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Abstract

Ricci flows with non-compact initial conditions

by

Yi Lai

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Richard Bamler, Chair

First, we show that a Ricci flow can be started from a non-compact complete manifold, if the
manifold is non-collapsed and satisfies a lower bound for many known curvature conditions.
In this theorem we do not need the manifold to have bounded curvature, which was assumed
in an earlier work by Bamler-Cabezas-Rivas-Wilking.

Second, we show that a Ricci flow can be started from a 3d complete manifold with non-
negative Ricci curvature. This gave a partial affirmative answer to a conjecture by Topping.
we prove it by generalizing the concept of singular Ricci flow by Kleiner and Lott to non-
compact initial conditions.

Third, we find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies
Hamilton’s flying wing conjecture. We also show that the scalar curvature does not vanish
at infinity in a 3d flying wing. For dimension n ≥ 4, we find a family of non-collapsed,
Z2 × O(n − 1)-symmetric, but non-rotationally symmetric n-dimensional steady gradient
solitons with positive curvature operator.

This thesis is a composition of the following three papers of the author: ”Ricci flow under
local almost non-negative curvature conditions”, ”Producing 3d Ricci flows with non-negative
Ricci curvature via singular Ricci flows”, ”A family of 3d steady gradient solitons that are
flying wings” [48, 47, 46].
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Chapter 1

Introduction

A Ricci flow is a family of Riemannian metrics g(t), t ∈ [0, T ], on a manifold M evolving by
the partial differential equation

∂

∂t
g(t) = −2Ric(g(t)). (1.0.1)

The Ricci curvature Ric is a symmetric bilinear form obtained by tracing the full curvature
tensor. In a vague sense, the Ricci curvature is the laplacian of the metric, and hence the
Ricci flow is the heat equation for a Riemannian manifold.

The Ricci flow was introduced by Hamilton in 1982, and has proven itself to be important
in differential geometry. The most remarkable application is the resolution of Poincaré
conjecture and the Geometrization conjecture by Perelman. There are many remaining
problems in Ricci flow after Perelman’s work. In particular, much less is known about Ricci
flows with non-copmact initial conditions than those with compact ones.

Ricci flows with non-compact initial conditions are very useful to study the geometry and
topology of the initial manifolds. For example, it is widely used to smooth a Riemannian
metric and gain more regularity. Moreover, as compact Ricci flows are used by Perelman to
solve the Poincaré conjecture, non-compact Ricci flows are also important tools to understand
the underlying topology of non-compact Riemannian manifolds.

As the heat equation with non-compact initial data is not always solvable, it is not
always possible to start a Ricci flow from a non-compact Riemannian manifold. Therefore,
it is crucial to determine under what conditions we can run a Ricci flow from non-compact
Riemannian manifolds.

It is well-known that many non-negative curvature conditions guarantee a short-time
existence of such flows. Recently, it was discovered that with almost non-negative curvatures
we can also produce Ricci flows from non-compact manifolds: Bamler-Cabezas-Rivas-Wilking
showed that a Ricci flow can be started from a complete non-compact manifold, assuming
the manifold satisfies a volume non-collapsing assumption, and a certain curvature has a
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negative lower bound [2]. However, for a few curvatures, they had also to assume that
the curvature norm is uniformly bounded on the initial manifold. By a different approach,
Simon-Topping obtained the same result particularly for Ricci curvature in dimension 3 [64].

In Chapter 3, we show that for several almost non-negative curvature conditions, a Ricci
flow can be started from a non-compact, complete, and non-collapsed manifold [48]. We
use a combination of methods from the previous two results [2] and [64], and generalize
them in the following sense: First, we do not need the bounded curvature assumption as
in [2]. Second, our result holds for the 2-nonnegative curvature in all n ≥ 3, which implies
Simon-Topping’s result when n = 3.

Usually the existence theorems of non-compact Ricci flows need to assume the initial
manifold is non-collapsing [64, 2, 48]. In fact, there is a counterexample by Topping when
the initial manifold is collapsed and has negative curvature somewhere [65]. However, the
non-collapsing assumption seems removable under the non-negative curvature conditions.
For example, if the complex sectional curvature is non-negative, then a Ricci flow exists.
In dimension 3, the non-negative complex sectional curvature, equivalent to non-negative
sectional curvature, is stronger than non-negative Ricci curvature.

Therefore, Topping conjectured that a complete Ricci flow can be started from a complete
3-manifold with non-negative Ricci curvature. In Chapter 4, we give a partial affirmative
answer to Topping’s conjecture, modulo the completeness of the Ricci flow we construct.
Our construction uses the singular Ricci flow developed by Bamler, Kleiner and Lott [44, 45,
4]. We show that the concept of singular Ricci flow can be extended to non-compact initial
manifolds. Our generalized singular Ricci flow has similar singularity-forming properties as
the ordinary singular Ricci flow. We construct a smooth Ricci flow from a manifold with
non-negative curvature by first running our generalized singular Ricci flow and then show
that it is actually smooth.

Ricci flows with non-compact initial conditions are also important in singularity analysis
of compact Ricci flows. Many singularity models that are non-compact such as the Bryant
soliton and the cylindrical flow. Moreover, most of singularity models are self-similar Ricci
flows, which are called solitons.

The soliton equation is the elliptic version of the Ricci flow equation. It reads

Ric(g) = λg +
1

2
LV g (1.0.2)

for some constant λ and a smooth vector field V . The soliton equation is a generalization of
the Einstein equation Ric(g) = λg, both of which generate self-similar Ricci flows. Depending
on λ > 0, λ < 0, or λ = 0, a soliton is called shrinking, expanding or steady. Moreover, a
soliton is called a gradient soliton if V is the gradient of some smooth function.

In dimension 2, Hamilton’s cigar soliton is the only steady gradient soliton that is non-
flat [37]. It is rotationally symmetric and has positive curvature. For all n ≥ 3, the only
non-flat and rotationally symmetric solitons are the Bryant solitons on Rn [11]. The Bryant
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solitons have positive curvature. It is a well-known conjecture by Hamilton that there exists
a 3d steady gradient soliton that is a so-called flying wing. The term flying wing was used
by Hamilton to describe certain steady gradient solitons in Ricci flow and their analogues in
mean curvature flow. In Ricci flow and particularly in dimension 3, a flying wing is a steady
gradient soliton, which is asymptotic to a 2-dimensional sector with angle α ∈ (0, π).

In mean curvature flow, the study of the analogues of steady gradient solitons had many
exciting results in the past two decades. In the collapsed case, the flying wings are first
constructed by X.J. Wang in all dimensions [67]. Recently, it is shown independently by
Bourni-Langford-Tinaglia [7] and Hoffman-Ilmanen-Martin-White [42] that a flying wing
exists within any prescribed width greater than or equal to π. Moreover, they are unique
in R3 [42]. In the non-collapsed case, many examples are obtained by Hoffman-Ilmanen-
Martin-White [42]. Despite the fruitful results in mean curvature flow, their analogues in
Ricci flow remain unknown for a longer time.

In Chapter 5, we confirm Hamilton’s flying wing conjecture. We also construct some
new steady gradient Ricci solitons that are analogous to the above results in mean curvature
flow. More specific, we show that there is a family of 3d steady gradient Ricci solitons that
are flying wings. The 3d flying wings are collapsed. Moreover, in dimension n ≥ 4, we find
a family of Z2 × O(n − 1)-symmetric but non-rotationally symmetric n-dimensional steady
gradient solitons with positive curvature operator. These solitons are non-collapsed and
hence are potential singularity models.
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Chapter 2

Preliminaries

2.1 Ricci flow spacetime

In order to continue the Ricci flow when singularities occur, Hamilton introduced a surgery
process [34]. Based on Hamilton’s work, Perelman constructed Ricci flow with surgery on
any compact 3 dimensional Riemannian manifold, and used it to prove the Geometrization
and Poincaré Conjectures.

Perelman’s Ricci flow with surgery is a sequence of ordinary compact Ricci flows such
that the final time-slice of each flow is isometric, modulo surgery, to the initial time-slice
of the next one. The surgery process depends on several parameters, and hence it is not
canonical. Perelman conjectured that there exists a Ricci flow with surgery in which the
surgeries are done at infinitesimal scale.

Recently, such a canonical flow, named the singular Ricci flow, was constructed by Kleiner
and Lott in [44], and shown to be unique by Bamler and Kleiner in [4]. To present the
definition of the singular Ricci flow, we need to introduce the concept of spacetime. An
n-dimensional Ricci flow (M, g(t))t∈I can be viewed as a partial metric in the horizontal
directions on the (n+ 1)- dimensional manifold M × I. We call the manifold M × I a Ricci
flow spacetime. The definitions in Section 2.1 and 2.2 are taken from [44] and [4].

Definition 2.1.1 (Ricci flow spacetime). A Ricci flow spacetime is a tuple (M, t, ∂t, g)
(sometimes abbreviate as M or (M, g(t))) with the following properties:

1. M is a smooth 4-manifold with (smooth) boundary ∂M.

2. t :M→ [0, T ), where T can be infinity, is a smooth function without critical points.
For any t ≥ 0 we denote by Mt := t−1(t) ⊂M the time-t-slice of M.

3. ∂M =M0, i.e. the boundary of M is equal to the initial time-slice.

4. ∂t is a smooth vector field (the time vector field), which satisfies ∂tt ≡ 1.
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5. g is a smooth inner product on the spacial subbundle ker(dt) ⊂ TM. For any t ≥ 0
we denote by g(t) the restriction of g to the time-t-slice Mt, which is a Riemannian
metric.

6. g satisfies the Ricci flow equation: L∂tg = −2Ric(g(t)).

We call the Riemannian metric G := dt2 + g the spacetime metric.

In Definition 2.1.2-2.1.5, we explain what are points, metric balls, parabolic neighbor-
hoods, and curves in a Ricci flow spacetime.

Definition 2.1.2 (Points in a Ricci flow spacetime). Let (M, t, ∂t, g) be a Ricci flow space-
time and x ∈ M be a point. Set t := t(x). We sometimes write x as (x, t) to indicate its
time, when there is no ambiguity. Consider the maximal trajectory γx : I →M, I ⊂ [0,∞)
of the time-vector field ∂t such that γx(t) = x. Note that t(γx(t

′)) = t′ for all t′ ∈ I. For any
t′ ∈ I we say that x survives until time t′ and we write

x(t′) := γx(t
′). (2.1.1)

Similarly, for a subset X ⊂Mt, we say that X survives until time t′ if this is true for every
x ∈ X, and we write X(t′) = {x(t′) : x ∈ X}.

Definition 2.1.3 (Distance and metric balls). Let (M, t, ∂t, g) be a Ricci flow spacetime.
For any two points x, y ∈ Mt we denote by dt(x, y), or simply d(x, y) the distance between
x, y within (Mt, g(t)).

For any x ∈Mt and r ≥ 0 we denote by Bt(x, r) ⊂Mt the r-ball around x with respect
to the Riemannian metric g(t).

Definition 2.1.4 (Parabolic neighborhood). Let (M, t, ∂t, g) be a Ricci flow spacetime. For
any y ∈ M let Iy ⊂ [0,∞) be the set of all times until which y survives. Let x ∈ M and
a ≥ 0, b ∈ R. Set t = t(x). Then we define the parabolic neighborhood P (x, a, b) ⊂M to be:

P (x, a, b) :=
⋃

y∈Bt(x,a)

⋃
t′∈[t,t+b]∩Iy

y(t′). (2.1.2)

If b < 0, we replace [t, t+ b] by [t+ b, t]. We call P (x, a, b) unscathed if B(x, a) is relatively
compact in Mt, and B(x, a) survives until max{t+ b, 0}.

Definition 2.1.5 (Admissible curve and accessibility). Let M be a Ricci flow spacetime,
we say γ : [c, d] →M is an admissible curve if γ(t) ∈ Mt for all t ∈ [c, d]. We say a point
x ∈M with t(x) < t(x0) is accessible to x0 if there is an admissible curve running from (x, t)
to (x0, t0).

Let x0 ∈ Mt, t > 0. We denote by M(x0) the subset consisting of all points in M that
are accessible to x0.
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In dimension 3, Ricci flows preserve the following Hamilton-Ivey pinching condition. This
is important in showing that the curvature is non-negative in finite-time singularities.

Definition 2.1.6 (Hamilton-Ivey pinching). Let M be a 3 dimensional Riemannian manifold
and ϕ > 0. We say that the curvature at x ∈ M is ϕ-positive if there is an X > 0 with
Rm(x) ≥ −X such that

R(x) ≥ − 3

ϕ−1
and R(x) ≥ X(logX + log(ϕ−1)− 3). (2.1.3)

Let (M, g(t)), t ∈ [0, T ] be a 3 dimensional compact Ricci flow and ϕ ∈ R+ ∪∞. We say
that the curvature at (x, t) ∈M×[0, T ] is ϕ-positive if there is an X > 0 with Rm(x, t) ≥ −X
such that

R(x, t) ≥ − 3

ϕ−1 + t
and R(x, t) ≥ X(logX + log(ϕ−1 + t)− 3). (2.1.4)

It is useful to see how the pinching-condition changes under rescaling: If a Ricci flow
(M, g(t))t∈[0,T ] is ϕ-positive, then the rescaling (M, g̃(t))t∈[0, T

λ2
], where g̃(t) = λ−2g(λ2t), is

λ2ϕ-positive. Moreover, if (M, g(t)) is ϕ0-positive, then it is ϕ-positive for any ϕ > ϕ0. In
particular, if (M, g(t)) is ϕ-positive for all ϕ > 0, then the sectional curvature is non-negative.

For any 3D Ricci flow, Hamilton-Ivey showed that if the curvature is ϕ-positive at time
0, then the curvature is ϕ-positive at all positive times (see e.g. [43, Appendix B]). The
same conclusion also holds for singular Ricci flow [44, Theorem 1.3].

In the next two definitions, we explain what we mean by a normalized 3D manifold. It is
a 3D Riemannian manifold which satisfies some normalized curvature and volume conditions.
Note that via suitable rescalings, we can normalize any 3D compact manifolds.

Definition 2.1.7 (κ-non-collapsed). Let (M, g) be a 3 dimensional Riemannian mani-
fold, x ∈ M and κ, r0 > 0. We say M is κ-non-collapsed at x at scales less than r0, if
r−3vol(Bg(x, r)) ≥ κ > 0, for all 0 < r ≤ r0 such that |Rm| ≤ r−2 holds on Bg(x, r).

Definition 2.1.8 (Normalized manifold). Let (M, g) be a 3-dimensional compact orientable
connected Riemannian manifold that

1. is not a higher spherical space form,

2. has scalar curvature R < 1 everywhere,

3. is 1-non-collapsed at scales less than 1 and

4. satisfies the 1-positive curvature condition at time 0.

Then we say (M, g) has normalized geometry. For a Ricci flow spacetime, we say it has
normalized initial condition if it starts from a manifold (M, g) with normalized geometry.
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By the Hamilton-Ivey pinching theorem we know that the scalar curvature goes to positive
infinity when the curvature goes unbounded, and hence the following curvature scale ρ(x) =
R−1/2(x) becomes arbitrarily small.

Definition 2.1.9 (Curvature scale). Let (M, g) be a 3 dimensional Riemannian manifold
and x ∈M a point. Let the curvature scale at x be

ρ(x) = R
−1/2
+ (x), (2.1.5)

where R+ = max{R, 0}, and we use the convention 0−1/2 =∞.

