
UC Berkeley
Room One Thousand

Title
Public, Private, Protected: Encapsulation and the disempowerment of
the digital architect

Permalink
https://escholarship.org/uc/item/2wj6n6b7

Journal
Room One Thousand, 1(1)

ISSN
2328-4161

Author
Steinfeld, Kyle

Publication Date
2013

Copyright Information
Copyright 2013 by the author(s). All rights reserved unless otherwise
indicated. Contact the author(s) for any necessary permissions. Learn
more at https://escholarship.org/terms

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wj6n6b7
https://escholarship.org/terms
https://escholarship.org
http://www.cdlib.org/

Kyle Steinfeld

public, private, protected
encapsulation and the disempowerment of the digital
architect

Initial responses to the now widespread adoption of digital technologies
within the architectural design studio were marked by polarization and
polemics. Debates raged, and uncompromising positions were staked
out by enthusiastic first adopters and reserved traditionalists alike. It
is with no small amount of relief that I say that we are past all that
now. As Antoine Picon observes in Digital Culture in Architecture, the
question is no longer whether or not to adopt digital technology, but
what “direction architecture is taking under its influence.”1 Picon goes
on to document a range of influential trends and important debates
in contemporary digital design culture. One of the key dialectics he
identifies is the tension between those interested in the potential
offered by advanced design software in unlocking the complexities
of form and performance, and those in the minority who advocate
moving beyond the mere use of software to directly access the “invisible
computational basis”2 of digitally produced forms. Some would claim
that this movement of the majority away from an interest in the inner
workings of a new technology and towards its judicious application
is a natural result of more widespread acceptance—a sign of a culture
reaching maturity perhaps. I disagree. Continuing to attend to the inner

56	 Kyle Steinfeld

life of those humming boxes that sit beside our desks serves not only
those designers with a particular interest in digital design techniques,
but contributes to the good health of architectural practice in general.

Two Transparencies

The tension identified by Picon within digital design culture is not
limited to our discipline, but is reflective of a dialectic present in
many technical domains. Take, for example, the contested meaning
of the word “transparency” in popular usage, which has come to
simultaneously possess contradictory meanings. In her study of how
scientists, engineers, and architects have integrated computation into
their professional cultures at MIT over the past thirty years, Sherry
Turkle touches upon how this autoantonym came to be:

Transparency once meant being able to “open the hood” to see how
things worked. Now, with the Macintosh meaning of transparency
dominant in the computer culture, it means quite the opposite:
being able to use a program without knowing how it works.3

To be understood when using this term, one must now specify: white-box
transparency or black-box transparency? The former is a transparency of
organizing principles, comparable perhaps to phenomenal transparency
in architecture,4 and suggestive of an ability to know completely. The
latter suggests an ignorance of convenience.

White-box transparency evokes literal transparency, in that one can
see through any mediating interfaces into the inner workings of the thing
in question. This is what is meant by “transparency” in the institutional
oversight sense of the word, or within DIY technology circles. In
contrast, black-box transparency evokes ease of use. A commonly held
principle within the human-computer interface community states
that desirable user interfaces must anticipate and direct the cognitive

	 public, private, protected 57

actions of software users. This is known as “interface transparency”:
“The transparent interface is commonly defined as one that maximizes
task completion and minimizes interfering factors for the user, such as
unnecessary interface complexity or performance.”5

As an illustration, we may return to Turkle’s discussion of computer
operating systems. Compare the experience of wrestling with the
relatively exposed inner workings of a Linux operating system with
that of the feeling of gliding across the surface of Apple’s OSx. These
two experiences could not be more different, yet they both may be
correctly described as “transparent.” Merely by drawing a distinction
we do not gain much. The curated and seamlessly integrated cult of
Apple and the nerdy DIY world of Linux both seem to have their place.
Personally, I prefer the constrained path that Apple engineers have
collectively charted for me, when compared to the experience of feeling
so hopelessly on my own—lost in an Ubuntu wilderness. Why should
I not choose the safety of the herd? As we shall see, the implications
of this choice is another matter entirely when it comes to choosing
the tools of architectural production: the transparency of the black-box
does not come without its costs.

Encapsulation

The experience of another discipline may prove illuminating to the
choices we make regarding our software, and for this we need to look
no further than software engineering itself.

