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ARTICLE

Stacked distribution models predict climate-driven
loss of variation in leaf phenology at continental
scales
Shannon L. J. Bayliss 1,2✉, Liam O. Mueller3, Ian M. Ware 4, Jennifer A. Schweitzer1 & Joseph K. Bailey1

Climate change is having profound effects on species distributions and is likely altering the

distribution of genetic variation across landscapes. Maintaining population genetic diversity is

essential for the survival of species facing rapid environmental change, and variation loss will

further ecological and evolutionary change. We used trait values of spring foliar leaf-out

phenology of 400 genotypes from three geographically isolated populations of Populus

angustifolia grown under common conditions, in concert with stacked species distribution

modeling, to ask: (a) How will climate change alter phenological variation across the P.

angustifolia species-range, and within populations; and (b) will the distribution of phenological

variation among and within populations converge (become more similar) in future climatic

conditions? Models predicted a net loss of phenological variation in future climate scenarios

on 20-25% of the landscape across the species’ range, with the trailing edge population

losing variation on as much as 47% of the landscape. Our models also predicted that

population’s phenological trait distributions will become more similar over time. This stacked

distribution model approach allows for the identification of areas expected to experience the

greatest loss of genetically based functional trait variation and areas that may be priorities to

conserve as future genetic climate refugia.
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Human-induced environmental perturbations are expected
to continue to limit plant population connectivity and
gene flow, thus decreasing effective population sizes1 and

ultimately reducing levels of genetic variation within plant
species2,3. Maintaining genetic diversity within populations is
essential for both short- and long-term survival of species facing
rapid environmental change. Low levels of genetic variation
reduce the ability of populations to adapt to novel conditions or
to colonize new areas while simultaneously increasing the risk of
bottleneck effects and inbreeding depression4–6. In addition to
evolutionary consequences, loss of genetic variation will also have
ecological consequences. Population genetic diversity, including
variation in morphological, phenological, or resource-use traits
can have strong effects on ecosystem functions7,8 such as biomass
production and carbon cycling9 or nitrogen mineralization10.
Further, experimental studies indicate that the positive effects of
high genetic diversity may be most important for species’
responding to disturbed or stressful conditions5,11–15, like those
expected with a changing climate.

Genetic diversity can refer to many forms of intraspecific
variation. To predict the ecological consequences of diversity, it is
critical to understand functional trait diversity, as functional traits
of key organisms are determinants of ecological function14,16. For
example, the genes of dominant species have been shown to have
landscape-scale effects on ecosystem processes like carbon,
nitrogen, and water cycling, and can alter resource availability for
dependent organisms7,10. Though important, it is problematic
that functional trait distribution has received little attention at
broad spatial scales17,18. Though there has been an increase in
research examining spatial genetic variation generally19, less is
known about the ecological and evolutionary responses of func-
tional traits to environmental change across species’ ranges or
how traits may mediate or constrict population responses to
climate change16,20–22. Some of the strongest responses to
environmental change have occurred in traits like survival,
fecundity, or phenology23 that influence many abiotic and biotic
components of ecosystems24,25.

As species’ ranges contract, expand, or shift in response to
climate change17,26 genetic variation is expected to be altered
and/or reduced19,20,27. Plant population genetic diversity is rela-
ted to biogeography such that core, and thus insular, populations
often have the highest diversity28. Further, trailing edge (or “rear
edge”) populations tend to have low population diversity while
harboring unique diversity (i.e., regionally diverse) due typically
to isolation and local adaptation29. Because plant population
genetic diversity differs across space, so should our expectations
of the ecological consequences of genetic diversity loss. Species
distribution models are a useful tool for predicting species range
dynamics in response to climate changes, but models are only
beginning to include intraspecific variation30. While including
population information is certainly a step forward in predicting
range forecasts31, including functional trait information into
these population models will allow for broader inferences about
possible changes to ecosystem function.

Stacked species distribution models is an approach that has
traditionally been applied to describe and predict species biodi-
versity patterns on the landscape32. The process “stacks” binary
presence-absence maps built independently for multiple species
to estimate biodiversity patterns across ecological gradients32–34.
Here, we use this approach to instead model intraspecific trait
variation across populations of a single species. This approach
simultaneously tackled multiple issues in predicting species’ range
shifts in response to climate change– Most models assume static
trait-climate relationships which disregards differences in adap-
tive genetic variation on the landscape. This approach allows for
populations with varying levels of genetic trait diversity to

respond uniquely to climatic change. Equally important, many
models of trait responses to climate change focus on shifts to
population mean trait values rather than shifts to population trait
variation. While shifts to population mean trait values are
important indicators of evolution, they provide little information
about populations’ ability to respond to selective pressures of
changing climates. In this approach, a maximum trait richness
prediction can reveal where on the landscape climate is not acting
as a constraint to potential trait variation.

