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ABSTRACT

We estimate lepton capture and emission rates, as well as neutrino energy loss rates, for nuclei in the
mass range A ¼ 65 80. These rates are calculated on a temperature/density grid appropriate for a wide
range of astrophysical applications including simulations of late time stellar evolution and X-ray bursts.
The basic inputs in our single-particle and empirically inspired model are (i) experimentally measured level
information, weak transition matrix elements, and lifetimes, (ii) estimates of matrix elements for allowed
experimentally unmeasured transitions based on the systematics of experimentally observed allowed transi-
tions, and (iii) estimates of the centroids of the GT resonances motivated by shell model calculations in the
fp shell as well as by (n, p) and (p, n) experiments. Fermi resonances (isobaric analog states) are also
included, and it is shown that Fermi transitions dominate the rates for most interesting proton-rich nuclei
for which an experimentally determined ground state lifetime is unavailable. For the purposes of comparing
our results with more detailed shell model based calculations we also calculate weak rates for nuclei in the
mass range A ¼ 60 65 for which Langanke & Martinez-Pinedo have provided rates. The typical deviation
in the electron capture and �-decay rates for these �30 nuclei is less than a factor of 2 or 3 for a wide range
of temperature and density appropriate for presupernova stellar evolution. We also discuss some subtleties
associated with the partition functions used in calculations of stellar weak rates and show that the proper
treatment of the partition functions is essential for estimating high-temperature �-decay rates. In particular,
we show that partition functions based on unconverged Lanczos calculations can result in errors in
estimates of high-temperature �-decay rates.

Subject heading: nuclear reactions, nucleosynthesis, abundances

On-line material:machine-readable table

1. INTRODUCTION

In this paper we provide estimates for weak interaction
rates involving intermediate mass nuclei. Table 1 lists the
nuclei we estimate rates for, and Table 2 provides the rates
in a similar format and temperature/density grid as the
rates provided by Fuller, Fowler, & Newman (1982b).
Aufderheide et al. (1990, 1994) have argued that at late
times the electron fraction in the Fe core of presupernova
stars can be so low that weak processes involving the
A > 65 nuclei we study are important. Depending on the
entropy per baryon, which determines the free proton frac-
tion, electron capture on heavy nuclei may also play an
important role during collapse (Bethe et al. 1979; Fuller
1982). In addition, the weak rates we provide for proton-
rich nuclei may be used in studies of nucleosynthesis and
energy generation in X-ray bursts and other rp-process sites
(Wallace & Woosley 1981). For the rp-process, weak rates
are needed for proton-rich nuclei at least up to mass 110.
Electron capture and positron decay rates for proton-rich
nuclei in the mass range A ¼ 81 110, as well as a discussion
of some peculiarities of weak rates in the rp-process environ-
ment, will be presented elsewhere.

The formidable task of calculating the electron and posi-
tron capture and emission rates in the conditions character-
istic of these astrophysical environments has received more
than 4 decades of attention. The first self-consistent calcula-
tions to include the effects of the Fermi and Gamow-Teller

(GT) resonances as well as the thermal population of these
resonances for a broad range of nuclei and thermodynamic
conditions were done by Fuller, Fowler, & Newman [1980
(hereafter FFNI), 1982a (hereafter FFNII), 1982b, 1985]
and Fuller (1982). FFNI presented a physically intuitive
and computationally tractable method for determining the
strength and excitation energy of the Fermi and GT reso-
nances. The groundwork for the treatment of these resonan-
ces in a thermal environment was laid down by Bethe et al.
(1979) and FFNII. The importance of first forbidden transi-
tions, blocking, and thermal unblocking for the very neu-
tron-rich nuclei present during collapse was pointed out by
Fuller (1982). Cooperstein & Wambach (1984) calculated
electron capture rates for these nuclei by estimating the
parity forbidden matrix elements as well as the effects of
thermal unblocking of the allowed GT+ strength.

The last 2 decades have seen a great increase in our under-
standing of weak interaction systematics in intermediate
mass nuclei. There are now semidirect measurements of the
GT strength distribution for roughly 40 nuclei from forward
angle (n, p) and (p, n) scattering experiments. There are also
shell model calculations for the strength distribution for
some 400 nuclei in the fp shell (Caurier et al. 1999; Langanke
& Martinez-Pinedo 2000), as well as a number of RPA and
QRPA calculations of the GT resonance in heavier nuclei.
One consequence of these studies, first hinted at in the early
Lanczos calculations of Bloom & Fuller (1985), is that
the FFN prescription misses some important systematics
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in assigning the centroid of the GT resonance. The influence
of this misassignment on the rates was discussed by
Aufderheide et al. (1996), Caurier et al. (1999), and
Langanke & Martinez-Pinedo (2000, hereafter LMP).
Langanke &Martinez-Pinedo (2000) also provided updated
calculations of the rates for A � 65 based on large-scale
shell model calculations.

We attempt to remedy the misassignment of the GT
centroids. Other than this and a different treatment of high-
temperature partition functions, our strategy for calculating
weak rates for A � 65 is essentially the FFN approach. In
this approach the rates are broken into two pieces: a low
part consisting of discrete transitions between individual
levels and a high part involving the Fermi and GT resonan-
ces. This approach is valid provided that discrete transitions
between high-lying levels never dominate the rates. In addi-
tion, available experimental information for log ft-values

and level energies, parities, and spins is used. The inclusion
of this much data for more than 100 nuclei is a difficult task,
and would not be possible without the Web-based nuclear
structure databases (in particular, those provided by nudat
and the table of isotopes).

The simple FFN approach for estimating weak rates may
be the most natural framework for incorporating experi-
mentally determined nuclear properties. Additionally, a vir-
tue of using this semiempirical schematic approach is that
we can easily see where the key nuclear uncertainties are.
Our work can then serve as a catalyst for more detailed
follow-up nuclear structure studies for important rates.

In the next section we present a discussion of the formal-
ism for calculating weak rates. In x 3 we discuss the assign-
ment of experimentally unknown matrix elements for
allowed, discrete state transitions. This discussion is based
on the systematics of experimentally observed weak transi-
tions. In x 4 we present a simple approach for estimating the
position of the GT resonances and make some comparison
with data and shell model calculations. The calculation of
rates in a high-temperature environment is treated in x 5.
We also discuss in x 5 some subtleties associated with the
proper partition function to be used in these calculations.
Section 6 gives some comparisons of our estimates for the
rates with those provided by Langanke &Martinez-Pinedo.
Finally, we conclude with a discussion of the results.

2. WEAK RATES FORMALISM

The total decay rate for a nucleus in thermal equilibrium
at temperature T is given by a sum over initial parent states i
and final parent states j;

� ¼
X
i

Pi

X
j

�ij ; ð1Þ

where the population factor for a parent state i with
excitation energy Ei and angular momentum Ji is

Pi ¼
ð2Ji þ 1Þe�Ei=kT

Z
; ð2Þ

TABLE 1

Range ofZ for Fixed A

A ZRangea

66..................... 25–34

67..................... 25–34

68..................... 26–34

69..................... 25–36

70..................... 27–36

71..................... 27–36

72..................... 27–36

73..................... 28–37

74..................... 28–37

75..................... 28–38

76..................... 28–38

77..................... 29–39

78..................... 29–40

79..................... 29–40

80..................... 30–40

a For the most neutron
(proton) rich element(s) of a
given A, we do not calculate a
rate in the �+ (��) direction.

TABLE 2

Weak Interaction Rates for Nuclei in the Mass Range A ¼ 65 80

Z ¼ 26,N ¼ 40 ! Z ¼ 25,N ¼ 41 Z ¼ 25,N ¼ 41 ! Z ¼ 26,N ¼ 40

T/109 K logð�Ye g cm�3½ �Þ UF
a logð�emÞb logð�capÞc logð_ee�Þd logð�emÞb logð�capÞc logð _ee�Þd

0.01 ......... 1.0 �0.003 �100.000 �100.000 �100.000 1.021 �100.000 1.878

0.10 ......... 1.0 �0.058 �100.000 �100.000 �100.000 1.021 �54.584 1.878

0.20 ......... 1.0 �0.134 �100.000 �100.000 �100.000 1.021 �27.509 1.878

0.30 ......... 1.0 �0.218 �100.000 �100.000 �100.000 1.022 �18.193 1.878

0.40 ......... 1.0 �0.307 �100.000 �100.000 �100.000 1.022 �13.393 1.878

0.50 ......... 1.0 �0.399 �100.000 �100.000 �100.000 1.023 �10.431 1.879

0.60 ......... 1.0 �0.478 �100.000 �100.000 �100.000 1.024 �8.534 1.880

0.70 ......... 1.0 �0.503 �100.000 �100.000 �100.000 1.024 �7.542 1.881

0.80 ......... 1.0 �0.509 �100.000 �100.000 �100.000 1.025 �6.908 1.882

0.90 ......... 1.0 �0.510 �100.000 �84.103 �84.732 1.026 �6.423 1.882

1.00 ......... 1.0 �0.511 �100.000 �75.945 �76.528 1.026 �6.030 1.883

Note.—Table 2 is available in its entirety in the electronic edition of the Astrophysical Journal Supplement. A portion is shown
here for guidance regarding its form and content.