One of the central tenets of object-oriented programming (OOP) is
the mechanism of “encapsulation,” wherein groups of data and associated
procedures are bundled within a common interface, the details of which
are hidden from other processes.6 The commonly understood advantage
of this practice is not technical, but social: by packaging data structures
into easily consumed capsules, a programmer can ensure that his or her

58	 Kyle Steinfeld

work is used correctly by others. Separating the messy details of how
something works (referred to as implementation) from what the rest
of the system sees (referred to as interface), the programmer makes a
promise of a stable basis upon which dependent methods may build.
Access to the inner workings of this black-box is regulated through
classifications of public, private, protected, as well as other modifiers
that provide mechanisms of inclusion or exclusion.

The convention of encapsulation enables the larger community of
programmers to enjoy the advantages of shared authorship. It allows
program modularity and permits coders to build upon the work of those
that preceded them. For example, interpreting the principles of OOP
strictly, it would follow that once a sorting function is written there’s
no need for another—that is, until someone comes up with one that
works better. Higher and higher levels of abstraction may be achieved
in this way, as lower-level processes are perfected and later generations
of programmers are freed to concentrate on higher-level tasks. For true
believers in the OOP model, this virtuous cascade conjures visions of
an endlessly compounding technological progression. Rather than
reinvent low-level processes for every new program, coders build on the
work of previous generations—standing not so much on the shoulders
of giants, but on a pile of ten thousand dwarfs.

In the thirty or so years of programmers working under the OOP
model, things have not gone as smoothly as the true believers envisioned.
While, for many devotees, perfect modularity is always just around the
corner, critics respond that this faith in encapsulation was a pipe dream
all along, and failed to take into account a number of inconvenient
realities.7

First, it seems that in practice, most coders prefer to write their
own functions rather than accept the work of others. There is more than
simple machismo in this impulse, as basic libraries often set the tone

	 public, private, protected 59

and direction of higher-level work, making an intimate understanding
of the details of implementation essential. More troublesome for
OOP devotees is the fact that as implementation contexts change, so
do fundamental assumptions and the appropriateness of underlying
structures. This implies a trade-off between adapting existing code for
purposes it was not intended (referred to as a kludge), or tearing down
the whole system and starting from scratch. We see this trade-off at
work in the phenomenon of “feature bloat,” wherein new versions of
software become overburdened when adapting to previous structures.

More troublesome for OOP devotees is the fact that as
implementation contexts change, so do fundamental assumptions and
the appropriateness of underlying structures. This implies a trade-off
between adapting existing code for purposes it was not intended for
(referred to as a kludge), or tearing down the whole system and starting
from scratch. We see this trade-off at work in the phenomenon of
“feature bloat,” wherein new versions of software become overburdened
by adapting to previous structures. Complexity compounds this
problem, as more advanced systems require more investment in
supporting infrastructure, thereby creating more incentive to sustain
existing patterns.

When HTML standards were developed in 1989, structuring
text and linking one document to another were among the central
concerns, and graphic layout of text was not on the radar. Even after the
introduction of the graphical browser in 1993, it was a safe bet that bold
fonts were near the highest level of graphic control that a user of this
technology could expect. Despite having been developed for text-based
context, HTML still forms the basis of most of the visual infrastructure
on the web—from animations formatted for viewing on a desktop
computer to the tight graphic constraints of mobile devices. Most
web programmers agree that many aspects of the HTML standard are

60	 Kyle Steinfeld

inappropriate for today’s context, and that a much better set of standards
could be developed if starting from scratch. The costs of reprogramming
every page on the world-wide-web hold sway, of course, and few such
proposals gain traction.

Lastly, and least visible from a technical perspective, the foundations
laid by previous generations are anything but neutral, and instead reflect
the values and assumptions of the context in which they were laid.
This idea was first put forward by Melvin Conway in 1968. The axiom
that became known as Conway’s Law states that “organizations which
design systems ...are constrained to produce designs which are copies
of the communication structures of these organizations.”8 The work of
developing a piece of CAD software might be divided amongst three
teams of programmers: a file input/output team, a user interface team,
and a geometric modeling team, for example. Conway’s Law correctly
predicts that such an organization would tend to produce a piece of
software consisting of three major subsystems (I/O, GUI, and a geometry
kernel), and that the interfaces between these modules and failure-
proneness of this software would correlate with the communication
structures linking the three teams of programmers that produced it.9

