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INVESTIGATION

Fast and Cost-Effective Genetic Mapping in Apple
Using Next-Generation Sequencing
Kyle M. Gardner,* Patrick Brown,† Thomas F. Cooke,‡ Scott Cann,* Fabrizio Costa,§

Carlos Bustamante,‡ Riccardo Velasco,§ Michela Troggio,§ and Sean Myles*,1

*Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, Canada,
†Department of Crop Sciences, University of Illinois, Urbana, Illinois, ‡Department of Genetics, Stanford School of
Medicine, Stanford University, Stanford, California, and §Genetics and Molecular Biology Department, IASMA Research
Center, San Michele all’Adige, Italy

ABSTRACT Next-generation DNA sequencing (NGS) produces vast amounts of DNA sequence data, but it
is not specifically designed to generate data suitable for genetic mapping. Recently developed DNA library
preparation methods for NGS have helped solve this problem, however, by combining the use of reduced
representation libraries with DNA sample barcoding to generate genome-wide genotype data from
a common set of genetic markers across a large number of samples. Here we use such a method, called
genotyping-by-sequencing (GBS), to produce a data set for genetic mapping in an F1 population of apples
(Malus · domestica) segregating for skin color. We show that GBS produces a relatively large, but extremely
sparse, genotype matrix: over 270,000 SNPs were discovered but most SNPs have too much missing data
across samples to be useful for genetic mapping. After filtering for genotype quality and missing data, only
6% of the 85 million DNA sequence reads contributed to useful genotype calls. Despite this limitation, using
existing software and a set of simple heuristics, we generated a final genotype matrix containing 3967 SNPs
from 89 DNA samples from a single lane of Illumina HiSeq and used it to create a saturated genetic linkage
map and to identify a known QTL underlying apple skin color. We therefore demonstrate that GBS is a cost-
effective method for generating genome-wide SNP data suitable for genetic mapping in a highly diverse
and heterozygous agricultural species. We anticipate future improvements to the GBS analysis pipeline
presented here that will enhance the utility of next-generation DNA sequence data for the purposes of
genetic mapping across diverse species.
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The introduction of new high-throughput DNA sequencing technol-
ogies has dramatically reduced sequencing costs and increased the pace
of genomics research. One of the primary goals of genomics research is
to establish relationships between genotypes and phenotypes. In agri-

culture, such genotype–phenotype associations form the basis of ge-
nomics-assisted breeding programs that aim to accelerate the breeding
of improved varieties. Long-lived woody perennials are expensive to
breed using traditional methods and therefore stand to benefit more
from the genomics revolution than most other agricultural species.
Offspring from breeding programs can be genetically screened and
discarded at the seedling stage without incurring the enormous ex-
pense of growing them for years to fruit-bearing maturity for evalu-
ation (Bus et al. 2000; Kellerhals et al. 2000; Dirlewanger et al. 2004; di
Gaspero and Cattonaro 2010).

Most forms of genetic mapping require the collection of genome-
wide polymorphism data, where genotypes from a set of common loci
are obtained from a set of samples. Although next-generation DNA
sequencing technologies produce vast amounts of DNA sequence
data, they were not designed to generate these types of genotype data.
Recently, however, next-generation sequencing technologies have
been coupled with reduced representation libraries and DNA
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barcoding to simultaneously identify and genotype a common set of
polymorphic loci across a set of samples in a single experiment. The
two most common of these methods include genotyping-by-sequenc-
ing (GBS) (Elshire et al. 2011) and RADseq (Baird et al. 2008), and the
present study focuses on GBS. In addition to the low per-sample cost,
there are several benefits to using sequence-based genotyping methods
over microarray-based technologies (Myles 2013). For example, poly-
morphism discovery and genotyping are completed in a single step,
which not only saves time but also reduces the ascertainment bias
inherent in the process of developing genotyping microarrays. More-
over, as reference genomes, alignment methods, and genotype calling
algorithms improve, raw sequence data collected today will become
more valuable in the future because improved methods will enable
more information to be extracted from the original raw files.

