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Abstract of the Dissertation

Computational Models of Modulated Gamma
Oscillations and Activity-Dependent Graded Inhibition

in the Olfactory Bulb

by

J. Kendall Berry

Doctor of Philosophy

in

Physics

University of California, Davis

2023

Oscillations in olfactory bulb activity are modulated by neurodegenerative dis-

ease pathology. Particularly, Alzheimer’s disease pathology has been found to

strengthen the gamma-band oscillatory activity that arises from the interface

between mitral and granule cells. Using two different computational models of

the olfactory bulb network, this work investigates the effect of synaptic damage

on olfactory bulb gamma oscillations and explores various mechanisms involved

in gamma oscillation generation. The first model treats the olfactory bulb as a

set of coupled nonlinear oscillators and propagates synaptic weight degradation

locally and globally. Gamma oscillations are enhanced at moderate levels of dam-
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age, followed by a loss of oscillatory activity predictable by linearized analysis.

The second set of simulations uses the large-scale mechanistic model presented

by Kersen, Tavoni, and Balasubramanian, implementing Izhikevich dynamical

equations. This work adds synapse-specific graded inhibition to the mitral cells,

resulting in activity-dependent inhibition critically involving granule cell NMDA

current, similar to recent experimental findings. The modified model also imple-

ments tonic inhibition to the granule cell population, which reduces granule cell

firing and increases mitral cell spike participation and network synchrony. The

present iterations of this model do not yield robust gamma oscillations. However,

the same model framework could feasibly achieve gamma activity via an entrain-

ment mechanism by using resonant mitral cells with subthreshold oscillations.

Finally, the last chapter proposes an extension of the model that implements

inhibition-dependent backpropagation of mitral cell action potentials. Previous

work theorized that such a mechanism could underlie the increased gamma power

and decreased gamma frequency which is observed after modest application of

GABA antagonist, an experimental result not yet captured by computational

modeling. Thus this work aims to provide critical elements and potentially fruit-

ful directions in the continued investigations of the generation and perturbation

of olfactory bulb gamma oscillations.
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Chapter 1

Introduction

This work implements two different models of olfactory bulb oscillations with the goal of

investigating modulations of oscillatory activity brought about by disease pathology. Com-

putational models help us to better understand mechanisms behind neural activity, and when

simulations and experimental studies inform each other, we get a fuller picture of how the

brain functions[1]. Various neurological illnesses, including schizophrenia, clinical depression,

Alzheimer’s disease (AD), and Parkinson’s disease (PD) have been simulated in various re-

gions of the brain[2]. The olfactory bulb is a particularly intriguing area for this purpose

due to its involvement in early stages of neurodegenerative diseases[3–5] and the measurable

effects pathology has on animal models of disease-impacted olfactory bulb activity[6–9].

1.1 The Olfactory Bulb

The olfactory bulb (OB) is the first site for processing odor information before projecting

it to other regions of the brain[10, 11]. Olfactory sensory neurons bind odorant molecules,

sending their signals directly to bundles of dendrites called glomeruli in the most superficial

layer of the olfactory bulb[12]. These dendrites belong to periglomerular cells, external

1



Figure 1.1: Olfactory Bulb Layers and Neurons. Figure reproduced from [10]. ONL:
Olfactory nerve layer, GL: Glomerular layer, EPL: External plexiform layer, MCL: Mitral
cell layer, IPL: Internal plexiform layer, GCL: Granule cell layer, PG: Periglomerular, sSA:
Superficial short-axon. Short-axon cells appear in other layers as well, including in the EPL.
External tufted cells are not pictured. Note that granule cells are axonless, so the contacts
with mitral and tufted cells are dendrodendritic.

tufted cells, superficial short-axon cells, and the primary projection neurons of the OB,

mitral cells (MCs) and tufted cells (TCs)[10] (see Fig. 1.1 from [10]). The MCs and TCs

also have secondary dendrites that extend into the external plexiform layer (EPL) where

they primarily make reciprocal dendrodendritic synapses with granule cell dendrites[13, 14],

although they also may interact in lesser-understood ways with EPL short-axon cells[15]

(similar morphologically to short-axon cells in the glomerular layer in Fig. 1.1, but in the

EPL). The work here focuses on the interactions between the most prevalent OB neurons,

2



MCs and granule cells (GCs), although recent studies suggest the importance of tufted cells

to OB oscillations[16].

The dendrodendritic contacts between MCs and GCs rely on AMPA and NMDA receptors

in GCs and GABA receptors in MCs[10]. GABA receptors bind the molecule that gives the

channel its name, gamma-aminobutyric acid (GABA), and precipitate inhibitory current by

the influx of chlorine ions[17]. Both AMPA and NMDA receptors are excitatory channels

that are activated by glutamate[13], but AMPA channels are faster acting[18]. NMDA

channels have slower dynamics for opening and closing, in part due to a more complicated

activation process[19]. The binding of glutamate is not sufficient alone to open NMDA

channels; the membrane potential of the post-synaptic neuron also needs to be sufficiently

high in order to remove a magnesium block. This two-part mechanism is believed to play

an important role in GC-driven inhibition of MCs[20]. In summary, when a MC spikes,

the action potential backpropagates down the lateral dendrites, releasing glutamate and

activating AMPA and NMDA receptors on GC dendrites[21, 22] (see Fig. 1.2). Excited GCs

release GABA-mediated inhibition back onto MC secondary dendrites in a graded manner,

even in the absence of somatic GC spikes[13, 14, 21, 22].

The reciprocal synapses between GCs and MCs are widely believed to be the source

of gamma-band (35 - 80 Hz) oscillatory activity in the OB[14, 23, 24] (but see also [15]).

Gamma oscillations are associated with odor discrimination[25], some learning tasks[25],

and exploration[26, 27], and recent evidence suggests that gamma oscillations also carry

odor identity information[28]. MC-GC interactions are also probably behind the lesser-

understood OB beta oscillations[29] (15 - 30 Hz), which also play a role in learning[30, 31],

as well as odor sensitization[32]. The last type of oscillatory activity in the olfactory bulb,

the theta-band (2 - 12 Hz), is driven by respiration[26] and coordinates activity within the

OB[33], likely helping to synchronize MC activity for the generation of gamma and beta

3



Figure 1.2: Dendrodendritic Synapse Between Mitral and Granule Cells. As the
action potential backpropagates along the MC lateral dendrite, it triggers the release of glu-
tamate which activates AMPA and NMDA receptors (AMPARs and NMDARs, respectively)
on the GC dendritic spine, exciting the GC. GC dendritic spines release GABA in a graded
manner (independent of GC spiking), binding to GABA receptors (GABARs) on the MC
lateral dendrite and inhibiting the MC.

oscillations[24].

The work presented here focuses on gamma oscillations due to indications that AD pathol-

ogy modulates the gamma band in particular[6, 7]. Disease pathology is present in the OB

in early stages of AD[34–40], making OB oscillatory activity a potential early biomarker

for AD, as it has already been shown to be for PD[41]. The change in OB gamma oscilla-

tory activity found in mouse models of AD[6, 7] bore a striking resemblance to results from

Lepousez and Lledo, where application of GABA antagonist led to increased gamma power

and decreased gamma frequency[27]. The mechanism behind these modifications of the OB

gamma rhythm are yet to be understood.
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1.2 Computational Models of the Olfactory Bulb

Computational work explores a wide variety of olfactory bulb function[42]. Odor information

processing and representation is a large area of study, with focuses including glomerular

layer computations[43], information streams using biophysical models[44], connectivity and

decorrelation of activity patterns[45], learning and odor discrimination[46], and analytical

approaches to odor encoding[47]. One group recently developed a neuromorphic network

based on the olfactory bulb to implement odor learning and identification with input from

chemosensors[48, 49].

Oscillations in the OB network are another big focus for modeling efforts, and the one

most relevant to the work here. Models of OB oscillatory activity rely primarily on two

general mechanisms of neural oscillation generation. In the pyramidal interneuron gamma

(PING) theory, periodic inhibition gates firing of the excitatory (or pyramidal) neurons[50].

In the case of the olfactory bulb, inhibition from GCs would establish the windows of al-

lowed MC firing[51]. The other class of theory is entrainment, with naturally rhythmic

MC firing (often established by subthreshold oscillations[52]) synchronized by weak corre-

lated inhibition[53]. Some models have used ideas from both theories, for example using

sub-threshold oscillations to help synchronize MC firing but still relying on a PING-like

mechanism to set the network frequency[54]. One model generates gamma oscillations by an

entrainment mechanism and beta by a PING mechanism[55], while another uses PING for

both[51]. Each of these models has helped extend our understanding of oscillatory activity

in the OB and in the brain generally.

5



1.3 Preview of the Thesis

Here, I work with two different models of OB oscillations. The simplicity of the first model

(based on [56]) allows a semi-analytical approach to investigating the effects of propagating

synaptic damage on oscillatory activity (Chapter 2). The second model (based on [45]) is

more mechanistically and biophysically grounded and thus enables the implementation of

key features of OB oscillations, especially synapse-specific graded inhibition (Chapter 3).

Based on indications that AD and PD pathologies weaken synaptic connections[57–59],

Chapter 2 takes a semi-analytical approach to investigating the effect of synaptic weight

on oscillatory activity in a simplified rate-based model of the olfactory bulb based on [56].

Results show increased gamma power with moderately reduced weight between model MC

and GC units. This increased power is due to the nonlinear transformation of the increased

internal MC state to its output state in this model. When connection weight is further

decreased, there is a Hopf bifurcation, and sustained oscillatory activity disappears.

In Chapter 3, using a large-scale mechanistic model from [45], I incorporate features of OB

function thought to be important to gamma oscillation generation. Namely, tonic inhibition

is implemented to reduce GC excitability and firing, and graded inhibition based on synapse-

specific GC NMDA current is delivered to the MCs[14, 55, 60, 61]. The graded method yields

MC activity-dependent inhibition, similar to experimental findings[20, 62]. Suggestions for

achieving robust gamma oscillations with these features are discussed, with emphasis on

incorporating resonance into the MC model[53] to achieve network entrainment[52, 55]. Fur-

ther ideas are presented in Chapter 4 for reproducing Lepousez and Lledo’s result of stronger

gamma power and decreased gamma frequency in the presence of GABA antagonist[27]

by implementing a simplified form of inhibition-dependent propagation of action potentials

along MC lateral dendrites[63]. Realistically modeling the modulation of OB oscillations

6



will lead to greater understanding of not only the mechanisms behind oscillatory activity

generation, but also of how disease pathology affects neural circuitry.
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Chapter 2

Increased oscillatory power in a

computational model of the olfactory

bulb due to synaptic degeneration

This chapter appears as an article published in Physics Review E in collaboration with Daniel

Cox [64].

2.1 Introduction

The olfactory system, and in particular the olfactory bulb (OB), is implicated in early stages

of a number of neurodegenerative diseases, including two of the most prevalent, Alzheimer’s

disease (AD) and Parkinson’s disease (PD)[3–5]. In both AD and PD, olfactory deficits occur

years before diagnosis and often before other symptoms[5, 37, 65–69]. Furthermore, the OB

is a site of early pathology in both diseases[34–40], with resulting aberrant neural activity[6–

9, 70, 71]. We hope that computationally modeling olfactory bulb activity in disease-like

conditions can help to further shed light on mechanisms of dysfunction, identify markers

8



of disease, and bring attention to the opportunity the OB presents for earlier diagnosis of

neurodegenerative illnesses.

The OB is the first processing area for incoming odor information[72], but exactly how it

is represented is an ongoing question for which there are various theories, mainly revolving

around combinatorics of principal neuron activity[47, 73–75]. Oscillations in neural activity

in the bulb may also play a part in encoding odor identity, and are likely important to odor

recognition or information transfer, or both[26]. Neural networks can exhibit a variety of

dynamical behaviors[76]; the push-pull nature of the excitatory-inhibitory interactions of

the OB make it an interesting example of a nonlinear oscillator[77]. In addition, studying

the robustness of the system’s oscillations has relevance to the neurodegenerative diseases

mentioned above.