Even from the fairly pragmatic viewpoint of software engineering,
we may see that black-box approaches are bundled up in the messiness
of contested authorship and the uncertainty of dynamic contexts.
Given the opportunity, most experienced coders would choose to start
from scratch using only a lightweight and narrowly-focused framework.
Are the lessons of this technical culture transferrable to the choices
we make as designers? Certainly not on their own, but the paradoxical
empowerment of the black-box “transparency” is not limited to software
engineering, but is inherent in the very concept.

	 public, private, protected 61

“Statements Too Costly to Modify”

While we have seen the technical problems and limitations of black-box
thinking and touched on the issues of authorship and power implied by
it, to go further, we must examine the issue of encapsulated knowledge
on a broader level. In his essay “Visualization and Cognition: Thinking
with Eyes and Hands,” Bruno Latour demonstrates the socio-cultural
implications of an idea very similar to encapsulation at work in his
observations of the mechanisms of scientific production. He asserts that
the unique power of modern scientific culture may be attributed to a set
of mundane and practical skills in producing, reading, and writing about
images, which he terms “inscriptions.” To be effective, these inscriptions
must be immutable (durable and generalizable to a variety of situations),
mobile (allowing one to gather up and encapsulate many facts from
many locations), and combinable (compatible with existing inscriptions
such that they may build upon one another). This form of “knowing,”
unique to western scientific practice, is not a disinterested cognitive act,
but is instead tied up with what Latour terms the “agonistic situation”:
in a conflict between two agents, the “winner” is inevitably the one that
can bring forward the greatest number of compelling facts. Seen from
this point of view, the power of scientific progress may be explained as
the cascading of ever more concentrated inscriptions resulting from a
progression of agonistic situations which build upon one another—a
condition which both progressively empowers the authors of this
material to make discoveries, and serially raises higher barriers to
challenges made of established claims.

On the one hand, concentrated inscriptions empower those that
wield them: “the great man is a little man looking at a good map.”10 On
the other hand, this position requires the raising of a high wall, as ever-
higher barriers of entry raised by ever-more concentrated inscriptions
empower only some, and only at a cost. Naturally, those outside the

62	 Kyle Steinfeld

system must surmount a barrier in order to participate. But more than
that, as inscriptions become denser, the culture as a whole becomes more
invested in the structure of the existing body of knowledge. Through
this mechanism, paradigm-shifting innovations tend to be stifled and
conservative positions tend to become entrenched.11 Latour concisely
summarizes this trade-off with his proposed definition of “reality” as
“the set of statements too costly to modify.”12

While Latour’s essay discusses the construction of scientific
knowledge, it is a short leap from there to a discussion of architectural
software. Take building information modeling (BIM), for example. BIM
brings the tenets of object-oriented programming to 3D modeling, and
provides a platform for many agents to come together in an “agonistic
situation” through what Latour would surely regard as a very highly
concentrated set of inscriptions. But does it then follow that the great
architect is a small architect looking at a good BIM model? Let us hope
not. The user of a BIM model is in a similarly empowered position as
Latour’s map-reader, and accepts similar costs, both for himself and for
the culture at large. Consumers of platforms like Autodesk’s Revit are
beholden to the use-case assumptions of the software engineers that
created it. This includes assumptions regarding workflow, architectural
part-definition, even sequences of construction that are often integrated
into the information model of the software in a way that is difficult for
an end-user to alter.13 Here, the BIM user must trade his domain over
these decisions for the position of power offered by the BIM system.

Latour shows us that authority, whether in the cultures of scientists,
software engineers, or architects, can be explained by looking at both
the makeup of the authoritative inscriptions these cultures employ, as
well as the sociocultural uses of the material. A closer look at “advanced”
design software such as BIM reveals a trade-off that many designers
might not accept.

	 public, private, protected 63

Public, Private, or Protected?

The tension observed by Picon in digital design culture—between
those interested in applying advanced software in order to unlock the
complexities of form and performance, and those who seek to move
beyond software in order to access a more fundamental computational
approach to digitally-produced form—may be concisely summarized
by Turkle’s competing definitions of transparency: The black-box
transparency of Apple’s user-friendly interfaces or the white-box
transparency of Linux’s open hood. This choice has real consequences,
as our institutions must decide between investing limited resources in
powerful software (often requiring expensive licenses) and investing in
training more empowered users.

