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Abstract: The focused field and its intensity distribution achieved by the 4π-spherical focusing
scheme are investigated within the framework of diffraction optics. Generalized mathematical
formulas describing the spatial distributions of the focused electric and magnetic fields are
derived for the transverse magnetic and transverse electric mode electromagnetic waves with and
without the orbital angular momentum attribute. The mathematical formula obtained shows no
singularity in the field in the focal region and satisfies the finite field strength and electromagnetic
energy conditions. The 4π-spherical focusing of the transverse magnetic mode electromagnetic
wave provides the highest field strength at the focus and the peak intensity reaches 1026 W/cm2

for the laser power of 100 PW at 800 nm wavelength. As an example of using the mathematical
formula, the electron-positron pair production via the Schwinger mechanism is analyzed and
compared with previous results.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Physical phenomenon, such as light-light scattering [1,2] and electron-positron pair (e+-e− pair)
production [1,3], associated with the quantum electrodynamics of strong fields [4] is of great
interest as the available laser intensities approach ∼1024 W/cm2 and beyond [5,6]. Although
the Schwinger field (ES = m2

ec3
/

e~ ' 1.32 × 1016 V/cm, the corresponding laser intensity of
∼2.3× 1029 W/cm2) is still far from the reach of the current laser technology, many interesting
ideas [7–10] have been proposed to experimentally demonstrate quantum phenomenon with
a relatively lower laser power. Frequently-used ideas to reduce the laser power required for
quantum phenomenon include the tight-focusing [11], the counter-propagating laser beams [12]
or even multiple laser beam focusing [10].
Another interesting idea for reducing the required laser power is to spherically focus a single

laser beam as discussed in Refs. [13–16]. From an optical point of view, the 4π-spherical focusing
scheme can be regarded as an extreme case of either multiple laser beam focusing (in which
the number of beams approaches infinity) or tight focusing (in which the f-number approaches
zero) scheme. Thus, the 4π-spherical focusing scheme provides a theoretical limit to the highest
field strength achievable with a given laser power. The tightly-focused field distribution is
expressed by vector diffraction integrals and in general numerically calculated. However, under a
specific circumstance such as the dipole and multipole configurations in the focal region [17],
the diffraction integral for the 4π-spherical focusing can be analytically integrable for the 4π

#387654 https://doi.org/10.1364/OE.387654
Journal © 2020 Received 9 Jan 2020; revised 7 Feb 2020; accepted 22 Feb 2020; published 24 Apr 2020

https://orcid.org/0000-0002-7231-0206
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.387654&amp;domain=pdf&amp;date_stamp=2020-04-24


Research Article Vol. 28, No. 9 / 27 April 2020 / Optics Express 13992

solid angle and the general solution is given by the superposition of the products of spherical
Bessel functions and spherical harmonics. Recently, Gonoskov and others have used this idea and
developed the dipole pulse theory to describe the field distribution focused by the 4π-spherical
focusing scheme [16]. In the theory, they also used a radially-polarized electromagnetic (EM)
wave to maximize the field strength under the 4π-spherical focusing scheme. The use of radial
polarization was successful because it can generate the most compact and highest field strength
of the focused EM wave, which is different from the use of linear polarization which generates
multiple intensity peaks appearing in the focal region. Thus, it becomes interesting to derive
a general mathematical expression describing the 4π-spherically focused electric- (E-) and
magnetic- (B-) field distributions within the framework of diffraction optics.
In order to apply the diffraction theory to the 4π-spherical focusing scheme, an incident EM

wave should be focused by an ideal parabolic mirror with an extremely low f-number (f/# <<
1), and then a surface on a virtual sphere located in between the parabolic mirror and the focus
should be chosen as the entrance pupil. Finally, the field distribution projected on that virtual
surface can be used to calculate the field distribution near the focus through diffraction theory.
This approach is only valid when the wavelength of the EM wave is much smaller than the focal
length of the parabolic mirror. In this approach, there are two different polarization states known
as the transverse magnetic (TM) and transverse electric (TE) modes that can be chosen as the
eigenstates (see [13] and references therein) under the 4π-spherical focusing scheme. The TM
(TE) mode EM wave can be generated by 4π-spherically focusing the radially- (azimuthally-)
polarized EM wave as shown in Fig. 1. The diffraction approach using a radially- (or azimuthally)
polarized EM wave provides a mathematical formula describing the 4π-spherically focused field
distribution for a TM (or TE) mode EM wave in the focal region. Recently, much attention has
been paid to the use of orbital angular momentum (OAM) beams in laser-matter interaction
studies [18–20]. The OAM can be imposed by introducing a helical phase profile to the EM wave
[21]. Therefore, by imposing the OAM attribute to the EM wave, the diffraction approach can
be used to extend the solution of field distribution for more general cases, such as beams with
the OAM attribute. To have the exact expression for the focused OAM beam will be critical for
studying laser-matter interactions using the OAM beams.