a Electron Fermi energy inMeV.
b Rate for charged lepton (eþ or e�) emission in units of ðnucleus s�1Þ�1.
c Rate for charged lepton capture in units of ðnucleus s�1Þ�1.
d Total (i.e., for charged lepton capture and emission) neutrino energy loss rate in units ofMeV ðnucleus s�1Þ�1.
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with

Z ¼
X
i

ð2Ji þ 1Þe�Ei=kT ð3Þ

the nuclear partition function. Here �ij is the specific weak
transition rate between initial parent state i and daughter
state j and is formally given by

�ij ¼
ln 2

ð ftÞij
fij ; ð4Þ

where

1

ð ftÞij
¼ 1

ð ftÞFij
þ 1

ð ftÞGT
ij

ð5Þ

and where the relation between ft-values and the appropri-
ate Gamow-Teller or Fermi matrix element is

ð ftÞGT
ij � 103:59

jMGTj2ij
; ð6Þ

ð ftÞFij �
103:79

jMFj2ij
: ð7Þ

Here the total Gamow-Teller matrix element between initial
parent state j P

i i and final daughter state j D
f i is

jMGTj2ij ¼ jh D
f j

X
n

�nð��Þnj 
P
i ij2 ; ð8Þ

where the sum is over all nucleons. The GT strength satisfies
the sum rule

S�� � S�þ �
X
f

jh D
f j

X
n

�nð��Þnj 
P
i ij2

� jh D
f j

X
n

�nð�þÞnj 
P
i ij2

¼ 3ðN � ZÞ : ð9Þ

Similarly, the Fermi matrix element is

jMFj2 ¼jh D
f j

X
n

ð��Þnj 
P
i ij2

¼TðT þ 1Þ � TzðTz � 1Þ ¼ jN � Zj : ð10Þ

This equation is derived by noting that ½Tþ;T�� ¼ 2Tz ¼
ðN � ZÞ.

The phase space factors for ��-decay are

fij ¼
Z qn

1

w2ðqn � wÞ2Gð�Z;wÞð1� f�Þð1� f�Þdw ð11Þ

and for electron/positron capture are

fij ¼
Z 1

wl

w2ðqn þ wÞ2Gð�Z;wÞf�ð1� f�Þdw ; ð12Þ

where the upper (lower) signs are for electrons (positrons),
qn ¼ ðMp �Md þ Ei � EjÞ=mec2, and where Mp is the
nuclear mass of the parent andMd is the nuclear mass of the
daughter. The threshold is wl ¼ 1 for qn > �1 and wl ¼ jqnj
for qn < �1. The lepton occupation factors are

f� ¼ exp
U �U�

F

kT
þ 1

� ��1

ð13Þ

where the minus sign is for electrons, the plus sign is for
positrons, U is the electron kinetic energy and U�

F the
kinetic chemical potential (total chemical potential is here
defined to include the electron rest mass). The factor
Gð�Z;wÞ is the coulomb wave correction factor defined in
terms of the Fermi factor F

Gð�Z;wÞ � p

w
Fð�Z;wÞ ð14Þ

as discussed in FFNI.
Neutrino energy loss rates are calculated in the same way

as the decay rates, but with the phase space factor fij
replaced by

f �ij ¼
Z qn

1

w2ðqn � wÞ3Gð�Z;wÞð1� f�Þð1� f�Þdw ð15Þ

for charged lepton emission, and by

f �ij ¼
Z 1

wl

w2ðqn þ wÞ3Gð�Z;wÞf�ð1� f�Þdw ð16Þ

for charged lepton capture. The sign convention here is the
same as that for fij above, and the energy loss calculated in
this way is in units ofmec2 s�1.

3. ASSIGNMENT OF UNMEASURED, ALLOWED
TRANSITION MATRIX ELEMENTS

As in FFN, we break the rates �ij into two distinct com-
ponents: discrete transitions between low-lying levels and
transitions involving states in the Fermi or GT resonance
carrying total weak strength (jMGTj2 þ jMFj2) of order 1 or
greater. Discrete state transitions between low-lying states
in the parent and daughter are important when the captur-
ing lepton energies are too low to reach resonance states in
the daughter or when the temperature is too low to ther-
mally populate parent levels with fast transitions to daugh-
ter states. To estimate matrix elements between low-lying
parent and daughter levels, FFN adopted the simple pre-
scription that all transitions not forbidden by the selection
rules have some average matrix element characteristic of a
group of nuclei. We adopt a similar procedure, but here we
assign a ‘‘ characteristic log ft ’’ value, which depends on
nuclear mass range, to allowed and experimentally unmea-
sured transitions. The validity of this approach can be
addressed by looking at the systematics of matrix elements
for experimentally observed �+/ec and ��-decays.

Figures 1, 2, and 3 show the characteristic log ft-value for
all nuclei in the mass range A ¼ 65 80 for which there is
experimentally determined weak decay information. By
‘‘ characteristic log ft ’’ we mean here the log ft-value
obtained by assuming that all of the measured discrete
strength is spread uniformly over all states in the daughter
for which the selection rules do not forbid a transition and
for which the Q-value is positive (i.e., the decay is energeti-
cally allowed). This estimated number of allowed transi-
tions (nallow) for each nucleus is shown on the x-axis. The
determination of nallow is difficult because of uncertainties in
the angular momentum and spin assignments of levels.
Where the angular momentum of a given level is uncertain
we have adopted the middle value if more than two possibil-
ities are listed, and the largest value if only two possibilities
are given. Where the parity is listed, but uncertain, we have
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adopted the tentative value. Transitions involving a level for
which no spin or parity information is given are labeled as
forbidden. For consistency, these are the same conventions
followed in the determination of whether an experimentally
unmeasured transition is allowed and assigned a character-
istic log ft-value in our calculation of weak rates.

For illustration, consider the �-decay of 66Co. Experi-
mentally it is observed that 66Co decays in this channel to
two states in 66Ni, one with a log ft of 4.21 and the other with
log ft ¼ 4:75. By examining the experimentally studied lev-
els in 66Ni it is seen that there are seven levels that have spins
and parities consistent with allowed decay from 66Co.
The characteristic log ft for 66Co is then defined as
� log10½ð1=7Þð10�4:21 þ 10�4:7Þ� ¼ 4:93. Our definition of
the characteristic log ft is rough in that it neglects the ex-
perimental difficulties associated with measuring weak
transitions. In particular, uncertainties arising from the
possibility of the feeding of daughter states from higher
lying states have not been accounted for, nor has the diffi-
culty of observing near-threshold transitions. Nonetheless,
a case may be made from these figures that the assumption
of an average matrix element is a reasonable one, particu-
larly when several transitions are involved. For example, for
nuclei with 65 � A < 70, only one nucleus with nallow > 2
has a characteristic log ft differing from 5.4 by more than 1,
and for nuclei in the range 70 � A � 80 only five nuclei
with nallow > 2 have a characteristic log ft differing from 5.7
by more than 1. It should be noted that estimates based
on characteristic log ft-values are generally less accurate
than estimates based on detailed shell model calculations.
For example, for nuclei with well-studied level structures,
estimates of ground state lifetimes based on a characteristic
log ft are typically in error by a factor of 3 or 4. Note,
though, that we use experimentally determined half-lives or
strength distributions in place of characteristic log ft-values
whenever an experimental lifetime is available.

In this work we take a characteristic log ft of 5.4 for nuclei
with A < 70, and a characteristic log ft of 5.7 for nuclei with
A � 70. An alternative approach for estimating these
matrix elements would be to assign log ft-values from a stat-
istical distribution. Our procedure should give a reasonable
estimate of the rates when several transitions contribute
nearly equally to the rate. However, our estimated rate is
obviously subject to uncertainty when only one or two
experimentally unknown transitions dominate.

An important class of nuclei for which a treatment of the
decay of low-lying excited states in terms of a characteristic
log ft is inappropriate are the proton-rich even-even nuclei
with nearly closed neutron and proton subshells. These
can have anomalously large 0þ ! 1þ GT transitions, with
log ftd4 in many cases. In X-ray burst environments, with
temperatures kT 	 0:25 MeV, the first 2þ excited state in
these nuclei can be appreciably thermally populated. The
thermal �+-decay rate of the nucleus depends sensitively on
whether this 2+ state also decays with anomalously large
matrix elements. Schatz et al. (1998) studied this question
for 68Se and 72Kr, whose ground state decays are character-
ized by fast 0þ ! 1þ transitions, and found that the 2+ state
decays more rapidly than the ground state. We incorporate
this trend in our calculations for the four nuclei (72Kr, 74Kr,
76Sr, 78Sr) with fast 0þ ! 1þ transitions. For these nuclei we
assume that the first 2+ state has a strength distribution
identical in shape, but with matrix elements twice as large,
as the strength distribution from the 0+ ground state. For

Fig. 1.—Systematics of experimentally determined log ft-values for
nuclei with 65 � A < 70.