The oscillatory behavior of the OB in the gamma range (40-80 Hz) is driven by reciprocal

synaptic interactions between the dendrites of excitatory mitral cells and inhibitory granule

cells[12, 26] (also called dendrodendritic synapses[21]). That is, mitral cells excite granule

cells which in turn inhibit the mitral cells, leading to gamma band oscillatory activity. Other

frequencies of oscillations are present in the bulb as well, namely theta (2-12 Hz) and beta

(15-30 Hz). The precise manner in which PD or AD impacts these oscillations and other OB

functions is still a matter of investigation[4, 5], although studies have found perturbations in

this oscillatory activity in animal OBs in the presence of both PD-like pathology[9, 78] and

AD-like pathology[6–8, 71, 79].

More generally, the effects of PD and AD pathology on neurons is a very active area of

study, with various alterations of neuron function resulting from overexpression or injection

of pathological protein (see [80, 81] for reviews of PD pathology, see [82–84] for reviews of AD

pathology). Synaptic dysfunction is one effect for which there is evidence in both AD[57, 85]

and PD[58, 86–88], with studies finding (for example) decreased spine density[7, 70, 89],

9



decreased synaptic proteins[7, 8], reduced vesicle release[90], increased synaptic junction

distance[8], and decreased synaptic transmission[91].

Computational studies of the effects of AD on neural networks have focused largely on the

hippocampus and cortical areas, especially effects on memory formation and storage (see [92]

for review). In PD, most computational models simulate various effects of dopamine loss

in the basal ganglia network, exploring changes in network output and oscillatory activity,

as well as effects of deep brain stimulation therapy (see [93, 94] for reviews). Importantly,

we are not aware of any works that examine the impact of neurodegenerative damage on a

computational model of the olfactory bulb.

Many excellent and insightful computational models of the OB exist[42], focusing on

various aspects of the olfactory system, such as generating oscillatory behavior[54, 56, 95],

glomerular layer computations[43], and odor computations and representation[47, 96].

In the present study, we implemented the Li-Hopfield model[56], a rate based model

with units representing small populations of neurons. The model replicates gamma band

oscillatory activity found in the OB (see [56] compared to electroencephalogram (EEG)

studies[97] and micro-electrode recordings of extra-cellular potential, also called local field

potentials[27]). The oscillations are produced solely via interaction between model mitral

cell (MC) units and granule cell (GC) units, as supported by findings that dendroden-

dritic interactions between MCs and GCs alone were sufficient for gamma band oscillatory

activity[14, 27]. While the model excludes certain aspects of the OB network (such as beta

oscillations[29]), it captures some key behaviors, and its simplicity enables semi-analytical

and numerical treatments that are not accessible in more complex models.

The original Li-Hopfield work only implemented a 1D connection architecture; here, we

expand the model to various sizes and 2D connection structures. We found that the 1D

and 2D networks operate similarly, but in different regimes. Importantly, on the scale of

10



the original Li-Hopfield model, we found that for some types of damage, 2D networks show

a significant enhancement of gamma oscillatory power at moderate levels of damage to the

connections between MCs and GCs. Analysis of the model network’s behavior shows that this

results from an increased excitability of the MC population due to a reduction of inhibition,

with the nonlinearity of the activation function being essential. The balance of excitation

and inhibition is important for robustness of oscillatory activity. As a result, we would

expect to see an increase in oscillatory power at moderate levels of damage to the reciprocal

connections between excitatory and inhibitory cells in these types of oscillatory networks.

Figure 2.1: Li-Hopfield Model. (a) Mitral cell units receive odor input and excite the
granule cell units, which in turn inhibit the mitral cell layer. The connections between mitral
and granule cell units define a 1D ring structure. The networks implemented here have 20
units (mitral plus granule), 40 units, and 100 units. (b) Example weight matrix defining a
1D periodic network. Light blue entries are zero (no connection), dark blue signifies positive
non-zero entries (established connection). (c) Example of mitral cell output (gx(xi)) over
the course of a single inhale-exhale cycle. The inhalation peaks at 205 ms, at which point
the exhale begins. Parameters for the model are found in Table 2.1. Each mitral or granule
cell unit should be considered as representing a particular population of mitral cells.
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For the remainder of this paper, we first detail the governing equations of the Li-Hopfield

model and describe how the model is modified for larger sizes and 2D connection structure.

We then lay out the method of delivering damage to the network and explain how oscillatory

activity in the network is characterized. The resulting increase in oscillatory activity and

underlying mechanisms are explored, with observations about the differences between 1D

and 2D networks. Finally, we discuss the relevance to experimental studies, the limitations,

and the future directions of the work presented here.

2.2 Methods

Li-Hopfield Model

The Li-Hopfield model describes the internal state (representative of membrane potential)

and output state (or cell activity, representative of firing rate) of mitral and granule cells

over an inhale-exhale cycle. Each MC and GC model unit represents a subset or small popu-

lation of MCs or GCs, with the weight matrices H0 and W0 representing the dendrodendritic

synaptic connections between MCs and GCs. For simplicity, MC-MC and GC-GC interac-

tions are not considered here since synaptic interactions in the region giving rise to gamma

oscillations are predominantly reciprocal MC-GC synapses[12, 14, 27].

The model is governed by the following set of equations,

ẋ = −H0 gy(y) + Ib + Iodor(t)− αx, (2.1)

ẏ = W0 gx(x) + Ic − αy, (2.2)

where x and y are vectors containing the internal state of each MC unit and each GC
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Table 2.1: The parameters for the model are as given by Li and Hopfield[56, 98]. The model
is evaluated at time steps representing 1 ms and runs for 395 ms. Thus all times t below are
in ms.

Parameter Value

Ib,i 0.243
Ic,i 0.1
α 0.15

gy(yi)

{
2.86 + 2.86 tanh(yi−1

2.86
) if yi < 1

2.86 + .286 tanh(yi−1
.286

) if yi ≥ 1

gx(xi)

{
1.43 + 1.43 tanh(xi−1

1.43
) if xi < 1

1.43 + .143 tanh(xi−1
.143

) if xi ≥ 1

Iodor,i


0 if t < 25

0.00429(t− 25) if 25 ≤ t < 205

0.00429(t− 25)e−0.03(t−205) if t ≥ 205

unit, respectively. The functions gx(x) and gy(y) are sigmoidal activation functions[56] that

translate internal state into output state, Ib is tonic uniform background excitatory input

to the mitral cells, Ic is tonic uniform excitatory centrifugal input to the granule cells, and

α is the decay constant, which is taken to be the same for mitral and granule cells in this

model. Random noise is added to Ib and Ic in the form given in the original Li and Hopfield

paper[56]. Iodor is excitation from the odor input, which rises linearly with inhale and falls

exponentially with exhale. In principle, Iodor could have different levels of input for each

mitral cell. In the simulations here, we define it to be uniform for simplicity and because

damage should affect all odors. The exact functions and values for the parameters can be

found in Table 2.1, and are as given in [56, 98]. H0 and W0 are the matrices that define the

connections from granule to mitral cells (inhibitory, as indicated by the negative sign) and

from mitral cells to granule cells (excitatory), respectively.

The weight matrices H0 and W0 dictate the connective structure of the network. The
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original Li-Hopfield model contained 10 MC units and 10 GC units, connected in mitral-

granule pairs, with each pair connecting to neighboring pairs on a 1D ring (Fig. 2.1(a)(b)).

For the work here, the network was adapted to include larger numbers of MCs and GCs.

This was accomplished by initializing a matrix of the desired size with entries of the same

order magnitude as the original connection matrices, and then updating the non-zero entries

randomly until the desired behavior was achieved. Because the interface between the den-

drites of the MCs and GCs, the external plexiform layer, lies on the surface of an ellipsoid,

matrices were constructed with 2D architecture for each size in the same way (Fig. 2.2).

Therefore, the model was implemented in six different architectures: 20 cells (mitral plus

granule), 40 cells, and 100 cells in 1D and 2D. It should be noted that W0 in the original

Li-Hopfield model included extra connections that make the architecture not truly 1D. These

connections have been retained for the 1D 20 cell network, but are not present in any of the

other 1D network structures. The specific matrices for each size can be found on the Github

repository (see Code Accessibility).

Damage

In our work here, we focus on damage delivered to the weight matrices H0 and W0 (al-

though damaging other network components was also explored, see Appendix A). This was

partly informed by the numerous studies that point to synaptic dysfunction as one salient

effect of neurodegenerative pathology[7, 8, 58, 86–88, 90]. Additionally, this aligns with the

scope of the Li-Hopfield model, which focuses on the gamma oscillations that arise from the

excitatory-inhibitory interactions between MCs and GCs.

We measure damage to the network by δ, the fraction of weight removed. In the case of
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Figure 2.2: 2D Model. (a) The connections between mitral and granule cell units are
largely the same as in 1D, but extend in two directions. (b) Example of a weight matrix
structure defining a 2D periodic network structure. Light blue entries are zero (no synaptic
connection), dark blue signifies positive non-zero entries (established synaptic connection).
Each MC unit connects to its GC pair, as well as four other GC units. GCs connect to MC
units following the same pattern.

W0 for example,

δ = 1−
∑

ij WDamaged,ij∑
ij W0,ij

, (2.3)

where W0 is the undamaged matrix and WDamaged is the damaged matrix.

In a given trial, damage is delivered to either H0 (the synaptic connections from granule

to mitral cells), or to W0 (the synaptic connection from mitral to granule cells). The damage

to the selected part of the network is increased, the network runs at that damage level, and

the activity is recorded. The damage is propagated in one of three ways: Flat Damage (FD),

Columnar Damage (CD), or Seeded Damage (SD).

For FD, the damage is delivered to every element of the selected matrix equally. This
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amounts to simply scaling the chosen quantity uniformly. For example, if FD was applied to

H0, each element of H0 would be reduced by the same fraction of its original value on each

damage step. This continues until the matrix is reduced to zero (see Fig. 2.3(a)). FD thus

represents a global progression of pathology.

For CD, the damage is delivered to a specific matrix column (representing synaptic trans-

mission from a particular unit), ramped up until that element is reduced to zero, and then

that procedure is repeated successively on adjacent elements until the maximum damage

level is reached (see Fig. 2.3(b)). For example, if CD was delivered to H0, damage would be

delivered incrementally to a single column until it was reduced to zero. The same process

would then begin on the column to the right, and this process is continued until half of

the columns are removed (Fig. 2.3 (b)). This is representative of a very local pathological

spread.

SD is a hybrid of FD and CD. Damage is first delivered to a single column, and on

the next damage step, damage is delivered to that column again, as well as to neighboring

elements. For example, if SD was enacted on H0 in a 1D network, it would begin on one

column, say column 6. On the subsequent damage step, the damage would then be delivered

to columns 5, 6, and 7. This spreading continues with each damage level until the matrix is

reduced to zero (Fig. 2.3(c)). SD thus represents a pathology that begins locally but becomes

more global as damage spreads.

Characterizing Network Oscillatory Activity

The average oscillatory power, Pavg, is calculated by first high-pass filtering the mitral cell

activity above 15 Hz to ignore theta band (2-12 Hz) activity, which was beyond the scope of

the present study. Next, the power spectrum (P(f)) is calculated for each mitral cell from
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Figure 2.3: Schematic of Damage Propagation Strategies. (a) Example of FD delivered
to H0 or W0 in the 1D 20 unit network. (b) Example of CD delivered to H0 or W0 in the
1D 20 unit network. Damage begins in a single column (in this case, column 6). For CD,
only up to half the matrix weight is removed because in most cases, the network activity was
already greatly disrupted by that point. (c) Example of seeded damage delivered to H0 or
W0 in the 1D 20 unit network. Damage begins in a single column (in this case, column 6).

125 ms to 250 ms using Scipy’s periodogram function[99]. This time window captures the

oscillatory behavior during the most active part of the cycle (see Fig. 2.1(c)) while ignoring

the spurious signals that can arise at higher levels of damage that are not actually due to

gamma band oscillatory activity (see Fig. A.8 in Appendix A, also in [100]). The power

spectrum is then integrated over all frequencies, f , for each cell (see Figures A.5, A.6, A.8,

and A.9 in Appendix A[100] for example power spectra) and averaged over the mitral cell

population (N) to get Pavg,

Pavg =
1

N

N∑
i=1

∫ ∞

0

Pi(f)df. (2.4)

Each quantity is averaged over five trials with differently seeded noise. For CD and SD,

the trial is then repeated using each cell as the starting point and the values are averaged

again over all starting cells.
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Code Accessibility

The simulations are run in Python using Scipy’s solve ivp function[99] on Ubuntu 18.04, and

all code/software described in the paper is freely available online at

https://github.com/jkberry07/OB_PD_Model.