Despite difficulties in experimental design, due to self incompat-
ibility and high heterozygosity, there is a wide variety of apple genetic
maps constructed from bi-parental crosses. Most of these linkage
maps have been built with low-throughput genetic markers such as
microsatellites (Celton et al. 2009; Fernández-Fernández et al. 2012)
and AFLPs (Liebhard et al. 2003; Kenis and Keulemans 2005), result-
ing in relatively low marker density across assembled linkage groups.
Recently, there has been a shift toward the high throughput identifi-
cation of single nucleotide polymorphisms (SNPs) in apple spurred on
by decreasing DNA sequencing costs and the availability of an apple
(Malus · domestica, cultivar "Golden Delicious") reference genome
(Velasco et al. 2010). Chagne et al. (2012a) detail the creation of a SNP
genotyping microarray that assays 8000 SNPs discovered from low
coverage sequencing of 27 cultivars. To date, the apple 8K SNP array
has been used to create saturated linkage maps in bi-parental cross
populations (Antanaviciute et al. 2012) and to perform genomic se-
lection (Kumar et al. 2012) and genome-wide association (Kumar
et al. 2013) in diverse breeding material. Although SNP arrays are
widely used, the high levels of polymorphism in many agricultural
species like apples often result in unreliable or useless genotype calls
because of highly variable probe–sequence hybridization ( Miller et al.
2013). In addition, the ascertainment bias inherent in the design of
SNP genotyping microarrays results in only a small fraction of the
queried loci being polymorphic in any given bi-parental cross
(Micheletti et al. 2011). For example, only approximately one-third
of the SNPs on the apple 8K SNP array were observed to be poly-
morphic in a "Royal Gala" · "Granny Smith" segregating population
(Chagne et al. 2012a).

It is evident that GBS offers several advantages over competing
technologies and is quickly becoming the genotyping method of
choice in many agricultural systems (Poland and Rife 2012; Myles
2013). For example, GBS has been recently used for a variety of
applications including saturating an existing genetic map in rice (Spin-
del et al. 2013), creating high-density genetic maps in wheat and
barley (Poland et al. 2012b), performing genomic selection in wheat
(Poland et al. 2012a), ordering of a draft genome sequence in barley
(Consortium 2012; Mascher et al. 2013a), and characterizing germ-
plasm diversity in maize and switchgrass (Lu et al. 2013; Romay et al.
2013). Almost all GBS studies to date have focused on inbred lines,
because genotype calling in highly heterozygous crops using next-
generation DNA sequence data requires more data and is far more
complicated. The present study addresses this issue by presenting
a pipeline for GBS SNP calling in apples and follows recently pub-
lished work on GBS workflows developed for other heterozygous
crops like grape (Barba et al. 2014) and raspberry (Ward et al.
2013). Using a single lane of Illumina HiSeq data, we identified a ro-
bust set of SNPs and used them to generate a saturated genetic linkage

map of the apple genome and map a major QTL for apple skin color
in an F1 population.

MATERIALS AND METHODS

Population description and phenotyping
The "Golden Delicious · Scarlet Spur" population investigated here is
planted at the experimental orchard of the Foundation Edmund Mach
(FEM) in San Michele all’Adige, Italy. Each individual progeny is
represented by a single tree grafted on M9 rootstock and planted in
2003. The population has been grown and maintained following stan-
dard agronomical practice for fruit thinning, canopy pruning, chem-
ical fertilization, and disease control. Due to the large variation in
ripening time among progeny, phenotyping was repeated three times
during the harvesting season. Skin color was scored as a binary trait:
trees had apples with either yellow/green skin (like Golden Delicious)
or red skin (like Scarlet Spur).

GBS library construction
GBS libraries were constructed using the two-enzyme modification of
the original GBS protocol (Elshire et al. 2011; Poland et al. 2012b).
DNA was extracted using commercial extraction kits. Restriction/
ligation reactions were performed in 96-well plates using 500 ng of
DNA from each individual, digestion with HindIII-HF and MspI
(New England Biolabs, Ipswich, MA), and 0.1 mM and 10 mM of
A1 and A2 adapters per well, respectively. Libraries were pooled,
size-selected on a 1% agarose gel, column-cleaned using a PCR puri-
fication kit (Qiagen, Valencia, CA), and amplified for 12 cycles using
Phusion DNA polymerase (NEB). Average fragment size was esti-
mated on a Bioanalyzer 2100 (Agilent, Santa Clara, CA) using
a DNA1000 chip following a second column-cleaning, and library
quantification was performed using PicoGreen (Invitrogen, Carlsbad,
CA). Pooled libraries were adjusted to 10 nmol and sequenced with
100-bp, single-end reads on the HiSeq2000 (Illumina, San Diego, CA).

