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Abstract 

The system-level design process typically involves refining a design specification down to the 
point where each of the system's components is described as a block diagram or netlist of abstract 
Register-Transfer (RT) level components. Although no standard set of RT components seems to 
exist across different design methodologies and backend technologies, on closer examination, we 
see that there indeed does seem to be a universally accepted set of RT-components that are used 
in the initial phase of design refinement, much before its implementation in a particular target 
technology. In this report, we describe the need for such a standard RT component set, describe 
such a parameterized library of standard (or generic) RT components, and evaluate its utility in 
the system design process. We survey several backend technology libraries, and study the relative 
coverage of the generic RT component library with respect to these target technology libraries. We 
then describe the problem of high-level technology mapping, and illustrate this process for a few RT 
components. Finally, we perform a set of experiments on the HLSW92 benchmarks to evaluate the 
usefulness of generic RT component libraries. In particular, we compute the overhead incurred by 
using a generic RT component library over directly using the technology-specific components for the 
selected benchmark designs. Our preliminary results indicate that the penalty in using the generic 
components is quite low (approximately 10%}, and is more than compensated by the advantages of 
designing with a generic RT component library. 
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1 Introduction 

Present-day design methodologies involving schematic capture and simulation require the system 
designer to partition, refine and specify a design as an interconnection of components drawn from a 
vendor's library. These components can vary in their level of complexity from simple logic gates, to 
sequential components such as counters and registers, to arithmetic blocks such as ALUs, and all 
the way up to complex components such as CPU cores. However, the register-transfer (RT) level is 
a common design entry point that is supported by most of the existing CAD tools on the market. 
Furthermore, the RT-level has had a long history of use as a design entry point, as evidenced by 
the frequent use of TTL databook component names by designers, as well as in digital system 
design courses outlined in standard textbooks and taught at schools. We also note that most data 
sheets for product specifications (either being designed, or after they have been designed) are often 
composed of register-transfer schematics typically drawn up by system level designers. 

Component sets and libraries play an important role in the context of synthesis; well defined 
component sets at the input and output are critical for the successful realization of any synthesis 
tool. We typically use generic components to specify the input or intermediate results of synthesis, 
and map the design into components from a technology library [GDWL92]. For instance, logic 
synthesis uses generic components such as simple logic gates (e.g., AND, OR, INVERT) at the input 
and for intermediate synthesis steps, but the last step of logic synthesis involves technology mapping 
of the generic design into components drawn from a technology library (e.g., complex CMOS gates, 
or a different logic gate family such as NOR-NOR). Generic component sets facilitate technology 
independence, and allow the capture of a design in a standard form that can be retargetted to 
different libraries (or technologies) without changing the input description. Of course, technology 
independence needs to be coupled with good technology mapping strategies that can effectively 
map generic designs to target library components with low overhead. 

Although RT-level components are commonly used in specifying, documenting, refining and 
synthesizing designs, there doesn't seem to exist a standardized set of RT components that can 
facilitate unambiguous documentation, communication and design use. This is in contrast to the 
logic-level, where the designs can be expressed as netlists of well-understood standard components 
such as the equivalent 2-input NAND or NOR gate. The lack of a standardized RT-level component 
set is a serious roadblock to elevating the design process beyond the RT-level and will affect the 
capability of effectively synthesizing large-scale system designs in an efficient manner. 

Another important requirement for system-level design is the capability of specifying the design 
once, but using this specification to predict technology-specific design characteristics (e.g., area, 
speed, power) for different target implementations. System-level designers would like to perform 
early design space exploration by delaying binding of system-level components to a particular 
technology or implementation, but need the capability of rapid technology projection for different 
target libraries. The concepts of delayed binding, technology projection and effective estimation 
for system-level design cannot be performed without the support of a well defined component set 
and associated tools for technology mapping and prediction. 

With increasing interest in high-level synthesis and higher-level design methods, the need has 
thus evolved for a well defined generic RT component set, along with schemes for mapping these 
generic RT components to technology-specific components at different levels. This report describes 
a generic RT component library GENUS and provides an evaluative study of this generic RT library 
with respect to different target technology libraries. We also introduce the problem of high-level 
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technology mapping, where generic RT components are mapped to technology library components 
of equal or similar complexity. High-level technology mapping is useful if the target library contains 
highly optimized complex RT blocks that can be used directly in a system-level design. The use of 
such higher-level, optimized components may yield a better design than if each generic component 
was decomposed to lower-level technology primitives. High-level technology mapping thus requires 
both a good coverage of the technology library by the generic component set, as well as well defined 
cost functions to guide the mapping process. We illustrate this process of high-level technology 
mapping on some high-level synthesis benchmarks and attempt to measure the penalty incurred 
by using generic RT components during design refinement. 

The report is organized as follows. Section 2 describes different approaches for implementing 
generic components in technology-specific designs, while Section 3 briefly defines the overall problem 
of high-level library mapping. In Section 4, we survey the coverage of generic components in the 
GENUS generic library relative to different backend technology libraries. Section 5 illustrates the 
task of high-level component mapping with two examples. Section 6 describes the experiments 
we performed to evaluate the effectiveness and the overhead incurred by specifying designs using 
generic RT component libraries and the high-level library mapping approach. Section 7 concludes 
with a summary and identification of the open problems. 

2 Generic RT Component Libraries and RT Technology Map-. 
ping 

GENUS [Dutt88] [Dutt91] is a parameterized generic RT component library developed a.t U.C. 
Irvine for use with simulation and high-level synthesis tools. A design that is initially specified in 
a hardware description language such as VHDL can be implemented with RT components drawn 
from the GENUS library, either through ma1mal design refinement or using high-level synthesis tools 
such as state schedulers, component allocators, component and connectivity binders [LiGa88]. 

After the design has been specified as an interconnection of generic RT components, we have 
to map the design to a layout technology so as to satisfy design constraints such as area, time, etc. 
Several paths exist for this technology mapping phase. This section outlines each of these paths 
for technology mapping. 

A generic component in the GENUS library can be mapped to technology specific components 
at differen,t levels, depending on the complexity of the building blocks used. We identify four 
approaches to component mapping based on different levels of building blocks used to realize a 
generic component: 

Functional mapping At the lowest level, a generic component's functionality can be described 
using Boolean equations for the transformation of the inputs into outputs. These equations 
can then be mapped to low-level technology-specific components such as gates, flip-flops 
and la.tches [BRSW87] [Keut87] [VaGa88]. For example (Figure 1), an ALU can be described 
with Boolean equations for each output(OO, OCOUT and OZERO) that use the inputs IO, Il, 
ICIN a.nd C. Each of these equations can be mapped to components from a logic library (e.g., 
N 0 R gates). This type of functional mapping is also commonly called logic-level technology 
mapping. 

