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Abstract

Quantifying the impact of climate change on oceanic variables.

by

Francisco M Beltrán

The focus of this thesis is to develop a general methodology to obtain high-resolution

spatial-temporal forecasts of Sea Surface Temperature (SST) using an ensembles of gen-

eral circulation model (GCM) output and historical records as the major driving force.

As a case study, we consider Sea Surface Temperature (SST) in the North Pacific Ocean.

We use two ensembles of different GCM simulation output, made available in the 4th

Assessment Report of the Intergovernmental Panel on Climate Change: one corresponds

to 20th century forcing conditions and the other corresponds to the A1B emissions sce-

nario for the 21st century. Given a representation of the SST spatio-temporal fields

based on a common set of empirical orthogonal functions (EOFs), we use a hierarchi-

cal Bayesian model for the EOF coefficients to estimate a baseline and a set of model

discrepancies. These components are all time-varying. The model enables us to extract

relevant temporal patterns of variability from both the observations and simulations and

obtain common patterns from all eighteen series. This is used to obtain unified 21st

century forecasts of relevant oceanic indexes as well as whole fields of forecast North

Pacific SST. The unified forecast captures large longterm oceanic behavior, however the

coarse resolution prevents us from capturing coastal behaviors. We use the unified fore-

cast to model high resolution SST by establishing a link between large and small scale

ix



variability using statistical downscaling techniques. Using a combination of a discrete

process convolution and a dynamic linear model, we obtain a smooth high-resolution

forecast of SST fields off the coast of California. To model the high resolution data faster

and efficiently, we developed and implement a parallel version of the forward filtering

backwards sampling algorithm. We finish the work with remarks on the model results

and address future avenues this work can take.
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Chapter 1

Introduction

Average global sea surface temperature is used as one of the baselines for

gauging and depicting climate change. These changes are projected to affect weather

patterns resulting in more occurrences of severe storms and changes in seasonal agricul-

tural growing patterns, thus leading to an adverse effect on food production and marine

ecosystems. Quantifying and assessing these changes is an important and complicated

problem. Sea Surface Temperature (SST) measurements have been recorded as early as

1700s. This was accomplished by passerbys on large ships sailing across the Atlantic,

writing down measurements they obtained with mercury thermometers. Since then, sci-

entists have used large cargo ships to collect measurements at automated times during

their passage as well as setting up buoys and weather stations. This has given us an

incredible amount information about our past climate. When coupled with our cur-

rent technology of high resolution satellite data, it allows us to create useful models in

predicting future climate. As interest in climate change continues to grow, so does the
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need for higher resolution climate models. Massive space-time datasets are produced

using computer model simulations to study natural phenomena such as climate, oceanic

behavior, and weather. These multivariate spatio-temporal outputs are simulated over

many decades and large areas to capture long term behavior over the regions.

In its fourth assessment report (AR4), the Intergovernmental Panel on Cli-

mate Change (IPCC) made data available for 24 Global Climate Models (GCMs) under

different emission scenarios. If we inspect the different datasets, we see substantial dis-

agreement in both hindcasts and future predictions, a fact that hampers the decision

making process. The question that arises is how to blend the information from ensem-

bles of climate model simulations in such a way that we can obtain a better depiction of

future climate. Knutti et al. (2010) summarize the challenges involved in such a task.

The simplest approach is to weigh all models equally and take an ensemble average.

This clearly disregards the fact that some models may be more accurate than others, or

accuracy may differ at different time-scales. Alternatively, we can produce a weighted

average by assigning weights to models depending on their agreement with observational

records. This is known in the climate science literature as Reliability Ensemble Average

(REA; Giorgi and Mearns, 2002). Both approaches are usually applied to very large

regions and large periods of time, on the premise that a clear signal can not be found

at finer resolutions. Interest in the statistical community for this problem has been

growing the last few years, following the early work in Tebaldi et al. (2005).

A problem that remains with this framework is the following: Is it fair to com-

pare climate model simulations for, say, a given year to the corresponding observational
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records? A simulation indexed by a given year is not meant to reproduce that year’s ob-

servations. It is just a sample from the climate that is typical of that year, as estimated

by the climate model. Averaging over large areas and time spans to analyze ensembles

of climate model simulations is a way to compensate for the fact that such models are

not meant to reproduce specific weather conditions that affect individual observations.

The ability to produce forecasts for coastal areas at a seasonal level is key to assess the

impact of climate on marine ecosystems. Similarly, the population dynamics of many

species can be affected by changes in the phase and amplitude of the seasonal cycles.

These are examples of the need to have climate forecasts with high temporal and spatial

resolution.

The availability of high resolution spatial measurements make assessing local

regions possible. These models have only been available for short periods of time so

capturing long term behavior from these observations is not possible. So how can we

establish a relationship between the models that provide longterm behavior with the

high resolution short-term observations? How do we handle and model these measure-

ments when the information being studied is too large to fit on standard computational

devices? These are the questions that arise when we try to implement statistical models

to large datasets. Inference for models that use simple spatial structures are impractical

with serial programing techniques, and thus parallel implementation is necessary.
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1.1 Outline

In chapter 2 we discuss how to extract important indices from spatio-temporal

data using a specific set of basis functions. The resulting temporal variation is then

modeled using a Bayesian hierarchical model to blend information from different GCMs.

In chapter 3, we present a method to establish a link between large and small scale

variability using statistical downscaling techniques. We use the methods in chapter 2 to

obtain longterm oceanic trends and use that large scale information to obtain a smooth

spatio-temporal field. The computational problems that arise from the large datasets

are described in chapter 4. The implementation of parallel computing are discussed and

the algorithms are presented in full detail.
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Chapter 2

Blended oceanic indexes projections.

In this chapter, we develop a general methodology to obtain joint projections

of climate indexes using a multi-model ensemble of GCMs. Our approach begins with

extracting global spatial features of both observations and simulations. We then model

their temporal variability at a seasonal level in a way that allows for smooth temporal

changes. We explore three levels of temporal resolution – decadal, seasonal and monthly

– to gauge the possibility of blending multi-model ensembles at high temporal frequen-

cies. We apply our methods to indexes that are related to the Pacific Decadal Oscillation

(PDO) and the North Pacific Gyre Oscillation (NPGO), and then assume that indexes

obtained from observational data correspond to noisy versions of the processes of in-

terest. Simulations from the GCMs also produce indexes that are noisy versions of the

processes, but with the addition of discrepancy terms. We propose a model that as-

sumes a smooth evolution in time for such discrepancies and use a Bayesian hierarchical

model to weigh the simulations and obtain 21st century projections of the underlying
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process for each oceanic index. The resulting blended time-varying coefficients of the

main modes of spatial variability are then used for the reconstruction of the temperature

fields. Section 2 contains a description of the data, the simulations, and the methods to

obtain the oceanic indexes. Section 3 has a description of the models proposed for the

different time scales considered. Section 4 reports the results, and Section 5 discusses

the conclusions of our analysis.

2.1 Introduction

It is clear that extracting large scale spatial features from a spatio-temporal

field can be a useful approach to blend information from climate model simulations

indexed in space and time. This can be conveniently achieved by representing the field

using a set of basis functions. An example is the well known Karhunen-Loève (KL)

expansion (see, for example, Yaglom, 1986). This provides a representation of a spatio-

temporal random field that is determined by its covariance function. Consider the pro-

cess xt(s), where t indicates time and s location. Suppose that the covariance function

v(s, s′) = cov(xt(s), xt(s
′)) does not depend on t. Then xt(s) =

∑∞
j=1

√
λjψj(s)αj(t) for

a set of orthogonal functions ψ1, ψ2, . . ., random variables αj(t) with cov(αj(t), αi(t)) =

δij , and non-negative λj that satisfy the integral equation
∫
v(s, s′)ψj(s

′)ds′ = λjψj(s).

KL expansions are difficult to obtain in general. In a finite setting they are obtained

from the principle component (PC) analysis of the covariance matrix corresponding to

the space-time process. The resulting ψj(s) are known as the Empirical Orthogonal

6



Functions (EOF) and are used to reduce a dataset’s dimensionality by extracting the

main modes of variability (Hannachi et al., 2007; Cressie and Wikle, 2011; Jolliffe, 2002).

EOFs are just one example of possible basis functions that are used to repre-

sent random fields. EOFs are very popular in environmental sciences as the scientific

community has linked the indexes to physical and biological effects. Unfortunately,

their estimation often ignores important trends as well as time-varying dependencies

between observations at different locations. Additionally, EOF analysis suffers from a

number of issues: it depends heavily on data availability; large eigenvalues are likely

to be inflated; the absence or addition of a station may alter the eigenvalues, resulting

in significant changes in the estimation of spatial and temporal variability; if the data

are non-stationary, the estimation of the covariance matrix becomes problematic; EOFs

identify spatial patterns but do not propagate these patterns in time. Finally, as for

any finite representation on basis functions, truncation of the number of components

limits the total variability explained by the expansion. In spite of all the drawbacks,

the reasons for the popularity of EOFs are that they are simple to calculate and, being

a discrete version of a KL expansion, they provide results that are appealing to the

scientific community.

When comparing observational records with climate model simulations, using

a finite basis function representation can allow us to focus on the major patterns of

variability. Even when the observations and the different simulated fields are very

dissimilar, it is possible that there are commonalities between the components used to

represent them. As for EOFs, they have been used in the atmospheric and oceanic

7



sciences to produce environmental indexes. Recent examples of EOF based indexes are

the Pacific Decadal Oscillation (PDO; Mantua and Hare, 2002), the North Pacific Gyre

Oscillation (NPGO; Di Lorenzo et al., 2008), and the Arctic Oscillation (AO; Thompson

and Wallace, 1998). These indexes have been used in studying climate effects on salmon

production (Mantua et al., 1997); when describing physical and biological changes in

the North Pacific (Di Lorenzo et al., 2009); they have been linked to variations in

the Kuroshio-Oyashio Extension (Di Lorenzo et al., 2008, 2009); and they have been

associated with fish abundance in the San Francisco Bay (Cloern et al., 2010). Providing

unified forecasts of EOF coefficients is not only useful for climate model simulation

assessment, it is an important issue in itself.

2.2 Data

2.2.1 Historical Records

We consider 5◦ gridded SST for the 20th century (1900-1999), in the North

Pacific region 22.5◦N-62.5◦N, 112.5◦E-247.5◦E. This results in a total of 171 grid cells.

Observational data stem from the UK Meteorological Office, Hadley Centre (Rayner

et al., 2003). We aggregate (to 5◦ resolution) the available 1◦ gridded monthly means, to

make them compatible with calculations used for the PDO, and we also use three levels

of temporal aggregation: Monthly (M, no aggregation), Quarterly (Q), and Monthly

Decadal (D). We use these three levels to see how much information we can extract

from each resolution. For the quarterly data we take the means of December–February,

8



March–May, June–August, and September–November for every year. For decadal we

average the ten months of January of each decade, then the ten months of February,

and so on, for each month. Thus, in the monthly case, we have, for each grid cell, 18

time series with 2400 time steps. In the quarterly case we have 800 time steps and in

the decadal case we have 240 time steps.