To address the challenge of predicting how genetically based trait
variation may change on the landscape with climate change, we
used three general circulation model predictions of future climatic
conditions, genetically-based trait measurements of leaf out phe-
nology of a dominant riparian species, Populus angustifolia, and the
technique of stacked species distribution modeling32. Using these
tools, we identify shifts in suitable climatic conditions for a range of
phenological traits and ask the following questions: (1) how climate
change will alter phenological variation across the species-range and
within populations; and (2) if climate change will cause phenolo-
gical trait variation to converge (become more similar) between
populations. We hypothesized that changing environmental con-
ditions associated with climate change will reduce phenological
variation over the species-range, with the trailing edge (lowest
latitude) population losing the most variation due to its already-
limited distribution and position in the hottest and driest portion of
the range. We also hypothesized that phenological trait distributions
would become more similar within and among populations.

Results
Net loss of phenological variation in future climates. With all
examined future climate scenarios, approximately 20-25 percent
of the total landscape modeled was predicted to have a net loss of
trait richness (Fig. 1 and Table 1), indicating reductions in genetic
variation for foliar leaf out. This net percent loss decreases with
latitude and across genetic population, such that the southern-
most population is predicted to lose phenological traits richness
on the largest amount of land – between 36.1% (rcp 4.5, 2050 s) –
47.0% (rcp 8.5, 2080 s), while the northernmost population is
predicted to lose phenological trait richness on the least amount
of land area, between 14.1% (rcp 8.5, 2080 s) and 18.8% (rcp 8.5,
2050 s). The central population is predicted to lose phenological
trait richness on 24.7% (rcp 4.5, 2050 s) to 29.5% (rcp 8.5, 2080 s)
of the landscape (Fig. 1, Table 1, and Supplementary Fig. S1). We
found significant differences between genetic populations but that
these differences did not vary with relative concentration path-
ways or year (Fig. 1 and Supplementary Fig. S1; Fpopulation= 27.9,
ppopulation < 0.001). However, the total percentage of landscape
predicted to lose phenological trait richness (i.e., without
adjusting for trait richness gains) did change significantly across
genetic population and with relative concentration pathways
(Fpopulation= 36.8, ppopulation < 0.001; Frcp= 7.8, prcp= 0.01;
R2= 0.78). Losing suitable climatic conditions for one decile in a
location is very different from, for example, losing suitable cli-
matic conditions for eight deciles in the same location. For this, it
is important to not just quantify positive and negative losses
across space, but also the degree of change in trait variation.
Following the predictions made of landscape-level net losses
across populations, sites in the southernmost population are
predicted not only to lose the most suitable climatic conditions
overall, but also to lose the highest number of trait deciles
regardless of time or relative concentration pathway (Fig. 2). In
contrast, shifts in the number of trait deciles lost for the central
and northernmost populations are countered more by gains,
suggesting phenological distributional shifts occurring in some
areas, despite net loss of variation in foliar phenology (Fig. 2).
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Phenology richness patterns from stacked distribution models.
Each phenology decile model predicted suitable (current) climatic
conditions on 10.7 to 33.2 percent of the landscape (Table 2). The
first and tenth deciles, which represent the earliest and latest leaf
out times, as well as the largest range of leaf out days overall (as
the two tails of the trait distribution) predicted the least suitable

area overall (10.7 and 11.5%, respectively; Table 2). The third
decile predicted the most suitable area at 33.2 percent. Interest-
ingly, this is almost the full area predicted suitable by stacked
decile models: 34.3 percent (Table 2). Only 2.8 percent of the land
area was predicted to have suitable climatic conditions to support
the full range of phenological trait values (i.e., all ten trait deciles:
Fig. 1a).