Functional decomposition At a slightly higher level, a generic component can be mapped to 
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IO 11 00[0] = 10[0] /\ 11[0]; 

00[1] = 10[1] /\ 11 [1]; 

v ICIN OCOUT •• ~ ~ 

OZERO =· .... 

00 OCOUT= ..... 

Figure 1: Functional mapping of an ALU 

MSI-level blocks from a technology library. The given generic component is functionally 
and/ or structurally decomposed into smaller building blocks. This decomposition is orga­
nized hierarchically and can be represented as a tree in which the generic component is at 
the root of the tree. Leaves of the tree consist of the MSI/SSI level blocks from the tech­
nology library, while intermediate nodes represent hierarchically decomposed components of 
the design. DTAS [Kipp91] follows this approach. Figure 2 shows a decomposition tree for 
a generic ALU. This ALU is realized by composing the leaf cell blocks (such as 4-bit adders, 
FAs, MUX2, gates) from a technology-specific component library. 

IO 

ICIN 

11 

OCOUT 

00 

.. 
ALU 

FA 4-bit gates 
adder 

Figure 2: Functional decomposition of an ALU 

High-level library mapping At the highest level, an abstract component can be mapped directly 
to a library-specific component at the same level. In this approach, a generic ALU will be 
mapped to a technology-specific(TS) ALU, a Reg-file to a TS Reg-file, and so on. Extra 
logic may have to be added around the TS component. when the functionality of the TS 
component does not exactly match that of the generic component. Figure 3 illustrates the 
high-level mapping for an ALU. 

General Case In the general case, the mapping of a generic component to a TS component may 
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ICIN 

10 11 

OCOUT 

00 

_ ....... ~ ICIN 

c 

10 11 

Figure 3: High-level library mapping of an ALU 

glue logic 

COUT 
ZERO 

require a combination of the three approaches mentioned above. This mapping approach could 
be used at different levels of granularity as shown in Figure 4. At the design level, different 
components of the structural netlist of a design could be mapped using different levels of 
mapping. At the RT-component level, a particular component itself could be mapped to the 
library components using different levels of mapping. For example, the arithmetic functions 
of an ALU could be mapped on to an MSI component ADDER, whereas the logic functions 
could be expressed as a set of Boolean equations and then mapped to TS gates. 

In this report, we concentrate on the third approach, that is, High-level library mapping. 

3 High-level Library Mapping 

High-level library mapping, as described in the previous section, refers to the mapping of a generic 
component to a TS component of similar complexity. It involves finding a TS component with 
similar functionality that may need additional logic to account for the differences. In order to do 
an effective job of high-level library mapping, we need to perform the following steps. 

The first task is to survey the set of the components in the generic library and the corresponding 
set of components available in the technology library. This survey will highlight the coverage of 
the generic component set with respect to different technology libraries. Hence we need to examine 
several back-end design methodologies (e.g., synthesis tools, custom design). After tabulating the 
list of components available in various technology libraries, we need to compare each component's 
semantics, functions performed, port names, size, and other attributes. This survey of component 
coverage is a prerequisite for high-level mapping, since it identifies feasible technology-specific 
candidat~s for the high-level mapping approach. The issue of relative coverage of component 
libraries can be translated into the following questions: 

1. What percentage of the generic components have corresponding TS components onto which 
they could be mapped with low overhead? 

2. Given a generic component and a similar TS component, in what aspects and how much do 
they differ? 
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Reg-file 

MUX • 

(a) 

IO 11 

OCOUT AU 
• t 

00 ~ 
(b) 

ALU 

LU 

t 
00= IOAl1; 

High-level 
library mapping 

Functional 
mapping 

Functional 
decomposition 

MUX 

t 
00=CIOA10; 

Figure 4: Mixed level mapping: (a) Design level (b) Component level 
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3. Is high-level mapping feasible? If the set of generic components does not effectively cover the 
TS library, then the high-level mapping approach may not be useful. 

Once we have the information on the generic component and TS component set, we need to 
specify a mapping strategy, consisting of a set of mapping heuristics for each class of component 
generator. This strategy will require the capture of relevant information describing both the generic 
component to be mapped and a set of TS components that are candidates for the mapping. A 
specific algorithm then needs to be developed to find the TS component with the best match and, 
if necessary, to add extra logic to the TS component selected so that the resultant design mimics 
the functionality of the given generic component. 

Finally, we need to evaluate the resultant design. We need to define a cost function that 
quantifies the total cost involved in realizing generic components. The cost function measures the 
effectiveness of high-level library mapping and helps us evaluate the practicality of this approach 
as well as its merit relative to the other techniques such as functional decomposition and functional 
mapping. 

4 Generic Component Coverage 

In this section, we present the results of our survey of library coverage with respect to different TS 
libraries that use varying layout styles for component implementation. In particular, we examined 
the following layout styles: 

Standard cell In standard cell implementation cells are placed in pitchmatched rows with between­
channel routing. It is typically used for implementing random-logic. 

Bitslice In the bitslice method, for each component single-bit design is created and an n-bit 
component is realized by replicating the single-bit design n times. 

Gate array In the gate array method, the component's logic is realized by specifying the connec­
tivity of a prespecified array of gates. 

Field programmable gate array(FPGA) Except for the fact that the connectivity is pro­
grammable in the field, this is similar to the gate array technology. 

The first two layout styles typically result in more compact designs at the cost of longer design 
cycles, while the gate array and the FPGA styles provide a quick method for prototyping designs. 

4.1 Coverage Across Different Technology Libraries 

We considered the following technology libraries in our survey: 

VTI Datapath Compiler[VTI91] This compiler generates components parametrized by bit­
width. It can generate gate-level design or full-custom compiled layout. 

Cascade Digital Library[Casc92] Cascade's EPOCH digital library also defines a compiler that 
implements parametrized components. From the parametrized specification of a component, 
a standard cell or bitslice implementation could be generated. 
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Toshiba Gate Array Library[Tosh90] The Toshiba gate array library contains a specific set of 
non-parametrized components. 

XBLOX[XBL092] Xilinx provides a set of RT-components that are parametrized by bit-width. 
These components can be directly mapped into Xilinx's FPGA library. 

4.2 Coverage Across Different Parameters 

Figure 5 pictorially illustrates the coverage of GENUS components across various parameters rela­
tive to different TS libraries. Please refer to [Dutt88] for the set of different parameters associated 
with various components. Each column in Figure 5 represents a parameter and each row shows a 
TS library. We examined the following parameters: 

Set of components With respect to the set of components, VTI and Cascade have fairly good 
coverage, followed by Toshiba gate array. 