In a singular Ricci flow we will introduce in the next section, all horizontal curves (curves
contained in a fixed time slice) and vertical curves (trajectories of points) are extendable as
long as the curvature stays bounded along them. This property is called 0-completeness.

Definition 2.1.10. (0-complete) We say a Ricci flow spacetime M is 0-complete if for any
smooth curve γ : [0, s0)→M that satisfies inf [0,s0) ρ(γ(s)) > 0 and one of the following

(1) γ([0, s0)) is contained in a time-slice Mt, and has finite length with respect to the
horizontal metric in Mt, or

(2) γ is the integral curve of −∂t, or ∂t,

then lims→s0 γ(s) exists.

Also, we say a spacetime is backward (resp. forward) 0-complete if in case (2), γ is only
the integral curve of −∂t (resp. ∂t).

We say a Riemannian manifold is 0-complete if the conclusion holds under condition (1).

2.2 Singular Ricci flow

The surgery process of Perelman’s Ricci flow with surgery is regulated by several parameters,
one of them being the surgery scale. It is the scale where we cut-off along the thin necks, and
replace the high curvature regions with some caps. Perelman showed that the surgery scale
can be chosen arbitrarily small. Moreover, he conjectured that the Ricci flow with surgery
should converge to a canonical Ricci flow through singularities.

Recently, this conjecture was resolved by Bamler, Kleiner and Lott. The canonical Ricci
flow is named singular Ricci flow. It is a 0-complete Ricci flow spacetime, which satisfies the
Hamilton-Ivey pinching and the so-called canonical neighborhood assumption. The assump-
tion says that the singular Ricci flow is close to some model solutions where the curvature
is high. These model solutions are Perelman’s κ-solutions.

In Definitions 2.2.1-2.2.4, we explain what are κ-solutions and canonical neighborhood
assumption.
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Definition 2.2.1 (κ-solution). An ancient Ricci flow (M, g(t)t∈(−∞,0]) on a 3 dimensional
manifold M is called a κ-solution if it satisfies the following:

1. (M, g(t)) is complete for all t ∈ (−∞, 0],

2. |Rm| is bounded on M × (−∞, 0],

3. sec ≥ 0 on M × (−∞, 0],

4. (M, g(t)) is κ-non-collapsed at all scales for all t ∈ (−∞, 0].

Definition 2.2.2 (Geometric closeness). We say that a pointed Riemannian manifold (M, g, x)
is ε-close to another pointed Riemannian manifold (M, g, x) at scale λ > 0 if there is a dif-
feomorphism onto its image

ψ : BM(x, ε−1)→M (2.2.1)

such that ψ(x) = x and
‖λ−2ψ∗g − g‖C[ε−1](BM (x,ε−1)) < ε. (2.2.2)

Here the C [ε−1]-norm of a tensor h is defined to be the sum of the C0-norms of the tensors
h,∇gh,∇g,2h, ...,∇g,[ε−1]h with respect to the metric g.

Similarly, we say a pointed Ricci flow (M, g(t), (x, 0)) is ε-close to a pointed Ricci flow
(M, g(t), (x, 0)) on [a, b] (a ≤ 0 ≤ b) at scale λ > 0 if g(t) is defined on [λ2a, λ2b], and there
is a diffeomorphism onto its image

ψ : BM
g(0)(x, ε

−1)→M (2.2.3)

such that ψ(x) = x and

‖λ−2ψ∗g(λ2t)− g(t)‖
C[ε−1](BM

g(0)
(x,ε−1))

< ε (2.2.4)

for all t ∈ [a, b], where the norm is measured with respect to the metric g(t). In particular,
when a = −ε−1 and b = 0, we simply say (M, g(t), (x, 0)) is ε-close to (M, g(t), (x, 0)).

Definition 2.2.3 (δ-neck and strong δ-neck). Let (M, g) be a 3 dimensional Riemannian
manifold and δ > 0. Suppose U ⊂ M is an open subset, x ∈ U . We say U is a δ-neck
centered at x, if (U, g) is δ-close to the standard cylindrical metric on (−δ−1, δ−1) × S2 at
scale ρ(x).

Let (M, g(t)) be a Ricci flow. Suppose U ⊂ M is an open subset and x is a point in U .
We say that U is a strong δ-neck on [−c, 0] centered at x for some c > 0, if (U, g(t), x) is
δ-close to the standard cylindrical flow on the time interval [−c, 0] at scale ρ(x). We simply
call it a strong δ-neck when c = −δ−1.
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Definition 2.2.4 (Canonical neighborhood assumption). Let (M, g) be a 3 dimensional
Riemannian manifold and ε > 0. We say that (M, g) satisfies the ε-canonical neighborhood
assumption at some point x ∈M if there is a κ-solution (M, g(t)t∈(−∞,0]) and a point x ∈M
such that ρ(x, 0) = 1 and (M, g, x) is ε-close to (M, g(0), x) at scale ρ(x) > 0.

We say that (M, g) satisfies the ε-canonical neighborhood assumption at scales (r1, r2),
for some r2 > r1 > 0, if M satisfies the ε-canonical neighborhood assumption at every point
x ∈M with r1 < ρ(x) < r2.

Perelman showed the compactness of κ-solutions. As a consequence, the two scaling
invariant quantities |∇R−1/2| and |∂tR−1| have uniform upper bounds in all κ-solutions as
well as the flows which are ε-close to them. For convenience of later use, we state this in
terms of the curvature scale ρ instead of R in the following lemma.

Lemma 2.2.5. (Gradient estimate, see e.g. [4, Lemma 8.1]) There exist ε, and η > 0 such
that for all ε ≤ ε the following holds:

1. If M is a Riemannian manifold satisfying the ε-canonical neighborhood assumption at
x ∈M , then

|∇ρ|(x) ≤ η. (2.2.5)

2. If M is a Ricci flow spacetime satisfying the ε-canonical neighborhood assumption at
x ∈M, then

|∇ρ|(x) ≤ η, |∂tρ2(x)| ≤ η. (2.2.6)

Hereafter, we always assume ε > 0 to be smaller than the ε from the above lemma
whenever we talk about the ε-canonical neighborhood assumption.

The κ-solutions can be decomposed as a union of regions which are diffeomorphic to a
few manifolds. Roughly speaking, a κ-solution is a union of some caps and necks. Therefore,
for a manifold which satisfies the canonical neighborhood assumption, the high curvature
regions are unions of caps and necks.

Lemma 2.2.6. ([4, Lemma 8.2]) For every δ > 0 there are constants C0(δ), εcan(δ) > 0 such
that if ε ≤ εcan(δ), then the following holds.

Let (M, g) be a Riemannian manifold that satisfies the ε-canonical neighborhood assump-
tion at some point x ∈ M . Then x is contained in a compact, connected domain V ⊂ M
such that diam(V ) ≤ C0ρ(x) and ρ(y1) ≤ C0ρ(y2) for all y1, y2 ∈ V , and one of the following
hold:

1. Int(V ) is a δ-neck at scale ρ(x) and x is its center.

2. V is a closed manifold without boundary.
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3. Either V is a 3-disk or is diffeomorphic to a twisted interval bundle over RP 2 and ∂V
is a central 2-sphere of a δ-neck. We call Int(V ) a δ-cap and x its center. Moreover,
for any y1, y2 ∈ ∂V , we have d(y1, x) + d(y2, x) ≥ d(y1, y2) + 100ρ(x).

In the following definition we define δ-tubes and capped δ-tubes, which are the glue-ups of
δ-necks and caps. One advantage of considering these objects is that they can be constructed
in such a way such that the curvature scales are not too small at the boundaries. This
is useful for achieving a Thick-Thin decomposition of a manifold satisfying the canonical
neighborhood assumption.

Definition 2.2.7 (δ-tube and capped δ-tube). (see e.g. [55]) A δ-tube T in a Riemannian
3-manifold M is a submanifold diffeomorphic to S2×R which is a union of δ-necks with the
central spheres that are isotopic to the 2-spheres of the product structure.

A capped δ-tube is a connected submanifold that is the union of a δ-cap and a δ-tube
where the intersection of them is diffeomorphic to S2×R and contains an end of the δ-tube
and an end of the δ-cap.

In a manifold satisfying the canonical neighborhood assumption, the following lemma
gives a Tick-Thin decomposition by cutting along central spheres of some δ-necks. These
central spheres are of a uniform curvature scale. So by a volume comparison, we obtain an
upper bound on their number, which depends only on the curvature scale and the volume of
region where we do the decomposition.

Lemma 2.2.8. (High curvature regions are covered by tubes and capped-tubes) For some
sufficiently small δ > 0, there exist εcan(δ), C(δ), λ(δ),Λ(δ) > 0 such that the following holds:

Let (M, g, x0) be a 0-complete 3d Riemannian manifold, x0 ∈ M . Suppose the εcan-
canonical neighborhood assumption holds at scales (0, 1) on Bg(x0, d) for some d ≥ 2. For
any r0 ∈ (0, 1) such that Λr0 < 1, there is a collection S of disjoint central spheres of δ-necks
with curvature scale r0, such that the following holds:

1. Let Ω be the union of components in Bg(x0, d) \ ∪Σ∈SΣ that satisfies ρ ≥ λr0. Then
ρ ≤ Λr0 on Bg(x0, d) \ Ω.

2. Suppose the number of elements in S is N , then Nr2
0 ≤ C vol(Bg(x0, d)).

3. If ρ(x0) ≥ 2C0 where C0(δ) is from Lemma 2.2.6. Then Bg(x0, d) \ Ω is the union of
some δ-tubes and capped δ-tubes which are bounded by the central spheres in S.

Proof of Lemma 2.2.8. The existence of S and assertion (1)(2) follow from an easy adapta-
tion of the central sphere decomposition Lemma 11.4 in [4]. For assertion (3), if ρ(x0) ≥ 2C0,
then for any x ∈ Bg(x0, d) \Ω, by Lemma 2.2.6 x must be the center of a δ-neck or a δ-cap.
By [55, Proposition 19.21] we see that a non-compact connected subset of points which are
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centers of δ-necks or δ-caps is contained in a δ-tube or a capped δ-tube. So assertion (3)
follows.

We can now give the definition of the singular Ricci flow. Since the singular Ricci flow
satisfies the canonical neighborhood assumption, Lemmas 2.2.5, 2.2.6, 2.2.8 also hold.

Definition 2.2.9. If ε > 0 and r(t) : [0,∞)→ (0,∞) is a non-increasing function. Then we
say a Ricci flow spacetime M is (r, ε)-singular if the following holds:

1. M0 is a compact orientable manifold;

2. M is 0-complete;

3. M[0,t] satisfies the ε-canonical neighborhood assumption at scales (0, r(t)).

We call t a singular time if Mt is not compact.

The following lemma states the existence and uniqueness of the singular Ricci flow, which
are proved by Kleiner-Lott [44] and Bamler-Kleiner [4].

Lemma 2.2.10 (Singular Ricci flow). For any ε > 0, there is a non-increasing function
rε(t) : [0,∞)→ [0,∞) such that the following holds: Let M be a 3D normalized Riemannian
manifold. Then there exists a unique Ricci flow spacetime M, called a singular Ricci flow,
such that for any ε > 0, M is (rε, ε)-singular.

2.3 Distance distortion estimates

In studying the Ricci flows, we often need to compare the distance between two points
at different times. In this section, we review some standard distance distortion estimates
under different curvature conditions, which are originally due to Hamilton and Perelman.
Moreover, the estimates we present here are local as we only need the curvature conditions
to hold in certain balls instead of the entire manifold.

First, we have following elementary observations: Let (M, g(t)), t ∈ [0, T ] be a Ricci
flow and x, y ∈ M . Let γ : [0, d0(x, y)] → M be a minimizing geodesic connecting x, y with
respect to g(0), which is parametrized by s. Then by using the Ricci flow equation, we see
that Lγ(t), the length of γ at time t evolves by

d

dt
Lγ(t) = −

∫ d0(x,y)

0

Ric

(
∂

∂s
,
∂

∂s

)
ds. (2.3.1)

Therefore, we have different distance distortion estimates when the curvature conditions
differ.
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Lemma 2.3.1. (see e.g. [28, Theorem 18.7]) Let (M, g(t))t∈[0,T ] be a Ricci flow of dimension
n. Let K, r0 > 0.

1. Let x0 ∈ M and t0 ∈ (0, T ). Suppose that Ric ≤ (n − 1)K on Bt0(x0, r0). Then the
distance function d(x, t) = dt(x, x0) satisfies the following inequality in the outside of
Bt0(x0, r0):

(
∂

∂t
−∆)|t=t0d ≥ −(n− 1)(

2

3
Kr0 + r−1

0 ). (2.3.2)

2. Let t0 ∈ [0, T ) and x0, x1 ∈M . Suppose

Ric(x, t0) ≤ (n− 1)K, (2.3.3)

for all x ∈ Bt0(x0, r0) ∪Bt0(x1, r0). Then

∂

∂t
|t=t0dt(x0, x1) ≥ −2(n− 1)(Kr0 + r−1

0 ). (2.3.4)

The following lemma follows directly by integrating the distance evolution equation under
the Ricci flow. It says that the distance can not expand too much if the Ricci curvature is
bounded below by −C.

Lemma 2.3.2. (Expanding Lemma)(see e.g. [64, Lemma 2.1]). Given T,K,R > 0 and
n ∈ N. Let (Mn, g(t)) be a Ricci flow for t ∈ [−T, 0]. Suppose for some x0 ∈ M we have
Bg(0)(x0, R) ⊂⊂M and Ricg(t) ≥ −K on Bg(0)(x0, R) ∩Bg(t)(x0, Re

Kt) for each t ∈ [−T, 0].

Then for all t ∈ [−T, 0],

Bg(0)(x0, R) ⊃ Bg(t)(x0, Re
Kt), (2.3.5)

or equivalently, for all y ∈ Bg(0)(x0, Re
Kt) we have

dg(t)(y, x0) ≥ dg(0)(y, x0)eKt. (2.3.6)

We can get the following lemma by integrating item 2 in Lemma 2.3.1. It says that the
distance can not shrink too much at later times if the Ricci curvature is bounded above by
C
t
.

Lemma 2.3.3. (Shrinking Lemma)(see e.g. [64, Lemma 2.2]). Given T, c0, r > 0 and
n ∈ N, there exists constant β = β(n) ≥ 1 such that the following holds: Let (Mn, g(t)) be
a Ricci flow for t ∈ [0, T ]. Suppose for some x0 ∈ M we have Bg(0)(x0, r) ⊂⊂ M . Suppose

also |Rm|g(t) ≤ c0
t

, or more generally Ricg(t) ≤ (n−1)c0
t

, on Bg(0)(x0, r) ∩ Bg(t)(x0, r − β
√
c0t)

for each t ∈ [0, T ].

Then for all t ∈ [0, T ], we have

Bg(0)(x0, r) ⊃ Bg(t)(x0, r − β
√
c0t), (2.3.7)
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or equivalently, for all y ∈ Bg(t)(x0, r − β
√
c0t) we have

dg(t)(y, x0) ≥ dg(0)(y, x0)− β
√
c0t. (2.3.8)

More generally, for 0 ≤ s ≤ t ≤ T , we have

Bg(s)(x0, r − β
√
c0s) ⊃ Bg(t)(x0, r − β

√
c0t), (2.3.9)

or equivalently, for all y ∈ Bg(t)(x0, r − β
√
c0t) we have

dg(t)(y, x0) ≥ dg(s)(y, x0)− β(
√
c0t−

√
c0s). (2.3.10)

The following Hölder distance estimate [64, Lemma 3.1] is also a consequence of item 2
in Lemma 2.3.1. Compared with Lemma 2.3.3, it gives a better lower bound for dg(t)(x, y)
when dg(0)(x, y) is much smaller than the time t. To do this, we choose an intermediate time
t0 ∈ (0, t) depending on dg(0)(x, y) and apply different distance estimates on [0, t0] and [t0, t]
and combine the results.

