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Episodic Memory in Connectionist Networks

Chris A. Kortge
Dept. of Psychology, Stanford University

Abstract

A major criticism of backprop-based connection-
ist models (CMs) has been that they exhibit "catas-
trophic interference"”, when trained in a sequential
fashion without repetition of groups of items; in
terms of memory, such CMs seem incapable of
remembering individual episodes. This paper shows
that catastrophic interference is not inherent in the
architecture of these CMs, and may be avoided once
an adequate training rule is employed. Such arule is
introduced herein, and is used in a memory modeling
network. The architecture used is a standard, non-
linear, multilayer network, thus showing that the
known advantages of such powerful architectures
need not be sacrificed. Simulation data are
presented, showing not only that the model shows
much less interference than its backprop counterpart,
but also that it naturally models episodic memory
tasks such as frequency discrimination.

Introduction

One of the most obvious areas of application for
connectionism is in modeling memory. McClelland
& Rumelhart (1986) and others (e.g. Anderson, 1972)
have shown how important properties of human
memory--such as content addressability and proto-
type extraction--fall naturally out of parallel distri-
buted models. Furthermore, such models have the
potential of ultimately linking biological and psycho-
logical accounts of memory. However, as pointed
out by Grossberg (1987) and McCloskey & Cohen
(1989), one of the most powerful and popular classes
of CMs--multilayer networks coupled with the back-
propagation learning rule, or BPCMs for short--has
had difficulty accounting for a fundamental aspect of
human memory: the ability to learn and remember
based on a single trial.

While BPCMs can learn a single pattern to a high
degree of precision, they have seemed unable to do
this for a series of such patterns without "forgetting”
all but the last few. People certainly show retroactive
interference to some degree, but as they can clearly
remember more than the last handful of items from a
long list, they don’t exhibit the kind of catastrophic
interference which seems, prima facie, to be inherent
in BPCMs. Single-trial learning is central to many
memory tasks--including all those based on a single
presentation of a list, which is perhaps the most com-
mon experimental procedure--and thus no existing
BPCM is a serious alternative to currently popular
"global" theories of memory such as SAM
(Raaijmakers & Shiffrin, 1981), and Minerva 2
(Hintzman, 1986). Ratcliff (1990) argues that serious
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problems exist for BPCMs in modeling recognition
memory, in particular.

In this paper I propose a connectionist model of
memory which can learn sequentially without catas-
trophic interference. I first describe the model,
which is much like existing BPCMs except for its
unique learning rule. Next I present simulation data
showing that the model has no difficulty modeling
memory tasks which are clearly episodic in nature.
Finally, I use these data to argue that multilayer net-
works are still a viable approach to devising global
theories of memory and learning.

The Model

The network architecture used by the model is a
two-weight-layer "encoder" network (Ackley, Hin-
ton, & Sejnowski, 1985), which maps an input vector
of N elements to an output vector, also of N ele-
ments. Input patterns are vectors with elements of
either +0.5 or -0.5, which form the activation values
for the input units. Activations for other units are
computed using a symmetric logistic function. Thus

a; = [1/(1 +exp(—z,- a‘-w,'.-))] -.5

where g is the activation value (j indexes the current
layer, i the previous layer), and wj; the weight on the
connection from unit { to unit j. Unlike a typical
network of this type, no biases are used in computing
activations.

The network’s task is to learn to reproduce each
presented input pattern at the output, given fewer hid-
den units than N. In the simulations reported here,
performance after learning is measured by the
"match” between the input and output vectors, where
"match” is defined as the dot product between input
and output, divided by N, and multiplied by 4 to give
a number between -1 and 1. Match values may then
be compared for different classes of items, such as
those items appearing versus not appearing in a stu-
died list. The use of such an architecture in memory
modeling is not new; Ratcliff (1990) uses a very
similar one in his diagnosis of the interference prob-
lem. The main contribution of the present paper
centers on the new algorithm used to train the net-
work, which is now described.

Two key points need to be made in describing the
leamning rule used. The first point is that, in associa-
tive network learning in general, orthogonality of
inputs is sufficient for eliminating interference. This
means that if pattern A is trained to give an output
A¥*, subsequently training pattern B to produce any
other output will not change the A-to-A* mapping as



long as B is orthogonal to A. This is true in most
one-weight-layer networks, and as elaborated below,
can be made true to a large degree in multi-layer nets
as well, by careful selection of parameters. Whether
it is reasonable to assume that a model’s inputs will
all be orthogonal to one another, though, is another
question, and is addressed in the Discussion section
below.

