (Testing)

6,424

Table A.6: Statistics of used MAWI dataset
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Table A.10: Per-context categorization of evasion strategies from [58, 93, 136] (with

THinter = 0.15)
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