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Abstract 

We develop a picture of periodic systems which does not rely on the Hamiltonian of the 

system but on maps between a finite number of time locations. Moser or Deprit-like 

normalizations are done directly on the maps thereby avoiding the complex time­

dependent theory. We redefine linear and nonlinear Floquet variables entirely in terms 

of maps. This approach relies heavily on the Lie representation of maps introduced by 

Dragt and Finn. One might say that although we do not use the Hamiltonian in the 

normalization transformation, we are using Lie operators which are themselves, in 

some sense, pseudo-Hamiltonians for the maps they represent. Our techniques find 

application in accelerator dynamics or in any field where the Hamiltonian is periodic 

but hopelessly complex, such as magnetic field design in steliarators. 

2 



1.lntroduction 

The study of dynamical systems in traditional branches of classical 

mechanics uses the Hamiltonian as a starting point. By this we mean that 

both the numerical as well as the analytical work is done directly on the 

Hamiltonian of the system. In certain applications, such as dynamics of 

charged particle beams in accelerators, this approach may lead to a dead 

end. To illustrate this point, one needs only to compare celestial 

mechanics to accelerator physics. In accelerator physics, we try to 

understand the potential behavior of circular machines whose 

Hamiltonian is a very complex position-dependent function (the time-

like variable is actually a length denoted by s) . For example, even a 

small synchrotron radiation ring can consist of several dozens of 

bending magnets, quadrupoles, sextupoles, orbit correction dipoles and 

RF-cavities. The necessary inclusion of random errors in the simulation 

of such a device implies that the Hamiltonian will be a horrible periodic 

s-dependent function with a number of parameters ranging in the 

thousands. On the other hand, the problems of celestial mechanics, which 

might have a higher phase space dimensionality, are parametrized by a 

relatively small number of variables. In addition, accelerator 

Hamiltonians are very discontinuous in the time-like variable which adds 

to the complexity of using a formalism devised for smooth time 

dependence. 

Analytical computations such as the normalization procedures of Deprit 

and others have emphasized the "flow" (Le. the Hamiltonian) instead of 

the study of a one period "map" (Le. a turn around a circular storage ring). 
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Accelerator theorists have tried to adapt these tools to the study of 

circular machines but they always had to restrict themselves to less 

than realistic problems. For this reason, a new approach for 

understanding our systems has been developed in recent years : it 

emphasizes the computation and analysis of large time maps. We believe 

that the tools which have been developed (software and theory) can be of 

use in other fields. 

A Bit of History 

This new approach did not develop overnight. In fact, it has its roots 

deep in the field of accelerator physics. To orient the reader, we will 

present a subjective (not exhaustive) historical perspective of the use of 

flow and maps in accelerator theory and simulation. Since pioneering 

work in accelerator physics has often been obscure, a historical 

perspective may be viewed as an attempt at a proper recognition of such 

work. 

Originally, the use of maps entered in the design of circular accelerators 

as paraxial (linear) representation of the ray propagation. The theory 

was derived from the light optics equivalent and consequently the 

periodic structure of the systems was not properly exploited. 

Eventually, Courant and Snyder,[1] in their seminal paper on strong 

focussing, parametrized the motion around a linear ring in terms of 

invariant quantities, taking full advantage of the pseudo-harmonic 

oscillator structure of the motion. In fact, as we will see in this paper, 

the Lie operator associated to the so-called Courant-Snyder invariant is 

proportional to the Lie operator of the linear one-turn map. 
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On another front, the inclusion of sextupoles in a ring worried a few 

people in the late fifties . Because computers were not very powerful, 

Meier, Symon, Laslett and others!2] used simple one dimensional maps to 

guess at the potential harm caused by nonlinearities in a circular 

machine. As computers got better, maps disappeared from simulation and 

were replaced by the so-called kick codes which are in fact second order 

explicit symplectic integrators. In these codes, each time step of the 

integrator is derivable from a Hamiltonian . These codes are still the 

main ingredients of brute force simulations[3] . 

On the nonlinear theoretical front, accelerator theorists tried to 

compute various relevant quantities such as frequency shifts (shear 

terms known as tune shifts in accelerator physics) and distortions of the 

invariants with the help of canonical perturbation theory . They adapted 

to accelerator problems the algorithms of POincare(-Von Zeippel)!4] , 

Moser-Birkhoff!5] and later Deprit.[6] The inherent complexity of our 

Hamiltonians leads to great technical difficulties in the application of 

such algorithms to realistic problems. 

Meanwhile the use of maps kept creeping in the linear theory. This 

probably culminated in a series of paper by Chao!7] in the late seventies 

where he computed the equilibrium emmitances and spin polarization in 

a circular electron ring with the help of a map based theory instead of a 

flow or Hamiltonian approach. One might ask why accelerator theorists 

continued to write papers on the evaluation of nonlinear quantities 

relying entirely on the usual canonical perturbation theory while linear 

calculations often used the more suited map approach. We venture to 

suggest that the answer to this question is five words : Lie 
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representation of the map. Although it is obvious after a little thought 

that the quantities obtained by standard canonical perturbation theory 

are present in a power series expansion of the one-turn map[S], the 

expansion of the final position and momentum (+spin if you care about 

it) in terms of their initial components is very different in form from 

the central object of canonical perturbation theory: the Hamiltonian. 

Consequently without at least an awareness of the Lie representation, 

accelerator theorists could not have been expected to re-phrase the 

nonlinear theory in a way suited for circular machine as they did for the 

linear case. 

At this point enters Alex Dragt. In the seventies Dragt and Finn worked 

on some version of the Deprit algorithm[9] and applied it to various 

problems of plasma physics[1 0,11]. 

Dragt became involved with accelerator theory and with the help of 

Douglas they wrote the first version of a code for beam optics 

(MARYLlE)[12] which parametrizes the Taylor series maps in terms of 

their Lie generators. In collaboration with the author, a normal form 

algorithm was first introduced in the code MARYLIE by Dragt, Neri and 

Healy. Finally, Dragt, in an obscure report, introduced for the first time 

the concept of phase advance from a map point of view[13]. His ideas 

were not complete, but they planted the right seed in the author's mind. 

