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GLOBAL SCHRODINGER MAPS IN DIMENSIONS d > 2: SMALL
DATA IN THE CRITICAL SOBOLEV SPACES

I. BEJENARU, A. D. IONESCU, C. E. KENIG, AND D. TATARU

ABSTRACT. We consider the Schréodinger map initial-value problem

0ip = ¢ x Agp on R? x R;
¢(0) = ¢07

where ¢ : R x R — S? < R3 is a smooth function. In all dimensions d > 2,

we prove that the Schrodinger map initial-value problem admits a unique global

smooth solution ¢ € C(R : ngo), Q € S?, provided that the data ¢o € HF is
smooth and satisfies the smallness condition [|¢pg— Q|| ;4,2 < 1. We prove also that

the solution operator extends continuously to the space of data in HY2NH g/ 21

with small H%/2 norm.
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1. INTRODUCTION

In this paper we consider the Schrédinger map initial-value problem

{ O = ¢ x A¢ on R? x R;

(1.1)
¢(0) = ¢07
I. B. was supported in part by NSF grant DMS0738442. A. I. was supported in part by a Packard
Fellowship. C. K. was supported in part by NSF grant DMS0456583. D. T. was supported in part
by NSF grant DMS0354539.
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where d > 2 and ¢ : R x R — S? < R3. The Schrodinger map equation has a rich
geometric structure and arises in several different ways. For instance, it arises in
ferromagnetism as the Heisenberg model for the ferromagnetic spin system whose
classical spin ¢, which belongs to S? — R?, is given by (L)) in dimensions d = 1,2, 3;
we refer the reader to [5], [35], [38], and [31] for more details. In this paper we are
concerned with the issue of global well-posedness of the initial-value problem (LTI),
in the case of data ¢ which is small in the critical Sobolev spaces H%2, d > 2 (see
[5] for results in dimension d = 1). Our main result is the direct analogue in the
setting of Schrédinger maps of the theorem of Tao [44] on global regularity of wave
maps with small critical Sobolev norms. We also prove continuous dependence of
solutions on the initial data in certain norms, as in [51].

We start with some notation. Let Z; = {0,1,...}. For ¢ € [0,00) let H? =
H?(R?) denote the usual Sobolev spaces of complex valued functions on R? For
Q € S? we define the metric space

Hg?:{f:Rd:R?’):|f(x)|Ela. e.and f—Q € H}, (1.2)
with the induced distance d3)(f,g9) = ||f — gllu-. For simplicity of notation, let
[fllg = d(f, Q) for f € HE. We also define the metric spaces

H*= (| H® and HF = (] Hg,
<y sy

with the induced distances.
Similarly, for 7" € (0,00) and o, p € Z; let H7?(T) denote the Sobolev spaces of
complex valued functions in R? x [~7.7T] with norm

P
| fllawrey = sup > 1107 £(.0)llme
te(~=T.,T) /=0

For ) € S? we also define the metric space
HZM(T) ={f: R x (=T,7T) : R®);|f(z,t)] =1 a. e. and f —Q € H*(T)},
with the distance induced by the H%?(7T') norm. Finally, we define the metric spaces
H>>*(T)= () H*(T) and HZ>(T)= (| HE"(T),
U,p€Z+ U,p€Z+

with the induced distances.
For f € H*> we define the homogeneous Sobolev norms

1l = IF(HE) - [N o> 0.

Our first main theorem concerns global existence and uniqueness of solutions of the
initial-value problem (L)) for data ¢y € Hg’, with ||¢g — Q|| a2 < 1.
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Theorem 1.1. (Global regularity) Assume d > 2 and Q € S*. Then there is
eo(d) > 0 such that for any ¢o € HY with ||pg — Q|| a2 < €0(d) there is a unique
solution ¢ = Sq(¢po) € C(R: HY) of the initial-value problem (LI)). Moreover

Sup 16(t) = Q| grare < Clldo — Qll grare, (1.3)
€
and, for any T € [0,00) and 0 € Z,
sup |[¢(t)|lmg < C(o, T, ||l mg)- (1.4)
te[-T,T)

Theorem [[.T] was proved in dimensions d > 4 by the first three authors in [4].
In addition to this global regularity result, we also prove a uniform global bound
on certain smooth norms and a well-posedness result, see Theorem below. If
o < d/2 then the completion of H* with respect to the H? norm is a space of
distributions which we denote by H?. As above, we set

Hg ={f:R'=R%f-QeH |f(z)=1ae inR},
In the interesting case 0 = d/2 this is no longer the case. Instead, the completion of
H*> with respect to the H%2 norm can be identified with a subspace of the quotient
space of distributions modulo constants. For this and other technical reasons, in this
article we do not consider the most general problem with initial data in H%? and
instead we restrict ourselves to the smaller initial data space H%2 N Hg/ >~1 Where
the above difficulty does not arise. More precisely, for 0 > d/2 and € > 0 we define

BS={¢€ HS* " NH:||¢p — Qll ae < €}

with the distance induced by the space Hg/ "' H°. Our second main theorem
concerns global wellposedness of the initial-value problem (IL1]) for initial data in
B o>d/2, < 1.

Theorem 1.2. (Uniform bounds and well-posedness) Assume d > 2, Q € S* and
o1 > d/2. Then there is go(d,o1) € (0,e0(d)] such that for any ¢o € HZ with
|6 — Qll a2 < e0(d, 01) the global solution ¢ = Sq(¢o) € C(R : HY) constructed in
Theorem [11) satisfies the uniform bound

Sup lo(t) — Qllae < Collpo — Qllu-,  d/2 <0 <oy (1.5)

In addition, for any o € [d/2,01] the operator Sg admits a continuous extension

Sq B (4,01 ﬁC(R,HUﬂHgﬂ_l).

eo(d,o1

Our analysis gives more information about the global solution ¢; we can prove for
instance that V¢ satisfies all the Strichartz estimates globally in time. The rough
solutions obtained in Theorem as uniform limits of smooth solutions can be also
shown to satisfy the equation (1) in a suitable distributional sense. The global
bound ([[L7]) is sometimes interpreted as the absence of “weak turbulence”.
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We record also two conservation laws for solutions of the Schrodinger map equa-
tion ([LI)): if ¢ € C((Th,T3) : HY) solves the equation 0;¢ = ¢ X A,$ on some time
interval (73, T%) then the quantities

Eo(t):/RdW(t)—QFdx and El(t):/RdZ\am(t)m (1.6)

are conserved. In particular, with Sg(¢g) as in Theorem [[.2]
15 (20))[mg = lPollzg: 150 (d0)(D)llmy = llPollmy, ¢ R

As mentioned earlier, the direct analogue of Theorem [L.Ilin the setting of wave
maps is the theorem of Tao [44]. However, our proof of Theorem [l is closer
to that of [39], [34], [29], and [30], in the sense that we prove a priori bounds
on the derivatives of the Schrodinger map ¢, in a suitable gauge, rather than the
Schrodinger map itself. See also [24], [26], [49], [50], [43], [25], [39], [34], [29], [30],
and [51] for other local and global regularity (or well-posedness) theorems for wave
maps. A complete account of the main ideas in the work on wave maps can be found
in the book [48, Chapter 6.

We remark that, while from the geometric and algebraic points of view there are
many similarities between wave maps and Schrédinger maps, there is a fundamental
difference from the analytic point of view. This is mainly due to the fact that it
is much more difficult to handle perturbatively derivatives in the nonlinearity for
Schrodinger equations than for wave equations. This reflects the fact that wave
equations have two time derivatives, while Schrodinger equations have only one,
with corresponding effect on the Cauchy data (see [47), p. 268] for a related discus-
sion). Thus, for wave equations, at least in high dimensions, there are large classes
of Strichartz estimates which can be used to control derivative nonlinearities in a
perturbative way. This is not the case for Schrodinger equations. To deal with this
problem for Schrédinger equations, Kenig, Ponce, and Vega [19] introduced for the
first time a method to obtain local well-posedness for general derivative nonlinearity
Schrodinger equations. This method combines “local smoothing estimates”, “inho-
mogeneous local smoothing estimates”, which give the crucial gain of one derivative,
and “maximal function estimates”. Further results are in [20] and [21].

The initial-value problem (I.I]) has been studied extensively (also in the case in
which the sphere S? is replaced by more general targets). It is known that sufficiently
smooth solutions exist locally in time, even for large data (see, for example, [41],
[5], [8], [33] and the references therein). Such theorems for (local in time) smooth
solutions are proved using delicate geometric variants of the energy method. For
low-regularity data, the initial-value problem (II]) has been studied indirectly using
the “modified Schrodinger map equations” and certain enhanced energy methods
(see, for example, [5], [35], [36], [17], [15], and [16]), and directly, in the case of small
data, using fixed point arguments in suitable spaces (see [13], [1]).
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The first global well-posedness result for (IL1]) in critical spaces (precisely, global
well-posedness for small data in the critical Besov spaces in dimensions d > 3) was
proved by two of the authors in [14], and independently by the first author [2]. This
was later improved to global regularity for small data in the critical Sobolev spaces
in dimensions d > 4 in [4]. In dimension d = 2, in the case of equivariant data with
energy close to the energy of the equivariant harmonic map, the existence of global
equivariant solutions (and asymptotic stability) was proved in [9]. In the case of
radial or equivariant data of small energy, global well-posedness was proved in [5].

The global results in [14], [2], and [4] use in a fundamental way the strong “local
smoothing”, “inhomogeneous local smoothing”, and “maximal function” spaces

Le2 L2 LA (1.7)

See ([3.3) for definitions and a longer discussion. These spaces were introduced earlier
in the study of Schrédinger maps by two of the authors in [13], and replace the
corresponding spaces in [19]-[21] (where everything was localized to finite cubes). It
is essential to work with the strong spaces in (I.7)) instead of their localized versions
in order to be able to prove global in time results. The spaces in (7)) were first used
by Linares and Ponce [32] to study the local well-posedness of the Davey—Stewartson
system. Other uses of such spaces (implicit or explicit) to prove local-wellposedness
are in [22], [11], and [7]. In the case of global well-posedness, the strong spaces
(L) were used for the first time by two of the authors in [12] in the study of the
Benjamin-Ono equation in L2.

As mentioned earlier, Theorem [[LT] was proved in dimensions d > 4 by the first
three authors in [4]. It is likely that the proof in [4] can be extended to dimension
d = 3, provided one uses some type of “dynamical separation” to bound High x
High — Low frequency interactions that appear in the connection coefficients A,,
of the Coulomb gauge (as in [29] and [30] in the case of wave maps). There are,
however, two significant difficulties in dimension d = 2. The first main difficulty is
related to the maximal function estimate

2] 2 < 111122 (1.8)

for functions ¢ € L?(RY) with F(¢) supported in {£ € RY : |¢| € [1/2,2]}. This
estimate holds in dimensions d > 3 (see [13]) and plays a key role in the global
results of [14], [4], and [2], but fails “logarithmically” in dimension d = 2. Because
of this logarithmic failure, in dimension d = 2 we replace the space L>* in the left-
hand side of (I.8) with a sum of Galilean transforms of it (see the precise definitions
in Section B]). The idea of using such sums of spaces as substitutes for missing
estimates in low dimensions is due to Tataru [50], in the setting of wave maps,
where the Lorentz invariance and Strichartz spaces are used instead of the Galilean
invariance and the maximal function space. These substitutes have played a key
role in all the subsequent work on global wave maps in dimensions 2 and 3.
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The second main difficulty is related to the choice of a suitable system of coor-
dinates (or gauge) for perturbative analysis. The use of gauges for the equation
(LI) was pioneered in [5], where orthonormal frames were first used in the context
of Schrodinger maps. These constructions have been presented by J. Shatah, his
students and collaborators on several occasions (see [33], [37] and the references
therein). Unlike in dimensions d > 3, in dimension d = 2 it appears that one cannot
use the standard Coulomb gauge, even if the analysis of the Schrodinger equation
is combined with elliptic techniques such as the dynamical separation mentioned
earlier. We substitute the Coulomb gauge with Tao’s caloric gauge introduced in
[45], see section [2 and [48, Chapter 6] for a longer discussion on the various gauges
used in the study of wave maps. As explained in [45], this caloric gauge leads to
better estimates on the connection coefficients A,, than the Coulomb gauge, which
allow us to close the perturbative part of the argument.

It is important to notice that the main components of the spaces we use for our
perturbative analysis are the strong local smoothing, inhomogeneous local smooth-
ing, and maximal function spaces in (7)), as well as Galilean transformations of
these spaces in dimension d = 2 (see Definition (B.3])). In particular, we do not
use X*P-type structures that have been frequently used in the subject. All of our
norms are defined in the physical space, without the use of the Fourier transform
(except for dyadic localizations), and are very simple, see Definitions and 3.7 at
least when compared to the corresponding spaces used in the study of wave maps
in dimensions 2 and 3. This reflects the cubic nature of the main part of the non-
linearity; see also [23] for another instance of this phenomenon. The simplicity of
these spaces is due, in part, to the geometric nature and the efficiency of the caloric
gauge, compared to other gauges used in the study of wave maps and Schrodinger
maps.

Most of our construction is geometric and can be written in covariant form. There
is one exception, however, namely the definition of the space H, %, which depends on
the Euclidean distance |¢(x) — @|. The supercritical quantity ||¢(t)]| HY = Eo(t) is

conserved through the Schrodinger map flow, see ([LL6]). It is useful to have control
of such a supercritical quantity in the construction of the caloric gauge in Propo-
sition .2] particularly in dimension d = 2, in order to be able to prove that the
orthonormal frame v, w does indeed trivialize as the heat time s tends to infinity.
We prefer, however, to adopt the extrinsic point of view throughout the paper:
we think of smooth maps g : D — S?, where D is some domain, as maps g : D — R3
(thus (3 x 1) matrices) with |g| = 1. With this point of view, an orthonormal
frame of ¢*T'S? on D is simply a pair of smooth maps v,w : D — S? such that
fweg="w-g="v-w=0o0n D. See [48, Chapter 6] for a discussion on the relation
between the intrinsic and the extrinsic points of view, in the setting of wave maps.
The extrinsic formalism we use in this paper was explained to us by T. Tao [46].
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For the sake of completeness we write the proof of the main theorems in all
dimensions d > 2. We emphasize however that many of the difficulties are only
present in dimension d = 2. In dimensions d > 3 the main normed spaces F(T),
Gr(T), and Ni(T) are simpler. Also the analysis related to High x High — Low
frequency interactions, which motivates the use of the caloric gauge, is easier.

We thank T. Tao for a discussion on the benefits of the caloric gauge and for
explaining us the elementary extrinsic formalism we use in this paper.