The second key point is that gradient descent (see
Rumelhart, Hinton, & Williams, 1986) is not neces-
sary for reducing the error on a given pattern. If we
look at learning as moving through the space of pos-
sible weight combinations, only one direction
corresponds to doing gradient (steepest) descent. On
the other hand, half of all possible directions will still
reduce the error, although not as fast as following the
gradient would. This idea is quantifiable--the dot
product of the actual change in the weights with the
gradient indicates the speed with which the error is
reduced. The important thing here, though, is that by
relaxing the constraint that the gradient be followed
(that error be reduced as fast as possible), and instead
only requiring that the error be reduced to some
degree, we gain "room" for adding another constraint
to our network’s learning process--namely, one
which reduces interference.

The standard backpropagation learning rule,
which uses gradient descent, operates essentially by
associating activated units in one layer with desired
outputs at the next layer (to the degree the current
outputs are wrong). The idea behind the present
algorithm, on the other hand, is roughly to use a sub-
set of the activated units in the association. In partic-
ular, only the "novel" activations are used, as defined
below. Conceptually, the idea is this: when the net-
work makes an error, we would like to blame just
those active units which were "responsible” for the
error--blaming any others leads to excess interference
with other patterns’ outputs. And, the argument
goes, because "familiar" things are well learned (by
definition, in a memory system) we might reduce
interference with well-learned information by assum-
ing that the novel aspects of the input are "responsi-
ble" for the output error; that is, by changing weights
only from them, and not from the familiar parts.

The precise definition of "novelty" is crucial, of
course. The basic approach, though, is to substitute a
"novelty vector" for the actual activations during
standard backprop learning (not during feedforward
processing). Thus the change to a particular weight,
Wii s iS now

Aw; =M 4; §;

where g; is the "novelty" of the activation of unit i, n
is the standard learning rate parameter, and J; is the
delta signal as computed by standard backpropaga-
tion. This will allow both of our desired constraints
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to be met: First, the novelty vectors (one for the
input layer, and one for the hidden layer) are chosen
so that cach tends to be orthogonal to highly familiar
activation patterns at that layer. This property will
allow reduced interference when the weight changes
are made, by insuring that weights from well-learned
patterns are changed less. Second, a novelty vector is
generally a "part" of the actual activation vector it
replaces, in some sense. As elaborated below, this
insures that when we create associations by changing
the weights just from the novel parts, we are still
reducing the error on the pattern at hand (although
not as fast as with gradient descent).

The novelty vectors used were as follows: The
novelty vector for the input layer is simply the input
(target) vector minus the output vector. This makes
intuitive sense: because the task of the network is to
reproduce previously seen inputs at the output, the
output error should provide a rough indication of
which aspects of the input are novel. As for the hid-
den layer, its novelty vector is obtained by feeding
the input novelty vector through the first layer of
connections (just as if it were another input pattern),
and using the resulting hidden unit activations as the
hidden novelty vector. (As explained below, the hid-
den novelty vector is taken to be zero in certain
cases.) The justification for using this particular vec-
tor is not strong; it is simply that this hidden novelty
should tend to correspond to hidden activation pat-
terns which have not previously occurred (because
the input novelty which produced it is itself a pattern
which isn’t highly learned).

These particular definitions of "novelty” are not
necessarily optimal; they are only heuristics. They
do possess the characteristics described above,
though. First, they tend to be orthogonal to highly
familiar activation patterns at the corresponding
layer, even when the current activation pattern is not
orthogonal to previous ones. This is because (1) out-
put errors tend to be orthogonal to well-leamed out-
puts, and (2) since an encoder network is being used,
and thus there is a correspondence between inputs
and outputs, we can readily define input novelty in
terms of output error.

Second, these novelty vectors satisfy the con-
straint that the new algorithm still reduce the output
error. It can be shown that substituting any vectors
for the activation vectors during backpropagation
learning will still allow the error (which is computed
using the true activations) to be reduced, if (but not
only if) each activation vector a is replaced by a vec-
tor correlated with a. It is readily observed that
when using binary +.5/-.5 targets, as here, the sign of
target — output , the input novelty, is always the same
as the sign of target, for each unit. Thus the input
activations and the input novelties are correlated. As
for the hidden novelty vector, it also tends to be
correlated with the actual hidden activations.