Lemma 2.3.4. Given T, c0, r > 0 and n ∈ N, there exist positive constants β = β(n) and
γ = γ(c0, n, T ) such that the following holds: Let (Mn, g(t)) be a Ricci flow for t ∈ [0, T ],
not necessarily complete. Suppose for some x0 ∈ M , we have Bg(t)(x0, 2r) ⊂⊂ M for all

t ∈ [0, T ]. Suppose also |Rm|g(t)(x) ≤ c0
t

, or more generally Ricg(t)(x) ≤ (n−1)c0
t

for all
x ∈ Bg(t)(x0, 2r) and t ∈ [0, T ].

Then for all x, y ∈
⋂
s∈[0,T ] Bg(s)(x0, r), and 0 ≤ t1 < t2 ≤ T , we have

dg(t2)(x, y) ≥ dg(t1)(x, y)− β
√
c0(
√
t2 −
√
t1), (2.3.11)

Moreover, for all t ∈ [0, T ], we have

dg(t)(x, y) ≥ γ[dg(0)(x, y)]1+2(n−1)c0 . (2.3.12)

Remark 2.3.5. We need the curvature assumption on Bg(t)(x0, 2r) ⊂⊂ M for all t to
estimate the distances change on ∩s∈[0,T ]Bg(s)(x0, r). The reason is that there are two ways
to make sense of the distance at time t between two points x, y ∈ Bg(t)(x0, 2r). One is
the infimum length of all connecting paths in M , and the other is the infimum length of
all connecting paths that are contained in Bg(t)(x0, 2r). The former is usually shorter than
the latter. These two metrics agree for x, y ∈ Bg(t)(x0, r) when Bg(t)(x0, 2r) is compactly
contained in M , and the distance can be realized by a geodesic which lies within Bg(t)(x0, 2r).

Remark 2.3.6. We can also prove the same conclusion for the Ricci flow defined only for
t ∈ (0, T ], where dg(0) in (2.3.12) is replaced by the limit distance of dg(t). The limit exists
thanks to bound |Rm|g(t) ≤ C

t
in (3.1.2).



CHAPTER 2. PRELIMINARIES 14

Proof of Lemma 2.3.4. We note that there is no ambiguity to talk about dg(t)(x, y) for x, y ∈⋂
s∈(0,T ] Bg(s)(x0, r) for all t ∈ [0, T ], because the minimizing geodesic joining x and y with

respect to g(t) is contained in Bg(t)(x0, 2r) ⊂⊂ M . Inequality (2.3.11) follows by the above
Shrinking Lemma. The proof of (2.3.12) follows by splitting [0, t] into two intervals. We

choose and fix t0 = 1
c0

[
1

2β
dg(0)(x,y)

]2

. Then in the first interval [0, t0], we integrate the

following inequality from Hamilton and Perelman

∂+

∂t
dg(t)(x, y) ≥ −β

2

√
c0

t
(2.3.13)

to get

dg(t0)(x, y) ≥ 1

2
dg(0)(x, y). (2.3.14)

By ∂+

∂t
|t0F we mean lim supt→t+0

F (t)−F (t0)
t−t0 . In the second interval we use the following in-

equality, which follows from (2.3.1):

∂+

∂t
dg(t)(x, y) ≥ −(n− 1)

c0

t
dg(t)(x, y), (2.3.15)

integrating which we get

dg(t)(x, y) ≥ dg(t0)(x, y)

[
t

t0

]−(n−1)c0

. (2.3.16)

The combination of (2.3.14) and (2.3.16) gives (2.3.12).
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Chapter 3

Ricci flow with almost non-negative
curvature

3.1 Introduction and main results

In general, Ricci flow tends to preserve some kind of positivity of curvatures. For example,
positive scalar curvature is preserved in all dimensions. This follows from applying maximum
principle to the evolution equation of scalar curvature, which is

∂

∂t
R = ∆R + 2|Ric|2.

By developing a maximum principle for tensors, Hamilton [38][34] proved that Ricci flow
preserves the positivity of the Ricci tensor in dimension three and positivity of the curvature
operator in all dimensions. H. Chen [21] also proved the preservation of 2-non-negative
curvature. The invariance of weakly PIC was first shown in dimension four by Hamilton [35],
and the general case was obtained independently by Brendle and Schoen [10] and by Nguyen
[56]. The curvature conditions weakly PIC1 and PIC2 were in turn introduced by Brendle
and Schoen in [10] and played a key role in their proof of the differentiable sphere theorem.
Finally in the Kähler case, the condition of non-negative holomorphic bisectional curvature,
which is a weaker condition than non-negative sectional curvature, is also preserved for
compact manifolds. This was shown by Bando [5] in dimension three and by Mok [54] in all
dimensions. In [60] Shi generalized this result to the complete Kähler manifolds with bounded
curvature. In [49], Lee and Tam proved that any complete non-collapsed Kähler metric
with non-negative holomorphic bisectional curvature on a noncompact complex manifold can
be deformed by a Ricci flow to a complete Kähler metric with non-negative and bounded
holomorphic bisectional curvature.

In this chapter, we study the preservation of almost non-negativity of curvature condi-
tions. We say a quantity is almost non-negative when it has a negative lower bound. The
almost non-negative case is less restrictive since it puts no constraints on the topology of the
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manifold. In [2], Bamler, Cabezas-Rivas, and Wilking studied the complete manifold with
bounded curvature, which satisfies global non-collapsedness and almost non-negativity for
some curvature conditions. They showed that under the assumption, a Ricci flow exists for
a uniform amount of time, during which the curvature can be bounded below by a negative
constant depending only on initial conditions. In the same paper, they also established some
local results without the complete and curvature bound assumptions.

However, the local cases of almost 2-non-negative curvature and weakly PIC1 remained
unsolved. We verify these two local cases in this chapter. We use C to denote various non-
negative curvature conditions, and write Rm ∈ C to indicate that the curvature operator
Rm satisfies the corresponding curvature condition. Then Rm + CI ∈ C indicates the non-
negativity of Rm + CI, where I is the identity curvature operator whose scalar curvature is
n(n− 1). Under this notation, our main theorem can be stated as below:

Theorem 3.1.1. Given n ∈ N, α0 ∈ (0, 1] and v0 > 0, there exist positive constants τ =
τ(n, v0, α0) and C = C(n, v0) such that the following holds: Let (Mn, g0) be a Riemannian
manifold (not necessarily complete) and consider one of the following curvature conditions
C:

1. non-negative curvature operator;

2. 2-non-negative curvature operator
(i.e. the sum of the lowest two eigenvalues of the curvature operator is non-negative);

3. weakly PIC2

(i.e. non-negative complex sectional curvature, meaning that taking the cartesian prod-
uct with R2 produces a non-negative isotropic curvature operator);

4. weakly PIC1

(i.e. taking the cartesian product with R produces a non-negative isotropic curvature
operator).

Suppose Bg0(x0, s0) ⊂⊂M for some x0 ∈M and s0 > 4 such that{
Rmg + α0I ∈ C on Bg0(x0, s0)

V olg0Bg0(x, 1) ≥ v0 > 0 for all x ∈ Bg0(x0, s0 − 1) .
(3.1.1)

Then there exists a Ricci flow g(t) defined for t ∈ [0, τ ] on Bg0(x0, s0 − 2), with g(0) = g0,
such that for all t ∈ [0, τ ],|Rm|g(t) ≤

C

t
on Bg0(x0, s0 − 2)

Rmg(t) + Cα0I ∈ C.
(3.1.2)
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The results of the first and third conditions above were obtained in [2]. In dimensional
three, 2-non-negative curvature has the same meaning as non-negative Ricci curvature, where
the result was obtained by Simon and Topping in [63] and [64].

For each curvature condition C, we define `(x) ≥ 0 to be the smallest number such that
Rmg(x) + `(x) I ∈ C. Then in each case the bound ` ≤ 1 implies a lower bound on the Ricci
curvature. We also observe that each curvature condition implies weakly PIC1. The method
we allows a uniform treatment of all curvature conditions that imply a lower bound for Ricci
curvature and weakly PIC1.

As an application we have the following global existence result on complete manifolds
with possibly unbounded curvature. It extends the corresponding results in [2] to the 2-non-
negative and weakly PIC1 cases.

Corollary 3.1.2. Given n ∈ N, α0 ∈ (0, 1] and v0 > 0, there exist positive constants C =
C(n, v0) and τ = τ(n, v0, α0) such that the following holds: Let C be any curvature conditions
listed in Theorem 3.1.1, and (Mn, g) be any complete Riemannian manifold (with possibly
unbounded curvature) such that{

Rmg + α0I ∈ C
V olgBg(p, 1) ≥ v0 for all p ∈M.

(3.1.3)

Then there exists a complete Ricci flow (M, g(t))t∈(0,τ ] with g(0) = g and so thatRmg(t) + Cα0I ∈ C for all t ∈ (0, τ ] throughout M

|Rm|g(t) ≤
C

t
.

(3.1.4)

To prove the corollary we apply the local Ricci flow in Theorem 3.1.1 to a sequence of
larger and larger balls on the complete manifold. Thanks to the curvature decay estimate
|Rm| ≤ C

t
in (3.1.2), we can then take a convergent subsequence and get a globally defined

flow.

Another application is the following smoothing result for singular limit spaces of se-
quences of manifolds with lower curvature bounds, which asserts the limit space is bi-Hölder
homeomorphic to a smooth manifold.

Corollary 3.1.3. Given n ∈ N, α0, v0 > 0. Let C be any curvature conditions listed in
Theorem 3.1.1, and (Mn

i , gi) be a sequence of complete Riemannian manifolds such that for
all i, we have {

Rmgi + α0I ∈ C throughout Mi

V olgiBgi(x, 1) ≥ v0 for all x ∈Mi

(3.1.5)

Then there exists a smooth manifold M , a point x∞ ∈M , and a continuous distance metric
d0 on M such that for some points xi ∈ Mi, a subsequence of (Mi, dgi , xi) converges in
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the pointed Gromov-Hausdorff distance sense to (M,d0, x∞). Furthermore, the metric space
(M,d0) is bi-Hölder homeomorphic to the smooth manifold M equipped with any smooth
metric.

We give the proofs of Corollary 3.1.2 and 3.1.3 in Section 8. We mention here that with
some careful local distance distortion arguments, the same conclusion in Corollary 3.1.3 holds
provided noncollapsedness of only one ball centered at a point. For detailed proof of this,
we refer to [64] where the argument is done for Ricci curvature and carries over to our case.

Finally, we sketch the proof of Theorem 3.1.1 under some additional assumptions. That
is, assuming (3.1.1) holds globally and a short time Ricci flow exists up to a uniform time
T < 1, during which |Rm| ≤ C

t
holds, we want to show Rmg(t) + Cα0I ∈ C for all t. We

define `(x, t) by
`(x, t) := inf{ε ∈ [0,∞)|Rmg(t)(x) + εI ∈ C}. (3.1.6)

Then it’s equivalent to show `(·, t) ≤ Cα0 for all t. By [2, Proposition 2.2], ` satisfies an
evolution inequality of the form

∂

∂t
` ≤ ∆`+R `+ C(n)`2 (3.1.7)

in the barrier sense for some dimensional constant C(n). Assuming `(x, t) ≤ 1, then by the
maximum principle, `(·, t) ≤ eC(n)th on M × [0, t), where h solves

∂

∂t
h = ∆h+Rh, h(·, 0) = `(·, 0). (3.1.8)

We can express this solution as

h(x, t) =

∫
M

G(x, t; y, 0) `(y, 0) d0y, (3.1.9)

where G(·, ·; y, s) satisfies

(
∂

∂t
−∆x,t −Rg(t))G(x, t; y, s) = 0 and lim

t↘s
G(x, t; y, s) = δy(x). (3.1.10)

We say G(·, ·; y, s) is the heat kernel of equation (3.1.10). It can be shown with the bound
|Rm|g(t) ≤ C

t
that G(x, t; y, s) has the following Gaussian upper bound

G(x, t; y, s) ≤ C

(t− s)n2
exp

(
− d2

s(x, y)

C(t− s)

)
, (3.1.11)

substituting which into (3.1.9) we get

`(x, t) ≤ eC(n)h(x, t) ≤ sup
y∈M

`(y, 0) · C
t
n
2

∫
M

exp

(
−d

2
0(x, y)

Ct

)
d0y ≤ C sup

y∈M
`(y, 0). (3.1.12)
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To prove Theorem 3.1.1 by adapting the above argument, we need to overcome the
difficulties caused by the lack of those additional assumptions. To construct a local Ricci
flow, we use an extension method which was introduced in [41] and [64]. Similar methods
of constructing local Ricci flows were also used in [50, 51, 53, 39]. The process starts by
doing a conformal change to the initial metric, making it a complete metric and leaving it
unchanged on Bg(0)(x0, r1) for some 0 < r1 < r0 = s0. Then by the following doubling time
estimate of Shi in [61], we can then run a complete Ricci flow up to a short time t1.

Lemma 3.1.4. (Doubling time estimate) Let (Mn, g(0)) be a complete manifold with bounded
curvature |Rm|g(0) ≤ K, then there exits a complete Ricci flow (Mn, g(t)) such that

|Rm|g(t) ≤ 2K (3.1.13)

for all 0 ≤ t ≤ 1
16K

.

Of course t1 is uncontrolled and may depend on specific manifold due to the lack of a
uniform curvature bound. Next we do another conformal change to complete the metric at
t1, leaving it unchanged on Bg(0)(x0, r2) for some 0 < r2 < r1. Then using the doubling time
estimate again, we have another complete Ricci flow from t1 to t2. Repeating the process,
we obtain some successive complete Ricci flow pieces ({Mi}mi=1, {gi(t)}mi=1), with each Mi

containing Bg(0)(x0, ri). Restricting all the gi(t) on Bg(0)(x0, rm), we thus obtain a smooth
local Ricci flow g(t) defined for all t ∈ [0, tm]. The inductive construction is carried out in
Section 6.

In particular, the curvature decay |Rm|g(t) ≤ C
t

in (3.1.2) together with the doubling time
estimate enable us to choose ti+1 = ti(1 + 1

16C
) for each i. To verify |Rm|g(t) ≤ C

t
after each

extension step, we use the curvature decay lemma in Section 3, which ensures the existence
of C under the assumption of a local upper bound of `(·, t).

For the verification of `(·, t) ≤ Cα0 in (3.1.2), we perform a new local integration estimate,
in which we use a generalized heat kernel. We know the standard heat kernel G(x, t; y, s) on
a complete Ricci flow satisfies the following reproduction formula for all µ < s < t∫

G(x, t; y, s)G(y, s; z, µ) dsy = G(x, t; z, µ). (3.1.14)

The standard heat kernel G(x, t; y, s) is well defined by equation (3.1.10) for all (x, t) and
(y, s) in a same complete Ricci flow piece (Mi, gi(t)) coming from the above inductive con-
struction. In section 5, we use equation (3.1.14) inductively to make sense of G(x, t; y, s) for
(x, t) and (y, s) in different pieces and thus obtain a generalized heat kernel whose definition
domain is on the whole ({Mi}mi=1, {gi(t)}mi=1) and has a Gaussian upper bound.