Fig. 1. Electric and magnetic field configurations for transverse magnetic (TM) and
transverse electric (TE) modes. Because of the projected polarization singularities at the
north (θ=0 rad) and south (θ=π rad) poles, the electric and magnetic fields should vanish
at the poles of the spherical surface. For the TM mode, the E-field oscillates along the
θ-direction and the B-field does along the φ-direction. In contrast, for the TE mode, the
E-field oscillates along the φ-direction and the B-field along the θ-direction.
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In this paper, the electromagnetic field distribution by the 4π-spherical focusing scheme has
been investigated. Through the diffraction optic theory, generalized mathematical expressions
describing E- and B-field distributions under the 4π-spherical focusing condition were derived for
the TM and TE mode EM waves with and without the OAM attribute. The maximum achievable
electric field strength is obtained with the conventional TM mode EM wave and the peak intensity
reaches ∼1026 W/cm2 for a 100 PW laser pulse at 800 nm wavelength. As an example of using
the mathematical formulas, the e+-e− pair production rate is investigated with the formulas and
the minimum laser power required for the pair production is estimated from the derived formulas
and compared to previous results.

2. Electric and magnetic fields under 4π-spherical focusing scheme

2.1. Field solution for the 4π-spherically focused wave in the region of kr >> 1

The propagation of an EM wave is described by the Helmholtz’ equation by

∇2®A −
1
c2

∂2

∂t2
®A = 0. (1)

Here, ®A is the vector potential. In spherical coordinates, the solution of Eq. (1) of which the field
is far from the origin (kr >>1) is given by

A⊥(k) = a(k)
∞∑

n=0

n∑
l=−n

jn(kr)Y l
n(θ, φ) exp(−iωt). (2)

Here, jn(kr) is the spherical Bessel function with a radial order of n and Y l
n(θ, φ) is the spherical

harmonics of the n-th polar and l-th azimuthal orders. The function, a(k), is the strength of
the vector potential at the wavevector, k, and the angular frequency, ω, corresponds to ω = kc.
Because an ideal case (no wavefront aberration) of the spherical focusing is assumed, A⊥(k)
represents the vector potential perpendicular to the radial direction. Considering the smallest
focal spot under the spherical focusing scheme, the lowest order (n= 0 and l= 0) of the vector
potential, A⊥(k) = a(k) sin(kr)

kr exp(−iωt), can be taken as a solution at kr>>1. As mentioned in
the introduction, two eigen polarization states, Aθ and Aφ, are possible for the polarization of
the vector potential. These polarization states correspond to the TM and TE modes in the focal
region, respectively. The Aθ and Aφ have polarization singularities with a Poincaré-Hopf index
of 1 at the north and south poles as shown in Fig. 1, and in this case there is no field strength for
Aθ and Aφ at the polarization singularity. Therefore, the possible vector potentials for the TM
and TE modes should have mathematical forms as,

®A(k) = a(k)
sin(kr)

kr
sin θ exp(−iωt)θ̂, (for TM mode) (3)

and ®A(k) = a(k)
sin(kr)

kr
sin θ exp(−iωt)φ̂. (for TE mode) (4)

The resultant E- and B-fields for the TM and TE modes are expressed as

®E(k) = ika(k)
sin(kr)

kr
sin θ exp(−iωt)θ̂ and ®H(k) =

ika(k)
c

sin(kr)
kr

sin θ exp(−iωt)φ̂

(for TM mode)
(5)

®E(k) = ika(k)
sin(kr)

kr
sin θ exp(−iωt)φ̂ and ®H(k) = −

ika(k)
c

sin(kr)
kr

sin θ exp(−iωt)θ̂.

(for TE mode)
(6)

Because of sin(kr) = eikr−e−ikr

2i , Eqs. (3)–(6) represent the superposition of incoming (-ikr) and
outgoing (+ikr) spherical waves in the spherical focusing geometry, and the angular dependency
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(sin θ) results in EM fields by dipole radiation when kr � 1. These equations well explain
the E- and B-field distributions when the observation point is far from the focus located at the
origin. The E- and B-fields expressed in Eqs. (3)–(6) satisfy the finite condition for the field
strength and the electromagnetic energy even with the distance from the origin approaching zero.
However, the fields in Eqs. (3)–(6) are always zero at θ = 0 even in a very short distance below
one wavelength away from the focus. This sounds unphysical because, considering the diffraction
effect of the focused EM wave, the field should exist within a very short range even at θ = 0 and
vanish quickly as the observation distance increases from the focus. Thus, the key question for
the 4π-spherical focusing scheme becomes how to accurately express the physical E- and B-field
distributions near the focus at kr < 1.

2.2. Field solution for the 4π-spherically focused wave in the region of kr < 1

In order to obtain the E- and B-field distributions for TM and TE mode EM waves near the focus,
let us consider that a radially- or azimuthally-polarized EM wave with a Laguerre-Gaussian (LG)
beam profile is incident on a parabolic mirror and focused by it (see Fig. 2). The Bessel-Gaussian
(BG) function [22] is the general expression for the cylindrical vector beams such as radially-
polarized (TM) and azimuthally-polarized (TE) EM wave. However, in the small-scale parameter
limit [23], the beam profile follows the LG function [E ∼ LG1

0 ∼ (ρ/ ρ0) exp(−ρ2
/
2ρ20)]. Here,

LG1
0 means the LG function with 0th radial and 1st azimuthal orders. The parabolic surface

profile is defined by z = (x2 + y2)
/
4f − f with a parent focal length of f. The EM wave propagates

along the -z-direction and it is reflected by the parabolic mirror to form the E-field distribution
expressed by Eq. (5) onto a virtual focusing sphere (VFS).

