
UC Irvine
ICS Technical Reports

Title
An evaluative study of RT component libraries

Permalink
https://escholarship.org/uc/item/2wj635kt

Authors
Jha, Pradip K.
Dutt, Nikil D.
Gajski, Daniel D.

Publication Date
1993-03-31

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wj635kt
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

An Evaluative Study of RT Component Libraries_
~

Piradip K. Jha, Nikil D. Dutt and Daniel D. Gajski
c ::::--

Technical Report# 93-11
March 31, 1993

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425
Phone: (714) 856-8059
FAX: (714) 856-4056

Email: pradip@ics.uci.edu

z
/
0

Abstract

The system-level design process typically involves refining a design specification down to the
point where each of the system's components is described as a block diagram or netlist of abstract
Register-Transfer (RT) level components. Although no standard set of RT components seems to
exist across different design methodologies and backend technologies, on closer examination, we
see that there indeed does seem to be a universally accepted set of RT-components that are used
in the initial phase of design refinement, much before its implementation in a particular target
technology. In this report, we describe the need for such a standard RT component set, describe
such a parameterized library of standard (or generic) RT components, and evaluate its utility in
the system design process. We survey several backend technology libraries, and study the relative
coverage of the generic RT component library with respect to these target technology libraries. We
then describe the problem of high-level technology mapping, and illustrate this process for a few RT
components. Finally, we perform a set of experiments on the HLSW92 benchmarks to evaluate the
usefulness of generic RT component libraries. In particular, we compute the overhead incurred by
using a generic RT component library over directly using the technology-specific components for the
selected benchmark designs. Our preliminary results indicate that the penalty in using the generic
components is quite low (approximately 10%}, and is more than compensated by the advantages of
designing with a generic RT component library.

ii

Contents

1 Introduction

2 Generic RT Component Libraries and RT Technology Mapping

3 High-level Library Mapping

4 Generic Component Coverage

4.1 Coverage Across Different Technology Libraries

4.2 Coverage Across Different Parameters

4.3 Coverage Across Different Component Classes .

4.4 Components Not Present in GENUS

4.5 Summary

5 Component mapping

5.1 Canonical Component Representation

5.2 Priority functions

5.3 Mapping Algorithm and Heuristics

5.3.1 Component Mapping Algorithm for ALU

5.3.2 Component Mapping Algorithm for Register Files

6 Experiments and Results

6.1 Example Designs

6.2 Experiments and Analysis

7 Summary

8 Acknowledgements

A Generator-wise comparison

B Component mapping details

B.1 High-level mapping for ALU .

B .1.1 ALU specification

B.1.2 Bit-width mapping

iii

1

2

4

6

6

7

7

11

12

12

12

13

14

14

17

17

17

23

26

26

28

37

37

37

37

B.1.3 Function mapping 37

B.1.4 Control mapping 39

B.1.5 Status signal mapping 39

c Designing with different libraries 42

iv

List of Figures

1

2

3

4

5

6

7

8

9

Functional mapping of an ALU

Functional decomposition of an ALU

High-level library mapping of an ALU

Mixed level mapping: (a) Design level (b) Component level

Coverage of GENUS components across parameters

Coverage of GENUS components(combinational) ..

Coverage of GENUS components(sequential and miscellaneous)

Generators(features) not in GENUS library

Flowchart for mapping an ALU

10 An example for ALU mapping:(a) Required ALU(R) (b) TS ALU(T) (c) Realized

3

3

4

5

8

9

10

11

15

ALU 16

11 Flowchart for Reg-file mapping 18

12 An example for Reg-file mapping: (a) Required reg-file(R) (b) TS reg-file(T) (c)
Realized reg-file 19

13 Block diagram of the Am2901 microprocessor 20

14 Block diagram of the Am2910 microprogram sequencer 21

15 Block diagram of SRT interface 22

16 Block diagram of CB interface 24

17 Comparison of different designs(gate count) 25

18 Generator-wise comparison 29

19 Genera.tor-wise comparison 30

20 Generator-wise comparison 31

21 Generator-wise comparison 32

22 Genera.tor-wise comparison 33

23 Generator-wise comparison 34

24 Generator-wise comparison 35

25 Generator-wise comparison 36

26 Set of functions for an ALU 38

27 Bit-width mapping for an ALU 39

28 Generating arithmetic functions from an adder 40

v

29 Realizing extra logic functions in an ALU 40

30 Realizing comparison functions in ALU 41

31 Design of 2901 with GENUS components 42

32 Design of 2901 with VTI components 43

33 Design of 2901 with Toshiba gate array components 44

34 Design of 2910 with GENUS components 45

35 Design of 2910 with VTI components 46

36 Design of 2910 with Toshiba gate array components 47

37 Design of SRT with GENUS components 48

38 Design of SRT with VTI components 49

39 Design of SRT with Toshiba gate array components 50

40 Design of Circular Buffer with GENUS components 51

41 Design of Circular Buffer with VTI components 52

42 Design of Circular Buffer with Toshiba gate array components 53

Vl

1 Introduction

Present-day design methodologies involving schematic capture and simulation require the system
designer to partition, refine and specify a design as an interconnection of components drawn from a
vendor's library. These components can vary in their level of complexity from simple logic gates, to
sequential components such as counters and registers, to arithmetic blocks such as ALUs, and all
the way up to complex components such as CPU cores. However, the register-transfer (RT) level is
a common design entry point that is supported by most of the existing CAD tools on the market.
Furthermore, the RT-level has had a long history of use as a design entry point, as evidenced by
the frequent use of TTL databook component names by designers, as well as in digital system
design courses outlined in standard textbooks and taught at schools. We also note that most data
sheets for product specifications (either being designed, or after they have been designed) are often
composed of register-transfer schematics typically drawn up by system level designers.

Component sets and libraries play an important role in the context of synthesis; well defined
component sets at the input and output are critical for the successful realization of any synthesis
tool. We typically use generic components to specify the input or intermediate results of synthesis,
and map the design into components from a technology library [GDWL92]. For instance, logic
synthesis uses generic components such as simple logic gates (e.g., AND, OR, INVERT) at the input
and for intermediate synthesis steps, but the last step of logic synthesis involves technology mapping
of the generic design into components drawn from a technology library (e.g., complex CMOS gates,
or a different logic gate family such as NOR-NOR). Generic component sets facilitate technology
independence, and allow the capture of a design in a standard form that can be retargetted to
different libraries (or technologies) without changing the input description. Of course, technology
independence needs to be coupled with good technology mapping strategies that can effectively
map generic designs to target library components with low overhead.

Although RT-level components are commonly used in specifying, documenting, refining and
synthesizing designs, there doesn't seem to exist a standardized set of RT components that can
facilitate unambiguous documentation, communication and design use. This is in contrast to the
logic-level, where the designs can be expressed as netlists of well-understood standard components
such as the equivalent 2-input NAND or NOR gate. The lack of a standardized RT-level component
set is a serious roadblock to elevating the design process beyond the RT-level and will affect the
capability of effectively synthesizing large-scale system designs in an efficient manner.

Another important requirement for system-level design is the capability of specifying the design
once, but using this specification to predict technology-specific design characteristics (e.g., area,
speed, power) for different target implementations. System-level designers would like to perform
early design space exploration by delaying binding of system-level components to a particular
technology or implementation, but need the capability of rapid technology projection for different
target libraries. The concepts of delayed binding, technology projection and effective estimation
for system-level design cannot be performed without the support of a well defined component set
and associated tools for technology mapping and prediction.

With increasing interest in high-level synthesis and higher-level design methods, the need has
thus evolved for a well defined generic RT component set, along with schemes for mapping these
generic RT components to technology-specific components at different levels. This report describes
a generic RT component library GENUS and provides an evaluative study of this generic RT library
with respect to different target technology libraries. We also introduce the problem of high-level

1

technology mapping, where generic RT components are mapped to technology library components
of equal or similar complexity. High-level technology mapping is useful if the target library contains
highly optimized complex RT blocks that can be used directly in a system-level design. The use of
such higher-level, optimized components may yield a better design than if each generic component
was decomposed to lower-level technology primitives. High-level technology mapping thus requires
both a good coverage of the technology library by the generic component set, as well as well defined
cost functions to guide the mapping process. We illustrate this process of high-level technology
mapping on some high-level synthesis benchmarks and attempt to measure the penalty incurred
by using generic RT components during design refinement.

The report is organized as follows. Section 2 describes different approaches for implementing
generic components in technology-specific designs, while Section 3 briefly defines the overall problem
of high-level library mapping. In Section 4, we survey the coverage of generic components in the
GENUS generic library relative to different backend technology libraries. Section 5 illustrates the
task of high-level component mapping with two examples. Section 6 describes the experiments
we performed to evaluate the effectiveness and the overhead incurred by specifying designs using
generic RT component libraries and the high-level library mapping approach. Section 7 concludes
with a summary and identification of the open problems.