CHAPTER 3. RICCI FLOW WITH ALMOST NON-NEGATIVE CURVATURE 20

3.2 Preliminaries

3.2.1 Extension Lemma

For the metric on a local region, we can modify it by a conformal change that pushes the
boundary of the region, on which we have curvature bounds, to infinity in such a way that the
modified metric is complete and has bounded curvature. For example, the open Euclidean
unit ball can be made into a complete hyperbolic metric under a conformal change. The
following conformal change has been used in [41], [64]. In [2], a different conformal change
was also used to achieve the local results of the first and third cases listed in Theorem 3.1.1,
as a corollary of their corresponding global results.

Lemma 3.2.1. (Conformal Change Lemma) Let (Nn, g) be a smooth (not necessarily com-
plete) Riemannian manifold and let U ⊂ N be an open set. Assume that for some ρ ∈ (0, 1],
we have supU |Rm|g ≤ ρ−2, Bg(x, ρ) ⊂⊂ N and injg(x) ≥ ρ for all x ∈ U . Then there exist

a constant γ = γ(n) ≥ 1, an open set Ũ ⊂ U and a smooth metric g̃ defined on Ũ such that
each connected component of (Ũ , g̃) is a complete Riemannian manifold satisfying

1. |Rm|g̃ ≤ γρ−2 and injg̃ ≥ 1√
γ
ρ for x ∈ Ũ

2. Uρ ⊂ Ũ ⊂ U

3. g̃ = g on Ũρ ⊃ U2ρ,

where Us = {x ∈ U |Bg(x, s) ⊂⊂ U}.

3.2.2 Some integrations

For later convenience, we include some frequently used inequalities and their proofs in this
subsection.

Lemma 3.2.2. Given K,R,C1 > 0, t ∈ (0, 1] and n ∈ N. There exists positive constant C =
C(K,C1, n) such that the following holds. Let (M, g) be a complete Riemannian manifold
with Ric ≥ −(n− 1)K on Bg(x,R) for some point x ∈M . Then

C1

t
n
2

∫
Bg(x,R)

exp

(
−
d2
g(x, y)

C1t

)
dgy ≤ C (3.2.1)

Proof. Let ĝ = 1
t
g, then it suffices to show I := C1

∫
Bĝ(x, R√

t
)
exp(−d2ĝ(x,y)

C1
)dĝy ≤ C(C1, K, n).

For all y ∈ Bĝ(x,
R√
t
), the minimizing geodesic connecting x and y lies within Bĝ(x,

R√
t
)

where Ric ≥ −(n − 1)Kt ≥ −(n − 1)K. So by Laplacian comparison the volume form

dĝy ≤ snn−1
−K (r(y))dr ∧ dvoln−1 ≤ exp((n−1)

√
Kr)

(2
√
K)n−1 dr ∧ dvoln−1, where r is the distance function
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centered at x and dvoln−1 is the standard volume form on Sn−1(1). So we can express the
integral on the segment domain in TxM and obtain

I ≤ C1

(2
√
K)n−1

∫
r≤ R√

t

exp

(
− r

2

C1

)
exp((n− 1)

√
Kr) dr ∧ dvoln−1

≤ C(C1, n,K)

∫
R
exp

(
− r

2

C1

+ (n− 1)
√
Kr

)
dr ≤ C(C1, n,K)

Lemma 3.2.3. Given C1, C2 > 0 and n ∈ N. Let (M, g(t)), t ∈ [0, 1] be a complete Ricci
flow with |Rm|g(t) ≤ C1

t
. Then for any d ≥ 2(n− 1)

√
C1C2,

C2

t
n
2

∫
M−Bg(t)(x, 4

√
t d)

exp

(
−d

2
t (x, y)

C2t

)
dty ≤ C exp

(
− d2

C
√
t

)
(3.2.2)

where C is a constant depending on n, C1 and C2.

Proof. For convenience, C denotes all the constants depending on C1, C2, and C3. Fix t, let
ĝ = 1

t
g(t). Then it suffices to show

C2

∫
M−Bĝ(x, d4√t

)

exp

(
−
d2
ĝ(x, y)

C2

)
dĝy ≤ C exp

(
− d2

C
√
t

)
(3.2.3)

with |Rm|ĝ ≤ C1.

Since Ric ≥ −(n − 1)C1, we get by Laplacian comparison that the volume form dĝy ≤
snn−1
−C1

(r(y))dr ∧ dvoln−1 ≤ e(n−1)
√
C1r

(2
√
C1)n−1 dr ∧ dvoln−1 Thus by considering the integral over the

segment domain in TxM , denoting by ωn−1 the volume of Sn−1(1), we get

I ≤ C2

(2
√
C1)n−1

∫
r≥ d

4√t

exp

(
− r

2

C2

)
exp((n− 1)

√
C1r) dr ∧ dvoln−1

=
C2

(2
√
C1)n−1

ωn−1

∫
r≥ d

4√t

exp

(
− r

2

C2

+ (n− 1)
√
C1r

)
dr

≤ C

∫
r≥ d

4√t

exp

(
− r2

2C2

)
dr ≤ C exp

(
− d2

2C2

√
t

)
.
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Lemma 3.2.4. Given t, T, d, C > 0 and n ∈ N such that t < T ≤ d2, there exists positive
constant C1 = C1(C, n) such that

C

t
n
2

exp

(
− d

2

Ct

)
≤ C1

T
n
2

exp

(
− d2

C1T

)
. (3.2.4)

Proof. It’s easy to see there exists C1 = C1(C, n) such that for all x > 0,

1

x
n
2

exp

(
− 1

Cx

)
≤ C1exp

(
− 1

2Cx

)
. (3.2.5)

Then (3.2.4) follows immediately from this inequality and the above assumptions.

3.2.3 Weak derivatives

In this section, we assume (Mn, g(t)) is a complete Ricci flow with bounded curvature. As
we mentioned in introduction, ` satisfies the evolution inequality (3.1.7) in the barrier sense:
for any (q, τ) ∈ M × (0, T ) we find a neighborhood U ⊂ M × (0, T ) of (q, τ) and a C∞

function φ : U → R such that φ ≤ ` on U , with equality at (q, τ) and

(
∂

∂t
−∆)φ ≤ R`+ C(n)`2 at (q, τ). (3.2.6)

Set L = e−C(n)t` and assume ` ≤ 1 then by (3.1.7) we have the following inequality which
holds in the barrier sense

(
∂

∂t
−∆)L ≤ RL. (3.2.7)

Suppose for a moment that L is smooth and ψ(x, t) is a non-negative smooth function which
is compactly supported in M for each t. Then we see from the integration by parts formula
that

∂

∂t

∫
U

Lψ dtx =

∫
U

(
∂

∂t
Lψ − LψR + L ∂

∂t
ψ) dtx

≤
∫
U

((∆L)ψ + L ∂
∂t
ψ) dtx

=

∫
U

L(∆ψ +
∂

∂t
ψ) dtx.

(3.2.8)

We show in Lemma 3.2.6 that some variant of (3.2.8) is still true without the smooth
assumptions either on ` or the test function ψ.

First, we give the definitions of inequalities in several weak senses. We say a continuous
function f : M → R satisfies ∆f ≤ u for some function u : M → R in the barrier sense if
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for any point x and every ε > 0 there exists a neighborhood Uε ⊂ M of x and a smooth
function hε : Uε → R such that hε(x) = f(x), hε ≥ f in Uε and ∆hε(x) ≤ u(x) + ε.

We say a continuous function f : M → R satisfies ∆f ≤ u for some bounded function
u : M → R in the distributional sense if for any non-negative smooth function h with
compact support one has

∫
f∆h ≤

∫
uh. By standard argument, if f satisfies ∆f ≤ u in the

barrier sense, then f satisfies it in the distributional sense (see for example [52, Appendix A]).

Lemma 3.2.5. Let ψ(x, t) be a non-negative smooth function which is compactly supported
in M for each t. L = e−C(n)t` with ` ≤ 1. Then we have

∂+

∂t

∫
Lψ dtx ≤

∫
L(∆ψ +

∂

∂t
ψ) dtx (3.2.9)

for all t ∈ [a, b) ⊂ (0, T ), integrating which we have:

(

∫
Lψ dtx)

∣∣∣∣b
a

≤
∫ b

a

(

∫
L(∆ψ +

∂

∂t
ψ)) dtx dt (3.2.10)

Proof. Let t0 be an arbitrary time in [a, b). Since L satisfies

(
∂

∂t
−∆)L ≤ RL

in the barrier sense, by the maximum principle for complete manifold with bounded curva-
ture, L(·, t) ≤ L(·, t) for all t ∈ [t0, b], where L is the solution to the initial value problem:

(
∂

∂s
−∆)L = RL, L(·, t0) = L(·, t0). (3.2.11)

Then L is smooth for all t > t0 and so we have

∂+

∂t

∣∣∣∣
t0

∫
Lψ dtx ≤

∂+

∂t

∣∣∣∣
t0

∫
Lψ dtx = lim

t→t+0

∂

∂t

∫
Lψ dtx. (3.2.12)

For each t > t0, we calculate by integration by parts to get

∂

∂t

∫
Lψ dtx =

∫
L(∆ψ +

∂

∂t
ψ) dtx, (3.2.13)

substituting which into (3.2.12) we have

∂+

∂t

∣∣∣∣
t0

∫
Lψ dtx ≤ lim

t→t+0

∫
L(∆ψ +

∂

∂t
ψ) dtx =

∫
L(∆ψ +

∂

∂t
ψ) dtx

∣∣∣∣
t0

(3.2.14)
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Lemma 3.2.6. Let ψ(x, t) be a non-negative continuous function which is compactly sup-
ported in M for each t, and satisfies ∆ψ ≤ u(x, t) and ∂

∂t
ψ ≤ v(x, t) in the barrier sense,

where v(x, t) is continuous with respect to t.

Then for all t we have

∂+

∂t

∫
L(x, t)ψ(x, t) dtx ≤

∫
L(x, t)(u(x, t) + v(x, t)) dtx (3.2.15)

Proof. Let t0 be an arbitrary time in (a, b). Differentiating at t0 by the product rule we get

∂+

∂t

∣∣∣∣
t0

∫
L(x, t)ψ(x, t) dtx ≤

∫
L(x, t0)v(x, t0) dt0x+

∂+

∂t

∣∣∣∣
t0

∫
L(x, t)ψ(x, t0) dtx. (3.2.16)

Let L be the solution to the initial value problem

(
∂

∂s
−∆)L = RL, L(·, t0) = L(·, t0). (3.2.17)

Then L is smooth for all t > t0. We calculate using the fact that barrier sense implies
distributional sense:

∂+

∂t

∣∣∣∣
t0

∫
L(x, t)ψ(x, t0) dtx ≤

∂+

∂t

∣∣∣∣
t0

∫
L(x, t)ψ(x, t) dtx

≤ lim sup
t→t+0

∂

∂t

∫
L(x, t)ψ(x, t0)dtx

= lim sup
t→t+0

∫
∆L(x, t)ψ(x, t0)dtx

≤ lim sup
t→t+0

∫
L(x, t)u(x, t0)dtx

=

∫
L(x, t0)u(x, t0)dt0x

(3.2.18)

where we used the fact that barrier sense implies distributional sense

3.3 Curvature Decay Lemma

The main result in this section is Lemma 3.3.4, which provides a local estimate on the
norm of the Riemann curvature tensor, under the assumption of a local bound for `. This
lemma can be viewed as a weaker version of Theorem 3.1.1 in the sense that we take the two
conclusions of the existence of the Ricci flow and the bound of `, as additional hypotheses,
and deduce the remaining conclusion about |Rm|.
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We need three ingredients in the proof of Lemma 3.3.4. One is the following Lemma,
given in [63, Lemma 5.1] by a point-picking argument.

Lemma 3.3.1. Given c0, r0 > 0, n ∈ N, and take β = β(n) > 0 as in Lemma 2.3.3. Let
(Mn, g(t)), t ∈ [0, T ] be a Ricci flow. Suppose for some x0 ∈M we have Bg(t)(x0, r0) ⊂⊂M
for each t ∈ [0, T ].

Then at least one of the following assertions is true:

1. For each t ∈ [0, T ] with t <
r20
β2c0

, we have Bg(t)(x0, r0 − β
√
c0t) ⊂ Bg(0)(x0, r0) and

|Rm|g(t) <
c0

t
on Bg(t)(x0, r0 − β

√
c0t). (3.3.1)

2. There exist t̄ ∈ (0, T ] with t̄ <
r20
β2c0

and x̄ ∈ Bg(t̄)(x0, r0 − 1
2
β
√
c0t) such that

Q := |Rm|g(t̄)(x̄) ≥ c0

t̄
, (3.3.2)

and
|Rm|g(t)(x) ≤ 4Q = 4|Rm|g(t̄)(x̄), (3.3.3)

whenever dg(t̄)(x, x̄) < βc0
8
Q−

1
2 and t̄− 1

8
c0Q

−1 ≤ t ≤ t̄.

The second ingredient we need, [63, Lemma 2.3], says that the volume of a ball of fixed
radius cannot decrease too rapidly under some curvature hypothesis.

Lemma 3.3.2. Given K, γ, c0, v0, T > 0 and n ∈ N, there exist positive constants ε0 =
ε0(v0, K, γ, n) and T̂ = T̂ (v0, c0, K, γ, n) ≥ 0 such that the following holds: Let (Mn, g(t)), t ∈
[0, T ) be a Ricci flow such that Bg(t)(x0, γ) ⊂⊂M for some x0 ∈M and all t ∈ [0, T ). Sup-
pose Ricg(t) ≥ −K and |Rm|g(t) ≤ c0

t
on Bg(t)(x0, γ) for all t ∈ [0, T ), and V olg(0)Bg(0)(x0, γ) ≥

v0.

Then
V olg(t)Bg(t)(x0, γ) ≥ ε0 (3.3.4)

for all t ∈ [0, T̂ ] ∩ [0, T ).

The third ingredient is the following Lemma, which says that the asymptotic volume
ratio of a weakly PIC1 ancient solution is zero. This is proved in [2, Lemma 4.2]. We note
that each curvature condition listed in Theorem 3.1.1 implies weakly PIC1, so the proof of
Lemma 3.3.4 is uniform for all C.

Lemma 3.3.3. Let (Mn, g(t)), t ∈ (−∞, 0] be a nonflat ancient solution of the Ricci flow
with bounded curvature satisfying weakly PIC1. Then it has non-negative complex sectional
curvature. Furthermore, the volume growth is non-Euclidean, i.e. lim

r→∞
r−nV olg(0)Bg(0)(x, r) =

0 for all x ∈M .
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We now states our main result of this section. In the proof we blow up a contradicting
sequence to get a weakly PIC1 ancient solution with positive asymptotic volume ratio, which
is impossible by Lemma 3.3.3.

Lemma 3.3.4. (Curvature Decay Lemma). Given v0, K > 0, there exist positive constants
T̃ = T̃ (v0, K, n), C1 = C1(v0, K, n) and η0 = η0(v0, K, n) such that the following holds: Let
(Mn, g(t)), t ∈ [0, T ] be a Ricci flow (not necessarily complete) such that Bg(t)(x0, 1) ⊂⊂ M
for each t ∈ [0, T ] and some x0 ∈M , and

V olg(0)Bg(0)(x0, 1) ≥ v0 > 0. (3.3.5)

Suppose further that

`(x, t) ≤ K on
⋃

s∈[0,T ]

Bg(s)(x0, 1), for all t ∈ [0, T ]. (3.3.6)

Then for all t ∈ (0, T ) ∩ (0, T̃ ), we have

|Rm|g(t) <
C1

t
on Bg(t)(x0,

1

2
), (3.3.7)

and

V olg(t)Bg(t)(x0, 1) ≥ η0 and injg(t)(x0) ≥
√

t

C1

(3.3.8)

for all t ∈ (0,min(T, T̃ )].