Fig. 2. (a) Schematics for projecting a radially-polarized electromagnetic wave onto the
virtual focusing sphere with the electric field distribution of ∼sinθ. (b) Transverse intensity
distribution I(x,y) and polarization state of the incident radially-polarized electromagnetic
wave.

The distance, ρ, in polar coordinates is defined as ρ = r sin θ with ρ =
√

x2 + y2 and ρ0 means
the Gaussian beam size. It is also known that a general solution for the E-field profile of the
OAM beam with a topological charge (TC) of α is given by

E ∼ LGα
0 ∼ (ρ/ ρ0)

α exp(−ρ2
/
2ρ20)L

α
0 (ρ

2
/
ρ20)e

iαφ . (7)

Therefore, the beam profile becomes the LG1
0 function when the TC equals to 0, ±1. The LG1

0
beam mode does not match the beam profile shown in Eqs. (3)–(6). However, the required beam
profile can be obtained by the coherent beam shaping technique [24,25]. With a proper beam
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shaper which introduces the transmittance function of exp(ρ2
/
2ρ20)

/
r to the LG1

0 mode, one can
obtain the E-field distribution proportional to

ES(θ, φ) ∼ sin θ · eiαφ (8)

on the VFS, as shown in Eqs. (5) and (6). Here, r =
√

x2 + y2 + z2 is the radial distance and θ
the polar angle in spherical coordinates. The TC (α) for the OAM of the EM wave in Eq. (8) is
allowed to have 0 and ±1. A different beam shaper will be used for a beam with a higher TC.
After being reflected by the parabolic mirror, the ρ-polarization of the EM wave in cylindrical
coordinates turns into θ-polarization in spherical coordinates.

Now, using the diffraction technique introduced in [26], the E-field at the observation position,
O, located near to the focus can be calculated by (see Fig. 3 for details)

d®EO(rO, θO, φO) =
ik
2π
®ES(θS, φS)

exp(i®k · ®u)
|®u|

dA, (9)

where (rO, θO, φO) refers to the spherical coordinates of the observation point, ES(θS, φS) refers to
the E-field at the source point (rS, θS, φS) on the VFS, and dA the infinitesimal area of the source
point. The ®u is the distance vector from the source point to the observation point. The phase factor,
®k · ®u, refers to the incoming wave and is expressed as ®k · ®u = ku = k(r2S + r2O − 2rSrO cos γ)1/2.

Fig. 3. Geometric configuration for diffraction integral under the 4π spherical focusing
scheme.

Here, γ is the angle between two vectors (®rS and ®rO) to the source and the observation
points, and cos γ is defined by cos γ = cos θS cos θO cos(φS − φO) + sin θS sin θO. By assuming
|rS | � |rO |, the phase factor in Eq. (9) is approximated as ®k · ®u ≈ krS − krO cos γ and the
distance, |®u|, in the denominator in Eq. (9) becomes |®u| ≈ rS because the change in the field
strength is slower than that in the phase. Then, the resultant expression for the electric field at the
observation point is

®EO(rO, θO, φO) ≈
ikrS

2π
exp(ikrS)

∫
®ES(θS, φS) exp(−ikrO cos γ) sin θSdθSdφS. (10)

Equation (10) can be analytically integrable for the 4π solid angle by inserting ®ES(θS, φS) =

ES sin θS · exp(iαφS)θ̂ (for the TM mode) or ®ES(θS) = ES sin θS · exp(iαφS)φ̂ (for the TE mode)
as an E-field at the source point. The field strength, ES, on the VFS is obtained directly from the
incident power, PL, of the incoming EM wave or laser by using the energy conservation between
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the incident laser power and the laser power on the VFS with a radius rS. This conservation
condition yields ηPL = πcε0r2SE2

S

∫ π
0 sin3θSdθS. Here, η is used to express the transmission of

the beam shaper. Then, the E-field strength (ES) on the VFS is given by
√
3ηPL

/
4πcε0r2S.

2.3. Field solution for the TM and TE mode waves in the region of kr < 1

Now, let us calculate the E-field distribution for the TM mode EM wave using Eq. (10). With the
E-field profile [®ES(θS, φS) = ES sin θS · exp(iαφS)θ̂] on the VSF, Eq. (10) is re-written as

®EO = θ̂EO = θ̂
ikrS

2π
ES exp(ikrS)

∫
exp(−ikrO cos γ) exp(−iαφS)sin2θSdθSdφS. (11)

By the plane wave expansion of exp(−ikrO cos γ) =
∞∑

l=0
(2l + 1)(−i)ljl(krO)Pl(cos γ) and the

addition theorem of the Legendre function of Pl(cos γ) =
l∑

m=−l

Γ(l−m+1)
Γ(l+m+1)P

m
l (cos θO)Pm

l (cos θS)

exp[im(φO − φS)], the phase factor, exp(−ikrO cos γ), in Eq. (11) can be re-expressed as