2 Generic RT Component Libraries and RT Technology Map-.
ping

GENUS [Dutt88] [Dutt91] is a parameterized generic RT component library developed a.t U.C.
Irvine for use with simulation and high-level synthesis tools. A design that is initially specified in
a hardware description language such as VHDL can be implemented with RT components drawn
from the GENUS library, either through ma1mal design refinement or using high-level synthesis tools
such as state schedulers, component allocators, component and connectivity binders [LiGa88].

After the design has been specified as an interconnection of generic RT components, we have
to map the design to a layout technology so as to satisfy design constraints such as area, time, etc.
Several paths exist for this technology mapping phase. This section outlines each of these paths
for technology mapping.

A generic component in the GENUS library can be mapped to technology specific components
at differen,t levels, depending on the complexity of the building blocks used. We identify four
approaches to component mapping based on different levels of building blocks used to realize a
generic component:

Functional mapping At the lowest level, a generic component's functionality can be described
using Boolean equations for the transformation of the inputs into outputs. These equations
can then be mapped to low-level technology-specific components such as gates, flip-flops
and la.tches [BRSW87] [Keut87] [VaGa88]. For example (Figure 1), an ALU can be described
with Boolean equations for each output(OO, OCOUT and OZERO) that use the inputs IO, Il,
ICIN a.nd C. Each of these equations can be mapped to components from a logic library (e.g.,
N 0 R gates). This type of functional mapping is also commonly called logic-level technology
mapping.

Functional decomposition At a slightly higher level, a generic component can be mapped to

2

IO 11 00[0] = 10[0] /\ 11[0];

00[1] = 10[1] /\ 11 [1];

v ICIN OCOUT •• ~ ~

OZERO =·

00 OCOUT=

Figure 1: Functional mapping of an ALU

MSI-level blocks from a technology library. The given generic component is functionally
and/ or structurally decomposed into smaller building blocks. This decomposition is orga­
nized hierarchically and can be represented as a tree in which the generic component is at
the root of the tree. Leaves of the tree consist of the MSI/SSI level blocks from the tech­
nology library, while intermediate nodes represent hierarchically decomposed components of
the design. DTAS [Kipp91] follows this approach. Figure 2 shows a decomposition tree for
a generic ALU. This ALU is realized by composing the leaf cell blocks (such as 4-bit adders,
FAs, MUX2, gates) from a technology-specific component library.

IO

ICIN

11

OCOUT

00

..
ALU

FA 4-bit gates
adder

Figure 2: Functional decomposition of an ALU

High-level library mapping At the highest level, an abstract component can be mapped directly
to a library-specific component at the same level. In this approach, a generic ALU will be
mapped to a technology-specific(TS) ALU, a Reg-file to a TS Reg-file, and so on. Extra
logic may have to be added around the TS component. when the functionality of the TS
component does not exactly match that of the generic component. Figure 3 illustrates the
high-level mapping for an ALU.

General Case In the general case, the mapping of a generic component to a TS component may

3

ICIN

10 11

OCOUT

00

_ ~ ICIN

c

10 11

Figure 3: High-level library mapping of an ALU

glue logic

COUT
ZERO

require a combination of the three approaches mentioned above. This mapping approach could
be used at different levels of granularity as shown in Figure 4. At the design level, different
components of the structural netlist of a design could be mapped using different levels of
mapping. At the RT-component level, a particular component itself could be mapped to the
library components using different levels of mapping. For example, the arithmetic functions
of an ALU could be mapped on to an MSI component ADDER, whereas the logic functions
could be expressed as a set of Boolean equations and then mapped to TS gates.

In this report, we concentrate on the third approach, that is, High-level library mapping.

3 High-level Library Mapping

High-level library mapping, as described in the previous section, refers to the mapping of a generic
component to a TS component of similar complexity. It involves finding a TS component with
similar functionality that may need additional logic to account for the differences. In order to do
an effective job of high-level library mapping, we need to perform the following steps.

The first task is to survey the set of the components in the generic library and the corresponding
set of components available in the technology library. This survey will highlight the coverage of
the generic component set with respect to different technology libraries. Hence we need to examine
several back-end design methodologies (e.g., synthesis tools, custom design). After tabulating the
list of components available in various technology libraries, we need to compare each component's
semantics, functions performed, port names, size, and other attributes. This survey of component
coverage is a prerequisite for high-level mapping, since it identifies feasible technology-specific
candidat~s for the high-level mapping approach. The issue of relative coverage of component
libraries can be translated into the following questions:

1. What percentage of the generic components have corresponding TS components onto which
they could be mapped with low overhead?

2. Given a generic component and a similar TS component, in what aspects and how much do
they differ?

4

Reg-file

MUX •

(a)

IO 11

OCOUT AU
• t

00 ~
(b)

ALU

LU

t
00= IOAl1;

High-level
library mapping

Functional
mapping

Functional
decomposition

MUX

t
00=CIOA10;

Figure 4: Mixed level mapping: (a) Design level (b) Component level

5

3. Is high-level mapping feasible? If the set of generic components does not effectively cover the
TS library, then the high-level mapping approach may not be useful.

Once we have the information on the generic component and TS component set, we need to
specify a mapping strategy, consisting of a set of mapping heuristics for each class of component
generator. This strategy will require the capture of relevant information describing both the generic
component to be mapped and a set of TS components that are candidates for the mapping. A
specific algorithm then needs to be developed to find the TS component with the best match and,
if necessary, to add extra logic to the TS component selected so that the resultant design mimics
the functionality of the given generic component.

Finally, we need to evaluate the resultant design. We need to define a cost function that
quantifies the total cost involved in realizing generic components. The cost function measures the
effectiveness of high-level library mapping and helps us evaluate the practicality of this approach
as well as its merit relative to the other techniques such as functional decomposition and functional
mapping.

4 Generic Component Coverage

In this section, we present the results of our survey of library coverage with respect to different TS
libraries that use varying layout styles for component implementation. In particular, we examined
the following layout styles:

Standard cell In standard cell implementation cells are placed in pitchmatched rows with between­
channel routing. It is typically used for implementing random-logic.

Bitslice In the bitslice method, for each component single-bit design is created and an n-bit
component is realized by replicating the single-bit design n times.

Gate array In the gate array method, the component's logic is realized by specifying the connec­
tivity of a prespecified array of gates.

Field programmable gate array(FPGA) Except for the fact that the connectivity is pro­
grammable in the field, this is similar to the gate array technology.

The first two layout styles typically result in more compact designs at the cost of longer design
cycles, while the gate array and the FPGA styles provide a quick method for prototyping designs.

4.1 Coverage Across Different Technology Libraries

We considered the following technology libraries in our survey:

VTI Datapath Compiler[VTI91] This compiler generates components parametrized by bit­
width. It can generate gate-level design or full-custom compiled layout.

Cascade Digital Library[Casc92] Cascade's EPOCH digital library also defines a compiler that
implements parametrized components. From the parametrized specification of a component,
a standard cell or bitslice implementation could be generated.

6

Toshiba Gate Array Library[Tosh90] The Toshiba gate array library contains a specific set of
non-parametrized components.

XBLOX[XBL092] Xilinx provides a set of RT-components that are parametrized by bit-width.
These components can be directly mapped into Xilinx's FPGA library.

4.2 Coverage Across Different Parameters

Figure 5 pictorially illustrates the coverage of GENUS components across various parameters rela­
tive to different TS libraries. Please refer to [Dutt88] for the set of different parameters associated
with various components. Each column in Figure 5 represents a parameter and each row shows a
TS library. We examined the following parameters:

Set of components With respect to the set of components, VTI and Cascade have fairly good
coverage, followed by Toshiba gate array.

Size of a component Since the VTI and Cascade libraries are parametrized by bit-width, GENUS
covers these libraries fairly well in terms of the size of components. On the other hand, the
Toshiba library has a fixed set of components and hence results in poor coverage with respect
to component size.

Set of functions Although most of the components in these libraries do provide many of the
functions mentioned in the GENUS library, TS components can perform specific subsets of
these functions. They do not support the flexibility of GENUS where a multi-function unit
(e.g., an ALU) can perform any subset of functions out of the full set of the functions for that
generator.

Semantics Most of the components in the TS libraries closely follow the semantics with respect
to the behavior of the GENUS components.

Style and Type GENUS provides an extensive set of styles and types for each generator. The
TS libraries we studied did not cover all these types and styles.

Port names GENUS follows a specific convention in selecting the set of input-output ports and
their names." Similarly, each TS library has its own port naming convention. This results in
a mismatch between the port names of TS library components and GENUS components.