Size of a component Since the VTI and Cascade libraries are parametrized by bit-width, GENUS 
covers these libraries fairly well in terms of the size of components. On the other hand, the 
Toshiba library has a fixed set of components and hence results in poor coverage with respect 
to component size. 

Set of functions Although most of the components in these libraries do provide many of the 
functions mentioned in the GENUS library, TS components can perform specific subsets of 
these functions. They do not support the flexibility of GENUS where a multi-function unit 
(e.g., an ALU) can perform any subset of functions out of the full set of the functions for that 
generator. 

Semantics Most of the components in the TS libraries closely follow the semantics with respect 
to the behavior of the GENUS components. 

Style and Type GENUS provides an extensive set of styles and types for each generator. The 
TS libraries we studied did not cover all these types and styles. 

Port names GENUS follows a specific convention in selecting the set of input-output ports and 
their names." Similarly, each TS library has its own port naming convention. This results in 
a mismatch between the port names of TS library components and GENUS components. 

4.3 Coverage Across Different Component Classes 

While Figure 5 gives an overall indication of the coverage across different technology, libraries, it 
is useful to examine the relative coverage with respect to each component type. Figures 6 and 7 
illustrate the relative coverage across different component classes. [Dutt88] contains a detailed list 
of the set of GENUS components and their classes. We can broadly classify the RT components 
into the following classes: 

Combinational components These include primitive gates, shifters and arithmetic/logic func­
tions. With respect to combinational components, Cascade's library is closest to GENUS, 
followed by the VTI compiler, and finally the Toshiba gate array library. 
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Figure 6: Coverage of GENUS components( combinational) 
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Figure 7: Coverage of GENUS components(sequential and miscellaneous) 
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Sequential components This class contains all storage elements such as registers, counters, mem­
ories, etc. With respect to this class, VTI and Cascade provides pretty good coverage followed 
by the Toshiba gate array library. 

Miscellaneous components This class contains all the miscellaneous components in GENUS. 
Several components in this class are "virtual" components that are present for simplifying 
synthesis, and may have no meaning in hardware (e.g., the bit-manipulation operations concat 
and extract). As a result, these components show poor coverage with respect to the technology 
libraries. 

Appendix A provides a detailed comparison across different component generators. 

4.4 Components Not Present in GENUS 

GENUS does not cover all the components present in the TS libraries. Some of these components 
are completely missing in GENUS, whereas others may have extra features that are not available 
in a corresponding GENUS component. Figure 8 lists these components. Future extensions of 
GENUS may need to incorporate some of these components or features if they are justified by their 
frequency of use. 

Specific features 

Generators VTI compiler Cacade compiler Toshiba gate array 

ALU Fn: A+B Lots of arithologic Lots of arithologic 
functions functions 

Zero-detector available available 

Mult Different bit-width Mult-add In available for the two inputs 

Complementer 2's complement 

Gates complex gates complex gates complex gates 

Lookahead available carry generator 

Bilbo available 

Barrel-shifter In: funnel 

Figure 8: Generators(features) not in GENUS library 
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4.5 Summary 

In summary, TS libraries that are parametrized( Cascade and VTI) provide fairly good coverage for 
GENUS components. The Toshiba gate array library provides components of specific sizes; com­
ponents of other sizes have to be built from the available components. The other major difference 
was the availability of a specific set of functions in realm of multifunction components. We also 
observed a common problem with mismatches in the port names. 

5 Component mapping 

From the previous section, we observed that generic components cover the technology libraries we 
surveyed fairly well; this establishes the feasibility of the high-level library mapping approach. In 
this section we define the actual mapping strategy. 

Given a generic component specification, the task of high-level component mapping is the prob­
lem of selecting a TS component that is "closest" to a generic component. The closeness function 
can be formulated to require the addition of minimal logic to the TS component to realize the 
generic component; the "closeness" is thus defined in terms of some cost function that encourages 
functional similarity and that penalizes additional logic for dissimilarities. 

In order to effectively perform mapping, we first need to define a canonical representation 
that captures the essential features of all the components across different libraries including the 
generic component library. Secondly, we need to define some priority function to guide the 
component selection. Thirdly, we need to define the actual mapping algorithm for realizing a 
generic component from a TS component. In the remaining part of this section, we discuss these 
steps with some examples. 

5.1 Canonical Component Representation 

We need a representation scheme that covers the essential features of the component set in a 
standard form so that similarities and differences can be identified, and a standard set of mapping 
algorithms can be developed for each component. This representation must cover not only the 
generic component set, but also the component sets across various technology libraries. 

We propose a representation similar to one followed by the GENUS library [Dutt88]. Compo­
nents of similar behavior are grouped together into generators such as ALU, REGISTER, MUX, 
etc .. Each generator has an associated set of parameters; a component is instantiated by specify­
ing values to each of the parameters associated with the corresponding generator. The GENUS 
parameter set has to be extended to cover the features of different libraries. 

The canonical component representation must capture the following typical parameters and 
attributes: 

Bit-width, which characterizes the size of the component in terms of the input and output bit.­
widths. The canonical representation should be able to specify a particular bit-width (for a 
particular component) as well as a range of bit-widths (for the generator as a whole). 

Set of Functions, for multi-functional components. 
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Ports, that specify the mode (input, output or input-output) and the features (latched, inverted, 
etc.) 

Data Representation, in formats such as sign magnitude and 2's complement. 

Control Specification, for multi-functional units indicating the encoding (unary or binary) and 
the function table. 

Status signals, that are generated as a result of primary operations in the component (e.g., zero­
bit or overflow). 

Besides these important parameters, we need to represent some parameters that are specific to 
certain classes of generators. These include port-specification for reg-files and memories, enable­
lines for some components, and component implementation styles such as ripple-carry, carry­
lookahead and counter styles. 

We illustrate the elements of the canonical representation using the ALU generator. A typical 
ALU generator has the following parameters: 

Bit-width Theoretically, this could be any positive integer value. 

Ports Names of the input and output ports have to be specified. 

Set of Functions A general ALU could perform any subset of the following functions: 16 arith­
metic functions, 16 logical functions and 6 comparison functions. 

Control Specification The control encoding and functionality could be specified in tabular form. 

Status Signals An ALU could generate any subset of these signals: {Cout, Overflow, ZERO, 
SIGN}. 

Data Representation The input and output data could be any of these formats: sign magnitude, 
2's complement, l's complement, etc. 

A detailed description of the canonical ALU representation is given in Appendix B. 