SNP calling
We created a custom bioinformatics pipeline using custom Python
scripts and existing software to process raw GBS sequence data from
a single lane of an Illumina HiSeq sequencer into SNP genotype tables
(Supporting Information, Figure S1). DNA barcode deconvolution
and basic sequence quality filtering was performed using a custom
Python program (barcode_splitter.py). This program splits the raw
Illumina fastq file into 96 separate fastq files based on the barcode
sequences associated with each sample while filtering out reads con-
taining any ambiguous bases in the barcodes or restriction site rem-
nants immediately after the barcode sequence. All sequences
successfully passing these basic filters were then scanned for the pres-
ence of an additional restriction site remnant and, if present, the read
was trimmed accordingly. Reads were also trimmed if the sequence
contained the common (A2) GBS adapter, indicating that the genomic
fragment sequenced was less than 90 to 100 bp in size.

The separate fastq files for each DNA sample were then aligned to
version 1.0 of the apple reference genome (Velasco et al. 2010) using
bwa (Li and Durbin 2009), allowing a maximum of 4% sequence
mismatch. Alignments were converted to the SAM format, then
merged and sorted into one master binary alignment file (BAM for-
mat) with SAMtools 0.1.18. (Li et al. 2009). SNP calling was per-
formed using the genome analysis toolkit (GATK; McKenna et al.
2010) on the BAM file using a minimal set of filters that required
a called SNP to have a locus quality score of at least 30 given a prior
probability of heterozygosity of 0.01.
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SNP filtering and segregation analysis
SNP calls were filtered for quality by restricting the marker set to
biallelic SNPs, requiring genotype calls at each SNP to have a depth of
coverage of six reads in each sample, implementing a minor allele
frequency threshold of $0.2 and limiting missing genotype data to
a maximum of 20% per SNP. All filtering was performed using
vcftools 0.1.10 (Danecek et al. 2011) and the final SNP genotype tables
were output into PLINK format (Purcell et al. 2007). The final SNP
table contained 3967 SNPs and all of these SNPs were used to map
apple color using a simple chi-squared test (see below). The construc-
tion of the genetic map, however, required further filtering based on
the segregation pattern of the genotypes in parents and offspring.

Linkage mapping in apple F1 populations is referred to as a double
pseudo-testcross and only three genotype combinations in the
parental lines are informative for the construction of a genetic map:
when one parent is heterozygous and the other is homozygous (i.e.,
either AA · AB or AB · AA) and when both parents are heterozygous
(i.e., AB · AB). Only SNPs following these segregation patterns in the
parents were retained. Each SNP was subsequently tested for the
expected segregation ratios in the F1 progeny: heterozygous in Golden
Delicious (1:1); heterozygous in Scarlet Spur (1:1); and heterozygous
in both Golden Delicious and Scarlet Spur (1:2:1). SNPs deviating
from these ratios according to a chi-squared test (P , 0.01) were
not included in map construction. Finally, progeny genotypes incon-
sistent with Mendelian inheritance from the parental genotypes were
set to missing. After implementing these filters, 2436 SNPs remained
for linkage map construction.

Linkage map construction
A single composite linkage map was constructed using JoinMap 4.0
(Stam 1993) by combining the backcross type (Aa · aa) markers
segregating within each parental background and intercross type
(Aa · Aa) markers segregating within both parental backgrounds.
Markers suspected of being incorrectly phased by JoinMap, due to
high pairwise linkage LOD and spurious recombination fractions
above 0.5, had their allele codes switched manually but were dropped
from further analysis if phasing problems persisted. To increase map-
ping efficiency, pairs or groups of loci with identical genotypes (i.e.,
complete linkage) were identified and a single marker was chosen to
represent the group.