However, this is not guaranteed, so the hidden novel-
ties are set to zeros when this is not true (an infre-
quent occurrence), thus restricting leaming to the
first weight layer.

In sum, then, this new leamning algorithm is much
like BP, but with a more focused assignment of
blame. By blaming novel things more than familiar
things when an emror occurs--where "novelty" is
determined by the evolving network memory itself,
in a context-dependent manner--the network can
modify to a greater degree those connections which
don’t much affect the storage of well-learned pat-
terns. As a result, storage of a new pattern requires
relatively little disruption of existing knowledge.
Because the gradient is not followed, this advantage
is obtained at a cost of lower learning speed. How-
ever, "learning speed” in this case means within a
pattern presentation, which in human terms might
correspond to the amount of time a stimulus is
viewed by a subject. But since we have no idea how
much network learning (e.g. magnitude of weight
change) should correspond to a given stimulus dura-
tion in a human learning experiment anyway, this is
not a problem for the model. What is important is
that the present model exhibits improved leamning
across patterns, in that old pattemns need not be re-
presented many times to allow remembering of a
long list. This is shown next.

Simulation Data

Forgetting functions

Perhaps the simplest way to assess interference is
to present a list of patterns, training each pattern in
turn by some amount, and, after one run through the
list, to examine performance as a function of serial
position of the list items. This is the basic procedure
used in many experiments on human memory, and is
also the procedure Rartcliff (1990) argues must be
used in modeling such experiments (i.e., if a list is
not repeated for a person, it should not be repeated
for our network model). The present model was
tested against standard BP on such a task, using
identical network architectures. These networks
were as described above, using 32 input, 16 hidden,
and 32 output units (a "32-16-32" net). For each
simulated subject, 16 binary patterns were
constructed--random vectors, with elements +.5 with
probability 1/2, otherwise -.5.

For each run, 15 of the 16 pattemns were actually
leamed. The learning rate, m, was .5, and the initial
weights of the network were normmally distributed
with mean zero and variance (62) = .25. Each pattern
in turn was repeatedly presented--meaning simply
that multiple learning steps were taken on each--until
either the mean squared error over the output units
reached .01, or a pre-set maximum of 1000 steps was
reached. (From now on, each set of steps on a single
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pattern will be considered one "presentation”.) After
the 15 pattern presentations, the maich value between
input and output was tested for each pattern, includ-
ing the unpresented one. There were 250 simulated
Ss in each condition. Figure 1 shows the resulting
serial position curves for the novelty rule, backprop,
and another instantiation of backprop as tested by
Ratcliff (1990), which only studied eight single
items.
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Figure 1. Degree of input/output match as a function of serial posi-
tion, after one list presentation. Position 16 represents the
unpresented item. The Ratcliff data begins at position 8 for com-
parison purposes.

The first thing to note in the figure is that there is
much more forgetting in the Ratcliff experiment than
in either of the others. Two aspects of Ratcliff’s net-
work probably contributed to its worse performance:
First, asymmetric (0 to 1) activation functions were
used, which induces a larger average correlation
between activation vectors. This generally leads to
higher interference, as already noted. Second,
smaller starting weights were used (uniform +.3 to
.3). David Rumelhart (personal communication) has
suggested that larger initial weights tend to lead to
lower interference, because training tends to move
activations further into the tails of the sigmoid func-
tion. Because the derivative of the sigmoid is near
zero there, subsequent changes of weights to the
"saturated” units will be small, meaning that interfer-
ence with the pattems represented by those units will
be less. This analysis was supported by comparing
separate runs of backprop on the present experiment
using o2 values of .01, .25, and 1.0.

It is also apparent from the figure that forgetting
is even less when using the novelty-based learning
rule.! This result must be qualified, though. Further

I In addition, there appears 1o be a slight primacy effect with the



simulations showed that both backprop and the
novelty rule improved significantly on this task with
increasing network size. It may well be, then, that
with a large enough net there would be virtually no
interference with either algorithm on this task.
Furthermore, importantly, the question of what size
net is "proper” for modeling memory remains open,
as noted in the Discussion section below.

