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ABSTRACT: For decades, there has been immense progress in miniaturizing
analytical methods based on electrophoresis to improve sensitivity and to
reduce sample volumes, separation times, and/or equipment cost and space
requirements, in applications ranging from analysis of biological samples to
environmental analysis to forensics. In the field of radiochemistry, where
radiation-shielded laboratory space is limited, there has been great interest in
harnessing the compactness, high efficiency, and speed of microfluidics to
synthesize short-lived radiolabeled compounds. We recently proposed that
analysis of these compounds could also benefit from miniaturization and have
been investigating capillary electrophoresis (CE) and hybrid microchip
electrophoresis (hybrid-MCE) as alternatives to the typically used high-
performance liquid chromatography (HPLC). We previously showed
separation of the positron-emission tomography (PET) imaging tracer 3′-deoxy-3′-fluorothymidine (FLT) from its impurities in
a hybrid-MCE device with UV detection, with similar separation performance to HPLC, but with improved speed and lower sample
volumes. In this paper, we have developed an integrated radiation detector to enable measurement of the emitted radiation from
radiolabeled compounds. Though conventional radiation detectors have been incorporated into CE systems in the past, these
approaches cannot be readily integrated into a compact hybrid-MCE device. We instead employed a solid-state avalanche
photodiode (APD)-based detector for real-time, high-sensitivity β particle detection. The integrated system can reliably separate
[18F]FLT from its impurities and perform chemical identification via coinjection with nonradioactive reference standard. This system
can quantitate samples with radioactivity concentrations as low as 114 MBq/mL (3.1 mCi/mL), which is sufficient for analysis of
radiochemical purity of radiopharmaceuticals.

Capillary electrophoresis (CE) has been used in a wide
variety of fields such as separation of biomolecules,1−3

environmental monitoring,4,5 food analysis,6,7 and forensics.8

Typically, compounds are detected via UV absorbance,9

though many additional modes of detection can be
implemented, including pulsed amperometric detection,10

capacitively coupled contactless conductivity detection,11−13

refractive index detection,14 mass spectrometry,15,16 and
fluorescence.17,18 CE has also been used for separation of
radioactive compounds in applications such as assessing the
purity of radiopharmaceuticals labeled with positron-emitting
isotopes for positron-emission tomography (PET) or with
gamma-emitting isotopes for single photon emission computed
tomography (SPECT),19,20 as well as the analysis of radio-
isotopes in nuclear fuel development.21,22

Due to the small sample volumes used in CE, detectors and
flow cells must be designed to maximize detection efficiency,
especially for radiation detection. Several radiation detection
approaches have been reported in the literature for CE
applications. For example, Altria et al. placed a NaI(TI) crystal
scintillator and photomultiplier tube (PMT) adjacent to a
capillary for detection of γ rays from [99mTc]TcO4- and various
chelates.23 Due to the long-range of γ rays, a lead collimator

was used to localize the detection volume. Jankowsky et al.
threaded the capillary through an NaI crystal for detecting
various 99Tc-labeled compounds and reported a detection
efficiency of 85.4%.20,24 Klunder et al. passed the capillary
through a plastic scintillator with an added reflective coating to
increase light collection and achieved detection efficiencies for
beta particles emitted from the lanthanide fission products Eu-
152 and Cs-137 of ∼60% and ∼80%, respectively.25 In a report
by Kaniansky et al., the flow cell was a small channel through a
thin layer of a plastic scintillator sandwiched between layers of
transparent plastic and dual PMTs. The thin geometry was
designed to shrink the detection region to improve resolution
but came at the expense of a lower detection efficiency−only
13−15% for 14C-labeled compounds.26 Pentoney et al.
reported an alternative way to improve detection sensitivity
via “flow programming”, in which the separation voltage was
reduced when a “band” (corresponding to a particular
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radioactive species) was in the detection region, to increase the
residence time.19,27 Using a detection geometry where the
capillary passed through a 2 mm thick plastic scintillator with
reflective coating adjacent the PMT, mixtures of 32P-labeled
molecules were detected with 65% efficiency.
Despite these examples of successful analysis via CE, analysis