Linkage groups were constructed and ordered with a linkage LOD
of at least 6.0, a minimum recombination fraction of 0.35, and a jump
threshold of 5. SNPs exhibiting “suspect linkage” to several loci within
their assigned group (as determined by JoinMap), poorly fitting markers
within an ordered group, and markers that greatly inflated the linkage
group size were dropped from the final mapping. All map distances were
calculated using the Kosambi mapping function. After applying these
filters, 1994 SNPs remained within the genetic linkage map.

Mapping skin color
For association analysis based on the physical coordinates obtained
from the reference genome, the full set of 3967 SNPs were tested for
association with skin color measurements using the case/control single
marker analysis in PLINK 1.04 (Purcell et al. 2007), which uses a chi-
squared test of independence of allele frequencies between cases and
controls with one degree of freedom at each marker independently.
For linkage map–based QTL analysis, R/qtl 1.26-14 (Broman et al.
2003) was used with the single binary QTL interval mapping model,
scanning the linkage map at 1-cM steps for the presence of a signifi-
cant QTL. A significance threshold of 3.05 was determined by per-

mutation tests on 1000 randomizations of the trait data (Churchill and
Doerge 1994). The PLINK genotype files, JoinMap input files, and
phenotype data are available from the Dryad Digital Repository
(http://doi.org/10.5061/dryad.55t54).

RESULTS

Alignment of GBS reads to the reference genome
GBS of a single plate of 96 DNA samples yielded 85,129,960 100-bp
reads using Illumina HiSeq 2000 sequencing technology. The high
proportion of reads beginning with a barcode sequence (98.2%) and
containing a restriction site remnant (99%) indicated that the library
preparation was effective and the data were of high quality. In addition,
there were very low occurrences of chimeric reads (�1.0%) and of reads
containing downstream adapter sequences (�1.2%).

After aligning each of the 96 samples’ reads to the "Golden De-
licious" v1.0 reference genome, seven of the samples were found to
have a relatively low numbers of reads (,150,000) that uniquely
aligned to the genome and these samples were subsequently dropped
from further analysis. In the remaining 89 samples (87 F1 progeny
and 2 parents) there was an average of 973,896 (SD = 609,869) reads
per sample and an average of 628,085 reads (SD = 393,153) uniquely
aligned to the reference genome (Figure 1). Despite the wide range of
read counts across samples, there was relative uniformity in the pro-
portion of reads successfully mapped across samples with an average
of 63.5% (SD = 2.5%).

SNP calling
Considering only the successfully mapped reads from 89 samples,
SNPs were discovered and genotypes were called by analyzing the
single master alignment file with GATK (McKenna et al. 2010). After
using a minimal set of initial quality filters (see Materials and Meth-
ods), 273,835 SNPs were identified. However, the resulting genotype
matrix was extremely sparse: more than 75% of the 273,835 SNPs
contained .50% missing genotypes (Figure 2A). Restricting the anal-
ysis to SNPs with,20% missing genotype data drastically reduced the
number of SNPs to 30,393. It is likely that many false-negative geno-
type calls still exist in the resulting genotype table because confidently
calling heterozygotes in a highly heterozygous diploid species like
apple requires a relatively high depth of sequence coverage compared
with genotype calling in inbreds. For the set of 30,393 SNPs, the
number of genotype calls at various sequence depth thresholds is

Figure 1 Results of alignment of GBS reads to the apple reference
genome. For each sample, the number of reads mapped and number
of reads unmapped to the reference genome are shown. The read
counts for the parents of the F1 mapping population, Golden
Delicious and Scarlet Spur, are indicated.
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shown in Figure 2B. Despite the observation that many genotype calls
are supported by .20 reads, the number of SNPs for downstream
analysis declines rapidly as the minimum depth of coverage threshold
is increased from 1 to 10 while implementing a missing data threshold
of 20% (Figure 2C). We further reduced the number of markers to
3967 SNPs by applying a minimum depth of coverage threshold of six
sequence reads for a genotype call (i.e., any genotype with fewer than
six supporting sequence reads was set to missing) and then re-filtering
for SNPs with ,20% missing genotypes. The choice of six reads per
genotype as a threshold was arbitrary: it was chosen as a tradeoff
between increased confidence in genotype calls and the number of
SNPs retained for mapping. This set of 3967 SNPs was used to map
skin color using a chi-squared test. To create the genetic map, a final
set of 2436 SNPs was retained after filtering for Mendelian inconsis-
tencies and segregation distortion (see Materials and Methods).