However, while backprop improved greatly with
larger nets, the patterns used were also uncorrelated
on average, which may have helped. The next exper-
iments used patterns which were distortions of a sin-
gle (random) prototype pattern, and thus were expli-
citly correlated. Each distortion was generated by
flipping any given bit of the prototype with probabil-
ity .25. Figure 2 compares the serial position func-
tions obtained with such patterns for two sizes of
backprop networks (32-16-32 and 128-64-128), and
the 32-16-32 novelty network used above. Other
parameters were as above.
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Figure 2. Degree of match as a function of serial position, after
presenting a list of correlated items. Position 16 represents
untrained items which were correlated with the presented items.

Comparing the two backprop nets, while the
large-network curve ends up higher (possibly due to
a tendency to produce more learning per step), its
slope is also steeper; thus overall, forgetting is more
pronounced if anything for the larger net (note that
new-item match is lower for the larger net, though).
A 256-128-256 net, and nets with larger o2, gave
similar results. These results were perhaps predict-
able: While forcing activations further into the sig-
moid tails can reduce interference--by making delta
vectors more orthogonal to learned outputs--this

novelty rule, with items from the beginning of the list giving better
matches than those in the middle. More work is necessary to deter-
mine the significance of this.
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should not reduce any interference caused by corre-
lated inputs. There is no apparent way t0 remove
correlations among the inputs simply by changing the
network configuration.

The novelty-rule network, on the other hand,
exhibited very little interference even with these
correlated items. Moreover, further runs showed the
novelty rule to improve with network size: absolute
match values were approximately unchanged, but
new-item match values decreased significantly, so
that forgetting in terms of discrimination was less.
Thus it appears that even with correlated patterns,
multilayer network models need not suffer from
extreme interference.

Varying amount of learning

In the next experiment, discrimination between
“old" (studied) and "new" (unstudied) items was
examined as a function of amount of learning, as
measured by number of learning steps taken, or the
"duration" of each pattern presentation. This is
important to check, because while human data shows
increasing discrimination with increasing item learn-
ing time, such an improvement is not predicted by
some current memory models. Simple linear models,
for example, predict that the variance in output to
new items increases with the mean old-item output as
learning amount increases, so as to keep d’ constant
(Shiffrin, Ratcliff, & Clark, 1990). Also, Ratcliff
(1990) has shown that several variants of the
backprop-based encoder network do not predict a
strictly increasing d” (the actual patterns are com-
plex, often nonmonotonic, and dependent on the
parameters used).

A 32-16-32 architecture was used as in the for-
getting simulations. Other parameters were 62 = .25,
and n = .1. However, rather than training each list
item to a criterion as before, each item was simply
given a fixed number of leaming steps before
proceeding to the next item. This number of steps
was varied (between lists) from 1 to 512, by powers
of 2. Two types of patterns were tested, for both
standard backprop and the novelty variant: "uncorre-
lated”, with elements +.5 and -.5 equally likely; and
"correlated”, where list items were distortions of a
single prototype, as described above. Within each
learning amount, 100 lists of 16 items were trained
for each condition. Performance was compared on
the learned items and 16 new items using d’ (mean
old-item match minus mean new-item match, divided
by standard deviation of new-item match), where
new items were generated the same way as list items
(from the same prototype, in the "correlated” condi-
tions).

As depicted in Figure 3, d’s were increasing for
the most part. (The very slight decrease over the last
interval in the novelty/correlated condition was insig-
nificant.) Furthermore, in a replication of all



conditions, using 62 = 1.0, there were no decreases,
and a similar overall pattern was obtained. Note that
in all conditions the increases extended into or past
the range of d’s typical in human experiments (about
1 to 3). Mean malch values after training the 512-
step lists ranged from about .70 to .78. Backprop
was somewhat worse overall than the novelty rule,
presumably due to interference effects. In sum,
Ratcliff’s conclusion that increasing d” is a problem
for the encoder network must be qualified. In partic-
ular, further simulations suggested that initial weight
variance is critical: using 62 = .01 rather than .25,
nonmonotonic functions much like Ratcliff’s were
obtained with backprop (the novelty-rule function
was still monotonic). There is a degree of this non-
monotonicity apparent in the bp/uncorrelated condi-
tion in the graph, as well.

Effect of Amount ol Leamning
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Figure 3. d ” as a function of number of leaming steps per pattem
in a once-presented list. Note the logarithmic scale.

Frequency discrimination

After being presented with a list of items, some of

which are repeated various numbers of times (at vari-
ous intervals), people can give fairly good estimates
of the frequencies with which items were presented.
This task can be viewed as a generalization of the
recognition task, wherein the possible frequencies are
limited to zero and one. Hintzman (1988) has called
frequency judgment "a quintessentially episodic
memory task", presumably because information con-
cemning individual item presentations (namely their
occurrence) is required in order to respond correctly.