of radiochemicals is nearly always performed with radio-high-
performance liquid chromatography (radio-HPLC). We have
been exploring the analysis of radiopharmaceuticals with CE as
an alternative to HPLC28 due to the potential advantages of
smaller sample volume and faster separation time (important
for short-lived compounds), the potential for miniaturization
into extremely compact microchip electrophoresis (MCE)
devices,29,30 and less need for shielding. A MCE setup is
expected to have similar separating power as HPLC but
significantly lower cost and smaller footprint−important in
radiochemistry applications where radiation-shielded labora-
tory space is at a premium. Importantly, MCE also has the
benefit of high flexibility of flow cell geometry and detector
integration that can be implemented into a microfluidic format.
Ultimately this approach could reduce the resources needed
for radiopharmaceutical analysis and could become an integral
part of emerging, compact microfluidic radiopharmaceutical
production systems.31,32 We previously demonstrated the
analysis of the nonradioactive form of the PET tracer 3′-
deoxy-3′-[18F]fluorothymidine ([18F]FLT) and its known
impurities using a conventional CE system,28 as well as a
hybrid-MCE system that we developed,33,34 both using UV
absorbance detection, and found the separation efficiency and
UV sensitivity to be similar to HPLC.
To our knowledge, radiation detection has not been

reported in conjunction with MCE. The key challenges are
to maximize (i) sensitivity (due to the very small injection
volume and thus low amount of radioactivity and the very
short time in which the sample is in the field of view of the
detector) and (ii) spatial localization (to ensure that the
detector is only sensitive to radiation from a dedicated small
section of the chip at the exit of the separation channel). Using

analysis of radiolabeled imaging tracers as an example
application,35−37 the expected radioactivity concentrations of
the samples could range from ∼37 MBq/mL (a dilute batch
sufficient for imaging a single patient) to ∼10 GBq/mL (a
large multipatient batch produced in a radiopharmacy for
distribution to multiple imaging sites). Since MCE uses sample
volumes in the nL range, high sensitivity is of paramount
importance.
The aforementioned radiation detection techniques for CE

cannot be easily integrated into MCE setups due to the bulky
nature of PMTs, the need to route the capillary through the
scintillating material itself, or the need for extensive shielding
and collimation. However, numerous groups have integrated
more compact radiation detectors into microfluidic devices for
a variety of applications,31 which can potentially be applied to
MCE. An advantage of working with beta+ or positron-
emitting compounds is that the positron range is relatively
small (e.g., <1 mm for fluorine-18 in water) and thus shielding
can be largely avoided provided the detector has much higher
sensitivity to positrons than γ rays (resulting from annihilation
of positrons). This could be achieved using a thin, low-Z
scintillator coupled to a sensitive photodetector38 or a thin
solid-state detector.39 Of course due to this short particle
range, it is critical that the detector or scintillator be located
very close to the radioactive source.40

Cho et al. used a CCD camera to observe the distribution of
18F-labeled compounds within a microfluidic chip mounted
adjacent a thin scintillator layer. Though the scintillator had
large lateral dimensions, by monitoring only a small subset of
pixels, sensitive detection in a localized area was possible (185
Bq in 1 mm2).41 Using a silicon photomultipler (SiPM) in
place of a PMT or CCD camera allows for a large reduction in
instrument size while maintaining high sensitivity. Tarn et al.
used an SiPM array adjacent a thin plastic scintillator
containing a machined 0.7 μL flow cell,42 in which each
SiPM element monitored a localized region of the chip.
Interestingly, SiPM pixels have also been used to directly

Figure 1. (A) 3D rendering of the hybrid-MCE device design, comprising an injection chip, capillary, and detection chip. (B) Top view schematic
(not to scale) of detection chip showing both the UV absorbance and radiation detection regions. Red arrows represent positron emissions from
the sample. The sensitive region of the radiation detector extends ∼1 mm beyond the edges of the detector for positrons from F-18. (C) Side view
schematic (not to scale) of the detection chip.
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detect positrons without a scintillator, as shown by Taggart43

and Salvador,44 though the efficiency was quite low due to a
relatively large source-to-detector distance. One disadvantage
of SiPMs is the difficulty in eliminating thermal noise that
becomes problematic at low radioactivity levels. To address
this, Dooraghi et al. used a 14 mm × 14 mm position-sensitive
avalanche photodiode (PSAPD) to measure small amounts of
18F-labeled compounds taken up into biological cells cultured
in chambers in an adjacent PDMS microfluidic chip.39 The
APD had very low and easily eliminated noise, fast response,
and very high detection efficiency (up to 43% of the maximum
50% achievable for a planar detector on one side of the
radioactive source).
Based on the high efficiency and low noise of the APD