Fig. 2.—Systematics of experimentally determined log ft-values for
nuclei with 70 � A � 75.

Fig. 3.—Systematics of experimentally determined log ft-values for
nuclei with 75 < A � 80.
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68Se and 72Kr this gives low-temperature decay rates within
	30% of those calculated by Schatz et al.

It should be emphasized that some of the near proton
drip line nuclei, for which experimentally determined level
and weak decay information are incomplete, are not
properly addressed by our largely experimentally based
approach. An understanding of the thermal weak decay of
these nuclei will likely depend on the resolution of many
unresolved questions about their structure. Consequently,
our estimates of the weak decay for these nuclei are sim-
ple—experimental lifetimes where they are available, and
trends suggested by the study of Schatz et al. for the decay
of a few important 2+ states. Another nucleus that is
known to be important in determining the nuclear flow in
X-ray bursts is 80Zr. Though the excitation energy of the
first 2+ excited state for this nucleus is experimentally
known, the level structure in the �+ daughter is so poorly
known that an estimate of the 2+ decay rate based on char-
acteristic log ft-values is not possible. For this nucleus we
have made the assumption that the first 2+ state decays at
the same rate as the ground state. This is likely not correct.
Our calculation for this nucleus of the decay at low temper-
atures of states in the ‘‘ back resonance ’’ (x 5) is also uncer-
tain. It seems that a shell model calculation capable of
reliably estimating the 2+ (and 4+) lifetime is needed for a
better estimate. The situation for proton-rich nuclei is not
as grim as it might first appear since, as we show below,
many of the near proton-drip nuclei have thermal decays
that are dominated by the reliably estimated Fermi
transition.

4. THE FERMI AND GAMOW-TELLER RESONANCES

In this section the Fermi and Gamow-Teller resonances
are discussed. Ideally, our description of the GT resonance
would be so well resolved that the inclusion of experimen-
tally determined lifetimes, level parameters, and log ft sys-
tematics would be unnecessary. However, without more
detailed structure calculations, the best we can hope for is a
reliable estimate of the gross properties of the GT reso-
nance. The careful use of experimental measurements, out-
lined above, is an attempt to get at the fine details needed
for a description of transitions between low-lying levels.
Because the characteristic log ft was designed to account for
the �+/��-decay of low-lying states, we do not include GT
resonance strength within the Q-window for the decay of a
state (the exception to this is the decay of ‘‘ back resonan-
ces ’’ discussed below). In the cases where the prescription
discussed below places strength within the Q-window for a
decay, we push that strength in our calculations up to
Q ¼ 0.

The Fermi resonance jFii corresponding to a given state
j ii is generated by application of the isospin raising or low-
ering operator, jFii ¼ T�j ii (eq. [10]). The selection rules
for Fermi transitions are D� ¼ DT ¼ DJ ¼ 0. Because
DT ¼ 0 and because (with the exception of odd-odd N ¼ Z
nuclei) the ground state of a nucleus generally has the lowest
possible isospin, there typically is only nonzero Fermi
strength for transitions from a nucleus with greater isospin
T> to a nucleus with lesser or equal isospin T<. Since the
nuclear part of the Hamiltonian (Hnuc) is isospin independ-
ent and the electromagnetic part is small in comparison, the
resonance generated by T� is narrowly concentrated about
the IAS. The excitation energy can be estimated from the

difference in Coulomb binding energy of the parent and
daughter nucleus. FFNI gives a useful approximation for
the excitation energy of the IAS in the daughter nucleus:

EIAS ¼ Dp � Dd � 0:7824� 1:728minðZp;ZdÞ=R ; ð17Þ

whereR � 1:12A1=3 þ 0:78 is the nuclear radius in fm, p and
d refer to the parent and daughter, respectively, D is the
atomic mass excess in MeV, and EIAS is in MeV. The upper
signs in the above equation correspond to ðZ;NÞ ! ðZ þ 1;
N � 1Þ transitions for neutron-rich parents, while the lower
signs correspond to ðZ;NÞ ! ðZ � 1; N þ 1Þ transitions
for proton-rich parents. Equation (17) agrees well with
measured and shell model predictions for IAS energies.

The Gamow-Teller operator is

GT� ¼
X
n

���ðnÞ ; ð18Þ

where the sum is over all nucleons n. The collective GT reso-
nance state jCGTii corresponding to a given parent state
j ii is given by application of the GT operator,
jCGTii ¼ GTj ii. The selection rules for GT transitions are
D� ¼ 0, DJ ¼ 0;�1 no 0 ! 0, and DT ¼ 0; �1. The GT
strength distribution is harder to characterize because Hnuc

is strongly spin dependent. Since ½Hnuc; GT�� 6¼ 0, the GT
strength can be fragmented over many daughter states.
However, in practice the stellar weak rates are usually
determined by the total strength and the centroid of the
strength in excitation energy (provided that low-lying
discrete transitions are well accounted for).

The strength in the GT resonance was also estimated by
FFN in a zeroth-order shell model picture. In this picture
the lowest shell orbitals are filled with nucleons, and the
total strength is taken to be the sum of the contributions
from each pair of single-particle orbitals:

jMGTj2 ¼
X
if

nipn
f
h

2jf þ 1
jMsp

GTj
2
if : ð19Þ

Here ‘‘ i ’’ and ‘‘ f ’’ denote initial and final orbitals (j�ii and
j�f i), respectively, np and nh denote the number of particles
and holes in these orbitals, and Msp

GT ¼ h�f jGTj�ii is the
single-particle matrix element connecting the initial and
final states. These single-particle matrix elements can be
found from angular momentum considerations and are
shown in Table 1 of FFNII.

We follow FFN in using the single-particle result (eq.
[19]) to estimate the total strength. Experimentally it is well
established that the axial vector current is renormalized by a
factor of	(1/1.24) in nuclei. This results in a strength a fac-
tor of ð1=1:24Þ2 � 1=2 smaller than shell model calculations
give. In addition, shell model calculations show that resid-
ual interaction-induced particle-hole correlations further
reduce the total strength by a factor of 1 to a few. Typically,
these correlations are more important for GTþ transitions,
so that the additional quenching is larger for these transi-
tions. One way to incorporate the effects of quenching on
the rates is through a tabulation of ‘‘ effective log ft-values ’’
(Fuller et al. 1985). This allows users of the rates to deter-
mine when a given rate is dominated by experimentally
determined low-lying transitions (and should not be
quenched) and when a rate is dominated by an estimate of
the GT resonance strength (and should be quenched). We
do not follow this approach, but instead incorporate the
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quenching by adopting a quenching factor of 4 for GTþ

transitions and 3 for GT� transitions. These values for the
quenching factors generally give strengths within a factor of
2 of more detailed strength determinations. When the
quenched value for the strength is less than 1, we assign a
configuration mixing strength of 1. As discussed below, this
is roughly consistent with the results of (n, p) experiments
for GTþ blocked nuclei.

FFN estimated the centroid of the GT resonance by con-
sidering a zeroth-order shell model description for the spin
flip part of the GT resonance. This configuration was com-
pared with the zeroth-order shell model description of the
daughter ground state and assigned an excitation energy

EGT ¼ DEs:p: þ DEpair þ DEph : ð20Þ

Here DEs:p: is the difference in single-particle energies
between the two states (daughter ground state and spin flip
GT resonance state), DEpair accounts for the difference in
pairing energy between the two states, and DEph (taken to
be 2 MeV) accounts for the effects of configuration mixing
and particle hole repulsion. For T> ! T< transitions the
energy of the IAS in the daughter is added to equation (20).

For the assignment of the GT centroids we adopt a proce-
dure close to that outlined by FFN. However, as noted in
the introduction, the FFN approach misses some important
systematics in the centroids of the strengths as revealed by
more recent experimental data and shell model calculations.
One potential remedy for this is to do RPA or QRPA calcu-
lations for the strength distributions for nuclei too heavy to
be studied via detailed shell model calculations. Such calcu-
lations have been done for a number of nuclei by several dif-
ferent groups. A simpler approach is to approximately
account for the effects of the competition between the
k�� ð�1 
 �1Þð�2 
 �2Þ and k� ð�1 
 �2Þ terms in the nuclear
Hamiltonian. The effect of this competition on the centroid
of the GT resonance is most easily seen in the Tamm
Dancoff approximation from the argument given by Bertsch
& Esbensen (1987). In this approximation the k� and k��
forces give rise to a GT� excitation energy scaling as

EGT� � EIAS þ DEso þ 2 k��SGT�=3� ðN � ZÞk�½ � : ð21Þ

Here DEso is the spin orbit splitting characteristic of the
single-particle transitions for the GT� resonance. As an
example of this equation, consider the case of 54Fe and 56Fe.
The zeroth-order �� strengths for these nuclei are jMGTj2 ¼
16:3 (54Fe) and 22.3 (56Fe). For k�� 	 ð20=AÞMeV 	 ð2=3Þ
k� , equation (21) implies ðEGT� � EIASÞ56Fe � ðEGT��
EIASÞ54Fe � �1 MeV. Shell model calculations and (p, n)
experiments for these nuclei give this difference as approxi-
mately �2 MeV. As Fe becomes more and more neutron-
rich EGT� approaches EIAS and eventually falls below it
(although perhaps beyond the neutron drip line for a
nucleus as light as Fe).