2.3 Results

Damage to W0 and H0

The effect of damage on average oscillatory power depends on the damage scheme. FD

and SD to H0 or W0 in 2D networks results in increases in Pavg at intermediate levels of

damage (Fig. 2.4(a)), but CD rarely shows an increase in Pavg (Fig. A.2 in Appendix A).

Thus, an increase of oscillatory power requires global progression of damage to some degree.

While this rise in Pavg is ubiquitous among 2D networks with FD and SD, Pavg decreases

monotonically for most 1D cases (see Fig. 2.4(b)). For the work shown here, damage was

only delivered to either H0 or W0, but delivering damage to both has a similar effect of

increased oscillations at intermediate levels of damage (see Fig. A.4 in Appendix A) and

relies on the same principles presented hereafter.

The increase in oscillatory power in 2D networks results from larger MC activity ampli-

tude (as opposed to, say, recruitment of previously inactive units). Fig. 2.5 shows an example

cell from the 2D 100 cell network at no damage and at the level of flat damage correspond-

ing to the maximum Pavg. The increase in amplitude shown is seen for all active cells in 2D

networks receiving FD. Similar effects are seen for SD, though the following treatment will

be done for FD for simplicity.

The question is then why does the output state amplitude increase? To understand this,
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Figure 2.4: Effect on Oscillatory Power. (a) Average oscillatory power (Pavg) for FD,
CD, and SD delivered to H0 in the 2D 100 cell network plotted against damage as a fraction
of total synaptic weight removed (damage level, δ). (b) Pavg for SD delivered to H0 in the
1D and 2D 100 cell networks. FD and SD to H0 or W0 result in a rise in Pavg for the 2D
network, while CD to the 2D network and any kind of damage to the 1D network do not in
general (see Figures A.1 through A.3 in Appendix A for Pavg for each network and damage
type). The sharp peak in Pavg for FD to H0 at δ = 0.95 is due to a sharp rise and drop
in MC unit output states rather than to oscillatory activity, as illustrated by Fig. A.6 in
Appendix A. Example cell activity at various δ and associated power spectra can be found
in Figures A.8 and A.9 (also in [100]).

Figure 2.5: Cell Activity Compared at Different Damage Levels. (a) Output state
of mitral cell number 35 in the 2D 100 cell network with no damage. (b) Output state
of mitral cell number 35 in the 2D 100 cell network with FD to W0 at damage level 0.75
(WDamaged = 0.25W0). This was the damage level at which average oscillatory power was
maximized.

we look at the internal state x of the MC units. The increase in output state amplitude is not

due to increased amplitude of internal state oscillations. Rather, it is because of increased

average internal state. As a simple measure of internal state amplitude, we inspect the

largest peak and the lowest trough between 180 ms and 220 ms (the time window over which

when output state oscillations are the greatest) for active units (defined as units that had
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Figure 2.6: Increase in Average Internal State Results in Increased Amplitude in
Output State. (a) Internal state of mitral cell number 35 in the 2D 100 cell network with
no damage. (b) Internal state of mitral cell number 35 in the 2D 100 cell network with FD to
W0 at damage level 0.75 (WDamaged = 0.25W0). This was the damage level at which average
oscillatory power was maximized for FD to W0. (c) Activation function gx(x), with dark
brown marking the average minimum trough and average maximum peak for 2D networks
at δ = 0, and light pink marking the same but at the damage level corresponding to the
maximum Pavg.

an individual oscillatory power greater than 0.001). When the null damage case is compared

to the damage level at which Pavg is maximized, the distance from peak to trough is similar

(0.7562 ± 0.0808 for δ = 0 and 0.6765 ± 0.1300 for δ at which Pavg is maximized). The

difference is in the increase in the average internal state and how that translates into output

state. Though both the minimum trough and the maximum peak increase, only the increase

in maximum peak has an effect on the output state because the trough still lies below the

threshold of the activation function (see Fig. 2.6). This illustrates that the nonlinearity is

essential for the increase in Pavg to manifest.
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The average internal state increase results from damaging W0 or H0, which lowers the

overall inhibition to the MC layer, either directly (in the case of H0) or by reducing excitation

to the GC layer (in the case of W0). The dependence on H0 and W0 is explored further in a

simplified semi-analytic approach in the supplement[100].

In the Li-Hopfield work, to gain understanding of the full numerical solution, an adiabatic

approximation is made in which the oscillations are modeled as variations around a fixed

point. This linearized analysis can explain the drop in Pavg that follows the rise. Here, we

summarize the analysis done by Li-Hopfield; for a more detailed treatment, see the original

work[56]. Keeping the full network, we treat x and y as deviations from the fixed points,

and the governing equations become:

ẋ = −H0G
′
y(y0)y − αx, (2.5)

ẏ = W0G
′
x(x0)x− αy, (2.6)

where G′
y(y0) and G′

x(x0) are diagonal matrices resulting from the linearized approximation

of gy(y) and gx(x). Further manipulation yields:

ẍ+ 2αẋ+ (A+ α2)x = 0, (2.7)

where

A = H0G
′
y(y0)W0G

′
x(x0). (2.8)

The analytical solution is x = xk exp−(α± i
√
λk)t, where xk is the kth eigenvector of A and

λk is the kth eigenvalue. The eigenvalues of A predict the presence of oscillatory behavior. If

Re[i
√
λk] > α (2.9)

21



is satisfied, oscillations are present, with the eigenvalue that results in the value highest above

α dominating[56]. If no eigenvalue satisfies the condition, oscillations die away quickly.

As W0 or H0 decrease with damage, the eigenvalues of the matrix A also decrease.

Once the dominant eigenvalue falls below the threshold set by the decay rate, the network

behaves like a damped oscillator and Pavg drops dramatically. Though this is derived from

an approximation, it faithfully predicts the sudden reduction in Pavg (see Fig. 2.7).

This can also be demonstrated with a phase diagram, plotting a MC unit internal state

against a GC unit internal state (similar to [77, 101]). To illustrate the network’s behavior

in this way, the odor input was modeled as constant in time. Just before the eigenvalue falls

below the threshold, the network activity follows a limit cycle (see Fig. 2.7(c)). However,

once it drops below threshold, a bifurcation occurs and network activity approaches a fixed

point (see Fig. 2.7(d)).

1D Networks

Network connection matrices of all types were constructed to give roughly equivalent starting

oscillatory powers with the same average synaptic weights values. Because the 2D networks

were of necessity less sparse than the 1D networks, this meant that the total synaptic weight

in the 2D networks was greater than for the 1D networks. Under these conditions, we observe

the increase in oscillatory power in FD trials only in 2D networks (for example, Fig. 2.4).

However, if the null-damage matrices in 1D networks instead have a similar total weight

rather than the same average weight, the behavior is largely the same, just on a smaller

scale.

As an example, we deliver FD to W0 in a 1D network, but begin with W0 thrice its

typical value. With more weight in the network, the initial average internal state is reduced,
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Figure 2.7: (a) The real part of the square root of the dominant eigenvalue (Re[i
√
λD])

plotted against damage for the 2D 100 cell network with FD to W0. According to the
linearized analysis, when Re[i

√
λD] falls below the decay rate, marked as a horizontal dotted

green line, oscillations are dampened. (b) Average oscillatory power (Pavg) plotted against
damage for the 2D 100 cell network with FD to W0. The steep drop off in Pavg corresponds to
the damage level at which Re[i

√
λD] falls below the decay rate, as illustrated by the vertical

dashed line. (c) Phase plot, with mitral cell internal state (x, mitral cell number 35) on the
x-axis, and granule cell internal state (y, granule cell number 35) plotted on the y axis, at
the damage level immediately before oscillations are quenched. The damage was FD to W0

in the 2D 100 cell network. The activity settles into a limit cycle, demonstrating oscillatory
behavior. (d) Same as (c), but at the following damage level. The activity decays to a fixed
point. For the plots in (c) and (d) only, an odor input that is constant in time was used.
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Figure 2.8: (a) Average oscillatory power (Pavg) for FD delivered to W0 in the 2D 100 cell
network, the 1D 100 cell network, and the modified 1D 100 cell network. The modified
network starts the damage trial with W0,modified = 3W0,unmodified. The modified network
shows a rise in Pavg, similar in shape to the 2D network. (b) Same as in A, but with Pavg

normalized with respect to its initial value in each case, illustrating more clearly the similarity
in behavior between the modified 1D and the 2D networks. (c) The real part of i times the
square root of the dominant eigenvalue (Re[i

√
λD]) plotted against δ for FD delivered to W0

in the 2D 100 cell network, the 1D 100 cell network, and the modified 1D 100 cell network.
The dominant eigenvalue of the modified network still starts below that of the 2D network,
but it stays above threshold until a similar level of damage.

and Pavg begins at a lower value. As damage is applied and the network approaches its null

condition (at δ = 2/3 because W0 is tripled), Pavg increases. This creates a trajectory of

behavior with damage that closely resembles that of the 2D network (Fig. 2.8(a)(b)).

This is illustrated also by the behavior of the leading eigenvalue, which indicates the

presence of oscillations (as seen in Fig. 2.7). With a larger weight matrix, the leading

eigenvalue of the matrix A starts at a larger value, and its trajectory is similar to that of

the 2D networks. The unmodified 1D network’s leading eigenvalue begins about 2/3 along

the trajectory of the modified and so crosses threshold at a lower level of damage (see Fig.

2.8(c)).
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These results demonstrate that the primary difference between the 1D and 2D networks

is that they operate in different regimes: the maximum activity state the 2D networks can

sustain is greater than that of the 1D networks. Thus, at the initial oscillation size in this

model, the 2D networks are below their maximum oscillatory power, while the 1D networks

are already at near maximum. The mechanism underlying this difference in maximum activ-

ity is beyond the scope of this paper, but it could be due to a greater capacity for cooperative

effects resulting from the greater level of connectivity in the 2D networks.

2.4 Discussion

Seeded Damage

The linearized analysis here is carried out for Flat Damage, but Seeded Damage, which

spreads outward from a starting unit, shows a similar increase in oscillatory power at mod-

erate levels of damage and relies on the same mechanisms. That we found similar behav-

ior for SD is important as it better represents a potential method of pathology progres-

sion. In PD, for example, misfolded α-synuclein spreads from cell to cell before neuron

death[102, 103] in what many believe is a prion-like manner[104–106], although the precise

mechanism and the level of damage in the donor cell before transmission is still an active area

of investigation[107, 108]. Similarly, evidence suggests prion-like spread of AD pathology as

well, of both Aβ[109, 110] and tau[111–113].
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Relation to Aberrant Olfactory Bulb Activity in Animal Models of

Disease

Our model’s mechanism for the increase in gamma band oscillatory power is the increase

in MC activity. This could be representative of higher firing rates of participating MCs, or

of recruitment of less active MCs within the population represented by the active units (as

previously inactive units rarely activate in our model, though they theoretically could). The

increase in MC activity is due to a reduction of inhibition, either by decreasing GC excitation

from the MCs (damage to W0, which could represent less AMPA receptor activation in GCs)

or by decreasing inhibition of MCs by GCs (damage to H0, which could represent less GABA

receptor activation in MCs by GABA receptor loss or reduced GABA transmission from

GCs). Either damaging W0 or H0 (or both) could be consistent with loss of dendrodendritic

synapses. Generally, our model implies that reduced GABA transmission leads to increased

gamma oscillations, a result relevant to several experimental studies.