approach, we present here the first, to our knowledge, hybrid-
MCE system with an integrated radiation detector. We
characterize this system and, using a device with both UV
absorbance and radiation detectors, demonstrate the ability to
simultaneously perform chemical purity analysis and radio-
chemical identity analysis using the PET tracer [18F]3′-deoxy-
3′-fluorothymidine [18F]FLT as a model compound. We
believe our hybrid-MCE device has potential for use in rapid
analysis of radioactive materials, including PET tracers and
other radiopharmaceuticals.

■ MATERIALS AND METHODS

Reagents. Sodium phosphate monobasic (NaH2PO4,
≥98%), sodium phosphate dibasic dihydrate (Na2HPO4,
≥99.0%), sodium dodecyl sulfate (SDS, ≥98.5%), potassium
phosphate monobasic (KH2PO4, ≥99.0%), thymidine (≥99%),
2′,3′-didehydro-3′-deoxythymidine (stavudine, ≥98%), and
nosyl chloride (97%) were purchased from Sigma−Aldrich
(Milwaukee, WI, USA). Zidovudine impurity B (chlorothymi-
dine, CLT, European Pharmacopoeia reference standard) was
purchased from LGC Standards (Wesel, Germany). 30 mM
phosphate buffer (PB) was prepared via titration of 100 mM
solutions of NaH2PO4 and Na2HPO4 and monitored with a
calibrated pH meter (FiveEasy, Mettler Toledo, Columbus,
OH, USA). SDS (100 mM) in 30 mM phosphate buffer was
prepared by dissolving SDS in 30 mM PB. Separation buffers
were prepared with, and reference standards were dissolved in,
18 MΩ-cm deionized (DI) water obtained from a Milli-Q
Integral Water Purification system (EMD Millipore, Billerica,
MA, USA). All chemicals were of analytical grade and were
used as received.

Hybrid-MCE Device. The hybrid-MCE device (Figure 1)
comprised a poly(dimethylsiloxane) (PDMS) sample injection
chip (to load a precise sample volume), a 20 cm long 75 μm
ID fused-silica capillary for separation, and a PDMS detection
chip (to perform UV absorbance and radiation detection). The
two PDMS chips have been slightly modified from previous
designs33,45 to improve performance and to incorporate the
radiation detector.

Injection Chip. The injection chip was fabricated as
reported previously33 but with several modifications as shown
in Figure 2B. First, the number of inlets/outlets was reduced to
reduce the fluidic connections to the main separation channel.
Second, on these connections, we implemented triple micro-
valves instead of single microvalves to improve electrical
isolation from the separation voltage (Supporting Information,
Section 1.1).
Operation of the chip was carried out as described

previously.34 Briefly, to load a sample with the new chip
design, valves 1, 2, and 3 are closed, while valves 4, 5, and 6 are
opened. The sample vial is pressurized to 3 psi, allowing the
sample to flow from the inlet, through the injection chamber to
the sample waste. Loading is continued until radioactive liquid
emerges at the sample waste port. Once the injection chamber
is filled, valves 4 and 5 are closed to pressurize the sample and
eliminate any microscopic gas bubbles. Finally, sample pressure
is removed, and all remaining valves are closed. To inject the
sample, valves 1 and 2 are opened, and, after a 0.5 s delay, high
voltage is applied between the buffer well of the injection chip
and waste well of the detection chip (Figures 2 and 3).