A somewhat more sophisticated approach to incorporat-
ing the effects of the competition between the k� and k��
forces is the random phase approximation with a separable
force. In this approximation the GT+ and GT� resonances
become eigenstates of the Hamiltonian. The energies of
the resonances are approximately given by the roots of the
algebraic equation

f1
	i � 	þ D�

so
þ f2
	i � 	

þ f3

�	i þ 	þ Dþ
so

¼ � 3

2

1

k��

1

Stot
ð22Þ

(see Gaarde et al. 1981 for an application of this equation to
experimentally observed �� strengths, or Rowe 1970 for a
more pedagogical discussion). In equation (22), Stotal ¼
SGT� þ SGTþ ¼ 3jN � Zj þ 2SGTþ is the sum of the
strengths in the plus and minus directions, f1 is the fraction
of this strength in the GT� spin-flip mode, f2 is the fraction
of this strength in the GT� non–spin flip mode, and f3 is the
fraction of strength in the GT+ direction. The spin orbit
splittings Dþ

so and D�
so are the splittings appropriate for the

spin flip transitions in the plus and minus directions,
	i ¼ ð	� � 	�Þi is the difference in the proton and neutron
single-particle energies for the levels involved in the transi-
tion. The quantity 	i is related to the energy of the IAS by
EIAS � 	i ¼ 2k� jN � Zj. The largest root of equation (22)
corresponds to the energy of the spin flip mode. Equation
(22) reduces to equation (21) in the limit f1 ¼ 1.

Our approach for calculating the centroid of the GT� res-
onance is based on equation (22). The strengths in this equa-
tion are estimated in the zeroth-order shell model picture
described above. For consistency with FFNwe take the spin
orbit splittings from Seeger & Howard (see the table in
Hillman & Grover 1969). When more than one spin flip
transition contributes to the strength, we take the strength-
weighted average. The parameter k� can be estimated using
measured IAS energies and estimates for the particle-hole
energies. Alternatively, an estimate for the IAS energy (eq.
[17]) gives a relation between k� and 	i. The parameter k��
can be chosen to give good agreement with shell model and
experimental results for the GT� resonance in the fp shell.
In this work we adopt k� ¼ 28:5=A MeV and k�� ¼ 23=
A MeV. These values are close to those given in Bertsch &
Esbensen (1987) and Gaarde et al. (1981). It has previously
been noted by a number of authors (e.g., Gaarde et al. 1981)
that a simple prescription can do a fair job of predicting the
centroids of the GT� resonances (see Table 3). In Table 4
we reaffirm this by comparing the predictions based on
equation (22) with measured and shell model results.

For the GT+ resonance, estimates based on a separable
force are not well justified. Higher order particle hole
correlations and correlations induced by other terms in the
Hamiltonian play a more important role. Nonetheless, the
RPA result accounts for the spin orbit splittings and the sys-
tematics of the influence of the k� and k�� forces in an
approximate way. We estimate the centroid of the GT+

resonance from the equation analogous to equation (22)
(which is found by reversing the role of the plus and minus
transitions, and by setting 	i ¼ ð	� � 	�Þ or alternatively
by setting 	! �	 in eq. [22]). We also add an additional
term to account for the effects of correlations missed by the
separable force estimate:

EGTþ ¼ EGTþ;RPA þ 
ph : ð23Þ

A value of 2MeV for the empirical correction 
ph gives good
agreement with the results of experimental and shell model
studies of nuclei in the lower half of the fp shell. This is
demonstrated in Table 4.

Our simple estimate for EGTþ probably breaks down as
the fp shell approaches being filled. Fortunately, for most
nuclei in this case (A > 65) the GT+ transition is nearly
blocked and there are indications that for such nuclei the
GT+ resonance strength can be simply approximated (see
below). Likewise, for those proton-rich nuclei with substan-
tial amounts of unblocked strength the electron capture
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Q-value is large, so again the rate is not terribly sensitive
to assumptions about the centroid. For the few proton-
rich nuclei with modest GT+ strength, we can compare
our results to the more detailed QRPA calculations of
Sarriguren, de Guerra, & Escuderos (2001). These authors
performed QRPA studies for even-even Ge, Se, Kr, and Sr
isotopes. For the most part their calculated electron capture
half-lives agree well with experimental half-lives.

For 66Ge, 68Ge, and 70Se, Sarriguren et al. (2001) find that
the strength distribution is not very sensitive to which of
two nearly degenerate shapes the nucleus assumes, so that a
direct comparison with our estimate is sensible. For these
nuclei our estimate for the centroid of the resonance is lower
than theirs by 1.5 MeV (66Ge), 1.8 MeV (68Ge), and 2.5
MeV (70Se). For some of these nuclei it is not clear which
estimate is correct. Sarriguren et al. (2001) show that their
method gives a centroid about 2MeV higher than the exper-
imental centroid for 54Fe and 56Fe and that there calculation

for 70Ge misses a modest amount of experimentally
determined low-lying strength.

However, in at least one case (70Se), our assignment of the
strength is at least 0.5–1 MeV too low. We know this
because a calculation of the ground state lifetime based on
our estimate for the strength distribution is about 2 times
shorter than the experimentally determined half-life. (As
discussed above, though, we use experimental information
in place of other estimates when an experimentally deter-
mined half-life is available.) We will argue in the last section
that the uncertainty in the placement of the centroid of the
GT+ strength is not very important for nuclei in the mass
range we are considering.

As the GT+ strength decreases (i.e., as an isotope be-
comes more neutron rich), equation (23) eventually gives a
negative excitation energy for the resonance in the daughter.
This typically happens when the single-particle estimate for
the strength (eq. [19]) is less than about 5. In this case, the
strength is dominated almost entirely by configuration mix-
ing. There are a few (n, p) studies of such nearly blocked
nuclei. Vetterli et al. (1992) studied 70Ge(n, p)70As and
72Ge(n, p)72As. The experimentally determined GT strength
for 70Ge is BðGTÞ ¼ 0:84� 0:13 or BðGTÞ ¼ 0:72� 0:14.
The two different values correspond to different ways of esti-
mating the DL ¼ 0 component of the (n, p) cross section.
The higher estimate comes from a multipole decomposition
(m-d) of the cross section, while the smaller estimate is
derived by approximating the cross section measured at 5=8
as the DL ¼ 1 component of the cross section. For the m-d
the strength distribution for 70Ge is approximately flat up to
a few tens of MeV in excitation energy in 70As. For the 5=8
subtraction method, the strength falls after about 6 MeV in
excitation energy in 70As. For 72Ge BðGTÞ ¼ 0:23� 0:05
(5=8) or BðGTÞ ¼ 0:86� 0:14 (m-d) and the strength
distribution is roughly flat or falls off after about 6 MeV

TABLE 3

Comparison of the Shell Model GT
�
Centroids

Calculated in LMP with Those Estimated from

Equation (22) (Present)

Parent Nucleus LMP Present

55Fe....................................... 12.6 10.4
56Fea ..................................... 9.6 8.5
57Fe....................................... 12.6 11.5
58Fe....................................... 11.0 9.5
59Fe....................................... 13.6 12.6
60Fe....................................... 10.3 10.6
61Fe....................................... 13.8 13.75
62Fe....................................... 11.8 11.7
58Nia ..................................... 9.2 6.44
59Ni....................................... 10.6 9.46
60Nia ..................................... 9.0 7.5
61Ni....................................... 13.3 10.6
62Ni....................................... 9.2 8.2
63Ni....................................... 13.2 11.5
64Ni....................................... 9.6 9.15
65Ni....................................... 12. 12.35
56Co ...................................... 13.2 12.7
57Co ...................................... 12.5 10.77
58Co ...................................... 14.7 13.7
59Co ...................................... 13.1 11.6
60Co ...................................... 14.0 14.8
61Co ...................................... 13.6 12.6
62Co ...................................... 15.3 13.9
63Co ...................................... 14.4 13.7
64Co ...................................... 16.0 16.7
65Co ...................................... 14.6 14.8
55Mn ..................................... 13.0 11.8
56Mn ..................................... 14.7 15.1
57Mn ..................................... 13.1 13.5
58Mn ..................................... 15.5 16.4
59Mn ..................................... 14.0 14.7
60Mn ..................................... 16.0 17.4
61Mn ..................................... 16.2 15.5

Notes.—All energies are in MeV and refer to
energy with respect to the daughter ground state.
The shell model centroids in this table were taken
from the tables or estimated from the graphs in
Caurier et al. 1999 and LMP.

a For these nuclei the results from ( p, n) experi-
ments give a centroid approximately 0.7–1 MeV
lower than the shell model results.