At this point it became clear that the extraction of maps and their 

subsequent analysis (normalization) provided a powerful approach to 

numerical and analytic computation in accelerator theory. Remarkably, in 

1959 ,Meier and Symon (reference 2) used a Lie representation of the 

map without knowing it. They were studying a map consisting of a 

rotation fOllowed by a sextupolar kick. By writing a time dependent 

pseudo-Hamiltonian which generates the exact same map, they were able 
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to compute a canonical transformation to simplify it. Their pseudo­

Hamiltonian was the factorized Lie representation of the map proposed 

by Dragt and Finn . Meier's and Symon's only error was in not trying to 

extirpate from the theory and the normalization the bogus time 

dependence. 

Most recently, a software development has increased the numerical 

power of the map approach enormously. Indeed, the extraction of Taylor 

series representation of maps from simulation codes can be very tedious. 

Chao and later the author had to restrict themselves to codes where the 

individual magnets have a simple representation (thin lenses) . At most 

we could extract 5th degree polynomial maps in 3-d+1/2 phase space[14J. 

Fortunately Martin Berz has created a software package, the Differential 

Algebra Package, which permits exact automatic differentiation of any 

quantities integrated on the computer, in particular the position and 

momentum vector which is being evaluated in our simulation codes[1SJ . 

The same tools of Berz permit a user to manipulate the resulting power 

series map into any type of representation and in particular the factored 

Lie representation suggested by Dragt and Finn . It suffices to say that all 

the theoretical concepts discussed in this paper have all been 

implemented for the power series representation thanks to Berz's 

package[16J. 

To set the tone, we will review a few concepts about symplectic maps. 

A few words about symplectic maps[17, 18, 19J 

A symplectic map M transforms a differentiable function f(zO) of the 

7 



initial phase space into another function (M f)(zO) , where Zo = 

(qo1 ,P01 ,···· 'qoN'PON) · We say that M is symplectic if it preserves the 

Poisson bracket of two functions f and g: 

M [f,g] = [Mf,Mg] . (1 a) 

(1 b) 

Now consider the motion generated by a Hamiltonian K from location So 
to s. We know that any function f(zO) will be transformed at location s 

into a new function fs(zO) . The two functions are connected by a 

symplectic map M (sO ,s). Using the properties of Hamilton's equations, 

one can show that M (sO ,s) obeys the following equation[201: 

d 
ds M (sO,s) = M (sO ,s) : -K(zO ;s) : 

:f: g = [f,g] 

M(sO,sO) = E = Identity mop 

(2a) 

(2b) 

(2c) 

Here we follow Dragt's notation for the Lie operator (equation 2b) . 

From equation (2) we deduce that any map of the form 

M (zO) = exp( :f(zO) : ) is a symplectic map. 

Equation (2a) is very similar to Schrodinger's equation for the unitary 

transformation in quantum mechanics. Here however the resulting map 

will be symplectic. Notice that the generator :-K(zO;s) : depends only on 

the initial phase space variable zO o It is also easy to show that the 

differential properties of any Lie operator such as : - K: imply that: 
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Finally it is worth remembering that symplectic maps act in the reverse 

order from matrix multiplication when expressed in terms of the initial 

phase space variables. To show this property, we imagine a two steps 

process: 

1'1 N 
• 0-----> S -----> S 

1'1 (zo) Zo = zs' 

N (zs') zs' = Zs . (4) 

Here the map 1'1 transforms functions of the initial phase space at s=O 

while N acts on function of the phase space at s' ( thoughout this paper, 

the notation 1'1 (zO) indicates that the Lie operators of 1'1, are expressed 

in terms of zO). 

Clearly , we can propagate a function f(zO) to a location s by the 

composition of functions rule : 

but, 

(5a) 

(5b) 

= N (1'1 (zO)zO)M (zO) f(zO) (5c) 

= 1'1 (zO)N (zO)M - 1 (zO)M (zO) f(zO) 

(5d) 
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= M (zO)N (zO) f(zO) 

(5e) 

Equation (5a) is the result of simple composition . In (5b) we apply the 

definition of the two maps to (5a) . Finally, (5c) and (5d) are the results 

of the differential properties of the Lie operators associated to the 

maps. 

Indeed it can be shown using properties (1) and (3) that: 

exp(: f(M zO) :) = exp(: M f(zO) :) 

= exp( M :f(zO) : M -1) = M exp( :f(zO) : ) M -1 . (6) 

The reverse ordering is also present in equation (2a) as seen by 

integrating it from s to s+ds. 

We are now ready to introduce our map description of complex periodic 

systems. In section 2 and appendix 1, we review in very general terms 

the basic Hamiltonian and canonical transformations used in circular 

machine theory and simulations . In section 3a and 3b, we present the 

equivalent map description of our system by viewing the ring as an 

ordered set of maps. In 3c, we sketch the one-turn map normalization . In 

section 4, we use the one-turn map normalization to define the Floquet 

ring . In section 5, these concepts are applied to the second order 

normalization of a perturbed Floquet ring . In section 6, we apply the map 

approach to linear systems in the continuous limit (Le. in the 

Hamiltonian limit) : a set of well known results follows explicitly. In 

appendix 2, we sketch the proof of a few theorems. 
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2. The problem of circular machines 

As mentioned in the introduction, the need for a map based theory is 

most apparent in accelerator physics. Therefore we will described in 

very general terms the central problem of accelerator design. 

Consider a Hamiltonian H(x,~;s) where x is a phase space vector of 

dimension 2N and ~ is the set of Np parameters describing the departure 

of our system from its design value (i.e. by definition, the ideal machine 

is described by the case ~=O). We also assume that H is periodic in s 

with period s=1 : 

H(x,~;s+ 1 )=H(x,~;s). (7) 

In addition, we can select a new set of canonical variables z(e) which is 

generated by a periodic Lie operator associated to the function 

w(z,~ ; s;e) : 

dz/de= [z,w]= :-w: z. 

z(e=O)=x (8) 

Ultimately the parameter e is set to one. It has been shown that the 

variable z(e=1) is propagated by a Hamiltonian K(s) obeying l21 ,221: 
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(e=1 
K(Z,Ll;S)=R(z ,Ll ;S) ( H(Z,Ll;S) + Jo de R-1(Z ,Ll ;S) ;s w(z ,Ll ;s;e) ), 

dz - = [z,K]. 
ds 

(9 ) 

Here R -1 is the periodic canonical map which transforms x into z and it 

is generated by w. Equations (8) and (9) can be viewed as the 

fundamental equations of an accelerator in the absence of collective or 

dissipative effects. The fundamental problem of accelerator 

dynamics is to study the stability of the motion generated by K or H as 

one iterates n turns around the machine from s=sO to s=sO+n (n-->oo). 