∞∑
l=0
(2l + 1)(−i)ljl(krO)

l∑
m=−l

Γ(l − m + 1)
Γ(l + m + 1)

Pm
l (cos θO)Pm

l (cos θS) exp[im(φO − φS)], (12)

with the associated Legendre polynomials, Pm
l . After the straightforward mathematical calcula-

tions, the resultant E-field near the focus is finally given by

®EO = θ̂ikrSES exp(ikrS) exp(iαφO)×
∞∑

l=0
(2l + 1)(−i)ljl(krO)

Γ(l − α + 1)
Γ(l + α + 1)

Pαl (cos θO)

∫
Pαl (cos θS)sin2θSdθS.

(13)

Here, the integral formula of
∫ 2π
0 exp[i(α − m)φS]dφS = 2πδm,α is used to obtain Eq. (13)

and Γ(·) is the gamma function. The integral,
∫ π
0 Pαl (cos θS)sin2θSdθS, is converted into∫ 1

−1 Pαl (x)(1 − x2)1/ 2dx and, under the condition of α < 3, it can be explicitly expressed by the
formula in [27] as follows:∫ 1

−1
(1 − x2)λ−1Pαl (x)dx =

π2αΓ(λ + α/2)Γ(λ − α/2)
Γ(λ + l/2 + 1/2)Γ(λ − l/2)Γ(−α/2 + l/2 + 1)Γ(−α/2 − l/2 + 1/2)

.
(14)

Finally, putting Eq. (14) into Eq. (13), the general expression for the resultant E-field distribution
in the focal region is expressed in the summation of the product of the spherical Bessel functions
and the associated Legendre polynomials as

®EO = θ̂2απikrSES exp(ikrS) exp(iαφO)Γ(3/2 + α/2)Γ(3/2 − α/2)×
∞∑

l=0

(2l + 1)(−i)lΓ(l − α + 1)jl(krO)Pαl (cos θO)

Γ(l + α + 1)Γ(l/2 + 2)Γ(3/2 − l/2)Γ(−α/2 + l/2 + 1)Γ(−α/2 − l/2 + 1/2)
.

(15)

In case of the conventional EM wave with a TC of α=0, the E-field distribution near the focus
can be written with the first three non-zero terms as follows:

®EO = θ̂i
π

2
krSES exp(ikrS)

[
j0(krO) +

5
23

j2(krO)P2(cos θO) −
9
26

j4(krO)P4(cos θO) + · · ·

]
= θ̂iEp exp(ikrS)a(rO, θO).

(16)
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Here,Ep is the peak of E-field strength defined by πkrSES/2 and a(rO, θO) is the spatial distribution
function of the E-field given by

a(rO, θO) =

[
j0(krO) +

5
23

j2(krO)P2(cos θO) −
9
26

j4(krO)P4(cos θO) + · · ·

]
. (17)

Because the phase shift, krS, is a constant, exp(ikrS) can be dropped out without the loss of
generality at any time. Equation (16) is a physical solution for the E-field distribution of a
spherically focused TM mode EM wave near the focus (kr < 1) because the field has a non-zero
value even if the radius rO and the polar angle θO approach zero. The temporal characteristics
can be obtained by multiplying by the phase factor of e−iωt. The E-field distribution and its
temporal characteristics are shown in Figs. 4(a) and 4(b). The first two terms in Eq. (17)
are used to calculate the field distribution near the focus. The wavelength of the incoming
EM wave is 0.8 µm. The field distribution forms a standing wave near the focus and oscillates
with respect to time as in the figures. The line-cut of the field distribution showed a rapid
decrease along the z-axis as expected. The zeros of the E- field are obtained at 0.5 µm (0.63λ)
and 0.37 µm (0.46λ) in the z- and x- (or y-) axes, respectively. The FWHMs of a2(rO, θO) in
the z- and x-axes are 0.21 µm (0.26λ) and 0.17 µm (0.21λ), yielding the FWHM volume of
(4π/3) × 0.26 × 0.21 × 0.21λ3 ≈ λ3

/
20.

For the 4π-spherically-focused OAM EM wave with a TC of α=±1, the l= 1 term in Eq.
(15) only survives due to the gamma function properties of Γ(0) = ∞ and Γ(−|int|) = ∞ in the
denominator. Therefore, the focused field distribution for the OAM EM wave with a TC of ±1
becomes

®EO = −θ̂
4
π

Ep exp(ikrS) exp(±iφO)j1(krO)P1
1(cos θO). (18)

Figures 4(c) and 4(d) show the field distribution and its temporal characteristics for the 4π-
spherically-focused EM wave with a TC of 1. The helical phase property appears in the focused
field, thus the field distribution in the focal region rotates in the φ-direction with respect to time
as shown in Fig. 4(d).
The focused E-field distribution of the TE mode EM wave can be calculated by inserting
®ES(θS, φS) = ES sin θS · exp(iαφS)φ̂ into Eq. (10). In this case, it is convenient to separately
calculate the x- and y-polarization components by using φ̂ = − sin φSx̂ + cos φSŷ. The x- and
y-polarization components are given by