5.2 Priority functions 

After a set of candidate technology-specific components are identified, we need to find a TS compo­
nent that has the best match with respect to the generic component. This requires a search process 
guided by a set of goals or a priority function. Each priority function for the mapping can be 
defined in terms of the generator's parameters (e.g., bit-width, set-of-functions, control encoding, 
etc.) that specify a component. For instance, the closeness function for an ALU generator can be 
defined in terms of its parameters: bit-width, set-of-functions, control signals, status signals, data 
representations, etc. 

The cost function used to guide the search process in the mapping can be formulated in several 
ways. One scheme may have the user rank the parameters in order of decreasing importance, so that 
components that match parameters with higher priority are selected first, followed by components 
that are matched on lower priority parameters. Another scheme can require the parameters to 
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be pre-ranked according to their general importance. For example, for the ALU generator, we 
select components that are closer in bit-width, followed by functional similarity. A general scheme 
could create a cost function that is a composite function of the all the parameters, represented as 
a weighted sum of the different pararrieter values, where weights specify their relative importance. 

While specifying the relative priority, one should remember that some of the parameters ma.y 
have an overriding effect on the feasibility of component realization. That is, if a parameter value is 
not satisfied by the TS component, the generic component cannot be realized at all. For example, 
in case of the register-file generator, if the TS register-file does not have a sufficient number of ports 
as required by the generic component, the mapping becomes infeasible, since the TS register-file 
does not have enough parallelism in its ports to support simultaneous access to the required number 
of RF locations. Such overriding parameters should be given special consideration while defining 
the priority function. 

5.3 Mapping Algorithm and Heuristics 

Once the candidate TS components and the prioritized mapping cost functions are identified, the 
next task is the actual mapping algorithm required to realize efficient implementation of the generic 
component. After selecting a proper TS component, this mapping algorithm adds extra logic to 
compensate for the mismatches that arise because of the differences in the parameter values of the 
two components. 

Let R be the required component and T the TS component to be used for realizing R. Specifically, 
we need to add logic that makes up for the differences between R and T with respect to following 
parameters: 

Bit-width If Bit-width( T) is greater than Bit-width(R), then a proper subset of the data width 
of T has to be selected to realize R. 

Set-of-functions If Tis missing some of the required functions, logic has to be added to generate 
those missing functions. 

Control lines A decoder may be required to map the control lines of R to the control lines of T. 

Status signal Extra logic may have to be added to T to generate the extra status signals present 
in R. 

Data representation Some logic might be required to match the data representation of R and 
T. 

We briefly describe component mapping algorithms for two components: the ALU and the 
Reg-file. The detailed mapping procedure can be found in Appendix B. 

·5.3.1 Component Mapping Algorithm for ALU 

An ALU is a multifunctional unit characterized by the following parameters: bit-width, set-of­
functions, style, control lines, status signals, and data representation. The set of possible values 
that these parameters can take is shown in Appendix B. 
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For the ALU generator, each of these parameters needs to be factored into the overall priority 
function. Vve could either rank the parameters or specify a weighted sum of them as a priority 
function for the search procedure. Note that some of the operations of the ALU (such as ADD or a 
minimum of two comparison functions) and most of the status signals (except ZERO and SIGN), 
when required, are overriding parameters that determine the feasibility of the mapping. Details of 
the priority function are described in Appendix B. 

Get the specification 
of required ALU(R) 

Get the specification 
of ALUs in TS lib 

Find the closest ALU 
(T) in TS lib 

Data representation 
mapping 

Bit-width mapping 

Function mapping 

Control mapping 

Status signal mapping 

Return the generated 
ALU 

Figure 9: Flowchart for mapping an ALU 

Figure 9 shows the overall flowchart of the mapping algorithm for the ALU generator. We 
start by obtaining the canonical representation of the required component R and the TS ALU's. 
Then we find the closest ALU Tin TS library. Next, we start padding T with logic to account 
for the differences in R and T. For each of the para.meters, we specify some rules to make up the 
differences. We start with data representation mapping, followed by bit-width mapping, function 
mapping, control mapping and finally status signal mapping. Each of these steps either generates 
some additional logic for T if feasible, or returns a false value signifying the inability of mapping 
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R to T. The detailed steps are given in Appendix B. 

GENUS ALU(R) 

10 11 

ICIN~OCOUT 
C +-~-- OZERO 

00 

Bit-width: 27 

Fns: {ADD, INC, 

OR, AND, XOR, LID, ONE} 

Control: Unary 

Status: OCOUT, OZERO 

(a) 

ICIN 

c 

10 11 

VTI ALU(T) 

A B 

c~:Q-ca 
00 

Bit-width: 27 

Fns: 19fns 

Control: Binary encoded 

Status: CO 

(b) 

.J..,....!;;:;;E9F.:'--t-OCOUT 
'----"'I:': OZERO 

00 mapping 

(c) 

Figure 10: An example for ALU mapping:(a) Required ALU(R) (b) TS ALU(T) (c) Realized ALU 

Figure 10 shows the application of this mapping algorithm to an example where the required 
component Risa GENUS ALU(Figure lO(a)) that can perform seven functions (ADD, INC, OR, 
AND, XOR, LID, ONE) and has two status signals (OCOUT, OZERO). The ALU R's bit-width 
is 27, and the data is represented in 2's complement notation. The control lines for the ALU R 
are unary encoded. We wish to map this ALU to an ALU from the VTI Datapath Library. The 
closest ALU Tthat could be found in the VTI library (Figure lO(b)) is a 27-bit ALU that performs 
19 functions and provides only one status signal OCOUT. Specifically, it is missing one arithmetic 
function INC, two logic functions(LID, ONE) and a status signal OZERO. Ts control lines are 
binary encoded. Figure 10( c) shows the final realization of R using T. The shaded boxes represent 
the extra logic that has to be added in order to realize R. For this example, we do not require data 
representation mapping, and bit-width mapping. Function mapping is performed by the square, 
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shaded box on the right and a mux at the bottom. The shaded rectangular box on the left of 
Figure 10( c) takes care of control mapping, while the multi-input NOR gate at right-bottom corner 
of Figure lO(c) generates the extra status signal OZERO. With this we have ALU R realized using 
the_ VTI Datapath Library. 

5.3.2 Component Mapping Algorithm for Register Files 

A Reg-file is a sequential component characterized by the following parameters: bit-width, num­
words, read-ports, write-ports, enable, and clock. 

As with the ALU generator, each of these parameters determine the priority function for the 
search process. For a reg-file, the read-ports and write-ports are the overriding parameters that 
determine the feasibility of the mapping: if the TS library does not have reg-files with a sufficient 
number of the ports as required, we cannot generate a register-file configuration to support the 
desired data parallelism. 