Detection Chip. The previous design of the PDMS
detection chip34 was modified to improve the performance
in several ways. The optical path length of the Z-shaped UV
absorbance detection cell was extended from 0.5 to 2.0 mm to
improve limit of detection (LOD). The height of channels was
125 μm to enable inclusion of channels to align and hold
optical fibers (125 μm outer diameter; ThorLabs, Newton, NJ,
USA) in line with the optical path of the cell. The optical fibers
were connected to the light source (DH-2000-BAL, Ocean
Optics, Dunedun, FL, USA) and spectrophotometer (USB-
4000, Ocean Optics) as previously described.34 In the previous
version of the detection chip, the width of all channels was also
125 μm. However, to improve separation resolution, we
explored a design with decreased volume of the UV absorbance
cell, achieved by shrinking the channel width within the optical
path from 125 to 45 μm while maintaining the same channel

Figure 2. Design of PDMS chips. (A) Detection chip for UV and radiation detection. The channel width tapers down from 125 μm at the right
edge of the chip to 45 μm in the optical path to reduce the UV flow cell detection volume. The radiation detector is ∼6 mm downstream of the UV
detection region and ∼10 mm upstream of the waste well center. (B) Sample injection chip. Valve control channels (filled with Krytox oil)
hydraulically actuate microvalves to control the loading of the 4 nL injection chamber and injection into the capillary for separation. The two chips
are connected via the 20 cm long separation capillary. Note that panels A and B are not shown at the same scale.
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height (see Figure 2B and Supporting Information, Section
1.2). The UV signal was collected as previously described.34

In addition, a radiation detector was integrated into the
detection chip. Downstream of the UV absorbance cell, the
detection channel crosses over a region with a thin PDMS
membrane (100 μm) under which the 2 mm × 2 mm radiation
detector is mounted, before terminating in the waste well.
Fabrication of the detection chip was described previously,34

except that the thick bottom PDMS “substrate” was modified
to contain a 4 mm × 4 mm square cavity, where the thickness
of PDMS was only 100 μm, that was aligned with the radiation
detection region (Figure 1B).
Finally, to further improve separation resolution, the

capillary-to-chip junction dead volume was reduced by
implementing a collinear junction33,46,47 as also used in the
injection chip, by tapering the capillary and inserting it into of
the detection channel via the side end of the chip. To stabilize
these collinear junctions, channels were filled with DI water,
and then degassed liquid PDMS (10:1 mass ratio A:B,
RTV615) was applied around the connection and cured at
80 °C for >1 h.
Radiation Detector. Radiation detection was performed

using an APD (S0223, Radiation Monitoring Devices Inc.,
Watertown, MA, USA) with a 2 mm × 2 mm active area biased
at 1750 V using a high-voltage power supply (TC952;
Tennelec, Oak Ridge, TN, USA). The APD was mounted on
an Ultem pillar structure (Figure 1C) designed such that when
the detection chip is placed over it, the active surface of the
APD is in contact with the bottom side of the thin PDMS
membrane within the 4 mm × 4 mm cavity of the bottom
PDMS substrate described above.

A thin opaque coating was deposited on the detector to
prevent optical photons from triggering the detector while also
minimizing attenuation of positrons. The device was first
coated with 2 μm of parylene C (Specialty Coating Systems
Inc., Indianapolis, IN, USA) using a parylene deposition
machine (PDS 2010, Specialty Coating Systems), followed by
350 nm of gold deposited by sputtering (Desk V, Denton
Vacuum, Moorestown, NJ, USA), and finally followed by an
additional 2 μm of parylene C. This was the lowest thickness
that gave an opaque coating such that the detector response in
light and dark conditions (with no radioactivity nearby) were
the same. The metal layer also served as a Faraday cage,
providing electrical shielding of the detector. To form an
electrical contact to the gold coating, a thin nichrome wire was
attached to the polyether ether ketone (PEEK) pillar via silver
epoxy (MG Chemicals, Burlington, Ontario, Canada) before
the gold coating, which was later soldered to the circuit
ground.
To readout the APD signal, a preamplifying circuit based on

a transimpedance amplifier, as described in Dooraghi et al.,48

was capacitively coupled (1 μF) to the positive terminal of the
detector. The signal was processed via a series of amplifiers and
analog filters to perform pulse shaping (∼200 ns time
constant), and then a comparator was used to exclude low-
amplitude thermal and electronic noise pulses but retain
higher-amplitude pulses from positron interactions (Support-
ing Information, Section 2). Pulses from the output of the
comparator were counted by a data acquisition (DAQ) module
(USB-6501, National Instruments, Austin TX, USA). A
program written in LabVIEW (National Instruments) recorded
the number of counts every 0.5 s (and then reset the counter),
and the recorded value was used to determine the count rate
per second (cps).