2.2.2 Global Climate Model data

We consider an ensemble of SST simulations from seventeen different GCMs

(see Section A of the Appendix), used to obtain the results in the IPCC AR4. The

GCM output, available from https://esg.llnl.gov:8443/index.jsp, stemmed from

the World Climate Research Programme’s (WCRPs) Coupled Model Intercomparison

Project (CMIP3) multi-model data set (Meehl et al., 2007). We obtained model simu-

lations under two types of forcing: Climate of the 20th Century (20C3M), for the years

1900–1999, and Emissions Scenario A1B (Nakicenovic and Swart, 2000), for the years

2000–2099. Under the 20C3M scenario, greenhouse gas forcing is increased as observed

in the 20th century. Under A1B, rapid global population and economic growth peak

in the mid 21st century, and then start to decline. This scenario assumes that the

technological change in energy systems will be balanced between fossil intensive (A1FI)

and non-fossil energy sources (A1T). A1B forcing encompasses volcanic aerosols and

emissions of sulfur, methane and other greenhouse gases (Randall et al., 2007). Because

the spatial resolution of our ensemble of GCMs varies, we aggregate all simulations to

a common 5◦ resolution.
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2.2.3 Data processing

Let X0
t (s) denote the SST observation at time t (t = 1, . . . , T2 ) and grid point

s (si,j = (i, j), i = 1, . . . , 9, j = 1, . . . , 28). The value of T corresponds to the end of

the 21st century and depends on which level of time aggregation is used. To obtain

monthly anomalies in the M dataset case, we consider a given location and average over

all years for a given month. This produces a 20th century monthly climatology. For

each grid cell, we then subtract the corresponding climatology from the observations.

For datasets quarterly and decadal we proceed in a similar fashion. We denote the

observational anomalies (SSTa) as X̂0
t (s). Similarly, we obtain the anomalies for each

of the climate model simulations.

To obtain the EOF of the observational anomalies we consider the matrix

X̂0 =


X̂0

1 (1, 1) X̂0
2 (1, 1) . . . X̂0

T/2(1, 1)

...
...

. . .
...

X̂0
1 (9, 28) X̂0

2 (9, 28) . . . X̂0
T/2(9, 28)


and decompose it using the SVD algorithm (Hannachi et al., 2007). Thus

X̂0 = UDV
′

=

k∑
l=1

ul(s)ψl(t)

Letting p = 9 × 28, U is a p × p orthogonal matrix of left singular vectors,

V is a T
2 ×

T
2 orthogonal matrix of right singular vectors, and D is a p × T diagonal

matrix with nonnegative singular values, sorted in decreasing order. ul(s) and ψl(t)

are p× 1 and 1× T vectors and are the l-th EOF and the EOF coefficient respectively

thus creating a discretized version of the Karhunen-Loéve representation of the spatial
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surface. As ul(s) form an orthogonal basis, we can obtain a common representation

of all climate model simulation SST anomalies by projecting on it. Denote X̂j as the

matrix of anomalies for the j-th climate model simulations. Then

X̂j = UUT X̂j =
k∑
l=1

ul(s)ϕl,j(t)

where ϕl,j(t) is a 1 × T
2 vector and the coefficient for the l-th observational EOF, cor-

responding to the j-th member of the ensemble. In this paper we focus on the first two

largest modes of variability, corresponding to l = 1 and 2, for each of the three time

indexes. Figure 2.1 shows the first and second EOFs of the observational anomalies, for

time aggregations M, Q and D. The leading EOF for D is similar to the second EOF for

M and Q, suggesting that at the Decadal time level the coastal process is driving the

variability. We project the GCM anomalies onto the observational EOF, as opposed to

calculating an individual EOF for each model. This is done because some of the GCM

EOFs are completely different from the observational EOF. By projecting GCM anoma-

lies onto the observational EOF, we keep the spatial pattern consistent throughout all

models, thus giving us a way to compare the temporal disagreements between models.

As described in Mantua and Hare (2002), the PDO is the leading PC from

an EOF analysis of North Pacific SST anomalies. To calculate the PDO index, SST

anomalies poleward from 20◦N are obtained by subtracting the long-term (1900-1993)

mean from monthly observations, considering data from November to March only. The

global mean anomaly is further subtracted, to remove the effects of “global warming”. In

our analysis the global mean was not removed. The PDO behaves much like the El Niño-

11



Southern Oscillation but on the time scale of 20-30 years, as opposed to 16-18 months

(Mantua and Hare, 2002). Similar to the PDO, the North Pacific Gyre Oscillation

(NPGO) corresponds to the second leading PC of Sea Surface Height anomalies (SSHa).

The NPGO closely tracks the second PC of SSTs which is referred to as the Victoria

Mode (Di Lorenzo et al., 2008).

Figure 2.2 and 2.3 show the first and second EOF coefficients for some ensemble

members. We note that, while the overall trend of coefficients corresponding to different

climate models is similar, there are substantial variabilities between them. For the

second half of the 21st century we observe a clear quasi-cyclical pattern for many of

the climate model simulations. This is an indication that the simulations are out of

phase with the 20th century observational climatology used to produce the anomalies.

Monthly decadal series display noticeable jumps, due to the discontinuity that exists,

for some decades, between the average SST for January and the average December SST

for the previous decade.

2.3 Models to blend GCM and observational time series

As mentioned in the introduction, our goal is to blend the information from

the different GCM simulations using the observations as a reference. To this end we

build a hierarchical model that uses the EOF coefficients corresponding to present day

observational data to estimate the model discrepancies. These are then propagated into

the future to obtain 21st century forecasts.
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Figure 2.1: The figure shows the first (left) and second (right) observational EOF for
the Monthly (top), Quarterly (middle), and Decadal Monthly (bottom) temporal scales.

To perform a comparison between models we use three methods including the

Deviance Information Criterion (DIC; Spiegelhalter et al., 2002), Chi-Squared test (West

and Harrison, 1997), and a Posterior Predictive P-value technique (PPP; De La Horra

and Rodŕıguez-Bernal, 1999). Using these three tests we toggle different values of the

discount factors as well as the seasonal components. We select the values for the discount

factors for a specific EOF and time index based on the optimization of these three

goodness of fit methods and a visual comparison.

2.3.1 Models for Monthly and Quarterly Averages

Consider the observational l-th EOF coefficient series ψl(t). For simplicity we

drop the index l and denote this as ψt. We assume that ψt follows an underlying level
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Figure 2.2: Monthly EOF1 coefficient (top), Quarterly EOF1 coefficient (middle),
Decadal Monthly EOF2 coefficient (bottom) . SSTa (Solid Black) with the following
model projections: GFDL-CM2.1, GISS-ER, CCSM3, NCAR-PCM, HadCM3.
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Figure 2.3: Monthly EOF2 coefficient (top), Quarterly EOF2 coefficient (middle),
Decadal Monthly EOF1 coefficient (bottom) . SSTa (Solid Black) with the following
model projections: GFDL-CM2.1, GISS-ER, CCSM3, NCAR-PCM, HadCM3.
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θt:

ψt = θt + ν0
t , (2.1)

for some Gaussian errors ν0
t uncorrelated in time. Additionally, the j-th model l-th

EOF coefficient ϕl,j(t) has a bias δjt , with respect to θt. Again, we drop the index l and

simplify the notation to ϕjt . Thus

ϕjt = θt + δjt + α1
1,t + α2

1,t + α3
1,t + νjt , j = 1, . . . , 17, (2.2)

where α1
i,t corresponds to a time varying seasonal component having annual (i = 1),

semestral (i = 2) and quarterly (i = 4) periods. The Gaussian errors νjt are uncorrelated

in time. While we are using anomalies which should eliminate the seasonality, the

climate models create an apparent artificial oscillation, which, if not accounted for, will

affect the models effectiveness. To complete the model we specify the evolution of the

parameters as

θt = θt−1 + βt−1 + ωθt

βt = βt−1 + ωβt

δjt = δjt−1 + ωδ
j

t

,

 αi1,t

αi2,t

 =

 cos(2πλi) sin(2πλi)

− sin(2πλi) cos(2πλi)


 αi1,t−1

αi2,t−1

 ,

(2.3)

for i = 1, 2, 4 and λi = i/12. To specify the distribution of the error terms, denoted

as νt = (ν1
t , . . . , ν

17
t )′, we assume that (ν0

t ,ν
′
t)
′ ∼ N18(0,Σ), for t = 1, . . . , T2 , where

NJ(·, ·) denotes a J-dimensional normal distribution. For the 21st century there are

no observations and so no observational error term. We assume that νt ∼ N17(0,Σ2),

Σ ∼W−1(rΣ, SΣ), Σ2|Σ ∼W−1(rΣ2 , SΣ2), where W−1(r, S) denotes an inverse-Wishart
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distribution with r degrees of freedom and scale matrix S. Conditioning the distribution

of Σ2 on Σ establishes a link between the observational variability in the 20th and the

21st centuries. By partitioning the covariance matrix Σ as,

Σ =

 Σ1,1 Σ1,2:J

Σ2:J,1 Σ2:J,2:J


we can also assume that SΣ2 = (rΣ2 − 17)Σ2:J,2:J , where Σ2:J,2:J is the partition of the

Σ minus the first row and column. This implies that E(Σ2|Σ) = Σ2:J,2:J . A large value

of rΣ2 produces a distribution with small variability around the mean value Σ2:J,2:J .

Let Θt = (θt, βt, α
1
1,t, . . . , α

3
2,t, δ

1
t , . . . , δ

17)
′
. Then, conditional on (Σ,Σ2), we can write

Equations (2.1) – (2.3) as a Dynamic Linear Model (DLM; see, for example West and

Harrison, 1997) with Θ as the state-space parameters. Denote as Wt the variance of the

evolution equation of Θ. For the 20th century we model Wt using discount factors (West

and Harrison, 1997, Chapter 6). We use three blocks, one for θt, one for βt and one for

the seasonal components. Each block has a different discount factor di, i = 1, 2, 3. We

set (d1, d2, d3) = (0.70, 0.95, 0.999) and (d1, d2, d3) = (0.70, 0.95, 0.98) for the first and

second EOF respectively. For the 21st century we do not discount and we fix Wt to its

last values in the 20th century. This is to reflect the loss of observational data.