TABLE 4

Comparison of the Shell Model GT
þ
Centroids

Calculated by LMP with Those Estimated

from Equation (23) (Present)

Parent Nucleus LMP Present

55Mn ..................................... 4.6 4.6
56Mn ..................................... 5.9 6.4
56Fe....................................... 2.6 2.4
56Co ...................................... 8.2 8.8
58Mn ..................................... 5.5 5.15
58Co ...................................... 7.35 8.1
58Ni....................................... 3.75 3.65
59Co ...................................... 5.05 5.0
60Co ...................................... 6.35 6.74
60Ni....................................... 3.4 2.7
61Fe....................................... 2.1 1.8
61Co ...................................... 3.7 3.4
61Ni....................................... 4.7 4.7
61Cu ...................................... 6.7 6.4
62Ni....................................... 2.1 1.8
64Ni....................................... 1.3 1.8

Notes.—All energies are in MeV and refer to
energy with respect to the daughter ground state.
The shell model centroids in this table were also
taken from Caurier et al. 1999 and LMP. Where an
experimental result is listed along with the shell
model result we have presented the experimental
result.
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depending on the background subtraction method. Helmer
et al. (1997) have studied 76Se(n, p)76As. They find BðGTÞ ¼
1:45 with a roughly flat strength distribution for the m-d
method, and BðGTÞ ¼ 0:35 with a strength extending to
about 6 MeV in 76As if the 6� data are used to estimate the
DL ¼ 1 component of the cross section. In this work we
adopt the procedure that when the RPA estimate EGTþ; RPA
appearing in equation (23) is negative with respect to the
daughter ground state, or when the GT+ strength in the zer-
oth-order shell model picture is zero, the strength distribu-
tion is represented by a 1 MeV-width Gaussian centered at
1.8 MeV. This is approximately consistent with the experi-
mental data analyzed using the 5=8 (6�) background sub-
traction method. Our prescription misses the high-lying
strength estimated from the experimental data analyzed
using the multipole decomposition method. We will discuss
in the last section the uncertainties in the rates resulting
from the unknown strength distribution for these blocked
nuclei.

5. THERMAL CONSIDERATIONS

The picture for Fermi and Gamow-Teller strengths out-
lined above becomes more complicated at high tempera-
tures on account of the thermal population of parent
excited states. In evaluating the contribution to the rates of
transitions between low-lying levels, we use the same set of
experimentally determined levels discussed above.

As the temperature rises, the evaluation of equation (1)
requires knowing the strength distributions of an impossibly
large number of states. For example, at a temperature of
1 MeV the partition function for an odd-odd nucleus with
A � 60 is a few hundred, and the mean excitation energy is
T2�F � T2A=8 � 7 MeV (here �F � a is the level density at
the Fermi surface and a � A=8 is the level density parame-
ter). The approximation traditionally (see FFNII) used to
make the problem tractable is the Brink approximation,
which postulates that the centroid of the Gamow-Teller
strength distribution corresponding to a parent state at exci-
tation energy Ei is shifted up by an energy Ei with respect to
the centroid of the strength distribution corresponding to
the parent ground state. It is generally assumed that the
total strength remains the same for all transitions. The val-
idity of the Brink approximation has been investigated in
some detail by LMP. They find that the approximation
is good for the first few low-lying states for which they
calculate strength distributions.

With the Brink approximation, the contribution of dis-
crete state to high-lying resonance state transitions can be
approximated. For definiteness we assume in the following
discussion that the parent nucleus has isospin T>, the
daughter nucleus has isospinT<, and that the GT� operator
acting on the parent generates states in the daughter (and
conversely). Each parent state (j P

i i) has a corresponding
Fermi resonance (jFii ¼ T�j P

i i) and collective Gamow-
Teller resonance (jCGTii ¼ GT�j P

i i) in the T< daughter.
With the Brink approximation, the Q-values for these tran-
sitions are independent of the excitation energy of the ther-
mally populated parent state. The overall transition rate for
these processes can be obtained from a calculation of the
ground state rate alone, but with the population factor of
the ground state set to unity. This is part of the ‘‘ FFN
trick.’’

Likewise, it is possible to thermally populate the collec-
tive Gamow-Teller states in the T> parent (jCGTji ¼
GTþj D

j i). These thermally populated states can decay to
the daughter with large overlap. These ‘‘ back resonances ’’
are shown in Figure 4. Suppose for a moment that the GT+

resonance corresponding to a state in the daughter is con-
fined to a single state in the parent. In this case the Brink
approximation implies that for each state with excitation
energy Edaughter; j in the daughter, there is a corresponding
GT+ resonance state (jCGTji ¼ GTþj D

j i) in the parent
with excitation energy E0 þ Edaughter; j . Here E0 is the excita-
tion energy in the parent of the resonance state correspond-
ing to the daughter ground state. Because in the Brink
approximation the Q-values and strengths for all the transi-
tions ðE0 þ EjÞparent ! ðEjÞdaughter are the same, the rate
contribution for each transition is also the same and can be
written as ���. The contribution of the back resonances to the
rates can be directly evaluated:

�backres ¼
���
P

i expð�Eparent; i=TÞð2Jparent; i þ 1Þ
Zparent

�
���
P

j expð�Edaughter; j þ E0Þ=TÞð2Jdaughter; j þ 1Þ
Zparent

¼ ��� expð�E0=TÞZdaughter

Zparent
: ð24Þ

Equation (24) was first derived in FFNII and is sometimes
referred to as the ‘‘ FFN trick.’’

In this work we represent the resonance strength distribu-
tion by a Gaussian of nominal width �. For the GT+

strength distribution we take � ¼ 1 MeV and for the GT�

strength distribution we take � ¼ 2 MeV. This approxima-
tion does not fairly represent the complex structure and var-
iation seen in real strength distributions. However, we will
see in the last section that this simple approximation cap-
tures the features relevant for calculations of weak rates in a
stellar environment. The case where the resonance is spread
over several states in the parent can be treated similarly to
the case where the resonance is concentrated in a single
state. If the resonance corresponding to the ground state in
the daughter is spread over states with excitation energy
E0;E1; . . . ;En in the parent, with corresponding rates to the
daughter ground state given by ���0j, then equation (24)

Fig. 4.—Illustration of the position and energetics of discrete
state-resonance transitions (back resonances).
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becomes

�backres �
P

j
���0j expð�E0j=TÞZdaughter

Zparent
: ð25Þ

Apart from spin weighting corrections, this equation is
exact in the limit where the Brink approximation holds (i.e.,
the strength distribution from every daughter state is identi-
cal to the strength distribution from the daughter ground
state except for an overall shift in energy).

The interesting feature of equation (25) is that if all of the
Q-values for the n states are comparable (so that the E0j=T
are all comparable), then

�backres � nh ���0ji expð�E0=TÞZdaughter=Zparent

¼ ��� expð�E0=TÞZdaughter=Zparent ; ð26Þ

independent of n. Here the relation nh���0ji � ��� (where ��� is
the rate of decay calculated assuming that the GT resonan-
ces are confined to single states) holds because the total
strength in the GT resonance is independent of the number
of states it is spread over. In a sense equation (26) is counter-
intuitive because one might expect that if the strength is
spread out over n states in the parent, the decay rate from
the parent should be a factor of 1/n smaller. However, in
some cases the strength distributions arising from different
states in the daughter must overlap (i.e., correspond to iden-
tical states in the parent) to the extent that the level densities
in the parent and in the daughter are comparable. This is
accounted for by the ratio of partition functions appearing
in equation (25). As discussed above, equations (24) and
(26) represent the limiting form of equation (25) and are
only valid when the width of the GT back resonance is small
compared to the temperature and typical decay Q-value.
When these conditions are not met, more detailed informa-
tion (e.g., from shell model calculations) about the strength
distribution is needed and can be incorporated in equation
(25). In turn, equation (25) is only appropriate when varia-
tions in the back resonances corresponding to different
daughter states are small (apart from the overall shift in
energy of the centroid described by the Brink hypothesis).