Characterization of Radiation Detector. To investigate the
linear range, a detection chip was filled with known
concentrations of aqueous [18F]fluoride (11−1600 MBq/mL
[0.3−42 mCi/mL]), and the resulting APD signal was
measured for each sample. All measurements were performed
with a single hybrid-MCE device on a single day. Between each
sample, the hybrid-MCE device was cleaned with DI water
(1.0 mL) and dried with nitrogen. Due to the possibility of
residual radioactivity within or near the channel, a measure-
ment of background was performed prior to each experiment.
The average count rate of each 5 min data set (after
background subtraction) was plotted versus radioactivity
concentration, and a linear fit was calculated. The limit of
detection (LOD) and limit of quantitation (LOQ) were
calculated from this linear fit as the radioactivity concen-
trations that would give signals equal to the average
background plus 3× and 10× the standard deviation of the
background count rate, respectively.
To measure background, the chip was filled with DI water,

all radioactive sources were moved away from the detector, and
then radiation detector background was measured for 5 min.
The average was subtracted from the subsequent data set.
To estimate the size of the detection volume of the detector,

Monte Carlo simulations were performed. By exploring the
expected detector count rate as a function of the geometry of a
microchannel filled with homogeneous radioactivity concen-
tration (Supporting Information, Section 3), we determined
that the detector is sensitive to radioactivity up to ∼1 mm (in
the lateral direction) from the edge of the detector. Thus, for a
channel of 125 μm width and 125 μm height crossing the

Figure 3. Separation and detection of mixtures of nonradioactive
compounds. (A) Electropherogram of a 4-compound mixture (100
μM FLT, 100 μM thymidine, 100 μM stavudine, and 95 μM CLT in
DI water) using the detection chip with 125 μm wide optical flow cell.
(B) Electropherogram of a 5-compound mixture (250 μM FLT, 250
μM thymidine, 250 μM stavudine, 238 μM CLT, and 250 μM nosyl
acid in DI water) using a 45 μm wide optical flow cell.
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radiation detector, >95% of the counts originated from a 4 mm
long segment of the channel centered on the detector.
Performing Microchip Electrophoresis. The detection and

separation of samples were performed on the hybrid-MCE chip
via micellar electrokinetic chromatography (MEKC) as
described previously.33,34 The buffer consists of 30 mM
sodium phosphate buffer and 100 mM SDS in DI water. After
loading a sample into the injection chamber (∼4 nL) of the
PDMS injection chip, the sample is separated (in the capillary)
by applying ∼4 kV between the buffer well in the injection chip
and the waste well of the detection chip (field strength 200 V/
cm). For all radioactivity measurements, the bias voltage of the
APD was turned on for 1 h before injection to allow device to
warm up and stabilize.
To demonstrate the utility for assessment of chemical purity,

samples of purified PET tracer ([18F]FLT; Supporting
Information, Sections 4.1, 4.2) with known concentrations of
side-products were injected. Radiochemical identity testing was
performed by coinjection of purified [18F]FLT mixed with
FLT reference standard. The same samples were also injected
into analytical HPLC to confirm radiochemical identity
(Supporting Information, Section 4.3).
To estimate the sensitivity to radioactivity of the overall

system, hybrid-MCE runs were performed with samples with
different radioactivity concentrations of [18F]FLT (2.1−1800
MBq/mL [0.056−49 mCi/mL]). Background was measured
for 5 min just prior to each injection and subtracted from the
corresponding electropherogram before analysis. All samples
were run on the same hybrid-MCE device, on the same day,
and were prepared from the same initial batch of [18F]FLT.
Data Analysis. UV Absorbance Signal. Each UV electro-

pherogram was analyzed as described previously33,34 to
determine peak migration time (tm, taken at peak center),
peak width (Wfwhm; full width at half-maximum), number of
theoretical plates (N), theoretical plate height (H), and peak
area (Gaussian fit). For electropherograms with multiple peaks,
these parameters were computed for all peaks, and separation
resolution was also computed. Briefly, for each peak in the
resulting electropherogram, the number of theoretical plates,
N, was calculated as N = 5.54(tm/Wfwhm)