The Q data set is modeled similarly to the M data set, with two modifications:

i) we only include two seasonal components, the annual and the semestral; ii) we place

block discount factors on Wt, such that (d1, d2, d3) = (0.70, 0.95, 0.98) and (d1, d2, d3) =

(0.70, 0.80, 0.999) for the first and second EOF, respectively.
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2.3.2 Model for Decadal Monthly Averages

Similar to the previous model, we consider the observational EOF coefficient

series ψt. We assume that ψt follows an underlying level θt and decadal jump λd. The

decadal jump parameter corrects for the time discontinuity between decades, an artificial

feature caused by the level of averaging. Thus

ψt = θt + λd + ν0
t (2.4)

for some Gaussian errors ν0
t that have intra-decadal correlation. Additionally the j-th

model EOF has a bias δjt with respect to θt and decadal jump bias λjd with respect to

λd. We denote time index t = 12(d − 1) + m = d,m, where d = 1, . . . , D̂ = 20 are

decades, m = 1, . . . ,M = 12 are the months, so t = 1, . . . , T = 240. Thus,

ϕjt = θt + δjt + λd + λjd + α1
1,t + α2

1,t + α3
1,t + νjt , j = 1, . . . , 17 (2.5)

where α1
i,t has time varying components as in model (2.3). νjt are Gaussian errors

with time correlation extending only within a time span of a decade. We describe the

evolution of the parameters as

θt = θt−1 + βt−1 + ωθt

βt = βt−1 + ωβt

δt = δt−1 + ωδ
j

t

,

 αi1,t

αi2,t

 =

 cos(2πλi) sin(2πλi)

− sin(2πλi) cos(2πλi)


 αi1,t−1

αi2,t−1


(2.6)
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for i = 1, 2, 4, λi = i
12 . To specify the distributions of the error terms we denote

νt = (ν1
t , . . . , ν

17
t ), νjd = (νj1,d, . . . , ν

j
12,d) and νd = (ν1

d , . . . , ν
17
d ), we then assume

(ν0
t ,ν

′
t) = N18(0, τ2Σ) and (ν0

d ,νd) = N18(0,Σ ⊗ τ2I12), for t = 1, . . . , T/2, d =

1, . . . , D̂/2 where T/2 and D̂/2 correspond to the end of the 20th century. For the

21st century we lose the observational error term so we assume ν
′
t = N17(0, τ2Σ2)

and νd = N17(0,Σ2 ⊗ τ2I12). We place prior distributions Σ ∼ W−1(rΣ, SΣ), Σ2|Σ ∼

W−1(rΣ2 , SΣ2) where as stated in the M time index model, SΣ2 is centered at the parti-

tion of Σ. Let Θt = (θt, βt, α
1
1,t, . . . , α

3
2,t, δ

1
t , . . . , δ

17)
′
and Λd = (λd, λ

1
d, . . . , λ

17
d )
′
. Condi-

tional on (Λ,Σ,Σ2, τ
2) we can write Equations (2.4) – (2.6) as a DLM, with state-space

parameter Θ. We place block discount factors on the evolution equation similar to the M

model, such that (d1, d2, d3) = (0.50, 0.98, 0.999) and (d1, d2, d3) = (0.50, 0.90, 0.999) for

the first and second EOF respectively. For the 21st century we fix Wt to its last values

of the 20th century to reflect on the loss of observational data. We place prior distri-

butions for Λd ∼ N(m1,d, C1,d), τ
2 ∼ Γ−1(rτ , Sτ ), m1,d ∝ 1, and C1,d ∼ W−1(220, 50I).

To explore the posterior distributions of the models above we use the Gibbs sampler, a

special case of Markov Chain Monte Carlo methods.

2.4 Results

Figure 2.4 shows the first observational EOF and the projected underlying

process for the ensemble of climate model projections for the three time indexes. M

and Q behave very similarly, in that they capture the same general behavior in the 20th
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century and have an increase in the 21st century, which ranges from 10 to 30 units and

from 5 to 20 units, respectively. The decadal jump term in D corrects for the artificial

jumps, and has a less pronounced increase into the 21st century, ranging from 0 to 5

units. The EOF scale is not a temperature scale, but once EOFs are projected onto

their spatial counterparts, the outcome is in the original temperature units.

Figure 2.5 (top) shows the level process and the jump process, together with

95% probability intervals. We can see that the level process increases in the 21st century

and that the model is able to describe significant jumps. The model discrepancy terms

for time index D in Figure 2.6 show how the coefficients for some specific GCMs vary

from the common level. We observe that two of the projections, NCAR-PCM and

HadCM3, over and under estimate at a range of (-3.5,5). We can also see that jumps

vary in intensity between models and become more apparent in the 21st century. In

figure 2.6 we can see the model discrepancies for the three different time indexes for

the first EOF. The discrepancies for M and Q are very similar in that the model bias

follows the same structure, with more noise for M. For D, the weights are similar in

the sense that NCAR-PCM and HadCM3 are given large positive and negative weights,

suggesting that they are over and under approximating, while the remaining 3 are given

approximately zero weight. If we look at the observation variance parameters, Σ1,1 for

the 3 time indexes we see a decrease, from 9.5 to 3.3 to 1.16, when comparing between

M, Q, and D. This is to be expected since we smooth the noise for the monthly data by

a third then a tenth for Q and D respectively. The variance parameters do not change

for the climate model projections when comparing them over the 3 indexes.
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Figure 2.4: First EOF Projections from an Ensemble of Climate Models from top to
bottom: Monthly, Quarterly, and Monthly Decadal.
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Figure 2.5: Underlying process and jump (top) with 95% credible intervals for the first
EOF of time index D. Model bias terms (middle) and Model Jump bias terms (bottom)
for the projections GFDL-CM2.1, GISS-ER, CCSM3, NCAR-PCM, HadCM3.
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Figure 2.6: Model discrepancy terms for M (top), Q (middle) and D (bottom) for the
projections GFDL-CM2.1, GISS-ER, CCSM3, NCAR-PCM, HadCM3.
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From the ensemble projections, ψl, obtained for the EOFs, we perform a re-

construction of the sea surface temperature field. We define the reconstruction as

X̃r(s, t) =

r∑
l=1

ul(s)ψl(t) (2.7)

where the climatology is then added to X̃r(s, t) to produce SST. We use this recon-

struction for D and compare the results to the approximated observational SST using

r = 10, which gives us most of the explained variability. The methods stated above

were used in modeling the other eight indexes.

In Figure 2.7 we can see the differences between the present observational SST

(January 1990’s) and the reconstructed SST for the month of January, in the 1960s,

1990s and 2020s, for the model of time index D. Our model suggests that, compared

to the present conditions, the past was cooler and the future will be warmer with

differences ranging from (-0.45K,-0.10K) for the past and (0.12K,0.44K) for the future

for the first and third quantile. The reconstruction for the current SST (middle) provides

a visual examination of how well the model is performing, with differences ranging from

(-0.24K,0.04K) . The difference is not large, suggesting that our model can describe the

present day SST.

Figure 2.8 shows the time series of observational SST for the 20th century,

as well as the SST reconstruction and GCM for the 20th and 21st century. From this

figure we can see reconstructed SST closely follow observational SST, in both slope and

amplitude, much closer than any single GCM. In the 21st century, it is important to

note that the reconstruction is not just the average of the GCMs. While the amplitude
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Figure 2.7: Differences between Monthly Decadal SST for January of 1990’s and SST
Reconstruction using ten EOFs for the decades of 1960s,1990s,2020s (top to bottom).
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Figure 2.8: Monthly Decadal Observational SST (Solid Black), Global Climate Models
(GFDL-CM2.1, GISS-ER, CCSM3, NCAR-PCM, HadCM3.), and SST Reconstruction
(Doted Black) for station site (132.5,22.5), (232.5,37.5), (182.5,57.5), (202.5,27.5) where
(Degrees East,Degrees North) (Top to Bottom).
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is smaller in some cases, the time series do have a similar increasing slope. In Figure 2.9

we present the spatial reconstruction for monthly decadal SST, for the month of July in

the years 2020, 2040, and 2060. We can see noticeable temperature increase in the far

north and along the southeast coastline. This reconstruction suggests that the ocean is

getting warmer in certain parts faster than others.

2.5 Conclusions

We have created a methodology to obtain a unified forecast of oceanic indexes

using historical records and GCM simulations. In response to the desideratum of high

frequency and high spatial resolution in the projections, we have developed a model

that focuses on the main modes of spatial variability. The model blends the coefficients

of those modes, using the different sources of information and accounting for seasonal

cycles. The resulting index predictions have an interest of their own, as they can be

associated with global oceanic dynamics and specific environmental changes. They can

also be used to reconstruct the spatio-temporal fields and obtain high spatial resolution

SST predictions. The problem of comparing month to month observational data and

GCM simulations is tackled by assuming a dynamic model that produces smoothed

estimates of the discrepancies.

Predictions show a degeneracy in the GCMs, around the middle of the 21st

century. This could be attributed to the strong assumption in our model that the spatial

EOF pattern does not change over time, and thus, the GCMs become out of synchrony
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Figure 2.9: Monthly Decadal SST future reconstruction for July in the year 2020 (top),
2040 (middle), 2060 (bottom).
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with the 20th century climatology. Alternatively, it could just be an artifact of the

GCMs themselves, as they simulate climate into the future. Another possibility is that

the climate models are predicting a dynamical shift in seasonal behavior, meaning winter

may come earlier or later. Either way, by considering a joint analysis of high frequency

data, as opposed to taking each season separately, our statistical model can tackle this

issue. Our model is flexible enough to deal with time-varying cycles. The changing

seasonality, though, remains an important GCM feature that needs to be considered

carefully, and that highlights the difficulties of predicting the climate 100 years into the

future.

We performed an analysis that considered three different levels of temporal

aggregation. The results show that, at least for the first two EOF coefficients, all three

analyses capture similar structural features. This is likely due to the smoothing induced

by the dynamical model. We see, in particular, that the results from M are a noisier

version of those from Q. We do observe some relevant differences when we compare

D to M and Q. The level of increase in the 21st century for D is much smaller than

for M and Q, and has less variability. Computationally, D is, of course, much faster

to deal with that M, as it involves an order of magnitude less data. D corresponds

to the level of time aggregation used most frequently in the literature. By taking

decadal averages we create an artificial feature not present in the original data set.

This feature is a jump caused by the time discontinuity created at the turn of each

decade, which we account for in our modeling structure. The visible jumps in the 21st

century projections suggest that the model does not disregard this feature after the 20th
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century, but incorporates the jumps in the future predictions. The traditional approach

to combining multi-model GCM ensembles considers decadal seasonal data separately

for each season. In comparison with this approach, our model for D has the advantage

of providing continuity between decades and months. This allows a detailed description

of the dynamics of future seasonal patterns. We have focused on representation of the

spatio-temporal fields in terms of EOFs.