4.3 Coverage Across Different Component Classes

While Figure 5 gives an overall indication of the coverage across different technology, libraries, it
is useful to examine the relative coverage with respect to each component type. Figures 6 and 7
illustrate the relative coverage across different component classes. [Dutt88] contains a detailed list
of the set of GENUS components and their classes. We can broadly classify the RT components
into the following classes:

Combinational components These include primitive gates, shifters and arithmetic/logic func­
tions. With respect to combinational components, Cascade's library is closest to GENUS,
followed by the VTI compiler, and finally the Toshiba gate array library.

7

"'rj
oq"
~
1-j
('[)

01

C"::i
0
<
('[)
1-j

&;
('[)

0
H,

0
M z
q
r:n

00
8 s
"d
0
~
('[)
~
<"+

"' ..,
("')
1-j

0
"' "' "d
~

~
('[)
<"+
('[)
1-j

"'

VTI
datapath

Cascade
datapath

Toshiba
gate array

Missing in
GENUS

Missing in
T Library

0 GENUS

Set of
Components Size Set of

Functions

0
0

9)00
Zero-detector Fn: A or B xor Ci

Comparator 57-bit adder Fn:<=

Technology library

Semantics Style/Type

(j

(j

(j
CSA Adder

Port
Matching

Binary control

Unary control

VTI
data path

Cascade
data path

Toshiba
gate array

Missing in
GENUS

Missing in
T Library

0 GENUS

ALU Related
fns

(ALU, ADDSUB,
LU,
COMPARATOR)

Shifting fns

(BARRELSHIFTER.
SHIFTER)

Fn: A or 8 xor Ci Fn: Funnel

Fn: GEO Shifter

• Technology library

Primitive fns Complexfns

(GATES) (MULT)

AN DOR Fn: Mult/add

Others

(MUX, SELECTOR,
DECODE, ENCODE)

ENCODE

Figure 6: Coverage of GENUS components(combinational)

9

0 GENUS

VTI
data path

Cascade
data path

Toshiba
gate array

Missing in
GENUS

Missing in
T Library

Shift register,
Counter

Limited styles

• Technology library

Sequential components Miscellaneous
components

Memory,
Reg-file

Limited ports

Stack, FIFO (Buffer, Bus,
Concat,)

00
0

Diff Semantics Diff Semantics

Stack Con cat

Figure 7: Coverage of GENUS components(sequential and miscellaneous)

10

Sequential components This class contains all storage elements such as registers, counters, mem­
ories, etc. With respect to this class, VTI and Cascade provides pretty good coverage followed
by the Toshiba gate array library.

Miscellaneous components This class contains all the miscellaneous components in GENUS.
Several components in this class are "virtual" components that are present for simplifying
synthesis, and may have no meaning in hardware (e.g., the bit-manipulation operations concat
and extract). As a result, these components show poor coverage with respect to the technology
libraries.

Appendix A provides a detailed comparison across different component generators.

4.4 Components Not Present in GENUS

GENUS does not cover all the components present in the TS libraries. Some of these components
are completely missing in GENUS, whereas others may have extra features that are not available
in a corresponding GENUS component. Figure 8 lists these components. Future extensions of
GENUS may need to incorporate some of these components or features if they are justified by their
frequency of use.

Specific features

Generators VTI compiler Cacade compiler Toshiba gate array

ALU Fn: A+B Lots of arithologic Lots of arithologic
functions functions

Zero-detector available available

Mult Different bit-width Mult-add In available for the two inputs

Complementer 2's complement

Gates complex gates complex gates complex gates

Lookahead available carry generator

Bilbo available

Barrel-shifter In: funnel

Figure 8: Generators(features) not in GENUS library

11

4.5 Summary

In summary, TS libraries that are parametrized(Cascade and VTI) provide fairly good coverage for
GENUS components. The Toshiba gate array library provides components of specific sizes; com­
ponents of other sizes have to be built from the available components. The other major difference
was the availability of a specific set of functions in realm of multifunction components. We also
observed a common problem with mismatches in the port names.

5 Component mapping

From the previous section, we observed that generic components cover the technology libraries we
surveyed fairly well; this establishes the feasibility of the high-level library mapping approach. In
this section we define the actual mapping strategy.

Given a generic component specification, the task of high-level component mapping is the prob­
lem of selecting a TS component that is "closest" to a generic component. The closeness function
can be formulated to require the addition of minimal logic to the TS component to realize the
generic component; the "closeness" is thus defined in terms of some cost function that encourages
functional similarity and that penalizes additional logic for dissimilarities.

In order to effectively perform mapping, we first need to define a canonical representation
that captures the essential features of all the components across different libraries including the
generic component library. Secondly, we need to define some priority function to guide the
component selection. Thirdly, we need to define the actual mapping algorithm for realizing a
generic component from a TS component. In the remaining part of this section, we discuss these
steps with some examples.

5.1 Canonical Component Representation

We need a representation scheme that covers the essential features of the component set in a
standard form so that similarities and differences can be identified, and a standard set of mapping
algorithms can be developed for each component. This representation must cover not only the
generic component set, but also the component sets across various technology libraries.

We propose a representation similar to one followed by the GENUS library [Dutt88]. Compo­
nents of similar behavior are grouped together into generators such as ALU, REGISTER, MUX,
etc .. Each generator has an associated set of parameters; a component is instantiated by specify­
ing values to each of the parameters associated with the corresponding generator. The GENUS
parameter set has to be extended to cover the features of different libraries.

The canonical component representation must capture the following typical parameters and
attributes:

Bit-width, which characterizes the size of the component in terms of the input and output bit.­
widths. The canonical representation should be able to specify a particular bit-width (for a
particular component) as well as a range of bit-widths (for the generator as a whole).

Set of Functions, for multi-functional components.

12

Ports, that specify the mode (input, output or input-output) and the features (latched, inverted,
etc.)

Data Representation, in formats such as sign magnitude and 2's complement.

Control Specification, for multi-functional units indicating the encoding (unary or binary) and
the function table.

Status signals, that are generated as a result of primary operations in the component (e.g., zero­
bit or overflow).

Besides these important parameters, we need to represent some parameters that are specific to
certain classes of generators. These include port-specification for reg-files and memories, enable­
lines for some components, and component implementation styles such as ripple-carry, carry­
lookahead and counter styles.

We illustrate the elements of the canonical representation using the ALU generator. A typical
ALU generator has the following parameters:

Bit-width Theoretically, this could be any positive integer value.

Ports Names of the input and output ports have to be specified.

Set of Functions A general ALU could perform any subset of the following functions: 16 arith­
metic functions, 16 logical functions and 6 comparison functions.

Control Specification The control encoding and functionality could be specified in tabular form.

Status Signals An ALU could generate any subset of these signals: {Cout, Overflow, ZERO,
SIGN}.

Data Representation The input and output data could be any of these formats: sign magnitude,
2's complement, l's complement, etc.

A detailed description of the canonical ALU representation is given in Appendix B.

5.2 Priority functions

After a set of candidate technology-specific components are identified, we need to find a TS compo­
nent that has the best match with respect to the generic component. This requires a search process
guided by a set of goals or a priority function. Each priority function for the mapping can be
defined in terms of the generator's parameters (e.g., bit-width, set-of-functions, control encoding,
etc.) that specify a component. For instance, the closeness function for an ALU generator can be
defined in terms of its parameters: bit-width, set-of-functions, control signals, status signals, data
representations, etc.

The cost function used to guide the search process in the mapping can be formulated in several
ways. One scheme may have the user rank the parameters in order of decreasing importance, so that
components that match parameters with higher priority are selected first, followed by components
that are matched on lower priority parameters. Another scheme can require the parameters to

13

be pre-ranked according to their general importance. For example, for the ALU generator, we
select components that are closer in bit-width, followed by functional similarity. A general scheme
could create a cost function that is a composite function of the all the parameters, represented as
a weighted sum of the different pararrieter values, where weights specify their relative importance.

While specifying the relative priority, one should remember that some of the parameters ma.y
have an overriding effect on the feasibility of component realization. That is, if a parameter value is
not satisfied by the TS component, the generic component cannot be realized at all. For example,
in case of the register-file generator, if the TS register-file does not have a sufficient number of ports
as required by the generic component, the mapping becomes infeasible, since the TS register-file
does not have enough parallelism in its ports to support simultaneous access to the required number
of RF locations. Such overriding parameters should be given special consideration while defining
the priority function.

5.3 Mapping Algorithm and Heuristics

Once the candidate TS components and the prioritized mapping cost functions are identified, the
next task is the actual mapping algorithm required to realize efficient implementation of the generic
component. After selecting a proper TS component, this mapping algorithm adds extra logic to
compensate for the mismatches that arise because of the differences in the parameter values of the
two components.