Phenological trait distributions shift and converge. We exam-
ined phenological distribution change within populations by
comparing predictions made by future climate scenarios to the
current (“baseline”) distribution of traits. Within each population,
the distribution of phenological variation becomes more similar
from the original state (Fig. 3). With few exceptions, most
AOGCM and RCPs predicted more similar phenological trait
distributions through time (i.e., points above yellow line in Fig. 3).
Overall, the southern population is predicted to see the smallest
changes to phenological trait distributions, and the central and
northern populations are predicted to have greater changes in
phenological distribution (Fig. 3). Genetic population explained
51.9% of the variation in trait distributions, or community
composition of trait deciles, to continue the community ecology
analogy, across the species range (RDA; compared to a null model
p < 0.001). The best model included the global change model

Fig. 1 Maps of leaf out decile 1, leaf out decile 10, stacked deciles 1 through 10 as binary (presence-absence) predictions on current climate; Percent of
the landscape predicted to lose phenological trait variation across three genetic provenances, two future time periods (2055, 2085), and two relative
concentration pathways (RCP 4.5 and RCP 8.5). In a–c, shapes represent watershed designations for each genetic provenance, as described in the U.S.
map; green represents suitable climatic conditions for the modeled trait decile (or deciles) and gray represents unsuitable climatic conditions for the
modeled trait decile (or deciles). In d, “net” percent loss is calculated as the difference between percent loss and percent gain. Points (+/−standard error
bars) represent average predictions from three Atmosphere and Ocean General Circulation/Climate models (AOGCMs) that capture “best”, “worst”, and
“median” climate projections for this geographic region. Color represents genetic provenance of P. angustifolia, as labeled in c. Yellow green represents the
southern provenance, green blue the central provenance, and blue purple the northern provenance. Line type (dashed or solid) represent RCP 4.5 and 8.5
respectively. For visual clarity, this map does not show occurrence data. These data, with latitudes and longitudes, can be found in the supplementary
information.

Table 1 Net loss of foliar phenology trait variation calculated
as percent loss minus percent gain and 95 percent
confidence bounds averaged for the three global circulation
models across geographic range (genetic provenance), year,
and relative concentration pathway (RCP).

Geographic extent Year Net loss (%) [lower CI, upper CI]

rcp 4.5 rcp 8.5

Species range 2050s 20.4 [9.8, 31.0] 25.4 [14.8, 36.0]
2080s 22.7 [12.1, 33.3] 23.0 [12.4, 33.6]

Northern 2050s 14.6 [−1.3, 30.4] 18.8 [2.9, 34.6]
2080s 16.5 [0.6, 32.3] 14.1 [-1.7, 30.0]

Central 2050s 24.7 [22.6, 26.8] 29.4 [27.2, 31.5]
2080s 28.3 [26.1, 30.4] 29.5 [27.4, 31.6]

Southern 2050s 36.1 [25.5, 46.6] 44.5 [33.9, 55.0]
2080s 37.8 [27.2, 48.4] 47.0 [36.4, 57.6]
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(AOGCM) in addition to genetic population as constrained
variables, explaining 64.7% of the variation. This addition is
expected given that the global change models were chosen to
represent different future climatic conditions in the study area.
Though distributions of phenological trait variation are predicted
to change within all three genetic populations, the effect of
relative concentration pathways on the degree of change appears
variable, suggesting that significant losses and shifts will occur
even in lower emissions scenarios.

We also examined the average frequencies of the earliest (decile
1) and latest (decile 10) 10% of individuals to leaf out across time
relative to the amount of landscape projected to have suitable
climates for at least one trait decile (i.e., landscape that was
predicted to have a richness of 1 or greater). The southern
population was modeled to currently contain a higher frequency
of early foliar phenology relative to later phenology, and the
northern population with a higher frequency of later, relative to
early phenology (Fig. 4; also Fig. 1a, b). The central population
began with a similar frequency of both deciles (Fig. 4). Across
time, the loss of early and late phenology in the southern
population is proportional to the beginning frequencies (Fig. 4).
The central population loses late phenology trees while the
northern population loses late phenology and gains early
phenology trees (Fig. 4).

Model reliability and environmental contributions to models.
Distribution models for each trait decile had good predictive
accuracy with an average test AUC of 0.85 (Table 2 and Sup-
plementary Fig. S2). Stream order contributed consistently high
(between 30-54 percent) to all modeled trait deciles (Supple-
mentary Fig. S2). Climatic moisture index contributed sig-
nificantly more to later decile models (Supplementary Fig. S2;
R2= 0.68, p= 0.0031) while winter precipitation and relative
humidity (Supplementary Fig. S2) contributed significantly more
to earlier phenological trait decile models (respectively, R2= 0.53,
p= 0.017; R2= 0.49, p= 0.024). Continentality contributed
between 1.5 to 22 percent to the ten models but showed no
significant relationship in its importance across decile models
(Supplementary Fig. S2). These significant relationships reflect
environmental variable contribution to model predictions, and
thus should not be interpreted as a description of the variable’s
relationship to trait values. For example, earlier leaf out was
related to higher climatic moisture index, higher winter pre-
cipitation, lower relative humidity, and lower continentality,
though these specific relationships varied by population (Sup-
plementary Fig. S3).