The methodology proposed in this chapter can be used for expansions on any

set of bases, provided the same set is used for all the GCMs and the observations. The

resolution of the reconstructed predictions obtained in this chapter is high relative to the

large regions commonly used in the literature, but it is still too coarse for most practical

ecological studies. In the chapters 3 and 4 we explain how to obtain projections on a

much finer spatial resolution using a change of support methodology.
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Chapter 3

Downscaling

A spatial resolution of 5◦ is sufficient to observe large scale oceanic behaviors

but too coarse to capture local and regional oceanic variability. Coastal behaviors such

as upwelling, a wind driven phenomenon that brings nutrient rich water to the ocean

surface impacting biological ecosystems such as phytoplankton sardine, and anchovy

production (Ward et al., 2006), are completely smoothed over, making these patterns

invisible at large resolutions. In Figure 3.1, we see how the coastal features in the

coarser resolution are nonexistent and the pattern for upwelling is not distinct at larger

resolutions. GCMs are essential in gathering information over large areas and time scales

and until the last few decades, high-resolution datasets were not available. However,

as the resolutions become finer, it has allowed us to model smaller regions with greater

precision. The use of statistical downscaling is a computationally effective way to form

a connection between large and small scale variability.
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Figure 3.1: This figure shows the surface plot of California Coast for July 2003 at
different spatial resolutions: (top, left to right) 5◦, 1◦; (bottom, left to right) 0.1◦,
0.01◦.
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3.1 Introduction

We model spatial-temporal data by capturing temporal evolutions while smooth-

ing the spatial surface. Modeling the spatial behavior through a covariance matrix

using a covariogram as a function of Euclidean distance is the conventional way to

model space-time data. This type of modeling is known as kriging models (for further

explanation see (Cressie and Wikle, 2011)). Kriging models produce inference that is

good for spatial prediction, but are impractical when dealing with a large number of

spatial locations. Creating and decomposing a covariance matrix of ten thousand loca-

tions results in storing over fifty million unique numerical entries making these models

computationally infeasible.

An alternative approach for space-time modeling is to use a more flexible model

by specifying the covariance matrix though a smoothing kernel. A Gaussian process is

developed by convoluting a white noise process over a fixed grid using a smoothing

kernel; this is know as a discrete process convolution (DPC). In this chapter, we will

focus on a DPC to model space-time data. In this next section, we use a discrete process

convolution as a statistical downscaling technique to establish a link between the high

resolution temperature output and the large scale variation of the GCM ensembles.
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3.1.1 Process Convolution

If we consider the temperatures as a Gaussian process yt(s), over time t and

space s, as the sum of process zt(s) and error εt(s) such that

yt(s) = zt(s) + εt(s)

zt(s) =
M∑
u=1

k(s, su)xt(su).

The process zt(s) is a discrete process convolution of a Gaussian process defined by a

smoothing kernel k(s, su) which depends on d = |s−su|, the Euclidian distance between

the two points. xt(su) is a Gaussian process that captures the temporal patterns over

the much smaller grid su, the details of which can be found in Higdon (1998, 2002);

Cressie and Wikle (2011). The smoothness of zt(s) depends on the convolution kernel

k(s, su) and conditional on process xt, the spatial smoothness is independent over time.

This also gives us the flexibility of making the covariance matrix a function of the kernel.

For computational reasons we will use a Bezier kernel for the remainder of this chapter.

Information about the other various types of smoothing kernels can be found in Kern

(2000), however they will not be discussed in this thesis.

We define the kernel centered at the point su as

k[s− su;ω] =


(1− ||s− su||φ)ω ||s− su||φu < 1

0 o.w.

where ||s − su||φ = 1/φu
√

(xs − xu)2 + (ys − yu)2 is a simplified version of the kernel

defined in Lemos and Sansó (2009) and ω is the smoothness parameter. This gives us

a convolution kernel that is isotropic with circular support around su, with radius φu,
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and allows for local spatial control of the process. For certain values of ω the kernel

can give us Gaussian style smoothness with tapering occurring outside of the radius

of φu allowing the kernel to be sparse. Having a sparse kernel allows us to lessen the

computational load since most of kernel matrix K will be zero’s.

PC models keep the appeal of kriging model, are similar to using an EOF rep-

resentation of the spatio-temporal field (Storch and Cambridge, 1999), and the number

of locations of the underlying process is not dependent on the location of the observa-

tions. This modeling approach allows us to reduce the dimension of our spatial process

while still producing similar results to that of a covariogram structured model. We can

extend this model by adding a time series structure using an auto-regressive component

to capture the temporal evolution. In this chapter we model the temporal evolution

via DLM techniques similar to the work in Huerta et al. (2004). Downscaling models

have also been used recently when comparing observational data to numerical simula-

tion data: Berrocal et al. (2012) use Regional Climate Models as covariates to predict

SST on the seasonal scale; Berrocal et al. (2010) use a spatio-temporal model to Ozone

data; and Sansó and Guenni (2004) model rainfall data using deterministic simulations.

3.2 Spatio-Temporal Model

Let Zt(s) denote the 0.1◦ SST at time t over the spatial grid s = (s1, . . . , sI)
′
.

We construct the likelihood such that

Zt(s) = µt(s) +

U∑
u=1

k[s− su;φu] (Θt(su) + ηt(su)) + εt (3.1)

35



where εt ∼ N(0, τ2II), µt(s) is the observational climatology at time t, and k[s− su;φu]

is a Bezier kernel centered around su with range parameter φu. Θt(su) is the 1◦ resolu-

tion SST anomalies over the North Pacific obtained using the model blending techniques

in Chapter 2. The analysis of Θt(su) are presented in a later section. The vector ηt(su)

is the residual signal not captured by the large scale signal Θt. For completion, the

evolution equations for ηt are written as,

ηt(su) = G(ρ)ηt−1(su) + wt(su) (3.2)

where wt ∼ N(0,Wt) and G(ρ) = ρIu. The auto-regressive coefficient ρ is given a prior

U(0, 1), where U(·, ·) denotes the uniform distribution. We parameterize the equations

as follows,

Yt(s) = Zt(s)− µt(s)

λt(su) = Θt(su) + ηt(su)

Lt−1(su) = Θt(su)−G(ρ)Θt−1(su).

For simplicity we will drop the spatial notation (s, su) when describing the likelihood.

This makes the state-space equations

Yt = K(φ)λt + εt, εt ∼ N(0, τ2II)

λt = Lt−1 +G(ρ)λt−1 + ωt, ωt ∼ N(0,Wt).

(3.3)

where the observational covariance has an uninformative prior , p(τ2) ∝, (τ2)−1 and the

evolution matrix Wt will be modeled using a discount factor approach. Let Dt denote

all the information up to time t and for consistency we let F
′
t = K(φ) . Using the FFBS

algorithm decribed in A.2.1 we can write the one-step ahead forecast and posterior

distributions as,
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p(λt−1|Dt−1) ∼ N(mt−1, Ct−1) , Rt = GtCt−1G
′
t +Wt

p(λt|Dt−1) ∼ N(Lt−1 +G(ρ)mt−1, Rt) , Qt = F
′
tRtFt + Vt

p(Yt|Dt−1) ∼ N(F
′
t (Lt−1 +G(ρ)mt), Qt) , Ct = Rt −AtQtA

′
t

p(λt|Dt) ∼ N(mt, Ct) , mt = Ct
(
FtV

−1
t Yt +R−1

t (Lt−1 +G(ρ)mt)
)

The discount factor approach described in (West and Harrison, 1997) defines

Wt = 1
δGtCt−1G

′
t−GtCt−1G

′
t, where the value of δ ∈ (0, 1). We will use the discounting

approach described in (Lemos, 2010) where we selectWt such that the discounting occurs

on the prior variance V [λt−1|Dt−1] = Ct−1 making Wt = 1
δCt−1−GtCt−1G

′
t, which seems

a more natural approach. Using this type of discounting technique simplifies the FFBS

equation parameters to,

Rt = δ−1Ct−1

Qt = δ−1F
′
Ct−1F + V

C−1
t =

t−1∑
k=0

δkFV −1F
′

mt = CtFV
−1Yt + δLt−1 + δGmt−1.

(3.4)

Since the discount value 0 < δ < 1, the summation of C−1
t is a geometric series and

quickly converges when δ < 0.95. In figure 3.2 we can see the time of convergence is

roughly 10 time steps. In this analysis we will use a discount factor of δ = 0.7 and so

the approximation of C−1
t =

1

1− δ
FV −1F

′
will be used. This approximation simplifies
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the backwards sampling equations to sample λt to be

p(λt|λt+1, DT ) = N(ht, Ht)

Ht = C − δCG′C−1GC

ht = mt + δCG
′
C−1(λt+1 − (Lt +Gmt)).

(3.5)

We sample the parameters (φ, ρ, τ2) from the marginal posterior distribution

p(φ, ρ, τ2|DT ) ∝
T∏
t=1

N(ft, Qt)p(φ)p(ρ)p(τ2).

The order in which we sample the parameters in done in such a way that we sample the

more sensitive parameters first. We construct a sampling hierarchical with τ being at

the top, since it’s a Gibb step, followed by ρ and then φ. The parameters ρ and φ are

sampled in a block such that if ρ is accepted, we sample φ, otherwise both get rejected.

The samples of τ2 are obtained using a Gibbs step, while an MCMC algorithm

is used to explore the posterior distributions for ρ and φ. In the next section we ran

the Metropolis-Hastings algorithm for 500000 iterations with an additional 100000 burn

in. The chain was then thinned by taking every one hundredth iterations leaving us

a sample of 5000. To test for convergence we analyze only the two parameters φ2

and ρ. We tested two chains with initial values for ρ at (0.5, 0.95) and initial values

for φ to be at the lower boundary and upper boundary of the kernel support. Using a

Gelman and Rubin convergence diagnostic (Gelman A., 1992) we obtained the potential

scale reduction factor to be an average of 1.6 and 1.5 for φ2 and ρ respectively. Once

convergence of the three parameters have been established, we can then move into the

sampling algorithm for the parameter η. The algorithm on how the posterior samples
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Figure 3.2: The number of time steps needed for the covariance of p(λt|Dt) to converge
for the different values of the discount factor δ: 0.70 (black), 0.75 (red), 0.80 (green),
0.85 (blue), 0.90 (cyan), 0.95 (purple), 0.999 (yellow).

are obtained is described in Chapter 4.

3.3 Data

We consider a monthly 0.1◦ resolution gridded SST for the years 2003 to 2012

in the North Pacific region 31.5◦N-43.5◦N, 230.5◦E-243.5◦E. The region encompasses

the coast of California. The observational data were made available by the Group for

High Resolution Sea Surface Temperature (GHRSST) (Donlon et al., 2007) and can be

accessed at (podaac-ftp.jpl.nasa.gov/allData/ghrsst/). The GHRSST product used in

the analysis for this chapter is L4, which uses a combinations of satellite, ship readings,

and bouy’s to produce a daily 0.01◦ gridded surface over the globe. We aggregate

the data to a monthly temporal resolution and since the coastal behaviors are not
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diminished at the 0.1◦ resolution, as pointed out in figure 3.1, we aggregate to a 0.1◦

spatial resolution resulting in a total of 9609 active grid cells.