2. THE DIFFERENTIATED EQUATIONS AND THE CALORIC GAUGE

In this section we start with a smooth solution ¢ to the Schrodinger map equa-
tion and a smooth orthonormal frame (v,w) in TyS?. Then we construct the fields
Y and the connection coefficients A,,, and derive the differentiated (modified)
Schrodinger map equations satisfied by these functions (see [5], [35] where the mod-
ified Schrédinger map equations were introduced, and [37] for a detailed discussion
on the connection between the modified Schrodinger maps and the original equa-
tion). Next we introduce the caloric gauge. This is done by solving first a covariant
heat equation which leads to an extension of smooth Schrodinger maps to parabolic
time s € [0,00). We then construct the orthonormal frame (v,w) by solving an
ordinary differential equation with data prescribed at infinity in order to construct
the orthonormal frame (v, w). This construction is due to Tao [45].

The Schrédinger map equation leads to the system (ZIT]) of d scalar Schrodinger
equations satisfied by the fields ¢,,, m = 1,...,d, at heat time s = 0. The caloric
gauge condition allows us to express the connection coefficients A,, in terms of the
parabolic extensions of the differentiated fields v,,, see (2.20)). Finally, we derive
the linearized Schrédinger map equation and we express it in the frame form (2.25]).

We begin with a smooth function ¢ : R x (=T,T) — S?. Instead of working
directly on the equation (L.IJ) for the function ¢ it is convenient to study the equa-
tions satisfied by its derivatives 0, ¢(x,t) for m = 1,d + 1, where J;41 = 0;. These
are tangent vectors to the sphere at ¢(x,t). Suppose we have a smooth orthonor-
mal frame (v(t,z),w(t,z)) in TyunS?. Then we can introduce the differentiated
variables,

Y =0 O +1 'w - Oy . (2.1)

Thus we can express 0,,¢ in the (v, w) frame as

Om® = VR(Vm) + WS (Yr). (2.2)

In order to write the equations for ¢,,, we need to know how v and w vary as functions
of (z,t). For this we introduce the real coefficients

A ="w - 0. (2.3)
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In particular this allows us to complement (2.2) with

{ Omv = =R (V) + wAn; (2.4)

O = =P (Vrm) — VAp.

The variables 1, are not independent, instead they satisfy the curl type relations

(O + iAW = (Om + 1A (2.5)
Thus with the notation D,,, = 0,, + ©A,, we can rewrite this as
D, = Doty (2.6)
A direct computation using the definition of A,, shows that
N Am = O = S(WVhm) = Qim- (2.7)
Thus the curvature of the connection is given by
D,D,, — D,,D; = iqy,. (2.8)

Assume now that the smooth function ¢ satisfies the Schrodinger map equation
0y = ¢ X Ay¢. Then we derive the Schrodinger equations for the functions ¢,,. A
direct computation, using (2.5)), (2.7), ¢ X v = w, and ¢ X w = —v, shows that

d
Yat1 =1 Z D). (2.9)
=1

Using (2.0) and (2.8)), it follows that form =1,...,d

d d
Dup1tm =i Y DiDh + > G, (2.10)
=1 =1

which is equivalent to

d d d
(10 + Ay )thm = —2i ZAzalwm + (Aapa + Z(A% — 101 A1) ) P — iziﬁl%@ﬂﬁm)-
=1 =1 =1

(2.11)

Consider the system of equations which consists of (2.5]), (2717 and ([2I1). The

solution {¢,,} for the above system cannot be uniquely determined as it depends

on the choice of the orthonormal frame (v, w). Precisely, it is invariant with respect
to the gauge transformation

U = €, Ay = Ag 4 Onf.

In order to obtain a well-posed system one needs to make a choice which uniquely
determines the gauge. Ideally one may hope that this choice uniquely determines the
Ap’s in terms of the v,,,’s in a way that makes the nonlinearity in (Z.11]) perturbative.
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A natural choice for this is the Coulomb gauge, where one adds the equation

d
> OmAn =0
m=1
which in view of (2.7)) leads to
d
Ay =AY OS (W), m=1,....d. (2.12)
=1

This choice works well in high dimension d > 4, see [4]; however, in low dimension
there are difficulties caused by the contributions of two high frequencies in v to the
low frequencies in A.

This is what causes us to look for a different choice of gauge, namely the caloric
gauge. This was proposed in [45] in the context of the wave map equation, and then
as a possible gauge for Schrodinger maps [46].

Precisely, at each time ¢ we solve a covariant heat equation with ¢(t) as the initial
data,

¢(O,t,$> = ¢(t,$). (2.13)
We heuristically remark that as the heat time s approaches infinity, the solution
¢(s) approaches the equilibrium state (). This is related to our assumption that the
“mass” Ej of ¢ is finite, and would not necessarily be true otherwise. This would
allow us to arbitrarily pick (vs,Ws) at § = 0o as an arbitrary orthonormal base in
ToS?, independently of ¢ and z. To define the orthonormal frame (v, w) for all s > 0
we pull back (vs, Ws) along the backward heat flow using parallel transport. This
translates into the relation

{ 050 = Do+ - 30 00> on [0,00) x RY

fw - O = 0 (2.14)

The existence of a global smooth solution for the caloric equation (L1) and of
the corresponding frame (v, w) is proved in Proposition In particular for each

F e {(E — Q,V — Vs, W — Weo } the following decay properties are valid:
|09F(s)| < cofs)~elFD/2 s> (2.15)
Setting Jy = Js we can define the functions ¢, and A, for all s € [0,00) and
m=20,---,d+ 1 by

. Tt .

U = "0 O+ ' - 0 .16)
A, ="w - 0,v.

Then the relations (2.35)-(2.8) hold for all I,m = 0,d 4+ 1. In addition, the parallel

transport relation ‘w - 9,0 = 0 yields the main gauge condition

Ay =0. (2.17)
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As in the case of the Schrodinger equation, a direct computation using the heat

equation (47) and (2.5]), (2717) shows that
d
Yo=Y Dy (2.18)
=1

Thus, using again (2.7), for any m =1,...,d+ 1

d d
0oV = Dipthy = Z D,.Di; = Z DD, ¢y +i Z mi
-1 =1

d
::jg:j[hl)ﬂﬂnl%—ij£:53(¢hn15)¢b
=1 =1

which is equivalent to
d

d d
(05 = Do) = 20 ) | At — Y (A7 =10 A+ ) St (219)
=1 =1

=1
On the other hand from (2.7]) we obtain

Due to (£I12)) and (EI3) we can integrate back from s = oo to obtain

An(s) = —/S (Yot ) (r Z/ S (O (Ot + i Ai) ) (r) dr, (2.20)

forany m =1,...,d+1 and s € [0,00). Then A,,,—, represents our choice of the
gauge for the Schrodinger map equation. The reason we prefer the caloric gauge
to the Coulomb gauge is the way the high-high frequency interactions are handled.
Indeed, while (2.12]) can be conceptually written in the form

A~ Z 27 F Py Prap + Z 277 Py(Pap Peyp),

J<k J<k
substituting the first approximation 9 (s) ~ e**(0) in (2.20) yields the relation
Ar D 2 P Pab + Y 27 PP Pab). (2.21)
i<k J<k

This has a better frequency factor in the high x high — low frequency interactions.

We consider now linearized Schrédinger map equations. This is necessary in order
to establish the continuous dependence of the solutions on the initial data. The
linearized equation along a Schrodinger map ¢ has the form

8t¢lin = ¢lin X A¢ + ¢ X A¢lzn (222)
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where
t¢lin : ¢ = 0.
Then we can express ¢, in the (v, w) frame by setting
7plin = tv ' ¢lin +1 tw : ¢lin7 (223>
or equivalently
Grin = VR(V1in) + WS (Y1in).- (2.24)
The field v, satisfies the linearized equation

(7'81& + Aw)wlm

d d d _ (2.25)
=20 > Adiin + (Aasr + (A7 = i0AD) ) rin — 1Y S (Withiin).-
=1 =1 =1

This can be derived by direct computations as before. Heuristically, one can also
think of a one parameter family of solutions ¢(h) for the Schrodinger map equation
so that ¢(0) = ¢ and OpP|n—0 = ¢uin, and extend the frame (v, w) as h varies. Then
we have ¥y, = 1y, and we can use (2Z.10) with m replaced by h.

3. FUNCTION SPACES

In this section we define our main function spaces and derive some of their prop-
erties. We define first several cutoff functions and (smooth) projection operators.

Definition 3.1. We fiz ny : R — [0, 1] a smooth even function supported in the set
{p €R: |u| <8/5} and equal to 1 in the set {u € R : |u| < 5/4}. We define

Xi (1) = mo(/27) = mo(/27Y),  x<j =m(u/2%),  jEL
Let Py, denote the operator on L= (R?) defined by the Fourier multiplier & — x(|€]).
For any interval I CR, let x; = > _,c; xj and let Py denote the operator on L>®(RY)
defined by the Fourier multiplier & — %, ., xx(|¢]). For simplicity of notation, we
define P<j, = P_so ). For any e € S*! and k € Z we define the operators P, by
the Fourier multipliers & — (€ - e).

To motivate our choice of spaces, recall the Schrodinger nonlinearities, see (2.11)

d d d
Ly, = —2i lz A + (Agpr + lZ(A? — i0LAL) ) Y — zlzwl%@ﬂpm). (3.1)
=1 =1 =1

We would like to analyze these nonlinearities perturbatively in suitable spaces. The
main difficulty is caused by the magnetic terms —2i Zle A0y, Using (2200 (for
simplicity consider only the terms corresponding to k = j) they can be written
schematically in the form

> 27FPap P - 25 P, (3.2)

kK €Z
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The difficulty is to estimate the sum over k& < &’ — 100 in (3:2). The main ingre-
dient needed to estimate such magnetic terms in Schrodinger problems is the local
smoothing phenomenon: we place the highest frequency factor of the nonlinearity
in the local smoothing space L? (see definition below) and attempt to estimate
the nonlinearity in the inhomogeneous local smoothing space LL?. This allows us to
barely recover the full derivative loss of the magnetic nonlinearity. This approach,
with certain local smoothing and inhomogeneous local smoothing spaces localized to
cubes, was first used in [19] to study local well-posedness of Schrodinger equations
with general derivative nonlinearities. To prove global results, it is essential to work
with stronger local smoothing/inhomogeneous local smoothing spaces, which exploit
better the geometry of Euclidean spaces. A low-regularity global result using such
stronger local smoothing spaces was proved by two of the authors in [12].

This scheme was first used in the setting of Schrodinger maps by two of the authors
in [I3] and played a key role in all the global results in [14], [4], and [2]. In order for
this scheme to work in the Schrodinger map problem we need to be able to control
the L>*° norm (in a scale invariant way) of the low frequency terms.

For a unit vector e € S~ we denote by H, its orthogonal complement in R¢ with
the induced measure. We define the lateral spaces L2 with norms

g gt P
| h||pe = [/R [/H R|h(xle+x,t)| d{tdt} dx;

with the usual modifications when p = oo or ¢ = oco. The key spaces in this
family are the local smoothing space L% and the inhomogeneous local smoothing
space L12. These are the only spaces in this family that can be used to analyze
perturbatively magnetic nonlinearities, such as L,,. This is in sharp contrast with
the case of wave equations, where large classes of Strichartz estimates can be used to
control magnetic nonlinearities, at least in high dimensions. To make the transition
between the local smoothing and the inhomogeneous local smoothing spaces we use
the maximal function spaces L2°°.

The following local smoothing/maximal function estimates were proved by two of
the authors in [I3] and [14]:

Lemma 3.2. If f € L*(RY), k € Z, and e € S~ then

€2 Peofllgee S 272 fl 2. (3.4)
In addition, if d > 3 then

"2 P f |l 2o S 252 £ 2. (3.5)

r/p (3.3)

It is easy to see that the two bounds (B4 and ([B.H) cooperate in the right way to
allow us to estimate the expression in (3.2]) in the inhomogeneous local smoothing
space L1?. The bounds (3.4) and (3.5) are not hard to prove. They depend, however,
on delicate global properties of the Euclidean geometry.



GLOBAL SCHRODINGER MAPS 13

Unfortunately, the maximal function bound (3.0) fails in dimension d = 2, which
causes considerable difficulties. To handle this case we need to use the Galilean
invariance: if f solves (i0; + A,)f = 0 in R? x R, then T,(f) solves the same
equation, where T, w € R?, is the Galilean operator defined below.

Definition 3.3. Assumed =2, p,q € [1,00], e € S', A\ € R and W C R finite. We
define the spaces L2 using the norms

NI g p/q 1/p
Ilizs = ITe()lge = [ [ | [ In((er+x0e + 2/, )7 da'ae| ™ daa| ™
’ R b JHoxR
Ty (h)(z, t) = e~ =W 2e= WP A (0 4, ).

(3.6)
with the usual modifications when p = oo or ¢ = oo. Then we define the spaces Ly,
Ly =D LS Ihlagg, =, nf > Il
AEW AEW A New

In what follows we fix some large integer C and define, for k € Z,
Wi = Wi(K) = {\ € [-2F, 27 : 2k 2K\ e 7).
Lemma 3.4. Letd=2. For any f € L*, k € Z, and e € S* we have
"2 Pefll o S 272 fllees Al < 287 (3.7)
In addition, if T € (0,2%¢] then
(e Pofll 2o S 2521 fl 2 (3.8)
;W40

The bound (B3.7)) is a straightforward consequence of (3.4) via a Galilean transfor-
mation. The main novelty is the estimate (B.8]), which provides a usable replacement
to (B.0) in dimension d = 2. Indeed, it is easy to see that the bounds (B.17) and (3.8)
can still be used to estimate the expression in (3.2)) in the space Lii%,[,kim, which is
an acceptable inhomogeneous local smoothing space in dimension d = 2. The idea
of using sums of spaces such as Li:omc}ker as substitutes for missing estimates in the
setting of wave maps is due to Tataru [50].

Limiting the time 7" to the interval (0, 2%*] is what allows us to use the discretiza-
tion which is given by the Wy sets. One could also allow T" to be arbitrarily large,
at the expense of replacing the discrete sums in the definition of the inOV;kHO with
a continuous counterpart. We do not pursue this here in order to avoid distracting
technicalities.

Once the main terms of the Schrédinger nonlinearities (B.I]) are under control,
we can use various Strichartz-type estimates to estimate the remaining terms. We
state below the Strichartz-type estimates we need in this paper; at this stage many
variations are possible. Let p; = (2d + 4)/d denote the Strichartz exponent.
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Lemma 3.5. If f € L?(R?) then we have the Strichartz estimates
€ 20 S 1122,
and the maximal function bounds
HeitAPkaLﬁdL;X’ S 2kd/(d+2)’|f||m, keZ

In addition, if 2/p+d/q=d/2 and 2 < q < 2d(d — 2) then

; (482 _1
sup [|e" Pf [l gs Sp 250 2| flle,  p <,
ecS!

respectively
k(21
sup [[€"* Peefllge S 2" 2| fll2,  p>a
ecSt

The first bound in Lemma [B.5]is the original Strichartz estimate [40]. The second
bound follows by scaling. The last two bounds, which we call lateral Strichartz
estimates, follow informally by interpolation between the LP¢ Strichartz estimate
and the local smoothing/maximal function estimates of Lemma 3.4l The results
stated in Lemma [8.2] Lemma [3.4] and Lemma are summarized and proved later
in Lemma [T.T] (we prove in fact a slightly stronger version of (3.8]), which is needed
to prove full inhomogeneous estimates).