The present novelty-based model was applied to
this task, using a paradigm similar to one used by
Hintzman (1988) in testing his multiple-trace
memory model, Minerva 2, on frequency discrimina-
tion. A size 48-9-48 network was used, with n = .5
an 62 = .25. Twenty-four random patterns were gen-
erated, with four assigned to each of six frequency
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conditions, 0 w 5. Each pattern was copied the
proper number of times, and the resulting list of 60
items was randomly permuted. Items were then
trained one-by-one, with only a single learning step
taken on each (thus considerably less training was
done per pattern than in the forgetting experiments
above). After training, match values were tested for
all 24 patterns. This procedure was replicated for
5000 simulated Ss, resulting in distributions of match
values for each of the six frequencies. From these
distributions forced-choice data were computed, giv-
ing the proportion of errors the network would make
if required to pick the more (or less) frequent item
from a pair taken from the original 24. These error
data are shown in Figure 4.

Forced-choice Frequency Discrimination

8 3 $

Percent Emror
FS
wn

4 /
¢ / 5
§— parameter = higher frequency

T T T T —
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Smaller Frequency
Figure 4. Errors in simulated forced-choice data, as a function of
the frequency of the less frequent item in a test pair. Data were
generated from distributions of match values corresponding to each
frequency.

Overall the model predicts that (given appropriate
response criteria) discrimination between two fre-
quencies improves with greater frequency difference,
and holding frequency difference constant, discrimi-
nation worsens with increasing frequencies. This
same pattern holds with people (Hintzman & Gold,
1983), when results for the "choose the more fre-
quent” and "choose the less frequent” instructions are
collapsed. Interestingly, the results obtained here are
very nearly indistinguishable from those obtained
with Minerva 2; in fact, although each matches the
human data well, the models match each other much
better than either matches the human data. For this
task, then, there seems to be no theoretical advantage
to maintaining a distinct memory trace for each indi-
vidual "event" to be remembered. Clearly, the
present connectionist model does as well by
"strengthening” each repeated item (by increasing the
relevant weights). (Backprop was also able to model
this particular task.)



List-specific frequency judgment

One might rightfully argue that there is more 10
making frequency judgments than simply assessing
the familiarity of an item, though. In particular,
human subjects are faced with the more difficult task
of not only having to discriminate different frequen-
cies that occurred within an experimental list, but
also having to discriminate the list presentations from
all the times the same items have been observed ow-
side the experiment. Thus, for example, people are
quite good at discriminating rare words which
appeared in a list from common words which did not
appear, even though presumably the "baseline” fami-
liarity is much higher for the common words.
Another example is provided by an experiment by
Hintzman & Block (1971), in which people were
asked to make list-specific frequency judgments.
Even though two different lists were made up of the
same items, subjects could give good estimates of an
item’s frequency in one list almost independently of
its frequency in the other list. In a sense, this task is
even more "quintessentially episodic” than standard
frequency judgment; not only must information about
number of occurrences be retained, but this informa-
tion must be distinguishable on the basis of instruc-
tions to limit the relevant context.

The present model was tested on this task using a
120-30-120 net, with n=.3 and o? = 25. An
approach much like Hintzman’s (1988) was used. In
order to model different lists, 80 input units
represented list context, and each list was assigned its
own random context vector which was presented
along with every item in that list. Twenty-seven ran-
dom 40-element vectors were generated, and three of
these assigned to each of the 9 possible combinations
of the frequencies 0, 2, and 5 across the two lists.
Thus each of the three "2-0" patterns appeared twice
in the first list and zero times in the second list, and
similarly for 0-0, 0-2, 0-5, 2-5, and so on. Once the
proper number of copies were made, each list was
randomly permuted and then trained, with one learn-
ing step per item.

Figure 5 shows the match values obtained after
training both lists, averaged over 500 simulated Ss,
along with the data from H & B linearly transformed
to match the model’s output values (using a least
squares fit over the 9 means). Each pattern was
tested separately with each context vector, and data
for the two lists was collapsed.? Thus for example the
“target-frequency = 5, nontarget-frequency = 2" data
point represents match values obtained by testing the
5-2 patterns in context 1, and the 2-5 patterns in con-
text 2.