Let R be the required component and T the TS component to be used for realizing R. Specifically,
we need to add logic that makes up for the differences between R and T with respect to following
parameters:

Bit-width If Bit-width(T) is greater than Bit-width(R), then a proper subset of the data width
of T has to be selected to realize R.

Set-of-functions If Tis missing some of the required functions, logic has to be added to generate
those missing functions.

Control lines A decoder may be required to map the control lines of R to the control lines of T.

Status signal Extra logic may have to be added to T to generate the extra status signals present
in R.

Data representation Some logic might be required to match the data representation of R and
T.

We briefly describe component mapping algorithms for two components: the ALU and the
Reg-file. The detailed mapping procedure can be found in Appendix B.

·5.3.1 Component Mapping Algorithm for ALU

An ALU is a multifunctional unit characterized by the following parameters: bit-width, set-of­
functions, style, control lines, status signals, and data representation. The set of possible values
that these parameters can take is shown in Appendix B.

14

For the ALU generator, each of these parameters needs to be factored into the overall priority
function. Vve could either rank the parameters or specify a weighted sum of them as a priority
function for the search procedure. Note that some of the operations of the ALU (such as ADD or a
minimum of two comparison functions) and most of the status signals (except ZERO and SIGN),
when required, are overriding parameters that determine the feasibility of the mapping. Details of
the priority function are described in Appendix B.

Get the specification
of required ALU(R)

Get the specification
of ALUs in TS lib

Find the closest ALU
(T) in TS lib

Data representation
mapping

Bit-width mapping

Function mapping

Control mapping

Status signal mapping

Return the generated
ALU

Figure 9: Flowchart for mapping an ALU

Figure 9 shows the overall flowchart of the mapping algorithm for the ALU generator. We
start by obtaining the canonical representation of the required component R and the TS ALU's.
Then we find the closest ALU Tin TS library. Next, we start padding T with logic to account
for the differences in R and T. For each of the para.meters, we specify some rules to make up the
differences. We start with data representation mapping, followed by bit-width mapping, function
mapping, control mapping and finally status signal mapping. Each of these steps either generates
some additional logic for T if feasible, or returns a false value signifying the inability of mapping

1.5

R to T. The detailed steps are given in Appendix B.

GENUS ALU(R)

10 11

ICIN~OCOUT
C +-~-- OZERO

00

Bit-width: 27

Fns: {ADD, INC,

OR, AND, XOR, LID, ONE}

Control: Unary

Status: OCOUT, OZERO

(a)

ICIN

c

10 11

VTI ALU(T)

A B

c~:Q-ca
00

Bit-width: 27

Fns: 19fns

Control: Binary encoded

Status: CO

(b)

.J..,....!;;:;;E9F.:'--t-OCOUT
'----"'I:': OZERO

00 mapping

(c)

Figure 10: An example for ALU mapping:(a) Required ALU(R) (b) TS ALU(T) (c) Realized ALU

Figure 10 shows the application of this mapping algorithm to an example where the required
component Risa GENUS ALU(Figure lO(a)) that can perform seven functions (ADD, INC, OR,
AND, XOR, LID, ONE) and has two status signals (OCOUT, OZERO). The ALU R's bit-width
is 27, and the data is represented in 2's complement notation. The control lines for the ALU R
are unary encoded. We wish to map this ALU to an ALU from the VTI Datapath Library. The
closest ALU Tthat could be found in the VTI library (Figure lO(b)) is a 27-bit ALU that performs
19 functions and provides only one status signal OCOUT. Specifically, it is missing one arithmetic
function INC, two logic functions(LID, ONE) and a status signal OZERO. Ts control lines are
binary encoded. Figure 10(c) shows the final realization of R using T. The shaded boxes represent
the extra logic that has to be added in order to realize R. For this example, we do not require data
representation mapping, and bit-width mapping. Function mapping is performed by the square,

16

shaded box on the right and a mux at the bottom. The shaded rectangular box on the left of
Figure 10(c) takes care of control mapping, while the multi-input NOR gate at right-bottom corner
of Figure lO(c) generates the extra status signal OZERO. With this we have ALU R realized using
the_ VTI Datapath Library.

5.3.2 Component Mapping Algorithm for Register Files

A Reg-file is a sequential component characterized by the following parameters: bit-width, num­
words, read-ports, write-ports, enable, and clock.

As with the ALU generator, each of these parameters determine the priority function for the
search process. For a reg-file, the read-ports and write-ports are the overriding parameters that
determine the feasibility of the mapping: if the TS library does not have reg-files with a sufficient
number of the ports as required, we cannot generate a register-file configuration to support the
desired data parallelism.

Figure 11 shows the overall mapping strategy for a reg-file. Once again we start by obtaining
the canonical representation of the required reg-file R and TS library reg-files. Next, we find the
reg-file Tin the TS library that most closely matches R. If required, we then expand the bit-width
and num-words. Then we do port mapping, followed by address mapping, clock mapping and
finally rest of the ports are handled.

Figure 12 shows the application of the above algorithm for generating a reg-file(R) of size 768*72
that has one R/W port and one R port. In the technology library, we have reg-files of different
sizes with 2 R ports and 2 W ports. The reg-file that is finally realized is shown at the bottom of
Figure 12. This example involves bit-width expansion, num-words expansion, port matching and
address matching.

6 Experiments and Results

In order to evaluate the practicality of high-level library mapping, we performed some experiments
with various designs derived from the HLSW92 benchmark suite [DuRa92]. The goal was to test
our approach on designs of various sizes, and that encompass different sets of components so as
to exercise the major component types in the GENUS component set. In our preliminary set of
experiments, the designs varied in complexity from a few hundred gates to a couple of thousand
gates. We chose these designs so as to cover different GENUS component classes that have varying
attributes. The mapping experiments were performed with respect to two different technology
libraries: the VTI Datapath Compiler[VTI91] and the Toshiba Gate Array library [Tosh90]. We
chose these libraries since they had published gate counts for their data.book components, thereby
allowing us to compare the effectiveness of mappings for different designs.

6.1 Example Designs

We considered RT-level designs from different categories such as processors, DSP and interface
circuits. In particular, we considered the following designs:

17

Get the specification
of required reg-file(R)

1
Get the specification
of reg~files in TS lib

1
Find the closest reg-
file(T) in TS lib

I
Generate required
size reg-file

I
Port mapping

1
Address mapping

1
Clock mapping

I
Handle remaining
ports

I
Return generated
reg-file

Figure 11: Flowchart for Reg-file mapping

18

Generic Reg-file(R) Cascade RAM(T)

AO
10

A1

00
768. 72

CRWO
CRO 01

Ad in Bdin

A Ad out

B Bdout
Bwr AOe

Awr Boe

#bits: 72 #words: 768 #bits: 36

Ports: 2R, 2W

#words: 512 or 256

Ports: 1 R/W, 1 R

Oaddr(1 .. 9)

10addr(1 .. 9)

1(0 .. 35)

CRWO

(a)

00(0 .. 71)

Adin Bdin ":. ..
Adout

512x36
A

Bdout

Awr Bwr Aoe Boe ~ ~

(b)

Oaddr(O)

--------- Oaddr(1 .. 9)

---- 10addr(1 .. 9)
~-------...&-~ Bdin Adin

Ad out

512x36
1(36 .. 71) A

Bdout

Awr Bwr Aoe Boe

CRO ~----1------e-+---+---+------+---~

IOaddr(O)
Oaddr(2 .. 9)
10addr(2 .. 9)

1(0 .. 35) ---Ill A

Adin Bdin

'-----tt--1-----------e>--oQ--Oaddr(O)

-------- Oaddr(2 .. 9)
---- 10addr(2 .. 9)

~...&-----"--~ Bdin Adin

Adout 1-.... -'''-1

256x36 256x36
Al---• 1(36 .. 71)

IOaddr(O) -----"l~~.J

01(0 .. 71)

(c)

Figure 12: An example for Reg-file mapping: (a) Required reg-file(R) (b) TS reg-file(T) (c) Realized
reg-file

19

The AM2901 Microprocessor The AM2901 is a four-bit microprocessor slice which can be used
in CPUs, peripheral controllers, and programmable microprocessors. The device, as shown
in the block diagram (Figure 13), consists of a 16-word by 4-bit two-port RAM, a high­
speed ALU, and the associated shifting, decoding and multiplexing circuitry. The nine-bit
microinstruction word is organized into three groups of three bits each and selects the ALU
source operands, the ALU function, and the ALU destination register. Further details can be
found in [Am2901].

A add~

Badd~

Data In ----.