Fig. 2 Predicted changes in phenological trait variation (decile richness)
on the landscape (area) across the P. angustifolia species range, three
genetic provenances, two future time periods (2055 and 2085), and two
relative concentration pathways (rcp 4.5 and 8.5). The lighter color lines
within each bar represents rcp 4.5 predictions while the darker color within
each bar represents rcp 8.5 predictions. Lines across each bar represent the
predictions made from each of the three Atmosphere and Ocean General
Circulation/Climate models (AOGCMs) for each time and rcp. Zeros only
represent no change in trait variation if there was variation to begin with
(i.e., they do not represent area of unsuitable climatic conditions). Positive
values indicate gains in trait variation.

Table 2 Summary and evaluation of decile distribution models.

Modeled trait decile Nocc Predicted suitable Model evaluation

Pixel % area AUCtest ± sd AUCtrain Omission rate

D1 39 16,840 10.7 0.797 ± 0.090 0.950 0.077
D2 46 47,386 30.2 0.875 ± 0.056 0.933 0.043
D3 41 52,064 33.2 0.845 ± 0.071 0.913 0.098
D4 39 41,900 27.2 0.884 ± 0.049 0.920 0.077
D5 38 49,687 31.7 0.812 ± 0.067 0.896 0.079
D6 39 32,359 20.6 0.848 ± 0.050 0.911 0.077
D7 39 40,574 25.9 0.831 ± 0.050 0.900 0.077
D8 44 29,752 19.0 0.886 ± 0.042 0.940 0.091
D9 41 32,326 20.6 0.856 ± 0.052 0.902 0.098
D10 34 17,959 11.5 0.879 ± 0.049 0.943 0.088
Stacked Models: 400 53,727 34.3

Predicted suitable climatic conditions on the landscape are listed both as pixel number and as percent area of the total extent of the landscape (total pixels= 156,659). Each pixel has an area of ~1 km2, a
resolution of 30 arc seconds. Test AUC (area under the receiving operating characteristic curve) +/−standard deviations are given from 5-fold cross-validation. Training AUC is for final models. Training
omission rate is for the 10-percentile training presence threshold rule.
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Discussion
To our knowledge we are the first to take a stacked distribution
modeling approach to map the potential distribution of a
genetically diverse functional trait (i.e., foliar phenology) on the
landscape. Despite current theory moving towards understanding
how climate exerts selection on the landscape, we have only
recently begun collecting sufficient data to support these
hypotheses (e.g., Ware et al. 201935). This lack of data and
approaches by which the relationship between climate change and
genetic variation in functional traits can be examined is sig-
nificant. By integrating phenological trait variation of 400 Populus
angustifolia genotypes with stacked species distribution models,
our results predict a large loss of phenological trait variation
across the P. angustifolia species’ range in response to future
climatic conditions (i.e., selection for specific phenology dates).
Moreover, models predict overall that convergence among
populations in phenological trait distributions will occur irre-
spective of emission scenario (i.e., reducing genetic variation for
phenology will lead to more similar ranges of phenology traits).
These results have important implications for the ability of
populations to respond and persist in the face of ongoing climate
change, the potential of those populations to support associated
species that depend upon them as food and habitat, and for the

potential of climate- driven ecosystem disassembly due to pre-
dicted changes in total productivity resulting from changes in
total growing season length.

Species can go extinct, shift their distribution, adapt, or accli-
mate in response to a changing climate. All potential responses
depend upon trait variation36, yet most research on trait
responses to climate change focus on shifts to mean trait values of
populations rather than shifts to trait variation of populations37.
While shifts among population mean trait values are important
indicators of evolution on the landscape, they provide little
information or context into how those populations may respond
to selective pressures exerted by changing climates in the future.
Though we don’t explicitly examine individual climate gradients
that could be driving these patterns, previous work in this system
demonstrates that broad-sense heritability in leaf out phenology
decreases (less genetic trait variation) across a gradient of
increasing temperature35. Overall, our models predict a net loss of
genetic variation for foliar phenology across all P. angustifolia
riparian forest populations in the western US if these mature
adult trees do not survive. The loss of genetic variation occurs
irrespective of emission scenario and could be seen as soon as the
2050 s. Losses of genetic variation will be greatest in the trailing
edge (low latitude) population – occurring on up to 47% of the