We are now ready to define our main dyadic function spaces Fy(7T"), Gx(T") and
Ni(T). Assume that T € R. For k € Z let I}, = {¢ e R?: €] € [2F71,2%F1]} and

LI(T) = {f € L*(R? x [T, T]) : F(f) is supported in I; x R},

Definition 3.6. Assumed >3, T € R, and k € Z. Then Fi(T), Gi(T) and Ni(T)
are the Banach spaces of functions in Li(T) for which the corresponding norms are
finite:

18]l mry = N0llzgerz + 18]lzra + 27D ]| ppa e + 278D/ sup [|9f] 2=,

ecSd—
(3.9)
Il = [Dllm + 252 sup  sup ||Pjedll e, (3.10)
|7—k|<20 eeSd-1
respectively
I Iy = nf LAl +27 bz sup [|f2]| 22 (3.11)

f= ecSd—
Definition 3.7. Assume that d =2, k € Z, K € Z,, and T € (0,2%*]. Recall the
definition Wy, = {\ € [—2k,2k] : 2k¥2KX € Z}. For ¢ € L*(R? x [T, T)) let

181l oery = 19l gerz + I6llca + 272 (|g]| arge + 2772 sup Pl 2o - (3.12)
k

eWk
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We define Fi(T), G1.(T) and N(T) as the normed spaces of functions in L2(T) for
which the corresponding norms are finite:

J
= inf inf 2™ || fm 1
91l (1) Jm“}.I’lmJ€Z+ f:fmllJIrl...+fmJZ:: If ]||Fk+m7 (3.13)
16llcum = llollry +27 k/GSUP||¢|| 30+ 2% sup sup [P ed|l o5
|i—k|<20 ecS!
(3.14)

4 ok/2 sup sup sup ||Pj’e¢||Lm,27
|j—k|<20 e€S! |A|<2k—40 e

respectively
1 vy = 1Al 4 + 25 fell gL ¢ + 25| fs 3 L ¢ +27% Sup 1 fallzzz,

(3 15)

f=hH +f2+f3+f

where (e, ey) is the canonical basis in R?.

In all dimensions d > 2 the spaces Ni(T") and G (T') and related by the following
linear estimate, which is proved in Section [

Proposition 3.8. (Main linear estimate) Assume K € Z,., T € (0,22X] and k € 7Z.
Then for each uy € L* which is frequency localized in I, and any h € Ni(T) the
solution u to

(10 + Ay)u = h, u(0) = ug
satisfies

[ullgury S w0z + 1]y

We describe now the structure of the normed spaces Gi(T'), Ni(T'), and Fi(T).
As Proposition B.8 suggests, we use the spaces Gi(T) to measure solutions of
Schrodinger equations. The main components of the spaces Gk( ) are given by
the local smoothing/maximal function spaces LY Wi 4 a0 Le 3" in dimension d = 2,
respectively L2 and L3>? in dimensions d > 3 (compare with Lemma [3.2] and
Lemma [3.4]). The other components of the spaces G (T') are Strichartz-type spaces,
compare with Lemma 3.5 These components are much more flexible.

As Proposition B.8] suggests, we use the spaces Ni(T') to measure nonlinearities
of Schrodinger equations. The key components of the spaces Ny (T') are the inhomo-
geneous local smoothing spaces L}a’,%/vk,m in dimension d = 2, and L.? in dimension
d > 3, which are the only spaces that can be used to bound the difficult magnetic
parts of the Schrédinger nonlinearities. The other components of the spaces Ny (T')
are Strichartz-type spaces, and are chosen in a way that matches the Strichartz
spaces of G (T).

We discuss now the spaces Fi (7). It is clear from the definition that G(T") —
Fy(T). The larger spaces Fi(T') have an important advantage over the spaces G (T'):
for any k € Z and f € Fi,(T) N Fi1(T) we have || f||pr) = || f||epi(r). This is easy
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to see by examining the definitions and noticing that ||¢|| FO L (T) S || Fo(ry for any

¢ € L*(RY x [=T,T)) if d = 2. Moreover, if k, k' € Z, |k — k'| <20, u € F(T), and
v € L®(RY x (=T,T)) then

1Pk (wo) | mry S Nlulley e ll0]l s, - (3.16)

The spaces G(T') do not have this important property, proved in Lemma[5.], mostly
because of the local smoothing norms which require certain frequency localizations.

We use the spaces Gi(T) to measure the fields ¢,,, m = 1,...,d, at parabolic
time s = 0. This is consistent with the Schrodinger equations (2.11]) satisfied by
these fields. We use, however, the weaker spaces Fy(7T') to measure the fields 1,,(s)
for s > 0, as well as the connection coefficients A,,(s). The fields 1,,(s) satisfy
the covariant heat equations (2.19), and we are able to propagate control of these
fields along the heat flow, with suitable parabolic decay, only in the larger spaces
Fi(T). Fortunately, in the perturbative analysis of Schrédinger equations, it is not
necessary to control the connection coefficients A,,(0) in the missing local smoothing
norms.

To bound products of functions in Fy(T") we often use a more relaxed criterion.
Precisely, since for e € S! we have

Sz S 2R Nl

~
m

Iz,

it follows that, in all dimensions d > 2,

[ llmry S N2z + Il zea- (3.17)

This criterion is often used to estimate bilinear expressions, by exploiting the LP¢ L2°
norms in the spaces Fy(T).

We also need to evolve Fi(T') functions along the heat flow. Since the Fi(7) norm
is translation invariant it immediately follows that if h € Fi(T) then

le**hll ) S 1+ s25) | hllmyry, s 20. (3.18)

To prove useful bounds on the connection coefficients A,,, m =1,....d, fork € Z
and w € [0, 1/2] we define the normed spaces S¥'(T') of functions in Li(T') for which

Fllspery = 20 | pporze + 1F Il pagrac + 272 f]] o o) <00, (3.19)
where the exponents 2, and p,,, are such that
111 1w
2 2 Paw pa d

The spaces S¢(T) are at the same scale as the spaces Fj,(T) and Fi(T) — Sp(T).
By Sobolev embeddings we have

Hf||s;;’(T) Slfllser ifw <w. (3.20)
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Thus the spaces S¢(T") can be interpreted as refinements of the Strichartz part of
the spaces F(T) (which corresponds to Sp(T)). It is important to be able to prove
bounds on the coefficients A,,, m = 1,...,d, in both spaces Fj(T) and S;/2(T).
These bounds quantify an essential gain of smoothness of the coefficients A,, com-
pared to the fields v,,. This is proved in Lemma and used in many estimates in
sections Bl and [6

4. OUTLINE OF THE PROOF

This section contains an outline of the proofs of the main theorems. We observe
first that it suffices to construct the solution ¢ on the time interval (—22% 22K)
for any given K € Z,, and prove the bounds (3] and (LE) uniformly in . We
therefore fid] once and for all K > 1 € Z, and assume T € (0,22%].

We start with a solution ¢ € C((=7,T) : H) of (LT) on some time interval
(=T, T), where T' € (0,22*]. Our main goal is to prove a priori estimates on

sup [|¢(t)]| a2 and  sup |¢(t)||ug,
te(—T,7) te(—T,7)

for o in a fixed interval o € [d/2, 01]. We use the notion of frequency envelopes. We
fix a small parameter ¢ (for instance 6 = 1/(20d) suffices).

Definition 4.1. A positive sequence {by}rez s a frequency envelope if it is I?

bounded
> < oo (4.1)
keZ
and slowly varying, ‘
be <020 ke (42)

An e-frequency envelope {by }rez satisfies the additional relation

> bp< € (4.3)
ke,
Given an [? bounded nonnegative sequence {ay }rez we often define the frequency
envelope
aj = sup a2
k€T
Clearly, we have oy < o), and «a), = ay, if {ag}rez is already a frequency envelope.
In addition, >, (o] <> iz i
Given o1 > d/2 as in Theorem [L2, T" > 0 and ¢ € H;">(T) we define the

frequency envelopes
(o) = sup 27 FI27K | P || oo 2, o€ [0,04], § =1/(20d). (4.4)
k'€ez

S|k—K'|

IThe value of K does not appear in any of the effective bounds; it is useful, however, to have
K < oo in some of the continuity arguments and to be able to define the sets Wy (K) in Definition
B0 as finite sets. Weak bounds, such as ([@I0), may depend implicitly on the value of K.
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We also set 7, = yx(d/2). Then we have vy (0) < 206K, (o) for any k, k' € Z, and
1Pedll ez <27 n(0), o €0,01]. (4.5)

Proposition 4.2. (Construction of the caloric gauge) Assume that T € (0, 00) and
Q € S*. Let ¢ € Hy ™ (T) which satisfies the smallness condition

D 2Pl =7 < 1. (4.6)
keZ

Then there is a unique smooth solution ¢ € C([0,00) : HG(T)) of the covariant
heat equation

{ /avs(g: Aac;g_'_ (Z an:1 |8m($‘2 on [Ov OO) X Rd X (_T7 T)u (4 7)

6(0,x,t) = ¢(z,t).

In addition, there are smooth functions v,w : [0,00) x R? x (=T,T) — S? with the
properties

opg="w-¢g="v-w="w-0v=0 on0,00) x R x (=T, T). (4.8)

For any F € {¢,v,w} we have the bounds

| PeF'(s) || ooz S (o) (1 + 522k =209k o€ [d/2, 0] (4.9)
with v (o) defined by (&4), and, for any o,p € Z,
sup sup (s+ 1)"/22"’“||PkﬁfF(s)||LtooL% < 0. (4.10)
k€EZ s€[0,00)

The key caloric gauge condition is the last identity in (&8)), namely ‘w - d,v = 0,
which leads to the identity Ay = 0. It is also important that the functions ¢, v, w
become trivial as s — oo, in the sense of (A.I0). Proposition d.2]is due to Tao [45];
we give a complete proof of Proposition in section [8

Most of our analysis is done at the level of the fields v, and the connection
coefficients A,,. From (£.9) and (8.4]) we obtain

1Pt ()l oz + 1 PrAm ()| pera S (o) (1 + s22%) 72027 @K, (4.11)
form=1,...,d, 0 €[d/2,01], s € [0,00), k € Z. By ([£I0) we also have

Sup sup )(8+1)”/22’“’2"“[HPk(@fwm(S))HLgOLg+HPk(afAm(S))HLgOLg} < oo (4.12)
€Z s€(0,00

form=1,...,d, and

sup sup )(8+1)"/22’“"[||Pk(5‘fwd+1(8))||LgOLg+IIPk(ﬁfAdH(S)HILgOLg} < 0o. (4.13)
€7 s€|0,00
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Given an initial data ¢g € Hg for the Schrodinger map equation, for o € [(d —
2)/2,01 — 1] we introduce the frequency envelopes

cr(0) = sup || P V|| 1227 271 F1, (4.14)
kEr
Then we have the relations, for any ¢ € [(d —2)/2,0, — 1] and k € Z,
Vol = (o) and | PV o2 < er(o)277F. (4.15)
keZ

Let ¢, = c(d/2 — 1). If [|¢o|| gras2 < €0 then Y, , i S €p.

The bounds in Proposition ©.2]in the energy space L° L2 are far from sufficient for
the study of the Schrédinger equation. We need suitable bounds in the Fj(T") spaces.
In the next proposition we fix some oy € [d/2 — 1,07 — 1] and use two frequency
envelopes b, and by(0g). The envelope by = by.((d — 2)/2) is used to measure critical
regularity and carries a smallness condition. The envelope by(0p) is always used to
measure noncritical regularity. To these two envelopes we associate the sequences

b>k = ( Z b?) 1/27 b>k(0'0) = ( Z bjbj (UQ)Q(k_j)(UO_(d_2)/2)) 1/2.

jzk jzk

Proposition 4.3. (Heat flow bootstrap estimates) Assume that T € (0,00) and Q) €

S?. Given ¢ € Hy ™ (T) satisfying [E8) we consider ¢,v,w as in Proposition [{.3,

and V¥, and A, the associated fields and connection coefficients. Let by, = bp(d/2—1)

be an e-frequency envelope with small €, and by(cy) be another frequency envelope.
(a) Suppose that the functions {¢m, }m=1.4 satisfy

1P (0| oy < 0i(0)277%, o € {(d — 2)/2, 00} (4.16)
as well as the bootstrap condition
| Pethnn (8) || oy < €720 27 HE2/2(1 4 527R) 74, (4.17)
Then for o € {(d —2)/2,00} we have
1 Petbm ()| mry S bi(0)277F (1 +s2°)7% o € {(d —2)/2,00}. (4.18)
Also, forl,m=1,---,d and o0 € {(d —2)/2,00}, we have the Fi(T') bounds
1P (Am(5)t(5) | mry S bi(0)27 @ DF (%) 75 (1 + 522%)72, (4.19)

as well as the LP4 estimate at s =0
[P A (0) ]| ra
(b) Assume in addition that
1Petbaa (0)|zre S bi(0)27 7%, o€ {(d —2)/2,00}. (4.21)
Then for o € {(d —2)/2,00} we have
1Petbara ()| ora S i(0)27 7 DR(1 4+ 27%5) 72, (4.22)

< ()27, (4.20)

~
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and the connection coefficient Aqyq satisfies the L? estimate at s = 0
| PeAgi1(0)|| 2 < ebp(0)27%, d>3 (4.23)
respectively
A Ol S2% IPA Ol SB4(0)27%,  d=2.  (4.24)

Proposition is proved in Section Bl Here we note the following improvement:

Corollary 4.4. The result in Proposition [{.5 remains valid as well if the bootstrap
assumption (LIT) is dropped.

Proof of Corollary[{.4 Define the function

W(T") = supsup by "25D/2(1 + 522 Py, (3)]] 1) 0<T <T.
kEZ >0
It follows easily from (A12]) with p = 1 that WU is an increasing, continuous function
of T'. We will prove that

. ! <
%}TO\II(T) S L (4.25)

Since W : (0,7] — [0,00) is a continuous increasing function and ¥(7T") < g1/
implies ¥(7") < 1 (see ([@I8)), the corollary follows easily from (£25). To prove
[#.25)), let ¢ o(s, ) = P (s, x,0). Using [B.17) and ([AI2), it suffices to prove that

sup sup by 1252 (1 + 5228)Y | Py o () || 22 S 1. (4.26)
keZ s>0
It follows from (£I6) that
222 Pt 0(0) ][22 < b (4.27)

We need to extend this bound to s > 0 with suitable parabolic decay.
Recall the coefficients ¢ = cx(d/2 — 1) defined in ([@I4]). We apply Proposition
on sufficiently short time intervals (=77, 7); using (4.9])

202(1 4 22)%0[|| Pelwo(9)) 122 + I1Pe(wo () 22] S e (4.28)

where vy(s,x) = v(s,z,0) and wy(s,z) = w(s,x,0). We use this bound at s = 0,
the identity (2.2]), and the bounds ([@.27) and (8.4)); it follows that

2k<d_2)/2||PkV¢o||L% < by.