In principal, equation (25) is not needed, and the rates
can be estimated through a direct shell model calculation of
the strength distribution from daughter states. To illustrate
potential difficulties associated with such an approach con-
sider the definite example of the �-decay of Mn to Fe (we
shall consider A ¼ 56 for illustration). For simplicity, sup-
pose that (i) the width of the GT+ resonances inMn (gener-
ated by applying GT+ to states in Fe) are small compared to
the temperature as well as theQ-value for decays from these
states and (ii) the partition functions for Mn and Fe are
identical (ZMn ¼ ZFe). In the limit where the Brink approxi-
mation holds, the �-decay rate of Mn is approximately
��� expð�E0=TÞ, where the symbols have the same meaning
as in equation (24). We now want to compare this decay rate
to the decay rate calculated in a Lanczos-based approach.
For simplicity suppose first that, apart from the ground
state, the only states considered in Mn are those calculated
to comprise the GT+ strength distribution of the ground
state of Fe. The partition function calculated in this
approach is ZMn ¼ 7þ 3mLan expð�E0=TÞ½ �, where mLan is
the number of Lanczos iterations done for the GT+
strength of the Fe ground state, the number 7 arises because
the ground state spin of 56Mn is 3, and the number 3 arises

because states in Mn connected to the (0+) ground state of
Fe via allowed GT transitions have J ¼ 1. The calculated
�-decay rate of Mn is then 3��� expð�E0=TÞ= 7þ 3mLan exp½
ð�E0=TÞ�. The dependence on mLan does not cancel out.
The calculated decay rate is a function of how many Lanc-
zos iterations are done. IfE0=T < 1, then the decay rate that
is calculated if 100 iterations are done (mLan ¼ 100) is of
order a factor of 30 smaller than the decay rate that is calcu-
lated if only one Lanczos iteration is done. Provided that
the states in the GT strength distribution can be converged,
the dependence of the calculated decay rate on mLan can be
partly alleviated by considering the strength distributions
corresponding to many daughter excited states. We note
that LMP used detailed calculations of strength distribu-
tions (and did not simply factor out an average matrix ele-
ment as in the simple example presented here) in their
calculations of �-decay rates.

To show how differences in the treatment of partition
functions can influence estimates of high-temperature
�-decay rates, we plot in Figure 5 a comparison between our
calculated ��-decay rates and those of LMP at a tempera-
ture of T9 ¼ 30 and a density of �Ye ¼ 10 g cm�3. These
thermodynamic conditions are artificial but serve the pur-
pose of illustration. When the �-decay rate is fast (and
insensitive to the finer details of the strength distribution),
the discrepancy between the two calculations is about a fac-
tor of 10. From our simple analysis it is not clear that either
set of rates is more reliable. However, it is clear that differen-
ces in treatments of the partition functions can result in
significant differences in estimates of the rates.

The trend of greater disagreement with faster decay rate
seen in Figure 5 arises from the competition of two factors.
For low decay rates, the Q-value of the decay (excitation
energy of the GT+ resonance with respect to the daughter
ground state), is typically small. In this case the width of the
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Fig. 5.—Comparison of our ��-decay rates with the LMP rates for
nuclei in the mass range A ¼ 60 65. The comparison is made at T9 ¼ 30,
�Ye ¼ 10 g cm�3. These conditions are artificial but serve to illustrate the
influence of the treatment of the partition function on estimates of the weak
rates. In all plots where a rate is shown the rate is in units of s�1.
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resonance enhances the decay rate compared to the decay
rate calculated from our artificially narrow resonance. For
faster decay rates, the Q-value is large, the lifetime is rela-
tively insensitive to the width of the resonance, and the
LMP estimate differs from the present estimate mostly
because of differences in estimates of the partition function.

The effect, and the importance of consistency in partition
functions in general, can be illustrated by considering the
conditions in the post–silicon burning, precollapse core of a
massive star. There electron capture proceeds on iron peak
nuclei, driving them to a neutron excess where ‘‘ reverse ’’
��-decay balances ‘‘ forward ’’ electron capture. For exam-
ple, Aufderheide et al. (1994) identify 64Cr as the end-point
nucleus where the forward and reverse neutronization rates
balance. In balanced conditions, partition functions are
crucial rate and abundance determinants. We can compare
our rates with LMP as in Figure 5, but now for T9 ¼ 10,
�Ye ¼ 109 g cm�3, roughly approximating immediately
precollapse conditions. This comparison is shown in Figure
6. Again there is a systematic trend: the LMP rates are lower
than ours by a factor of 4 on average with a fair scatter. This
is smaller than the disagreement presented above for the
fastest �-decay rates, but still of potential significance given
the dependence of the initial Fe core mass on the electron
fraction. Part of the discrepancy between the rate estimates
undoubtedly stems from differences in placement and width
of GT strength and other nuclear uncertainties.

However, the partition effect outlined above likely plays a
role as well. In fact, these conditions (T9 ¼ 10, �Ye ¼ 109

g cm�3) are electron degenerate with Fermi energies 	5
MeV, precluding significant �-decay for all but the nuclear
decay pairs with relatively large Q-values, just those where
we argued that the partition function-based uncertainties in
rate estimates could be large.

In evaluating the ratio Zdaughter=Zparent in equation (25)
we use the compilation of partition functions from
Rauscher & Thielemann (2000). These partition functions

include experimentally determined low-lying levels and are
supplemented at higher excitation energies by a level density
calculated from a back shifted Fermi gas formula. It should
be noted that, in addition to well-known difficulties with
estimating partition functions, some error may be intro-
duced by the use of parameterized partition functions. At
low temperatures the partition functions of Rauscher &
Thielemann (2000) agree well with the partition functions
we calculate for evaluating the rates between low-lying
levels. For temperatures above 2 MeV we take Zdaughter=
Zparent ¼ 1. This is valid because the mean excitation energy
at these temperatures is well above the pairing gap.

We do not claim that our partition function treatment is
necessarily better than others, and it may well be inadequate
in some conditions. In fact there is a basic inconsistency in
our rates: we include many states in our partition function
sums for which we include no weak interaction strength.
Ideally, we should include all states and all associated weak
strength: only fully converged Lanczos and Monte Carlo
calculations of weak strength and partition functions
currently do this.

Failing to estimate partition functions and strength func-
tions consistently can lead to inaccurate predictions of final
equilibrium parameters. In equilibrium, the hard-won rates
no longer matter and only the partition functions govern
the final quantities of interest (Ye, abundances, etc.).

6. RESULTS AND DISCUSSION

6.1. AValidity Test: Comparison with Shell Model Based
Rates for A ¼ 60 65

Here we address the reliability of our calculated rates. We
have shown in x 3 that with a simple prescription some gross
features of the strength distribution, in particular the total
strength and centroid of the distribution, may be estimated.
However, shell model and experimental results typically
show a rich structure in the strength distribution, with this
structure varying markedly from nucleus to nucleus (e.g.,
Caurier et al. 1999). Do the rates depend sensitively on the
finer features of the strength distribution? Or, alternatively,
can a computationally simple method give a good estimate
of the weak interaction rates? These questions can be
addressed by comparing our relatively simply derived rates
with rates based on more detailed large dimension shell
model calculations.

In Figures 7 and 8 we show the log of the ratio of our
calculated �-decay rates to those calculated in Langanke &
Martinez-Pinedo (2000) at several temperature/density
points relevant for stellar collapse, and for all nuclei in the
range A ¼ 60 65 for which LMP calculated rates. Note that
these figures are for quite low temperatures, T9 ¼ 3 and 5,
respectively, so that the thermal population of the back res-
onance plays a negligible role in determining the decay rate.
Consequently, the rates calculated by LMP at these temper-
atures should be essentially exact. The horizontal axis in this
figure is the log of the �-decay rate calculated by LMP. We
have presented the comparison in this way because nuclei
with very small rates will not be so important in determining
the evolution. The comparison is generally remarkably
favorable, with typical results differing by less than a factor
of 2. Figures 9, 10, and 11 are the same as the previous three
figures, but now electron capture rates are being compared.
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Fig. 6.—Same as Fig. 5, but at T9 ¼ 10, �Ye ¼ 109 g cm�3, conditions
approximating the post Si burning degenerate core before collapse.
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Again, the comparison is favorable, the rates as calculated
in the two schemes being within a factor of 3 or so. This is
surprising given the potential sensitivity of electron capture
rates to the placement and the width of the Gamow-Teller
distribution.

The fact that a simple prescription and rough estimates of
the strength do a reasonably good job in getting the rates
relevant for stellar collapse is not to say that all rates are
accurately determined at all temperatures and densities with
a simple model. Some of our calculated rates deviate signifi-
cantly from more detailed calculations. This typically
occurs for ��(�+)-decay when the rates are exponentially
sensitive to the placement of a resonance, or for lepton cap-
ture when the maximum lepton energies are just on the edge
of being able to reach the resonance in the daughter.
Typically, this exponential sensitivity is accompanied by a
very small rate, so that it is not very important for stellar
evolution.

Fig. 7.—Comparison of our �-decay rates calculated using a simple esti-
mate of the strength distribution with the more sophisticated calculations
of Caurier et al. (1999) and Langanke & Martinez-Pinedo (2000). The dif-
ferent circles correspond to different nuclei. Comparisons for all nuclei in
the mass rangeA ¼ 60 65 for which Langanke &Martinez-Pinedo provide
rates are presented. Here T9 ¼ 3 and �Ye ¼ 107 g cm�3.