Fig. 3 Changes in similarity for phenological trait distributions across time and relative concentration pathways for each of three genetic provenances
of P. angustifolia as predicted by three Atmosphere and Ocean General Circulation/Climate models (AOGCMs). Each point represents an average
similarity value for each general circulation model abbreviated as “i” (inm-cm4), “m” (mpi-esm-lr), and “g” (gfdl-cm3). Higher similarity represents a
narrow range of phenological trait values. The yellow lines extend from the baseline similarity within each provenance as predicted on climate norms (i.e.,
extended from the “current” value indicated by the “+” sign). Values above the yellow line indicate that trait values are becoming more similar over time.

Fig. 4 Average projected change in frequency of the earliest 10% (decile one) and latest 10% (decile 10) of leaf out phenology across three genetic
provenances of P. angustifolia relative to the total landscape with at least a richness value of 1 (i.e., excluding unsuitable area) across genetic
provenances. Empty symbols and dotted lines represent climate norms or starting conditions and filled symbols represent frequencies at each time
averaged across AOGCMs. Circles represent decile 1 and triangles represent decile 10. Lighter shades represent RCP 4.5 and darker shades represent
RCP 8.5.
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landscape (Fig. 1d). In general, however, trailing edge populations
tend to have low trait diversity, but they also tend to be regionally
diverse due to isolation and/or strong local adaptation29.

Models also predicted that traits distributions will homogenize
between the three genetic populations over time (Fig. 3b; Fig. 4), a
result that has been empirically demonstrated across elevation for
four European temperate trees24. The convergence of all popu-
lations on a similar functional trait distribution is concerning as it
suggests that the ability of individual populations to respond
uniquely to climatic changes may be constrained in future climate
scenarios. Variation is critical for evolutionary response to
environmental change. Importantly, the predictions made from
these models occur regardless of RCP (4.5 and 8.5), period (2050 s
and 2080 s), and AOGCM, suggesting that regardless of climate
scenario, the changes are predicted to occur by mid-century.

It is increasingly clear that genetic variation in functional traits
is critical in mediating patterns in biodiversity and ecosystem
functions7,8,38. This is especially true for dominant species like
P. angustifolia whose genes have been shown to have wide-ran-
ging, landscape-scale effects on the land-atmosphere and plant-
soil linkages and feedbacks affecting the carbon and nitrogen
cycles7,35,39. For example, changes to plant phenology can affect
growing season length, and thus biomass production and carbon
cycling35,40,41, evapotranspiration, stream discharge42,43, and
resource availability for dependent organisms25. Phenology can
also influence soil microbial community structure and function in
a way that can feedback to affect plant performance under climate
change44. If one consequence of climate change is the general
reduction of genetic variation in functional plant traits, then there
will be cascading effects on other biodiversity and ecosystem
function.

The relationships between biodiversity – including genetic –
and climate are critical for conserving natural ecosystems and
their functions45. Climate relict populations have persisted under
a changing climate and are largely considered “life-boats” for
associated species and ecosystem functions46. Cottonwood
riparian forests of the western US are already rare, estimated to
occupy less than 5% of the landscape, and yet support most of the
biodiversity of the west47. Our previous research indicates that
trailing edge population of P. angustifolia are locally adapted in
functional traits related to water and carbon cycling that drive
land-atmosphere feedbacks48. Further, genotypes from the
trailing-edge population are an important source of heat and
water stress-tolerant individuals, making them critically impor-
tant for conservation. If the loss of genetic variation in these
populations is non-random (i.e., driven by selection) as our
models suggest, and genetic variation in functional traits supports
variation in ecosystem functions on the landscape22,35,48, then
climate driven loss of genetic variation may be an important
driver of ecosystem disassembly.

In this work, we adapt stacked species distribution modeling, a
method of species distribution modeling that has only been
applied to models of species’ diversity, to model genetically based
diversity of spring leaf phenology. This approach simultaneously
tackles multiple issues in predicting species’ range shifts in
response to climate change. Most models assume static trait-
climate relationships, or niche conservatism, consequently dis-
regarding the potential for populations with varying levels of
genetic trait diversity to respond uniquely to climatic change.
Additionally, and related, models of trait responses to climate
change focus on shifts in population mean trait values rather than
shifts in population trait variation. While shifts to population
mean trait values are important indicators of evolution, they
provide little information about a populations’ ability to respond
to selective pressures of changing climates. Foliar phenology has
important implications for total ecosystem productivity. Results

from this novel application of stacked SDMs predict shorter and
earlier leaf out seasons that will likely have implications for whole
ecosystem dynamics.