RAM shift

16X4 RAM

A B

B 0

ALU Data Source
Selector

8-function ALU

F

Output data selector

Data Out

j_
18-16 15-13 12-10

Deslinallon ALU ALU

Q control Function Source

Microinstruction Decode

l

Figure 13: Block diagram of the Am2901 microprocessor

The AM2910 Microprogram Controller The AM2910 is a 12-bit microprogram address se­
quencer intended for controlling the sequence of execution of microinstructions stored in
microprogram memory. Figure 14 shows the block diagram of AM2910. It consists of a last­
in, first-out stack of depth 5. The multiplexer selects the next address from these sources:
direct data input, top of stack, counter and microprogram counter. The next address could
be loaded to the microprogram counter unmodified or after being incremented. The device

20

provides 16 instructions that select the address of the next microinstruction to be executed.
The output is tri-state buffered. Further details can be found in [Am2910].

D
_1

t

Counter Stack Pointer

I
....
0
t5 -- 5x12 Stack Q) --Q5
"'C

I e
Q)

N I
_l ~ l~ __! I

\ Mux 7 mPC

• I
Increment or

Control
j

Logic ~ yTristate Buffer

y

Figure 14: Block diagram of the Am2910 microprogram sequencer

The Serial Receiving and Transmitting (SRT) Interface The SRT interface is used for se­
rial communication between a CPU and its peripheral devices. The main functions of the SRT
are to transmit and receive serial data. When transmitting, the parallel data is converted into
a serial stream and transmitted serially. When receiving, the data stream is received serially
and converted into a parallel format.

Figure 15 shows the block diagram of the SRT interface. The core of the circuit consists of
four registers: Control register(CW), Status register(STAT), Transmission shift register(tran­
buffer), and Receiving shift register(rec-buffer). Besides these registers, it has some control
logic that handles the handshake protocol with the CPU and the peripheral devices. Further
details can be found in [Li1993].

21

RESET

elk

reg_addr

RD_bar

WR_bar

CW(16)

I STAT(l6)1

Control
Logic

Control
block

ID
,.;

• ;j

Ill
Q

16

RESET

I tran_buffer(16) I

Transmit Buffer
(parallel to
serial)

t_count
t_count enabl

CTS_bar ----0
RST_bar-o

tran_empty
CW(x)

D_bus_out

CW(x)

Transmit
Control

TX block

rec_buffer(16)

Receive buffer
(Serial to
Parallel)

overrun I I
rec_ full~-~~~:£ enahJ e

RD_bar

reg_addr

RESET-
Receive
Control

RX block

TxD (data)

TxRDY (interrupt)

TS (frame signal)

TxC (clock)

14o ___ Rx_D (data)

RxRDY (interrupt)

RS (frame signal) ------
RxC (clock)

Figure 15: Block diagram of SRT interface

22

The Circular Buffer(CB) interface The CB interface is used between a DSP(digital signal
processor) and a host CPU. The main function of the CB is to transfer data between the
DSP and the host. The data transfer consists of two steps. First, the data to be transferred
is stored in the circular buffer. Next, the stored data is then read by the recipient (DSP or
the host CPU).

Figure 16 shows the block diagram of the CB interface. It consists of a 8-word by 32-bit
FIFO with two address pointers: head-pointer and tail-pointer. The FIFO can be accessed
per byte. Besides the FIFO, we have a status register (circ-status) and some logic to handle the
handshake protocol between the host and the DSP. Further details can be found in [Li1993).

6.2 Experiments and Analysis

In our experiments, we designed each of these circuits using three different paths, as summarized
by the results in Figure 17. First, we designed the circuit using only generic components from
the GENUS library (I). Then we designed the same circuit using TS library components only
(II). Finally, we took the design with GENUS components and mapped each of these generic
components to the TS library components (III). The goal was to examine the 'penalty incurred
by designing with a generic component library, followed by technology mapping, as opposed to
directly implementing the designs with TS-components. Detailed designs for each of these circuits
are presented in Appendix C.

For each of these designs, we calculated the total gate count. For a GENUS library component,
we used the component's boolean equations for calculating the gate count measured in terms of the
total number of 2-input AND, 2-input OR and NOT gates. For the technology libraries, a gate is
equivalent to the layout area of 4-transistors.

Figure 17 tabulates the gate-counts for various designs across different libraries. For each
design and each technology library, we present the gate-count for the three methodologies (I, II,
III). Also, we present the percentage difference (in terms of the gate-count) between implementing
a component in the technology library (II) and mapping the GENUS component design to the
technology library (III). This percentage gives a measure of how much overhead is incurred by
using generic components from GENUS.

In Figure 17, we observe that the percentage difference between the two design methodologies
(II and III) vary from 0.00% to 12.533. For the SRT interface, the two designs (II and III) are
very close in gate-count. This is because the SRT circuit is fairly simple and primarily uses lower­
level components such as logic gates and flip-flops that have good coverage in technology libraries.
The lack of complex RT components enables a very simple and effective mapping with a resulting
overhead that is very low.

On the other hand, consider the mapping of the 2901 microprocessor and the CB interface to the
Toshiba gate array library. There is a significant difference in gate-counts for the two methodologies
(II and III). These designs use higher-level components such as ALUs and register-files which have
a larger mismatch with respect to the technology library components.

Based on these preliminary experiments, we observe that not much penalty (generally :::; 103)
is incurred in using generic components first and then performing high level library mapping.
This supports our hypothesis that high-level mapping is feasible and practical for the designs we
examined.

23

'"rj

I I
c1q·
i=:
'""1
('[)

f-'
0)

b:I -0
("l
?;""'

p...

t...:>
~- host

*""
(Jq

'""1

"' s
0,
('.:!
b:I
~ ,,..._
('[)
'""1

~
("l
('[)

busy

READP

WRITEP

host_buf_sel

DONE

•
IRQP

•

i:li
Ill
rt
Ill
g
(/)

lg
(/)

rt

8

..

..

signal: done_int

circ_status

I I R/W I NOB I S/A I
31 23 15 7

I head_pointer I

I tail_pointer I

[-- ~ounter I

~
~
[POwer I
~~;;~~sedl

temp3 I temp2 I tempi I tempo

31 23 15 7

circ_buf

circular_buffer

•
~

FULL ..
EMPTY ..

dsp_buf_sel --
read_dsp

write_dsp

dsp_clk

w
tv i:li

Ill
~rt

w
tv

Ill
g
(/)

I
i:li
(/)

'O

w... u .. .

I dsp

Design GENUS VTI Datapath Toshiba Gate Array
Library Using VTI GENUS UsingTGA GENUS (I) Comps Mapping %over- Comps Mapping %over-

Name Components (II) (Ill) head (II) (Ill) head
#(Dff) #(gate) #(gate) #(gate) #(gate) #(gate)

Regfile 72 248 134 134 0 1225 1225 0
ALU 215 100 100 0 84 84 0
ALU glue logic 22 10 54 444 21 37 76.2

2901 a-register 8 35 28 28 0 38 38 0
Muxes 104 80 80 0 117 117 0
Mux glue logic 22 15 15 0 14 103 635.7
Buffer 32 24 24 0 24 24 0

Total 80 678 391 435 11.25 1523 1628 6.89

Register 41 244 369 36 0 388 388 0
Counter 8 38 184 184 0 118 118 0

SRT Buffer 96 96 96 0 64 64 0
Decoder 6 6 6 0 6 6 0
Control FF 4 36 36 0 36 36 0
Control gales 30 44 56 27.3 62 62 0

Total 53 414 735 747 1.63 674 674 0.00

Regfile 256 534 624 624 0 1032 1032 0
Regfile glue logic 24 96 251 251 0 20 250 1150
Counter 10 44 230 230 0 156 156 0
Comparator 48 40 42 5 28 28 0

CB Decode/encode 6 6 6 0 0 18 -
Buffer 192 144 144 0 144 144 0
Register 32 128 288 288 0 304 304 0
Mux 208 176 176 0 208 208 0
Control FF 5 45 45 0 72 72 0
Control gates 15 28 30 7.1 15 15 0

Total 327 1271 1832 1836 0.22 1979 2227 12.53

Regfile 60 192 192 0 776 776 0
Refile glue logic 35 27 52 92.59 5 5 0

Stack-pointer 3 46 73 73 0 73 73 0
Micro PC 12 37 84 96 14.28 84 111 32.14

2910 lncrementer 228 60 60 0 135 135 0
Counter 12 163 276 276 0 207 207 0
Mux 84 60 60 0 108 110 1.85

Zero-detector 12 24 24 0 44 44 0

Buffer 96 36 36 0 96 96 0

Total 87 701 832 869 4.44 1528 1557 1.89

Figure 17: Comparison of different designs(gate count)

25

7 Summary

In this paper, we performed an evaluative study of different RT component libraries. In particu­
lar, we motivated the need for generic RT component libraries, defined the high-level technology
mapping problem, surveyed the relative coverage of the GENUS generic RT library with respect
to some technology libraries and illustrated the high-level technology mapping problem for two RT
components: ALU and Register-File. Finally, we performed some experiments on some high-level
synthesis benchmarks to study the penalty incurred by using generic RT components followed by
technology mapping, versus directly implementing the designs in the technology libraries: Our pre­
liminary results a.re encouraging, indeed even promising, since the maximum overhead we observed
was in the range of 10% for area..