Since {by}rez is a frequency envelope, it follows that ¢, < by, see definition (£.14]).
It follows from (LI1) that

| Pithimo()]| 22 < cx(1 + 522)~2027k(d=2)/2,
The bound (&26) follows since ¢, < by. 0

Next we turn our attention to the Schrodinger equations (ZI1). Our main
Schrodinger bootstrap result is the following.
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Proposition 4.5. (Schridinger bootstrap estimates) Assume that T € (0,2°*] and
Q € S?. Let {ci}rez be an gg-frequency envelope with gg € (0,e¢(d)], and {cx(00) }rez
another frequency envelope. Let ¢ € Hg?o’OO(T) be a solution of the Schrodinger map
equation (1)) whose initial data satisfies

1PV ¢ollr2 < cx(0)27F, o€ {(d—2)/2,00}. (4.29)
Assume that ¢ satisfies the bootstrap condition
|PVllLpes < e P27, (4.30)

and let (¢,v,w) be the caloric extension of ¢ given by Proposition [{.5, with the
corresponding fields ¥, A,,. Suppose also that at the initial parabolic time s = 0
the functions {tm}m=1.4 satisfy the additional bootstrap condition

| Prtbm (0) |y < gy P2k 2, (4.31)
Then we have
| Petbm (0l ey S er(0)277%, o € {(d—2)/2,00}. (4.32)

The above proposition is proved in Section [6] by applying the linear result in
Proposition B.8 to the equation (2.11]). The right hand side in (2.11)) is estimated in
the N (T') spaces using the bounds in Proposition 3] for the differentiated fields 1,
and the connection coefficients A,,. In what follows we show that Proposition
implies Theorem [[1] and the bound (L.

Proof of Theorem [I.T] and the bound (L3)). Consider an initial data ¢y € Hg
for the Schrodinger map equation (1) which satisfies ||@ol| 742 < 1. Our starting
point is the local existence and uniqueness of smooth solutions of the Schrodinger
map equation (see, for example, [33]): if g9 € HF then thereis T' = T(||¢0]|Héd+zo) >

0 and a unique solution ¢ € C((—=7,T) : Hg’) of the initial value problem (LII).

In order to prove Theorem [Tl we take oy = 2d + 20 in what follows. For Theorem
[L2] on the other hand, we allow oy to be arbitrarily large. It suffices to prove that
the solution ¢ € C((—T,T) : HZ) of the initial value problem (ILLT)) satisfies the
bounds (L3) and (L) with constants which are independent of 7. In preparation
for the proof of the well-posedness part of Theorem [L.2], we prove stronger bounds
for the ¢ in terms of the frequency envelopes of ¢q.

Define the frequency envelopes ¢ (o) as in ([AI4). Our goal for the rest of this
proof is to use Proposition in order to prove that

sup  [|PeVé(0,.,t)| 12 < en(o)277", o€l(d-2)/2,0 —1], (4.33)
te(—T,T)
with implicit constants which depend only on d and 0. In view of (£I5), and (L4,
this suffices to establish (L3)) and (LH). Then (I4) follows from (LH) for o up to
2d + 20 and from the result in [33] for larger o.
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For T" € (0,7 let
\I](T,) — iuIZ) 0;12(d_2)k/2(||ka¢||L%°,L% —l— ||Pkwm(0)||Gk(T’))a O < T/ S T
S
The function ¥ : (0,7] — [0,00) is well-defined, increasing and continuous, using

[I2), the fact that ¢ € C((=T,T) : H), and the fact that ¢ is a frequency
envelope. We show now that

if U(T") < g5/ then U(T") < 1; (4.34)
limg_o ¥ (T") < 1. '

The limit in the second line of (£34]) follows from the definition of the coefficients
ck, see ([AI3), and (AI1) (we apply Proposition on sufficiently short intervals

(=T",7")). Also, using Proposition 5] if ¥(7") < 551/2 then
sup e 292 Pt (0) gy S 1.
S

Assuming U(7") < ¢, Y ?_ we apply Proposition to conclude that

1PV 0(0) || 522 + | PeVw(0)||zsg 2 S e V227D, (4.35)
On the other hand from (#32)
1P (O)l1s 12 S 27 er(o), o €[(d—2)/2,00 —1]. (4.36)

We use the relation, see (2.2), On¢ = vR(¢¥r) + wS(¢y,). From ([@30) with o =
(d —2)/2 and ([A35), using (8.4), we obtain

||ka¢||L;f’,L2 5 2_(d_2)k/2ck.

The implication in the first line of ([E34]) follows.
It follows from (4.34)) and the continuity of ¥ that ¥(7") < 1. Thus

1PVl 1z + | Pitbn (0| ciry S en2™ 5272, (4.37)

This suffices to prove the bound ({33)) for o = (d — 2)/2. To establish (£33) for a
different o we denote by B > 0 the best constant so that

[PV llLeerz < Ber(o)277". (4.38)

Such a constant exists because of the smoothness of ¢ and the fact that ¢x(o) is a
frequency envelope. Using (4.37) and Proposition we have

120 (0) |22 + |1 Pew(0) || g2 S Bew(o)27 V", (4.39)
From (4.36) and {39), by (84), we obtain
1PV @ poor2 < (14 eB)27%% ¢, (o). (4.40)

By the optimality of B in (£38)) we conclude that B < 1+ B, which yields B < 1.
Thus (£.33)) is proved. O
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To define rough solutions and study the dependence of solutions on the initial

data we consider the linearized equation (2.25)) and prove that it is well-posed in
Fld=2)/2.

Proposition 4.6. Let ¢g € HY be an initial data for the Schrodinger map equation
which satisfies the smallness condition ||¢ol ya2 < 1. Let ¢ be the corresponding
global solution to (L)), (¢, u,v) its caloric extension and V,,, A, as before. Then
for each initial data 1y;,(0) € H® there exists an unique solution vy, € C(R, H*)
for ([225]), which satisfies the bounds

Z 2(d_2)k“Pk¢linHék(T) S ||1le(0)||2d—2 (4.41)
p

2

The proof of this result is identical to the proof of Proposition 4.3 As a conse-
quence of this we obtain the Lipschitz dependence of solutions to (ILI]) in terms of
the initial data in a weaker topology:

Proposition 4.7. Consider two initial data ¢f and ¢y in HE which satisfy the
smallness condition ||¢6‘||H% < 1, h = 0,1, and let ¢°, ¢* be the corresponding
global solutions for (2.25). Then

> 2THP(6° — 0Nl pe S 1166 — Aol e (4.42)
k

Proof. By (Z41]) we have the global in time bound
> 2928 Pty |7 e 2 S 1[¢in (01,
2

2
I2

As in the proof of Theorem [LL1l this bound easily transfers to the functions ¢y,
and we obtain

DR 1 R [y S )] (4.43)
k

for all solutions ¢y, € C(R, H*®) to (Z22).
Any two initial data ¢f and ¢ in Hg which satisfy the smallness condition

||¢8||H% < 1, h = 0,1 can be joined with a one parameter family of initial data as
follows:

Lemma 4.8 (Proposition 3.13, [50]). Consider two functions ¢f, ¢y € HE so that
||¢6LHH% < 1, h=0,1. Then there exists a smooth one parameter family of initial
data {¢f}nep,y) € C([0,1]; H®), taking values in HE, which joins them, so that
the smallness condition ||¢8||H% < 1, h €[0,1] is satisfied uniformly and

1
[ 10060050 168 = 3]y (4.44)
0
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The corresponding family of global solutions ¢" is smooth with respect to h,
and the functions 9,¢" solve the linearized equation (2.25) with ¢ replaced by ¢y.

Applying [EZ3) to d,¢" we obtain
> 2 P [T e S 1046" (0)I1% a2
k

The estimate (£42) is obtained by integrating with respect to h due to ([£44). O
The above proposition allows us to conclude the proof of Theorem [L.2
Proof of Theorem The bound (LH) was proved earlier. To show that the

map Sg admits an unique continuous extension
- d . d—2 . d . d=2
Sq:H2NH, — C(R;H2NHy )
it suffices to consider a sequence of smooth initial data ¢f € Hg which satisfy

. . d-2
uniformly the smallness condition ||¢g| .4 < 1 and so that ¢g — ¢o in H aN Hy?
and show that the correspondlng sequence of global solutions is Cauchy in the space

in C(R; H? H ) By Proposition [.7it follows the ¢™ is Cauchy in C(R; H )
lim[}¢" = g7 u2 =0 (4.45)

RH_Q_

Consider frequency envelopes {c?} associated as in to ¢f. Since @@ is conver-
q Yy & 0 0

gent in H % we can choose the corresponding envelopes {c?'} to converge in 2. Then
we have the uniform summability property

hm sup Z ) = (4.46)
Now we use ([£33) to estimate
16 = 6"l gt IPetal8 = 6™, + 1Poia®l 1, + [Poed

k n 2
S 27| Pago (¢ — ™ )||C(R;Hig—2)+z cr)* + (c)

k>ko

CR;E?) HC(R;H%)

Hence using (£45]) we have

lim sup ||¢" — ¢m||C(RH2) < sup Z (c)?

n,m—0oo n k‘>k0

Letting ko — oo, by (4.46]) we obtain

and the argument is concluded.
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The continuity of the solution operator S¢ in higher Sobolev spaces
L ed=2 o =2 d
Sq:H°NHy — CR;H NH, ), §<U§O'1
is obtained in the same manner. The proof of Theorem is concluded. O

5. THE HEAT FLOW: PROOF OF PROPOSITION [4.3].

For k € Z we denote

d
a(k) = sup (1+ 52 " | Pt ()| - (5.1)

s€[0,00) m—1

For o € {(d —2)/2, 00} we introduce the frequency envelopes
ax(o) = sup 27727%=lq(5). (5.2)

jez
These are finite and belong to [? due to (@I12) and (BI7). For (£I¥) we need to
show that ag(o) < bg(o). On the other hand from the bootstrap assumption (Z.17)
we know that ay = a(d/2 — 1) < e~/?b;.. In particular this implies that

Y ap<e (5.3)
ke
We prove first a bilinear estimate.

Lemma 5.1. Assume that T € (0,2?%], f,g € H*>®(T), P.f € F(T) N S¥(T),
Pyg € Fi(T) for some w € [0,1/2] and any k € Z, and

=Y NPflmanseay Be= Y lPgllrm.
lj—k|<20 li—k|<20
Then, for any k € 7
id kd (24,
||Pk(fg)||Fk(T)ﬁS;/2(T) S 22 2 (ﬂkaj + Oékﬁj) + 272 Z 2(J k)(d+2 )Oéj/@j' (54)
J<k Jj2k
Proof of Lemma[5dl. We observe first that if k,j € Z with |k — j| < 20 and o' €
[0,1/2] then
[1Pe(w) | mry S Nlullmye o]l e, (5.5)
and
||Pk(uv)||s;:’(T) N ||U||Fj(T)2kw HUHLﬁ/“"LgO' (5.6)
both of which follow directly the definitions. For the second factor on the right in

both (5.5) and (5.6]) we observe that for v which is localized at frequency 2* we have
by Sobolev embeddings

Illzzs, + 2% ol parer oo < C2%2|v|| 5,y (5.7)
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We show now that if [k; — ky| < 8, and fy,, gk, are localized at frequency 2%,
respectively 2*2 then

1P (fier g1l gy oy 172y < C2"22FRENED=I g0 ) | ghollsp ) (5-8)

To prove this we use (B:EZI) and Sobolev embeddings:
1P (Fra ) | st 2y S NP Fra Gl 215 + 2k/2||Pk(fk1gk2)”LtooLi
< gkd(l/patl/paw=1/2) ||fk1||L"deoo||9kz||L§dLgo + 28| £ N ooz M| g Nl 5o L2 P

< MOV ED oo llgrallsp. o) + 1 Fillsp, o lgialsg, )

To prove the estimate (5.4]) we use a bilinear Littlewood-Paley decomposition

1/2 Pd,1/2

ALY Ly

|ka—Fk|<4 |k1—k|<4 |k1—k2|<8
Pi(fg) = Z Py(Pyy [ Pr,g) + Z Py(Pyy [ Prg) + Z Py(Pry f Pr9)
k1<k—4 ko<k—4 k1,ka>k—4

(5.9)
and bound each of the terms on the right in Fy(T) OS;/2 (T'). For the first two we use
(), (58) and (&7). For the third we use (B.8) instead. The bound (5.4]) follows.

O
We prove now our main estimates on the connection coefficients A,,, m =1,... . d.
Lemma 5.2. (Bounds on A,,(s)) For any k € Z, s € [0,00), and m = 1,...,d
1Pe(Am ()| gy ynsprzry S 277 (L 82%) b5 (0), (5.10)
where, if s € [22ko=1 2%kotl) Ly € 7. then
2ktkoq_, a(o) if k + ko > 0;
bis(0) = o (o) Ykt ko2 (5.11)
S aay(0) if b+ ko < 0.
Proof of Lemmali. 3. We use the identity (2.20)
d oo
=5 [ 8@t + i) ) (5.12)
=19

To prove (5.10), let B; denote the smallest number in [1, 00) with the property that
for any s € [0,00), k€ Z, m=1,...,d,and 0 € {(d —2)/2,01 — 1}

| Pe( A () | F(ry < Bi277F (1 + 82%%) 4y, 4 (o). (5.13)

We observe first that for any f,g € {Um,¥m : m = 1,...d}, r € [227222+2],
jeZ 1=1,...,d,and 0 € {(d—2)/2,01 — 1} we have the bounds

1PCFII sty S 277U+ 252920t p(0)  (5.14)

1P F OGN gy sy S 2 F(UH242) 12002 ay(0)+2 0y (0)) (5.15)
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To prove this we consider the cases k + j < 0 and k + j > 0, use the bounds (417
and (5.4) with w = 0, and simplify the resulting expressions using the fact that ay
is slowly varying.

We apply Py to (B12) to conclude that for any s € [0,00), k € Z, m=1,...,d

12 (A () sz ey S Z / 1P (9 () (M) g g2y I

aﬁ’y—l

I Sl LI CY R

a,B8,v7=1

(5.16)

With ky as before, using (5.15)), the first term in the right-hand side of (5.16]) is
dominated by

22]+1

Yy L IR0, 0Dl sz

a,Biy=1j>ko Y 277!
5 Z 2—ok 1+ 22k+2j)_42ja_j(2kak(0') + 2—ja_j(0-))
Jj=ko
< 9ok Z(l 922 (20 ay (o) + a_ja_;(0))
Jj=ko

< 2_°k(1 + 522k)_4bk75(0),

(5.17)

where the last inequality follows easily from (5.11) by checking the two cases k+ky >
0and k + kg <0.