Figure 11 shows the overall mapping strategy for a reg-file. Once again we start by obtaining 
the canonical representation of the required reg-file R and TS library reg-files. Next, we find the 
reg-file Tin the TS library that most closely matches R. If required, we then expand the bit-width 
and num-words. Then we do port mapping, followed by address mapping, clock mapping and 
finally rest of the ports are handled. 

Figure 12 shows the application of the above algorithm for generating a reg-file( R) of size 768*72 
that has one R/W port and one R port. In the technology library, we have reg-files of different 
sizes with 2 R ports and 2 W ports. The reg-file that is finally realized is shown at the bottom of 
Figure 12. This example involves bit-width expansion, num-words expansion, port matching and 
address matching. 

6 Experiments and Results 

In order to evaluate the practicality of high-level library mapping, we performed some experiments 
with various designs derived from the HLSW92 benchmark suite [DuRa92]. The goal was to test 
our approach on designs of various sizes, and that encompass different sets of components so as 
to exercise the major component types in the GENUS component set. In our preliminary set of 
experiments, the designs varied in complexity from a few hundred gates to a couple of thousand 
gates. We chose these designs so as to cover different GENUS component classes that have varying 
attributes. The mapping experiments were performed with respect to two different technology 
libraries: the VTI Datapath Compiler[VTI91] and the Toshiba Gate Array library [Tosh90]. We 
chose these libraries since they had published gate counts for their data.book components, thereby 
allowing us to compare the effectiveness of mappings for different designs. 

6.1 Example Designs 

We considered RT-level designs from different categories such as processors, DSP and interface 
circuits. In particular, we considered the following designs: 
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Get the specification 
of required reg-file(R) 

1 
Get the specification 
of reg~files in TS lib 

1 
Find the closest reg-
file(T) in TS lib 
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Generate required 
size reg-file 

I 
Port mapping 

1 
Address mapping 

1 
Clock mapping 

I 
Handle remaining 
ports 

I 
Return generated 
reg-file 

Figure 11: Flowchart for Reg-file mapping 
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Generic Reg-file(R) Cascade RAM(T) 

AO 
10 

A1 

00 
768. 72 

CRWO 
CRO 01 

Ad in Bdin 

A Ad out 

B Bdout 
Bwr AOe 

Awr Boe 

#bits: 72 #words: 768 #bits: 36 
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#words: 512 or 256 
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10addr(1 .. 9) 

1(0 .. 35) 

CRWO 

(a) 

00(0 .. 71) 

Adin Bdin ":. .. 
Adout 

512x36 
A 

Bdout 

Awr Bwr Aoe Boe ~ ~ 

(b) 

Oaddr(O) 

--------- Oaddr(1 .. 9) 

---- 10addr(1 .. 9) 
~-------...&-~ Bdin Adin 

Ad out 

512x36 
1(36 .. 71) A 

Bdout 

Awr Bwr Aoe Boe 

CRO ~----1------e-+---+---+------+---~ 

IOaddr(O) 
Oaddr(2 .. 9) 
10addr(2 .. 9) 

1(0 .. 35) ---Ill A 

Adin Bdin 

'-----tt--1-----------e>--oQ--Oaddr(O) 

-------- Oaddr(2 .. 9) 
---- 10addr(2 .. 9) 

~...&-----"--~ Bdin Adin 

Adout 1-.... -'''-1 

256x36 256x36 
Al---• 1(36 .. 71) 

IOaddr(O) -----"l~~.J 

01(0 .. 71) 

(c) 

Figure 12: An example for Reg-file mapping: (a) Required reg-file(R) (b) TS reg-file(T) ( c) Realized 
reg-file 
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The AM2901 Microprocessor The AM2901 is a four-bit microprocessor slice which can be used 
in CPUs, peripheral controllers, and programmable microprocessors. The device, as shown 
in the block diagram (Figure 13), consists of a 16-word by 4-bit two-port RAM, a high­
speed ALU, and the associated shifting, decoding and multiplexing circuitry. The nine-bit 
microinstruction word is organized into three groups of three bits each and selects the ALU 
source operands, the ALU function, and the ALU destination register. Further details can be 
found in [Am2901]. 

A add~ 

Badd~ 

Data In ----. 

RAM shift 

16X4 RAM 

A B 

B 0 

ALU Data Source 
Selector 

8-function ALU 

F 

Output data selector 

Data Out 

j_ 
18-16 15-13 12-10 

Deslinallon ALU ALU 

Q control Function Source 

Microinstruction Decode 

l 

Figure 13: Block diagram of the Am2901 microprocessor 

The AM2910 Microprogram Controller The AM2910 is a 12-bit microprogram address se­
quencer intended for controlling the sequence of execution of microinstructions stored in 
microprogram memory. Figure 14 shows the block diagram of AM2910. It consists of a last­
in, first-out stack of depth 5. The multiplexer selects the next address from these sources: 
direct data input, top of stack, counter and microprogram counter. The next address could 
be loaded to the microprogram counter unmodified or after being incremented. The device 
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provides 16 instructions that select the address of the next microinstruction to be executed. 
The output is tri-state buffered. Further details can be found in [Am2910]. 

D 
_1 

_t_ 

Counter Stack Pointer 

I 
.... 
0 
t5 -- 5x12 Stack Q) --Q5 
"'C 

I e 
Q) 

N I 
_l ~ l~ __! I 

\ Mux 7 mPC 

• I 
Increment or 

Control 
j 

Logic ~ yTristate Buffer 

y 

Figure 14: Block diagram of the Am2910 microprogram sequencer 

The Serial Receiving and Transmitting (SRT) Interface The SRT interface is used for se­
rial communication between a CPU and its peripheral devices. The main functions of the SRT 
are to transmit and receive serial data. When transmitting, the parallel data is converted into 
a serial stream and transmitted serially. When receiving, the data stream is received serially 
and converted into a parallel format. 

Figure 15 shows the block diagram of the SRT interface. The core of the circuit consists of 
four registers: Control register( CW), Status register( STAT), Transmission shift register( tran­
buffer), and Receiving shift register( rec-buffer). Besides these registers, it has some control 
logic that handles the handshake protocol with the CPU and the peripheral devices. Further 
details can be found in [Li1993]. 
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Figure 15: Block diagram of SRT interface 
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The Circular Buffer( CB) interface The CB interface is used between a DSP( digital signal 
processor) and a host CPU. The main function of the CB is to transfer data between the 
DSP and the host. The data transfer consists of two steps. First, the data to be transferred 
is stored in the circular buffer. Next, the stored data is then read by the recipient (DSP or 
the host CPU). 