First, when it comes to applied design technology, black-boxes and
white-boxes are mutually exclusive. One cannot have both. As our brief
survey of the promises and pitfalls of object-oriented programming
would suggest, powerful software can come at the cost of disempowered
users, and truly empowered users prefer application frameworks to
software platforms. The black-box of more “advanced” architectural
software platforms simply have more assumptions built into them when
compared to more lightweight application frameworks. This allows the
designer to stand atop taller shoulders, but at the cost of fewer decisions
within her control.

Next, I would argue that the culture of our discipline would be
healthier if we chose empowered users over powerful software. Latour
reminds us that social-cultural values are carried within systems of
knowledge production. As one such system, architectural design
software carries the values and the authority of the culture in which it
arose. While seemingly an innocent act, the choice to accept embedded
high-level functionality in software is a choice to defer authority and
authorship to software engineers and user-interface designers. While

64	 Kyle Steinfeld

the disempowered position of architects may remain benign for now,
over time it will negatively impact digital design culture. Design roles
will tend to crystallize, as architects, engineers, and builders collaborate
through pre-defined portals. Conventional design methods will tend to
be reinforced, as descriptions integrated into information models are
more likely to reflect well-known and well-documented procedures.
Barriers to entry will grow more formidable as software grows in
complexity. Only a strong understanding of software fundamentals will
ensure that this complexity actually leads to architectural advances.

Finally, it is my assertion that in order to be effective, computational
literacy must extend beyond the mere understanding and judicious use
of software, and into a comprehension of more foundational material.
While I have not discussed the current state of architectural pedagogy
here, take my word that this will require a thoughtful and thorough
revamping of the way we integrate critical computation in architectural
design education.

I do not advocate that architecture abandon high-level software,
but rather suggest the following: if upon careful consideration you
find that a given piece of software matches well with your needs and
those of a given situation, if you find that the world presented by its
interfaces and representations is one in which your design thinking
might take root and flourish, then by all means put your money down.
At the same time, I remind you that the very facility to intelligently ask
these questions requires foundational knowledge and critical thinking.
As does the ability to discern the difference between effective and
ineffective software, and the capability to maneuver beyond the latter
when required. Nurturing this critical faculty is the charge of design
education, and foundational knowledge is the key to the empowerment
of the digital architect.

	 public, private, protected 65

[Endnotes]
1. Antoine Picon, Digital Culture in Architecture: An Introduction for the
Design Profession, Boston, MA: Birkhaeuser, 2010, 8.
2. Ibid., 10.
3. Sherry Turkle, Simulation and Its Discontents, Cambridge, MA: The MIT
Press, 2009, 44.
4. Colin Rowe and Robert Slutzky, “Transparency: Literal and Phenomenal,”
Perspecta. Vol. 8, January 1, 1963: 45–54	
5. Rick Oppedisano, “Common Principles: A Usable Interface Design Primer,”
The Usability Professionals Association Voice, September 2002, accessed April
30, 2013, http://www.usabilityprofessionals.org/upa_publications/upa_voice/
volumes/4/issue_3/common_principles.htm.
6. Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented
Software, Reading, MA: Addison-Wesley Professional, 1994.
7. See Joe Armstrong Interview in Coders at Work: Reflections on the Craft of
Programming, Peter Seibel, New York, APress, 2009: “The problem with object-
oriented languages is they’ve got all this implicit environment that they carry
around with them. You wanted a banana but what you got was a gorilla holding
the banana and the entire jungle.”
8. Melvin Conway, “How Do Committees Invent?,” Datamation, April 1968,
accessed April 30, 2013, http://www.melconway.com/research/committees.html.
9. Nagappan Nachiappan, Brendan Murphy, and Victor Basili, “The Influence
of Organizational Structure on Software Quality: An Empirical Case Study,”
in Proceedings of the 30th International Conference on Software Engineering,
521–530. ICSE ’08, New York, NY: ACM, 2008.
10. Michael Lynch, ed., Representation in Scientific Practice, 1st ed., Cambridge,
MA: The MIT Press, 1990, 26.
11. See Thomas Kuhn’s, The Structure of Scientific Revolutions, Chicago, IL, The
University of Chicago Press, 1962.
12. Bruno Latour and Steve Woolgar, Laboratory Life: The Social Construction
of Scientific Facts, Beverly Hills, CA: Sage Publications, 1979, 243.
13. Early versions of Revit enforced rules regarding architectural geometry, such
as walls being perpendicular to the ground, and design workflow, such as analyses
that may only be performed on a geometrically complete design iteration.