The data we consider for the large scale variability is the reconstructed SST

anomalies obtained using the ensemble blending analysis performed in Chapter 2. The

historical SST data we use as observations stem from the UK Meteorological Office,

Hadley Centre (Rayner et al., 2003). The dataset has monthly temporal resolution, 1◦

spatial resolution over the North Pacific region, 22.5◦N-62.5◦N, 112.5◦E-247.5◦E. This

spatial resolution gives us 3926 active grid cells.

The GCMs used to perform the reconstruction analysis in section 2.3.1 were

obtained from the CMIP3 multi-model database. We filtered through these GCMs

by eliminating the models that did not have a spatial resolution of ≤ 1◦. We also

eliminated the GCMs that did not have a high count of active grid cells along the

coastal regions. This left us with three different GCMs: Bjerknes Centre for Climate

Research, Norway, (BCCR-BCM2.0) 2005, National Oceanic and Atmospheric Adminis-

tration/Geophysical Fluid Dynamics Laboratory, USA, (GFDL-CM2.1) 2005, and Na-

tional Center for Atmospheric Research, USA, (PCM) 1998. We then aggregate the

GCMs to a 1◦ spatial resolution. For the years 1900-1999 we use the SRES scenario

20C3M and for the years 2000-2099 we use the scenario A1B.

3.3.1 Large Scale Reconstruction

We perform an EOF analysis for the 1◦ observational anomalies and project

the climate model anomalies onto the observational EOFs. In Figures 3.3 and 3.4 we
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Figure 3.3: First (top) and second (bottom) observational EOF for monthly SST at a
1◦ resolution.

see the first and second observational EOF for the SST anomalies and corresponding

EOF coefficient and model projections for the years 1900-2099. We use the equations

2.1 through 2.3 to create a unified forecast of model ensembles. The observational data

for the years 2000 to 2010 were not included in performing this analysis. The eleven

years of data will be used to gauge the projection accuracy of our model as well as to

test the accuracy of our reconstruction.

While we are only presenting the first few EOFs in this analysis, we used a

total of 80 EOFs to capture 68% of the variability. The discount factors for the first

five EOFs are optimized using the same techniques described in Chapter 2. After the

5th EOF, the indexes become very similar and the spatial weights become localized.

Due to this fact, we set the discount factors for the remanding 75 EOFs equal to the
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Figure 3.4: First (top) and second (bottom) observational EOF coefficient (black) and
bcm2.0 (red), cm2.1 (green), and pcm (blue) model projections for monthly SST at a
1◦ resolution.
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ones optimized in the 5th EOF. The posterior samples were obtained using Gibbs steps

and the FFBS algorithm described in A.2.1. We obtained a posterior sample of 3000

iterations after thinning and burn in for each of the 80 EOFs.

3.3.2 Results

In figure 3.5 we present the results for the first four EOFs. The model does

a good job in projecting the next eleven years. The ability in accurately project over

these eleven years is vital since this reconstruction will be the driving force of our down-

scaling projections. While we are only showing the first four EOF results, the accurate

projections are constant for the first 40 EOFs. Using the reconstruction equation 2.7,

we reconstruct the SST field and compare it to the observations and GCMs.

In figure 3.6 we see the fit of the posterior mean of the reconstruction in

comparison to the GCMs. The plots correspond to a grid cell off the coast of San

Francisco and a gris cell off the coast of Alaska for the years 1990 to 1999. These

two locations illustrate the differences in slope, amplitude, and the degree of changing

behavior of the SST field for different regions. We can see that reconstruction performs

better in both slope and amplitude than any single GCM. In figure 3.7 we see the

reconstructed projections posterior mean and 95% probability bands compared to the

observations for the years 2000-2010. The amount of variability changes depending on

the spatial location. When comparing our projection to the GCM mean, figure 3.8, that

our model shows good ability to accurately project SST for the eleven years over just

taking the GCM average.
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Figure 3.5: First four (top to bottom) observational EOF coefficient (black) with smooth
posterior mean (blue) and 95% probability intervals (dotted red). The observations for
the years 2000-2010 (green) are used to projection validation.
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Figure 3.6: SST in degrees Celsius for two locations, [237.5,36.5] (top) and [180.5,57.5]
(bottom). The observations (black), GCMs: bcm2.0 (red), cm2.1 (green), and pcm
(blue), and posterior mean of the reconstruction (dotted black).
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Figure 3.7: SST in degrees Celsius for two locations, [237.5,36.5] (top) is off the coast
of San Francisco and [180.5,57.5] (bottom) is off the coast of Alaska. The observations
(black), posterior mean projection of the reconstruction (blue) with 95% probability
bands for the years 2000 to 2010.
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Figure 3.8: SST in degrees Celsius for two locations, [237.5,36.5] (top) is off the coast
of San Francisco and [180.5,57.5] (bottom) is off the coast of Alaska. The observations
(black), posterior mean projection of the reconstruction (blue), and GCM average (red)
for the years 2000 to 2010.
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Figure 3.9: The figure shows the region 30.5◦N-44.5◦N, 229.5◦E-243.5◦E off the coast
of California. The 0.1◦ high resolution dataset has evenly spaced grid cells in red. The
1◦ large scale parameter Θt(su) has grid cells encompassing the high resolution dataset
in black.

The level of variability is small up to the year 2011. Do to this fact we will

disregard this variability and take the large scale parameter Θt(su) in equation 3.1 to

be the posterior mean of the reconstruction. The area of interest for our statistical

downscaling model is the coast of California, we partition the reconstruction to the

same domain of our observational high resolution data. This partition results in a total

of 140 active grid cells as depicted in figure 3.9.
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3.4 Results

In figure 3.12 we show the posterior sample means for the kernel range param-

eters φ. The outer boarder of the region was set equal to twice the resolution and the

coastal parameters had a lower support boundary equal to the minimum distance to

compass the observations. In the middle of the region we see the range parameters want

to become localized with in increase in radii as we move outward to the boundaries.

In figure 3.13 we present the spatial field for the projected SST for the months

of January and July for the years 2013 to 2016. For the month of July we see an increased

cooling in the upwelling feature. We also see other small cooling in the southwest region,

however the overall behavior does not seem to change. For the month of July we see a

warming in the southwest region but mostly cooling everywhere else for the 2013 to 2014.

For the years 2015 to 2016 we see a warming phase except for the area corresponding to

the Monterey bay. This area of the coast appears to be unchanged for the three years.

To see the regions where the temperature change happens fastest, we use our

posterior sample to compare the years 2012 and 2016 by calculating the probability that

the change is greater then 1 degree Celsius for the month of January and 1.5 degrees

Celsius for the month of July. In figure 3.10 we see the southern and northern most

regions have an increase of over a degree in a span of four years.

Figure 3.14 we see the mean posterior surface projections plot for the month

of January and July for the years 2020, 2040, and 2060. The projections at this level

in time are no longer using the η correction parameter. Implementing a model with
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Figure 3.10: The figure shows the regions where the temperature change between Jan-
uary and July of 2012 and 2016 are greater than 1 degree and 1.5 degrees respectively
for 95% of the posterior samples.

an auto-regressive component less than one will ultimately deteriorate the value of that

process when projecting. We can see the large increase in temperature as we approach

the mid 21st century.

Looking at the individual locations in figure 3.15 we can see the how the model

adjusts to correct the the GCM ensemble. In some of the locations, mostly near the

coast, the ensemble does not capture the localized variation and the model corrects for

this. In figure 3.16 we can see how the varying degrees of adjustment the model makes.
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Figure 3.11: The figure shows the posterior sample means of the parameter φ with φ = 1
(black), φ = 2 (grey), and φ = 3 (white).
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Figure 3.12: Posterior density for the parameters τ2 (left) and ρ (right) with posterior
mean (red).

51



Figure 3.13: The figure shows projected SST fields for the month of January (top) and
July (bottom) for the years 2013,2014,2015, and 2016 (left to right).

Figure 3.14: The figure shows projected SST fields for the month of January (top) and
July (bottom) for the years 2020,2040,2015, and 2060 (left to right).
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Figure 3.15: The figure shows the locations of six stations that are inspected in figure
3.16.

Figure 3.16: The figure shows the SST anomalies (green) and posterior 95% probability
bands for the fitted anomalies (red) for six individual locations for the years 2003 to
2012.
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3.4.1 Model Comparison

To validate the performance of our model we will compare our results to the

GCMs used in the reconstuction. We perform a simple downscaling to the GCMs using

a bilinear interpolation (BLI). The BLI is an extension of the linear interpolator over

a 2-dimensional grid. We calculate the BLI for each of the three individual GCMs and

then take the average. This gives us four different models on which to compare our

projections.

We perform the statistical downscaling model for the time period 2003 to 2011

and see how well our model projects the observations for the 12 month period. We

calculate the mean squared error (MSE) and mean absolute error (MAE) as

MSE =
1

IT

12∑
t=1

I∑
i=1

(Yt(si)− Ỹt(si))2

MAE =
1

IT

12∑
t=1

I∑
i=1

|Yt(si)− Ỹt(si)|

where Y represents the observations and Ỹ represents the models. In table 3.1 we have

the results of the MSE and MAE and we can see that our model performs better in

predicting the 12 month period. The difference between the GCMs and our model is

on the order of 3. Looking at the individual months in figure 3.17 we see that for

the Summer and Fall months, our model does perform better compared to the GCMs

downscaled model. This is a good indication that our statistical downscaling model is

correcting the projections at the higher resolution.
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Ỹ B̄ BCM CM2 PCM

√
MSE 0.639 1.926 1.819 1.999 2.861

MAE 0.490 1.364 1.411 1.467 2.202

Table 3.1: The table shows the square root of the Mean Square Errors and Mean
Absolute Error for our model forecast Ỹ , bilinear interpolation of the GCM average B̄,
and the bilinear interpolation for the three individual GCMs

Time (Months)

2 4 6 8 10 12

1
2

3
4

5

Time (Months)

2 4 6 8 10 12

1
2

3
4

Figure 3.17: The MSE (left) and MAE (right) for the predicted year 2012. Our model
(black), BLI GCM average (red), BCM-BL (green), CM2 (blue), and PCM (cyan) over
the 12 months of prediction.
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3.5 Concluding Remarks

The model considered in this chapter has a number of important characteristic

that enable fast implementation of the estimation algorithms. One of those was to have

a kernel with compact support so we could control the level of sparseness in the kernel

matrix. This allows us to take advantage of the fact that most of the kernel matrix would

be zero and manipulating this matrix would be computationally appealing. Another

advantage of this model is the discounting technique implemented to the covariance

matrix. The specification lets us to inflate the prior covariance as well as to simplify the

Forward Filtering Backwards Sampling updating equations. Working with the simplified

equation is the ground work for the parallel implementation in the next chapter.