W. Li et al. and Chen et al. measured OB activity in mice expressing amyloid precursor

protein and presenilin 1 (APP/PS1) and found significant increases in gamma band power

associated with synaptic deficits[6, 7]. Both groups found that treatment with a GABA

agonist decreased the heightened gamma power, suggesting that increases in the gamma

band may have been due to a decrease in GABA-induced inhibition to the MCs. W. Li et

al. also measured increased MC firing rates, although measurements of cell activity were

done on OB slices rather than in vivo[7]. Note that by including PS1, these two studies may

be more specifically relevant to familial AD rather than to sporadic AD[114], and it is not

clear that the effects seen were due to Aβ alone. Other studies have also found increased

gamma power in OBs of transgenic AD mice models[8, 71], with S. Li et al. working with

expression of p-tau (P301S mice) rather than APP. While they also found an increase in
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gamma power and impaired synaptic function, MC firing rates were decreased rather than

elevated, suggesting other mechanisms at play. Note also that because AD-like pathology

was induced by gene expression in all of these studies[6–8, 71], it is more relevant to the FD

modeled here rather than to SD.

The observations of these studies closely relate to work by Lepousez and Lledo[27], who

found that GABA antagonist increased oscillations in the gamma band and GABA agonist

had the opposite effect. However, they found that MC firing rates were not significantly

affected by GABA antagonist (except possibly for increased excitation of MCs that were

initially less active), instead showing that the power increase was likely due to increased

MC synchronization. Additionally, they found an important reliance on NMDA channels in

GCs, which could be relevant to PD since NMDA receptors may be among the targets of

pathological α-synuclein[86]. Our model is limited in this regard by a lack of explicit NMDA

activity and a clear mechanism for varying synchrony.

While the research mentioned above found increases in gamma oscillations, it should also

be noted that some studies have found decreases in OB oscillations in the presence of Aβ.

Hernández-Soto et al. applied Aβ by injection and measured activity in vivo in rat OBs an

hour after application[79], and Alvarado-Mart́ınez et al. measuring cell activity in mouse

and rat OB slices in vitro after bath application of Aβ[115]. Both found overall decreases in

OB activity.

To our knowledge, few studies have measured olfactory bulb neural activity in the pres-

ence of PD-like pathology. Kulkarni et al. recorded local field potentials in mice olfactory

bulbs after injection of α-synuclein pre-formed fibrils directly into the OB. They measured

a significant increase in oscillatory power in the beta band (15-30 Hz) following incubation

periods ranging from 1-3 months. Zhang et al. modeled PD pathology in mice by reducing

the population of dopaminergic neurons in the substantia nigra in mice[78]. They measured
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an increase in the spontaneous oscillatory power of all bands, theta (2-12 Hz), beta (15-35

Hz), and gamma (36-95 Hz). The full extent of the mechanisms underlying the observations

in both of these studies is outside the scope of this model. Dopaminergic input to the OB

from the substantia nigra was not modeled here, although it could be possible that the net

effect of reducing that input is less inhibition to the MC population. As for the first study,

beta oscillations in particular require centrifugal input and rely on channels not modeled

here (although the same interactions modeled here are also critically involved, see [29, 60]).

The Li-Hopfield model includes centrifugal input to the GCs in only a superficial way, and

greater detail is required to reproduce beta oscillations in the OB.

Of note, thus far, experimental studies have shown differences between OB activity in

PD-like pathology compared to AD-like pathology. Though modeling these differences lies

outside the scope of the present model, if the disease-specific alterations in oscillatory power

in the olfactory bulb prove robust, it provides a potential tool for differentiation in early

diagnosis of neurodegenerative disease.

Conclusions and Future Directions

Despite the limitations of the model presented here, we believe it is nevertheless relevant to

investigating the effects of neurodegenerative damage on oscillatory activity in the olfactory

bulb. The balance between inhibitory and excitatory activity between the MC and GC

populations is essential to gamma oscillations and depends on multiple mechanisms and

principles[27]. Here, we highlight one principle, which is that as long as inhibition is great

enough, marginal decreases in inhibitory action will increase gamma oscillations due to the

nonlinear nature of the neural activity[116]. Because it’s unlikely that a biological network

would begin close to the regime of maximum oscillatory power (and thus close to the drop off
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seen in Fig. 2.7), we would expect to see this effect with moderate damage to the inhibition.

The model here spotlights one mechanism that may be in play, and serves as a proof

of concept that computational modelling can help give insight into OB dysfunction. More

detailed models of the OB network and activity are needed to explore other mechanisms and

effects of neurodegenerative damage. For example, working with a model based on work by

Osinski et al.[51] or David et al.[55] may offer insight into the modulation of beta oscillations

found by Kulkarni et. al[9]. And a model similar to that by Li and Cleland[117] may help

investigate effects of cholinergic perturbation in AD, as reviewed by Doty[5].

The prevalence of olfactory dysfunction in neurodegenerative disease presents both an

opportunity and a challenge; it is a common early symptom[3–5], yet its applicability in diag-

nosis is limited by the broadness of its presence. Thus it is important to continue the study of

the mechanisms and behavior of OB oscillations in the presence of neurodegenerative damage

since, as discussed above, aberrant OB oscillatory activity may show a point of differentiation

between PD and AD pathology. Additionally, recent progress in non-invasive measurement

of human olfactory bulb activity[118] brings this area of research closer to clinical relevance.

For example, Iravani et al. used surface electrodes to measure electroencephalogram (EEG)

activity originating from the olfactory bulb in human patients, specifically in the gamma

range[118]. As these techniques are developed, understanding the aberrant OB activity in

neurodegenerative diseases could be a powerful tool for realizing earlier diagnosis of these

illnesses.
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Chapter 3

Graded inhibition in a large-scale

mechanistic model of the olfactory

bulb network

3.1 Introduction

Both Alzheimer’s disease (AD) and Parkinson’s disease (PD) pathology have measurable

effects on oscillatory activity in the olfactory bulb (OB)[6–9, 59]. Given the involvement of

the OB in early stages of these diseases[3–5], as well as recent advancements in measuring

human OB activity non-invasively[118], there are compelling reasons for further investigating

and modeling the oscillations of the OB. Greater insight into OB oscillation perturbations in

the presence of pathology could in turn lead to greater understanding of disease mechanisms

and potentially to tools for earlier diagnosis of disease.

Some studies of the effects of Alzheimer’s disease on OB oscillatory activity[6, 7] have

highlighted the particular importance of gamma oscillations (40-80 Hz). Gamma oscillations

in the olfactory bulb arise from the interaction between mitral cell (MC) and granule cell
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(GC) dendrites[12, 21, 26]. External input stimulates MC firing which excites the GCs, and

the GCs inhibit the MCs, even in the absence of GC spikes[14, 20], leading to gamma oscil-

lations. Alzheimer’s disease studies found that these gamma oscillations were strengthened

in the presence of pathology[6, 7], highlighting the relevance of particular results from an

in vivo experiment by Lepousez and Lledo[27]. They found increased oscillatory power in

the gamma band with application of GABAergic antagonist, implying that AD pathology

may reduce the effectiveness of GABA transmission. This increase in oscillatory power was

accompanied by a reduction in the dominant gamma frequency. Many models of OB oscil-

lations exist which have expanded our understanding of oscillatory activity in the OB, as

reviewed in Chapter 1. However, to my knowledge, no biophysical model has been able to

reproduce increased gamma power and decreased gamma frequency when inhibitory conduc-

tance is reduced, as found by Lepousez and Lledo. This implies that crucial details of the

mechanisms underlying gamma oscillations in the OB are yet to be determined.

With the goal of investigating those mechanisms, I work with the model developed by

Kersen, Tavoni, and Balasubramanian[45]. It is a large-scale, mechanistic model of single-

compartment neurons that reproduced both gamma oscillations and beta oscillations (14-30

Hz) in the olfactory bulb. The network connectivity is generated based on cell and dendritic

density pulled from imaging data, and the generation process required only slight adjustment

to track each synapse location (important for future work, see Ch. 4). Their work with the

model was focused on the impact of their network generation method on connectivity pat-

terns, odor decorrelation, cortical feedback and oscillations, in addition to some modeling of

GC neurogenesis[45]. Although it produced oscillatory activity, the mechanism of oscillation

generation in their model was not explored.

I work with and modify their model to capture various aspects of OB activity during

gamma oscillations, including low GC spiking[119, 120], physiological levels of MC firing
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rates[27, 121], and graded inhibition[13, 21, 22]. The implementation of graded MC inhibition

results in activity-dependent MC inhibition, a feature of the OB explored in [62]. While

I find gamma oscillations with lower GC firing (via a tonic GC inhibitory channel), the

oscillations in the simulations using graded MC inhibition are in the high-theta to low beta

range. Robust gamma oscillations in this model framework could feasibly be produced

via entrainment[52, 55] by adjusting the mitral cell dynamical equations for resonant spiking

activity[122]. In this way, the model could use tonic GC inhibition and graded MC inhibition

to simultaneously achieve activity-dependent MC inhibition and gamma oscillatory activity

with physiological levels of MC and GC spiking.

3.2 The Kersen, Tavoni, and Balasubramanian Model

of the Olfactory Bulb

Here, I summarize the network generation process, dynamical and synaptic equations, and

limitations of this framework, focusing on the elements most relevant to this work. For more

details about the workings of their original model, see [45].

3.2.1 Network Generation

The olfactory bulb space is defined as a layered cylinder with the number of glomeruli

determined by the cylinder’s cross-sectional area and glomerular density calculated from

data[45, 123–125]. The glomerular projections are set at random x-y locations and assigned

15-25 mitral cells each. The mitral cells are distributed around the x-y location of their

associated glomerulus with lateral dendritic radii assigned randomly based on experimental

measurements in [126]. Granule cell dendritic trees are modeled as cones that project into
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the external plexiform layer (EPL) of the OB, where they overlap with the areas defined by

the MC lateral dendritic radii. The overlap between a GC cone and a MC dendritic area is

used to calculate the probability of forming a dendrodendritic synapse based on GC spine

density and MC radius-dependent dendritic density[45, 127, 128] (see Fig. 3.1). GCs are

generated one by one until the ratio of GCs to MCs is 15:1, in the work here resulting in a

network of 1793 MCs and 26895 GCs, which is half the size of the network in [45].

Figure 3.1: Model Diagram. Figure from [45], illustrating the MC radius and the GC
cone extending into the EPL. Synapse probability was calculated based on the overlapping
dendritic areas as well as the GC spine density (lower right). These dendritic geometries are
used only for generating the network connectivity and determining synapse locations, as the
cells are modeled as single compartments.

3.2.2 Dynamics and Synaptic Equations

The cellular dynamics are described by the Izhikevich equations, which have been shown

to reproduce a wide variety of observed neuron firing patterns[122, 129]. Each cell is a

single compartment, two variable quadratic integrate and fire model, following the Izhikevich
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Table 3.1: Parameters for the Izhikevich equations, from [45].

Parameter Mitral Cell Granule Cell

vr −58 mV −71 mV
vt −49 mV −39 mV
vc 30 mV 25 mV
C 191 pF 48 pF
k 2.5 nS/mV 0.067 nS/mV
a 0.02 ms−1 0.01 ms−1

b 12 nS −0.133 nS
c −70 mV −75 mV
d 13 pA 2 pA

formulation:

C
dv

dt
= k(v − vr)(v − vt)− u+ Isyn (3.1)

du

dt
= a(b(v − vr)− u) (3.2)

If v ≥ vc, then


v ←− c

u←− u+ d

(3.3)

where C is the membrane conductance, v is the membrane potential, vr is the resting poten-

tial, vt is the threshold potential, u is the recovery current, and Isyn is the sum of synaptic

currents[45]. The variables k, a, b, c, and d are free parameters, same as in [45], chosen to

reflect MC and GC firing from [53, 126, 130] (see Table 3.1 for values).

Each MC is modeled as having 100 synaptic connections to its glomerulus, each synapse

receiving Poisson input through an AMPA channel and an NMDA channel with a time-
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varying rate of the form:

r(t) =
rmax

2
+

rmax

4
(sin(2πft− ϕ) + 1) (3.4)

[45], where f is 6 Hz, representing the frequency of sniff-driven glomerular input. A mean

phase is drawn from a uniform distribution from 0 to 2π for each glomerulus, then ϕ is drawn

from a Gaussian distribution with mean equal to the corresponding glomerulus phase and

a standard deviation of π/4, based on [131]. The maximum rate rmax was drawn from a

Gaussian with mean µr between 2-3 Hz for glomeruli activated by the odor and between

0-0.25 for all other glomeruli (with standard deviation of µr/10). In the original model, 20%

of glomeruli were activated by an odor, but here I activate all glomeruli to simulate broad

activation of the olfactory bulb and vary µr to observe its effects on the power spectrum and

on MC and GC firing (Section 3.3.2 and 3.3.3).