Often the theorist attempts to select the generator w in a way that will 

simplify the structure of K. We refer to this kind of process as a 

normalization process. In general, the computation of K is extremely 

difficult because it requires a knowledge of R for every value of s! (For 

completeness, see appendix 1 for the map equivalent of line (7),(8) , and 

(9) and a derivation of K(z,Ll;S) . ) 

Typically, no attempt is made to simplify the Hamiltonian and one 

integrates the motion generated by H with the help of a symplectic 

integrator[23l. The phase space data is then examined at a finite number 

of surface of sections (often only one!) and all hope of analytical 

understanding is abandoned. 
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The map description of dynamics described in this paper was developed 

as a direct consequence of the impossibility to normalize a realistic 

accelerator Hamiltonian by applying blindly a Deprit type algorithm. 

13 



3. The Hamiltonian-free or map description 

3.a The motivation 

The map approach is based on a redefinition of the system in terms of a 

finite number of maps. In accelerator theory, we are motivated in 

redefining the problem by the following facts : 

i) Most simulations are performed by symplectic integratorsl24l . Only a 

finite set of location lSi} are examined during this process. The 

maximum number of locations ever to be examined is the number of 

integration steps around the ring . 

ii) The form of the equations of motion for a computer simulation may 

not and will not in general be suitable for a normal form analysis. 

iii) Although symplectic maps act on the infinite dimensional space of 

functions , the property displayed in equation (3) permits us to restrict 

ourselves to the coordinate representation of the map zs(zO)=M zo . 

Statement i) simply states that most simulations involve very 

discontinuous Hamiltonians in s. While it is cumbersome to fold a 

discontinuous Hamiltonian into a Deprit style algorithm, the production 

of maps and their subsequent analysis are ideally suited for 

discontinuous systems. 

Statement ii) points to the necessary discrepancies between the world 
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of a computer and the world of theoretical analysis. The process we will 

describe allows for a total decoupling. One may extract maps using a 

non-canonical set of coordinates and later transform these maps into 

canonical variables quite independently of the system which produced 

these maps. For example. the calculation of the motion through some 

complex fringe field may be easiest in non-canonical variables: in some 

cases using even time as the Hamiltonian parameter. 

Statement iii) is extremely important. It implies that our efforts should 

be in the direction of extracting a representation of zs' For example. in 

the case of a Taylor series representation of zs. we mentioned that M. 

Berz has developed powerful software tools (the Differential Algebra 

Package) which perform automatic differentiation to arbitrary order on a 

computer[25l • making it possible to extract Zs as a power series around 

some trajectory in phase space ( usually the periodic closed orbit) . The 

same tools of Berz. allowed J. Irwin and the author to write the 

necessary software for the normalization of the one-turn map[26l. 

Needless to say that a Taylor series representation may not be always 

suitable. Presently. non-power series representations are being studied 

by Warnock et al.They have also developed methods to normalize the 

map. Their representation can permit the study of very nonlinear 

processes and they succeed in many cases to find numerically 

approximate invariant of the motion near chaotic regions[27l . 

Unfortunately. they do not have tools as flexible as the Differential 

Algebra Package of Berz. For this reason. thanks to Berz's tools. the 

power series representation of Zs is the only representation for which 

all the concepts presented in this paper are and have been implemented. 
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3.b The redefinition of the system 

Definition of the ring: 

A ring is an ordered m-tuple 9{=(N i i+ Jl of m maps connecting m 

surfaces of sections or observation points. Here the index i runs from 1 

to m with the convention i+m = i. The maps in 9{=(N i i+ 1) are 

symplectic. Without loss of generality, we assume that these maps 

transform the origin of phase space into itself: 

(10) 

Clearly, the number of maps will depend on the particular aspect of the 

problem being studied. Again we emphasize that it cannot exceed the 

number of steps in our symplectic integrator. 

We are now in a position to define standard concepts on our ring . The 

reader must remember that the underlying assumption in this paper is 

our ability to extract and manipulate maps to any order in the 

perturbation (Le. in the case of a power series this would be the degree 

in the vector (zO,I») where I) is a subset of the total parameter set tl of 

line 7 )[28]. 

3c. The one-turn maps and their normalization[29] 

In the following section we sketch the steps of the normalization of a 
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one turn map. This formal procedure is explained in details in reference 

16. Given the ring 9t, we can easily compute the one-turn map from 

location si back to si . This map is simply given by a left to right product: 

i+m-1 

Mj = II Nic 1c+1 
k=i 

(11 a) 

( 11 b) 

The new m-tuple ~ which is created out of 9t is not equivalent to 9t as 

we will see later when we define the Floquet ring. 

The first property we will assign to our map is linear stability. To 

define it 

we expand the coordinate representation of M j around the origin : 

zs·(zo) = LiZO+ ... . 
I 

(12) 

We assume that the 2N by 2N matrix Li has 2N distinct eigenvalues on 

the unit circle: 

A/ = exp( ±i21t Vj ) , 0 <Vj <1 , j=1,N . (13) 

Associated to the matrix Li is a Lie map L j . Clearly, the eigenvalues of 

Li do not depend on location since L j is obtained from L j by a similarity 

transformation (the same is true for the full nonlinear map): 
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j - 1 

Lr Ljj-I Lj Ljj where Ljj = II Lk k+1 

k=i 

(14) 

For the linear part of the map, we claim that their exist a linear 

transformation R L j such that: 

RU Lj RU- I = exp( : -1l.J : ) = RL 

Ilj=21t Vj 

Jj= ( (ZO;2j_1)2 + (ZO;2? )/2 

(15a) 

(15b) 

( 15c) 

The transformation R U depends on the location si· However the map R L 

is universal, once a tune Vj has been assigned a given plane "j". The 

transformation done in equation (15) is always possible for a stable 

linear map with distinct eigenvalues. Let us go back to the nonlinear map 

M j . Following Dragt and Finn[30J, we express it in a factored form: 

No 
Mj = Lj (Lj-I Mj) = Lj II exp( : fk(zO) :) 

k=1 

(16) 

In the case of a power series representation of M j , No-1 is the degree of 

the polynomial approximation of the function zs.(zO) and k+2 is the 
I 

degree in Zo of the Lie exponent. For a different type of approximation 

the reader can view No and k as the degree of some smallness parameter. 