EO,x = −
krS

4π
ES exp(ikrS)[I+ − I−], and EO,y =

ikrS

4π
ES exp(ikrS)[I+ + I−] (19)

with the definition of I± =
∫

exp(−ikrO cos γ) exp[−i(α ± 1)φS]sin2θSdθSdφS. By performing
the integration in the φS-direction, I± become

I± = 2π
∞∑

l=0
(2l + 1)(−i)ljl(krO)

Γ[l − (α ± 1) + 1]
Γ[l + (α ± 1) + 1]

Pα±1l (cos θO)ei(α±1)φO

∫
Pα±1l (cos θS)sin2θSdθS.

(20)
Again, the focused field distribution for the conventional TE mode EM wave with no OAM

attribute is obtained with α=0. In this case, by using the integration formulas [25] for odd ls, the
integration in Eq. (20) becomes∫ π

0
P−1l (cos θS)sin2θSdθS = 2

2−2Γ(1/2)Γ(1)
Γ(3/2 − l/2)Γ(2 + l/2)

, (21)

and
∫ π

0
P1

l (cos θS)sin2θSdθS = 2
(−1)2−2Γ(1/2)Γ(1)Γ(2 + l)
Γ(l)Γ(3/2 − l/2)Γ(2 + l/2)

. (22)

All other ls become zeros except for l= 1 in Eqs. (21) and (22). Thus, the integrals, I+
and I−, become 4πi · j1(krO)P1

1(cos θO)eiφO and −8πi · j1(krO)P−11 (cos θO)e−iφO , respectively. By
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Fig. 4. Electric field distributions for the conventional and OAM TM mode EM waves. (a)
and (c) show the field distributions for the conventional and OAM waves in the x-z plane.
(b) and (d) show the field distributions for the conventional and OAM waves in the x-y plane
at different times. For the conventional wave, the field oscillates in time. The OAM wave
rotates in time along the z-axis. In (b) and (d), T in the figure means the period.
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putting these expressions into Eq. (19), one obtains the following for the x- and y-polarization
components

EO,x = 2krSES exp(ikrS)j1(krO)P1
1(cos θO) sin φO, (23)

and EO,y = −2krSES exp(ikrS)j1(krO)P1
1(cos θO) cos φO. (24)

Finally, the 4π-spherically focused E-field distribution of a TE mode EM wave in the focal
region becomes

®EO = −φ̂2krSES exp(ikrS)j1(krO)P1
1(cos θO) = −φ̂EP exp(ikrS)b(rO, θO). (25)

Again, the spatial distribution function of the E-field, b(rO, θO), is defined by

b(rO, θO) =
4
π

j1(krO)P1
1(cos θO). (26)

The E-field distribution and its temporal characteristics are shown in Figs. 5(a) and 5(b). As
shown in the figures, the E-field has zero field at the focus and its distribution for the TE mode
EM wave forms a standing wave again and oscillates with respect to time.

The OAM TE mode EM wave shows an interesting field distribution pattern in the focal region.
For the OAM TE mode EM wave with a TC of α=1, the integrals, I±, become

I+ = 2π
∞∑

l=0
(2l + 1)(−i)ljl(krO)

Γ[l − 1]
Γ[l + 3]

P2
l (cos θO)ei2φO

∫
P2

l (cos θS)sin2θSdθS, (27)

and I− = 2π
∞∑

l=0
(2l + 1)(−i)ljl(krO)P0

l (cos θO)

∫
P0

l (cos θS)sin2θSdθS. (28)

The integrals can be explicitly expressed up to the second radial order as follows:

I+ ≈ 2π
5 · 3π
26
· j2(krO) · P2

2(cos θO)ei2φO , (29)

and I− ≈ 2π
[
1
2
πj0(krO)P0

0(cos θO) +
5
24
πj2(krO)P0

2(cos θO)

]
. (30)

Finally, the focused field distributions for the x- and y-polarization components in Eq. (19)
become

EO,x ≈ −
krS

2
ES exp(ikrS)

π

2

[
3 · 5
25

j2(krO) · P2
2(cos θO)ei2φO − j0(krO)

]
, (31)

and EO,y ≈
krS

2
ES exp(ikrS)

π

2

[
3 · 5
25

j2(krO) · P2
2(cos θO)ei2φO + j0(krO)

]
. (32)

The EO,x field distribution of the TE mode OAM EM wave and its temporal characteristics are
shown in Figs. 5(c) and 5(d). The field distribution in the focal region represents the superposition
of two azimuthal modes (α+1= 2 and α-1= 0) due to the polarization-phase coupling as discussed
in [28]. And, because of the helical phase shift of ei2φO , the field distribution in the focal region
rotates in the φ-direction with respect to time.
The expression for the magnetic field distribution near the focus can be easily obtained by

exchanging the field expressions for the E- and B-fields between TM and TE modes. The E-field
configuration of the TM mode EM wave corresponds to B-field of the TE mode EM wave and
vice versa. Thus, the B-field distribution for the TM mode EM wave in the focal region will be
the same as the E-field distribution of TE mode EM wave. Similarly, the B-field distribution for
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Fig. 5. Electric field distributions for the conventional and OAM TE mode EM waves. (a)
and (c) show the field distributions for the conventional and OAM waves in the x-z plane.
(b) and (d) show the field distributions for the conventional and OAM waves in the x-y plane
at different times. For the conventional wave, the field oscillates in time. The OAM wave
rotates in time along the z-axis. In (b) and (d), T in the figure means the period.
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the TE mode EM wave will be the same as the E-field distribution of the TM mode EM wave.
Therefore, the magnetic field distributions for the conventional EM waves are