2. The plate height, H,
was calculated as H = L/N, where L is the effective separation
length (21 cm). For mixture samples, the peak resolution, R,
between pairs of peaks was computed as R = 1.18(tm2 − tm1)/
(Wfwhm,1 + Wfwhm,2), where tm1 and tm2 are the migration times
of the two peaks and Wfwhm,1 and Wfwhm,2 are the peak widths.
Because the migration time can vary from run to run (e.g.,
alteration of surface condition or liquid temperature) and
migration speed affects the apparent peak area, a time-
correction is needed for quantitative peak analysis.
Before further analysis, the time axes were scaled such that

the FLT peaks had identical migration time. Following the
procedure of Bidulock et al.,49 where the flow rate during each
separation is assumed to be constant, each data set’s time-axis
is multiplied by the factor ti/t0 where t0 is the measured
migration time of FLT for that data set, and ti is the reference
time.
Peaks in mixtures were identified based on migration times

determined by injecting individual reference standards.
Radiation Detector Signal. After subtracting the average

background, radioelectropherograms were analyzed in a similar
manner to UV, including scaling the time-axis to align the
[18F]FLT radiation peak migration times to that of the UV

peak migration time as described in the Supporting
Information, Section 4.3.
Coinjection with FLT reference standard was performed to

confirm peak identity and compared with radio HPLC.
Limit of detection was estimated by dividing the standard

deviation of the intercept (of the peak area vs radioactivity
concentration linear fit) by the slope, to give a critical limit of
radioactivity concentration.50 The LOD and LOQ were
defined as 3× and 10× this concentration, respectively.
Uncertainties were calculated via standard error propagation
formulas.

■ RESULTS

Separation Efficiency. To assess the separation perform-
ance of the overall setup, nonradioactive samples were injected
into the hybrid-MCE device with 20 cm capillary length and
monitored with the UV absorbance detector. When a mixture
of 4 compounds was injected in the device with 125 μm wide
optical flow cell, several peaks were overlapping, and baseline
separation was not achieved (Figure 3A). However, when we
performed the separation of a similar mixture with 5
compounds in the device with 45 μm wide optical flow cell
(same optical path length but reduced flow cell volume),
baseline separation was achieved for all species (Figure 3B). A
detailed comparison of peak parameters is included in
Supporting Information Table S3. Notably, with the improved
flow cell design, the resolution between the FLT peak and the
closest impurity (stavudine) improved from 0.68 (n = 1) to
1.85 ± 0.17 (n = 3), and the number of theoretical plates (for
FLT) was increased from 2470 to 11000.
Sensitivity of the device (LOD for FLT of 5 μM) was found

to be similar to that of our previous report (3 μM).34 It also
compares favorably with previously characterized commercial
CE (6 μM) and HPLC (2 μM) systems.34 The longer UV path
length in this work (2.0 vs 0.5 mm) helped to compensate for
the use of a higher-noise spectrometer than we used previously.

Characterization of Radiation Detector. We then
studied the performance of the integrated radiation detector.
Figure 4 shows the measured average signal as a function of
radioactivity concentration when we manually loaded samples
to completely fill the detection chip. The resulting data show
good linearity (R2 = 0.994). Combing with the background
measurement (0.01 ± 0.12 cps, n = 600), the radioactivity

Figure 4. Radiation detector signal when detection channel is
uniformly filled with aqueous [18F]fluoride solution of different
concentrations. The background has been subtracted from all values.
Error bars represent the standard deviation of the 600 detector
readings over the 5 min acquisition for each sample. The line is a
linear least-squares fit (y = 6.29x + 0.04; R2 = 0.998).
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concentrations corresponding to the LOD and LOQ were
estimated to be 590 kBq/mL [16 μCi/mL] and 2.0 MBq/mL
[54 μCi/mL], respectively. While these values are well below
the typical PET tracer concentrations discussed in the
Introduction (i.e., 10 MBq/mL to 10 GBq/mL), we must
keep in mind that, based on Monte Carlo simulations, the
detector is sensitive to a volume of ∼63 nL (4 mm long
channel segment, 125 μm wide, 125 μm deep), while the
sample injector chip provides a volume of only ∼4 nL for each
sample; therefore, we expect a deterioration in LOD from this
reduction in volume.
Thus, we next used the whole hybrid-MCE setup and