Our ultimate goal , is to normalize M j partially or totally . In a total 
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normalization, we must find a transformation "i (analytic around the 

origin) such that 

"i Mi ".-1 = exp( : -I!.J+D(J) :) = R 
I 

(17) 

For analytic" i one can show that R is unique for a given ordering of the 

planes and independent of the location (see appendix 2). 

Obviously, using equation (15), we factor "i into a linear and nonlinear 

part: 

"i = "Ni "U 

"Ni= "No-1;i ···"li · 

"lei = exp( : Fk :) 

Applying (18) on M i gives us: 

No 

RLII exp( : gk i(zO) :) "Ni- 1 

k=1 

(18a) 

(18b) 

(18c) 

(19a) 

The normalization of the nonlinear map starts with equation (19). To see 

the type of operators involved, let us compute the effect of "1 i on the 

second order map RL exp( : g1 i :): 

"1 i RL exp( : g1 i :)"l i- 1 = exp(:F1 i:) RL exp( : g1 i:) exp(:-F1 i:) 

= RL RL -1 exp(:F
1 

i: ) RL exp( : g1 i :) exp(:-F
1 

i:) 

=RL exp( :RL- 1F
1 

i: )exp( :g1 i :) exp(:-F
1 

i:) (20) 
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To first order in the Lie exponents, we can rewrite (20): 

RL exp(:RL -I F1 i: )exp(: g1 i:) exp(:-F1 i:) 

=RL exp(:-(E-RL -1)F1 i+g1 i:) + Order(g2) 

=RL exp(:-TF
1 

i+g1 i :) + Order(g2) ... 

T = E-R L -I where E is identity map. 

(21 a) 

(21 b) 

From equation (21) , we see that the operator T is central to the 

understanding of the effect of any similarity transformation. Since T is 

essentially R L ' we must study the Lie operator :IJ..J:. As pointed out by 

Cushman,Deprit and Mosak[31] as well as Dragt and Finn[32], the operator 

:IJ..J : is a semisimple endomorphism of the space Pk of homogeneous 

polynomials of degree k~1 in zo; hence it is true that 

Pk= ImT $ KerT (22) 

In fact, it is easy to derive equation (22) 

linear eigenfunctions of T (or :IJ..J: )133]: 

h /= Z2j.1 ± i Z2j = ,j2J j exp( :; i <P j) 

by simply constructing the 

(23a) 

[<p. JJ"]= 8 .. , being the only nonzero brackets (23b) 
J, JJ 

j=1,N (23c) 

For completeness, we displayed in (23b) the connection between our 
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eigenfunctions and the usual set of action-angle variables (J j , <P j)' 

Using these linear eigenvectors, we can construct an eigenbasis for Pk: 

1m ,n>=(h1 +)m1 (h( )n1 ... (hN +)mN (hN - )nN 

:~.J : Im,n> = i (m-n).~ Im,n> (24) 

Since T is diagonal in the 1m ,n> basis, it follows that Pk decomposes into 

the direct sum of its image and its kernel. In fact, if the ~'s are 

irrational amongst each other, the kernel is given by 

Im,n> E Ker T => m-n = 0 j i.e.lm-nl = O. (25) 

In a partial normalization , we decide to leave in the final map terms for 

which m -n "* 0 (or often (m -n) . ~ == 0 ). This allows us to study islands 

produced by a resonance. 

Given a set of positive integers Ir' we say that M i is partially 

normalized into the map R if : 

"i M i "i -1 = exp( : -~.J+Di(J) + L Dm,n;i 1m ,n>: ) = Ri 

m · nE I, 

where Ir = { kE ZN I k=selected resonances} (26 ) 

As indicated in (26) by the index i, in a partial normalization the final 

map will depend on the location in the ring. According to equation (21), 

we obtain R by inverting T. In fact we can redefine r 1 using a projection 

operator: 
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Tim-I g= r 1 Pim g = L 
m·nE l,u {O} 

Pim g = L Am,n Im ,n> 

m·nE l,u {O} 

g = L Am,n Im,n> 
m,n 

A 
m,n Im,n> 

l·e x p(i(m · n) ·~) 
(27a) 

(27b) 

(27c) 

Provided one knows how to compose the maps involved in the 

normalization and extract their leading order Lie representation, the 

maps Rki can be computed by iteration using Tim -1 as defined in equation 

(27) . This procedure was first implemented to 3rd order in the Taylor 

series by the author and Dragt, in the context of the code MARYLIE . Later 

Neri and Dragt pushed the process to 5th order using the same code. 

Recently, the author and Irwin, in close collaboration with Serz, 

developed the algorithm and software necessary to extend the map 

normalization to an arbitrary order. The process is semi-analytic since 

in practice only a small number of components of I!.. (see equations 

7,B,and 9 ) can be retained. This number can vary depending on the order 

of the normalization, the phase space dimension and the power of the 

computer used. 

For our purpose, it suffices to know that one can define ( exactly for 

linear maps and formally in the nonlinear case) a normalized map R. 