®HO = −φ̂
EP

c
exp(ikrS)b(rO, θO) (for TM mode) (33)

and ®HO = θ̂i
Ep

c
exp(ikrS)a(rO, θO). (for TE mode) (34)

For the OAM EM wave, the B-field for the TM mode will be expressed with Eqs. (31) and
(32) and the B-field for the TE mode with Eq. (18). Equations (16), (18), (25), (31), and (32)
form a full set of expressions describing 4π-spherically focused E- and B-field distributions for
the conventional (α=0) and OAM (α=±1) TM/TE mode EM waves.

2.4. Attainable highest peak field strength and intensity

As mentioned before, the highest E-field strength defined by π
2 krSES is obtained for the

conventional TM mode EM wave at rO=0. By replacing ES with
√
3ηPL

/
4πcε0r2S, one obtains

the peak of field strength and the peak intensity at the focus as follows:

Ep =
k
4

√
3πηPL

cε0
and Ip =

3π3

4
ηPL

λ2
(35)

Table 1 shows the peak intensity and field strength calculated at various powers and wavelengths.
In the table, the 1-µm wavelength laser represents a 150-fs high-power Nd:glass laser and the
0.8-µm wavelength laser for a 30-fs Ti:sapphire laser [5]. The different wavelengths such as
0.5 µm, 0.4 µm, and 0.2 µm can be obtained by the second and fourth harmonic generations
of these lasers [29]. The table shows that the peak intensity of ∼1.8× 1024 W/cm2 can be
theoretically reached by spherically focusing a 1 PW Ti:sapphire laser pulse. It is interesting to
note that such a high laser intensity can be achieved with a focused spot size of ∼λ/2 and that the
spherical focusing scheme provides the λ/2-focusing condition, which is the limit of diffraction
optics theory based on the wave-like property of light. At the same laser power, the field strength
calculated with Eq. (35) provides a 1.18 times higher value than that calculated by the dipole
pulse theory [16]. It is also worth examining the theoretical limit of achievable laser intensity by
focusing 10 PW and 100 PW laser pulses. The spherical focusing of 10 PW and 100 PW laser
pulses at the fourth harmonics pushes the peak intensities above 2.9× 1026 W/cm2 and 2.9× 1027

W/cm2, respectively. The intensity of 2.9× 1027 W/cm2 corresponds to the peak field strengths
of 1.48× 1015 V/cm, corresponding to 11.2% of the Schwinger field.

3. Electron-positron pair production under 4π-spherical focusing scheme

One of the purposes of having the mathematical expressions of the 4π-spherically focused EM
wave is to investigate the e+-e− pair production under the ultra-strong EM field. In this section,
the e+-e− pair production rate and the required laser power for a single e+-e− pair production
event are estimated with the 4π-spherically focused EM field. The e+-e− pair production from
the vacuum by the Schwinger mechanism [30] is a tunneling process, and under the constant
field condition the total number (Ne+e− ) of the created e+-e− pairss is calculated by [3,12,31,32],

Ne+e− =

∫
d4xWe+e− =

e2E2
S

4π3~2c2

∫
d4xEinvHinv coth(πHinv/Einv) exp

(
−

π

Einv

)
. (36)

Here, Einv and Hinv are the reduced invariants defined by

Einv =

√
(F2 + G2)

1/2
− F

ES
, and Hinv =

√
(F2 + G2)

1/2
+ F

ES
, (37)
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where, F and G are the Poincaré invariants defined by F = [H2 − (E2/ c2)]
/
2 and G =

−[ ®H∗ · (®E
/

c) + (®E∗
/

c) · ®H]
/
2. The e+-e− pair production rate, We+e− , which means the number

of e+-e− pairss created in the four-volume d4x, is given by

We+e− =
e2E2

S
4π3~2c2

EinvHinv coth
(
π

Hinv

Einv

)
exp

(
−

π

Einv

)
. (38)

Here, ~ is the Planck constant. Although Eq. (38) is valid for a constant field, its validity can
be extended to the oscillating field through the locally constant field approximation, when the
wavelength of the EM wave is much greater than the Compton wavelength [30].