Figure 16 shows the block diagram of the CB interface. It consists of a 8-word by 32-bit 
FIFO with two address pointers: head-pointer and tail-pointer. The FIFO can be accessed 
per byte. Besides the FIFO, we have a status register ( circ-status) and some logic to handle the 
handshake protocol between the host and the DSP. Further details can be found in [Li1993). 

6.2 Experiments and Analysis 

In our experiments, we designed each of these circuits using three different paths, as summarized 
by the results in Figure 17. First, we designed the circuit using only generic components from 
the GENUS library (I). Then we designed the same circuit using TS library components only 
(II). Finally, we took the design with GENUS components and mapped each of these generic 
components to the TS library components (III). The goal was to examine the 'penalty incurred 
by designing with a generic component library, followed by technology mapping, as opposed to 
directly implementing the designs with TS-components. Detailed designs for each of these circuits 
are presented in Appendix C. 

For each of these designs, we calculated the total gate count. For a GENUS library component, 
we used the component's boolean equations for calculating the gate count measured in terms of the 
total number of 2-input AND, 2-input OR and NOT gates. For the technology libraries, a gate is 
equivalent to the layout area of 4-transistors. 

Figure 17 tabulates the gate-counts for various designs across different libraries. For each 
design and each technology library, we present the gate-count for the three methodologies (I, II, 
III). Also, we present the percentage difference (in terms of the gate-count) between implementing 
a component in the technology library (II) and mapping the GENUS component design to the 
technology library (III). This percentage gives a measure of how much overhead is incurred by 
using generic components from GENUS. 

In Figure 17, we observe that the percentage difference between the two design methodologies 
(II and III) vary from 0.00% to 12.533. For the SRT interface, the two designs (II and III) are 
very close in gate-count. This is because the SRT circuit is fairly simple and primarily uses lower­
level components such as logic gates and flip-flops that have good coverage in technology libraries. 
The lack of complex RT components enables a very simple and effective mapping with a resulting 
overhead that is very low. 

On the other hand, consider the mapping of the 2901 microprocessor and the CB interface to the 
Toshiba gate array library. There is a significant difference in gate-counts for the two methodologies 
(II and III). These designs use higher-level components such as ALUs and register-files which have 
a larger mismatch with respect to the technology library components. 

Based on these preliminary experiments, we observe that not much penalty (generally :::; 103) 
is incurred in using generic components first and then performing high level library mapping. 
This supports our hypothesis that high-level mapping is feasible and practical for the designs we 
examined. 
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Design GENUS VTI Datapath Toshiba Gate Array 
Library Using VTI GENUS UsingTGA GENUS (I) Comps Mapping %over- Comps Mapping %over-

Name Components (II) (Ill) head (II) (Ill) head 
#(Dff) #(gate) #(gate) #(gate) #(gate) #(gate) 

Regfile 72 248 134 134 0 1225 1225 0 
ALU 215 100 100 0 84 84 0 
ALU glue logic 22 10 54 444 21 37 76.2 

2901 a-register 8 35 28 28 0 38 38 0 
Muxes 104 80 80 0 117 117 0 
Mux glue logic 22 15 15 0 14 103 635.7 
Buffer 32 24 24 0 24 24 0 

Total 80 678 391 435 11.25 1523 1628 6.89 

Register 41 244 369 36 0 388 388 0 
Counter 8 38 184 184 0 118 118 0 

SRT Buffer 96 96 96 0 64 64 0 
Decoder 6 6 6 0 6 6 0 
Control FF 4 36 36 0 36 36 0 
Control gales 30 44 56 27.3 62 62 0 

Total 53 414 735 747 1.63 674 674 0.00 

Regfile 256 534 624 624 0 1032 1032 0 
Regfile glue logic 24 96 251 251 0 20 250 1150 
Counter 10 44 230 230 0 156 156 0 
Comparator 48 40 42 5 28 28 0 

CB Decode/encode 6 6 6 0 0 18 -
Buffer 192 144 144 0 144 144 0 
Register 32 128 288 288 0 304 304 0 
Mux 208 176 176 0 208 208 0 
Control FF 5 45 45 0 72 72 0 
Control gates 15 28 30 7.1 15 15 0 

Total 327 1271 1832 1836 0.22 1979 2227 12.53 

Regfile 60 192 192 0 776 776 0 
Refile glue logic 35 27 52 92.59 5 5 0 

Stack-pointer 3 46 73 73 0 73 73 0 
Micro PC 12 37 84 96 14.28 84 111 32.14 

2910 lncrementer 228 60 60 0 135 135 0 
Counter 12 163 276 276 0 207 207 0 
Mux 84 60 60 0 108 110 1.85 

Zero-detector 12 24 24 0 44 44 0 

Buffer 96 36 36 0 96 96 0 

Total 87 701 832 869 4.44 1528 1557 1.89 

Figure 17: Comparison of different designs(gate count) 
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7 Summary 

In this paper, we performed an evaluative study of different RT component libraries. In particu­
lar, we motivated the need for generic RT component libraries, defined the high-level technology 
mapping problem, surveyed the relative coverage of the GENUS generic RT library with respect 
to some technology libraries and illustrated the high-level technology mapping problem for two RT 
components: ALU and Register-File. Finally, we performed some experiments on some high-level 
synthesis benchmarks to study the penalty incurred by using generic RT components followed by 
technology mapping, versus directly implementing the designs in the technology libraries: Our pre­
liminary results a.re encouraging, indeed even promising, since the maximum overhead we observed 
was in the range of 10% for area.. 

We believe that the benefits of using a. standard component set such as GENUS greatly outweigh 
the small penalty that may be incurred during technology mapping to target libraries. We have 
several directions to pursue for future work. One line of work will investigate the penalty incurred 
for other design criteria (e.g., delay), and will study the effectiveness of this high-level technology 
mapping approach across a broader range of design examples . .Another line of work will investigate 
efficient techniques for high-level technology mapping of RT components. We can then attempt to 
integrate different technology mapping schemes (i.e., functional mapping, functional decomposition 
and high-level mapping) and compare the effectiveness of these schemes across a range of designs. 
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Inverting type is missing 

SHIFTER VDP3SHF001 Up/down shifter Binary control 

Fixed set of fns 

Extra enable signal 

SELECTOR 

GATES(GNOT, GANO, 2-input gates(NOT, AND, Fixed num-inputs Gates not, and2, and3, nand2, Limited num-inputs 
GOR, GNOR, GANO, NANO, OR, NOR, XOR, nand3, or2. or3, nor2. 
GXOR, GXNOR, AND, XNOR, ORAND, New type of gates nor3, xor2, xnor2, New type of gates 
NANO, OR, NOR, XOR, AN DOR) andnor,ornand 
XNOR) 



Combinational components 

GENUS Toshiba gate array 

Generator Generator Features Differences 

"rj 
oq" 
.::: 
>--; 

DECODE/ENCODE 2x4, 3x8, 4x10, 3x8 with Specitic bit-width address latch 
('!> 

!'.'-' 10x4, 8x3 priority encoder Function mismatch 
....... 