2 The model showed a reliable primacy effect, with higher matches
overall on the first list, but it was not large and did not affect the
conclusions.
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In the graph, perfectly flat (separated) lines
would mean that discrimination was perfect; i.e., that
there was no interference from the nontarget list in
making frequency judgments. Hintzman (1988) pro-
poses measuring performance on this task by a
"discrimination index” (DI), obtained by dividing the
variance among means accounted for by nontarget
frequency by that accounted for by target frequency.
Such a measure could vary from O (perfect list
discrimination) to 1 (no discrimination). H & B’s
subjects showed a DI of .097, and the present simula-
tion gave a DI of .093. Correlation of the model with
the H & B means was .998. (A total of about five
simulations of this experiment preceded this particu-
lar one, so not a lot of fitting was involved.)

g _| Ust-specific Frequency Judgmant
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Nontarget-list Frequency
Figure 5. Mean match values ("frequency judgments”) for items in
a particular list, as a function of frequency of the same item in the
other list. Hintzman & Block’s subjects’ data was linearly scaled
to match the network’s output values.

The present model had no trouble, then, even
with this highly episodic memory task. (Backprop
also had no trouble, except when interference effects
were large due to use of comelated items.) The
novelty-based network did require many more con-
text elements than did Minerva 2, however, in order
to match human performance (as with Minerva 2,
discrimination improved with additional context ele-
ments). This might seem disadvantageous, but it
isn’t clear how much of a person’s internal represen-
tation of an episode is devoted to "context"”, anyway.
Moreover, Minerva 2 does not attempt to model the
existence of extra-experimental memories. It seems
reasonable that the more occurrences of an item are
stored in memory, the larger must be the number of
possible contexts in order that any small subset of
those memories be accessed. Put differently, the
more background noise, the harder the discrimination
task becomes. Thus a version of Minerva 2 which
modeled prefamiliarization might require more



context elements as well. The present model, on the
other hand, does all its learning in terms of what is
already known; i.e., all previous knowledge is con-
tained in the model, although here this pre-existing
memory was modeled simply with random weights.
Thus it has more of a burden in trying to discriminate
the experimental presentations from background
"memories”.

Discussion

As a whole, the results presented here argue
strongly that episodic memory tasks are not beyond
the modeling capabilities of multilayer networks.
First, it was shown that the catastrophic interference
exhibited by many of these networks is readily
avoided. Three different tricks were used to accom-
plish this: (1) increasing the variance of the starting
weights, which, by making more use of the non-
linearity of the activation functions, tends to protect
from change those weights leading to units being
"used" to represent old items; (2) increasing network
size, which provides more units to be "used" in
representing old items, and also increases the vari-
ance of initial activations (by increasing the fan-in to
the units) which should have an effect similar to
increasing the initial weights; and (3) using a new
leaming rule, which increases orthogonality for
leaming purposes while still reducing error. While
use of the first two tricks suggested that arbitrarily
low interference might be obtained with backprop
using uncorrelated (on average) patterns, only by
using the new learning rule did this seem possible for
explicitly correlated patterns.

Second, it was shown that the increasing d* exhi-
bited by people with increased learning per item can
be modeled by backprop, within certain parameters,
and by the novelty-based learning rule, with no
observed need for limiting parameters. This attenu-
ates the conclusion made by Ratcliff (1990) that this
is a problem for backprop networks. (Ratcliff does
note the qualitative differences changes in parameters
can make.)

Third, the novelty-based network (and backprop
to some extent) was shown capable of modeling a
simple frequency discrimination task, and a more dif-
ficult list-specific frequency judgment task. While,
unlike recall tasks, these tasks are based only on
scalar "familiarity value" outputs, they still depend
on the ability to maintain information about indivi-
dual episodes, and thus seem like good indicators of
episodic memory.

Disadvantages

Because of the preliminary nature of the present
model, it is hard to say much about its explanatory
disadvantages. It is reasonable to ask at least,
though, whether the tricks used herein are justified
from a theoretical standpoint. Increasing initial
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weight variance doesn’t seem problematic: people
clearly bring a lot of knowledge to an experiment
(whether random weights capture this knowledge is
debatable, of course). Increasing network size seems
fairly reasonable as well; obviously the number of a
person’s neurons dwarfs the number of items in any
memory experiment. However, it must be noted that,
performance level held equal, smaller networks seem
to generalize better to new experience than large ones
(consistent with general overfitting arguments).
Note, though, that "interference" and "generalization"
are in essence two sides of the same coin. Each
implies learning of one pattern affecting the output of
another; the difference is whether such effects are
"good" or "bad", given the task at hand. It is an open
question, then, to what extent future CMs will exhibit
high "good generalization" and low "bad generaliza-
tion".