Genetic map construction
The final set of 2436 SNPs was separated into the three segregation
types: 884 heterozygous in Golden Delicious, 1044 heterozygous in
Scarlet Spur, and 508 heterozygous in both parental varieties. Once
this set of SNPs was imported into JoinMap 4.0, 442 segregated
identically to at least one other SNP (i.e., no recombinants observed)
and were dropped from further mapping. The remaining 1994 SNPs
were successfully grouped into 17 linkage groups (Figure S2), as
expected for the apple genome, at a conservative LOD threshold of
six. Only 35 loci were found to be unlinked to any group, suggesting
a high degree of saturation of the assembled mapping groups. Once
ordered, the linkage groups spanned 1272 cM, with individual linkage
groups ranging from 56 cM to 96 cM. Across linkage groups, the
average marker density was high with a marker found every 0.68
cM (6 0.13 SD).

QTL mapping for apple skin color
Single marker analysis using the final set of 3967 SNPs identified 15
SNPs significantly associated with skin color after applying a conser-
vative Bonferroni correction for multiple testing (P , 1.26 · 1025)
(Figure 3). These SNPs cluster within a single interval on chromosome
9 (bounded by coordinates 29,305,493 and 33,701,563). There was also
a cluster of SNPs on the distal portion of chromosome 13 that showed
a suggestive association with skin color, but all fell short of the cor-
rected significance threshold (Figure 3).

Interval mapping using 1994 SNPs detected one highly significant
QTL for skin color on the distal portion of chromosome 9, at position
89.5 cM, near SNP 9_30303238 (Figure 4). The “2 LOD” confidence
interval for this QTL extended to a 14-cM region around the point
estimate of the QTL position.

DISCUSSION
A major consideration when conducting GBS experiments is the
choice of restriction enzyme used to generate the reduced represen-
tation library (RRL). This choice determines the tradeoff between the
number of fragments in the library and the sequencing depth of the
fragments. There are several GBS library preparation methods
currently in use, including the original single enzyme ApeKI protocol
described by Elshire et al. (2011), a double digest using enzymes with
differing restriction site lengths (Pst I/Msp I) (Poland et al. 2012b) and
a multi-step procedure that combines the double restriction enzyme
digest with selective PCR amplification (Sonah et al. 2013). Although
there was ultimately no explicit test of library fragment composition in
the present study, using the HindIII-MspI enzyme combination fol-
lowed by size selection we observed a very small proportion of se-
quence reads that required adapter trimming (1.2%), suggesting that
most fragments were larger than 100 bp and were thus suitable for
GBS. However, the number of DNA sequence reads across individual

Figure 2 SNP and genotype counts from GBS data. (A) Cumulative count of SNPs identified across varying missing data thresholds. More than
200,000 SNPs are called with a very liberal missing data threshold of 90%, but only 30,393 SNPs remain if only SNPs with ,20% missing data are
retained. (B) The number of genotypes called at increasing levels of sequencing depth, after retaining only SNPs with,20% missing data. (C) The
number of SNPs retained at increasing minimum thresholds of sequence depth while retaining only SNPs with ,20% missing data. Here, we
chose a minimum depth of coverage of six reads. Thus, only SNPs with at least six supporting reads and ,20% missing genotypes were retained,
resulting in a set of 3967 SNPs.

Figure 3 Manhattan plot of a single marker association analysis for
apple skin color. Each of the 3967 SNPs is plotted according to its
physical position from the "Golden Delicious" reference genome and
the2log10 P value of the single marker association test. The horizontal
dotted line represents the Bonferonni-corrected P value significance
threshold. The vertical dotted line represents the location of the MYB
transcription factor gene known to be responsible for skin color vari-
ation.
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samples varied by more than an order of magnitude (0.15 million–3
million) (Figure 1), and we ultimately excluded the sequence data of
seven samples from analyses due to low read counts. These observa-
tions highlight the sensitivity of GBS to DNA sample uniformity.
Recent GBS library preparation methods have been shown to improve
the uniformity in read counts across samples (Sonah et al. 2013), and
further improvements are expected.