Proof. By Bishop-Gromov inequality, V olg(0)Bg(0)(x0,
1
2
) has a positive lower bound depend-

ing only on v0, n and K. Applying Lemma 3.3.2 to g(t), we see that there exists η0 > 0
depending only on v0, n and K such that for each C1 < ∞, there exist T̃ = T̃ (v0, n, C1)
such that prior to time T̃ and while |Rm|g(t) ≤ C1

t
still holds on Bg(t)(x0,

1
2
), we have a lower

volume bound
V olg(t)Bg(t)(x0, 1) ≥ η0. (3.3.9)

In particular, η0 is independent of C1. From this we deduce that is suffices to prove the
lemma with the additional hypothesis that the equation above holds for each t ∈ [0, T ).

Let us assume that the lemma is false, even with the extra hypothesis. Then for any
sequence ck →∞, we can find Ricci flows that fail the lemma with C1 = ck in an arbitrary
short time, and in particular within a time tk that is sufficiently small so that cktk → 0 as
k → ∞. By reducing tk to the first time at which the desired conclusion fails, we have a
sequence of Ricci flows (Mk, g̃k(t)) for t ∈ [0, tk] with tk → 0, and even cktk → 0, and a
sequence of points xk ∈Mk with Bg̃k(t)(xk, 1) ⊂⊂Mk for each t ∈ [0, tk], such that

V olg̃k(t)Bg̃k(t)(xk, 1) ≥ η0, for all t ∈ [0, tk], (3.3.10)
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`(x, t) ≤ K, on
⋃

s∈[0,tk]

Bg̃k(s)(xk, 1) for all t ∈ [0, tk], (3.3.11)

and

|Rm|g̃k(t) <
ck
t

on Bg̃k(t)(xk,
1

2
) for all t ∈ [0, tk], (3.3.12)

but so that

|Rm|g̃k(tk) =
ck
tk

at some point in Bg̃k(t)(xk,
1

2
). (3.3.13)

For sufficiently large k, we have β
√
cktk <

1
4
. We apply Lemma 3.3.1, to each g̃k(t) with

r0 = 3
4

and c0 = ck, then it follows by (3.3.13) that Assertion 1 there cannot hold, and thus
Assertion 2 must hold for each k, giving time t̄k ∈ (0, tk] and points x̄k ∈ Bg̃k(t̄k)(xk, r0 −
1
2
β
√
cktk) such that

|Rm|g̃k(t)(x) ≤ 4|Rm|g̃k(t̄k)(x̄k) (3.3.14)

on Bg̃(t̄k)(x̄k,
βck
8
Q
− 1

2
k ), for all t ∈ [t̄k − 1

8
ckQ

−1
k , t̄k], where Qk := |Rm|g̃k(t̄k)(x̄k) ≥ ck

t̄k
→ ∞.

We also notice that Bg̃(t̄k)(x̄k,
βck
8
Q
− 1

2
k ) ⊂ Bg̃(t̄k)(xk, 1), thus

`(x, t) ≤ K (3.3.15)

on Bg̃(t̄k)(x̄k,
βck
8
Q
− 1

2
k )× [t̄k − 1

8
ckQ

−1
k , t̄k]. The above conditions at t̄k, together with Bishop-

Gromov inequality, imply that we have uniform volume ratio control

V olg̃k(t̄k)Bg̃k(t̄k)(x̄k, r)

rn
≥ η > 0 (3.3.16)

for all 0 < r < 1
4
, where η depends on η0, K and n. A parabolic rescaling onBg̃(t̄k)(x̄k,

βck
8
Q
− 1

2
k )×

[t̄k − 1
8
ckQ

−1
k , t̄k] gives new Ricci flows defined by

gk(t) := Qkg̃k(
t

Qk

+ t̄k)

for t ∈ [−1
8
ck, 0]. The scaling factor is chosen so that |Rm|gk(0)(x̄k) = 1. By (3.3.14), the

curvature of gk(t) is uniformly bounded on Bgk(0)(x̄k,
1
8
βck) × [−1

8
ck, 0]. Condition (3.3.15)

transforms to

`(x, t) ≤ K

Qk

→ 0 (3.3.17)

on Bgk(0)(x̄k,
1
8
βck)× [−1

8
ck, 0]. The volume ratio (3.3.16) gives

V olgk(0)Bgk(0)(x̄k, r)

rn
≥ η > 0 (3.3.18)

for all 0 < r < 1
4
Q

1
2
k →∞.
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With this control we can apply Hamilton’s compactness theorem to give convergence
(Mk, gk(t), x̄k) → (N, g(t), x∞), for some complete bounded-curvature Ricci flow (N, g(t)),
for t ∈ (−∞, 0], and x∞ ∈ N .

Moreover, the last volume equation passes to limit to force g(t) to have positive asymp-
totic volume ratio. From (3.3.17) we know that g(t) is a nonflat ancient solution of Ricci flow
with bounded curvature satisfying weakly PIC1. This contradicts Lemma 3.3.3 that the vol-
ume ratio of (N, g(t)) vanishes, and thus shows the first part of the Lemma. For the second
part, the injectivity radius estimate of Cheeger-Gromov-Taylor [19] and the Bishop-Gromov
comparison then tell us injg(t)(x) ≥ i0

√
t for some i0 = i0(η0, C) > 0.

3.4 A cut-off function

In this section we construct a cut-off function on manifolds (not assumed to be complete)
evolving by Ricci flow, which helps to localize the integration estimates in section 7.

Lemma 3.4.1. Given n ∈ N, c0, K > 0, 0 < T < 1, 0 < R < 1, 0 < r < 1
10

with
β
√
c0T ≤ 1

4
r, where β = β(n) is from the Shrinking Lemma, there exists positive constant

C = C(n,K, v0) such that the following holds: Let (Mn, g(t)), t ∈ [0, T ] be a smooth Ricci
flow such that Bg(0)(x0, R + r) ⊂⊂M , and on Bg(0)(x0, R + r)× [0, T ],

Ricg(t)(x) ≥ −K and |Rm|g(t) ≤
c0

t
, (3.4.1)

and for all δ ∈ [0, r] and x ∈ Bg(0)(x0, R) we have

V olg(0)Bg(0)(x, δ) ≥ v0δ
n. (3.4.2)

Then there exists a continuous function φ(y, s) : M × [0, T ] −→ R with the following
properties:

(P1) supp φ(·, s) ⊂ Bg(0)(x0, R) for all s ∈ [0, T ].

(P2) ∇φ exists a.e. and |∇φ| ≤ Cr−(n+1).

(P3) ∆φ ≤ Cr−(2n+2) in the barrier sense.

(P4) ∂+

∂s
φ ≤ Cr−n.

Moreover, we have the inclusions:

Bg(s)(x0, R− 5
4
r) ⊂ Bg(0)(x0, R− r) ⊂ {y ∈M |φ(y, s) = 1} (3.4.3)

for all s ∈ [0, T ].
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Proof. Let f : R −→ R be a non-increasing smooth function such that f(z) = 1 for all
z < 1

4
and f(z) = 0 for all z > 1

2
. Let F : R −→ R be a non-decreasing and convex

smooth function such that F (z) = 0 for all z ≤ 0 and F (1) = 1. Let C0 be a constant such
that |f ′|, |f ′′|, |F ′|, |F ′′| ≤ C0. Hereafter we use the same letter C to denote the constants
depending on K, v0, n.

Let {pk}Nk=1 be a maximal r
4eK

-separated set in the annulusA := Bg(0)(x0, R)−Bg(0)(x0, R−
1
4
r) with respect to g(0). By a ε-separated set we mean a set in which the points are at least
ε-distant from each other. It’s clear that the ε/2-balls of points in a ε-separated set are dis-
joint pairwise. By volume comparison we see that V olg(0)Bg(0)(x0, R) ≤ C, and furthermore
by (3.4.2) V olg(0)Bg(0)(pk,

r
4eK

) ≥ Crn. Hence we have N ≤ Cr−n.

Claim 3.4.2. A ⊂
N⋃
k=1

Bg(s)(pk,
r
4
) for all s ∈ [0, T ].

Proof of Claim 3.4.2. By the choice of {pk}Nk=1 we see that A ⊂
N⋃
k=1

Bg(0)(pk,
r

4eK
). For each

pk, the triangle inequality implies that Bg(0)(pk,
r
2
) ⊂⊂ Bg(0)(x0, R + r) where |Rm|g(s) ≤ c0

s

and Ricg(s) ≥ −K holds true for all s ∈ [0, T ]. Applying the Shrinking Lemma to g(t), we
find that Bg(s)(pk,

r
2
− β√c0s) ⊂ Bg(0)(pk,

r
2
) for all s ∈ [0, T ] and in particular Bg(s)(pk,

r
4
) ⊂

Bg(0)(pk,
r
2
) due to β

√
c0T ≤ 1

4
r. So Ric ≥ −K holds onBg(s)(pk,

r
4
), which gives the condition

we need in order to apply the Expanding Lemma to the Ricci flow on Bg(s)(pk,
r
4
) × [0, s],

giving Bg(s)(pk,
r
4
) ⊃ Bg(0)(pk,

r
4eK

), and thus proves the claim.

By the Shrinking Lemma and triangle inequality, we have Bg(s)(pk,
r
2
) ⊂ Bg(0)(pk, r) ⊂

Bg(0)(x0, R + r). In view of this together with the definition of f , we define the following
continuous function on M :

fk(y, s) =

{
f
(
dg(s)(pk,y)

r

)
for y ∈ Bg(0)(pk, r) ;

0 for y /∈ Bg(0)(pk, r).
(3.4.4)

By Claim 3.4.2, for each point y ∈ A and s ∈ [0, T ], there is some k such that y ∈
Bg(s)(pk,

r
4
), fk(y, s) = 1 and F (1−

∑N
k=1 fk(y, s)) = 0. Based on this we define the following

continuous function on M :

φ(y, s) =

F (1−
N∑
k=1

fk(y, s)) for y ∈ Bg(0)(x0, R) ;

0 for y /∈ Bg(0)(x0, R) .
(3.4.5)

It’s clear that φ(y, s) satisfies (P1). Below we abbreviate dg(s)(pk, y) by dk, f
′(
dg(s)(pk,y)

r
)

by f ′k, and f ′′(
dg(s)(pk,y)

r
) by f ′′k . Using that

∇φ = −F ′ ·
N∑
k=1

f ′k · r−1 · ∇dk, (3.4.6)
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and taking into account that ∇dk exists a.e. with |∇dk| = 1, and N ≤ C · r−n, we see that
∇φ exists a.e. and

|∇φ| ≤ C · r−(n+1). (3.4.7)

To estimate ∂
∂s
φ(y, s) and ∆φ(y, s), we may assume y ∈ Bg(s)(pk,

1
2
r)−Bg(s)(pk,

1
4
r) with-

out loss of generality. Because otherwise f ′(dk(y,s)
r

) = 0, and hence ∂
∂s
φ(y, s) = ∆φ(y, s) = 0.

By the Shrinking Lemma and the choice of pk we have

Bg(s)(pk,
1

2
r) ⊂ Bg(0)(pk, r) ⊂ Bg(0)(x0, R + r). (3.4.8)

So the minimizing geodesic connecting y and pk with respect to g(s) remains withinBg(0)(x0, R+
r) where Ricg(s) ≥ −K. Hence by the Laplacian comparison and noting that dg(s)(y, pk) ≥ 1

4
r,

we have

∆dg(s)(pk, y) ≤ (n− 1)
√
Kcoth(

√
Kdg(s)(pk, y)) ≤ C

r
(3.4.9)

in the barrier sense. Then using that

∆φ = F ′′|
N∑
k=1

f ′k · r−1 · ∇dk|2 − F ′ ·
N∑
k=1

(f ′′k · r−2 · |∇dk|2 + f ′k · r−1 ·∆dk), (3.4.10)

and noting f ′ ≤ 0, F ′ ≥ 0, we can estimate

∆φ ≤ C · r−(2n+2). (3.4.11)

We see from the Ricci flow equation that

∂+

∂s
dg(s)(pk, y) ≤ Kdg(s)(pk, y) ≤ 1

2
Kr, (3.4.12)

and using that

∂+

∂s
φ = −F ′

N∑
k=1

f ′k · r−1 · ∂
+

∂s
dk, (3.4.13)

we obtain
∂+

∂s
φ ≤ C · r−n. (3.4.14)

It remains to prove the inclusion (3.4.3). The first inclusion is a consequence of the
Shrinking Lemma and β

√
c0T ≤ 1

4
r. To prove the second inclusion, we note by triangle

inequality that

Bg(0)(x0, R− r) ∩
N⋃
k=1

Bg(0)(pk,
3

4
r) = ∅, (3.4.15)
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and by the Shrinking Lemma,

Bg(s)(pk,
1

2
r) ⊂ Bg(0)(pk,

1

2
r + β

√
c0T ) ⊂ Bg(0)(pk,

3

4
r) (3.4.16)

for each k and s ∈ [0, T ]. Thus for all s ∈ [0, T ],

Bg(0)(x0, R− r) ∩
N⋃
k=1

Bg(s)(pk,
1

2
r) = ∅. (3.4.17)

Then the second inclusion in (3.4.3) follows immediately from (3.4.17) and the definitions of
f and φ.

3.5 Heat kernel estimates for Ricci flow in expansion

3.5.1 An upper bound for the heat kernel of Ricci flow

Let (M, g(t)), t ∈ [0, T ], be a complete Ricci flow. Hereafter we denote by G(x, t; y, s), with
x, y ∈ M , 0 ≤ s < t ≤ T , the heat kernel corresponding to the backwards heat equation
coupled with the Ricci flow. This means that for any fixed (x, t) ∈M × [0, T ] we have

(
∂

∂s
+ ∆y,s)G(x, t; y, s) = 0 and lim

s↗t
G(x, t; y, s) = δx(y) (3.5.1)

Then for any fixed (y, s) ∈ M × [0, T ] we can compute that G(·, ·; y, s) is the heat kernel
associated to the conjugate equation

(
∂

∂t
−∆x,t −Rg(t))G(x, t; y, s) = 0 and lim

t↘s
G(x, t; y, s) = δy(x). (3.5.2)

Note that in literatures it is more common to consider the fundamental solution of the
conjugate heat equation ∂

∂t
u+ ∆x,tu−Ru = 0. G(x, t; y, s) has the following property∫

M

G(x, t; y, s) dtx = 1 for all 0 ≤ s < t ≤ T. (3.5.3)

In the compact case, this follows from the following simple calculation:

∂

∂t

∫
M

G(x, t; y, s) dtx =

∫
M

((∆x,t +Rg(t))G(x, t; y, s)−G(x, t; y, s)Rg(t)) dtx = 0. (3.5.4)

The general case follows using an exhaustion and limiting argument.

The heat kernel G has a Gaussian bound by the following proposition from [2].
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Proposition 3.5.1. Given n ∈ N and A > 0, there is a constant C = C(n,A) < ∞ such
that the following holds: Let (Mn, g(t)), t ∈ [0, T ], be a complete Ricci flow satisfying

|Rm|g(t) ≤
A

t
and V olg(t)Bg(t)(x,

√
t) ≥ (

√
t)n

A
(3.5.5)

for all (x, t) ∈M × (0, T ]. Then

G(x, t; y, s) ≤ C

(t− s)n2
exp(− d2

s(x, y)

C(t− s)
) for all 0 ≤ s < t ≤ T. (3.5.6)

Remark 3.5.2. We note that (3.5.5) is invariant under rescaling and time shifting in the
sense that for the Ricci flow ĝ(τ) = 1

t−sg(τ(t − s) + s), τ ∈ [0, 1], where 0 ≤ s < t ≤ T ,
the condition (3.5.5) still holds true. The right-hand side of the second bound in (3.5.5) may
change by a controlled factor due to a volume comparison argument.