 

Fig. 8.—Same as Fig. 7, but withT9 ¼ 5 and �Ye ¼ 108 g cm�3

 

Fig. 9.—Comparison of our electron capture rates with those of Lan-
ganke & Martinez-Pinedo at T9 ¼ 3, �Ye ¼ 107 g cm�3. Only results for
nuclei that are estimated by LMP to have electron capture rates larger than
10�10 s�1 are shown.

 

Fig. 10.—Same as Fig. 9, but atT9 ¼ 5 and �Ye ¼ 108 g cm�3

 

Fig. 11.—Same as Fig. 9, but atT9 ¼ 10 and �Ye ¼ 109 g cm�3
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6.2. Examples of Some Rates Important in X-Ray Burst
Environments

X-ray bursts arise from the thermonuclear burning of
hydrogen and helium accreted onto the surface of a neutron
star in a binary system (seeWallace &Woosley 1981). Char-
acteristic temperatures during burning are a few hundred
keV, and characteristic densities are �Ye � 106 g cm�3. The
creation of nuclei heavier than A � 40 occurs via the
rp-process, in which nuclei undergo (p, �) reactions until
they approach the proton drip line and/or �+/ec-decay
intervenes. The time for burning along the rp-process path
is set to some extent by the �+/ec lifetime of a few important
waiting point nuclei. Here we present a few examples of
important rates.

Three important waiting point nuclei with A < 80 are the
even-even (proton bound) nuclei 64Ge, 68Se, and 72Kr
(Schatz et al. 2001). For each of these nuclei the single-
proton capture daughter (Z þ 1, N) is unbound, while the
next heaviest isotone (Z þ 2, N) is bound. At low tempera-
tures ðT9d1:5Þ the weak rate most important for determin-
ing flow toward the valley of � stability is ��þ(Z, N). For
higher temperatures an equilibrium between (Z, N) and
(Z þ 2, N) is reached, so that ��þðZ þ 2; NÞ is also
important. As a typical example we discuss 72

36Kr and its
two-proton capture daughter 74

38Sr.
The first 2+ excited state of 72Kr lies at �700 keV and is

not significantly populated for temperatures T9 < 2:5. At
T9 ¼ 3, the thermal population of the first 2+ state increases
the �+ rate by about 25%. The ground state lifetime of 72Kr
is experimentally determined. The low-lying strength distri-
bution in the daughter (72Br) has also been measured. With
the ground state lifetime and low-lying strength distribution
measured, the only missing piece of information is the
strength distribution at excitation energies too high to be
experimentally observed. Our rough estimate (eq. [23]) pla-
ces a portion of the resonance strength within the Q-value
window for the decay. In order not to conflict with the
experimentally determined lifetime we push this strength up
toQ ¼ 0 in our calculation.

To quantify the uncertainty in the rates arising from the
high-lying resonance strength we plot in Figure 12 the total
rate (�þ þ ec) for 72Kr as a function of density and at zero
temperature. Also included in this figure is the fraction of
the total rate coming from Q ¼ 0 and above. The figure
indicates that the experimentally determined lifetime is suffi-
cient for a determination of the low-temperature decay
rate at the few percent level for �Ye < 106 g cm�3. At
�Ye ¼ 107 g cm�3, our simple estimate shows the high-lying
strength accounting for 	15% of the total weak rate.
Because our method puts essentially all of the strength at
Q ¼ 0, and very little above Q ¼ 0, it is unlikely that we
have underestimated the contribution to the rate from the
high-lying resonance strength.

The decay of 74Sr is more easily calculated because the
ground state (or a low-lying excited state) of the odd-odd
N ¼ Z daughter (74Rb) is the IAS of the ground state of
74Sr. The large matrix element and Q-value (	10 MeV) for
the Fermi decay mean that electron capture cannot compete
with �+-decay in X-ray burst conditions for this case. It is
difficult to reliably estimate the contribution to the �+ rate
from GT+ transitions, but a reasonable estimate is that
the diffuse GT+ strength only decreases the ground state
lifetime by at most 10%–20%.

By mirror symmetry, a low-lying thermally populated
state of 74Rb corresponds to an IAS in the next even-even
�+ nucleus (74Kr), so that the chain 74Sr ! 74Rb ! 74Kr is
fast and dominated by Fermi transitions. The decay of the
odd-odd N ¼ Z nucleus (74Rb in this example) should be
calculated as the decay of a thermally populated back reso-
nance as discussed above. This is because only those parent
states with an IAS in the even-even daughter nucleus decay
via the Fermi transition. Since the partition function of the
odd-odd parent increases more rapidly with temperature
than the partition function of the even-even daughter, the
decay rate decreases rapidly with increasing temperature.
Another set of nuclei important for the rp-process with
decays dominated by the Fermi transitions are those nuclei
with ðZ ¼ N þ 1; N ¼ evenÞ. These have an IAS near or at
the ground state of the �+ daughter.

During rp-process burning, the temperature and electron
Fermi energy are too low for electron capture to efficiently
compete with �+-decay for near-proton drip line nuclei
characterized by large decay Q-values. Therefore, for these
nuclei the thermal lifetime can be reliably estimated from
the �+-decay rate, and electron capture is not so important.
By contrast, nuclei closer to the valley of stability
have smaller Q-values and their lifetimes are nearly entirely
determined by continuum electron capture.

For example, consider 66Ge, a nucleus important in
steady state burning on and/or near neutron star surfaces.
This nucleus has a Q-value of only 	2 MeV and a fair por-
tion of the weak strength lies at the upper end of theQ-value
window. Consequently, thermal electron capture dominates
over positron decay for �Yee105 g cm�3. This is shown in
Figure 13.

6.3. Weak Rates in the Late Time Presupernova Star

Here we discuss some of the systematics of the weak rates
in the hot and electron-degenerate core during the 	104 s
before core bounce. Most of the nuclei with A > 65 present
in the core will be blocked or nearly blocked to GT+

Fig. 12.—Influence of high-lying resonance strength on the total rate
(�þ þ ec) for 72Kr. In this figure fhigh is an estimate of the fraction of the
total rate arising from transitions involving experimentally unmeasured,
high-lying resonance strength. The upper curve, labeled �/�0, shows the
ratio of the total rate to the �+-decay rate. All rates shown in this plot are
calculated at zero temperature.
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transitions in the zeroth-order shell model picture. Our cal-
culation of the electron capture rates for these nuclei is
based in part on an estimate of the configuration mixing
modification of the GT+ strength and energy distribution.
In particular, we model the GT+ strength for blocked nuclei
as a 1 MeV Gaussian of unit total strength centered at
1.8 MeV in the daughter. Forbidden transitions and transi-
tions allowed by the thermal unblocking of strength will
also contribute to the electron capture rates. It is useful to
estimate how large the configuration mixing strength must
be in order to justify the neglect of these latter types of
transitions.

Thermal unblocking (Fuller 1982) refers to the opening at
finite temperature of allowed transitions that would other-
wise be disallowed (blocked) at zero temperature. If the
strength distributions for all daughter!parent transitions
were known, then thermal unblocking could accurately be
treated as the population of the GT� back resonances
described above. This is because detailed balance implies
that the matrix element for a transition in one direction is
the same as the matrix element for the transition in the
opposite direction. Thinking about the thermal unblocking
problem in this way suggests that for Td2 or 3 MeV ther-
mal unblocking is unlikely to be important in the SN envi-
ronment—the centroid of the GT� resonance is typically at
10MeV or higher for these nuclei, so that only the tail of the
GT� resonance can be significantly populated.

A consideration of thermal unblocking in terms of the
structure of low-lying levels is also useful. Assume that
parent states with zeroth-order shell model configurations
allowing GT+ transitions comprise a fraction 
Z of the total
partition function. Then, an effective thermal unblocking
matrix element is jMTUj2 � ð
Z=ZÞjMspj2. Here jMspj2 �
1� 3 is a typical single-particle allowed transition matrix
element. An accurate estimate of 
Z is very difficult and an
important open issue. Fuller (1982) parameterizes 
Z �

Z expð�E�=TÞ, with E� the excitation energy of the lowest
parent excited state with an allowed GT+ transition in the
zeroth-order shell model picture. With this schematic nota-
tion, thermal unblocking can compete with a configuration
mixing strength of 0.1–1 if E�=Td2. For a typical E� 	
5 MeV, then, thermal unblocking can be neglected for
Td2 MeV. for T > 2 MeV the thermal population of
the GT� resonance states (which we do include in our
calculations) also becomes important.