Cl 
('!> 

DIV 
~ 
('!> 
>--; 
~ LU 

c...:> .,.... 
!'.'-' 0 

>--; 
I 

~-
MULT XMPYB 8-bit multiplier Port mismatch 

Cll 
('!> XMPY16 16-bit multiplier Specitic bit-width 
~ 
0 Mode control lines 
s 

"O Only one type 
~ 
>--; ...... 
Cll 
0 MUX Several bit-width and Limited bit-width 
~ num-input 

Some with latch, inverted Limited num-input output 
Umited inverted output 

SHIFTER 

SELECTOR 

GATES Gates Various gates Limited input-width 

Limited num-inputs 



Sequential components 

GENUS VTI compiler Cascade compiler 

Generator Generator Features Differences Generator Features Differences 

"rj 
c]q" 
p 
>-j 
C1l 

~ 

COUNTER VDP3CNT001 Up/down synchronous Fixed type Ripple counter up, down, up/down counte Limited fns and options 
counter with load and 
clear-moderate speed Port mismatch Synchronous Very close to GENUS 

counter counter 
~ VDP5CNT001 Slow-speed 

0 
C1l 
~ 

FIFO FIFO #words: 4-128 Extra ports 

C1l 
>-j #bits: 1-128 

"' c..:> <""+-
c..:> 0 

>-j MEMORY CRAM01 Max #bits = 16,384 Port mismatch Single port RAM 1 R/W port with enable Size restriction 
I 

~-rn 
One RNi/ port with Restriction in size High Speed RAM Port mismatch 
enables 

C1l 
(") 

0 
CRAM02 High-speed CRAM01 Dual port RAM 2 R/W port with enable Limited number of ports 

s re CRAM03 High-performance, low Multi-port RAM 1-5 read ports with 
power enable 

"' >-j ...... 
rn 
0 

CROM01 ROM compiler 1-3 write ports with 
enable 

~ High speed ROM #words:64K 

#bits: 64 

REG FILE VDPRGF001 2 read ports, 1 write port Port mismatch Register file 1-2 read ports, enable Limited size 

Partial words could be Limited size 1 write port with enable 
read out 

REGISTER Various DFF and latch Limited set of functions and DFF, JKFF, LATCH, Limited type and Ins 
options 

Muxed input Shift register 

STACK 



Sequential Compononents 

GENUS Toshiba gate array 

Generator Generator Features Differences 

"rj 
COUNTER Various specKic bit-width Fixed bit-width counter ...... 

()q 
~ 

Fixed type 
""l 
Cl) 

~ 
CJ.j 

FIFO XFlxxyy #words: 16, 32, 64 Limited num-words, 
input-width 

0 #bits: 4,5,6,7,..36 port mismatch 
Cl) 

::; Semantic mismatch 
Cl) 
""l 
~ w .,.... 

~ 0 
""l 

MEMORY RAM-C Limited size Limited size 
I 

~-
00 

Single R/W port with write 
enable 

Cl) 

C"l 
Enable(expnadable) 

0 s RAM-E Two read ports 
'd 
~ 
""l 

One write port with enable 
...... 
00 
0 ROM-A/ROM-8 single port ROM 
::; 

REGFILE XF670 4x4 regfile with 3-state Specific size 
output 

Tristate output 

Limited bit-width and fns 

Tristate output 

REGISTER Variously sized OFF, JKFF 
with dKferent fns 

Muxedinput 

Binary control 

STACK 



Miscellaneous components 

"rj 
~-

GENUS VTI compiler Cascade compiler 

~ 
>-; 
('[) Generator Generator Features Differences Generator Features Differences 
tv 

""" BUFFER Various buffers(inverting Buffer 1 x to 20x range 
0 
('[) 

~ 

/non-inverting) of diff 
inverting/non-inverting strength 

('[) 
>-; 

"' BUS w rl-

CJ"< 0 
>-; 

' 
~ CLOCK GEN 
u;· 
('[) 

n CONCAT 
0 
8 

'O DELAY 

"' :::::. 
w 
0 EXTRACT 
~ 

ONESHOT 

WIREDOR 

PORT 



Miscellaneous components 

1-rj GENUS Toshiba gate array 
...... 

()q 
r= 
"'i 
('!) Generator Generator Features Differences 
I'..:> 
CJl BUFFER Lots of buffers 

Cl 
('!) 

~ 
BUS 

('!) 
"'i 

I;;.:> 
~ 
o+ 

°' 0 
"'i 

CLOCKGEN OSCXc Oscillator 

I 

~ CONCAT ...... 
00 
('!) 

('") DELAY YDLY1X Specnic delay value 
0 s YDLY2X Delay buffer 

"O 
~ YDLY3X 
"'i ...... 
00 
0 
~ 

EXTRACT 

ONESHOT 

WIRE DOR 

PORT 



B Component mapping details 

B.1 High-level mapping for ALU 

An ALU is a multifunction unit with multiple control lines and multiple status signals. A specific 
ALU is characterized by assigning values to these parameters: bit-width, set-of-functions, control­
lines, status signals, port specification, data representation. This section describes each of the steps 
involved for the mapping of an ALU (Figure 9). 

B.1.1 ALU specification 

Bit-width Theoretically, the input and output data could have any positive integer value as bit­
width. 

Set-of-functions An ALU could possibly perform any subset of the functions mentioned in Figure 
26. 

Control lines The mapping of control lines to the functions is specified in tabular form. For each 
function, we have a distinct set of values on the control lines. 

Port Specification An ALU has two data inputs, control lines( including the carry input), a data 
output and status signal outputs. 

Data representation In an ALU, input and output data could be in any of the following forms: 
sign magnitude, l's complement, 2's complement. 

B.1.2 Bit-width mapping 

Given the bit-width of the required ALU(R) and the bit-width of the TS ALU(T), we first decide if 
the bit-width(R) is mappable on to the bit-width(T). If the bit-width(R) > bit-width(T), then R 
can be implemented by functional decomposition and is thus not considered an option for high-level 
technology mapping; we thus return a false value. Otherwise, we map the data. inputs and outputs 
of R to the most _significant bits of the corresponding ports of R and disable the rest of bits by 
assigning 'O' to them (Figure 27). 