MCs receive inhibitory input from the GCs through GABA channels, and GCs receive

excitatory input from the MCs through AMPA and NMDA channels. The AMPA current

through a synapse is of the form:

IAMPA(t) = sAMPA(t)gAMPA(V (t)− Ee) (3.5)

where s(t) represents the fraction of open channels, gAMPA is the conductance, V (t) is the

membrane potential, and Ee = 0 mV is the reversal potential for excitatory channels[45].

Values for synaptic parameters are given in Table 3.2 and are as in [45]. The current for

GABA channels on MCs includes an additional term to account for degradation of the
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inhibitory signal as it propagates from the lateral dendrite to the soma[132],

IGABA(t) = sGABA(t)gGABA(V (t)− Ei)exp(−L/λ) (3.6)

where Ei = −70 mV is the reversal potential for inhibitory currents, L is the distance from

the synapse to the MC soma, and λ is the length constant[45]. The NMDA current has the

form[133]

INMDA(t) = sNMDA(t)gNMDA(V (t)− Ee)B(V ) (3.7)

B(V ) =
1

1 + [Mg2+]exp(−0.062V (t))
3.57

(3.8)

where B(V) describes the voltage dependence of the magnesium block, with [Mg2+] =

1 mM[134].

When a MC or GC fires, the release of neurotransmitter is represented by updating the

gating variables, s(t), for the AMPA or GABA channels of the receiving cells as

s(t)←− s(t) +W (1− s(t)) (3.9)

where W = 0.5. For AMPA and GABA channels, s(t) follows a simple decay[135],

ds

dt
= −s

τ
(3.10)

where the decay constant τ depends on the type of channel. The gating variable for NMDA

36



channels takes the rise time into account by involving a second variable, n,

dsNMDA

dt
= − sNMDA

τNMDAdecay

+ αn(1− sNMDA) (3.11)

dn

dt
= − n

τNMDArise

(3.12)

with n being updated when a connected MC fires, in the same way as sAMPA(t) and sGABA(t)

([45]).

In the OB, GCs also release GABA in a graded manner[13, 21, 22] independent of so-

matic spiking[14, 21]. This is particularly important in light of observations that GCs rarely

spike[119]. In the original model presented in [45], spike-independent inhibition is imple-

mented by updating sGABA(t) for MCs connected to GCs activated by a spiking MC. That

is, when a MC spikes, the AMPA and NMDA gating variables of connected GCs are updated

as previously stated, and the GABA gating variables for MCs connected to those GCs are

updated as

sGABA(t)←− sGABA(t) + κW (1− sGABA(t)) (3.13)

where κ = 0.006. In the work that follows, I vary the factor κ and then implement alternate

methods of spike-independent inhibition, i.e., graded inhibition.

Power spectra are computed from the local field potential (LFP), which is modeled as

ϕ(re, t) =
∑
j

IAMPAj
(t) + INMDAj

(t) + IGABAj
(t)

4πσ|re − rj|
(3.14)

[45, 136, 137] where Ij is the current through the jth synapse, σ = 1/300 (Ω cm)−1 is the

exctracellular conductivity, rj is the position of the jth synapse, and re is the electrode

position, placed in the center of the x-y plane and halfway down the EPL layer.
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Table 3.2: Synaptic parameters, as in [45]. AMPA and NMDA parameters for MC inputs
were chosen to match [138] and thus differ from those for the GCs.

Parameter Mitral Cell Granule Cell

gAMPA 6.7 nS 0.73 nS
gNMDA 12 nS 0.84 nS
g∗GABA 0.13 nS N/A
κ∗† 0.006 N/A
τAMPA 14.3 ms 5.5 ms
τNMDArise

13 ms 10 ms
τNMDAdecay

70 ms 80 ms

τ ‡GABA 18 ms N/A
λ 675 µm N/A
α 0.03 ms−1 0.1 ms−1

∗ Varied in Section 3.3
† Not used in graded inhibition experiments
‡ Not used in Section 3.3.2

3.2.3 Model Limitations

The model as described above yields oscillatory activity in the beta band (see Fig. 3.2(a)),

although not as dominantly as in [45] where they used a larger network size. Because beta

oscillations are associated with higher GC excitability[29, 51, 55, 60], gamma oscillations

in the original model are obtained by “inactivating” a portion of the GC population[45].

That is, the network was regenerated but with a GC to MC ratio of 5:1 instead of 15:1

(Fig. 3.2(b)). Ideally though, a model network would be able to generate gamma oscillations

with the full complement of cells.

Additionally, experiments in vivo (on anesthetized animals) and in vitro have shown that

GCs spike infrequently[61, 119, 139]. In the original model, more than 76% of GCs spiked on

average (76.17± 0.76%), whereas one experimental study was able to evoke somatic spiking
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in only about a third of GCs[119].

Figure 3.2: Oscillatory Activity in the Base Model. The original model produces (a)
beta oscillations with the default 15:1 granule to mitral ratio. (b) When the ratio is reduced
to 5:1, the model generates gamma oscillations.

If GC spiking is to be reduced, the form and magnitude of spike-independent inhibition

to the MCs needs to be adjusted. I vary the factor κ in the results that follow, but this

method in the base model depends only on the connectivity of the GCs and not at all on their

state. Experiments show that the GCs release GABA in a graded manner[13, 22] dependent

on local dendritic Ca2+ concentration independent of somatic action potentials[20, 21].

Mitral cell spiking in the base model is also significantly lower than experimentally

recorded in both spontaneous and odor-evoked conditions. In the model as described, the

average MC firing rate was 6.73 ± 0.18 Hz with 71.67 ± 0.60% not firing at all. However,

several experimental studies find average spontaneous MC firing rates in the 20-30 Hz range

in vivo[27, 121], although a more recent study found a distribution of MC firing rates that

skewed lower[140]. Even in the absence of odor input, though, spontaneous MC participation

is high, with two-thirds or more of the population exhibiting spikes[121, 140].

The goals of the changes to the model therefore are to achieve gamma oscillations with

(1) the full complement of GCs, (2) low GC spike participation, and (3) average MC spiking
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inside the experimentally measured range with low levels of silent MCs. In pursuit of these

objectives, I add a tonic inhibitory current targeting the GCs, replace the original method

of spike-independent inhibition (Eqn. 3.13) with graded inhibition, and vary the amplitude

of input to the MCs and the conductance of the MC GABA channels. While the simulta-

neous achievement of all three goals was not found here, the pursuit yielded insight into the

generation of oscillations in this framework and into activity-dependent lateral inhibition of

MCs[62]. Ideas for achieving increased gamma power and decreased gamma frequency with

reduced GABA conductance are discussed in Chapter 4.

3.2.4 Code Accessibility

All simulations of this model are run on MATLAB (versions R2019 or R2023) using the

forward Euler method with a time step of 0.1 ms, as in [45]. Code for the simulations and

plots that follow can be found online at

https://github.com/jkberry07/KTB_Graded_Inh.

3.3 Modifications to the Model and Results

3.3.1 Tonic Inhibition to Granule Cells

To reduce GC spiking and excitability, I added a tonic inhibitory current targeting the

GCs[141] of the form,

Itonic = gtonic(V − Ei) (3.15)

where gtonic is varied in the experiments that follow, and Ei = −70 mV as before. This

current excludes the gating variable, and thus the channel is always open. In experiments
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using this tonic inhibition, its contribution to the LFP was computed as

ϕtonic =
∑
n

Itonicn(t)

4πσ|re − rn|
(3.16)

where Itonicn is the tonic inhibitory current through the nth GC, rn is the position of the

vertex of the nth GC cone, and σ and re are as before.

(a) (b)

(c) (d) (e)

𝛾
𝛾

𝛾

Figure 3.3: Tonic Inhibition Experiments. In these experiments, input parameter µr was
a minimum of 1.75 and a maximum of 2.75 for all MCs (broad activation). (a) Yellow boxes
mark points where the peak gamma power was greater than the peak beta power without
overlapping error bars. (b) Example power spectrum where gamma was significantly greater
than beta, for the point κ = 0.6, gtonic = 1.8 nS. (c) The fraction of GCs that spiked at
least once during the last 800 ms of simulated time (the first 200 ms are trimmed to remove
initial transients). (d) The average MC firing rate during the last 800 ms of simulated time.
(e) The fraction of MCs that did not spike during the last 800 ms of simulated time. All
error bars are standard error of the mean.
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When the conductance of the tonic inhibition to the GCs is varied with the spike-

independent inhibition factor κ, beta oscillations generally dominate over gamma oscillations,

as in the base model. Only three parameter regions in the range explored yield gamma oscil-

latory peaks that are larger than beta peaks without overlapping error bars (Fig. 3.3(a)(b)).

In those regions, the fraction of GCs that spike fall within a reasonable range compared to

experiment (0.19 - 0.4)[119], but the MC spike rate is too low (11.9 Hz to 12.8 Hz) and the

fraction of participating MCs is too low (less than half). For example, for the trials yielding

the power spectrum shown in Fig. 3.3(b) (κ = 0.6, gtonic = 1.8 nS), GC spike participation

is 0.184 ± 0.006, MC spike rate is 11.9 ± 0.2 Hz, and the fraction of participating MCs is

0.453± 0.002. Tonic inhibition is effective at lowering the spiking of GCs (Fig. 3.3(c)), but

not at increasing the average MC spike rate or MC participation (Fig. 3.3(d)(e)). Increas-

ing κ increases the effectiveness of the original method of spike-independent inhibition to

the MCs, reducing the MC firing rate and participation (Fig. 3.3(d)(e)), leading to a lower

fraction of GCs spiking (Fig. 3.3(c)).

3.3.2 Graded Inhibition to Mitral Cells

The form of GC-mediated MC inhibition independent of GC spiking in the original model

entirely ignores the state of the GC and its synapses, essentially creating direct MC-MC

inhibition. Here, I implement a method of graded inhibition that depends both on the state

of the GC as a whole and on the state of the particular synapse in question. This method

is inspired by a model from Osinski and Kay[51] where they calculate the probability of

GABA release based on calcium concentration in GC dendrites. The calcium current comes

through both N-type voltage-dependent calcium channels and NMDA channels. Although

the N-type channels play an important role in producing beta oscillations when NMDA
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Figure 3.4: NMDA Current Compared to Probability of GABA Release in the
Osinski-Kay Model. When the NMDA current and probability of GABA release are
normalized, it becomes clear that GABA release closely follows and is directly proportional
to the NMDA current in the Osinski-Kay model of the OB for both low GC excitability
(shown above) and high GC excitability (not shown). The plots presented in this figure
are re-scaled versions of the plots in Fig. 3A (middle row) and 3D from [51], with calcium
dependent inactivation (CDI) of the N-type channels, which is the default mode of their
model.

current is removed from the model, the probability of GABA release from a GC dendrite in

the default version of the model is mostly dictated by the NMDA current to that dendrite[51]

(see Fig. 3.4). Therefore, I make the GABA release directly proportional to the openness of

the NMDA channel at that synapse,

sGABAj
(t) = sNMDAj

(t)B(Vn) (3.17)

where B(Vn) is the voltage dependence of the magnesium block for the nth GC to which

the jth synapse belongs. The gating variable thus requires the same two conditions to be

met as the NMDA current at that synapse. That is, the membrane potential of the GABA-

releasing GC must be high enough to relieve the magnesium block, and the MC receiving

the inhibition must have spiked recently enough that sNMDAj
(t) is still open (Fig. 3.5). This

mechanism for graded inhibition has particular relevance to experimental findings that the
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sNMDA medium

sNMDA = 0

sNMDA large

Excited GC
B(V)>0

Less Inhibition

Inhibition

No Inhibition
Inactive

Fired Recently

Fired Less Recently

Figure 3.5: Graded MC Inhibition. For a GC excited to a membrane potential, V, the
level of inhibition it releases onto a given MC depends on the history of that MC’s spiking. If
the MC spiked recently, then it receives an inhibitory current. If the MC has not spiked, then
sNMDA for that synapse is 0 and it receives no graded inhibition. While cells are modeled
as single compartments, sNMDA is modeled for each synapse individually.

inhibition received by a MC is activity-dependent[62], with a crucial role played by GC

NMDA receptors[20]. It is also distinct from Osinski and Kay because their model tracked

the calcium concentration for the GC dendrite as a whole rather than for each synapse[51],

and thus the inhibition received by the postsynaptic MC was not activity-dependent.