In order to explicitly represent the Poincaré invariants with mathematical expressions for
the fields, let us assume that a generalized conventional (α=0) EM wave expressed as the
superposition of TM and TE mode EM waves with a phase difference of γ is spherically focused.
Then, the E- and B-field are given as follows:

®E = Ep


0

iR1(t)a(rO, θO) cos(ω1t)

−R2(t)eiγb(rO, θO) cos(ω2t)


and ®H =

Ep

c


0

iR2(t)eiγa(rO, θO) cos(ω2t)

−R1(t)b(rO, θO) cos(ω1t)


. (39)

Here, R1(t) and R2(t) are used to express the temporal envelope of the EM waves and ω1 and
ω2 are angular frequencies for the TM and TE mode EM waves. By putting the E- and B-field
expressions in Eq. (38) into the expressions for the Poincaré invariants, one obtains

F(rO, θO, t) = −E2
pf (t)[a2(rO, θO) − b2(rO, θO)], (40)

and G(rO, θO, t) = −E2
pg(t)[a2(rO, θO) − b2(rO, θO)] sin γ (41)

with the notation of c= 1. The f (t) and g(t) are the time-dependent functions defined as

f (t) = R2
1(t)cos2(ω1t) − R2

2(t)cos2(ω2t) and g(t) = R1(t)R2(t) cosω1t cosω2t, (42)

respectively. Under the locally constant field approximation of the pulse duration << the Compton
time, the functions, f (t) and g(t), can be regarded as constants, f0 and g0, at a certain time t0, so
the Poincaré invariants become dependent only on the spatial coordinates. Figure 6 shows the
spatial distribution function (a2(rO, θO) − b2(rO, θO)) appearing in the Poincaré invariants, F and
G. The spatial distribution function, a2 − b2, has zero values at 0.23 µm, 0.47 µm, and 0.69 µm on
the x- and y-axes, and at 0.50 µm, 0.88 µm, and 1.26 µm on the z-axis. The Poincaré invariant G
is always zero when R1(t) = 0, or R2(t) = 0, or sin γ = 0. In other cases, an invariant G is not
zero and a Lorentz frame in which the E- and B-fields are parallel (or antiparallel) can be found.
Now, by inserting Eqs. (40) and (41) into Eq. (37), one obtains EinvHinv and Hinv/Einv as

follows:

EinvHinv =
2E2

p(a2 − b2)g0 sin γ
E2

S
and

Hinv

Einv
=

f0
2g0 sin γ

©«−1 +
√√
1 +

4g20
f 20

sin2γª®¬ . (43)

Due to Eq. (35), the peak field strength, Ep, is inversely proportional to the wavelength of the
EM wave, so that the pair-production rate We+e− is proportional to 1

λ2
exp(−Cλ), where C is a

constant. This result shows that using a shorter wavelength is beneficial in increasing the pair
production rate and consistent with the previous result [32]. The method to obtain a shorter
wavelength is to use high harmonics from a solid or gas target [33–35] and the reflection from
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Fig. 6. (a) Spatial distribution and (b) line plot of the spatial function (a2 – b2) of the
Poincare invariants, F and G.

Table 1. Peak intensities and field strengths at the focus under various peak powers and
wavelengths (when η=1). The 1 PW laser is currently operating worldwide, the 10 PW laser is under

construction [4], and the construction of over 100 PW laser is planned [5].

1 µm 0.8 µm

0.5 µm (2nd

harmonic of
1 µm)

0.4 µm (2nd

harmonic of
0.8 µm)

0.2 µm (4th

harmonic of
0.8 µm)

1 PW
Peak intensity (W/cm2) 1.16× 1024 1.82× 1024 4.65× 1024 7.27× 1024 2.91× 1025

Peak field strength (V/cm) 2.96× 1013 3.70× 1013 5.92× 1013 7.40× 1013 1.48× 1014

10 PW
Peak intensity (W/cm2) 1.16× 1025 1.82× 1025 4.65× 1025 7.27× 1025 2.91× 1026

Peak field strength (V/cm) 9.36× 1013 1.17× 1014 1.87× 1014 2.34× 1014 4.68× 1014

100 PW
Peak intensity (W/cm2) 1.16× 1026 1.82× 1026 4.65× 1026 7.27× 1026 2.91× 1027

Peak field strength (V/cm) 2.96× 1014 3.70× 1014 5.92× 1014 7.40× 1014 1.48× 1015

the relativistic flying mirror [36]. In particular, a very short wavelength, which is proportional to
1/(4γ2), can be obtained from the reflected EM from a flying mirror due to the double Doppler
effect. Moreover, special geometry of a plasma wake wave can produce spherical relativistic
flying mirror for efficient light intensification by not only frequency up-conversion but also by
spherical focusing [37].

Let’s consider the pair production rate under three different modes of EMwaves: TMmode, TE
mode, and mixed TM/TE mode EM waves with the same angular frequency, i.e., ω1 = ω2 = ω.