3.5.2 Generalized heat kernel of Ricci flow in expansion and its
upper bound

Definition 3.5.3. (Ricci flow in expansion) We say ({Mj}mj=1, {gj(t)}mj=1, ν) is a Ricci flow in
expansion, if for each j, (Mj, gj(t)) is a complete Ricci flow defined on [tj, tj+1] with t1 > 0,
tj+1 = ν tj for j ≥ 1, and M0 ⊃ M1 ⊃ M2 ⊃ ... ⊃ Mm. Moreover, at each tj+1 we have
gj+1(tj+1) ≥ gj(tj+1) everywhere on Mj+1.

We call each tj a expanding time. In the following discussion we will often need to
distinguish metrics gj−1(tj) and gj(tj). Without ambiguity, we use t+j whenever referring to
any geometric quantity with respect to gj(tj), and t−j for gj−1(tj) respectively. For example,
Bt+j

(x, r) denotes a r-ball centered at x with respect to gj(tj) and Mt+j
denotes Mj.

Definition 3.5.4. (Generalized heat kernel) Let ({Mj}mj=1, {gj(t)}mj=1, ν) be a Ricci flow in
expansion. For any x ∈Mi and t ∈ (ti, ti+1], we define the generalized heat kernel G(x, t; ·, ·)
as follow: First, G(x, t; y, s) is the standard heat kernel for all y ∈ Mi and s ∈ [ti, t). Next,
suppose G(x, t; z, s′) has been defined for all z ∈Mj and s′ ∈ [tj, tj+1) for some j ≤ i. Then
for y ∈Mj−1 and s ∈ [tj−1, tj), we set

G(x, t; y, s) =

∫
M
t+
j

G(x, t; z, tj)G(z, tj; y, s)dt−j z. (3.5.7)

Inductively, G(x, t; ·, ·) is defined on (
⋃i−1
j=0Mj×[tj, tj+1))∪Mi×[ti, t) (see Figure 1). It’s easy

to see that G(x, t; ·, ·) is continuous on all over its domain, and smooth on each Mj×(tj, tj+1)
for j ≤ i− 1 and on Mi × (ti, t).
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Figure 3.1: Ricci flow in expansion

The goal of this section is to derive a Gaussian bound for the generalized heat kernel. A
crucial fact in the proof is that the L1-norm of G(·, tj; y, tj−1) is not bigger than 1 for all t,
that is, ∫

M
t+
j

G(x, tj; y, tj−1) dt−j x ≤
∫
M
t−
j

G(x, tj; y, tj−1) dt−j x = 1 (3.5.8)

for any y ∈Mj−1.

Proposition 3.5.5. Given n ∈ N, A > 0, and ν > 1, there is a constant C = C(n,A, ν) <∞
such that the following holds: Let ({Mj}mj=1, {gj(t)}mj=1, ν) be a Ricci flow in expansion such
that for each j we have

|Rm|gj(t) ≤
A

t
and V olgj(t)Bgj(t)(x,

√
t) ≥ t

n
2

A
(3.5.9)

for all x ∈Mj and t ∈ [tj, tj+1]. Then for any pairs (x, t) and (y, s) such that G(x, t; y, s) is
well defined as above, we have

G(x, t; y, s) ≤ C

(t− s)n2
exp

(
−
d2
s+(x, y)

C(t− s)

)
. (3.5.10)
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Remark 3.5.6. It may seem surprising that it is not necessary to assume the equality of
metrics gj(tj+1) and gj+1(tj+1) on Mj+1. But as we will see in the proof below, the expanding
condition gj(tj+1) ≤ gj+1(tj+1) is compatible with the application of the Shrinking Lemma
and hence sufficient for us to get the conclusion. In later application to the proof of Theorem
3.1.1, the metric gj+1(tj+1) is the conformally changed metric of gj(tj+1), which is not less
than gj(tj+1) everywhere on Mj+1, and agrees with it on a smaller region.

Proof. For notational convenience, the same letter C will be used to denote constants de-
pending on n, A and ν.

Part 1 Let us first establish the estimate (3.5.10) for t = tk+i and s = ti for some i ≥ 1
and k ≥ 1. Rescaling the flow g(t), t ∈ [ti, tk+i] to ĝ(τ) = 1

tk+i−ti
g(τ(tk+i− ti) + ti), τ ∈ [0, 1],

the “expanding time” sequence

tk+i > tk+i−1 > · · · > tk+i−j > · · · > ti+1 > ti

becomes
1 = τ0 > τ1 > · · · > τj > · · · > τk−1 > τk = 0

where τj :=
tk+i−j−ti
tk+i−ti

= νk−j−1
νk−1

, for j = 0, 1, 2, ..., k. Then for each j = 0, 1, ..., k − 1, we have

τj − τj+1 =
νk−j − νk−j−1

νk − 1
≤ ν−j. (3.5.11)

To show (3.5.10) for t = tk+i and s = ti, it’s equivalent to show the following inequality
under the new flow:

G(x, 1; y, 0) ≤ Cexp

(
−
d2

0+(x, y)

C

)
. (3.5.12)

We note that by Remark 3.5.2, the new flow ĝ(τ) satisfies the curvature and volume condi-
tions in (3.5.9).

Since τ1 ≤ ν−1, applying the Gaussian bound (3.5.6) for standard heat kernel we find
that

G(x, 1; ·, τ1) ≤ C

(1− τ1)
n
2

≤ C0 :=
C

(1− ν−1)
n
2

. (3.5.13)

Let C0 be fixed hereafter. Suppose by induction that G(x, 1; ·, τj) ≤ C0 for some j ≥ 1.
Then for any z such that G(x, 1; z, τj+1) is well defined, we have

G(x, 1; z, τj+1) =

∫
M
τ+
j

G(x, 1;w, τj)G(w, τj; z, τj+1)dτ−j w

≤ C0

∫
M
τ+
j

G(w, τj; z, τj+1)dτ−j w ≤ C0

(3.5.14)
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where we used (3.5.8) in the last inequality. So by induction we obtain

G(x, 1; ·, τj) ≤ C0, (3.5.15)

for all j = 1, 2, ..., k. In particular, we have G(x, 1; ·, 0) ≤ C0. This implies (3.5.12) when

d0+(x, y) is controlled. So it remains to show G(x, 1; y, 0) ≤ exp
(
−d2

C

)
whenever d0+(x, y) ≥

4d(1− ( 4
√
ν)−1) for a large number d (which we will specify in the course of proof). For each

j = 1, 2, ..., k, let
rj = 4d(1− ( 4

√
ν)−j). (3.5.16)

Then set Bj = Bτ+j
(x, rj), Cj = Mτ+j

−Bj and

aj := sup
Cj

G(x, 1; ·, τj). (3.5.17)

Then it suffices to show the following Claim:

Claim 3.5.7. aj ≤ Cexp(−d2

C
), for some constant C independent of d, which is uniform for

all j = 1, 2, ..., k.

Proof of Claim 3.5.7. For each j, the expanding condition gj−1(tj) ≤ gj(tj) implies Bj =
Bτ+j

(x, rj) ⊂ Bτ−j
(x, rj). Applying the Shrinking Lemma on [τj+1, τj], we find thatBτ−j

(x, rj) ⊂
Bτ+j+1

(x, rj + β
√
A
√
τj − τj+1). Thus for any z ∈ Cj+1 and w ∈ Bj, the triangle inequality

implies
dτ+j+1

(z, w) ≥ rj+1 − rj − β
√
A
√
τj − τj+1. (3.5.18)

By (3.5.11),
√
τj − τj+1 ≤ (

√
ν)−j ≤ ( 4

√
ν)−j, we choose

d ≥ β
√
A

2(1− ( 4
√
ν)−1)

,

then (3.5.18) gives

dτ+j+1
(z, w) ≥ δrj :=

2d(1− ( 4
√
ν)−1)

( 4
√
ν)j

. (3.5.19)

To conclude, we have
Bj ⊂Mτ+j+1

−Bτ+j+1
(z, δrj). (3.5.20)

By Definition 3.5.4, we have

G(x, 1; z, τj+1) =

∫
M
τ+
j

G(x, 1;w, τj)G(w, τj; z, τj+1) dτ−j w, (3.5.21)

for any z ∈ Cj+1 fixed. We split the following integral I[Mτ+j
] := G(x, 1; z, τj+1) into the

integrals over Cj and Bj. We obtain from the definition of aj and (3.5.8) that
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I[Cj] =

∫
Cj

G(x, 1;w, τj)G(w, τj; z, τj+1)dτ−j w

≤ aj

∫
M
τ+
j

G(w, τj; z, τj+1)dτ−j w ≤ aj.
(3.5.22)

To estimate I[Bj], we notice that by (3.5.20), (3.5.15) and (3.5.9) we have

I[Bj] ≤ C0

∫
Bj

G(w, τj; z, τj+1) dτ−j w,

≤ C0

∫
M
τ+
j+1
−B

τ+
j+1

(z,δrj)

G(w, τj; z, τj+1) dτ−j w

≤ C

∫
M
τ+
j+1
−B

τ+
j+1

(z,δrj)

G(w, τj; z, τj+1) dτ+j+1
w.

Then applying the Gaussian bound (3.5.6) to G(w, τj; z, τj+1) and calculating as in Lemma
3.2.3 we have

I[Bj] ≤ Cexp

(
− (δrj)

2

C(τj − τj+1)

)
. (3.5.23)

Plugging (3.5.11) and (3.5.19) into (3.5.23) we have

I[Bj] ≤ Cexp

(
−(
√
ν)jd2

C

)
. (3.5.24)

Combining (3.5.22) and (3.5.23), we see that G(x, 1; z, τj+1) ≤ aj + Cexp(−d2(
√
ν
j
)

C
) for

arbitrary z in Cj+1. Hence by the definition of aj+1, there holds

aj+1 ≤ aj + Cexp

(
−d

2(
√
ν)j

C

)
≤ a1 + C

j∑
l=1

exp

(
−d

2(
√
ν)l

C

)

≤ a1 + Cexp

(
−d

2

C

) j∑
l=1

exp

(
−d

2((
√
ν)l − 1)

C

)
≤ a1 + C exp

(
−d

2

C

)
.

Note a1 = supC1
G(x, 1; ·, τ1). For any z ∈ C1 = Mτ+1

− Bτ+1
(x, r1), we have dτ+1 (x, z) ≥

r1 = 4d(1−( 4
√
ν)−1). Substituting this into the ordinary Gaussian bound, we getG(x, 1; z, τ1) ≤

C

(1−τ1)
n
2
exp(− d2

C(1−τ1)
). This gives a1 ≤ Cexp(−d2

C
). Hence aj+1 ≤ Cexp(−d2

C
). This finishes

the proof of the claim.
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To summarize, we showed for t = tk+i, s = ti, i ≥ 1, k ≥ 1 and x, y such thatG(x, tk+i; y, ti)
is defined, we have the Gaussian bound.

G(x, tk+i; y, ti) ≤
C

(tk+i − ti)
n
2

exp

(
−

d2
t+i

(x, y)

C(tk+i − ti)

)
. (3.5.25)

We will use this to derive the Gaussian bound (3.5.10) for arbitrary t and s.

Part 2 To show (3.5.10) for arbitrary t and s, there are two cases left. The first is that
neither t nor s is an expanding time, and the second is that one of them is an expanding
time. Since the second case follows a same but easier route than the first one, we prove the
first case below.

Since t and s are not expanding times, we may assume t ∈ (tk+i, tk+i+1) and s ∈ (ti, ti+1)
for some k and i. Rescaling the flow on [s, t] to a new flow on [0, 1], for the same reason as
in Part 1, it suffices to show for any very large d (which we specify below) and x, y such that
d0(x, y) ≥ 5d, we have

G(x, 1; y, 0) ≤ Cexp

(
−d

2

C

)
. (3.5.26)

Under rescaling, tk+i and ti+1 become τ2 := tk+i−s
t−s and τ1 := ti+1−s

t−s , respectively. By Defini-
tion 3.5.4 of the generalized heat kernel, we have

G(x, 1; y, 0) =

∫
M
τ+2

∫
M
τ+1

G(x, 1; z, τ2)G(z, τ2;w, τ1)G(w, τ1; y, 0)dτ−1 w dτ
−
2
z. (3.5.27)

We split the integral I[Mτ+2
×Mτ+1

] := G(x, 1; y, 0) over three regions

U = {(z, w) | z ∈ Bτ−2
(x, d) and w ∈ Bτ−1

(y, d)},
V = {(z, w) | z /∈ Bτ−2

(x, d)},
W = {(z, w) |w /∈ Bτ−1

(y, d)}.
(3.5.28)

Then G(x, 1; y, 0) ≤ I[U ] + I[V ] + I[W ]. Since τ1 and τ2 are both expanding times and
τ2 − τ1 is bounded below by a positive number depending only on ν, the result from Part 1
implies

G(z, τ2;w, τ1) ≤ C exp

(
−
d2
τ+1

(z, w)

C

)
. (3.5.29)

If we choose d ≥ β
√
A, then for any z ∈ Bτ−2

(x, d) and w ∈ Bτ−1
(y, d), the Shrinking Lemma

together with the expanding conditions imply dτ−1 (x, z) ≤ dτ+1 (x, z) ≤ dτ−2 (x, z) + β
√
A ≤

dτ−2 (x, z) + d ≤ 2d, and dτ−1 (x, y) ≥ d0(x, y) − β
√
A ≥ 4d. Then by triangle inequality we

have

dτ+1 (z, w) ≥ dτ−1 (z, w) ≥ dτ−1 (x, y)− dτ−1 (x, z)− dτ−1 (y, w) ≥ d. (3.5.30)
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Hence by (3.5.29), (3.5.30), (3.5.6) and (3.5.8) we have

I[U ] ≤ C exp

(
−d

2

C

)
·

∫
M
τ+2

G(x, 1; z, τ2) dτ−2 z

 ·
∫

M
τ+1

G(w, τ1; y, 0) dτ−1 w


≤ C exp

(
−d

2

C

)
· C · 1 = C exp

(
−d

2

C

)
.

(3.5.31)

And (3.5.29), (3.5.8), (3.5.6) together with Lemma 3.2.3 imply

I[V ] ≤ C

∫
z /∈B

τ−2
(x,d)

G(x, 1; z, τ2) dτ−2 z

 ≤ Cexp

(
−d

2

C

)
. (3.5.32)

Similarly we have

I[W ] ≤ Cexp

(
−d

2

C

)
. (3.5.33)

So (3.5.26) follows from (4.7.20), (3.5.32), (3.5.33) immediately.