performed sample injections of different radioactivity concen-
trations of [18F]FLT. The resulting electropherograms were
analyzed to determine peak area, peak width, and number of
theoretical plates (Supporting Information Table S2), and the
peak areas were plotted as a function of radioactivity
concentration (Figure 5). The peaks were sharp, but

quantitative analysis showed them to be slightly wider than
the UV peaks (i.e., 15 s versus 8 s). Analyses also showed that
the separation efficiency (N = 3000−15000) was slightly worse
than obtained from the UV detector with the 45 μm wide
optical flow path (N = 6000−22000). The LOD and LOQ
were estimated to be 34 MBq/mL (0.9 mCi/mL) and 114
MBq/mL (3.1 mCi/mL), respectively. A summary of figures of
merit for samples injected to explore the radiation detector
LOD is shown in Supporting Information Table S2.
Demonstration of Radio-MCE Separation. First, a

sample of purified and formulated [18F]FLT was analyzed
with the hybrid-MCE device. With a concentration of 700
MBq/mL (19 mCi/mL), the total injected radioactivity in the
4 nL sample plug was ∼2.8 kBq (∼76 nCi). A large peak was
observed in the radioactivity electropherogram (Figure 6A),
and a corresponding small peak was observed in the UV
electropherogram. There were no UV impurity peaks observed
at the expected times of known impurities, though a small,
unknown radioactive impurity peak was observed at 240 s
(∼3.5% of the area of all peaks in the radiation detector
electropherogram), which was not seen in the corresponding
radio HPLC chromatogram (Supporting Information Figure
S9). This may suggest some remaining sample from a previous
run, or a species whose migration time in CE is different than
its HPLC retention time. To verify radiochemical identity, the

same [18F]FLT sample was spiked with the FLT reference
standard giving a solution with ∼500 μM FLT and a
radioactivity concentration of 630 MBq/mL (17 mCi/mL).
A single peak was observed in the radioelectropherogram
Figure 6B, and a single large peak was observed in the UV
electropherogram. A summary of the analysis is given in
Supporting Information Table S4. Analytical HPLC analysis of
the same sample showed a single UV and radiation peak at a
retention time of 5.5 min, with the coinjection confirming the
identity of FLT.
A sample of crude [18F]FLT (before purification) was also

analyzed (Figure 7 and Supporting Information Table S5).
From the UV electropherogram, the major side products
stavudine, thymidine, and CLT were observed, as well as
another significant peak. This impurity has been observed by

Figure 5. Radioelectropherogram peak area (total counts) as a
function of radioactivity concentration of injected samples of purified
[18F]FLT. Peaks were time-corrected to the same migration time (140
s). The solid line shows a linear least-squares fit (y = 4.8x + 19.8; R2 =
0.9998). Inset shows lowest-concentration points on a log−log plot,
with the solid line showing the same fit.

Figure 6. Example dual-modality electropherogram from a sample of
(A) purified/formulated [18F]FLT and (B) the same sample
coinjected with 500 μM FLT (reference standard). UV absorbance
signal is shown in blue, and the radiation detector signal is shown in
black.

Figure 7. Superimposed electropherograms of crude [18F]FLT
product (nonpurified sample). Radioactivity concentration is ∼30
MBq/mL. For this sample, a detection chip with a 125 μm wide
optical cell was used.
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other investigators but not identified.51 Here we observe that
the impurity appears to coincide with the migration time of
nosyl acid, the byproduct resulting from removal of the leaving
group when the precursor is fluorinated. During purification,
we collected the fraction corresponding to this peak and also
confirmed its identity via analytical HPLC. The retention time
matched that of nosyl chloride dissolved in DI water, and a
coinjection of the collected fraction with nosyl acid exhibited
only a single, larger UV peak.