3.1. Pair production with the TM mode EM wave

For the TM mode EM wave, because R1 � R2, f 20 � g20. The arguments (Hinv/Einv and 1/Einv)
in the hyperbolic cotangent and exponential functions are approximated by

Hinv

Einv
≈

g0 sin γ
f0

and
1

Einv
≈

ES

Ep
√

f0(a2 − b2)
. (44)

The time-dependent function, f (t), is replaced by f0 = R2
1(t0)cos2(ωt0) under the locally-constant

field approximation. By inserting Eq. (44) into Eq. (38), one obtains the pair production rate as
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follows:

We+e− =
e2E2

p

4π3~2c2
R2
1(t0)cos2(ωt0)(a2 − b2)

π
exp

(
−

πES

EpR1(t0)
√

cos2(ωt0)(a2 − b2)

)
. (45)

The approximation of coth x ≈ 1
x is used when x � 1. The pair production occurs when a2>b2

and its production peak appears twice in one optical cycle because of cos2(ωt). Table 2 shows
the laser power required for the single event of e+-e− pair production in the four-volume. The
pair production rate has significant values only near the peak field strength and rapidly decreases
as the field strength decreases from the peak. In the table, it is assumed that an EM wave at the
0.2-µm wavelength is obtained from the fourth harmonic generation of a 0.8-µm Ti:sapphire
high-power laser, an EM wave at the 0.04-µm wavelength is emitted from the higher-order
harmonic generation in gas or solid target through the high-power laser-matter interaction, and an
EM wave at the 0.002-µm wavelength is from the frequency-upshifted [38] EM wave reflected
by the relativistic flying mirror. As can be seen in Table 2, when focusing the EM waves
frequency-upshifted by the relativistic flying mirrors, the laser power required for the first event
of e+-e− pair production is reduced to ∼6 TW. The required laser powers are lower than those
shown in the previous result [32] because of the higher field strength calculated with Eq. (35).
However, the field strengths between two approaches differ by only 5%.

Table 2. Required peak power for the first event of electron-positron pair production under
4π-spherically focused TM mode EM wave.

Wavelength 1 µm 0.8 µm
0.2 µm (4th

harmonic of 0.8 µm)
0.04 µm (20th

harmonic of 0.8 µm)
0.002 µm
(4γ2 = 400)

Required peak power (PW) 1380 886 55.4 2.21 0.006

3.2. Pair production with the TE mode EM wave

For the TE mode EM wave, one obtains again f 20 � g20 because R2 � R1. The arguments
(Hinv/Einv and 1/Einv) in the hyperbolic cotangent and exponential functions are the same as
in Eq. (44). However, in this case, the function, f0, becomes −R2

2(t)cos2(ωt0), and after a short
calculation, the pair production rate for the TE mode EM wave case is given by

We+e− =
e2E2

p

4π3~2c2
R2
2(t0)cos2(ωt0)(b2 − a2)

π
exp

(
−

πES

EpR2(t0)
√

cos2(ωt0)(b2 − a2)

)
. (46)

Note that b(rO, θO) means the E-field distribution for the TE mode EM wave. Because the pair
production occurs only when b2>a2, no pair production is expected at the focus (origin) where
no E-field (b = 0) exists. The peak of pair production rate is obtained at x= y ∼ 0.425λ, but, due
to the lower E-field strength of the TE mode EM wave, the e+-e− pair production is much less
than that with the TM mode EM wave.

3.3. Pair production with a mixed TM/TE mode EM wave

For the mixed TM/TE mode EM wave, the function, f0, becomes zero and the other function, g0,
becomes R2(t0)cos2ωt0 with R1(t) = R2(t) = R(t). Then, one obtains the following relations for
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Hinv/Einv and 1/Einv,

Hinv

Einv
= 1 and

1
Einv
=

ES

EpR(t0) cos(ωt0)
√
(a2 − b2) sin γ

. (47)

By inserting Eq. (47) into Eq. (38), the pair production rate for the mixed TM/TE mode EM
wave becomes

We+e− =
e2E2

p

4π3~2c2
R2(t0)(a2 − b2) sin γ coth(π)

× exp

(
−

πES

EpR(t0)
√

cos2(ωt0)(a2 − b2) sin γ

)
.

(48)

Equation (48) shows the pair production rate depending on the phase difference, γ, between TM
and TE modes. The maximum pair production is obtained at the phase difference of γ = π/2,
and no pair production is expected when γ = 0 or γ = π. Note that the constant factor of 1/π in
Eqs. (45) and (46) is replaced by coth(π) ≈ 1.003. However, the e+-e− pair production rate will
be much lower when comparing the E-field strengths in the mixed TM/TE mode and the TM
mode EM wave.

4. Conclusion

The 4π-spherical focusing scheme has been investigated with the TM and TE mode EM waves
through the diffraction optics approach. Due to the advantage of the diffraction optics approach,
the mathematical expressions describing the 4π-spherically focused EM waves have been
generalized to the OAM EM wave. The FWHM volume of the focused intensity is reduced to
∼λ3/20 for the conventional TM mode EM wave and the peak intensity reaches 1027 W/cm2 by
focusing a 100 PW, 0.2-µm laser pulse, which will be available in the near future. The e+-e−
pair production rate has been investigated under the 4π-spherical focusing condition. The pair
production rate is analyzed for the TM, TE, and mixed TM/TE mode conventional EM waves.
The required laser power for the e+-e− pair production reduces to the ∼6 TW level by spherically
focusing a TM mode EM wave reflected by a relativistic flying mirror. The result can be applied
to investigate the nonlinear QED processes in the intensity range over 1024 W/cm2.
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