There are a few avenues we can take to improve on these methods. One

path would be to modify the kernel from circular support to allow ellipses. We could

also explore other convolution kernel such as a tapered Matérn or by modeling the

convolution kernel as a Gaussian Process.
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Chapter 4

Parallel Computation

4.1 Introduction

The size of the problem increases drastically when looking at finer resolutions.

Satellite data can now create a product with spatial resolution of 1/100◦, as seen in

figure 3.1, which gives a reading every 0.75 miles and daily readings on the temporal

scale. The amount of data that is available has surpassed the computational abilities

we currently have; thus averaging on the spatial and temporal scale is necessary. At full

spatial resolution the minimum size of the covariance matrix Qt is on the scale of 1200

gigabytes per time point. This amount of information is unfeasible on most computing

devices, as standard devices are on the level of 16 gigabytes per processor. Fitting a

model to this data using serial programming would not be practical.

In this chapter, we will discuss the use of a Message Passing Interface (MPI), a

library interface that allows you to run on distributed memory over multiple processors.
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MPI is not itself a language, but is a library of commands that allows communication

among the processors for the desired programming language. For the illustration in the

next section, we will use Fortran as our programming language.

4.2 Data

In this chapter we will consider two sets of data. The first dataset that we

focus on is the data described in Chapter 3. The spatial locations are of size 9609 and

120 on the temporal scale. The second data set we will consider is a simulated data set.

We simulate the dataset for the purpose of benchmarking the algorithm. The spatial

size remains the same, however we increase the temporal scale to 2400, which would

represent 200 years of monthly data. In both cases we keep the large scale variability

size to 140 locations.

4.3 Model

The model we use in this section is the same model we applied in Chapter 3.

Recall the following model,

Yt = K(φ)λt + εt, εt ∼ N(0, τ2II)

λt = Lt−1 +G(ρ)λt−1 + ωt, ωt ∼ N(0,Wt).

(4.1)

where p(τ2) ∝ (τ2)−1 and Wt follow the discount approach described in chapter 3. This

model has unknown parameters Ω = (τ2, φ, ρ, λ). The one-step ahead and posterior dis-

tribution of (Yt|Dt−1) and (λt|Dt), assuming that the covariance matrices have reached
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their limiting values, are as follows,

p(Yt|Dt−1) ∼ N(F
′
Lt−1 + F

′
Gmt−1, Q)

p(λt|Dt) ∼ N(mt, C)

Q = τ2
(
II + 1−δ

δ F
′
(FF

′
)−1F

)
C = (1− δ)τ2(FF

′
)−1

mt = 1
τ2
CFYt + δLt−1 + δGmt−1.

(4.2)

where Q is an I×I covariance matrix. In this model Q is the largest matrix to calculate.

By increasing the resolution from 0.1◦ to 0.01◦ the covariance matrix Q cannot be

calculated directly. Storing and decomposing Q is one of the challenges we simplify in

the next section.

4.3.1 Posterior Distributions

When calculating the posterior distribution for (φ, ρ, τ2) we do so using the

marginal likelihood at time t. The marginal posterior is given by,

p(φ, ρ, τ2|DT ) =
T∏
t=1

p(Yt|Dt−1, φ, ρ, τ
2)p(φ)p(ρ)p(τ2) (4.3)

Focusing on the marginal likelihood p(Yt|Dt−1, φ, ρ, τ
2) and by letting et = Yt−F

′
Lt−1−

F
′
Gmt−1, allows us to write the marginal likelihood as

p(Yt|Dt−1, φ, ρ, τ
2) ∼ N(F

′
Lt−1 + F

′
Gmt−1, Q)

∝ |Q|−
1
2 exp(−1

2e
′
tQ
−1et).

(4.4)

The covariance matrix Q in this likelihood is of the order 9609 × 9609 which makes it

very difficult to work with as it will slow computations down significantly. One way
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to deal with the Q is by not constructing the covariance matrix directly, but instead

finding small manipulations to reduce the size of matrix needed to be store. We focus

on simplifying the determinant of Q using Sylvester’s determinant theorem (Mühlbach

and Gasca, 1985),

|Q| = |(τ2)(II + 1−δ
δ F

′
(FF

′
)−1F )|

= (τ2)I |II + 1−δ
δ F

′
(FF

′
)−1F |

= (τ2)I |Iu + 1−δ
δ FF

′
(FF

′
)−1|

= (τ2)I |Iu + 1−δ
δ Iu|

= (τ2)Iδ−u.

(4.5)

This simplification makes |Q| a function of only τ2 and the discount factor δ. By

introducing a covariance matrix V to the observational equation, we have that the

determinant is |Q| = |V |δ−m. If the matrix V is sparse this calculation can still be

performed in a short time. This is one of the advantages of approximating the posterior

covariance Ct ≈ C.

The next step is to focus on calculations inside the exponential. Recall the

definition of et, then

log(p(Yt|Dt−1)) ∝ e
′
tQ
−1et

∝ et
′ 1
τ2

(
II − (1− δ)F ′(FF ′)−1F

)
et

∝ 1
τ2

(et
′
et − (1− δ)et

′
F
′
(FF

′
)−1Fet).

(4.6)

By defining the vector nt = Fet, we can eliminate the need to create a matrix of size

I×I. Since the matrix (FF
′
)−1 is u×u and nt is u×1 we can effectively avoid creating

a matrix larger than the smoothing kernel F
′

= K(φ).
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The posterior distribution for p(τ2|DT , φ, ρ) ∼ Γ−1(ατ , βτ ), where ατ and βτ

are the shape and scale parameters respectively of an inverse gamma distribution such

that,

ατ = TI/2

βτ = 1
2

T∑
t=1

(e
′
tet − (1− δ)n′t(FF

′
)−1nt)

(4.7)

The samples of τ2 are obtained using Gibb steps conditional on the values of (φ, ρ). The

posterior distribution for (φ, ρ) is

p(φ, ρ|Dt, τ
2) ∝ exp(− 1

τ2
1
2

T∑
t=1

(et
′
et − (1− δ)n′t(FF

′
)−1nt))

× p(φ)p(ρ).

(4.8)

The order in which we sample the parameters is τ2, ρ and then φ using MCMC al-

gorithms and a Gibbs step for τ2. In figure 4.1 we illustrate a simple diagram of the

sampling algorithm.

4.4 Outline of the implementation on multiple processors.

Running a program on a distributed memory array gives you the advantage of

running several independent tasks simultaneously. Moreover, by distributing the data

over the different processors in the array, one can handle very large datasets. Also,

spreading the workload evenly decreases computation time. Since each processor only

carries a fraction of the dataset we must devise a way for the processors to communicate.

Increasing runtime speedup can be achieved if communication between the processors

is minimal.
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Gibbs τ2 MCMC ρ If Accept MCMC φ

Reject

Figure 4.1: The order in which the parameters (ρ, φ, τ2) are sampled. The color of the
square indicates the number of times the FF algorithm has to be executed with grey
representing one time and red representing more than once.

Let the time it takes a processor to complete a task be defined as okj , where

j = 1, . . . , J is the j-th task and k = 0, . . . , (K − 1) is the k − th processor. In this

context a task is defined as a job to be completed by a processor k. Communication

between the processors (ku, kv) can vary depending on the logistics of the hardware.

Since the hardware is not something we can control, we will assume all processors

take the same amount of time to communicate and define the communication time as

com(k) = maxk(com(ku, kv)) where
com(ku, kv) = 0 if u = v

com(ku, kv) > 0 if u 6= v.

We define Rdk as the number of times the processors communicated for a work cycle d
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where d = 1, . . . , D. We denote the total time needed to perform a work cycle as

ψKd = Rdkcom(k) +
∑
j

maxk(o
k
j ) (4.9)

There are a few properties we must consider when looking at computation time. As K

increases then okj decreases and the number of communications Rd increases. Therefore

there exists a equilibrium point K0 such that for all K0 < Kj the cycle time ψK0
d > ψ

Kj

d .

While the value of K0 gives you the maximum number of processors for equilibrium,

it is not the most desired value for K as the benefit of increasing K will start to give

diminishing returns.

For the purpose of this illustration, let us assume we have access to K ∈ [1,K0]

many processors. Minimizing the computation time of a cycle can be done in multiple

ways: increasing the number of processors K (we will show later that there is an upper

limit for efficiency), optimizing task time okj , and limiting the number of communications

Rdk.

4.4.1 Optimizing task time

The optimal way to assign work is in such a way that you assign unique work

to each processor k and limit the communications. Global communication occurs when

one processor must communicate to the entire group, this is also known as a broadcast.

A broadcast should only be called when it is absolutely necessary as the processor

who establishes the broadcast is not released until all other processors have established

communication creating a communication bottle neck.
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The total time it takes for a cycle of work to complete depends on communica-

tion time, com(k). We will not be addressing how to optimize com(k) since improving

its performance is not determined by a modeling scheme, but by outside factors. We

fix com(k) as the slowest communication time between any two processors by limiting

the sharing of information to a block format. There are two main types of communica-

tion. Blocking communication is when a processor sends a message to another processor

and cannot be freed until the corresponding processor receives this message. Buffering

communication allows for a processor to free itself by dumping the information on a

memory buffer and proceeding. The receiving processor then collects the information

on the buffer and continues. The latter communication is faster in cases where the com-

munication speed between processors is not equal. Since our benchmark will require us

to use all the nodes in our cluster the communication speed will not be equal.

In figure 4.2 we see a general outline of how the algorithm will run. We start by

initializing communication among the processors. This opens communication with the

group of processors and labels them from k = 0, . . . , (K− 1). The number of processors

to be used must be defined at the start of the program and these processors cannot be

released until the end when we finalize and free them. We will define processor k = 0 as

our MVP (most valuable processor) since all the information that will be outputted to

the hard-drive will be gathered on MVP. In the serial step we initialize all the processors

with the information we will need such as reading in data, creating storage arrays, and

any other computations we need to prepare for the parallelization step. We also use

the end of this step to broadcast any information calculated in MVP that needs to be
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Initialize : k=0 k=1 k=2 k=3

Serial :
Init

Store
Init Init Init

Parallel : Task Task Task Task

Serial :
Gather

Store
Fin Fin Fin

Finalize : · · · · · · · · · · · ·

Figure 4.2: The general layout for a code that runs in a parallel architecture. At the
initializing step you open communication to all the processors. In the serial step you
perform all the operations needed prior to begin the parallel computation. The largest
part of the computations should be performed during this parallel step. The second
serial step you gather all the information and finally you close communication and
release the processors.

shared. The parallel step is where the majority of the heavy computation should be

taking place. Once the parallel step is complete, we gather all the information in our

MVP and free the processors by finalizing the communication.