In the experiments implementing graded inhibition, the MC GABA conductance is varied,

along with the GC tonic inhibitory conductance and the minimum value of the MC input

parameter µr (each MC has a µr between the minimum value and the minimum plus one;

e.g., if µr,min = 2.75, then µr is between 2.75 and 3.75 for each MC in that trial). With only

graded MC inhibition, the smallest MC spike participation observed in any trial is 0.9978,

reflecting the activity dependence of the inhibition.

GC participation showed an unexpected relationship with MC input and MC GABA

conductance (Fig. 3.6(b)). Increasing the MC input and decreasing gGABA,MC predictably

increases the average MC firing rate (Fig. 3.6(a)), but surprisingly decreases the fraction
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of GCs that fire. However, the average GC firing rate generally stays the same or slightly

increases over those same changes (e.g., compare Fig. 3.6(c) and (b), bottom right of the

gtonic = 0 color map). So fewer GCs fire, but at a higher rate.

The firing rate of the MCs decreases slightly with increasing tonic inhibitory conductance

to the GCs. Because the inhibition is only graded, when a GC fires and then resets (as in

equation 3.3), the MC GABA gating variable closes because the voltage of the GC is now

too low for B(V ) and so the NMDA current to that GC is zero. Therefore, when the GCs

fire more, there is less inhibition to the MCs than when the GCs are being excited but not

reaching threshold for spiking. Thus while using only graded inhibition is instructive, it is

not appropriate for modeling in this context. While the Osinski-Kay model relied on only

graded inhibition, they got around this issue by not modeling GC spikes at all[51]. In the

next section, I implement MC inhibition mediated by both GC firing and GC NMDA current

(graded).

There are no levels of graded inhibition where gamma is significantly greater than beta

(see Section 3.3.4).

3.3.3 Graded and Firing Inhibition

The form of graded inhibition above works well for the activity dependence of MC inhibition,

but it neglects the inhibition that should be released when a GC does spike. Therefore, here

the MC GABA gating variable at the jth synapse has two parts, graded and firing,

sGABAj
(t) = sGABAj,graded

(t) + sGABAj,firing
(t) (3.18)

sGABAj,graded
(t) = sNMDAj

(t)B(Vn) (3.19)
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(b)

(c)

(a)

Figure 3.6: Graded MC Inhibition Experiments, Graded Only. (a) Average MC firing
rate over the last 800 ms of the simulation time, with MC input, MC GABA conductance,
and gtonic varied. (b) Fraction of GCs that fired over the last 800 ms of the simulation time.
(c) Average GC firing rate over the over the last 800 ms of the simulation time.
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(a)

(b)

Figure 3.7: MC Firing Rate and Participation with Graded and Firing MC Inhi-
bition. (a) Average MC firing rate over the last 800 ms of simulation time. (b) Fraction of
the MC population that spiked during the last 800 ms of simulation time.

where the graded portion has the same form as equation 3.17. When the nth GC fires, the

GABA gating variables at the jth synapse update as

sGABAj,firing
←− sGABAj

+W (1− sGABAj
) (3.20)

sGABAj,graded
←− 0. (3.21)

and sGABAj,firing
(t) decays as in equation 3.10. Thus the graded inhibition retains the same

dependence as in the previous section, but a GC spike still evokes inhibitory current in all

connected MCs.
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With both forms of inhibition to the MCs, the average MC firing rate shows the same

dependence on MC input and MC GABA conductance as with graded only, but in this case

shows greater firing with increased GC tonic inhibitory conductance. The dependence on

gtonic is stronger for the MC spike participation, with almost every MC firing at higher inputs

and the lowest MC GABA conductance. This demonstrates that with the right parameter

choices, the activity-dependence of the MC inhibition can be retained with the reintroduction

of GC spike-mediated inhibition. It also suggests that the level of activity-dependence could

be tuned by the excitability of the GCs.

(b)

(a)

Figure 3.8: GC Firing Rate and Participation with Graded and Firing MC Inhi-
bition. (a) Fraction of the GC population that spiked during the last 800 ms of simulation
time. (b) Average GC firing rate over the last 800 ms of simulation time.

GC spike participation and firing rate follow similar trends with respect to the MC input
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and gGABA,MC ; the changes in these parameters that lead to greater MC firing lead to greater

GC firing and participation. The exception is at the highest level of gtonic with high µr where

increasing gGABA,MC from 0.23 to 0.33 nS increases the GC participation (Fig. 3.8(a), third

panel, upper left), similar to the general trend in the experiments implementing only graded

inhibition to the MCs.

3.3.4 Oscillation Results for Graded Inhibition

Gamma oscillations are not significantly larger than beta oscillations for any set of parameters

tested here for either form of graded inhibition. The most prominent peak in most simulations

using graded and firing inhibition was between 9 and 18 Hz, with another significant peak

between 19 and 35 Hz appearing at higher MC GABA conductance and lower MC input

(see Fig. 3.9 and Fig. 3.10). Increasing MC GABA conductance and decreasing MC input

tended to decrease the frequency of these peaks (Fig. 3.9(a) and (b)) and to increase the peak

power (Fig. 3.9(c) and (d) and Fig. 3.10). However, going from MC GABA conductance

1.03 nS to 1.13 nS at the lowest level of MC input, there is a decrease in power for the 19-35

Hz peak, possibly indicating overinhibition of the MCs, especially since the power increases

again if µr is increased to 2.25 (Fig. 3.9(d), bottom right).

The GC tonic inhibition level has a small effect on the frequency of the spectral peaks

(see Appendix, Fig. B.1), but greatly increases the power at higher MC GABA conductance

and lower input (see Fig. 3.11). Each change in parameters that leads to higher power

(higher MC GABA conductance, lower MC input, higher GC tonic inhibition) also leads to

the GC NMDA current having a greater influence on the network dynamics. Lower GC firing

because of tonic inhibition means more of the MC inhibition is graded; lower MC input also

tends to reduce GC firing (Fig. 3.8), in addition to reducing the number of MCs that are too
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(a)

(c)

(b)

(d)

Figure 3.9: Oscillation Frequency and Power for 9-18 Hz and 19-35 Hz Spectral
Peaks with Graded and Firing Inhibition. (a) Dominant frequency for the 9-18 Hz
peak in the power spectrum for gtonic = 1.8 nS. (b) Dominant frequency for the 19-35 Hz
peak in the power spectrum for gtonic = 1.8 nS. (c) Peak power for the 9-18 Hz peak in
the power spectrum for gtonic = 1.8 nS. (d) Peak power for the 19-35 Hz peak in the power
spectrum for gtonic = 1.8 nS. Note the different scales for (c) and (d). The purple box shows
the region of parameters for which the power spectra are shown in Fig. 3.10.

excitable for synchronization; and larger MC GABA conductance means graded inhibition

is stronger. However, MC inhibition from GC firing must be a key part of the prominent

9-18 Hz peak because it did not appear in the graded-only trials (see Appendix B, Fig. B.4).

3.4 Discussion

In the experiments here, simultaneous achievement of the target MC firing levels, GC firing

levels, and gamma oscillations is not observed. However, they provide insight into the various
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Figure 3.10: Example Power Spectra with Graded and Firing Inhibition. Power
spectra for gtonic = 1.8 nS, arranged by parameter in the same way as the boxed regions in
Fig. 3.9.

mechanisms involved.

Tonic inhibition effectively reduces GC participation (Fig. 3.8) and is likely a critical part

of the low GC spiking observed in experiment[119, 141]. It also plays an important role in

increasing the MC spike participation in the simulations here (Fig. 3.7). Tonic inhibition

does not do anything to help generate gamma oscillations in this model, but it does seem

to facilitate synchrony in the 12 Hz range (see Fig. 3.9 and Fig. 3.10(a), gtonic = 1.8 nS

heat maps). The tonic inhibition implemented here is simply a perpetually open channel,

essentially a leak current; other experiments have suggested that feedforward inhibition to

GCs via short axon cells could be important to GC activity patterns[142] and that tonic

inhibition may be unlikely[143]. More sophisticated implementation of inhibition to the GCs
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(a)

(b)

Figure 3.11: Power for 9-18 Hz and 19-35 Hz Spectral Peaks with Graded and
Firing Inhibition, Tonic Inhibition Dependence. (a) Peak power for the 9-18 Hz peak
in the power spectrum for varying levels of tonic GC inhibition. (b) Peak power for the 19-35
Hz peak in the power spectrum for varying levels of tonic GC inhibition.

may be more conducive to gamma generation.

Implementing graded inhibition to the MCs (even combined with typical spike-mediated

inhibition) results in greater MC participation with few silent MCs, as observed in

experiment[121, 140]. Because graded inhibition here follows the NMDA current at

the synapse, it requires simultaneously a sufficiently excited GC as well as recent firing

activity from the receiving MC. This naturally makes that portion of the MC inhibition

activity-dependent, similar to [62]. Lending further support to this method of graded

inhibition, another study[20] found that activation of NMDA channels was a requirement
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for GABA release from GC dendritic spines, potentially even in the case of GC somatic

spikes. However, localized GABA release also required spine spikes and high voltage

activated calcium channels[20]. Instead of explicitly simulating spine spikes and calcium

concentration, this could be addressed by making GABA release dependent on NMDA

current in a more nuanced way than simply being directly proportional. In light of the

low levels of GC somatic spikes observed in experiment[119], the specific form of graded

inhibition is likely to be important to gamma oscillations. Low GC firing could also

suggest the involvement of other types of inhibitory neurons[15], although regardless of the

inhibitory cells involved, NMDA channels play an essential role[27].

Figure 3.12: Distribution of MC Firing Rates, Graded and Firing Inhibition. Dis-
tribution of MC firing rates for the trial resulting in the greatest MC participation (left) and
for the trial resulting in the largest oscillatory peak (right).

However, none of the simulations using graded inhibition yield gamma-dominant os-

cillatory activity in this work. Instead, the dominant frequency is in the high theta-low

beta range. The mechanism precipitating these oscillations is most effective with high MC

GABA conductances and low MC firing rates, i.e., with strong inhibition (see Fig. 3.9(a)

and Fig. 3.7(a), lower right). Experimentally recorded gamma oscillations in the OB display

higher MC firing rates and MC participation[27], suggesting a parameter region with weaker
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inhibition, and so thus is likely achieved by a different mechanism.

One mechanism for gamma generation in the OB explored by [52, 53, 55] uses weak

inhibition to synchronize rhythmic MC spikes (entrainment). This idea is supported by ex-

perimental findings that average MC firing rhythms align well with the dominant gamma

frequency[27, 52], especially during epochs of gamma oscillatory activity[16]. Graded in-

hibition could be a viable candidate for mediating this weak inhibition. In order to fully

implement gamma oscillations via entrainment in this model, however, both the MC model

and the network connectivity would likely need adjusting.

MC rhythmicity can be achieved with adjustment of the Izhikevich framework[129], in-

cluding the addition of sub-threshold oscillations[122] as observed in experiment[24, 144, 145]

and included in some computational OB models (e.g., [54, 55, 95]). The distribution of MC

firing in the model would also need regulating. The spread of MC firing rates in [27] is from

just under 10 Hz to about 45 Hz, and the model here yields a range much larger than that,

both in the case of the strongest oscillations (Fig. 3.12, right) and in the case of highest MC

participation (Fig. 3.12, left). Introduction of Hebbian-like rules to the network connectiv-

ity could be used to update the network, adding GC-MC synapses to overactive MCs and

removing synapses from inactive MCs. Recent findings regarding the resonant properties of

excitatory tufted cells in the OB may suggest their inclusion in future modeling efforts as

well[16].