Methods
Study species, occurrence data, and geographic extent. Populus angustifolia
James is a dominant riparian tree species distributed from the south of Alberta,
Canada along the U.S. Rocky Mountains and into the north of Chihuahua,
Mexico49 spanning approximately 1700 km of latitude. The species exhibits a wide
range of physiological, growth, and phenological trait variation across this large
geographic range and gradient of climates35 and is thus ideal for examining how
genetic variation for functional traits are distributed on the landscape and may shift
in response to climate change.

Tree occurrence data were collected in the field for Populus angustifolia in May-
June 2012 (Supplementary Fig. S4). Latitude and longitude coordinates were
collected as decimal values from the WGS 84 world grid system for each sampled
tree. Occurrence data span the range of three known genetic populations (Arizona,
Eastern, Northern/Wasatch Clusters)50,51, which we will refer to as the “southern”,
“central” and “northern” populations, for ease of communication and map
visualization (Supplementary Fig. S4). Sampling covered extreme environments as
well as locations near the edges of the species’ geographical range, which should
provide comprehensive predictions of range dynamics expected with climate
change29,52–54. The original occurrence dataset included 725 individual geo-
referenced trees, but not all trees survived for greenhouse phenology data collection
(see below, 400 genotypes survived to have phenology measurements made, and
these field locations are represented in Supplementary Fig. S4). Cuttings were made
from each field tree and replicates of each genotype were grown under common
conditions at the University of Tennessee. See Ware et al. 201935 for details
regarding the establishment of greenhouse plants.

When building distribution models, the geographic extent selected to train the
model should be based on assumptions about species’ dispersal. With Populus,
genetic connectivity of populations has been shown to be related to riparian
network connectivity54,55, and thus we chose to create geographic bounds for
training our models with water basin designations. Based on the field locations of
collected trees, we created boundaries for model training with the smallest
watershed subdivision from the USGS Watershed Boundary Dataset that captured
all occurrence coordinates. This led us to choose HUC (hydrologic unit code) level
6 (https://water.usgs.gov/GIS/huc.html).

Phenology data. Tree cuttings were taken from the same individuals during 2012
when occurrence data were collected. These tree cuttings were grown for four years
in a greenhouse at the University of Tennessee. In 2016, phenology was measured
for these tree cuttings as the day the first leaf unfurled on each plant in the spring.
This determined the genetic basis of phenology since all trees were growing in the
same common environmental conditions. Measurements were made on 400 gen-
otypes from across the species’ range (the original dataset had 725 genotypes). Of
this 400, 57 genotypes were from the southern population, 157 were from the
central population, and 186 were from the northern population. The earliest
observed leaf out was recorded on Julian day 71 (March 11th) and the latest
observed leaf out was recorded on Julian Day 125 (May 4th), which resulted in a 54-
day range across which genetically based leaf out occurred (Supplementary Fig. S3);
2016 was a leap year. Because our SDM methodology relies on binary presence-
absence data, we subset the dataset (paired phenology measurements (which
determine the deciles) with georeferenced field location of the parent tree) into ten
smaller datasets based on deciles of the trait distribution, each part representing
one-tenth of the total sample. For example, the first subset/decile represented the
first 10% of trees that leafed out. Ten was chosen so that the sample size of each
model would be around 40, which is above the minimum records (20-30) suggested
to accurately evaluate model performance56. The exact number of points for each
decile model varied slightly due to spatial thinning (i.e., so no single grid cell would
hold more than one presence point for a given decile model, eliminating any
pseudo-replication) and so that no trait values fell within more than one decile. The
associated field coordinates for each decile were used to build separate species
distribution models to make predictions about the effects of climate change on
phenological trait variation (see below section “Species distribution model calibra-
tion and evaluation”). The southern population was the only population that did
not have trait values in all ten deciles (missing the 7th, 8th, or 10th deciles).