We estimate now || Py(¢a(r)s(r) - A,(r) || for r € 2271221 It follows
from (5.I4)) that for any &’ € Z

P o)y sty S 277 (14 25559750 ey (o). (5.18)
It follows from (B.4]), (513]) and (53]) that
P 5() - A )y sy S B2 22 %a_s0_(0)
if k+j5 <0, and

1P (o ()b (1) - As (M) g stz oy S Br2™7Fe(1 4+ 22542) 71272y ()
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if k+ 5 > 0. Thus, with ky as before, the second term in the right-hand side of
(516) is dominated by

22j+1
S X [ RGO A gy ®
a,B,y=1j>ko
< B,27%¢ Z(l + 222N (k+ j)a_ja_j(o) + 1o (k + 3)bp22i ()
Jj>ko

< Bi277Fg(1 + 2% H250) 4, ooy (0).
Thus, by (B.16) and (5.I7), for any s € [0,00) and o € {(d —2)/2, 00} we obtain
1P (A ()| g,y ry < 2771+ 52%) b s (0) (1 + Bae),
which shows that B; < 1+ Bje and further By < 1. This completes the proof of

~Y ~Y

GI0). O
We prove now bounds on nonlinearity of the heat equation (Z.19)
d d
Kpo =2 0i(Ay) Z (A7 + 80 A) b +1 Y St (5.19)
=1 I=1 I=1

Lemma 5.3. (Control of the heat nonlinearities) For any s € [0,00), k € Z, m =
1,...,d and o € {(d —2)/2,00}

[ e

Proof of Lemmal53. Assume r € [2%72 2%2] for some j € Z and assume that

< (14 s2°K)~127% g, (o). (5.20)
Fy(T)

Fe {404, fg:1=1,....d, f,g € {tn, b, :n=1,...,d}}. (5.21)
We show first that for F' as in (5.21]) we have
IPE Ny sty S 27714 2255%) 0 0) (5.22)
where
277a_ja_;(o) ifk+j<O0;
; = . 5.23
¢k,j(0) {22k+Ja_jak(a) if k45> 0. ( )

If F' is of the form 0,4, or fg then the bound (5.22) follows from (5.10) and (5.11),
respectively (5.14) (recall that ax(o) is slowly varying). To prove this bound for
F = A? we use (5.10) and Lemma 5.0l with w = 0: if k¥ + j < 0 then

||Pk(A2( ))HFk(T 051/2(71) 2 Uk2 ]a_]a_]((f)
and if k 4+ j > 0 then
1P AR oty 222 s (o),
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These bounds suffice to prove (£.22).
We prove now that, with r € [2%72 2%%2] as before,

1P (Ko (1)) | mcry S €27 722 (L4 222) gy (0) + 272049 2a_y(0)].  (5.24)
In view of the formula (5.19), it suffices to prove that

1P(F () £ () |y + 281 Pe(Au(r) f () |y

. 5.25
562 O’k)22k‘(1+22k)+2]) [ak(a)+2_3(k+])/2a_j(a)], ( )

for any F as in (5.2I) and f € {t,,%, : n = 1,...,d}. In the proof of (5.25) we
need to use Lemma [5.1] with w = 1/2. From (&I7) we have

1P (f (D) < 27 Far(o) (1 + 2242) 74 (5.26)
We combine this with (5.22)), using Lemma 5.1 with w = 1/2, to obtain

1P (E () fDmry S 277F 2572700202 ja_(0), k4 <0

1P (E () f )l pry S 2778 (1 + 257)7192% 6 jar(o) b+ >0
which imply (5.25]) for the first term. By (5.10)), (5.26]), and LemmaB Ilwith w = 1/2

2| Pu(Au(r) f(r) ey S 222777278202 ja_j(0) k45 <0

2| P(A(r) f () mury < C277H (1 4+ 287) 712 a2 jar(0) k45 >0
These bounds imply (5:25]) for the second term.

We use now (5.24)) to prove (5.20). Assume s € [22Fo~1 22koF1) for some ky € Z.
We use (B.I8). If £+ kg < 0 then
22g+1

H/ SO P En()dr| <Z/ | PLEn (7))

S Z 22]62—0k22k2—3(k+])/ a—j(U) S 62—0k2(k+k0)/ af—ko(a)a
J<ko
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which suffices. If k + ko > 0 then, with dj ; as in the right-hand side of (5.24]),

H/ srAxP K (r)) dr )

S/ 672 Po(K () | ey dr+/ €% Po(K () | oy dr

0 /2
5 Z 2—20(k+k0)22jdk ; + 2_2kdk o
J<ko
5 2—20(k‘+k‘0) Z 52_Jk22k(1 + 22k+2j)—4[22jak(0.) + 2j/22—3k/2a_j(0_)]
J<ko

+ 277K (1 4 2% ko) g, (o)
5 EQ_Uk(l ‘l’ 22k‘+2k0)—4ak(0.)
which suffices. This completes the proof of the lemma. O

We are now able to prove the Fj(7") bounds (418) in Proposition 43 In view of
(2.19) we have

Pu(thn(s)) = €% Py(thn(0)) + / =2 Py (K (1))

0
Thus, from Lemma 5.3 and (£16]),([318) we obtain

1P () |y S 2778 (1 + s2%) 74k (0) + can(0)), o € {(d —2)/2, 00}
Due to the definition of ax(¢) in (5.2)) this implies that ax(o) < br(o) + cax(o), and
further ag(o) < br(o). Then (LI8)) follows.

Next we consider the Fy, bound (4.19) for the functions Py (A,,(s)i(s)). It follows

from Lemma bl (with w = 1/2), Lemma[5.2l and (£.17) that for any [,m =1,...,d,
and r € [2%772 22712

1P (AL () (P |y S 27772270202 a_i(0), k< —j
respectively

1Pe(A(r)om (M) [y € 2775251+ 227 a2 jar(0), k> =

Then (419) follows since ay, ax(o) are slowly varying.
Next we turn our attention to the LP¢ bounds in Proposition [£3. We start with
a general lemma, similar to Lemma [5.11

Lemma 5.4. Assume that T € (0,2**], f,g € H*>(T), Pyf € S(T), Prg € Li",
for some w € [0,1/2] and any k € Z, and

me= Y Pufllssry, ve= Y I1Puglpne.

|k’ —k|<20 |k’ —k|<20
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Then, for any k € Z

||Pk(f9)“Lfgc S Z 2%(%/% + Qd;jfz(k_k/)ﬂkl/k/) +2% Z 2wk k) e (5.27)
k' <k K>k

Proof of Lemma[5. We use the same bilinear Littlewood-Paley decomposition (£.9))
as in the proof of Lemma[5.1] and estimate each term. If |ko — k| < 4 and k; < k—4
then by the Sobolev embedding || Py f{|rs, S 27k/21,, we have

1Pe(Pe |+ Peag)lpre S 1 Pes fllpee | Progll pre S 2892 g, 1.
t,x s t,x

N 2$kﬂk

~Y

If |[ky — k[ < 4, ky < k—4 then we use the Sobolev embeddings || P || ;e 174

and ||Pkg||Li’dLgo S 2(%_$)kl/k to obtain

_d (1.1t
1P (Pef - Pra@)ll e S 1P fll e | Progll e S 27222720790 1y,
Finally if k1, ks > k — 4 and |k; — ko| < 8 then we similarly have
1Pe(Prr f - Peog)llza S 2525 Py fl e 2o 1Pl e S 292090270 1y,

The bound (5.27) follows by summing up the three cases above. O

We prove now Lﬁifc bounds on the connection coefficients A,,(0), m =1,...,d.

Lemma 5.5. Forany k€ Z, m=1,...,d and o € {(d—2)/2,00}
1P (A (0))l] 24 S 277 bi(0)- (5.28)

Proof of Lemma [543 We start from the identity (2.20)

A (0) ==>" /0 h S (VD) (s) ds. (5.29)

where, as before, Dy, = Oby + i Ay From (4I8) we have
[ Pithm ()] s0 < 2775 (1 4 52%) by ()

while from (@IF)), (£I9) we obtain

| PLD () |z S 2277 (s2) 51 + 52%) by (o).
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We use now (5.27) with w = 0 to estimate

d o
1P O)izs S 3 [ [BaGIDwa() 1z ds
1=1 70

S 27N bi(o) b2 +k/ (s225)73/8(1 4 $22%)~3ds

K<k 0

+270 3" by (o) 22 2782 ’f>/ (527)7%5(1 4 52%)ds

K<k 0

+> 27 by (o) b2 d/222’f’/0 (s2°%)73/8(1 4 s2°F") "ds

k'>k

S 2—akb Zbk’ (k' k/4+ Zbk’ bk’2 o'k;/ (k—k")d/2

k' <k K>k
S Q_kakbk(d).
Thus (5.28)) follows.

O

This concludes the proof of part (a) of Proposition[4.3l We next turn our attention

to part (b). We first prove LP? bounds on the field ¥4,1(s).
Lemma 5.6. For any k € Z and o € {(d —2)/2,01 — 1}
1Pe(ara(s))ll ra < C2727F0i(0)(1 + 527%) 7
Proof of Lemmal5.60. We use the heat equation (2.19) for ¢4 1,
(05 = Ag)thasr = K(as1);

d d d
K() =20y o(An) =Y (AT +id A +i Yy S
=1 =1 =1

We rewrite this equation in the form

Vas1(s) = e 2hg1(0) + / eCTIAK (g (r)dr.
0
Assuming that
1P ()]l ra S 27 ¥ (o) (1 + 527%)

we claim the following

/ A PR () (r) di
0

Pd
Lt,;v

5 822_(0_1)kbk(0)(1 +S22k)_2

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

By (ZI) the function e**+1)y,1(0) satisfies (5.33). Then a standard iteration argu-
ment shows that the solution ¥4 to (0.32)) also satisfies (5.33]). We note that by
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standard L bounds for the heat equation, (5.31]) admits an unique bounded solu-
tion on each interval [0, S], with S > 0. Therefore the solution obtained iteratively
must coincide with ¥4 1.

It remains to prove our claim. As in the proof of Lemma [5.3], assume that

F e {A?,alAl,fg:lzl,...,d, f,9 € {tn, b, in=1,...,d}},
Due to (5.22)) and (5.23) we have

HPkF(T)”Sén(T) S 2_(6—1)k(1 + S22k)_2(822k)_%bkbk(0). (535)
Also, by Proposition [5.2],
”PkAl(T)HSiM(T) S 2_ok(1 + 82%)_3(52%)_%6]@6]@(0'). (536)

Using (5.27) (with w = 1/2), (535), (5.30) and (5.33)) it follows that
| Pe(F @) () 2o + 28 Pu(A(r)(r))l] e S 27FDF(1 4 522%) 72(52%) 5070y (o)
forany k € Z,1=1,...,d, and o € {(d —2)/2,00}. Since b < * we get
| PeK (@) 20 S 2277 H(1 4 527)2(s2%%) "5y (o).
This implies (5.34]) after integration with respect to s since

/ (1+ (s — r)229) "N (1 + 12292 (r22) 5 dr < 2729(1 + 522) 72,
0

O
We conclude the proof of Proposition with the L? bounds on PyAgy1(0).
Lemma 5.7. The connection coefficient Aqy1 satisfies
1P Aan Oz, S 2 Mbelo),  d >3 (5.37)
respectively
A Ollz, S IPAaa )z, S 2770,(0),  d=2  (538)
Proof of Lemmali.38 To bound Ay, we start from the identity (2.20])
d 00
Aga(0) = =) /0 S (Yar1Ditn) (s) ds. (5.39)
=1
For 1441 we use the bound (5.30). For Dy, by (£18)) and (4.19),
1D e gz, S 22 au(0)(s22) 51+ 2%)2 (5.40)

To multiply L L2 N LP¢ and LP4 functions we will use the following bound: if

me= Y Pofllpengerss = D [Pwglle

|k —k|<20 |k —k|<20
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then, for any k € Z,
1Pe(fllz, S D 2D () + 2RI (5.41)
J<k Jj2k

This is easy to prove as in Lemma [5.4] using a bilinear Littlewood-Paley decompo-
sition and Sobolev embeddings.

In dimension d > 3 we estimate using (5.41]), (5.30) and (5.40):

[P Aas1 (0]l 2, <Z/ | Py (Va1 Duty) (s ez, ds

S 27y (o) / (s2%)7¥5(1 + 527)2ds

i<k
" Z 2—0-j22j2(k—j)(d_2)/2bj(O_)bj / (322j)_3/8(1 + 822j)—4d8
3>k ’

S 27 M(0) > b 207R 1Y " (o)by 27 2

<k >k

5 2_0kbkbk(0').

In dimension d = 2 the same computation applies, with the only difference that the
last sum can only be bounded by b%,(0)27°%. This gives the second part of (5.37).
For the first part we replace (5.41]) by

1fgllzz, <ZMI€ZV]+ZVI§Z,U] (5.42)
i<k i<k

Then repeating the above computation we obtain

[ Aar1(0)lz2, <Zbk252j B/ Zbk
!

i<k
O
6. PERTURBATIVE ANALYSIS OF THE SCHRODINGER EQUATION
In this section we prove Proposition [£5. For k € Z we denote
Z | Pt (0) i) (6.1)

For o € {(d — 2)/2, 00} we introduce the frequency envelopes

b(0) = sup 277270k=ilp( ). (6.2)
JEZ
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These are finite and belong to [? due to (£I2) and Sobolev embeddings. We also
have

1P (0)lgucry S 277 bi().- (6.3)
r ([£32) we need to show that bi(0) < cx(o). On the other hand from the
1
bootstrap assumption (431)) we know that b, < g, 2¢;. In particular

> by < e (6.4)

kEZ

1
For the connection coefficients A,, we use Proposition with ¢ = 2. The as-
sumption (AI6]) follows from the inclusion Gy, C Fj. We also need to verify that the
assumption (4.2I]) in Proposition 4.3 follows from (4.16) if ¢ solves the Schrodinger
map equation:

Lemma 6.1. If bi(0) are as above then the field 1441(0) satisfies the bounds
1Pitbas1 (0) za S bi(0)27 78, (6.5)

Proof of Lemma[6.1. We use the identity (2.9)

d
Yas1(0) =i > _(On(0) + iAi(0)(0)).
=1

From (4.18), (£20) and (4.11]) we have
1Pkt (O) | e 2z + 1PAIO)| e 2 S 277 bi(0). (6.6)

The L}% bound for the first term 0Jjty(0) immediately follows. The second term
A;(0)1,(0) can also be estimated by (6.0) using (5.41]), except in dimension d = 2.
If d = 2 then from (5.41)) and (6.6) we still obtain

1 Pe(Per4adi(0)eu(0)) [l 12 S 277 by (o).

However, in order to handle the high-high frequency interactions we need a stronger
bound on A; which follows from Lemma [5.2] namely

22| PeAi(0) o2 S 1 Pe(A1(0))l| 172y S &
k

Combining this with ([6.6]) for A; we easily obtain the remaining bound

| Pe(Por4adi(0)000(0)) ]l 22, S 277 by (o).
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Thus we can apply Proposition and Corollary 4.4l For convenience we sum-
marize the two main ingredients which are to be used in the sequel. On one hand,
for I =1,---,m we have the bounds

[1(8)]| oy S 277 br(0) (1 + 522F) 74

(6.7)
|PD(5) ) S 22774 (o) (s22) (1 + 5224)2
which follow from (4I8) and (£I9). On the other hand, for each
F € {1m(0)¢1(0), A7(0), Agy1(0)}
we have the bounds
1
I1PF |2 < eg2 " (o), d>3
’ (6.8)
1Pz, Seo,  I1PeFlliz, 277702, (0), d=2
Also by Sobolev embeddings and Littlewood-Paley theory,
1E g S D NPF 7200 S 1Y 2obi]? < <o (6.9)

k€Z keZ

Here the Agy; bound is from ([#23) and (Z24)), while the 1/,,,(0)¢;(0) and the A?(0)
bounds follow from (6.6) due to (B.41]).
For m = 1,...,d we denote the nonlinearity of the Schrodinger equation (Z.1T])

d d d
Ly = =20 A + (A1 + Y (A7 = i0A)) o — i Y SEith).  (6.10)
=1 =1 =1

For simplicity of notation, in this section we use sometimes v, for 1,,(0) and A,,
for A,,(0).