The present work shows how graded MC inhibition based on GC NMDA current can be

implemented and naturally leads to activity-dependent MC inhibition, which is enhanced by

simple tonic GC inhibition. While gamma oscillations do not also appear, these techniques

can help lead to a more realistic model of OB gamma oscillatory activity.
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Chapter 4

Toward Reproducing Perturbations in

Olfactory Bulb Gamma Oscillations

4.1 Oscillation Mechanisms

In the previous chapter, future work generating gamma oscillations via entrainment[52, 55]

with physiologically relevant levels of MC spiking[62, 140] and GC spiking[119] using graded

inhibition is discussed. But could such a mechanism be consistent with increased gamma

power and decreased gamma frequency resulting from reduced GABA conductance, as found

by Lepousez and Lledo[27], and are there other mechanisms that could work?

An important consideration in answering this question is the specific effect GABA an-

tagonist had on the shape of inhibition received by the MCs. An intermediate level of

GABA antagonist (the levels that resulted in increased gamma power and decreased gamma

frequency) did not significantly change the amplitude of the inhibition; instead it length-

ened the time scale of inhibition, with a slower rise and decay[27] (see Fig. 4.1). Lepousez

and Lledo postulated that while reduced GABA conductance weakens individual inhibitory

events, more inhibitory events occur, leading to a similar level of inhibition as before the
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GABA antagonist[27]. Their theory, along with suggestions for implementation in a compu-

tational model, is discussed further in the next section.

(a)

(b)

Figure 4.1: Moderately Reduced GABA Conductance Lengthens Timescale of
Mitral Cell Inhibition. Figure reproduced from [27] (Figure 6F and 6H). (a) Peristimulus
plot for optogenetically stimulated MCs, with GABA antagonist pictrotoxin (PTX, red) and
without (black), showing the lengthened timescale of inhibition as measured by the change
in normalized firing rate. (b) Same as (a), but for MCs that were not directly stimulated by
the light pulse. Experiment performed on mouse olfactory bulbs[27].

The entrainment mechanism relies on synchronization of intrinsically rhythmic MC

firing[16, 52, 53, 55]. MC spike autocorrelograms from Lepousez and Lledo support this idea

with average peak lag time in autocorrelograms corresponding well to the dominant gamma

frequency. With application of GABA antagonist, the downward shift in gamma frequency

was consistent with the shift in peak lag time, implying that the change in gamma frequency

may result from a change in MC autorhythmicity[27]. The OB gamma entrainment

56



mechanism as presented by David et al. in its most recent iteration[55], though, does not

result in a similar change in gamma oscillatory activity. In their model, neither reducing the

inhibitory weight nor increasing the GABA time constant had much effect on the frequency

or power of gamma oscillations. The frequency instead was dependent on the average MC

firing rate and intrinsic MC resonance properties, which did not depend on inhibition[55].

However, Lepousez and Lledo found that GABA antagonist did modulate MC resonance,

decreasing the frequency of its natural firing rhythm[27]. Therefore, while the specific form

of the entrainment mechanism in [55] is inconsistent, a MC model with resonance that had

some dependence on inhibition could work. Additionally, in another implementation of an

entrainment mechanism for OB gamma[53], Galán et al. use correlated inhibitory Poisson

noise to synchronize rhythmic MC firing, and when the time scale of those inhibitory events

was lengthened, the frequency of the power spectrum peak decreased. Therefore, there

is evidence for reduced gamma frequency with the kind of inhibition modulation in [27],

potentially with an increase in power if it also results in a greater portion of the MCs

developing an intrinsic rhythm in the lower gamma range [52].

Another mechanism used as the basis for a number of OB models[51, 54, 95], pyramidal

interneuron gamma (PING), could be a possibility. In PING, inhibition gates the firing of the

excitatory population[50]. Excitatory neurons only fire once inhibition is sufficiently reduced,

which then induces high levels of inhibition again. Therefore, the oscillation frequency is set

by the amplitude and timescale of the inhibition[50]. So with decreased inhibitory weight,

the time between allowed firing events is also decreased, increasing the oscillation frequency

(see Fig. 4.2, from [51]). However, the observed effect of GABA antagonist was an increased

inhibitory timescale[27], which would decrease the frequency in a PING framework. If MC

resonance were included in the model, and the lower network-imposed frequency was more

closely aligned with the MC resonant frequency, it could also lead to increased gamma power.
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Figure 4.2: Effect of Inhibition on PING Oscillation Frequency. Figure adapted from
[51] (Figure 4Aii and 4Aiii). Probability of GABA release (top) and MC spike trains (bot-
tom), showing that in a PING mechanism, greater inhibition (higher GC excitability, right)
increases the time between synchronized MC firing events, leading to reduced oscillation
frequency. See [51] for model details.

Although there are potential routes to reproducing the Lepousez and Lledo findings

in both mechanisms, recent work[16] has pointed to entrainment of resonant neurons as

the more likely candidate. Burton and Urban found that even during gamma oscillatory

activity, the inhibitory currents did not follow the gamma rhythm[16], an argument against

a PING mechanism. They did find rhythmic firing, but the synchronicity and resonance

was stronger in tufted cells (TCs) than in MCs, suggesting that TCs may be important to

gamma generation[16].

As proposed in Chapter 3, the resonant properties of both MCs and TCs could be de-

scribed with adjustments to the Izhikevich equations used in [45]. Whether graded inhibi-

tion would be sufficient to synchronize them requires testing. However, graded inhibition fits

neatly into the theory Lepousez and Lledo presented for how reduced inhibitory conductance

increases MC synchrony and gamma power, as discussed in Section 4.3.
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4.2 Inhibition-Dependent Propagation of Dendroden-

dritic Synaptic Activation

MC-GC interactions occur via dendrodendritic synapses. Action potentials in MCs back-

propagate down lateral dendrites, releasing glutamate at MC-GC synapses along the length

of the dendrites[63, 146, 147]. Based on findings that inhibition can block backpropagation

of MC action potentials[63], Lepousez and Lledo presented a theory for why moderate levels

of GABA antagonist increased gamma power and did not decrease the level of inhibition

received by the MCs. They hypothesized that reduced GABA conductance at individual

dendrodendritic synapses along MC lateral dendrites allows action potentials to travel fur-

ther, exciting more GCs and increasing the extent of lateral inhibition[27]. So while each

individual inhibitory event is smaller, there are more of them, resulting in a similar level of

inhibition but with greater connectivity, potentially leading to increased synchronization of

MC firing and gamma power.

Though not explicitly discussed in [27], this theory also suggests a possible explanation

for the longer timescale of inhibition, which may underlie the slower MC autorhythmicity

and reduced gamma frequency. The period of rhythmic MC firing increased by about 2.5

ms, and the inhibition rise and decay times increased by 2.2 ms and 2.8 ms respectively[27].

Depending on how much further action potentials are able to spread, the time it takes

to travel that extra distance could provide an explanation. Studies have measured MC

backpropagating action potential conduction velocities between 200 to 440 µm/ms[63, 147].

A time of 2 - 3 ms is an extra 400 - 1320 µm of distance; with MC lateral dendritic lengths

up to and potentially exceeding 1000 µm[128], the extra propagation time could plausibly be

tied to the lengthened timescale of inhibition, particularly in the lower range of conduction

velocities.
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4.3 Suggestions for Implementation

Implementing inhibition-dependent propagation of action potentials in a model requires

tracking the location of each synapse, something for which the model discussed in Chap-

ter 3 is well-equipped. If a threshold level of cumulative inhibition along a given direction

is reached, more distant synapses are not activated. To facilitate this, the area representing

the span of MC secondary dendrites could be divided up into sectors, such that inhibition

is accumulated along each sector independently (see Fig.4.3).

Graded inhibition is important because the inhibitory events are not fast enough to be

evoked by the same action potential they are blocking[63]. In other words, the inhibition

needs to already be there. If GABA release only occurred after a GC spike, then blocking

propagation would require precise spike timing between MCs and GCs. Because graded

inhibition as implemented in Chapter 3 follows the GC NMDA current, it is independent of

GC spiking and has a longer timescale[22]. Therefore it is more likely to overlap with MC

spikes, facilitating inhibition-dependent propagation.

Conduction velocity could be modeled by activating synapses on a delay based on distance

from the spiking MC. For example, if the simulated time step is 0.1 ms and the presumed

conduction velocity is 300 µm/ms, only synapses within 30 µm from the MC would be

activated on the time step that it spiked. The next time step would activate synapses within

the next 30 µm, etc., with the cumulative inhibition being checked for each direction after

each time step. This is similar to hard-coded delays implemented in some models of the OB,

such as [55].
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Figure 4.3: Illustration of Inhibition-Dependent Propagation of Synaptic Acti-
vation. Diagram of an example MC dendritic area, divided into six sectors. Activated
synapses: Yellow-orange. Unactivated synapses: Gray. For a MC that has spiked (yellow-
outlined triangle), if the cumulative inhibition received at closer synapses reaches a threshold
level, more distant synapses in that direction are not activated. Functionally, this means
the GCs at those synapses are not excited by the MC spike. Synapses that are more distant
but in a different direction can still be activated (e.g., in the top-left sector). Graded inhi-
bition means that propagation could be blocked with fewer synapses in one direction than
another. If inhibitory conductance is reduced, it will take more activated synapses to reach
the threshold and block further propagation.

4.4 Conclusion

It should be noted that the model in Chapter 3 is not the only model that could serve as a

foundation for testing these ideas. For example, using a compartment model of MCs (like

in [54]) could very naturally be used for simulating conduction velocities. However, the

physiologically-inspired network generation process developed in [45] provides an appealing
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framework for the network connectivity and spatial layout of the model. Along with its

use of the Izhekevich equations[45, 122] allowing for the simulation of a large population of

neurons and the ability to easily incorporate NMDA-based graded inhibition[20] (Chapter

3), the modified model presented here could be a powerful foundation for future work.

While implementation of these ideas would require a great deal of optimization, they

represent a clear path toward testing Lepousez and Lledo’s theory for the mechanism be-

hind increased gamma power and decreased gamma frequency with a moderate reduction of

GABA conductance[27]. Further understanding of the generation and modulation of gamma

oscillations in the OB could lead to greater insight into how neural activity is impacted by

disease pathology[6, 7, 59] and potentially to development of tools for earlier detection of

disease.
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beta and gamma subthreshold oscillations in rat mitral cells: origin and gating by
respiratory dynamics. J Neurophysiol, 119(1):274–289, 2018. ISSN 1522-1598. doi:
10.1152/jn.00053.2017. URL https://www.ncbi.nlm.nih.gov/pubmed/29021388.

65



[25] Jennifer Beshel, Nancy Kopell, and Leslie M Kay. Olfactory bulb gamma oscillations
are enhanced with task demands. Journal of Neuroscience, 27(31):8358–8365, 2007.

[26] Leslie M. Kay, Jennifer Beshel, Jorge Brea, Claire Martin, Daniel Rojas-Ĺıbano, and
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[53] R. F. Galán, N. Fourcaud-Trocmé, G. B. Ermentrout, and N. N. Urban. Correlation-
induced synchronization of oscillations in olfactory bulb neurons. J Neurosci, 26
(14):3646–55, 2006. ISSN 1529-2401. doi: 10.1523/JNEUROSCI.4605-05.2006. URL
https://www.ncbi.nlm.nih.gov/pubmed/16597718.

[54] G. Li and T. A. Cleland. A coupled-oscillator model of olfactory bulb gamma oscilla-
tions. PLoS Comput Biol, 13(11):e1005760, 2017. ISSN 1553-734X (Print) 1553-734x.
doi: 10.1371/journal.pcbi.1005760.