We believe that the benefits of using a. standard component set such as GENUS greatly outweigh
the small penalty that may be incurred during technology mapping to target libraries. We have
several directions to pursue for future work. One line of work will investigate the penalty incurred
for other design criteria (e.g., delay), and will study the effectiveness of this high-level technology
mapping approach across a broader range of design examples . .Another line of work will investigate
efficient techniques for high-level technology mapping of RT components. We can then attempt to
integrate different technology mapping schemes (i.e., functional mapping, functional decomposition
and high-level mapping) and compare the effectiveness of these schemes across a range of designs.

8 Acknowledgements

This research was supported in part by NSF grant #MIP9009239 and in part by SRC contract
#92-DJ-146. We are grateful for their support.

26

References

[Am2901] "Am2901c: Four-bit Bipolar Microprocessor Slice," Advanced Micro Devices, Sunnyvale,
California, 1993.

[Am2910] "Am2910A: Microprogram Controller," Advanced Micro Devices, Sunnyvale, California,
1993.

[BRSW87] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A. R. Wang, "MIS : A
multiple-level logic optimization system," IEEE Transaction on Computer-aided Design,
pp1062-1081, November 1987.

[Casc92] "Cascade Design Automation Databook," Cascade Design Automation, Bellevue, WA,
1992.

[DuKi91] N. D. Dutt and J. R. Kipps, "Bridging High-Level Synthesis to RTL Technology Li­
braries," Proc. 28th Design Automation Conference, June 1991.

[DuRa92] N. D. Dutt and C. Ramachandran, "Benchmarks for the 1992 High Level Synthesis
Workshop," Technical Report 92-107, University of California at Irvine, 1992.

[Dutt88] N. D. Dutt, "GENUS:A Generic Component Library for High Level Synthesis," Technical
Report 88-92, University of California at Irvine, 1988.

[Dutt91] N. D. Dutt, "Generic Component Library Characterization for High-Level Synthesis,"
Proc. VLSI Design 91, January 1991.

[GDWL92] D. Gajski, N. Dutt, A. Wu and S. Lin, "High-Level Synthesis: Introduction to Chip
and System Design,'' Kluwer Academic Publishers 1992.

[Keut87] K. Keutzer, "DAGON: Technology Binding and Local Optimization by DAG Matching"
The 24th ACM/IEEE Design Automation Conference, 1987.

[Kipp91] J. R. Kipps, "An Approach to Component Generation and Technology Adaption,'' PhD
Dissertation, University of California at Irvine, December 1991.

[LiGa88] J. S. Lis and D. D. Gajski, "Synthesis from VHDL,'' Proc. IEEE Int. Conf. on Computer
Design'B~, pp.378-381, 1988.

[Li1993] J. Li, "VHDL Modeling for Silicon Compilation,'' M.S. Thesis, University of California
at Irvine, 1993.

[Mano88] M. M. Mano, "Computer Engineering Hardware Design," Prentice-Hall, Inc. New Jersey,
1988.

[Tosh90] "Toshiba ASIC Gate Array Library," Toshiba Corporation, Tokyo, Japan, 19.90.

[VTI91] "VDP300 CMOS Datapath Library," VLSI Technology, Inc., San Hose, California,
November 1991.

[VaGa88] N. Vander Zanden and D.D. Gajski, "MILO: A Microarchitecture and Logic Optimizer,"
Proc. 25th Design Automation Conference, June 1988.

[XBL092] S. H. Kelem and J. P. Seidel, "Shortening the Design Cycle for Programmable Logic
Devices," IEEE Design and Test of Computers, pp40-50, 1992.

27

A Generator-wise comparison

28

Combinational components

GENUS VTI compiler Cascade compiler

Generator Generator Features Differences Generator Features Differences
"rj

c]q"
i::::
..-; ADDSUB VDP1ADD001 High speed adder Only one type(CLA} Adder RC,CLA,CSA No sub, no control
('[)

1--' VDP1ASB001 High-speed add-sub Control signals mismatch Optional ov signal
00

Cl
('[)

VDP1ASB002 High-speed add-sub
(B-A-1)

p
('[)
..-;

VDP1SUB001 High-speed sub

"' t-:l rl-

'° 0
..-;

I

::;J
C/l
('[)

('l

ALU VDP1ALU001 Expanded 2901 ALU Only fixed fn set ALU 16 arithmetic fns, Some new fns
(high speed}

binary control 16 boolean fns Fixed set of fns

VDP5ALU001 Expanded 2901 ALU
Fn mismatch 4-bit CLA rippled binary control (slow speed, RC}

0 s
"cl

"' ::L

Intermediate carry available lncrementer/ lncrementer, Comparison fns missing Decrement er Decrementer, both
No comparison fn Status OZERO missing

C/l
0
p

Status OZERO missing

BARRELSHIFTER VDP3BSH001 Barrel-shifter/rotator Port mismatch Barrelshifter Finefns: ROT, ASHR, Only one fn at a time

Single fn
SHL, SHR, Funnel

Port mismatch

Unary shift control Fn ASHR missing

COMPARATOR Magnitude Two fns: GT & LT Specific fn set
comparator

Equality Checker Fn: EQ No control

Port mismatch

Combinational components

GENUS Toshiba gate array

Generator Generator Features Differences

"rj
aq

ADDSUB FA1X 1-blt lull adder SpecHic bit-width

HA1x Half adder Specific function

-= FAS2 2-bit add-sub Binary control
>-j
(D FA2 2-bit adder Extra G input, P output

.....
co

FA4 4-blt adder Only one type(CLA)

XADD32 32-blt CLA adder

Cl
(D

XF283 4-bit binary full adder
with last carry

~
(D

compatible to 74LS283
>-j

c...-
~
.,.+

0 0
>-j

ALU XALU32 16 arithmetic fns Specific function set

16 boolean fns SpecHic bit-width
I

~ 32-bltCLA No OZERO signal
......
00 Fns based on 74LS181 Comparison fns missing
(D

XF181 4-bitALU Some newfns
C"l
0 s

"O
~

Comapatlble to 74LS181 Binary control

XFLS381 4-bitALU G, P signal

Compatible to 74LS381
>-j
00
0 BARRELSHIFTER XBRL16 16-bit barrelshifter Missing In: ASHL

~ 4 Ins: SHL, SHR, ASHR, SpecHic bit-width
ROT

Binary control

Specific fn set

COMPARATOR CMP4 4-bit equality comparator Specific bit-width

CMPS 8-bit equality comparator Specific fn set

MAG2 2-bit expandable
magnitude comparator

Port mismatch

3 Ins: GT, EO, LT

MAG2H 2-bit magnitude comparato~

MAG4 ~~:;!~=~~~dable magnitud~

XF688 8-blt equality comparator

Compatible to 74LS688

Combinational components

GENUS VTI compiler Cascade compiler

Generator Generator Features Differences Generator Features Differences

'"":J
(Jq

DECODE/ENCODE Decoder Generic random logic in Different format
truth-table format

i=
>-)

C1l DIV
!:-.:>
0

Cl
LU LOU 16 boolean fns Binary control

C1l
~
C1l
>-)

()J

MULT VDP3MLT001 MxN multiplier Different bit-width for the Simple multiplier Different bit-width for
two inputs the two inputs

c+ w
0 ,.......
>-)

I

VDP3MLT002 2-stage pipelined Not all types are present High speed multiplier 2-stage pipeline Specific value of
pipeline stage

~.
00

VDP3MLT003 Variably-piped multiplier Slight port mismatch multiplier/adder Extra functionality
C1l

n
0

VMLT03 NxM multiplier Port mismatch(set &
clear)

s
'd
()J
>-)

MUX 2 .. 8x1 mux with unary Binary select Multiplexer 2x1 ,3x1 ,4x1 non- Limited num-inputs
select inverting, 2x1 inverting

00
0
~

2x1, 4x1 mux with binary Limited num-inputs Limited inverting/non-
select inverting

Inverting type is missing

SHIFTER VDP3SHF001 Up/down shifter Binary control

Fixed set of fns

Extra enable signal

SELECTOR

GATES(GNOT, GANO, 2-input gates(NOT, AND, Fixed num-inputs Gates not, and2, and3, nand2, Limited num-inputs
GOR, GNOR, GANO, NANO, OR, NOR, XOR, nand3, or2. or3, nor2.
GXOR, GXNOR, AND, XNOR, ORAND, New type of gates nor3, xor2, xnor2, New type of gates
NANO, OR, NOR, XOR, AN DOR) andnor,ornand
XNOR)

Combinational components

GENUS Toshiba gate array

Generator Generator Features Differences

"rj
oq"
.:::
>--;

DECODE/ENCODE 2x4, 3x8, 4x10, 3x8 with Specitic bit-width address latch
('!>

!'.'-' 10x4, 8x3 priority encoder Function mismatch
.......