Although we concentrate in this article on a normal form algorithm 

based on the semisimple operator :1l .J:, it is possible and sometimes 
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desirable to study systems which are not semisimple. What can be done 

on the Hamiltonian can also be done on the map. 
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4. The Floquet Ring 

Let us assume that we have achieved a complete normalization of the 

ring . As described by equation (17), we have 

p(M i) = Ri p: 3 --t symplectic maps 

Ri Mi R.-I = exp( : -~.J+D(J):) = R (28) 
I 

The transformation p introduced in (28) can be viewed as a map over the 

set of one-turn maps 3 defined over ~ . Using p we can define a new 

ring: the Floquet ring . We first proceed by mapping the m-tuple 3 : 

The fact that 3 p contains only R is demonstrated in appendix 2 by 

generalizing equation (14) to the maps Nk k+1 and using the assumed 

analyticity of all the maps involved. 

More importantly. we must find out what happens to ~ . We first state 

the result. 

i)The new ring p(~) (or ~p) is made out of amplitude dependent rotations 

(called phases). The angles of these rotations reduce to the so-called 

linear phase advances in the linear regime. 
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ii) Two different normalization p and p' can only differ by a phase for a 

given ordering of the tunes. Corollary: the phase advance between two 

matched locations (Mj=M j) is the same for any definition of p. 

PROOF 

We now prove these results . 

Property il 

Using the normalization p, we conclude from equation (29) that : 

(30) 

Using the definition of ~ , we may write : 

(31 ) 

We can substitute (31) into (30): 

p(Mj) Mj p(Mj)-1 =p(M j) Njj -1 Mj Njj p(M j)-1 

=> Mj = p(Mjf1 p(Mj) Njf1 Mj Njj p(Mj)-1p(Mj) 

=> R = p(Mj)Nij-1 p(Mjf1R p(Mj)Nij p(Mj)-1 

=> R = Bij-1 R Bjj ; where Bij = p(Mj) Nij p(M j)-1 . (32) 

We now take advantage of the Lie algebraic representation of R : 
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R = Dif 1exp(: -1l.J+O(J):) Dij 

~ exp( :-Il·J+D(J) :) = exp(: Dif1 (-Il.J+O(J)) :) (33) 

Using the assumed analyticity of the various maps involved in equation 

(33) , one can show that Dij can depend only on J (see apendix 2). Hence it 

can be written with a single Lie operator <I> ij : 

(34) . 

The angle of the rotation produced by D ij is simply: 

A<I> .. _ o<I>ij 
u IJ - - oJ 

(35) 

Using equation (32) and (35), we can write define the Floquet ring 9t p 

associated to p to be the m-tuple : 

9tp = (Dk k+1 ) such that Dk k+1 = p(Mk) Nkk+1 p(Mk+1l- 1 (36) 

Property ii) 

Finally, from equation (30) and the uniqueness of R, we obtain a relation 

identical to equation (33) in the presence of two different 

normalizations p and p' : 

1 -1 
R = exp( : -11·J+O(J) : ) = p(M i)P'(M it exp( : -11· J+D(J) : )p'(M i) p(M i) 

(37) 
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Hence p(M jlp'(M jt1 is a rotation and equivalent normalizations can only 

differ by a phase. It is a simple exercise to prove the corollary on 

matched locations. 
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5. Perturbation of the Ring 9t 

Often one perturbs a Hamiltonian at several locations. One would like to 

know how the ring 9t and its Floquet counterpart p(9t) are affected by 

perturbations, in particular Hamiltonian perturbations. 

Let us assume that the ring is perturbed at the ith location by a Lie 

operator Ci=exp(: -Vi:). In accelerator physics, this kind of question is 

often asked. For example, C i could represent a nonlinear multipole error 

or a beam-beam kick: the list is endless. Clearly, the perturbed ring 9tP 

is just the m-tuple: 

(38) 

More interestingly, we would like to examine the perturbed Floquet ring : 

In his original paper on lattice functions, Dragt refers to R i-I as the 

'irritability'. In some sense, it gives the true extent of the damage done 

on the Floquet ring. 

As an example of the use of equation (39), let us normalize completly 

9ti to second order in the perturbation Vi. This has practical application 

in the design of large synchrotron ring where one needs to keep the shear 

terms due to sextupoles under control. This process is schematically 

displayed in figure 2. 
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To proceed as we did before, we first compute the one-turn maps: 

i+m-1 

Hj = II exp( : -Vk(RkzO) :)B k k+1 

k=i 

(40) 

We then isolate the perturbations on the right side of the factored 

product of H j . 

i+m- 1 

Hj = HH-1 ( 11 exp( : -Vk(Bj kRkZO):)) H 

k=1 

i+m-1 

Hj = H( II exp( : -Vk(B k j+m- 1Rk ZO):)) 
k=i 

Hj = H IIi (41) 
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To second order in the perturbation, we can factor TIj : 

i+m -1 

W1i = L -Vk(Blci+m- 1A IcZO) 

k=i 
i+m-l i+m-l 

(42a) 

(42b) 

W2i = ~ L L [-Vk(Blci+m-1AIcZo),-Vk'(BIc'i+m-1AIc'ZO)] 
k=i k'=k+ 1 

(42c) 

The expression for W2i is the result of a simple application of the 

Campbell-Saker-Hausdorff formula. 

The normalization starts with the application of A 1 i = exp( :F1 i:) : 

A1-R- A1 -- L A1- R TI-A1- - 1 II I - I I I 

(43) 

In the case of a complete normalization, DW1 (J) is often known as the 

average (or secular) term which in the usual action-angle representation 

of (23b) has the form : 

(44) 
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The resulting map is given by: 

We now proceed with the second order calculation : 

F2i = Tim - IW~i = r 1}[Dw1' Pim W1 i-2 F1 i] 

+ Tim -I G [F1i. Pim W1i] +W2i) (46a) 

DW2(J) = (E-Pim) (} [F1i. Pim W1i] +W2i) (46b) 

The first term of W~i is entirely in the range of the operator T. This 

completes the second order normalization process. To second order in the 

C i·s. the Floquet ring is given by: 

9tf= (exp(:F2k:)exp(:F1k:)Rk Ck Rk- 1B IcIc+1 exp( :-F1 k+1 :)exp(:-F2 k+1 :)) 

(47a) 

~( ( R exp(: DW1 (J)+Dw2(J):) ) _ (exp(: -~.J+D(J)+Dw1 (J)+Dw2(J) : )) 

(47b) 
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6. The linear phase advance 

When new techniques are introduced, it is instructive to compare the 

approach with the old techniques whenever they exist. The difficulty in 

doing so is proportional to the enhanced power the new methods provide 

over the old ones. Therefore, while the mathematical equivalence is not 

in doubt, it is hard to work out a non-trivial and nonlinear example which 

explicitly displays the mathematical equivalence. Therefore we will 

settle for a linear example. The reader with a knowledge of accelerator 

theory will see here an explicit connection between the two methods by 

letting our ring become an 'oo-tuple', i.e. by reverting to the Hamiltonian. 