Proposition 6.2. (Control of the Schrodinger nonlinearities) For anym = 1,...,d
and o € {(d —2)/2,00} we have

| P (L) || N (1) S €027 by (o). (6.11)

Before proving the above proposition we show how to use it to conclude the proof
of Proposition Applying Proposition B.8 for the equations (ZITl), by (G.IT)) and

(#29) we obtain
1Pm (0l Gecry S 27 (ci(0) + eobi(0)). (6.12)
By the definition of by (o) this implies that
be(0) < cr(o) + eobr (o).
Hence
br(0) S ck(o)
which combined with (6.12) gives ([4.32), concluding the proof of Proposition



GLOBAL SCHRODINGER MAPS 37

The rest of this section is concerned with the proof of Proposition [6.2 which
follows from Lemma and Lemma [6.71 We begin our analysis with some bilinear
estimates:

Lemma 6.3. (a) If |k; — k| <80 and f € Fy,(T) then

1Pe(E Py S I ezallf Nl ey - (6.13)

(b) If ky <k —80 and f € Fy,(T) then
1P(F )y < 22222802 B 2 I f || a)- (6.14)

(c) If k < ky — 80 and g € G, (T) then
1Pe(Fg) [l wyry < 292220000 P 1 gl o). (6.15)

Proof of Lemmal6.3. Part (a) follows from the definition of Fy(T"), Ni(T"), and

IE 51, S 1 szagl e sz
Part (b) also follows directly from the definitions, since

1P(F )|y S 272 sup [|[Ffllpze 27 b sup ||f||L2oo L=

ecSd— —40 ecSd—

Finally for part (¢) we use Sobolev embeddings if d > 3,
1P (FPlwury S UPEDN o, S 252N F Iz llgll oo rasza.-

qd ~
t:v

If d =2 we need to use the lateral Strichartz estimates. Using an angular partition
of unity in frequency we can write

g=gn+g,  lallg +llgalle < 279 gl -
Then we have
IPF) v S (1Pl 34 +1Fgal 3)
€1 e2
< 200 F ) 2 (llonll ez + Nlg2ll 0)
S 26RO P 2 lgllg,, o).

O
The above lemma suffices in order to estimate the easier component of L,,:
d d
Ly = (A1 + ) A m — i Y S (rthm). (6.16)
=1 1=1

Lemma 6.4. Let F' satisfy (6.8) and ¢ € {¢y,, m=1,--- ,d}. Then
| Pe(VF) || vy S 502_0kbk(0)- (6.17)
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Proof of Lemmal6.4 We use a bilinear Littlewood-Paley decomposition

ko <k—80 |1 — ko <90
Py(Fv) = Py(Pep—soF Pp—apra?) Z Py (Py, F Ppy)) + Z Py ( Py, F Py,).
k1 —| <4 ot oo > k—80

The first term is estimated using (IB:B]) and ([6.9). For the second by (IB:ED

Fllzz 1Pl )

The summation with respect to ky < k — 80 is stralghtforward.
Finally for the third term we use (6.15])

| Pr( Py '+ Pryt0) || vy S 1P Fll 2 || Pl Gy (1)

If d > 3, then using (68) and that o > %, the third sum is easily estimated. If
d = 2, one needs to distinguish between two cases. If 0 < o < 1/12 then we bound
the right hand side by

| Pe( P, F Pyt || wy(my S 22102

().

9520272, (0) < 02 7F2 = by (o)

and the summation with respect to ki, ky > k — 80 is straightforward. If o > 1/12
then we bound the right hand side by

>k ( )bkz ~ (U)bkbkz

and the summation with respect to ki, ks > k — 80 is again straightforward. O

It remains to estimate the second part of L,,, namely

d d d d
Lo =—20)  AOthm —i Y O A b = =i Y O(Aithp) =1 > Ao, (6.18)
=1 =1 =1 =1

For this we first complement Lemma with two L? bilinear estimates:

Lemma 6.5. (a) If ky < ko, f1 € Fi,(T), and fy € Fy,(T) then

£+ fallzz, S 2922 Al e, a1 foll iy - (6.19)
(b) ]fkl S k27 f € Fk‘l( ); a'ndg € sz( ) then
1 - gllzz, S 2022202 fl g oyl o) (6.20)

Proof of Lemmal6.3. Part (a) follows by Sobolev embeddings from
1f1- f2||L§,x S ||f1||L§L§d||f2||Lg°Lgmij§C-

For part (b), we first observe that, using a smooth partition of 1 in the frequency
space, we may assume that F(g) is supported in the set

{(&7) - lg] € 2271, 2% ] and € - e > 277}
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for some vector e, € S¥!. Thus
l9lez < 27 lglley, ) i Al < 257 (6.21)

Then in dimension d > 3 we have

17~ gllz, SN zecllgllpoee S 250722202 gy llglleiy, (-

The argument is more involved if d = 2. Given the definition ([B.I3]) of the Fy(T")
space in terms of F(T), it suffices to show that the following bounds hold for FQ(T'):

1F - glliee S W llrp, o lgllery@ys K1 = ko = 100 (6.22)
respectively
1f - glle S 2572 fllo mllgllen, @, ka < k2 = 100. (6.23)

The bound (6.22) follows easily by estimating both factors in L},. For ([6.23), on
the other hand, we use the local smoothing/maximal function spaces. Precisely, for

g as in (6.21]) we have
1 gllez, S Iz sup || Pygll ez S 28782 fll o 1y 9l

€0: Wk +40 |A|<2k2—40
as desired. 0

The bilinear estimates in Lemmas[6.3][6.5 allow us to obtain corresponding trilinear
estimates. We denote by C(k, ki, ks, k3) the best constant C' in the estimate

| P (Pry f1Pry f2 Prs ) || v

d—2 _
< 0277 Wt P |5y (o) || Peo fall By () | Prs 9l ) -

Using the L{°L2 N L% norm for each of the three factors and the Lf}; norm for the
output, by Sobolev embeddings one can easily show that
C(k, k1, ko, k3) S 1.

We seek to improve this with certain off-diagonal gains:

Lemma 6.6. The best constant C = C(k, ky, ks, k3) in ([6.24) satisfies the following
bounds:

(6.24)

2(k1+k2)/2_k k‘l, k‘g < k—140
C(k, Ky, ko, k3) S ¢ 271k=ksl/6 k, ks < ky — 40 (6.25)
2 |Akl/6 otherwise

where Ak = max{k, ki, ko, ks} — min{k, kq, ko, k3}.

Proof. In the case kq, ko < k—40 we must also have |k3—k| < 4. Then we successively
apply (6.20) and (6.14).

In the case k, k3 < k; — 40 we apply first (6.19) and then conclude with (G.15) if
k < ks, respectively (6.14) if & > ks.
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In the remaining case we can assume without any restriction in generality that
k1 < ko. Then there are two possibilities:

(i) k3 < k and |k — ko| < 40. If k; < k3 then we use (6.19) for Py, foPr,g and
then conclude with (614). If k3 < ki then we use (6.19) for Py, f1DPk, fo and then
conclude with ([6.14]).

(ii) ks > k and |k3 — ko| < 40. If k; < k then we use (6.20) for Py, fi1 P9 and then
conclude using only Strichartz norms. If k,,;, = k then we use (G.I9)) for Py, f1 Py, fo
and then conclude with (G.15]).

L]

Lemma 6.7. The following estimate holds:

| PeLm2|| vy S €027 7 by (o). (6.26)

Proof of Lemma[6.7. To bound L,, > we use the representation (2.20) for the con-
nection coefficients A;. Thus using the short notations A, Dy and ¢ for A,,, D,, ¥,
and 1, with m = 1,d we can write

| Pedu(A%) oy < /0 10, Pt ()D()0) |y (s

S Y [ IR U P (D) Pt s

k1,k2,k3 0

S 2kCo!|Pk3¢||Gk3(T)/O [Pky 0 (8) | 5 (00 [| Pro (D)) || 3 () s

k1,k2,ks

where Cy = C(k, ki, ko, kg)Q%(k”kﬁkr“. For the term Ad,1Y we obtain a similar
bound but with 2* replaced by 2% since 102 Pes ¥l (m) S 2k3||Pk3@/)||Gk3(T). Thus

1PeLmallnery S Y 2mRICo|| Py, o)

k1,k2,ks
X/O [Py 0 ()| 7o (1) | Preo (DY (8)) || 7y s

For the last two factors we use ([6.7)). Thus we need to evaluate the integrals
Dk = / (1 + s22k1) =122 (52%2)73/8(1 4 52%h2) =25 < o7 maxthia),
0

Taking this into account, from (6.7)) and (6.3)) we obtain
||PkLm,2||Nk(T) 5 20k Z C(]{?, ]fl, ]fg, k3)2max{k,k3}—max{k1,kg}bkmmbkmmbkmaz (O’)

k1,k2,ks
= 2°F (S| + Sy + S5)
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where the sums Sy, Sy and S3 correspond to the three cases in (6.25]) and the indices
{Emin, Emids Kmaz } Tepresent the increasing rearrangement of {k, ko, k3}. Then

Sl 5 Z 2_|k1_k2‘/2bklbk2bk(0) 5 60bk(0').
k1,k2<k—4

In the second case we have full off-diagonal decay

k3<ki
Sy < Y gmaxlkkal-kiglk-kal /Sy, b b (0) < eobi(o).
k1>k

In the third case max{k, k3} = max{k;, k2} therefore we obtain
53 5 Z 2_|Ak|/6bkmin bkmidbkmaac (U) S Eobk(0)~

k1,k2,ks

7. THE MAIN LINEAR ESTIMATES

In this section we prove Proposition B.8 We use the notation of section 3], see
in particular the definitions [3.3] and 3.7l We define two more classes of spaces,
which are used only in this section. Given a finite subset W C R and r € [1, 00| we
define the spaces » " L2, and ()" LY, using the norms

16115 pzg, =W inf > loallig (7.1)
Lorew O3 o
and
r _ -1 r
917y 12g, = WIS 8152 (72)
AEW
Clearly, ' LYY = L2y (compare with definition B.3) and
. /
1ol rrg, < N0l ppg <77 (7.3)

We first consider the homogeneous equation
(10, + Ag)u =0,  u(0) = f € L*(RY)
which has the solution u(t) = €2 f. For this we have the following:

Lemma 7.1. Assume f € L?(RY), k € Z, and e € S~'. We have:
(i) Local smoothing estimate

sup [} Profll e < 112 (7.4)

|)\‘§2k75
(11) Mazimal function estimates:

1€ Puf | 2 S 2942 £, d>3, (7.5)
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and, for any KC € Z.,

11 (—g2k g2y (£)€™ P f || 52 A S 220 £l e, d=2. (7.6)
191) Strichartz-type estimates:
(iti) yp
€ 20 S 11z, (7.7)
and '
€2 P fll pra poe S 257 £ 2. (7.8)
If d=2 and (p,q) € (2,00] x [2,00], 1/p+1/q =1/2, then
€2 Prefllpze S 22XV fllre, p >4, (7.9)
and '
€ P fll e Sp 22 fll2, p<aq (7.10)

Proof of Lemma[7. The Strichartz estimate (7.7) is well-known, see [40]. As a
consequence we obtain

||6itAPkf||Lde§d + 2_2k||at€itAP’ff||Lde5d SE

The maximal Strichartz estimate (7.8)) follows. The local smoothing estimate (7.4))
is proved, for example, in [13] and [14] for A = 0. The general case follows using the
Galilean transformation T)e, see the definition (3.6)). The maximal function estimate
([CH) is known, see for example [13] or [14]. The lateral Strichartz estimate ((Z.9)
follows by interpolation between (7.4) and (7). The lateral Strichartz estimate
([710) follows using a standard T7T* argument and the Hardy-Littlewood-Sobolev
inequality. We prove below the maximal function estimate (Z.6]), which represents
our main new contribution to the linear theory.

Proof of (7.0). We fix e € S'. By rescaling we can assume that X = 0. We may
also assume that k£ > 1, since for £ < 0 one has the stronger bound

111y ()™ Pofllzree S 11F | e
We need to show that

I Pefllge e S 2 £l (7.11)
eWiis

We show first that if ||g||nz 721 < 1 then
e,Wiis

[ SO R ) dedt| S 2P (112)
R2xR
This can be rewritten as

| [ RGO 0 a) dtda] £ 2
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[

Hence it suffices to show that
‘ / / 9(z, )11 ()Y, 8)1-11(s) Ki(z — y, t — 5) dadtdyds| < 28 (7.13)
R2xR JR2xR

where

or equivalently

< 2k/2
L2

Ki(a,t) = / e () de. (7.14)
R
By stationary phase

R4 2% )70 Jaf < 28
[ Kn(t, )| <
22 (14 28a] )N || > 25H4e].