B.1.3 Function mapping 

For an ALU, the task of function mapping is the most involved step. Let us assume that T and R 
are the TS ALU and the required ALU respectively. Let TX, TY, TCI, TCO and TF be the two 
data. inputs, ca.rryin, carryout and data output respectively. Similarly, RX, RY, RCI, RCO and RF 
be two data inputs, carryin, carryout and data output respectively for R. 

Based on the function types, we classify the function mapping into three categories: 

Arithmetic functions To realize an arithmetic function, we assume that the TS ALU(T), at the 
minimum, can perform the 'ADD' function. We provide the heuristics to add extra logic so 
that the basic adder could be used to perform other arithmetic functions. Figure 28 shows 
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Arithmetic Logic Comparison 

Function 
Operation 

Function 
Operation 

Function 
Operation name name name 

Cl=O Cl= 1 

DEC A minus 1 A ZERO 0 EQ A=B 

AB minus 1 AB AND AB NEQ A ¥B 

AB minus 1 AB RINHI AB LT A<B 

minus 1 zero LID A LEQ A<=B 

Aplus(A+B) A plus (A+B) plus 1 LINH! AB GT A>B 

AB plus (A+B) AB plus (A+B) plus 1 RID B GEQ A>=B 

SUB A minus B minus 1 A minus B XOR AB+AB 

A+B (A+s) plus 1 OR A+B 

A plus (A+B) A plus (A+B) plus 1 NOR A+B 

ADD A plus B A plus B plus 1 XNOR AB+AS° 

AB plus (A+B) AB plus (A+B) plus 1 RNOT 8 
A+B (A+B) plus 1 RIMPL A+B 

A plus A A plus A plus 1 LNOT A 

AB plus A AB plus A plus 1 LIMPL A+B 

AB plus A AB plus A plus 1 NANO AB 

INC A A plus 1 ONE 1 

LSUB B minus A minus 1 BminusA ABxorCI 

(A+B) xorCI 

(A+B) xorCI 

(A+B) xorCI 

Figure 26: Set of functions for an ALU 
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Cl 
TF[n] 

•• • • •• 

0 

•• • • •• 
T T1T 
3333 
I I + 
"'- -

RF[m] 

RY[m] 

3 
"'-

Figure 27: Bit-width mapping for an ALU 

the relationship between the ports of R and T for important arithmetic functions. For all 
those functions that are not available in T and are required, we add the glue logic defined by 
the table in Figure 28. 

Logic functions For the logic functions missing in T, we generate a block that implements these 
logic functions. The output of the this block is muxed with the original output of the ALU 
T, to get the final output(Figure 29). 

Comparison functions An ALU could possibly perform the following six comparison functions: 
EQ, NEQ, LT, GEQ, GT, GEQ. If the TS ALU T, can perform any two of these in parallel, 
that are not complement of each other, the rest could be generated with very little logic. One 
such example is illustrated in Figure 30. 

B .1.4 Control mapping 

As mentioned before, the mapping between: control lines and the functions they represent, is spec­
ified with a table, for both the ALU s R and T. We can use the standard Karna ugh map [Mano88] 
method to transform the table of R to the table of T. 

B.1.5 Status signal mapping 

We could generate these status signal with little logic, if they are not already not present in T. 

SIGN SIGN is the most significant bit of the output and hence could be easily extracted. 
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~ p TX TY TCI RF RCO 

SUB RX RY RGI TF TGO 

INC RX RY RGI TF TGO 

DEC RX 0 RGI TF TGO 

ADD RX RY RGI TF TGO 

-LSUB RX RY RGI TF TGO 

Figure 28: Generating arithmetic functions frorn an adder 

IO 11 

TS ALU 

00 

Figure 29: Realizing extra logic functions in an ALU 
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EQ ..,._ ______ EQ 

LT LT 
">0-1----11-- NEQ 

TS ALU ::x>t--1-- GEQ 

.__ ___ +t.JI >t---LEQ 

GT 

Figure 30: Realizing comparison functions in ALU 

ZERO This signal specifies whether all the bits in the output are zero. This could be generated 
by a NO Ring all the bits of the data output together. 

If the other status signals such as Carryout (CO) and Overflow (OV) are not specified in T, but 
are specified in the generic component R, then we may incur a large overhead in generating these 
signals. 
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C Designing with different libraries 

In this appendix, we present the implementations of the example designs mentioned in section 6 
using different component libraries. Specifically, we illustrate implementation for four designs: 2901 
Microprocessor [Am2901], 2910 Microprogram Sequencer [Am2910], Serial Receiver and Transmit­
ter [Li1993], and Circular Buffer [Li1993]. For each design, we first generate the implementation 
with generic components from GENUS [Dutt88]. Then, we implement the same design using com­
ponents from two technology libraries: VTI Datapath Compiler [VTI91] and Toshiba Gate Array 
[Tosh90]. The shaded components in the figures that follow represent the extra or different compo­
nent that had to be used in following two different strategies: 1) implementing the design directly 
with the technology specific components, and 2) taking the implementation with GENUS compo­
nents and then mapping the generic components used in the design to TS components. In order to 
avoid visual clutter, we illustrate only the major components and the datapath routing. 
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IRO 
IR1 
IWO 

-- CRO 
-- CR1 
-- CRW 

00 

REG FILE 
(16x4) 

y 

TRISTATE(4) 

Tri-state Buffer 

.REGISTER(4) 

QReg 

Figure 31: Design of 2901 with GENUS components 
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VDP3RGF001 
(16X4) 

00 01 

llMllffl Additional Logic 

~ ~~~mw VDP3MUX002 

y 

VDP3TSB001(4) 

Tri-state Buffer 

(4) 

VDP3DFF001 

Q Reg 

Figure 32: Design of 2901 with VTI components 
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SR45(1) 
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Figure 33: Design of 2901 with Toshiba gate array components 
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Figure 34: Design of 2910 with GENUS components 

45 
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Stack Pointer 

IN UP._ 
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Figure 35: Design of 2910 with VTI components 
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Figure 36: Design of 2910 with Toshiba gate array components 
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Figure 37: Design of SRT with GENUS components 
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Figure 38: Design of SRT with VTI components 
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Figure 39: Design of SRT with Toshiba gate array components 
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Figure 40: Design of Circular Buffer with GENUS components 
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Figure 41: Design of Circular Buffer with VTI components 
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Figure 42: Design of Circular Buffer with Toshiba gate array components 
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