Cl
('!>

DIV
~
('!>
>--;
~ LU

c...:> .,....
!'.'-' 0

>--;
I

~-
MULT XMPYB 8-bit multiplier Port mismatch

Cll
('!> XMPY16 16-bit multiplier Specitic bit-width
~
0 Mode control lines
s

"O Only one type
~
>--;
Cll
0 MUX Several bit-width and Limited bit-width
~ num-input

Some with latch, inverted Limited num-input output
Umited inverted output

SHIFTER

SELECTOR

GATES Gates Various gates Limited input-width

Limited num-inputs

Sequential components

GENUS VTI compiler Cascade compiler

Generator Generator Features Differences Generator Features Differences

"rj
c]q"
p
>-j
C1l

~

COUNTER VDP3CNT001 Up/down synchronous Fixed type Ripple counter up, down, up/down counte Limited fns and options
counter with load and
clear-moderate speed Port mismatch Synchronous Very close to GENUS

counter counter
~ VDP5CNT001 Slow-speed

0
C1l
~

FIFO FIFO #words: 4-128 Extra ports

C1l
>-j #bits: 1-128

"' c..:> <""+-
c..:> 0

>-j MEMORY CRAM01 Max #bits = 16,384 Port mismatch Single port RAM 1 R/W port with enable Size restriction
I

~-rn
One RNi/ port with Restriction in size High Speed RAM Port mismatch
enables

C1l
(")

0
CRAM02 High-speed CRAM01 Dual port RAM 2 R/W port with enable Limited number of ports

s re CRAM03 High-performance, low Multi-port RAM 1-5 read ports with
power enable

"' >-j
rn
0

CROM01 ROM compiler 1-3 write ports with
enable

~ High speed ROM #words:64K

#bits: 64

REG FILE VDPRGF001 2 read ports, 1 write port Port mismatch Register file 1-2 read ports, enable Limited size

Partial words could be Limited size 1 write port with enable
read out

REGISTER Various DFF and latch Limited set of functions and DFF, JKFF, LATCH, Limited type and Ins
options

Muxed input Shift register

STACK

Sequential Compononents

GENUS Toshiba gate array

Generator Generator Features Differences

"rj
COUNTER Various specKic bit-width Fixed bit-width counter

()q
~

Fixed type
""l
Cl)

~
CJ.j

FIFO XFlxxyy #words: 16, 32, 64 Limited num-words,
input-width

0 #bits: 4,5,6,7,..36 port mismatch
Cl)

::; Semantic mismatch
Cl)
""l
~ w .,....

~ 0
""l

MEMORY RAM-C Limited size Limited size
I

~-
00

Single R/W port with write
enable

Cl)

C"l
Enable(expnadable)

0 s RAM-E Two read ports
'd
~
""l

One write port with enable
......
00
0 ROM-A/ROM-8 single port ROM
::;

REGFILE XF670 4x4 regfile with 3-state Specific size
output

Tristate output

Limited bit-width and fns

Tristate output

REGISTER Variously sized OFF, JKFF
with dKferent fns

Muxedinput

Binary control

STACK

Miscellaneous components

"rj
~-

GENUS VTI compiler Cascade compiler

~
>-;
('[) Generator Generator Features Differences Generator Features Differences
tv

""" BUFFER Various buffers(inverting Buffer 1 x to 20x range
0
('[)

~

/non-inverting) of diff
inverting/non-inverting strength

('[)
>-;

"' BUS w rl-

CJ"< 0
>-;

'
~ CLOCK GEN
u;·
('[)

n CONCAT
0
8

'O DELAY

"' :::::.
w
0 EXTRACT
~

ONESHOT

WIREDOR

PORT

Miscellaneous components

1-rj GENUS Toshiba gate array
......

()q
r=
"'i
('!) Generator Generator Features Differences
I'..:>
CJl BUFFER Lots of buffers

Cl
('!)

~
BUS

('!)
"'i

I;;.:>
~
o+

°' 0
"'i

CLOCKGEN OSCXc Oscillator

I

~ CONCAT
00
('!)

('") DELAY YDLY1X Specnic delay value
0 s YDLY2X Delay buffer

"O
~ YDLY3X
"'i
00
0
~

EXTRACT

ONESHOT

WIRE DOR

PORT

B Component mapping details

B.1 High-level mapping for ALU

An ALU is a multifunction unit with multiple control lines and multiple status signals. A specific
ALU is characterized by assigning values to these parameters: bit-width, set-of-functions, control­
lines, status signals, port specification, data representation. This section describes each of the steps
involved for the mapping of an ALU (Figure 9).

B.1.1 ALU specification

Bit-width Theoretically, the input and output data could have any positive integer value as bit­
width.

Set-of-functions An ALU could possibly perform any subset of the functions mentioned in Figure
26.

Control lines The mapping of control lines to the functions is specified in tabular form. For each
function, we have a distinct set of values on the control lines.

Port Specification An ALU has two data inputs, control lines(including the carry input), a data
output and status signal outputs.

Data representation In an ALU, input and output data could be in any of the following forms:
sign magnitude, l's complement, 2's complement.

B.1.2 Bit-width mapping

Given the bit-width of the required ALU(R) and the bit-width of the TS ALU(T), we first decide if
the bit-width(R) is mappable on to the bit-width(T). If the bit-width(R) > bit-width(T), then R
can be implemented by functional decomposition and is thus not considered an option for high-level
technology mapping; we thus return a false value. Otherwise, we map the data. inputs and outputs
of R to the most _significant bits of the corresponding ports of R and disable the rest of bits by
assigning 'O' to them (Figure 27).

B.1.3 Function mapping

For an ALU, the task of function mapping is the most involved step. Let us assume that T and R
are the TS ALU and the required ALU respectively. Let TX, TY, TCI, TCO and TF be the two
data. inputs, ca.rryin, carryout and data output respectively. Similarly, RX, RY, RCI, RCO and RF
be two data inputs, carryin, carryout and data output respectively for R.

Based on the function types, we classify the function mapping into three categories:

Arithmetic functions To realize an arithmetic function, we assume that the TS ALU(T), at the
minimum, can perform the 'ADD' function. We provide the heuristics to add extra logic so
that the basic adder could be used to perform other arithmetic functions. Figure 28 shows

37

Arithmetic Logic Comparison

Function
Operation

Function
Operation

Function
Operation name name name

Cl=O Cl= 1

DEC A minus 1 A ZERO 0 EQ A=B

AB minus 1 AB AND AB NEQ A ¥B

AB minus 1 AB RINHI AB LT A<B

minus 1 zero LID A LEQ A<=B

Aplus(A+B) A plus (A+B) plus 1 LINH! AB GT A>B

AB plus (A+B) AB plus (A+B) plus 1 RID B GEQ A>=B

SUB A minus B minus 1 A minus B XOR AB+AB

A+B (A+s) plus 1 OR A+B

A plus (A+B) A plus (A+B) plus 1 NOR A+B

ADD A plus B A plus B plus 1 XNOR AB+AS°

AB plus (A+B) AB plus (A+B) plus 1 RNOT 8
A+B (A+B) plus 1 RIMPL A+B

A plus A A plus A plus 1 LNOT A

AB plus A AB plus A plus 1 LIMPL A+B

AB plus A AB plus A plus 1 NANO AB

INC A A plus 1 ONE 1

LSUB B minus A minus 1 BminusA ABxorCI

(A+B) xorCI

(A+B) xorCI

(A+B) xorCI

Figure 26: Set of functions for an ALU

38

Cl
TF[n]

•• • • ••

0

•• • • ••
T T1T
3333
I I +
"'- -

RF[m]

RY[m]

3
"'-

Figure 27: Bit-width mapping for an ALU

the relationship between the ports of R and T for important arithmetic functions. For all
those functions that are not available in T and are required, we add the glue logic defined by
the table in Figure 28.

Logic functions For the logic functions missing in T, we generate a block that implements these
logic functions. The output of the this block is muxed with the original output of the ALU
T, to get the final output(Figure 29).