The key idea is to foliate K} in the e direction with respect to (thickened) rays with
speed less than 2845 We observe that for t € [—2, 2]

Ki(t,2)| S Y Kpalt,x),  Kia(t,o) = (1+2%z-e— M)
)\EWk+5

Hence the left hand side of (Z.I3) can be bounded by

1 1
> [ [ K- - ot ollste. 0ldadgasas
-1J-1

)\EWk+5
$ 3 Wl ol ol £33 Mol 2ol
AEWi 45 AeWpis

where we used the fact that |W;. 5| ~ 22*. Thus (Z.12) follows.
Formally the main bound (7.I1]) would follow from (7.12]) and the duality relation

2 ! 2
(ﬂ LZ:%/Vk+5> - Z Li:%.;k%'
However this duality relation is not entirely straightforward so we provide a direct
argument. Let x(¢) be a function which has the following properties:
a) Fy is smooth and with compact support.
b) x(t) # 0 for ¢t € [-1,1].
Then x is rapidly decreasing at infinity, therefore from (7.12)) it follows that

| / 9 OO Pef) (o, 1) dadi| S 2| (7.15)

whenever ||g||2 21 < 1. We will use this to prove a stronger form of (C110),
eWgis

namely
(O™ Pufllys 2 < 25 fllze. (7.16)
eWkis
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The advantage is that the function v = ()¢ P,f has a compactly supported
Fourier transform. To obtain (7.16]) from (7.13]) it suffices to show that

. < )3(x, t)dadt: Lo<1 717
lolls s, S { [ utotote,aodss lalepzy, <1} (77

Indeed, suppose that the space-time Fourier transform Fu is supported inside a
ball B. We define the normed space
Xp ={h € L*(R* x R) : F(h) supported in B and ||h][4 = ||h||22L2,;; < 00}.
eWk+5
We also use a larger ball 2B and the corresponding space Xsp.
Since u € Xp, by the Hahn-Banach theorem there is A € X}, so that ||u|lx, =

A(u) and ||Alxz; = 1. By the Hahn-Banach theorem we can extend A to Xpp. On
the other hand, for any h € Xsp

1Pl x5 S (1P 22-

Thus, using the Hahn-Banach theorem again, there is a linear functional A’ : L? — C
such that A’'(h) = A(h) for any h € AN L? and |A'(h)| <p ||h| 2 for any h € L2
Therefore there is g € L?(R? x R) with the property that

A(h) = / G- hdzdt for any h € Xop N L2
R2xR

We consider a space-time multiplier xz(D) whose symbol is smooth, supported in
2B and equals 1 in B. By the choice of A we have

[ullg2 200 = Alu) = / G- udrdt = / x5(D)g - udxdt
eWkys R2xR R2xR
Hence for (7I7) it suffices to prove that
D : < 1. 7.18
o(D)gllp sz, S (7.15)

Since x (D) is a bounded operator on 37 Lzzovﬁk% and A is bounded in Xy5 we have

/ x5(D)ghdxdt / ?XB(D)hdfdt‘ S Alls2 200
R2xR R2xR *Whits

for all h € S22 L% N L2 In view of the duality relations (L2})" = L>S° we can
YWV Ek+5 e, e,
optimize the choice of h above to obtain (ZI8). In order to guarantee that h € L?

one can carry out this analysis first in a compact set, and then expand it to infinity.
O

We return to the proof of Proposition 3.8, which we restate here for convenience.

Proposition 7.2. (Main linear estimate) Assume K € Z,., T € (0,2%~], and k € 7Z.
Then for any uy € L? localized at frequency 2F and h € Ny (T), the solution u to

(10 + Ay)u = h, u(0) = ug (7.19)
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satisfies
[ullGpry S llwollzz + Al ver- (7.20)

__The proposition follows from Lemma[Z.3land Lemma [T 4 below. If d = 2 we define
Gx(T) as the normed spaces of functions in L2(T') for which the norm

191G,y = 19lcuer) + 272 sup 9]l gepzee  +2%° sup sup [|Pye0 o
eesS! Wi+35 |7—k|<25 ecS!

—|—2k/2 sup Ssup Ssup HPj,e(bHLooﬂ
|7—k|<25 eeST |\|<2k—35 e\

is finite. In other words, we replace the norm LY Wirwo = =L Wiowo 11 (B12) with

the stronger norm %2L>% compare with Definition B.7 and (Z.3]), and readjust

e,Wgi3s5?

slightly the ranges of 7 and A. Similarly, if d > 3 let

19116,y = Dllayery + 22 sup  sup || Pjed 2.
lj—k|<25 ecSd—1

It is easy to check from the definition that

m—

I, oy Z ot (8) G, o) (7.21)

1=0

for any partition {—T = ty < ... < t,,, = T} of the interval [-7,7T] and any
v € Gi(T'). This property does not hold for the spaces G (T) if d = 2.
The solution v for (ZI9) can be represented as

t
u(t) = e®uy +/ et=92p(s)ds.
0

As a consequence of the Lemmal[l ], we immediately obtain (7.20)) for the first term.
More precisely, for any f € L?(R?) localized at frequency 2% we have

€2 ll, ) S 11l ze- (7.22)

It remains to make the transition to the full inhomogeneous problem. We divide
the Ny (T) space into two components, Ni(T) = N)(T) + N}(T) with norms

= —|—26 —|—26
Wit = il Ul 42008 g+ P g
|y ry = 2772 Sup 11l ez, -
ec

in dimension d = 2, and

gy = 1l I llviery =272 sup || £l 20 (7.24)

ecSd-1
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in dimensions d > 3. The spaces NY(T') have the property that if f € NY(T) and
—T=ty<t; <...<t, =T is a partition of the interval [T, 7] then

m—1
Z ||f ' 1[ti7ti+1)(t)| 1;\}2(7“) < ||f||I])\}2(T) for some < 2. (725)
1=0

This property is easy to verify for p; = p/, if d > 3 and p; = 3/2 if d = 2. The
spaces N} (T) do not have this property. From Lemma [T} by duality, we obtain
the energy bound

t
/ e =2 (s)ds
0

Lemma 7.3. Assume that u € L2(T) satisfies
(10, + Ag)u =h on R x [T, T], u(0)=0.

S hllvoery — for any b € NY(T). (7.26)

L2

Then
lullg, zy S WAl oy

Proof of Lemma[7.3 This lemma is an abstract consequence of the homogeneous

bound (Z.22)), the energy bound (Z.26]), and the bounds (Z.2I]) and (Z.23]).

The simplest way to prove this lemma is by using the UX and V! spaces associated
to the Schrédinger evolution. These spaces have been first introduced in unpublished
work of the last author, as substitutes for Bourgain’s X*? spaces which are better
suited for the study of dispersive evolutions in critical Sobolev spaces. They have
been successfully used for instance in [27], [28], [3], [10].

For convenience we recall their definition. VX is the space of right continuous L?
valued functions with bounded p-variation along the Schrodinger flow,

lullve = llullzge s + sup ) Jlultisr — e (t)|17,
t/ ez

where the supremum is taken over all increasing sequences t,. On the other hand
UX is the atomic space generated by a family A4, of atoms a which have the form

a(t) = €Y Mg, Y [lullf. <1,
k k

where the sequence {t;} is increasing. Precisely, we have

Ux :{u:chak: Z|Ck| < o0, ap€ A,}.
k

The above sum converges uniformly in L? it also converges in the stronger V}
topology. The UX norm is defined by

lullgr =i} " lexl : w=">"crar, ar € A,}.
k
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These spaces are related as follows:
UR Cc VR C U3, 1<p<q< 0. (7.27)

The first inclusion is straightforward, but the second is not. As a consequence of

the bounds (7.22)) and (Z.21]) we have
lullg, ) < llullog (7.28)

for all u € U% localized at frequency 2*. On the other hand, as a consequence of

the bounds (7.26) and (Z.25) we have
t
lullgs < Ilwg. ult) = [ 93 n(s)as. (7.20)
0

The lemma follows using (7.27) and p; < 2.

One could also provide a self-contained proof which does not use the spaces UX
and VX, in the spirit of the Christ-Kiselev lemma [6], or of the proof of the second
inclusion in (C.27) (see [27, Lemma 6.4]).

O

We estimate now the contribution of terms in N} (7).
Lemma 7.4. Assume that v € Li(T) satisfies
(10, + A)u = h on R x [=T,T], u(0) = 0.
Then
[ulle @) S Ihllnger)-

Proof of Lemma[74). The spaces N}(T) do not satisfy (7.25), so the general argu-
ment given in Lemma does not apply. We give a direct argument starting from
the definition of the spaces L(lj\ Using a smooth angular partition of unity in
frequency we can assume without any restriction in generality that A is frequency
localized to a region £ - e € [2872 28+2] for some e € S¢~1. After a Galilean trans-
formation, we may assume that h € LL? and it suffices to prove the stronger bound

1PePjetllg,m S 2720l e, -kl <4 (7.30)

Suppose e = e;. The solution u can be expressed via the fundamental solution K
for the Schrodinger equation as

utt.o) = | [ Kot = 5.0 = )hts, s
s<t

= / Ko(t - 5,71 — Y1, z' — y’)h(s, Y1, y/)dyldy,ds
s<t JRY

= / Uy, (tv x)dyl
R
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where
Uy, (t,2) = / Ko(t — s,21 —y1, 2" — y)h(s, y1, ¥ )dy'ds.
s<t JRd-1
It suffices to show that
1PeP ey, gy oy S 272 1)l 2 (7.31)
This is a consequence of the following:

Lemma 7.5. Suppose that |j — k| < 4. Then the function PyP;e u,, can be repre-

sented as
Pkpj,eluyl (t> l') = (P<k—40,e11{$1>y1}) . PkpjﬁleitA'UO + w(t’ $); (7 32)
[vollz2 + 27 (|Aw| 2 + 10wl z2) < 2721 h(y1) | 2. '

To see that this implies (Z.31)), notice that, since w is also localized at frequency 2%,
the bound for [[wl|g, ) is obtained from Sobolev embeddings. We observe also that
the function Pcj_40.e,1{z,<y,} is bounded while v = PkPj,ele“Avo is an L? solution
for the homogeneous equation which is localized at frequency 2*. By Lemma [71]
this allows us to directly estimate all components of its ék(T ) norm except for the
LZ?/’\2 and the L3 bounds if d = 2, respectively the L2 bound if d > 3. For these

we need an additional step: if |k — k| < 25 and e € 8¢ we take advantage of the
frequency localization of the above cutoff function in order to write

Pkl,e[(P<k—40,e11{x1>y1}> : U] = Z Pk1,e[(P<k—40,e11{x1>y1}> : sz,ev]-

|ka—k|<30

This suffices to prove (Z31)), in view of Lemma [TIl It remains to prove the last
lemma.

Proof of Lemma[7.0 By translation invariance we can set y; = 0 and drop the
parameter y; from the notations. The Fourier transform of P Pje, u is

@) ;.
R L

On the other hand the Fourier transform of v = P, Pje, ey equals

(Fo)(7,8) = xx(1€])x; (&) vo(§) 0y gp2-

Assuming that ¢ is supported in the region {|¢| ~ 2%, & =~ 27}, after truncation we
obtain

F(Permtnr L PO E) = Oar(IED 60 ige) + X220,

(F(Prbjeu))(7,§) =
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On the {& > 0} part of the paraboloid we can write

1
5T+‘5‘2 = 29/ —F — ‘5,‘2551—\/—7——|§/‘2'

Hence, with the notation &, = \/—7 — |€/2, the above convolution gives

Y c o 1 <k— —¢
F((Porctoe o)) () = 36((G €N (606 € K==
&+6 X<k-10(§1 — 51)
251 _7—_‘5‘24—7[0 '

= —Xk(|(§1,fl)|)Xj(§1)U(~1,§,)

Matching the two expressions on the paraboloid 7+ |£|* = 0 we see that it is natural
to choose vy of the form

h(|€%,€) € € supp xx([€])x; (&)
vo(&,8') =

0 otherwise.
Changing variables we obtain the required bound for v, namely
_k
[vollz2 S 272 || 2

It remains to consider w, whose Fourier transtorm is obtained by taking the
difference, w(r, &) = h(1,&)q(7, ) where

G+6& 1

26, -1 —¢)2+i0
The expression in the bracket is supported in {&; ~ 2%, |¢/| < 2F} and vanishes on
the paraboloid {7 + |£|> = 0}, canceling the singularity. Thus we obtain

lg(m, )1 S (171 + 1)~
The bounds for w follow. O

q(1,8) = (xk(\ﬁ\)xj(&) — (&1, €)X (&) Xah-10(&1 — &)

8. PROOF OF PROPOSITION

In this section we prove Proposition Recall that the frequency envelopes
k(o) and v, have the properties

Y iR <
hez (8.1)

1 Pedloorz < 277 (o) for any o € [0,00) and k € Z.

We start with two technical lemmas.
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Lemma 8.1. Assume f,g € L®(R? x (=T,T) : C), Ppf, Pog € L°L? and define,
for any k € Z,

Qg = Z 2% P2\ P fllierz, B = Z 22| P gl peer2.- (8.2)

|k —k|<20 |k’ —k|<20

Then, for any k € Z,
2dk/2||Pk(.fg ||L°°L . Z ﬁk’ + /8]9 Z (657 + Z 2” dlk'— k'ak/ﬁk/ (83)

k' <k k'<k k'>k

In addition, if ||g||L=, < 1 then, for any k € Z

22 Pi(fo)llgrz S an + By Z Qg + Z 27 H ey By, (8.4)

K<k K>k

Finally, if | fllze, + gllzee, < 1 then, for any k € Z

z,t —

2dk/2||Pk(f9)||L§°Lg Sap+ Gt Z 27K =kl By, (8.5)
K>k

Proof of Lemma[81. We decompose the expressions to be estimated into Low x
High — High frequency interactions and High x High — Low frequency interactions.
We estimate Low x High — High frequency interactions using the L2% norm for the
low frequency factor and the L° L2 norm for the high frequency factor. We estimate
High x High — Low frequency interactions using the L L2 norms for both factors,
and Sobolev embedding.