4.5 Parallelizing over time

The serial approach to a time dependent task begins it’s calculations at t = 1

and end at t = T . The natural approach to parallelize is to break up time into K many

intervals where the starting point tk1 = Tk/K + 1 and end points tkT = T (k + 1)/K

for processor k. Each processor will then have a time interval of size nk = T/K such
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that

K−1∑
k=0

nk = T . In the case where T
K is not an integer, we distribute the remaining

time as evenly as possible. Making the size of the intervals nk as close to equal for all

processors is important. If the time intervals nk are too uneven, then the processors

with the smaller intervals will compete faster and will sit idling. A processor is idle if

it is not performing any calculations as a result of having to wait for other processors

to finish. Below we discuss how we limit our idle time when running our algorithm.

4.5.1 Metropolis-Hastings algorithm

Assume that we have a random process θ with observations y. In the Metropolis-

Hastings algorithm (MH) we calculate an acceptance ratio to determine whether we

transition from the previous state to a new proposed state (θ(i−1) → θ∗). The accep-

tance rate αMH is defined as

αMH =
p(θ∗|y)/J(θ∗|θ(i−1))

p(θ(i−1)|y)/J(θ(i−1)|θ∗)
(4.10)

where the function J(·, ·) is a proposal distribution. We accept the proposed value of

θ∗ with probability min(1, αMH). If we reject θ∗, then we let θ(i) = θ(i−1) and restart

the algorithm until all iterations have been completed.

To sample from the posterior distribution for (ρ, φ), we will use the MH al-

gorithm. The proposal distribution we use for both parameters is a truncated normal

distribution with lower and upper bounds (0, 1) and (1, 3) for ρ and φ respectively. We

will focus on the ratio of the posterior distributions and how we will evaluate this ratio

in the task environment. For the moment let us ignore the proposal distribution and
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focus on the marginal posterior of ρ conditioning on φ. We can write αMH as

αMH =
p(ρ∗|DT , . . .)

p(ρ(i−1)|DT , . . .)

=
K−1∏
k=0

T∏
tk=1

p(Ytk |Dtk−1, ρ
∗, . . .)

p(Ytk |Dtk−1, ρ(i−1), . . .)

=
K−1∏
k=0

αkMH

(4.11)

so that the acceptance rate can be separated into parts over each processor k. This type

of simplification allows each processor to calculate a portion of the acceptance ratio and

return only the value αkMH . The MVP then collects all the values of αkMH and together

with the proposal distribution the value is tested and the MH algorithm is completed

for iteration i.

4.5.2 Posterior Distribution Simplification

By breaking up the full length of time into K many intervals of length nk, we

have done two things: reduced the work load of the processors by only needing nk much

of the data, and forced the processor to establish communication to collect the full time

span. The only time dependent values in the posterior distribution in equation 4.6 are

et, which in turn depends on mt−1. This means that for all processors k < (K − 1), the

value of mTk will be sent to processor k+1 and in turn, all processors k > 0 must receive

that value. To calculate the marginal posterior distribution, we need to calculate etk

where

etk = Ytk − F
′
Ltk−1 − F

′
Gmtk−1.

mtk = CFV −1Ytk + δLtk−1 + δGmtk−1.

(4.12)
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This will be defined as the FF task. The primary objective is to calculate the value of

mTk as quickly as possible so that the next processor can begin. We can simplify the

calculations by performing most of the matrix multiplications prior to performing the

iterative time loop. We define the calculations

Jtk = CFV −1Ytk + δLtk−1

Ntk = Ytk − F
′
Ltk .

P
′

= F
′
G

(4.13)

as The Loop Operations (TLO) step. This step allows us to cut back on computation

time since we are only performing this step once instead of at each time step. TLO step

simplifies our equation to

etk = Ntk − P
′
mtk−1.

mtk = Jtk + δGmtk−1.

(4.14)

which limits the matrix multiplications to one per time step. The values of etk will only

be used locally, so calculating them will be performed after the communication has been

established. Figure 4.3 shows a general outline of how communication is established for

the FF task.

In this situation, having idle time is unavoidable. The processor k + 1 cannot

begin to work until processor k reaches the end of the loop. By creating the TLO step

and calculating etk after communication, we have decreased the idle time as much as

possible. Every task in a work cycle will have a TLO step.
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TLO TLO · · · TLO

mt0 loop mt1 loop · · · mtK−1 loop

et0 loop et1 loop · · · etK−1 loop

α0
MH α1

MH · · · αK−1
MH

Figure 4.3: The diagram shows where communication is taking place during the FF
task.

4.5.3 Task Identification

In figure 4.1, the order in which the parameters (ρ, φ, τ2) would be sampled

was established. The first task will be to implement a MH algorithm to sample ρ. Since

we are blocking the algorithm to only continue if ρ is accepted, this task will be the

most complicated of the three.

The Taskρ begins by sampling ρ∗ from a normal proposal distribution trun-

cated between 0 and 1,

J(ρ∗|0, 1) ∼ trN(ρ(i−1), 0.052). (4.15)

The value of (ρ(i−1), ρ∗) is then broadcasted from MVP to all the processors and the

TLO step is ready to begin. For visual representation, we separate the Taskρ into two

separate blocks as seen in figure 4.4. Block 1 and Block 2 represent the FF algorithm

for the value of ρ(i−1) and ρ∗ respectively. The values of (mtk ,m
∗
tk

) are calculated
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Block 1 Block 2

TLO TLO∗

mtk m∗tk

etk e∗tk

αkMH

Figure 4.4: A diagram for how processor k distributes work for Taskρ.

together and upon completion the final value is communicated to the next processor.

Once communication is complete, the value for the acceptance rate is calculated and

communicated back to MVP. If the value of ρ∗ is rejected, a new value is sampled from

the proposal distribution and only Block 2 is recalculated. Upon accepting the value

ρ∗, we move on to the next task. We must note that we might encounter a situation in

which we start to reject a large amount of samples before accepting. To avoid getting

stuck, we have set up a limit to the number of consecutive rejections to thirty upon

which the value of ρ(i) = ρ(i−1) and we continue to the next task.

With the completion of Taskρ we move on to Taskφ. We begin the task by

sampling φ∗ from the truncated normal proposal distribution

J(φ∗m|1, 3) ∼ N(φ(i−1)
m , 0.252) (4.16)
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with lower and upper truncation at (1, 3). This task only has one block since the value

of etk has already been calculated in the previous task. Taskφ calculates Block 2 and

returns the acceptance rate, thus completing the algorithm. If the sample is accepted or

rejected we move on to Taskτ and use the value of etk or e∗tk accordingly. Taskτ does not

require it’s own FF algorithm since the value of etk have already been calculated and so

it’s calculation is attached to the tail end of Taskφ. When we calculate the acceptance

rate αkMH we also calculate the portion of βkτ in equation 4.7. Note that the correct

value of φ(i) is not known until the MH algorithm is completed by MVP. This is why

we calculate both βkτ and βkτ∗ and use the appropriate values. This does not increase

runtime since these values are a byproduct of calculating the acceptance rate.

A work cycle consists of the completion of these three step. We run these

cycles iteratively until the posterior samples for (ρ, φ, τ2) have converged. We remove

the burn-in sample and denote the full posterior estimations for the converged chain to

be (ρl, φl, τ2,l) where l = 1, . . . , L. With the posterior samples of (ρ, φ, τ2) completed

we move on to the next and final task of sampling the values of λ.

4.5.4 Forward Filtering Backwards Sampling in Parallel

In the previous section we explained how to perform the FF algorithm to obtain

the marginal distribution for p(Yt|Dt−1, . . .). We then use the marginal distribution

to calculate the posterior distributions for (ρ, φ, τ2) and using an MH algorithm and

a Gibbs step to obtain our posterior samples. Having the full posterior samples for

(ρ, φ, τ2) allows us to perform multiple FF steps at once.
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The Backwards Sampling equations for p(λt|DT , λt+1),

H = C − δCG′C−1GC

ht = mt + δCG
′
C−1(λt+1 − (Lt +Gmt))

(4.17)

where λt ∼ N(ht, H) for all t = (T − 1), . . . , 1 and for t = T the distribution for λT ∼

N(mT , C). Since the only unknown values in these equations are the values of λt+1, we

set up our TLO step by calculating the following equations prior to communication,

PH = δCG
′
C−1

utk = mtk − PH(Ltk +Gmtk)

H = C − PHGC

(4.18)

and thus simplifying the mean vector htk to

htk = utk + PHλtk+1. (4.19)

The values of λ1k will be the only values communicated to processor k− 1 where k > 0.

The cycles in the previous section were memoryless. This was beneficial since the

information calculated in one iterative step did not need to be stored for the remaining

iterative steps. For Taskλ each processor will have to remember (K − k) many levels of

information. Taskλ consists of a series of FF block and BS block who’s calculations and

communication are shown in figure 4.5. It’s important to note that the TLO step will

always finish before communication is established by the previous processor. This means

a processor that is receiving information will always be ready to get that information

and thus the sending processor will immediately be freed to perform the following TLO

step.
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FF : BS

TLO : TLO

mtk : λtk

Figure 4.5: A diagram for how processor k distributes work for Taskλ.

We start Taskλ by using the first posterior sample (ρ1, φ1, τ2,1). We define the

notation FF ln(k+1)
and BSln(k+1)

for the l-th iteration and the k-th processor. In figure

4.6 we see an illustration of Taskλ with K = 4 processors and an arbitrary number of

iterations L. The algorithm can be separated into three different stages. The Warmup

is the first stage and refers to the initial steps needed to be completed until all idle

processors are eliminated. The Cool Down is almost a mirror image of the Warmup

stage in that it is the final steps taken as the algorithm starts to finalize. The Pong

stage refers to body of the algorithm. This stage is where all processors are running

and communicating back and forth. We will identify the beginning and ending to these

stages in terms of the MVP. The Warmup stage begins with MVP calculating the FF

block for l = 1 and ends at l = K, the Cool Down stage starts when MVP is performing

the BS for l = L−K + 1 and ends with l = L, the Pong stage takes place in between.

The upper and lower triangular grey nodes in the Warmup and the Cool Down stages

correspond to idle processors. The grey nodes below and above the FF and BS block
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are semi-idle processors. We label them as semi-idle due to the fact that they are active

but do not take a full block to run and are more for a visual representation. For any K

many processors we will have K(K − 1) many idle processors in the Warmup and the

Cool Down stages.

The colors represent the FF BS blocks for a given iteration with the red and green

for i and orange and blue for i + 1. The darker shades corresponds to the levels of

information the processor must store throughout the algorithm where the darker the

color, the less information stored. For example, processor k = K − 1 has to store one

level of information while MVP has to store K many levels of information. Once a

processor had completed the BS block for an iteration i, all the information is discarded

and replaced with the information for the next iteration.