Because of the apple’s high heterozygosity and ancestral poly-
ploidy, there are major challenges in the assembly of its genome. It
is estimated that the assembled portion of the current apple reference
assembly represents only 71% of its �750-Mb genome (Velasco et al.
2010). Despite this constraint, we restricted our analysis to sequences
aligning to this assembly to enable a comparison of our inferred
linkage groups to the physical map. Approximately 40% of the se-
quence reads did not map to the assembled genome and were thus
excluded from further analysis (Figure 1). These excluded reads are
a combination of DNA sequences from �29% of the genome that is

not represented in the current assembly, DNA sequences that mapped
to multiple locations, and sequences that map to a unique position but
with too many mismatches (.4 mismatches per 100 bp). As improve-
ments are made to the genome assembly and to DNA sequence length
and quality, we anticipate significant improvements in the mapping
step of the GBS analysis pipeline. It is worth noting that a potential
alternative is to avoid the use of a reference genome altogether and to
use a SNP calling pipeline that does not rely on a reference genome
(Lu et al. 2013).

There is a larger number of possible paths one can take from
a DNA sequence file to a SNP genotype table, and it is known that
alignment and genotype calling parameters have a strong effect on the
resulting quantity and quality of genome-wide SNP data (Mascher
et al. 2013b). Although established software does exist for SNP geno-
type calling from GBS data (Bradbury et al. 2007), our goal here was
to demonstrate that, with simple heuristics applied together with stan-
dard software packages, one can generate SNPs of sufficient quality

Figure 4 Result of QTL analysis across the linkage
group corresponding to chromosome 9 of the apple
genome. The left panel indicates the genetic map
positions in cM of each of the SNPs or groups of SNPs.
Each SNP’s ID indicates its physical position according
to the reference genome, i.e., the physical coordinate it
was assigned through alignment and SNP calling (e.g.,
SNP 9_ 449878 mapped to position 449878 on chro-
mosome 9 of the "Golden Delicious" v1.0 reference
genome). Note that many SNPs genetically mapping
to the linkage group corresponding to chromosome 9
are assigned to other chromosomes according to the
reference genome (e.g., SNP 13_30028140). The right
panel displays the LOD scores from a QTL analysis for
skin color for markers that segregate in the Scarlet Spur
genetic background. The horizontal dashed line repre-
sents the significance threshold determined by permu-
tation. LOD scores across all linkage groups are shown
in Figure S3.
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and quantity to be of utility for genetic mapping. Regardless of what
tools are used, it is evident that GBS generates a sparse genotype
matrix due to uneven sequence coverage across samples and sites:
many SNPs are discovered, but genotypes for these SNPs are most
often generated from only a small proportion of the DNA samples.
For example, more than 250,000 SNPs were discovered in the present
study, but when SNPs with .20% missing data are excluded, the
number of SNPs remaining for analysis is reduced to �30,000 (Figure
2A). Moreover, the number of SNPs decreases as the depth of cover-
age filter is increased (Figure 2, B and C). We chose arbitrarily to
include only genotypes with six or more supporting reads as a trade-
off between genotype quality and quantity. Using these thresholds, we
obtain a set of 3967 SNPs derived from only 6% of the sequence reads.
Thus, in the end, 94% of the sequence we collected in this experiment
was ignored. Most GBS studies to date have focused on genotyping
inbred lines, which requires far less data and is statistically far simpler
than genotype calling in highly heterozygous species like apple, or in
polyploids, which are common among species of agricultural impor-
tance. GBS SNP calling pipelines designed specifically for highly het-
erozygous and polyploid species that take haplotype phasing and
imputation into account promise to significantly enhance the utility
of GBS (Lu et al. 2013; Ward et al. 2013).