For example, for (8.3)) we estimate

1P(fP)llere S D NPe(Paresf - Pogllzerz + > I1P(Prrf - Persg)ll ez
|ko—k|<4 |k1—k|<4

+ > 1Pe(Piy f - Peog)ll o2
ki,ka>k—4,|k1—k2|<8

S N Pasflliz N Proglleerz + > 1 Pofllreerzll Per—sgllies,
|ko—k|<4 |k1—k|<4

+ > 2% P f - ProgllLe

k1,ko>k—4,|k1—k2|<8

5 Z ak12_dk/2ﬁk + Z 6k22—dk/2ak + 2dk/2 Z 2_dklak/ﬁk/,

ko <k ko <k K>k

and the bound (8.3)) follows. To prove (IH) we use a similar argument, but estimate
||P§k_5g||L;o 1 instead of ||P<j— 59||L°°t N Zk2<k By, For (81]), we also estimate

[ Per—sfllre, S 1instead of || Pag—s5fllrze, S D gk Qho- O
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Lemma 8.2. Assume f,g,h € C®°(R¢ x (=T,T) : C) and Pyf, Pyg, Puh € L*L?
for any k € Z. Let

pe= Y 2%P(|Pufllrerz + | Prgllerz + | Pohllrer2).
k' —k| <20

We assume that || f||re, + [lgllzee, + AllLe, < 1 and supyey e < 1. Then, for any
keZandlm=1,...,d

292\ Py (f0190mh) | ootz < 2% [1n Z 27y + Z 2 (@=2I=R 2T (8.6)
k' <k k' >k

Proof of Lemmal8.2. By symmetry, it suffices to estimate

>N 2% Pi(f - Py (019) - Py (Omh)llzeer2,

ko €7 k1<ko

which is dominated by

S 2 PPepys(f) - Py (919) - Pra(@n))l o2

ko>k—4 k1<ks

£33 S 2 PBUPL() - P (Bi9) - Pra(0h) ez

ko€Z k1<ko k3>kao+5

+N N 22 PPy (f) - Pr(019) - Pry(Omh))|lppers = I+ 11+ I11.

ko€Z k1<ko ‘kg—kz|§4

We estimate

1< Y > 2%P|Pu(Paky5(f) - Py (019) - Py (Omh) 5oz

|ko—k|<4 k1<k2

F Y 2 PIRPatolf) - P(09) - Pro(0uah) e

ko>k+5 |k1—ko|<4

S YD 2 Py (£l | Py (009) | 222, | Pro (OB [ 5012

‘kz—k|§4 k1<ko

+ > Y 2% P ()i, 1Py (919) e 22 | Pro (Omh) [ 50122

ko>k+5 |k1—ka|<4

S Z 29 1, 25 + C Z 2~k kigha 2
k1<k ko>k
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which is dominated by the right-hand side of (8.6). We estimate
< S ST 2% RP(Py(f) - P (9i9) - Pey(0nh)l ez

|ks—k|<5 k1,k2<k+5

S > D 2%PIPu(Nllierl P (89) s, | Peo (0mh)) g,

‘kg—k|§5k1,k2§k+5

}: k1 2

SJILLk( 2 /’l’kl) )
k1<k

which is dominated by the right-hand side of (8.6]) since sup,cy 1, < 1. Finally, we
estimate

1< Y Y Y 2%PYPu(Pey(f) - Pr(9i9) - Pro(Omh)) |l 15or2

ko>k—8 k1<ka |k‘3—k‘2‘§4

S D> > 21PNl P (09 1, | Pra (Omb) |l 22

ko>k—8 k1<ka |k‘3—k‘2‘§4
5 Z 2dk2—dk2 2/62”%2 Z leﬂkl
ko>k k1 <k
which is dominated by the right-hand side of (8.6)) since supjcy pt, < 1. This com-
pletes the proof of (8.6l). O

We construct now the function 5

Lemma 8.3. Assume ¢ € Hy"™(T') and {vx(0)}rez be as in (81)). Then there is
a unique global solution qz € C([0,00) : Hy"™(T)) of the initial-value problem

0.6 = Aab+ - 3201 10m  on [0,00) xR x (<TT) oy
¢(0) = ¢. '
In addition, for any k € Z, s € [0,00), and o € [0, 04]
1Pi((5)) ooz S (1 + 52%)=7127 (o), (8.8)
and, for any o,p € Z,
Sup )(S + )72 V20 (6(5) — Q)ll 12 < o0 (8.9)
s€[0,00

Proof of Proposition[83. Let M = Y, _,(22F + 1)||Pk(q5)]|%?oL2. A simple fixed-
point argument shows that there is S = S(M) > 0 and a unique smooth solution 5

for (877), with ¢ — Q € C([0, 8] : H>>*(T')). In addition, for any o,p € Z,

up 16(5) — Qllseriry < C(M, 5, p, |6 — Qll ez, (8.10)
s€|0,



GLOBAL SCHRODINGER MAPS 53

and
d d
0u('6- 0 —1) =20 Do +2) |00 +2('0- 60— 1) |0l
m=1 m=1

This shows that |¢| = 1, thus ¢ € C([0,5] : Hy™(T)). We prove now a priori
estimates on the solution 5
For any S’ € [0, S] we define

Bi(S') = s ilélz)(l + 522) 7 22 | P (6(5)) || ez (8.11)
s€[0,87

It is easy to see that By : [0,.S] — (0,00) is a well-defined continuous nondecreasing
function and limg/_o B1(5") < 1.
Using Duhamel’s principle, for any k € Z and s € [0, S]

PGS = (P + [ e O3 [R3) - o l0nd ] as. (812)

m=1

Hence for any k € Z and s € [0, 5]
212 Pu((s)) | gerz < €7 722 P || oo 12

+ /8 e—(s—s’)22k’22dk/2 (813>
0

ds’.

P[o(s) - 3 10md(s)I7]

LEoLg
In view of the definition (8I1]), for any s’ € [0,5'] and k' € Z
2% )| P (9l r2 < Bu(S) (1 +82F) 7 .
It follows from (8.6]) (since d > 2) that, for any k € Z and s’ € [0, 5],

2dk/2

d
pk[a(s')-me&E(s/)P]H CS2EBIS Y A1+ 82) L (3.14)
m=1

L L2 et

We substitute this bound into (813) and integrate in s’. We notice that
/ e TN+ I N)ds < s(14 As) " (14 Ns) ™! (8.15)
0

for any s > 0 and 0 < A < N. Using (1)), for any s € [0,5'] and k € Z we get
252 P((5)) | Loz (1 + 52°%)

<+ Bl(S/)222k(1 + 322k)01 /5 6_(S_S/)z2k/4 27’3’(1 + 812%')—01 ds’
’ W2k (8.16)
< v + B (9)%2%s Z V2 (1 4 2% 5) !
K>k
S+ Bu(S) %,
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which gives
Bi(S') S 1+4Bi(9")?

Since By is continuous and B;(0) < 1, it follows that By(S’) < 1 for any S” € [0, 5]
(provided that ~ is sufficiently small). Thus for any k € Z and s € [0, 5]

2dk/2||Pk(¢~5(5))||Lg°Lg < C(1 + s2%k)71,. (8.17)
We control now (1 + s22k)”12”k||Pk(gg(s))HLooLz o € [0,01]. We define

BQ(S) = sup sup Sup(1+822k)0120k ( ) IHPk( ( ))HL;’OL%
c€{0,01} s€[0,5] kEZ

It is easy to see that By(S) < oo. It follows from (8.12) that

| Pe((s)) 2227 (1 + 52%)7 < (14 527) e ‘522'“2%(0)
+ (1 + 5277y / R | o Z\@m
0

for any s € [0, S]. Using the definition of By(S) we have
2% 12|| P (3(5")) || 1oz S Ba(S)(1 + 522~ 28 290k y (7). (8.19)
We combine this with (817). It follows from (8.6]) that

(8.18)

~

ds

L L2

20k

Pi[¢ Z |0 (s’ HLW S2%By(9) Y 2F (1 + 22) Ty (o),

K>k

for any k € Z and s € [0, S]. Using (8.I5)

(1 + 822k)01/ e—(s_s/)22k 22crk Z |8m¢
0

S sBay(5) Z 2 i (0) (14 52°) 71 < Bo(S)mve(0)
K>k

It follows from (B.I8)) that

Bs(s) S sup SF-p}'Yk(o')_lHPk(a(s))||Lt°°L§2Uk(1 + 5277 S 1+ yBy(9),
€7 s€l0,S

ds’

LgL;

Since v is small this gives By(S) < 1. Thus for any k € Z, s € [0, 5], o € [0, 04],
27| Pe((8)) | oer2 S (o) (1 + 2%%) . (8.20)

As a consequence, the solution ;5 can be extended globally to a smooth solution

¢ € C([0,00) : HG™(T)) of (81). The bound (B3) follows from (817) and (820).
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It remains to prove the bound (8.9]), which follows from (88]) (applied for ¢ = 0
and 0 = 01) for p =0 and o < g;. It follows also from (88) that for any s > Sy =
(M/y)*>1,0€[0,00 +10]NZ, and my,...,m, € {1,...,d}

10y -+ Oy (6(5) = Q)llzm, D 2%22* || Pu(6(s) — Q)| ez

keZ

5 ZQdk/ZQkU(]_ + S22k)—01M (821)
kEZ
< MS—1/2S—U/2

and

100 - - Oy (3(8) = Dllerz S [ D 22| Pu(ls) — Q)20 2] S Ms™/2. (8.22)

kEZ

For S > 5 let

Myo(S)=M+1+>" %" sup 7|V (6(s) = Q) 1erz-
1< 1< SE[S(),S]
o'<o p'<p
As in (821)),
S PIVT (6(s) = Qllng, S 572 M,0(S) (8.23)

z,t N

for any s € [Sy, 5], p/ < p, and ¢’ < 0 —d/2.
We prove first ([89) for p = 0 and ¢ > 01 + 1. We use induction over o, (82I)),
(B23), and (B7) to estimate, for s > 25,

SIS gz < 8”/2||6(5_S°)A(V"5(So))HLsz

R A EUR S ST
~ s/ ~ d ~
< 11950}z + / 16 32 e (5.24)
s 1 d
+so/2/8/2m“val mZ:l\a )| e '

< (CoMs™ )My (s) + Co(Moo-1(5))’.

It follows by induction that sup,.g, Mo ,(s) < oo for any o € Z,, and (89) follows
for p = 0.

To prove (89)) for a pair (p,0) € Zy X Z,, p > 1, we may assume by induction
that sup,>g, My-1,/(s) < oo for any o’ € Z and sup,>g, M, s-1(s) < oc. In view of
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(B7), the function v, = 8¢ solves the heat equation

(05 — Ay)vy, = v, - Z\am¢\2+2¢ Z Oy + Ep

d
> " [10m@l* 5 — 20,(6 - 1 (0m0))] vp—l—Z@ 26 - 1(0md) - v,) + E,.1 (8.25)

m=1

Pv+Za (Qu - v,) + E, 1.

It follows from (I@I]) that for any s > S

d
53/2’|P||Lg?t +s Z [Qmllzee, S M. (8.26)

In addition, it follows from (8:23]) and the induction hypothesis that

S;J'S [53/250//2||V5P”Lgf’t +50l/2+1||v;/Qm||Lgf’t _'_53/250//2||vg/Ep—1||L§°L§] < 00
$200

for any o/ € Z; and m = 1,...d. An estimate similar to (824) shows that
sup,sg, Mpo(s) < 0o, which completes the proof of the lemma. O

We construct now the function v.

Lemma 8.4. There is a smooth function v : [0,00) x R? x (=T, T) — S? such that

ep=0 and Ow=1[0.0-'0—¢ - 8,0)] v (8.27)
on [0,00) x R? x (=T, T). In addition, for any k € Z, s € [0,00), o € [d/2,01],
27| Pe(v ()l gz S (14 s2%5) 77y (o), (8.28)
and, for any o,p € Z,
sup sup(s+ 1)”/22k”||Pk(8f(v(s))HLfoLg < 0. (8.29)
s€[0,00) kEZ

Proof of Lemma[8.4 Let R denote the 3 x 3 matrix

R=0,0-"0—0-"(0:0) = Nyop-'0— " Za Om¢-'d— 6+ (0md)], (8.30)

where one of the identities follows from (8.7). It follows from (R.8)) and (8.4]) that
27| Po(R(3)) [l gore S 27 (1 + 52%%) ™7 (o) (8.31)
for any k € Z, s € [0,00), 0 € [d/2,04]. It follows from (8I) and (823)) that
sup [(s + 1) D2V (R(5)) || perz + (s + )2V (R(s))l| 1] < 00

5€[0,00)

(8.32)
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for any o,p € Z,..

We prove first the existence of a smooth function v : [0, 00) x R x (=T, T) — S?
satisfying (827). We fix Q" € S¢~! with the property that ‘Q - Q' = 0. By (8.32) we
have

/ [R(s)|zge, ds < 0.
0

This allows us to construct v : [0,00) x R? x (=T, T) — R? (by a simple fixed point
argument) as the unique solution of the ODE
dsv = R(s) - v and v(o0) = Q' (8.33)
for any (x,t) € R x (=T,T).
Since [;° V307 (R(s))|zge, ds < oo for any o, p € Z, the function v constructed
as a solution of (833) is smooth on [0,00) x R? x (=T, T) and
sup (s+ 1)("+1)/2||V20f(v(5) — Q')HL;% < 00 (8.34)

5€[0,00)

for any o, p € Z,. Using (833)) and *(9,¢) - ¢ = 0, it is easy to see that
as(tv : 5) =Ty [5 t(asg) - asa tg] ' ¢~5+ ‘v - 855: 0.
Since lim_o "v(s) - g(s) = 0, it follows that ‘v-¢ = 0 on [0,00) x RY x (=T, T).
Thus, using (8.33) again,
Os(tv-v) =20 (9,0 -6 — ¢ - (0:0)] - v = 0.

Since lim,_.., ‘v(s) - v(s) = 1 it follows that ‘v-v =1 on [0,00) x R? x (=T, T). To
summarize, we constructed a smooth function v : [0, 00) x R? x (=T, T) — S? that

satisfies (8.27).
We prove now (8.29)). In view of (833), we have

v(s) — @ +/ R(s")-Q'ds' = —/ R(s') - (v(s') — Q) ds'.
Thus, using (8.32) and (8.34]),
sup (54 1) 702 Vet (o) - @) + [ VIR (R(S) - Q'as

s€[0,00) s LyLg

for any o, p € Z,. The bound ([®29)) follows from (8.32).
Finally, we prove (828). It follows from (8.33]) that

Pr(v(s)) = — /OO Pu(R(s) - v(s"))ds'. (8.35)

< 00

For any S € [0,00) let

Bs(S) =1+ sup sup supvyi(o) 11+ s'22k)”1_12”k||Pk(v(s'))||L?OL%.
c€l[d/2,01] s'€[S,00) kEZ
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We have B;(S) < oo for any S € [0, 00), using (829) and supyz, (o) 127%H < oo
Also,

27| P (v(s")) | ez < Ba(S)ywe () (1 + '2%F) 7%
for any o € [d/2,04], s > S, and k' € Z. Tt follows from (84 and (831]) that

27| Pe(R(s') - () lerz S 2% (o) +7Bs(S) Y (o))

22k§22k’§1/8/
if s'22F <1, and
27M| Pe(R(s") - v(s) lerz S 2°7(s'2°%) " yi(0) (1 + v Bs(9))
k(LU(s) - v(S))|lLeer2 s Te\O VD3
if 5'2%% > 1. Thus, for s > S and k € Z

/OO 27| Pu(R(s') - v(s) ez ds” S (o) (1 + s2%) 77 (1 + 4B (S)).

s

It follows from (83H) that Bs(S) < (1 4+ vB5(S)), which gives (828). O

We complete now the proof of Proposition 4.2 We define the smooth function
w=¢xv:[0,00)xRx (=T, T) — S?. It follows from (8H), (8F), and (8.28) that

27| Pe(w(s)) ez S (1 + s22) 71277y, (o)
for any k € Z, s € [0,00), 0 € [d/2,01]. Tt follows easily from (89) and (829) that

sup sup(s+ 1)”/22k”||Pk(0tp(w(s))||L§><>Lgc < 00
s€[0,00) kEZ

for any p,o € Z,. Finally, the identities (L8) follow from (27) and w = b X v.
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