Environmental variable selection. We obtained bioclimatic variables from the
AdaptWest Project57, and stream order (Strahler) was obtained from the National
Hydrography Dataset to constrain the riparian habitat of P. angustifolia
(NHDPlusV2)58. NHDPlusV2 is a companion dataset to the USGS Watershed
Boundary Dataset from which we derived our watershed regions. All variables were
the same spatial resolution (30 arc second; ~1 km at the Equator) and were pro-
jected into the same coordinate system (WGS1984) in ArcMap59. Based on a
previous set of species distribution models built to describe the species’ range60, we
selected a subset of the 27 available climatic variables. This is based on common
practice of using expert judgment on the ecology of the taxa61 to reduce multi-
collinearity and over-fitting of models62. From our previous models describing
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population and species distributions, we selected those variables that had con-
tributed at least 10% to model predictions, resulting in a subset of ten variables.
These variables had already been tested for spatial correlation. AHM: annual heat
moisture index; CMD: Hargreave’s climatic moisture index; DD_0: chilling degree
days/degree-days below zero °C; Eref: Hargreave’s reference evaporation; MAP:
mean annual precipitation; NFFD: number of frost-free days; PAS: precipitation as
snow; PPT_wt: winter (Dec-Feb) precipitation; RH: relative humidity; and TD:
difference between mean temperature of the coldest and warmest months, as a
measure of continentality.

Final selection of variables was made from an initial SDM run for all ten
phenology (i.e., day of year) decile models using the initial subset of variables
described above. We summed the contributions of individual variables across the
ten decile models and eliminated those that did not contribute highly to any decile
models. Note that because we expect individual decile models to have different
relationships to these predictor variables, we do not expect that the final
contributions of the selected variables will be equally high across the ten decile
SDMs. Variables maintained for final model runs included: Hargreave’s climatic
moisture index, winter (Dec-Feb) precipitation, relative humidity, and
continentality. Finally, stream order was included with all models and model
projections to constrict the predictions to riparian zones. Variation in these
variables is visualized in Supplementary Fig. S5.

To reveal the relationship between environmental variables and phenology, we
ran linear mixed effects models in R with the package “lme4”63 using continuous
leaf out data (days, not split into deciles) as the response variable, after checking for
normality. We extracted values of the five environmental variables used in the
distribution models for the field locations of our genotypes and used these variables
as predictor variables with population as a random effect. All models had lower
AIC values when population was included as a random effect, compared to null
models (Supplementary Table S1). Results and figures from these models can be
found in the supplementary materials.

Species distribution model calibration and evaluation. We used MaxEnt soft-
ware to build ten species distribution models (Version 3.3.3k)64. MaxEnt is widely
accepted to perform well with low sample size and with presence-only data65,66.
Each model was trained with one-tenth of the species’ occurrence data corre-
sponding to phenological trait deciles, measured in the greenhouse. For example,
the associated coordinates of origin for the first ten percent of greenhouse trees that
broke bud in the spring of 2016 were modeled as “one species” for the purposes of
“species” distribution modeling. This example model is referred to as the “decile 1
model” in the manuscript (and accordingly for the 2nd, 3rd, etc. deciles). Each
MaxEnt model was formatted to run with logistic output for best conceptualizing
the output as estimates of the probability of suitability between values of 0 (unlikely
to be present) and 1 (likely to be present). For each decile model, we ran 5-fold
cross-validation and evaluated their performance with area under the receiver
operating characteristic curve (AUC) metric. An AUC value of 1 indicates perfect
discriminatory ability, while a value of 0.5 indicates random predictions. Each of
the distribution models had good predictive accuracy with an average test AUC
value of 0.85, and values ranging from 0.79 to 0.89 (Table 2)63,67. Analysis was
repeated using all occurrence data to train final models for each trait decile, against
~10,000 background points with 340-500 iterations.

To obtain binary output to test our hypotheses, we applied a 10% training
presence threshold rule. This threshold rule finds the suitability value at which 10%
of the training presence points are predicted absent (i.e., omission error) and uses it
to reclassify pixels with suitability values below that value as unsuitable (absent)
and above as suitable (present). It should be noted here that each decile model
ended up having slightly different sample sizes which does introduce variability in
sizes of training and testing subsets (Table 2): this is partially due to the model
omitting occurrence points if they fall within the same pixel as another point, and
partially due to each unique trait value only being assigned to a single decile.