Despite the high proportion of sequence reads discarded due to
filtering, there remained a sufficient number of markers to perform
genetic mapping of apple skin color with a modest sample size. By
mapping skin color, we have intentionally focused on a trait with
a simple genetic architecture, which deviates from most QTL studies
that focus on more complex traits. Skin color is known to be
controlled almost entirely by a single locus of large effect (i.e., effec-
tively Mendelian), and we leverage this knowledge here to verify the
utility and power of GBS to identify this known locus. With 3967
SNPs genotyped in 89 samples, a simple chi-squared test for associ-
ation revealed a single significant peak from position 29.3 Mb to 33.7
Mb on chromosome 9 (Figure 3). This peak overlaps with the R2R3
MYB transcription factor gene at position 32.8 Mb on chromosome 9
known to regulate apple skin color (Takos et al. 2006; Espley et al.
2007; Lin-Wang et al. 2011; Zhu et al. 2011; Chagne et al. 2013). In
addition, a set of 1994 SNPs was used to produce a well-saturated
linkage map spanning 1272 cM (Figure S2). This map size is consis-
tent with the sizes of apple genetic maps from previous studies, for
example, 1538 cM (Khan et al. 2012), 1005 cM (Chagne et al. 2012b),
and 1143 cM (Han et al. 2011). On average, the genetic map has
a marker every 0.68 cM, which is in line with the marker density
achieved using the apple 8K SNP array (0.5 cM/marker in Antanavi-
ciute et al. 2012; 0.88 cM/marker in Chagne et al. 2012a). Using this
genetic map, interval mapping revealed one highly significant QTL for
skin color centered at position 89.5 cM (Figure 4; Figure S3), in
agreement with the results from the chi-squared test for association.
Thus, with a set of simple heuristics for calling genotypes from GBS
data, a saturated genetic map can be generated and QTL mapping can
robustly identify genotype–phenotype associations.

In the present study, the parents of the F1 population were
included only once and had average sequence coverage (Figure 1).
However, because inclusion of a SNP in the genetic map relied on
accurate genotype calls from both parents, it may be advisable to
sequence the parents of mapping populations to a higher depth, i.e.,
include them multiple times in the plate of samples. Moreover, the
genetic map presented here was constructed using only SNPs that
mapped to the anchored portion of the reference genome to allow
comparison between physical and genetic map positions. By including
the unanchored portion of the genome sequence during the initial

alignment stage, it is likely that additional SNPs could be identified
and placed on the genetic map.

For 364 SNPs (18.3% of all mapped SNPs), the linkage group
assignments conflicted with the predicted chromosomal locations
according to the reference genome. Antanaviciute et al. (2012)
reported a similar proportion (13.7%) using genotype data from the
apple 8K SNP array. The most likely reasons for these conflicts be-
tween genetic and physical maps are the high frequency of paralagous
genomic regions in the apple genome and the incorrect anchoring of
sequences during the assembly of the reference genome. Such conflicts
may obscure association signals and complicate the interpretation of
genetic mapping results. For example, although below the conservative
threshold for significance, we detected a signal of association on chro-
mosome 13 when SNPs were positioned according to the physical
map (Figure 3). However, this same block of SNPs that physically
map to chromosome 13 was subsequently found to genetically map
close to the QTL for skin color on linkage group 9 (Figure 4). This
demonstrates that caution is warranted when relying on the physical
map coordinates of the current reference genome sequence.

It is worth noting that our modest mapping population size of 87
F1 offspring likely often prevented the ordering algorithm from
finding the correct order for SNPs that were closer than �2–5 cM.
Over larger distances, however, the estimated map order of SNPs was
generally in agreement with physical coordinates from the reference
genome (Figure S2).

The present study demonstrates that a Mendelian trait (skin color)
can be mapped in an apple F1 population using GBS data from
a single lane of Illumina next-generation sequencing. Considering the
currents costs of acquiring SNP data from the apple 8K genotyping
microarray, we estimate that a similar quantity and quality of apple
SNP data can be achieved using GBS with a 10–100· decrease in cost.
Because of the rapid improvements in DNA sequencing technology,
we anticipate that genotyping efforts will increasingly favor the use of
GBS or similar methods over the use of microarrays. The present
study uses standard software tools and simple heuristics to generate
biological insights from GBS data. However, it is clear that method-
ological developments required for analyzing GBS data lag far behind
the technology developed to generate GBS data. To maximize the
utility of next-generation DNA sequence in the future, there is a clear
need for improved computational and statistical tools to extract as
much information as possible from the raw data, and to phase, im-
pute, order, and genetically map large sets of genetic markers.
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