Clearly, from equation (2a), the Hamiltonian picture corresponds to the 

maximum ring :Roo : 

:Roo = lim (Ns s+ds ) = lim (E+ ds :-H(xO;s) : ) (48) 
ds~a ds~a 

sE[a,l] SE [0,1] 

First let us state a few well known results. In the one dimensional case, 

where the Hamiltonian is given by 

(49) 

a stable one-turn map by can be parametrized by the so-called Twiss 

parameters[34] : 

Ls= exp( : -J,l.1 :) = exp(: - -ht c :) 
2 

c = r(s) q02+2a(s) qo PO+~(s) P02 
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It is easy to verify that the matrix representation Ls of L s given by[35]: 

( 

cos~+ IX sin~ ~ sin~ ) 

-y sin~ cos~ - IX sin~ 
(51) . 

The invariant c of equation (50) is called the Courant-Snyder invariant in 

the accelerator physics literature. From our previous discussion is clear 

that the Twiss parameter (IX,~,y) are s-dependent. Incidently, the maps Ls 

define our one-turn oo-tuple while H defines the ring: 

:Roo = lim (E + ds :- 1.(p02+ k(s)q02): ) 
ds-)D 2 

(52a) 

sE[D,1] 

~oo = ( LS)SE [0,1] (52 b) 

To proceed further, we must define the map p(L s ). Following Courant­

Snyder[36],we define p(Ls) as : 

(53) 

Equation (53) defines uniquely RLs given a linear map Ls . Given (52) and 

(53), we will prove using our concepts, that the Floquet ring and the 

resulting phase advance are given by: 
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SE [0,1] SE [0,1] 

(54a) 

(54b) 

Before proving a generalization of this result, we point out that the 

choice of Courant-Snyder was dictated by the kind of perturbation 

expected in an accelerator. In our machine, we expect the perturbation 

Cj=exp(: -Vi:) of section 5 to depend mostly on the position vector q 

because the leading contribution to the perturbed Hamiltonian is 

proportional to the longitudinal component of a magnetic vector 

potential. Therefore a choice of p(Ls) which minimizes the change in the 

functional form of Vi is best. We can generalize the Courant-Snyder 

choice to a higher dimensionality. The resulting phase advance formula is 

given for the Hamiltonian 

2N 

H(x;s)= ~ L Hi/s) XiXj 
i=1,j=1 

(55a) 

and for A=p(L) such that A2i-1 2i-1 > 0 and A2i-1 2i = o. i=1,N 

(55 b) 
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by {(55a) and (55b)} 

Proof 

~ d<l>i = ~ H 2i j Aj 2i 

ds £..J A 
j=1 2i-1 2i -1 

(55c) 

We rewrite equation (32) for an infinitesimal change in s: 

BLl<l> = exp(:-Ll<l>.J) =Rs (E+ ds :-H(xO;s) :) Rs+ds- 1 

~ Rs+ds = (E+ : Ll<l>·J : ) Rs (E+ ds :-H(xO;s)) + O(ds2) .. . . (56) 

Next we assume that Rs obeys (55b) and we impose on Rs+ds the same 

condition (j and k are summed over) : 

RS+ds XO ;2i-1 = (E+ : Ll<l>·J : ) Rs (XO;2i-1 + ds [-H(xO;s), XO ;2i-1 1 

= (E+ : M>·J : ) Rs (XO ;2i-1 + ds H 2ij XO ;j ) 

= (E+ : Ll<l>·J : ) (A2i_1kXO ;k+ds H2ijAjkXO;k) 

=(A2i-1 k XO ;k+(- Ll<l>k A2i-1 2k-1 XO ;2k+ Ll<l>k A2i-1 2k XO ;2k-1 +ds H 2i j AjkXO ;k) ) 

(57) 

We extract from (57) the (2i-1,2i) component of As+ds and set it to 

zero : 

O=ds H 2i j Aj 2i - Ll<l>i A2i-1 2i-1 ~ Property (55c) . QED 

(58) 

We can apply this formula to a problem already solved by Edwards and 

Teng[37] where they accidently chose the same definition for the 
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transformation p(L). 

In their case, the Hamiltonian matrix Hjj was 

F 0 K-L 

H=( o 1 L 0 ) K L GO 

- L 0 o 1 

(59) 

They parametrized the matrix A as 

A= Be (60a) 

( Ico,; D·1 sincp 
) ; c"'(;»o , I = ( : ~), D = ( : : ), IDI=1 B= 

-Dsincp Icoscp 

(60b) 

b1 o 0 ,,-(' " ) C - ( 

o 0 ) o 0 
(60c) 

b2 -aj 1 

o 0 'I/li'l/li 

Because the map A obeys (55b), we can compute the phase advance using 

(SSe) : 

d<D1 = (1-Lbtan(cp)) 

ds ~1 
(61 a) 
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d<I>2 = (1 +Lbtan(<p)) (61 b) 
ds P2 

These results are exactly those obtained by Teng and Edwards through a 

totally different method . 