Forbidden transitions become important as the electron
chemical potential increases and the wavelength of the lep-
tons involved in an electron capture event become small
enough to probe structure in the nucleus. Again following
the convention of Fuller (1982), the contribution to the elec-
tron capture rate from forbidden transitions can be written
as �for 	 jMforj2fforðEfor; Q; leÞ. Here jMforj2 	 10 20 is
roughly the number of protons in the fp shell multiplied by a
typical single-particle first forbidden matrix element. The
unique first forbidden phase space factor ffor depends on the
centroid in energy of the forbidden strength distribution
Efor, the parent-daughter mass difference Q, and the elec-
tron chemical potential le. For a typical Q ¼ 10 MeV, for-
bidden transitions compete with a low-lying configuration
mixing strength of 	1/2 for le ¼ 31 MeV if Efor ¼ 5 MeV.
If the centroid of the forbidden strength lies instead at
	10 MeV above the daughter ground state, then forbidden
transitions do not become important until le > 37 MeV.
These conclusions are in rough agreement with the detailed
calculations of Langanke, Kolbe, & Dean (2001) for
the contribution of forbidden transitions and thermal
unblocking to the electron capture rates.

With the assumption that the high-density electron cap-
ture rates are dominated by transitions involving low-lying
configuration mixing strength, these rates are trivial func-
tions of the electron Fermi energy and the parent-daughter
mass difference. This is shown in Figure 14, where the elec-
tron capture rates are presented for nuclei with ðN � ZÞ=
A > 0:1 and 65 < A < 81. The dependence of the rate on
the Q-value for the transition is given by the simple analytic

Fig. 13.—�þ=ec rates for 66Ge. The increase of the �+ rate with tempera-
ture arises from the fast decay of the thermally populated first J� ¼ 2þ

excited state. Unlike the 0+ ground state, the 2+ state can have allowed
transitions to several 2+ and 3+ daughter states. The decrease in the elec-
tron capture rate at low temperatures is likely an artifact of our calculation
and arises because the 0+ ground state has substantial GT strength at high
daughter excitation energies. As the daughter level structure is poorly
known at these high excitation energies, our calculation does not include
estimates of the allowedmatrix elements for the decay of the first excited 2+

state to those states.

 

Fig. 14.—Electron capture rates for nuclei in the mass range
65 < A � 80 and for which ðN � ZÞ=A > 0:1 as a function of the Q-value
(defined here as the parent-daughter atomic mass difference). These rates
have a simple dependence on the Q-value (see eq. [27]) because of our
assumption that the configuration mixing strength is nucleus-independent
for GT+ blocked nuclei.
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expression

� �2 lnð2Þ10�3:6ðkT=mec
2Þ5jMGTj2


 F4ð�effÞ þ �qq2F2ð�eff Þ þ 2�qqF3ð�effÞ
� �

: ð27Þ

Here �eff ¼ ðUF þmec2 þ q� Eres;dÞ=kT , with Eres;d the
centroid of the GTþ resonance in the daughter, q ¼ ðMp�
MdÞc2, �qq ¼ jq� Eres;d j=kT , and the extra prefactor of 2
approximately accounts for the Coulomb distortion of the
incoming electron for nuclei with Z � 30 40. This equation
assumes that q� Eres;d is negative. The functions

Fkð�Þ ¼
Z 1

0

xkdx

ex�� þ 1
ð28Þ

appearing in equation (27) are the relativistic Fermi integrals.
Setting Eres;d ¼ 2 MeV and jMGTj2 ¼ 1 in equation (27)
gives a reasonable estimate of the electron capture rates
(when the rates are appreciable and the temperature is too
low for significant population of the GT� back resonance)
when UF > 10 MeV. These expressions can be used in place
of our rate tables under these conditions. Using the simple
approximations to the Fermi functions developed in Fuller
et al. (1985) gives an analytic approximation to the high-
density electron capture rates that is accurate to within the
uncertainty in these rates. Electron capture rates for neutron-
rich nuclei at high electron Fermi energies are essentially a
function of only one parameter, the total GT+ strength
within a few MeV of the daughter state. Discrepancies
between our calculated rates and more detailed calculations,
e.g., Monte Carlo+RPA calculations (Langanke et al. 2001),
largely reflect the difference between our adopted jMGTj2 ¼ 1
and the more detailed estimate ofMGT.

Figure 14 also gives an estimate of the uncertainties in the
electron capture rates. At T9 ¼ 10, �Ye ¼ 3
 1010 g cm�3

(Uf � 16 MeV), an error of 2 MeV in the position of the
centroid of the strength results in a change in the rate by a
factor of	4 for the nuclei with the smallest rates, and a fac-
tor of 	2 for the nuclei with the largest rates. At T9 ¼ 10,
�Ye ¼ 1011 g cm�3 (Uf � 23 MeV), the uncertainty in the
placement of the centroid implies an error of at most a fac-
tor of 2 in the electron capture rate. On general grounds it is
expected that not only the distribution of the configuration
mixing strength, but also the magnitude of the total GT+

strength, should vary from nucleus to nucleus for nearly
GT+-blocked nuclei. The uncertainty in the total strength is
probably about a factor of 2 on average. This estimate is
supported both by the charge exchange experiments dis-
cussed above as well as by the calculations of Sampaio et al.
(2002; K. H. Langanke 2002, private communication) for
	100 nuclei with A > 65, which show that the assignment
of a constant strength of approximately unity is not too
bad.

The systematics of the �-decay rates at high temperature
and density are also simple. In Figure 15 we show the
�-decay rates at T9 ¼ 10, �Ye ¼ 1010 g cm�3 for all nuclei
with ðN � Z=AÞ > 0:1. These rates fall into three distinct
bands corresponding to odd-odd nuclei, even-even nuclei,
and even-odd/odd-even nuclei. This can be understood by
noting that at T9 ¼ 10 the GT+ resonance is thermally
populated (under our assumption that the strength is cen-
tered at 2MeV for these blocked nuclei). In this case the rate
of decay is approximately �ðQÞZdaughter=Zparent, where �ðQÞ
has a simple dependence on the Q-value. For even-even

parents, Zdaughter=Zparent is typically approximately 20 at
T9 ¼ 10, for odd-odd parents the ratio is about 1/20, and
for odd-even/even-odd parents the ratio of partition func-
tions is about unity. Note that the �-decay rates are more
sensitive to the (unknown) details of the strength distribu-
tion than are the electron capture rates. At T9 ¼ 10, a 2
MeV error in the placement of the centroid of the resonance
changes the �-decay rate by about an order of magnitude.

6.4. Discussion and Conclusions

We have provided estimates of weak interaction rates for
nuclei in the mass range A ¼ 65 80. These may be useful in
simulations of X-ray bursts and presupernova stellar evolu-
tion. The rates have been calculated using available experi-
mental information and simple estimates for the strength
distributions and matrix elements for allowed and discrete-
state transitions. The efficacy of our approach is confirmed
through comparisons with detailed shell model based rates
for nuclei in the mass range 60–65. However, the systematics
of the strength distributions for nuclei in the mass range we
are considering are arguably less well understood than the
systematics of the strength distributions for nuclei in the
mass range A ¼ 60 65. As discussed above, uncertainties
peculiar to the heavier nuclei we are studying can lead, in
some cases, to sizeable uncertainties in the estimated rates.

The single most uncertain aspect of the rate calculations
is the GT+ resonance strength distribution. Our simple pre-
scription gives good overall agreement with detailed shell
model calculations of the GT+ strength for nuclei with
A � 65. However, our prescription is probably not reliable
for nuclei at the end of the fp shell. Fortunately, nature to
some extent does not seem to care about some of the hard to
get details of the strength distribution for these nuclei. In
the precollapse supernova this is because the nuclei present
are nearly blocked to GT+ transitions. Performing (n, p)
exchange experiments on such nuclei shows that the
strength is broad and low lying in the daughter. Because the
electron Fermi energies are high in the dense presupernova
Fe core, this implies that the electron capture rate is princi-
pally a function of the experimentally determined parent-
daughter mass difference. However, our work does not

 

Fig. 15.—�-decay rates for neutron-rich nuclei in the mass range
65 < A � 80 at T9 ¼ 10 and �Ye ¼ 1010 g cm�3. The systematics
illustrated here are discussed in the text.
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provide the detailed estimates of the magnitude of the con-
figuration mixing strength that will ultimately also be
needed for supernova simulations. The �-decay rates for the
nuclei present in the late-time presupernova core are expo-
nentially sensitive to the centroid energy of the GT+ reso-
nance and are less certain. In X-ray burst environments the
opposite condition holds: the parent-daughter mass differ-
ences are typically large compared to the electron energies,
so that the decay rate is dominated by the experimentally
determined lifetime.

The proper treatment of the high-temperature electron
capture and particularly �-decay rates is a challenging and
important issue. Special care is needed in evaluating the par-
tition functions for these rates, especially as we have pointed
out here a potential problem with partition functions eval-
uated in Lanczos-based calculations. The �-decay rates for
nuclei at high temperatures are determined, among other
things, by the nuclear partition function. In turn, the equili-

brium nuclear composition is determined by the competi-
tion between �-decay and electron capture. If the partition
functions used to estimate the composition at a given Ye do
not match with the partition functions used to calculate the
weak rates, the calculated equilibrium of the system will not
be correct.
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