■ DISCUSSION
The modified UV detection cell (45 μm wide channel instead
of 125 μm) significantly improved the separation efficiency and
resolution (Figure 4). However, the peak heights were lower
after accounting for concentration differences; we suspect the
lower signal is due to the channel width (45 μm) being smaller
than the diameter of the optical fiber (100 μm ID); such a
situation could allow some illumination light to directly reach
the detector without interacting with the sample or cause a
reduced amount of light to reach the detector. Improvements
in optical coupling (e.g., focusing UV into a narrower beam),
or further increase of optical path length, could improve the
LOD. The detection chip was capable of simultaneously
monitoring the UV absorbance and radiation signals. Due to
the difference in positioning, there is a time delay between UV
and radiation detectors that requires correction by scaling the
time axis to align and coregister radiation peaks with UV. For
∼4 nL injected samples, the radiation detector had LOD and
LOQ of 34 MBq/mL (0.9 mCi/mL) and 114 MBq/mL (3.1
mCi/mL), respectively, for 18F-labeled compounds. (Interest-
ingly, if we use the maximum theoretical molar activity of F-18
to estimate the number of radioactive molecules, these values
correspond to 0.54 and 1.8 nM, respectively, which is
significantly more sensitive than the UV detector.) The typical
radioactivity concentration of a formulated PET tracer is in the
range 37−11000 MBq/mL (1−300 mCi/mL), depending on
whether a single patient dose is prepared or a large
multipatient batch. Compared to the sensitivity, it would be
possible to detect low-abundance impurities (for purposes of
quantifying radiochemical purity, as low as 0.5% of the major
peak36) in samples with radioactivity concentrations toward
the higher end of this range. However, for smaller batches
improvement in sensitivity is needed and is the focus of
ongoing studies. One route to improve the LOQ would be to
increase the radiation signal by (i) increasing the total injected
radioactivity, such as increasing the sample injection volume
(currently only 4 nL compared to 10 s of μL used in analytical
radio-HPLC), (ii) performing online preconcentration of the
sample, or (iii) modifying the detection cell to increase the
residence time. Another way to improve the LOQ would be to
reduce the level of noise in the system. For example, results
from Dooraghi et al.39 suggest that for our 4 mm2 detector area
that the background in an APD detector could be as low as
∼3.2 counts/h (8 × 10−4 cps) resulting from cosmic rays. In
comparison, we observed background noise of ∼0.04 ± 0.12
cps, indicating room for improvement through optimization of
the radiation detector geometry and electronics.
The use of an APD for radiation detector has a number of

advantages compared to scintillator-PMT approaches but also
introduces a few challenges. The sensitivity only to short-range
particles enables high resolution (localized detection) without
the need for bulky radiation shielding but requires close
positioning to the sample. Electrical shielding was critical to

avoid interference from the separation channel but could be
achieved with a thin coating of an insulation layer and
conductive metal layer (which also shielded against ambient
light). While the APD would have limited sensitivity and
resolution when working with gamma-emitting species, it is
suitable for beta-emitting radioactive species, which includes
any PET radiopharmaceuticals as well as many SPECT and
theranostic radiopharmaceuticals.

■ CONCLUSIONS
A novel hybrid-MCE device was developed to analyze
radioactive compounds following electrophoretic separation.
In a set of preliminary demonstrations, the radiolabeled PET
tracer [18F]FLT was successfully detected by both the positron
detector and an integrated UV absorbance detector and was
separated from impurities present in the sample. The system
can perform chemical and radiochemical identity tests and can
perform chemical and radiochemical purity tests.
Using the UV detector, the LOQ of FLT was 17 μM, and

using the radiation detector, the LOQ of [18F]FLT was 114
MBq/mL (3.1 mCi/mL) for a 4 nL sample injection volume.
While adequate for many analysis applications, including
analysis of radiochemical purity of radiopharmaceuticals with
high radioactivity concentration (e.g., large multipatient
batches prepared in radiopharmacies for distribution to
imaging sites), improvements in sensitivity would expand the
use of this setup to smaller, more dilute batches, e.g., for
research purposes or for batches intended for smaller numbers
of patient. Studies are ongoing to improve the detection
sensitivity for both UV and radiation detectors. Wider
adoption would also require further development and
refinement and simplification of the hybrid-MCE device and
its operation and would likely require the development of
separation methods for additional radiopharmaceuticals and
comparisons to radio-HPLC.
In addition to chemical and radiochemical analysis of

samples, we are also exploring whether additional quality
control tests, such as molar activity and half-life, can be
performed in the system.
We expect the radiation detector is not limited to analysis of

18F-labeled compounds but would also be suitable for the
detection of other positron-emitting isotopes, as well as beta-
emitting isotopes (e.g., Lu-177), and potentially alpha-emitting
isotopes (e.g., Ac-225) used in radiopharmaceuticals for
targeted radionuclide therapy.
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