In a final exercise, we would like to explore the relationship between 

two definitions of the phase advance. Going back to the original one 

dimensional problem of Courant-Snyder, we can examine the following 

definition : 

( 
)y 1r) 
o Fi 

(62) 

If the world was made out of primarily velocity dependent potentials, ' 

Courant and Snyder would have selected p'. The phase advance is obtained 

by a symmetry argument (canonically exchanging q and p, and applying 

(SSc) ): 

f
S1 

k(s) ds 

So y 
(63) 

Using the ring given by (48) and the underlying Hamiltonian given at line 

(49) , we can derive a famous set of rules for the evolution of the Twiss 

parameters (a,p,y) . This will allow us to relate the phase advances of p 

and p' explicitely. 
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Ls+ds = Ns s+ds -1 Ls Ns s+ds 

= Ns s+ds -1 exp(: ~ c :) Ns s+ds= exp{: ~ Ns s+ds -1 c :} 
2 2 

= exp{ : ~ (E- ds :- -!-<P02+ k(s)q02): )(y(s) q02+2a(s) qoPO+~(s) P02) :} 
2 2 

= exp{: ~ (c-ds [- -!-<P02+ k(s)q02) ,y(s) q02+2a(s) qoPO+~(s) P02] ):} 
2 2 

=> da=~k_y d~ =-2a 
ds ds 

dy =2ak 
ds . (64) . 

Using the relations of line (64) and the relation 1+a2=~y , we get 

Sl y1da Sl 

f
S1 

t1<l1s s = f k(s)ds = ~ ds = J .!.- ds +tan·1 (a) I S=Sl (65) 
o 1 y ~y ~ s=so 

So so 
So 

In equation (65), we explicitly demonstrated that matched (a1 =(2) 

locations are separated by the same phase advance. If we then multiply 

p'-1 by p (equation (53) and (62) ), we get an another advertised result: 
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1 

-a 

(66) 

As we said, the matrix in (66) is a rotation; two definitions of p can only 

differ by a phase. In fact, the angle of the rotation in (66) is tan- 1 (a ), in 

perfect agreement with (65) . 

We close the discussion by a remark on Dragt's original definition of the 

phase advance. In reference 11 , Dragt did defined the canonical 

transformation p in terms of maps. However, he artificially introduced 

the time-l ike variable s of the original Hamiltonian in the definition of 

p. As a result it was not true that 

(67) 

Although it is conceivable to imagine cases were (67) should be 

discarded on the basis of connecting two different types of 

perturbations, it is unacceptable to do it at random using the 

Hamiltonian parameter s. In that sense, Dragt's treatment was not 

totally Hamiltonian-free. 
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Conclusion 

We would like to summarize the actual achievements of the 

Hamiltonian-free theory. Firstly, as we emphasize throughout this paper, 

our approach goes directly to the quantities of interest, this simplifies 

greatly the theory for any representation of the map. 

Secondly, our ability to generate and analyse Taylor series maps allows 

us to study arbitrarily complex systems, in particular, circular 

accelerators. One can define a Floquet ring and perturbed it by 

Hamiltonian or/and stochastic effects. For example, one can easily 

implement the stochastic calculation of the final emmitances proposed 

by Chao in ~ tracking code[381. We are no longer restricted to simple 

models: this could become important in understanding the behavior of 

small light sources because of the non-trivial fringe fields they 

generate. 

Finally, other areas of physics could benefit from such an approach. For 

example, in the design of toroidal stellerators, one can show that the 

magnetic field line pattern is (in some variables) a two dimensional 

symplectic map. The computation of this map is extremely complex and 

tedious since one must integrate Biot-Savart law around the stellarator. 

Hanson and Cary, in a paper on the stochastic nature of this map[391, did 

exactly that. Had they known of the automatic differentiation of Berz, 

they could have attempted to compute a one-turn map with some 

dependence on the current parameters they used to reduce the 

stochasticity. In fact, the stellarator problem seems to typify a proper 

use of a map based theory: the map is simple (2-d) but the Hamiltonian 
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generating it is extremely complex (i.e. Maxwell's equations). In addition , 

the field line are best integrated using non-Hamiltonian variables. One 

can convert the 2-d map into canonical variables at the end of the 

calculation just before feeding it into some canonical perturbation 

theory algorithm. 

By this example, we just wanted to point out the generality of certain 

concepts. Since not all problems are identical, we are convinced that the 

greater the selections of tools, the more efficiently a researcher or 

designer can attack a complex problem. 

Prospect for the Future 

We started this paper by pOinting out that the essential problem of 

accelerator dynamics is to study the long term stability of the one-turn 

map. In fact, from a strict analysis of error propagation , accelerator 

simulation integrate the motion of particles far beyond a rigourously 

reasonable limit. Given this fact, can we then use a one turn map in our 

simulation ? Experience has shown that truncated Taylor series produced 

non-symplectic maps with vastly different long term behavior. Indeed, 

the motion can settle on a fixed point in phase space after a relatively 

short number of turns despite a highly accurate Taylor series 

representation . However, with our ability to extract maps and 

manipulate them, we can re-express the Taylor series representation 

into various exactly symplectic representations. This is being 

extensively studied at the moment driven by projects such as third 

generation synchrotron light sources, small "pocket" light source and 

large hadron rings like the comtemplated SSG (Superconducting Super 

Gollider). 
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We are also trying to understand quasi-symplectic maps. For example, in 

light sources and so-called "beauty factories", electrons radiate a 

substantial amount of energy. In the classical regime, this leads to a 

nonlinear map with damping . This map can be easily extracted with the 

automatic differentiation techniques but its analysis in the nonlinear 

regime will require new developments beyond those advertized in this 

paper. In particular, it will not be possible to express the one turn-maps 

using symplectic Lie generators, but hopefully a new expanded set of Lie 

generator can be found. 

All these problems and others are now within reach thanks to the type 

of re-thinking introduced in this paper. 
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Appendix 1: A map Derivation of the New Hamiltonian using the 

adjoint representation of the Lie operator Algebra 

Assuming that we are interested in all surfaces of sections, the ring 

becomes an "oo-tuple" described equations (2), (8) and (9) . In terms of 

maps, they take the form: 

~ R-I (zO;s;e) = R-I (zO;s;e) : -w(zO;s;e) : 
de 

(A 1) 

d 
ds M(zO;s) = M(zO;s): -K(zO;s) : (A1b) 

l
e=1 

K(zO;s)=R(zO;s) ( H(zO;s) + 0 de R-1(ZO;S) i. w(zO;s;e) ) (A1c) 
as 

M (zO;s=sO) = E = identity (A1 d) 

Equations (A1) must be integrated from So to So +1 if one is to obtain a 

one-turn map. For a complete normalization, it must accompanied by the 

boundary conditions: 

(A2a) 

(A2b) 

The periodicity of (A2b) and the normalized form imposed on K in 
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equation (A2a) renders the direct solution of equations (Ai) and (A2) 

very difficult unless the original Hamiltonian H is simple. The process 

involves the computation of various Green's functions on which the 

proper boundary conditions are imposed. (see reference 6.) 