The number of communications in this task is dependent on both the number

of processors K and the number of iterations L. We can denote Rλ as the number of

times communication is established for Taskλ and define it as

Rλ = (K − 1)(I +K) +K/2 , even

Rλ = (K − 1)(I +K) + (K − 1)/2 , odd

(4.20)

where I > K, making the minimum number of communications for an even number of

processors to be 2K2 −K/2− 1. We impose the condition that I > K so that we may

utilize the three stage approach. In the case that I ≤ K, the MVP processor terminates

work and becomes idle for many steps before it is given information and thus, the Pong

stage is never formulated.
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Figure 4.6: The FFBS Criss-Cross algorithm (FFBSCC) example with K = 4 processors
for an arbitrary L many iterations. The FF is in red and orange with the BS in green
and blue. The solid grey box indicated an ”idle” state in which the processor is waiting.
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There are a few things to keep note of when running this algorithm. To min-

imize runtime, the majority of the work must take place in the Pong stage since the

Warmup and Cool Down stages have idle time. This allows you to become flexible with

the number of processors used depending on the size of the posterior sample. In table

4.5.4 we see the total number of communications for a set of I and K. We see that as

the number of iterations gets larger the number of communications starts to converge

to (K− 1)I which is the ideal number of communications. For Taskλ, Table 4.5.4 is the

I\K 2 4 8 16 32 64 128

100 103 314 760 1748 4108 10364 32640

1000 1003 3014 7060 15248 32008 67064 143320

10000 10003 30014 70060 150248 311008 634064 1286320

100000 100003 300014 700060 1500248 3101008 6304064 12716320

Table 4.1: Number of communications for I iterations and K processors.

minimum number of communication for the corresponding K. To minimize the total

runtime of Taskλ we must find a balance between Rλ and the time it takes to perform

the FF and BS block. In the section below we show the diagnostics for the performance

of Taskλ.
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4.6 Results

The Forward Filtering (FF) algorithm in 4.5.2 is used substantially when sam-

pling the parameters from the posterior distribution. It is used to calculate the marginal

likelihood for the parameters (ρ, φ, τ2) and is necessary to begin the FFBSCC algorithm

described in 4.5.4. The algorithm is embedded in the tasks: Taskρ, Taskφ, and Taskτ .

We define Taskα to be one cycle of performing Taskρ, Taskφ, and Taskτ , this corre-

sponds to one iterative cycle of sampling the parameters (ρ, φ, τ2). We define Taskβ

as performing one iterative cycle in the FFBSCC algorithm. We compare the tasks for

completing 100 iterations for the simulated data as well as the observational data cor-

responding to the model in Chapter 3. In order to run a balanced FFBSCC algorithm,

we must increase the number of iterations when increasing the processors to allow the

algorithm to run at full potential. We then scale the values down to compare with the

other benchmarks at 100 iterations.

K 1 2 4 8 16

FF 208.23 108.11 68.11 48.84 51.29

BS 205.12 121.41 65.53 48.52 73.05

Table 4.2: The total time (seconds) it takes for Taskα and Taskβ to complete completing
100 iterations for K processors using the observational dataset.

The left panels of figure 4.7 display the runtimes for Taskα and Taskβ for the

observational data. Both the tasks appear to bottom out at 8 processors which amounts

to 15 time points per processor. The right two panels show the speedup and efficiency of
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Figure 4.7: Runtime, speedup, and efficiency (left to right) of the Taskα (top) and Taskβ
(bottom) for the observational data corresponding to the model in Chapter 3.
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Figure 4.8: Runtime, speedup, and efficiency (left to right) of the Taskα (top) and Taskβ
(bottom) for the simulated data corresponding to 200 years of monthly SST.
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K 1 2 4 8 16 32 64 128 256

FF 6406 3640 2440 2059 847 627 358 156 155

BS 417 213 111 60 33 16 23 NA NA

Table 4.3: The total time (seconds) it takes for Taskα and Taskβ to complete completing
100 iterations for K processors using the simulated dataset.

adding additional processors. For the observational dataset we see that at 8 processors

we are able to run 4.2 times faster than on a single processor while losing only 48%

efficiency.

Using the simulated dataset, in which the temporal size is increased by a factor

of twenty, we see the algorithms full potential. In Figure 4.8 we present the runtime,

speedup, and efficiency for Taskα and Taskβ. Since the parallelism occurs in time we see

a large increase in speedup time. Taskα tops out at K = 128 processors which amounts to

19 data points per processor. Taskβ reaches its upper limit at a much smaller number

of K=32 processors and begins to take longer with each additional processor. This

limitation is most likely due to the limiting the communication into blocks. That being

said, this gives us a speedup of 40 and 25 with a loss in efficiency of 68% and 20% for

Taskα and Taskβ respectively. These are encouraging results, however there is still areas

for optimization.
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4.6.1 Concluding Remarks

The algorithms in this chapter have been shown to be effective even at small

temporal sizes. For the two example illustrated the algorithms reached an upper limit

but for different reasons. The FF algorithm scales well when increasing the temporal

size but will eventually max out due to the sequential portions of the code, this is known

as Amdahl’s law. The Forward Filtering algorithm is by construction sequential as is the

Backwards Sampler algorithm. Testing the FF algorithms for different temporal sizes

we discover the ’sweet spot’ is to have 15-20 time points per processor. Any fewer than

that and the algorithm takes longer to communicate than to perform the task assigned

to it. The FFBSCC algorithm reaches a different type of limit. The method in which

we establish communication heavily penalizes the algorithms speed for each additional

processor. The FFBSCC algorithm does not scale as well as the FF algorithm, however

the benefits of FFBSCC algorithm are still important as it allows us to implement the

Forward Filtering Backwards Sampling techniques on datasets that are too large for one

processor. There are still many ways these algorithm can be improved. One possibility

is by extending the parallel implementation for space and thus allowing the regions to

increase in size as well. Another extension would be to explore the load each processor

must calculate as a decreasing function in time. For the time being, these approaches

will have to wait.
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Chapter 5

Conclusion

This work focuses on general methods to improve forecasting accuracy using

information spanning from different outlets and different resolutions. As an illustration

we focused on blending climate model simulations with observations to obtain more

accurate SST fields. By using a set of basis functions to represent the spatial field of the

observations, we provided an alternative approach on how to compare simulated output

from various sources. This approach proves to be useful as it allows us to compare

climate model indices to observational indices without directly comparing their values

of SST. We implemented a Bayesian Hierarchical models to capture the underlying

baseline while also modeling the climate models discrepancy to the observational signal.

This resulted in a unified forecast obtained from the model ensembles.

The availability of satellite readings has increase the spatial resolution upwards

to a 1/100th of a degree. This produces an abundance of spatial high resolution data for

short periods of time. Capturing longterm behaviors is not possible using higher spatial
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resolutions and coastal behaviors are not captured using coarse spatial resolution. Here

we focused on creating a link between large and small scale variability. A combination of

a Discrete Process Convolution and a Dynamic Linear Model proved suitable modeling

tools in fitting and forecasting at the higher resolution. The choice of a flexible kernel

allowed us to determine the sparseness which in turn diminishes some of the compu-

tational loads without compromising the models accuracy. The use of high resolution

datasets makes computations on a single core computing devices time expensive. Sam-

pling and tuning parameters in the model become increasing difficult when calculations

begin to take days. When working on a single core is too time consuming, temporal

parallelization is an effective way for speedup. The parallel algorithms developed in this

work enable us to run MCMCs for large iterative chains and scale well in time.
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Appendix A

Climate Model Details

A.1 Climate Models

1. Bjerknes Centre for Climate Research, Norway, (BCCR-BCM2.0) 2005

2. Canadian Centre for Climate Modelling and Analysis, Canada, (CGCM3.1.T47) 2005

3. Meteo-France/Centre National de Recherches Meteorologiques, France, (CNRM-CM3) 2004

4. Commonwealth Scientific and Industrial Research Organization Atmospheric Research, Australia,

(CSIRO-MK3.0) 2001

5. National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid

Dynamics/Institue of Atmospheric Physics, China, (FGOALS-g1.0) 2004

6. National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory,

USA, (GFDL-CM2.1) 2005

7. National Aeronautics and Space Administration/Goddard Institute for Space Studies, USA,

(GISS-ER) 2004

8. Institute for Numerical Mathematics, Russia, (INM-CM3.0) 2004

9. National Institute of Geophysics and Volcanology, Italy, (INGV-ECHAM4.6)
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10. Institut Pierre Simon Laplace, France, (IPSL-CM4) 2005

11. Center for Climate System Research, National Institute for Environmental Studies, and Frontier

Research Center for Global Change, Japan, (MIROC3.2 medres) 2004

12. Meterorological Institude of the University of Bonn, Meteorological Research Institude of the

Korea Meteorological Administration and Model and Data Group, German/Korea, (Echo-G)

1999

13. Max Planck Institute for Meteorology, German, (ECHAM5/MPI-OM) 2005

14. Meteorological Research Institute, Japan, (MRI-CGCM2.3.2) 2003

15. National Center for Atmospheric Research, USA, (CCSM3) 2005

16. National Center for Atmospheric Research, USA, (PCM) 1998

17. Hadley Centre for Climate Prediction and Research/Met Office, UK, (UKMO-HadCM3) 1997

A.2 Dynamic Linear Models

A.2.1 Forward Filtering Backwards Sampling

The general multivariate DLM as described in West and Harrison (1997) de-

fines the observational time series Yt, a vector of size n, to have the likelihood and state

space equations defined as,

Yt = Ft
′θt + νt

θt = Gtθt−1 + ωt

where νt ∼ N(0, Vt) and ωt ∼ N(0,Wt). F
′
t is the dynamic regression matrix, Gt is the

state evolution equation, and θt is the state space vector of size r. The initial prior at
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time t = 0 is defined as,

(θ0|D0) ∼ N(m0, C0)

where m0 and C0 are known mean and covariance matrix and Dt = (Yt, Dt−1) represents

all the information up to time t. The Forward Filtering equations are obtained as,

p(θt|Dt−1) =

∫
p(θt|θt−1)p(θt−1|Dt−1)dθt−1 ∼ N(Gtmt−1, Rt)

p(Yt|Dt−1) =

∫
p(Yt|θt)p(θt|Dt−1)dθt ∼ N(F ′tGtmt−1, Qt)

p(θt|Dt) ∝ p(Yt|θt)p(θt|Dt−1) ∼ N(mt, Ct)

for t = 1, . . . , T . The Backwards Sampling equations are obtained as,

p(θT |DT ) ∼ N(mT , CT )

p(θt|θt+1, DT ) ∝ p(θt+1|θt)p(θt+1|DT ) ∼ N(ht, Ht)

where the mean vector ht depends on the previously sampled values of θt+1. This is the

general scheme of the algorithm we implement for the models in Chapter 2 thru 4.
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