3.5.3 Gradient of heat kernel

In this subsection, we consider Ricci flow in expansion ({Mj}mj=1, {gj(t)}mj=1, ν) and use
Proposition 3.5.5 to derive an upper bound for the gradient of the generalized heat ker-
nel. Assume all the conditions are the same as in Proposition 3.5.5. We choose and fix
some x ∈ Mi , t ∈ (ti, ti+1] for some i. Then G(x, t; ·, ·) is a solution to the heat equation
∂
∂s′
G(x, t; z, s′) + ∆z,s′G(x, t; z, s′) = 0 on Mj × (tj,min(tj+1, t)], j = 1, ..., i. For an arbitrary

(y, s) ∈Mj × (tj,min(tj+1, t)], j = 1, ..., i, applying the standard result of Schauder estimate
(see [33] for example), we see that there is a constant C depending on A and n such that

|∇G|(x, t; y, s) ≤ C
√
s− tj

sup G(x, t; ·, ·), (3.5.34)

where the supremum is taken over Bg(s)(y,
√
s− tj)× [tj, s].

Since |Rm| ≤ A
t

on Mj × [tj, tj+1],we have a constant C1 = C1(n,A, ν) > 0 such that
for any s, s′ ∈ [tj, tj+1], C−1

1 ds′ ≤ ds ≤ C1 ds′ . Suppose ds(x, y) ≥ d for a large number d
satisfying

d ≥ 2C1(
√
ti+1 − ti + β

√
A
√
ti+1 − ti). (3.5.35)

We claim the following Gaussian bound of |∇G|(x, t; y, s):

Claim 3.5.8. For each j = 1, ..., i, we have the following estimate:

|∇G|(x, t; y, s) ≤ 1
√
s− tj

C

t
n
2
i+1

exp

(
−d

2
s(x, y)

Cti+1

)
(3.5.36)

for some constant C that only depends on A, ν and n.
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Proof of Claim 3.5.8. For any (z, s′) ∈ Bg(s)(y,
√
s− tj)× [tj, s], first we have by the Shrink-

ing Lemma that ds′(y, z) ≤ ds(y, z) + β
√
A(
√
s− s′). Then the triangle inequality and

(3.5.35) we get

ds′(x, z) ≥ ds′(x, y)− ds′(y, z)
≥ ds′(x, y)− ds(y, z)− β

√
A(
√
s− s′)

≥ ds′(x, y)−
√
tj+1 − tj − β

√
A
√
tj+1 − tj

≥ C−1
1 ds(x, y)−

√
tj+1 − tj − β

√
A
√
tj+1 − tj

≥ 1
2
C−1

1 ds(x, y).

(3.5.37)

So by Proposition 3.5.5 we have

G(x, t; z, s′) ≤ C

(t− s′)n2
exp

(
− d2

s′(x, z)

C(t− s′)

)
≤ C

(t− s′)n2
exp

(
− d2

s(x, y)

C(t− s′)

)
. (3.5.38)

Since ds(x, y) ≥ d and t− s′ ≤ ti+1, Lemma 3.2.4 implies

G(x, t; z, s′) ≤ C

(ti+1)
n
2

exp

(
−d

2
s(x, y)

Cti+1

)
. (3.5.39)

The claim thus follows by letting (z, s′) run over Bg(s)(y,
√
s− tj)× [tj, s].

3.6 Proof of Theorem 3.1.1

First, we consider the conditions given in Theorem 3.1.1. The upper bound on `(x, 0) implies
a lower bound on Ricci curvature, that is, `(x, 0) ≤ α0 ≤ 1 implies Ric ≥ −K(n). So by
Bishop-Gromov comparison, reducing v0 to a smaller positive number depending only on the
original v0 and n, we may assume without loss of generality that

V olg(0)Bg(0)(x, r) ≥ v0r
n (3.6.1)

for all x ∈ Bg(0)(x0, s0 − 1) and r ∈ (0, 1]. We can also assume α0 without loss of generality
that

α0 ≤
1

2C4

< 1 (3.6.2)

where C4 = C4(v0, n) > 2 is to be determined later. Otherwise, we get the result by applying
the above result to a rescaled metric and then scale it back.

By the relative compactness of Bg(0)(x0, s0), there exists some ρ ∈ (0, 1
2
] such that |Rm| ≤

1
ρ2

, Bg(0)(x, ρ) ⊂⊂M and injg(0)(x) ≥ ρ for all x ∈ Bg(0)(x0, s0). The constant ρ may depend

on (M, g(0)), x0 and s0. By applying Lemma 3.2.1, with U := Bg(0)(x0, s0), we can find a

connected subset M̃ ⊂ U ⊂ M containing Bg(0)(x0, s0 − 1
2
), and a smooth, complete metric
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g̃(0) on M̃ with supM̃ |Rm|g̃(0) < ∞ such that on Bg(0)(x0, r0), where r0 := s0 − 1 > 3, the
metric remains unchanged. Taking Shi’s Ricci flow we get a smooth, complete, bounded-
curvature Ricci flow g0(t) on M0 := M̃ , existing for some nontrivial time interval [0, t1]. In
view of the boundedness of the curvature, after possibly reducing t1 to a smaller positive
value, we may trivially assume that |Rm|g(t) ≤ C3

t
for all t ∈ (0, t1] and `(x, t) ≤ 2α0 < 1 for

all x ∈ Bg(0)(x0, r0) and t ∈ [0, t1]. The constant C3 = C3(v0, n) will be given below.

Of course, our flow still lacks a uniform control on its existence time. Below we will carry
out an inductive argument to show that t1 could be extended up to a uniform time tk, while
the repeating time k may be allowed to depend on (M, g).

Now we begin the proof of Theorem 3.1.1. First, suppose we have constructed a Ricci
flow in expansion ({Mj}ij=1, {gj(t)}ij=1, ν) with (M0, g0(t))t∈[0,t1] as above. Suppose further
the Ricci flow in expansion satisfies the following a priori assumptions:

(APA 1) Restricting it on Bg(0)(x0, ri), we get a smooth Ricci flow g(t) up to ti+1;

(APA 2) For each complete Ricci flow (Mj, gj(t)), we have |Rm|gj(t) ≤ C3

t
;

(APA 3) `(x, t) ≤ C4α0 < 1 for all t ∈ [0, ti+1] and x ∈ Bg(0)(x0, ri).

where the constants C3, C4, ν depending on v0, n will be specified in the course of the proof.

Our goal is to extend it to a new Ricci flow in expansion ({Mj}i+1
j=1, {gj(t)}i+1

j=1, ν) by
adding a complete Ricci flow (Mi+1, gi+1(t)) piece existing for [ti+1, ti+2], and show that it
still satisfies (APA 1)-(APA 3). In the current section, we construct (Mi+1, gi+1(t)), and then
verify (APA 1) and (APA 2), and we leave the verification of (APA 3) to the next section.

Let C1 ≥ 1 and T̃ > 0 be the constants from the Curvature Decay Lemma (Lemma 3.3.4)
when K = 1 and v0 = v0. With this choice of C1, we set C2 = γC1 and C3 = 4C2 = 4γC1 > 1,
where γ = γ(n) ≥ 1 is the constant from the Conformal Change Lemma (Lemma 3.2.1), and
set ν = 1 + 1

4C3
. Choose τ such that

τ ≤ T̂ , β2C3τ ≤
1

16

√
τ ≤ 1, τ ≤ 1

16
, τ ≤ C1

4
, (3.6.3)

where β ≥ 1 is the constant from the Shrinking Lemma. We can also assume that 2ti+1 ≤ τ ,
because otherwise we get the desired uniform existence time τ

2
.

In the Claim below, we show that in fact we have a stronger curvature decay bound
|Rm|g(t) ≤ C1

t
. However, the original curvature decay will nevertheless be used to control the

distance distortion.

Claim 3.6.1. For all x ∈ U := Bg(0)(x0, ri−2
√

ti+1

τ
), we have Bg(t)(x,

√
t
τ
) ⊂⊂ Bg(0)(x0, ri),

injg(t)(x) ≥
√

t
C1

and |Rm|g(t)(x) ≤ C1

t
, for all t ∈ (0, ti+1].
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Proof of Claim 3.6.1. For any x ∈ Bg(0)(x0, ri − 2
√

ti+1

τ
), the triangle inequality implies

that Bg(0)(x, 2
√

ti+1

τ
) ⊂⊂ Bg(0)(x0, ri) and hence by assumption (APA 3), `(y, t) ≤ 1 on

Bg(0)(x, 2
√

ti+1

τ
) for all t ∈ [0, ti+1]. Scaling the solution to ĝ(t) := τ

ti+1
g(t ti+1

τ
) we see that

we have a solution ĝ(t) on Bg(0)(x0, ri) ⊃⊃ Bĝ(0)(x, 2), t ∈ [0, τ ] with |Rm|ĝ(t) ≤ C3

t
and

`(·, ·) ≤ 1 on Bĝ(0)(x, 2)× (0, τ ].

On the one hand, applying the Shrinking Lemma to ĝ(t), we find that Bĝ(t)(x, 2 −
β
√
C3t) ⊂ Bĝ(0)(x, 2) for all t ∈ [0, τ ], and in particular Bĝ(t)(x, 1) ⊂ Bĝ(0)(x, 2) because

τ ≤ 1
β2C3

. Thus we have `(·, ·) ≤ 1 on
⋃
s∈[0,τ ] Bĝ(s)(x, 1) × [0, τ ]. On the other hand, the

volume inequality (3.6.1) transforms to V olĝ(0)Bĝ(0)(x, 1) ≥ v0.

Applying the Curvature Decay Lemma (Lemma 3.3.4) to ĝ(t), we have injĝ(t)(x) ≥
√

t
C1

and |Rm|ĝ(t)(x) ≤ C1

t
for all 0 < t ≤ τ . Scaling back, we see that Bg(t)(x,

√
ti+1

τ
) ⊂⊂

Bg(0)(x0, ri), injg(t)(x) ≥
√

t
C1

and |Rm|g(t)(x) ≤ C1

t
for t ∈ (0, ti+1].

Specializing the claim 3.6.1 to t = ti+1, we have |Rm|g(ti+1)(x) ≤ C1

ti+1
and injg(ti+1)(x) ≥√

ti+1

C1
for any x ∈ U := Bg(0)(x0, ri−2

√
ti+1

τ
). Now we apply the Conformal Change Lemma

3.2.1 with U = Bg(0)(x0, ri − 2
√

ti+1

τ
), N = Bg(0)(x0, ri), g(ti+1) and ρ2 := ti+1

C1
≤ 1, and

obtain a new, possibly disconnected, smooth manifold (Ũ , h), each component of which is
complete, such that

1. |Rm|h ≤ γ C1

ti+1
= C2

ti+1
and injh ≥

√
ti+1

γC1
=
√

ti+1

C2
for all x ∈ Ũ ,

2. Uρ ⊂ Ũ ⊂ U ,

3. h = g(ti+1) on Ũρ ⊃ U2ρ

where Ur = {x ∈ U |Bg(x, r) ⊂⊂ U}.

Claim 3.6.2. We have Bg(0)(x0, ri − 4
√

ti+1

τ
) ⊂ U2ρ where the metric g(ti+1) and h agree.

Proof of Claim 3.6.2. By definition of U , for every x ∈ Bg(0)(x0, ri−4
√

ti+1

τ
), the triangle in-

equality implies Bg(0)(x, 2
√

ti+1

τ
) ⊂⊂ U . By (APA 2), we have |Rm|g(t) ≤ C3

t
on Bg(0)(x0, ri),

and hence on Bg(0)(x, 2
√

ti+1

τ
) for all t ∈ (0, ti+1]. Applying the Shrinking Lemma we have

Bg(0)(x, 2
√

ti+1

τ
) ⊃ Bg(t)(x, 2

√
ti+1

τ
− β
√
C3t) for all t ∈ [0, ti+1]. Specializing to t = ti+1
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and use β
√
C3ti+1 ≤

√
ti+1

τ
we see that Bg(ti+1)(x,

√
ti+1

τ
) ⊂⊂ U . By (3.6.3) this gives

Bg(ti+1)(x, 2
√

ti+1

C1
) ⊂⊂ U which means x ∈ U2ρ by definition of ρ.

In view of Claim 3.6.2 we define the connected component of (Ũ , h) that containsBg(0)(x0, ri−
4
√

ti+1

τ
) as Mi+1. Then we restart the flow from (Mi+1, h) using Shi’s complete bounded cur-

vature Ricci flow. By the doubling time estimate (Lemma 3.1.4), we have a complete Ricci
flow (Mi+1, h(t)) with h(0) = h existing for t ∈ [0, (ν − 1)ti+1] and satisfying

|Rm|h(t)(y) ≤ 2
C2

ti+1

and V olh(t)Bh(t)(y,
√
ti+1) ≥

t
n
2
i+1

A0

(3.6.4)

for all y ∈ Mi+1, where A0 is a constant depending on C2 and thus on v0 and n. Setting
gi+1(t) = h(t− ti+1) for t ∈ [ti+1, ti+2] = [ti+1, νti+1], we obtain a new Ricci flow in expansion
({Mj}i+1

j=1, {gj(t)}i+1
j=1, ν), which clearly satisfies (APA 1). By (3.6.4) and ti+2 = νti+1 we have

|Rm|g(t)(y) ≤ 2
C2

ti+1

≤ C3

t
(3.6.5)

for all t ∈ [ti+1, ti+2]. Hence we verified (APA 2). For the same reason, we have

V olg(t)Bg(t)(y,
√
t) ≥

t
n
2
i+1

A0

≥ t
n
2

A
(3.6.6)

for all t ∈ [ti+1, ti+2], where A = A0ν
n
2 also depends on v0 and n. The volume estimate is

needed to apply Proposition 3.5.5 in next section.

3.7 Induction Step: Verification of (APA 3)

In this section we finish the proof of Theorem 3.1.1 by verifying (APA 3) for ({Mj}i+1
j=1, {gj(t)}i+1

j=1, ν).
More specifically, we determine ri+1 such that when restricted on Bg(0)(x0, ri+1), the smooth
Ricci flow g(t) satisfies `(x, t) ≤ C4α0 < 1 for all t ∈ [0, ti+2]. The estimates (3.6.5) and
(3.6.6) allow us to apply Proposition 3.5.5 to ({Mj}i+1

j=1, {gj(t)}i+1
j=1, ν), and get the Gaussian

bound for the generalized heat kernel G(x, t; y, s):

G(x, t; y, s) ≤ C

(t− s)n2
exp(−

d2
s+(x, y)

C(t− s)
), (3.7.1)

where C depends on v0 and n. We will frequently use this inequality implicitly in this section.
Also for notational convenience, the same letter C will be used to denote positive constants
depending on n and v0. We divide the integration estimates of ` into two steps.

Step 1 We derive a rough bound for `. Specifically, we show that ` is bounded above by
a constant depending only on v0 and n. This bound gives a lower bound for Ricci curvature
with the same dependence, which will be used in the second step.
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Claim 3.7.1. For any (x, t) ∈ Bg(0)(x0, ri − 4
√

ti+1

τ
− 4
√
ti+2)× [0, ti+2], we have `(x, t) ≤ C

and correspondingly Ric ≥ −K, where both C and K are positive constants depending only
on v0 and n.

Proof. Since ({Mj}ij=1, {gj(t)}ij=1, ν) satisfies (APA 3), we have `(·, ·) ≤ 1 on Bg(0)(x0, ri)×
[0, ti+1]. Thus it only remains to show `(x, t) ≤ C for t ∈ [ti+1, ti+2]. Recall the evolution
inequality of `.