Comparison functions An ALU could possibly perform the following six comparison functions:
EQ, NEQ, LT, GEQ, GT, GEQ. If the TS ALU T, can perform any two of these in parallel,
that are not complement of each other, the rest could be generated with very little logic. One
such example is illustrated in Figure 30.

B .1.4 Control mapping

As mentioned before, the mapping between: control lines and the functions they represent, is spec­
ified with a table, for both the ALU s R and T. We can use the standard Karna ugh map [Mano88]
method to transform the table of R to the table of T.

B.1.5 Status signal mapping

We could generate these status signal with little logic, if they are not already not present in T.

SIGN SIGN is the most significant bit of the output and hence could be easily extracted.

39

~ p TX TY TCI RF RCO

SUB RX RY RGI TF TGO

INC RX RY RGI TF TGO

DEC RX 0 RGI TF TGO

ADD RX RY RGI TF TGO

-LSUB RX RY RGI TF TGO

Figure 28: Generating arithmetic functions frorn an adder

IO 11

TS ALU

00

Figure 29: Realizing extra logic functions in an ALU

40

EQ ..,._ ______ EQ

LT LT
">0-1----11-- NEQ

TS ALU ::x>t--1-- GEQ

.__ ___ +t.JI >t---LEQ

GT

Figure 30: Realizing comparison functions in ALU

ZERO This signal specifies whether all the bits in the output are zero. This could be generated
by a NO Ring all the bits of the data output together.

If the other status signals such as Carryout (CO) and Overflow (OV) are not specified in T, but
are specified in the generic component R, then we may incur a large overhead in generating these
signals.

41

C Designing with different libraries

In this appendix, we present the implementations of the example designs mentioned in section 6
using different component libraries. Specifically, we illustrate implementation for four designs: 2901
Microprocessor [Am2901], 2910 Microprogram Sequencer [Am2910], Serial Receiver and Transmit­
ter [Li1993], and Circular Buffer [Li1993]. For each design, we first generate the implementation
with generic components from GENUS [Dutt88]. Then, we implement the same design using com­
ponents from two technology libraries: VTI Datapath Compiler [VTI91] and Toshiba Gate Array
[Tosh90]. The shaded components in the figures that follow represent the extra or different compo­
nent that had to be used in following two different strategies: 1) implementing the design directly
with the technology specific components, and 2) taking the implementation with GENUS compo­
nents and then mapping the generic components used in the design to TS components. In order to
avoid visual clutter, we illustrate only the major components and the datapath routing.

D

IRO
IR1
IWO

-- CRO
-- CR1
-- CRW

00

REG FILE
(16x4)

y

TRISTATE(4)

Tri-state Buffer

.REGISTER(4)

QReg

Figure 31: Design of 2901 with GENUS components

42

VDP3RGF001
(16X4)

00 01

llMllffl Additional Logic

~ ~~~mw VDP3MUX002

y

VDP3TSB001(4)

Tri-state Buffer

(4)

VDP3DFF001

Q Reg

Figure 32: Design of 2901 with VTI components

43

IHKflHfM Additional Logic

SR45(1)

RAM(1Bx4) QReg

00 01

y

Figure 33: Design of 2901 with Toshiba gate array components

44

.....
"' ~ i

(])

ii) -~
"'O 0

I
_J

e
(])

N

Control
Logic

D

COUNTER(12) DOWN -­

LOAD --

Counter

11 12 13

MUX(12)

Mux

y

--

(ij
c
(])

E
~
0
.£

0
Stack Pointer

IA IW

00
REG FILE

CR
(5x12)

cw
10

5x12 Stack

REGISTER(12)
LOAD

mPC

ADD{12) CIN --

Figure 34: Design of 2910 with GENUS components

45

[@l!!!l!j@ij!I Additional Logic

D

DOWN._
VDP3CNT001(12) LOAD ._

Counter

0
Stack Pointer

IN UP._

VDP3CNT001 (3) DOWN ._
LOAD._

RA SA W

~ i 11~! l~--+---4
~ ~ i~i

I a
0 >

---------- OO VDP3RGF001
(6x12)

D

~ '--~-'

Control
Logic

___________ sx12 Stack

10 11 12 13

C VDP3MUX004(12)

y

Mux

VDP3TSB001 (12)

Tristate Buffer

VDP3DFF001(12)

l~mt~®Wtrn!::::t
LOAD

mPC

GIN.,._

VDP51NC001 (12)

lncrementar

Figure 35: Design of 2910 with VTI components

46

0
0
<I)

a>
" I 0
(i)
N

Control
Logic

0

0

lfl}lffl Additional Logic

D

CUD41(3)
DOWN.,_

LOAD.,_

Counter

0

IN

CUD41(1)

Stack Pointer
UP.,_

DOWN.,_
LOAD.,_

f F67o I f F6?0 I
f F67ol f F6?ol

_________ .. sx12 Stack

Mux

Tristate Buffer

y

R41(3)

lll!M~IM
LOAD

mPC
(ij
c:---~--~

<I)

E
<I)

FA4(3)
GIN.,_

0 .____..,.. _____ ___,
c

Figure 36: Design of 2910 with Toshiba gate array components

47

Data Bus

.._. LOAD REGISTER(6)

Control word

.._.LOAD

.._.SHA REGISTER(16) OR

T Buffer

Control Logic

LOAD
REGISTER(3)

Status word

.._. SHL

4 2

REGISTER(16) IL

R Buffer

R Count

Figure 37: Design of SRT with GENUS components

48

..

~s

~so
~ 81 VDP3DFF005(16) OR
~l,.;;.82;;.._ ____ __.

T Buffer

MllllJ Additional Logic

Data Bus

s

VDP3TSB001 (16)

Buffer

VDP3DFF002(6) VDP3DFF002(3)

Control word Status word

~s
VDP3DFF004(16) IL .._

R Buffer

4 2 1

R Count

Figure 38: Design of SRT with VTI components

49

Data Bus

.._.LOAD
R81(1)

LOAD
R41(1)

-Control word Status word

.._.LOAD
SR44(4) OR

.._.SHA .._. SHL
IL SR44(4)

T Buffer
R Buffer

CB41(2) CB41(2)

4

Control Logic TCount R Count

Figure 39: Design of SRT with Toshiba gate array components

50

-.up -.up Head Pointer COUNTER(4) COUNTER(4) Tail Pointer

COMPARA TOR(4) COMPARATOR(4)

Full Checker Empty Checker

Host Bus DSP Bus

Tempo Temp1 Temp2

REGISTER(S) REGISTER(S) REGISTER(S)

...
~ LU
c: a 10
LU 0 IWO
f- (.)
z LU IRO
::> Cl> a Cl> cwo 0 - ~ 1J (.) c: C\I 0 CAO

:::i ()
0 Cl>
0 Cl

8x32 REGFILE REGISTER(32)
Cl>
tE Status Reg Cl

Cl> a:
C\I

00
C")
x

CX)

Control
Logic

DSP Bus

Host Bus

Figure 40: Design of Circular Buffer with GENUS components

51

~ w
0 0
0 0 I- (.) z w
0 Qi 0
"' a_ c ...
0 ~ > ::J

0
()

Control
Logic

!lf@ll)l Additional Logic

UP
VOP3CNT001 (4) Head Pointer

-.up
VOP3CNT001 (4) Tail Pointer

XOR Gates
.__ _____ _. ~

(.)
Q)

....----'----. t5
VDP5ZOT001 (4)

Tempo

VOP30FF002(8)

cwo

Qi w
-c
0
(.)
Q)

0

RA

.... SA

Host Bus

Temp1

VOP3DFF002(8)

Mux
0

VOP3RGF001

(Bx32)

A

DSP Bus

XOR gates ~
(.)
Q)

..c
()----......_ __ ..., ~

VOP5ZDT001 (4) 0..
E

'----..,.----' w

Temp2

VOP30FF002(8)

..!!!
'§,
Q)

a:
C\I
C')

><
(X)

Host Bus

Figure 41: Design of Circular Buffer with VTI components

52

DSP Bus

VDP30FF002(32)

Status Reg

Mlfil]d Additional Logic

UP up
Head Pointer Tail Pointer CB4C(1) CB4C(1)

CMP4(1) CMP4(1)

.- Full Checker :~:: .. :A Empty Checker

Host Bus DSP Bus

.... D
0 :I v v CD

<I) C\/ Cl) 0 +" a '"C c 0 :J 0
0 Cl)

(.) 0
XF60(8) SR44(8)

<I)

ZS Status Reg O>
<I)

a:
C\J

A ~
(()

Control
Logic

DSP Bus

Host Bus

Figure 42: Design of Circular Buffer with Toshiba gate array components

53

lllllllllllllllllll~/llirn1m1l1~i~IJll//llllll/~l///l/I G n 2
3 1970 01005 8094

DATE DUE