In this appendix, we will concentrate on equation (Ai c) (first obtained 

by Dewar[401 and then Cary[411). It can be derived very elegantly using 

homomorphic Lie algebras. Let us denote by N the map generated by H: 

d 
ds N (zO ;s) = N (zO ;s) : -H(zO ;s) : (A3) 

Using Lie properties of maps, we can write M (zO ;s) as: 

(A4) 

In equation (A4) all the maps transform functions of the initial 

coordinates z00 First RO(zO) brings us to the original variables; these 

are propagated with the help of Ns(zO,sO) and finally they are taken back 

into the new variables by Rs(zOr1 . To get the new Hamiltonian K, we 

take the time derivative of (A4) with respect to s: 

d (d) -1 (d -1) 
dsMs=RO dsNs Rs + RO Ns ds Rs 
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(AS) 

Comparing (AS) with (A1b) , we conclude that As (:sA s-1) must be a Lie 

operator. 

To evaluate it, we use the equation of As and As-1 : 

d ( d -1) .. ( d -1 ) (~-1 . .) ~s -Ad s = .w.As -Ad s +As d As .-w . 
d E S S S 

~w=~w. (AS). 
dS ds 

Here , { , } denotes the commutator of two Lie operators. Denoting by G 

the operator As (:sA s-1), we rewrite (AS) : 

~ G - # w # G = :- ~w : 
d E dS 

(A 7) 

Here , # w # is a super operator which acts on the space of Lie 

transforms by taking a commutator. These commutators form a Lie 

algebra. Notice the homomorphisms between the Lie algebra of super 

operators, Lie operators and Poisson bracketsl421 : 

#f# :g: ={ :f: , :g: }= : [ f , g ] (AS) 
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To solve (A7), we make use of (AS) by writing 6 in terms of an e­

dependent super operator. 

6(e) = P 60 

We first solve the homogeneous equation: 

!i.. P -# w # P = 0 => P = R ( # w(e) #) 
de 

(A9) 

(A 10) 

To get P in (A10), we noticed that the formal functional dependence of 

P on the super operator #w# must be the same as the dependence of Ron 

Lie operator :W:, similarly p-1must have the functional dependence on 

#-w# as R-1 has on :-W:. 

To solve the non-homogeneous equation, we allow 60 to depend on e 

(variation of parameters). We obtain for the particular solution 6 p : 

6 P = R( # w(e) #) de'R - ( #-w(e') #) :- ~w(e'): i
e 1 

o as 
(A 11 ) 

The general solution is the sum of the homogeneous and particular 

solution: 

6 = R( # w(e) #)(60+ de'R- (#-w(e') #) :- ~w(e'):) i
e 1 

o as 
(A12) 

We impose the boundary condition at e=O: 
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(6(e=0)=0 ~ 60=0) ; 

.. hence 6 = R(#w(e)#) de'R - (#-w(e')#) :- ~w(e'): i
e 1 

o as 
(A 13) 

Finally here enter the homomorphisms between the three Lie algebras of 

line (AS) : 

R(#w(e)#) de'R - (#-w(e')#):- ~w(e'): ie 1 

o as 

=:_R(:W(e):)(e de'R- 1 (:-w(e'):) ~w(e'): 
10 as 

(A 14) 

Substitution of (A 14) into (A5) gives the advertized result. 
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Appendix 2: The Uniqueness of R and the Phase Advance 

We first prove that given a map M , the assumed analyticity of the 

similarity transformation insures the uniqueness of R. 

We start by postulating the existence of two normalized rotations : 

"1 M "1- 1= R1 and "2 M "2- 1= R2; 

which in turns implies that 

(81 ) 

(82) 

This is a generalization of equation (33) for the phase advance: 

exp(: "2"1 -1 (-1l1 ·J+D1(J)):) = exp( :-1l2·J+D2(J) : ) 

(83). 

Using analyticity, we follow Dragt and Finnl43] by factorizing" 2" 1 -1 

"2"1 -1 = ... rk r k_1 ... r{L.; (84) 

where ... r k = exp(: Pk+2:) and Pk+2 is a homogeneous polynomial of degree 

k+2 in the phase space variables. 

Except for a mere relabelling of the planes, let us assume that the 

uniqueness of R is true in the linear regime (the proof would be quite 

different for linear maps and it amounts to the uniqueness of 

eigenvalues!) . Then (83) takes the form: 
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exp( : .. rk r k_1 ..• r
1 

(-Il.J+D1 (J)) : ) = exp( :-Il.J+D2(J) : ) 

(85). 

To go further, we proceed by induction. Assuming that for k< j-1, the rk's 

are rotations, we collect the terms of order j+2 and get an equation for 

Pj+2: 

:1l.J: Pj+2 = D2(J)-D1 (J) li+2 component (86) 

Using the direct sum decomposition (or the eigenbasis) and the mutual 

irrationality of the tunes (line 22,23,and 25), we conclude from (86) that 

Pj+2 cannot contain anything from Im(:Il·J:). In addition, since the left 

hand side of (86) must be in Ker(:Il·J:), the only consistent solution to 

(86) is : 

Pj+2 E Ker(:Il. J :) and D2(J)-D1 (J) li+2 component =0 QED. 

(87) 

The rest follows by induction, starting with j=1. 

This also proves the statement on the phase advance because it is a 

special case of (81). 

Finally, by generalizing equation (14) to the nonlinear maps, we can 

easily that R does not depend on the location: 
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j - 1 

Mr Njfl Mj Njj where Nij = II Nk k+1 (88a) 

k=i 

Lines (88a) and (88b) violate the uniqueness of R for a given map M. 
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Figure Captions 

1. Schematic view of the Ring 9t 

2. Schematic view of the second order normalization process. 
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Fig.2: Schematic Process of Second Order Perturbation Theory 
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