[55] F. David, E. Courtiol, N. Buonviso, and N. Fourcaud-Trocmé. Competing mechanisms
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Appendix A

Appendix to Chapter 2

A.1 Average Oscillatory Power for All Cases

A.1.1 Other Components Damaged

Trials were also run with damage delivered to components of the network beside W0 and H0,

namely to:

• Granule cell layer

• Mitral cell layer

• Iodor, the input to mitral cells from the glomerular layer

Internal damage to the mitral cell layer (MCL) or to the granule cell layer (GCL) is

implemented by multiplying the right-hand-side of the differential equation (except for the

leak term) for the given cell by some fraction less than one, (1− δi). For example,

ẋi = (1− δi)(−
∑
j

H0,ij gy,j(yj) + Ib,i + Iodor,i(t))− α xi

would be damage delivered to the ith mitral cell unit. In this case, δ is calculated as
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Figure A.1: Average ocillatory power (Pavg) for flat damage to W0 (a), H0 (b), GCL (c),
MCL (d), and OI (e) in every network architecture (20 units 1D, 20 units 2D, 40 units 1D,
40 units 2D, 100 units 1D, and 100 units 2D). Solid lines are 2D networks, dashed lines are
1D networks. Note that the vertical axes do not have the same scale.

δ =
∑
i

δi
N
,

where N is the number of mitral cells.

Figures A.1 through A.3 show average oscillatory power with damage for each type of

damage to each type of network.

A.1.2 Flat Damage to Both H0 and W0 in the 2D 100 Unit Net-

work

Similar to FD to H0 or W0, FD to both resulted in an increase in oscillatory power at

intermediate levels of damage (Fig. A.4). Delivering damage to both seems to result in

approximately the mean effect of each individually, in terms of the maximum oscillatory

power reached and the location of the maximum.
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Figure A.2: Average oscillatory power (Pavg) for columnar damage to W0 (a), H0 (b), GCL
(c), MCL (d), and OI (e) in every network architecture (20 units 1D, 20 units 2D, 40 units
1D, 40 units 2D, 100 units 1D, and 100 units 2D). Solid lines are 2D networks, dashed lines
are 1D networks. Note that the vertical axes do not have the same scale.

Figure A.3: Average oscillatory power (Pavg) for seeded damage to W0 (a), H0 (b), GCL (c),
MCL (d), and OI (e) in every network architecture (20 units 1D, 20 units 2D, 40 units 1D,
40 units 2D, 100 units 1D, and 100 units 2D). Solid lines are 2D networks, dashed lines are
1D networks. Note that the vertical axes do not have the same scale.
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Figure A.4: Average oscillatory power for flat damage to both H0 and W0 compared to flat
damage to only H0 and flat damage to only W0 in the 2D 100 unit network.

For Fig. A.4, δ was measured as,

δ = 1−
∑

ij[HDamagedWDamaged]ij∑
ij[H0W0]ij

.

Calculating δ this way is equivalent to δ in the main paper for W0 or H0, as long as the

damage delivered is flat damage. Calculating δ in this manner allows us to compare damage

against the same baseline for each target. It is also partly inspired by the linearized analysis

summarized in Results, where oscillatory activity was predicted by the matrix,

A = H0G
′
y(y0)W0G

′
x(x0),

where G′
y(y0) and G′

x(x0) are diagonal matrices.
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A.2 Addressing Late Peak in Average Power for Flat

Damage to H0

Fig. A.5 shows the cell activity and associated power spectra for each unit in the 2D 100 unit

network at the damage level corresponding to maximum oscillatory power for flat damage

to H0, demonstrating how oscillatory activity in the network gives rise to Pavg. Fig. A.6 is

the same, but for the damage level corresponding to the late peak in Pavg seen in Fig. 2.4

(and in Fig. A.1(b)) and demonstrates how spurious Pavg signals can arise at high levels of

flat damage to H0.

In the case shown in Fig. A.6, most units have a significant signal in their power spectra,

but no units show oscillations (compare with Fig. A.5). At high levels of flat damage to H0,

the MC unit population reaches higher levels of output state. When odor input decreases,

more than half of them drop back down sharply during the time window over which the

periodogram is calculated (from 125 to 250 ms). This leads to a large signal in the spectrum

and the peak in Pavg that is not actually indicative of oscillatory behavior.

A.3 Fixed Point Dependence on H0 and W0

Sections A.3 and A.4 come from supplemental material[100] from [64].

In the Li-Hopfield work, to gain understanding of the full numerical solution, an adiabatic

approximation is made in which the oscillations are modeled as variations around a fixed

point. Under this simplification, the internal state fixed point is a fair representation of the

average internal state. With that assumption, we can explore fixed point dependence on H0

and W0. To make the following analysis tractable, we make two simplifications. First, we

reduce the network to a single MC unit and a single GC unit. Second, we approximate the

86



Figure A.5: (a) Each panel shows the activity of a single MC unit in the 2D 100 unit network
at the level of flat damage to H0 corresponding to the greatest amount of oscillatory activity
(δ = 0.6). (b) Each panel shows the power spectrum corresponding to each MC unit. This
demonstrates oscillatory activity giving rise to Pavg.
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Figure A.6: (a) Each panel shows the activity of a single MC unit in the 2D 100 unit network
at the level of flat damage (δ = 0.95) to H0 corresponding to the sharp peak in Pavg seen in
Fig. 4(a) in the main text. (b) Each panel shows the power spectrum corresponding to each
MC unit. Though most units have a significant signal in their power spectra, no units show
oscillations.
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activation functions with a first-order Taylor series expansion around the observed average

internal state of active units (xavg,obs and yavg,obs),

gy(y) ≈ gy(yavg,obs) + g′y(yavg,obs)(y0 − yavg,obs)

= ay + byy0, (A.1)

gx(x) ≈ gx(xavg,obs) + g′x(xavg,obs)(x0 − xavg,obs)

= ax + bxx0, (A.2)

where ay = −0.6847, by = 0.9693, ax = −0.2132, bx = 0.8223 are constants based on the

average internal state during trials delivering flat damage to H0 and W0. Thus the fixed

point equations become

0 = −h0(ay + byy0)− αx0 + Iodor + Ib, (A.3)

0 = w0(ax + bxx0)− αy0 + Ic. (A.4)

We can now analytically solve for x0 and differentiate with respect to w0 and h0,

∂x0

∂w0

=
αh0bxby[h0(Icby/α + ay)− Io − αax/bx]

(h0w0bxby + α2)2
, (A.5)

∂x0

∂h0

=
−α2by[w0(Iobx/α + ax) + Ic + αay/by]

(h0w0bxby + α2)2
. (A.6)

For simplicity, Iodor is set to a constant value and collected with Ib:

Io = Ib + Iodor(t = 175ms) = 0.99375

.
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Figure A.7: Fixed Point Dependence on H0 and W0. A: The partial derivative of the fixed
point with respect to w0 is plotted against w0 using the minimum and maximum values of
H0 in the 100 cell 2D network (H0,min = 0.0017, H0,max = 2.0606). B: The partial derivative
with respect to h0 plotted against h0 using the minimum and maximum values of W0 in the
100 cell 2D network (W0,min = 0.0163, W0,max = 1.6982).

When plotted (Fig. A.7), it becomes apparent that for all values of h0 and w0 within the

range used in the work here, the derivatives are negative, meaning that a decrease in W0 or

H0 increases x0, as seen in FD to W0 and H0.

A.4 Cell Activity with Damage Progression

A.4.1 Evolution of Cell Activity in Seeded Damage to W0 in the

2D 100 Unit Network

Cell activity (gx) at various levels of seeded damage to W0 in the 2D 100 unit network, with

the associated power spectrum are plotted next to each other (Fig. A.8). The inhale peak is

at 205 ms. The oscillation amplitude can be seen to grow from δ = 0 to δ = 0.8448, which

is reflected clearly in the power spectra. Note that the vertical scale is larger in the last cell

activity plot. The sharp fall in activity from about 225 ms to 300 ms can cause an increase
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in Pavg, but clearly is not actually an example of gamma band oscillatory behavior and is

the reason for the shortened time window used for calculating the power spectra for Pavg.

As stated in the text, the power spectrum was calculated from the cell activity high-pass

filtered above 15 Hz from 125 ms to 250 ms. Some power density was present above 100 Hz,

but power density below 100 Hz dominated the contribution to Pavg.

A.4.2 Evolution of Cell Activity in Flat Damage to H0 in the 2D

100 Unit Network

Cell activity (gx) at various levels of flat damage to H0 in the 1D 100 unit network, with

the associated power spectrum are plotted next to each (Fig A.9). The inhale peak is at

205 ms. The cell activity changes little from δ = 0 to δ = 0.5. Note that the vertical scale

is larger in the last two plots of cell activity. The sharp rise then drop seen in δ = 0.9 and

δ = 0.95 is the cause of the spike in Pavg at the highest levels of damage for flat damage to

H0 in the 2D 100 unit network (see Fig. A.9), and is an example of what causes the similar

spikes in Pavg for flat damage to H0 in all networks (see Fig. A.9 and Fig. 2.4(a) in Chapter

2), and for seeded damage to H0 in the 1D 20 unit, 2D 20 unit, and 2D 40 unit networks

(see Fig. A.3(b)).

As stated in the text, the power spectrum was calculated from the cell activity high-pass

filtered above 15 Hz from 125 ms to 250 ms. Some power density was present above 100 Hz,

but power density below 100 Hz dominated the contribution to Pavg.
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Figure A.8: Evolution of cell activity in seeded damage to W0 in the 2D 100 unit network.
Left: Cell activity. Right: Power spectra.
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Figure A.9: Evolution of cell activity in flat damage to H0 in the 2D 100 unit network. Left:
Cell activity. Right: Power spectra.
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Appendix B

Appendix To Chapter 3: Oscillatory

Bands in Graded Inhibition Trials

B.1 Graded and Firing Inhibition

Graded and firing inhibition trials resulted in a dominant spectral peak in the 9-18 Hz range,

with a second peak appearing in the 19-35 Hz range at higher tonic inhibition, higher MC

GABA conductance, and lower input (Fig. 3.9). The frequency within these ranges depended

mainly on the MC GABA conductance and MC input parameter µr (Fig. 3.9), and had little

dependence on the tonic GC inhibition (Fig. B.1).

For trials with lower MC GABA conductance and higher input, a 2-8 Hz peak is often

observed, likely from the “sniff” frequency of 6 Hz (eqn. 3.4). As MC GABA conductance

increases and input decreases, it is usually absorbed into the 9-18 Hz peak (Fig. B.2).
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(a)

(b)

Figure B.1: Oscillation Frequency for 9-18 Hz and 19-35 Hz Spectral Peaks with
Graded and Firing Inhibition. (a) Dominant frequency for the 9-18 Hz peak in the
power spectrum. (b) Dominant frequency for the 19-35 Hz peak in the power spectrum.
Black squares are parameter points where there was no significant peak in that frequency
band.

B.2 Graded-Only Inhibition

With only graded MC inhibition, the most common dominant peak was between 2-8 Hz,

usually around 5 Hz (Fig. B.3 (b)), which increased in power with increased MC GABA

conductance and increased tonic GC inhibition (Fig. B.3 (a)).

Between 9-18 Hz, though there was a clear dominant peak for graded and firing inhibition,

graded-only did not consistently have a peak in this range (Fig. B.4).

Graded-only inhibition did consistently have a peak between 19-35 Hz (Fig. B.5), though
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(a)

(b)

Figure B.2: Oscillation Frequency and Power for 2-8 Hz Spectral Peak with
Graded and Firing Inhibition. (a) Peak power for the 2-8 Hz peak in the power spec-
trum (b) Dominant frequency for the 2-8 Hz peak in the power spectrum. Black squares are
parameter points where there was no significant peak in the 2-8 Hz range.

a clear pattern is not easily discernible.
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(a)

(b)

Figure B.3: Oscillation Frequency and Power for 2-8 Hz Spectral Peak with
Graded-Only Inhibition. (a) Peak power for the 2-8 Hz peak in the power spectrum
(b) Dominant frequency for the 2-8 Hz peak in the power spectrum.
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(a)

(b)

Figure B.4: Oscillation Frequency and Power for 9-18 Hz Spectral Peak with
Graded-Only Inhibition. (a) Peak power for the 9-18 Hz peak in the power spectrum
(b) Dominant frequency for the 9-18 Hz peak in the power spectrum. Black squares are
parameter points where there was no significant peak in the 9-18 Hz range.
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(a)

(b)

Figure B.5: Oscillation Frequency and Power for 19-35 Hz Spectral Peak with
Graded-Only Inhibition. (a) Peak power for the 19-35 Hz peak in the power spectrum
(b) Dominant frequency for the 19-35 Hz peak in the power spectrum.
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