As for the novelty-based learning rule, no obvi-
ous explanatory disadvantages (relative to other
CMs) have surfaced yet. Indeed, it seems clear that
people do tend to focus, in some sense, on unusual
aspects of their environment. Furthermore, it seems
like successive inputs to a human memory system
would tend to be highly correlated, if anything, based
on continuity of the environment. Thus the novelty
rule (or something similar) may well be necessary for
modeling human memory in multilayer nets without
high interference. On the negative side, preliminary
runs suggest that the novelty rule is not as good as BP
at storing information in small (relative to the task)
networks, when very large amounts of learning per
pattern are used. This need not be problematic for
modeling, though, since as noted there is no pressing
theoretical limitation on a modeling network’s size.

Relation to other models

Several points need to be made regarding previ-
ous models. First, a large number of connectionist
(or connectionist-flavored) models do not suffer from
the catastrophic interference problem as do BPCMs.
These include holographic models such as CHARM
(e.g. Eich, 1982), and the various ART models (e.g.
Grossberg, 1987), among others. The present
research speaks to these models only indirectly,
insofar as it lends support to a class of potential com-
petitors (multilayer error-reduction networks). It is
also important to note that the basic idea behind the
learning rule introduced here--that focusing on
novelty in learmning can reduce interference--is not
new. Grossberg (1987) has argued that this is neces-
sary to allow stability of learming in a changing
environment. Otwell (1990) has used substitution of
novelty vectors (of a different sort than here) in back-
prop learning. And in an intriguing parallel,
Holyoak, Koh, & Nisbett (1989) use an "unusualness
heuristic" in generating "exception rules" in their
rule-based theory of animal conditioning, which



function to "censor useful but imperfect default rules,
protecting them from loss of strength”. This scems
roughly like another way to say "reduce interfer-
ence". The present paper, then, might be used to
argue that the difference between rule-based and con-
nectionist accounts of learning is not so clear as
Holyoak et al. suggest.

There are many similarities between the present
model and Hintzman’s multiple-trace model,
Minerva 2 (1988). For instance, inputs are
represented as feature vectors in each, and each
allows for two kinds of outputs: a scalar familiarity
value, and a vector representing a “retrieved
memory”. These similarities have led to the fre-
quency judgment experiments herein being modeled
much as in Minerva 2. The models’ storage assump-
tions, however, are quite different: while Minerva 2
maintains distinct memory vectors corresponding to
each experienced "event”, the present model, as other
CMs, superimposes all memories on a single set of
connection weights. Thus it is striking that the agree-
ment in their predictions noted above is as strong as it
is.

Hintzman allows for the possibility that associa-
tive matrix models might account for the range of
frequency-judgment data exhibited by people, but
opts for a multiple-trace view for various reasons--
such as the accessibility of individual event informa-
tion, and the ability to activate individual traces as a
nonlinear function of their similarity to a probe
(Hintzman, 1988; 1986). The present research
argues, though, that given some distinguishing con-
text cues, individual event memories can also be
accessed by a network. Also, because of the non-
linear activation functions of the present model, it too
has the potential to exhibit nonlinear generalization
as people do (pilot work on prototype extraction
experiments has supported this claim). Thus there is
no obvious reason why multiple-trace theories such
as Minerva 2 should possess any inherent explana-
tory advantage over CMs.

Conclusion

It has been argued herein that a potentially major
problem with multilayer network models--that they
exhibit catastrophic interference--is in fact not
inherent in these models at all. By using the learning
rule introduced here, and in certain cases using even
simpler devices, these models can learn individual
associations to a large degree with little disruption of
prior knowledge. Given this, there is no obvious rea-
son why an encoder network-based alternative to
current global models of memory could not evolve.
Of course, the present paper has barely scratched the
surface of such an undertaking, and there is much
more to be said, surely both pro and con, about such
memory models. Nonetheless, a non-obvious capa-
bility of these networks--the ability to learn,
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remember, and later make use of information about
individual event information--has been shown to
exist. Taken together with previous connectionist
work, and the tantalizing prospect of meshing biolog-
ical and psychological accounts of memory, this sug-
gests strongly that connectionism has a solid place in
future memory research.
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