Using stacked distribution models to estimate effects of climate change on
phenological trait variation. To estimate changes in genetically based variation in
plant phenology on the landscape, we applied the principle of stacked species’
distribution modeling to binary maps of the ten trait decile models. Stacked SDMs
sum (“stack”) binary presence-absence maps built independently for multiple
species to estimate species richness on the landscape32. Typically, this method has
been used to estimate biodiversity patterns across ecological gradients (e.g.,
elevation32,33) or to make predictions of biodiversity change with climate
change68,69. Stacking ten decile models allowed us to derive what is analogous to
species richness – essentially “decile richness” – or the total number of trait deciles
predicted at a given location. This metric describes trait variation in a location on
the landscape. A maximum “decile richness” of ten indicates that phenological trait
variation is genetically unconstrained at that location: or, in other words, that all
observed values of the trait could exist in the climatic conditions at that geographic
location.

To test hypotheses about how future climate will affect phenological trait
distributions, we projected each of the ten decile models into 12 future climate
scenarios [3 general circulation models x 2 relative concentration pathways x 2
time periods], resulting in 130 distribution maps. Future climate data was from
ClimateNA AdaptWest Project, with the Coupled Model Intercomparison Project

Phase 5 (CMIP5) database derived from the 5th IPCC assessment report
(AdaptWest Project 2015)57. We selected three Atmosphere and Ocean General
Circulation/Climate Models (AOGCMs) to capture the “best case,” “median case,”
and “worst case” projections in the geographic range of interest including the U.S.
states of New Mexico, Arizona, Colorado, Wyoming, and Utah where the rivers are
located. We chose this approach to represent the extremes of potential future
scenarios in this region, rather than selecting ensemble models that average
algorithm predictions of future climates. For geographic region, we selected INM-
CM4, MPI-ESM-LR, and GFDL-CM3, all of which have high validation
statistics70,71, from which we downloaded data for representative concentration
pathways (RCP) 4.5 and 8.5 (to represent a better and worse case scenario) for time
periods 2055 and 2085.

For each of the 12 future climate scenarios we again stacked models to calculate
predicted “trait richness” as a measure of trait variation (i.e., phenological
variation) on the landscape. To calculate the change in trait richness on the
landscape we subtracted current trait richness values from projected richness values
for each grid cell: resulting in values from -10 to 10. Because zeros could indicate
no change in trait richness (with or without decile composition changes) or
unsuitable climatic conditions for all trait deciles, we re-calculated trait richness
change considering which pixels were unsuitable when modeled with current
conditions. We calculated net change as the difference between the percent of the
landscape predicted to experience trait richness losses and gains, regardless of the
degree of change (i.e., losses of 2 or 7 are both considered a loss). Stacked SDMs
tend to over-estimate species richness58 and thus, in our study, results of “richness
loss” may be conservative. To examine whether predicted changes in trait richness
due to climate change would differ across genetic populations of P. angustifolia, we
repeated calculations of trait richness change within each watershed that contained
occurrence points from the three genetic populations. We tested whether the net
amount of landscape predicted to lose trait richness differed across populations,
years (current, 2055, and 2085), and emissions scenarios with linear regression
models (lm function of R72).

Estimating phenological trait distribution similarity over time within and
among genetic populations. To estimate how frequent different combinations of
trait values are, and how these frequencies are liable to change with future climate
relative to their initial combinations, we constructed matrices for each genetic
population with rows representing climate scenario and columns representing all
possible combinations of deciles predicted to exist together on the landscape (i.e.,
1023 possible combinations of ten numbers are possible). This is closely analogous
to an abundance “site” (climate scenario) by “species” (decile combinations)
matrix, as used in community ecology. Instead of a community of species, we have
communities of trait deciles. Values in the matrix represent pixel counts of suitable
climatic conditions for that combination of trait deciles. There are 45 different
combinations of a “decile richness” of 2, however, a 2-decile combination of decile
2 and decile 5, for example, is a “rare community” relative to a 2-decile combi-
nation of deciles 2 and 3, or deciles 4 and 5. To account for this, we calculated a
similarity score as an average distance between all observed trait deciles in a cell. To
compare changes within populations, we compared future “sites” to the current
baseline “site” composition. Increases would indicate convergence of trait com-
munities and decreases would indicate divergence of trait communities. We used
redundancy analysis to quantify the amount of variation in trait distributions
explained by genetic population using the function “rda” from the “vegan”
package73. Additionally, we tested the inclusion of all factors as constraining
variables in the RDA using the function “ordistep” which performs backwards and
forwards model selection using permutation tests.

Data availability
Data for all manuscript figures are available as Supplementary Data 1–6. Other
information generated during the current study that are not included in the manuscript
are available from the corresponding author upon reasonable request.

Code availability
Codes were written and performed in R and are available from the corresponding author
upon reasonable request.
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