∂

∂t
`(x, t) ≤ ∆`(x, t) +R(x, t)`(x, t) + C(n)`2(x, t). (3.7.2)

Using the curvature decay |Rm|g(t) ≤ C3

t
we verified in Section 6, we have `(x, t) ≤ C

ti+1
for

all (x, t) ∈Mi+1 × [ti+1, ti+2]. Substituting this into (3.7.2), we get

∂

∂t
` ≤ ∆`+R `+ C`2 ≤ ∆`+R`+

C

ti+1

` (3.7.3)

in the barrier sense. For any t ∈ [ti+1, ti+2], set L(x, t) = `(x, t)e
− C
ti+1

t
. Then L(x, ti+1) =

`(x, ti+1)e−C ≤ e−C and
∂

∂t
L ≤ ∆L+RL (3.7.4)

in the barrier sense. Let h(x, t) =
∫
Mi+1

G(x, t; z, ti+1)L(z, ti+1)dti+1
z, then h solves the

following initial value problem:

∂

∂s
h = ∆h+Rh and h(·, ti+1) = L(·, ti+1). (3.7.5)

By the maximum principle, we have

L(x, t) ≤ h(x, t) = I[Mi+1] :=

∫
Mi+1

G(x, t; y, ti+1)L(y, ti+1) dti+1
y (3.7.6)

for all x ∈Mi+1 and t ∈ [ti+1, ti+2].

Seeing that Bg(0)(x0, ri − 4
√

ti+1

τ
) ⊂ Mi+1 is where the smooth local flow exists up to

ti+2, we split the integral I[Mi+1] into two integrals over Bi+1 := Bg(0)(x, 4
√
ti+2) and Ci+1 :=

Mi+1 − Bg(0)(x, 4
√
ti+2). Since Bi+1 ⊂ Bg(0)(x0, ri − 4

√
ti+1

τ
) where L(·, ti+1) ≤ `(·, ti+1) ≤ 1

by (APA 3), we can estimate

I[Bi+1] ≤
∫

Mi+1

G(x, t; y, s) dsy ≤ C. (3.7.7)

To estimate I[Ci+1], we first estimate dti+1
(x, y) for any y ∈ Ci+1 by the Shrinking Lemma

and (3.6.3):

dti+1
(x, y) ≥ 4

√
ti+2 − β

√
C3

√
ti+1 ≥

1

2
4
√
ti+2 ≥

√
ti+2 ≥

√
t− ti+1. (3.7.8)
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Then by Lemma 3.2.4 we have

G(x, t; y, ti+1) ≤ C

(ti+2)
n
2

exp(−
d2
ti+1

(x, y)

C ti+2

) ≤ C

(ti+2)
n
2

exp(− 1

C
√
ti+2

). (3.7.9)

Now we apply Lemma 3.2.3 at ti+1, and combining with L(y, ti+1) ≤ C
ti+1

to obtain:

I[Ci+1] ≤ C exp(− 1

C
√
ti+2

) ≤ C. (3.7.10)

Hence Claim 3.7.1 follows by (3.7.7) and (3.7.10).

Step 2 It remains to convert this upper bound in Lemma 3.7.1 to the stronger upper
bound as claimed in (APA 3). Using the bound for ` from Claim 3.7.1, we get the following

linearization of the evolution equation for ` on Bg(0)(x0, ri − 4
√

ti+1

τ
− 4
√
ti+2)× [0, ti+2]:

∂`

∂t
≤ ∆`+R`+ C(n)`2 ≤ ∆`+R`+ C` (3.7.11)

in the barrier sense. Setting L(·, t) = e−Ct`(·, t), we get ∂
∂t
L ≤ ∆L+RL on the same region

as above, in the barrier sense.

Hereafter, we choose and fix an arbitrary (x, t) ∈ Bg(0)(x0, ri − 4
√

ti+1

τ
− 6 4
√
ti+2) ×

(ti+1, ti+2]. Let r = 4
√
ti+2 and R = 3r, then by triangle inequality, Bg(0)(x,R + 2r) ⊂⊂

Bg(0)(x0, ri − 4
√

ti+1

τ
− 4
√
ti+2), where by Claim 3.7.1 we have Ricg(s) ≥ −K(v0, n) for all

s ∈ [0, ti+2]. We now apply Lemma 3.4.1 to the flow on Bg(0)(x,R+ 2r) during [0, ti+2], and
obtain a cut-off function φi+1 such that

Bg(s)(x, r) ⊂ Bg(0)(x, 2r) ⊂ {y |φi+1(y, s) = 1} (3.7.12)

and supp φi+1(·, s) ⊂ Bg(0)(x, 3r), for all s ∈ [0, ti+2]. Combining with (3.7.12), we find
that the supports of |∇φi+1|, ∂

∂s
φi+1 and ∆φi+1 are all contained in the annulus A2r,3r(x) :=

Bg(0)(x, 3r)−Bg(0)(x, 2r) and we have the following estimates:

(P1) ∇φi+1 exists a.e. and |∇φi+1| ≤= C t
−n+1

4
i+2 ;

(P2) ∆φi+1 ≤ µ1 := C t
−n+1

2
i+2 , in the barrier sense;

(P3) ∂+

∂s
φi+1 ≤ µ2 := C t

−n
4

i+2.
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In view of (3.7.12) we have φi+1(x, t) = 1 and hence

L(x, t) = lim
s↗t

∫
G(x, t; y, s)L(y, s)φi+1(y, s)dsy. (3.7.13)

The integration domain here and below is always Bg(0)(x, 3r). In particular, for any integral
involving ∇φi+1,

∂
∂s
φi+1 or ∆φi+1, the actual integration domain is contained in A2r,3r(x)

since these derivatives vanish at the outside.

SinceG(x, t; ·, ·) is continuous onBg(0)(x, 3r)×[0, t) and smooth onBg(0)(x, 3r)×(tj,min(tj+1, t))
for each j ≤ i+1, applying Lemma 3.2.6 to G(x, t; y, s)φi+1(y, s) and L(y, s) and using (P1)-
(P3) we obtain∫

Gφi+1L
∣∣∣∣min(tj+1,t)

tj

≤
∫ min(tj+1,t)

tj

∫
(Gµ1 +Gµ2 + 2 〈∇G,∇φi+1〉)L, (3.7.14)

and hence

L(x, t) ≤
∫
Gφi+1L

∣∣∣∣
t1

+

∫ t

t1

∫
(Gµ1 +Gµ2 + 2 〈∇G,∇φi+1〉)L. (3.7.15)

To estimate the first term in the RHS of (3.7.15), we first note that on Bg(0)(x, 3r) ⊂
Bg(0)(x0, ri − 4

√
ti+1

τ
− 4
√
ti+2) we have L(·, t1) ≤ 2α0 < 1 and hence Ricg(t1) ≥ −C(n) for

some dimensional constant C(n). Then applying Lemma 3.2.2 we get∫
Gφi+1 L

∣∣∣∣
t1

≤ C · 2α0. (3.7.16)

Then we split the second term in the RHS of (3.7.15) into two parts:

I =

∫ t

t1

∫
(µ1 + µ2)G(x, t; y, s)L(y, s) dsy ds, (3.7.17)

J = 2

∫ t

t1

∫
〈∇G(x, t; y, s),∇φi+1(y, s)〉 L(y, s) dsy ds. (3.7.18)

On the one hand, by the Shrinking Lemma, for all y in A2r,3r(x) and s ∈ [0, ti+2], we have
dg(s)(x, y) ≥ dg(0)(x, y)− 4

√
ti+2 ≥ 4

√
ti+2. Thus by Lemma 3.2.4 we have

G(x, t; y, s) ≤ C

(t− s)n2
exp

(
−
√
ti+2

C(t− s)

)
≤ C

t
n
2
i+2

exp

(
− 1

C
√
ti+2

)
. (3.7.19)

On the other hand, let V (s) be the volume of A2r,3r(x) at time s ∈ [0, ti+2]. By Bishop-
Gromov comparison, we have V (0) ≤ C(n). Then we get V (s) ≤ C by integrating V ′(s) ≤
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C V (s), which follows from the evolution equation of volume under Ricci flow and Claim
3.7.1. Combining this with (3.7.19), (P2), (P3) and Claim 3.7.1 in (3.7.17) we can estimate

I ≤ C exp

(
− 1

C
√
ti+2

)
. (3.7.20)

Suppose s ∈ (tj,min(tj+1, t)) for some j ≤ i+1. Since dg(s)(x, y) ≥
√
ti+2 for all y ∈ A2r,3r(x),

applying Claim 3.5.8 of the estimate of |∇G|, we obtain

|∇G|(x, t; y, s) ≤ C
√
s− tj

exp(− 1

C
√
ti+2

), (3.7.21)

where the constant C depending on n and v0 is uniform for all j. Then by Claim 3.7.1 and
(P1) we have

| 〈∇G,∇φi+1〉 |(y, s)L(y, s) ≤ C
√
s− tj

exp(− 1

C
√
ti+2

). (3.7.22)

Integrating (3.7.22) over A2r,3r(x)× [tj, tj+1], and then summing over all j, we obtain

J ≤ Cexp(− 1

C
√
ti+2

)
i+1∑
j=1

√
tj+1 − tj

= Cexp(− 1

C
√
ti+2

)

√
ti+2(1− 1

ν
)(1 +

1√
ν

+ . . . )

= Cexp(− 1

C
√
ti+2

)

√
(ν − 1)ti+2√
v − 1

≤ Cexp(− 1

C
√
ti+2

).

(3.7.23)

Putting the estimates (3.7.16), (3.7.20) and (3.7.23) into (3.7.15), we thus have

L(x, t) ≤ Cexp(− 1

C
√
ti+2

) + 2α0C. (3.7.24)

Then there exists positive constant t(n, v0, α0), such that the first term can be bounded by
α0 when ti+2 ≤ t(n, v0, α0), and hence L(x, t) ≤ α0(1 + 2C). Choose C4 = 2(1 + 2C), then

`(x, t) ≤ L(x, t)eCt ≤ 2L(x, t) ≤ C4α0. Let ri+1 = ri − 4
√

ti+1

τ
− 6 4
√
ti+2, then `(y, s) ≤

C4α0 < 1 for any (y, s) ∈ Bg(0)(x0, ri+1) × [0, ti+2], as claimed in (APA 3). Moreover, by
choosing t(n, v0, α0) small, we can make sure

r0 − ri+1 =
i∑

j=0

rj − rj+1 ≤
i∑

j=0

4

√
tj+1

τ
+ 6 4
√
tj+2 ≤ 1. (3.7.25)

So we proved Theorem 3.1.1.
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3.8 Proof of the global existence and bi-Hölder

homeomorphism

In this section we prove Corollary 3.1.2 and 3.1.3. We need two local curvature estimate
lemmas stated below, in both of which the Riemannian manifolds (Mn, g) appearing are not
necessarily complete.

Lemma 3.8.1 is proved by B.L. Chen in [20, Theorem 3.1] and Simon in [62, Theorem 1.3].

Lemma 3.8.1. Suppose (Mn, g(t)) is a Ricci flow for t ∈ [0, T ], not necessarily complete,
with the property that for some y0 ∈M and r > 0, and all t ∈ [0, T ], we have Bg(t)(y0, r) ⊂⊂
M and

|Rm|g(t) ≤
c0

t
(3.8.1)

on Bg(t)(y0, r) for all t ∈ (0, T ] and some c0 ≥ 1. Then if |Rm|g(0) ≤ r−2 on Bg(0)(y0, r), we
must have

|Rm|g(t)(y0) ≤ eCc0r−2 (3.8.2)

for some C = C(n).

Lemma 3.8.2 is an non-standard version of Shi’s derivative estimates. The proof of it can
be found in [66, Lemma A.4] and [27, Theorem 14.16].

Lemma 3.8.2. Suppose (Mn, g(t)) is a Ricci flow for t ∈ [0, T ], not necessarily complete,
with the property that for some y0 ∈M and r > 0, we have Bg(0)(y0, r) ⊂⊂M and |Rm|g(t) ≤
r−2 on Bg(0)(y0, r) for all t ∈ [0, T ], and so that for some l0 ∈ N we have initially |∇lRm|g(0) ≤
r−2−l on Bg(0)(y0, r) for all l ∈ {1, 2, ..., l0}. Then there exists C = C(l0, n,

T
r2

) such that

|∇lRm|g(t)(y0) ≤ Cr−2−l (3.8.3)

for each l ∈ {1, 2, ..., l0} and all t ∈ [0, T ].

Proof of Corollary 3.1.2. Pick any point x0 ∈M . We apply Theorem 3.1.1 with s0 = k + 2,
for each integer k ≥ 2, giving a Ricci flow (Bg0(x0, k), gk(t))t∈[0,τ ] satisfyingRmgk(t) + Cα0I ∈ C

|Rm|gk(t) ≤
C

t

(3.8.4)

on Bg0(x0, k) for all t ∈ (0, τ ], where τ = τ(n, v0, α0) > 0 and C = C(n, v0) > 0.

Fix some r0 > 0. SinceBg0(x0, r0+2) is compactly contained inM , we have sup |Rm| ≤ 1
r2

for some r > 0, where the supremum is taken over Bg0(x0, r0+2). For any y0 ∈ Bg0(x0, r0+1),
by the Shrinking Lemma we have Bgk(t)(y0,

1
2
) ⊂ Bg0(y0, 1) ⊂ Bg0(x0, r0 + 2) for all t ∈ [0, τ ],

with possibly reducing τ to a smaller number depending also on n, α0 and v0. Now we can



CHAPTER 3. RICCI FLOW WITH ALMOST NON-NEGATIVE CURVATURE 48

apply Lemma 3.8.1 to gk(t) centered at y0 and get |Rm|gk(t)(y0) ≤ K0 = K0(r, n, C). In
particular, K0 is independent of k. Thus, we have |Rm|gk(t) ≤ K0 on Bg0(x0, r0 + 1) for all
t ∈ [0, τ ].

Then we apply Lemma 3.8.2 to gk(t) centered at each y0 ∈ Bg0(x0, r0). The outcome is
for each l ∈ N, there exists K1 = K1(n, l, r, τ) such that

|∇lRm|gk(t) ≤ K1 (3.8.5)

on Bg0(x0, r0) for all t ∈ [0, τ ]. Again, the K1 is also independent of k. Using these derivative
estimates in local coordinate charts, by Ascoli-Arzela Lemma we can pass to a subsequence
in k and obtain a smooth limit Ricci flow g(t) on Bg0(x0, r0) for t ∈ [0, τ ] with g(0) = g0,
which satisfies Rmg(t) + Cα0 ∈ C

|Rm|g(t) ≤
C

t

(3.8.6)

on Bg0(x0, r0), for all t ∈ (0, τ ].

We repeat this process for larger and larger radii ri →∞, and take a diagonal subsequence
to obtain gki(t) which converges on each Bg0(x0, ri). Its limit is a smooth Ricci flow g(t) on
the whole of M for t ∈ [0, τ ] with g(0) = g0.

By the Shrinking Lemma, Bg(t)(x0, r) ⊂ Bg0(x0, r + β
√
Ct) ⊂⊂ M for all t ∈ (0, τ ] and

r > 0. This guarantees that g(t) must be complete for all positive times t ∈ (0, τ ].

Proof of Corollary 3.1.3. We apply Corollary 3.1.2 and Lemma 3.3.2 to each (Mi, gi) and
obtain a sequence of Ricci flows (Mi, gi(t))[0,T ] with gi(0) = gi and T uniform for each i, and
satisfying the following uniform estimates

Rmgi(t) + Cα0I ∈ C
V olgi(t)Bgi(t)(x, 1) ≥ v > 0

|Rm|gi(t) ≤
C

t

(3.8.7)

for all x ∈ Mi and all t ∈ [0, T ], where constant C > 0 depends on n, v0, and constants
v, T > 0 depend on n, v0, α0. And

dgi(t1)(x, y)− β
√
C(
√
t2 −
√
t1) ≤ dgi(t2)(x, y) ≤ eK(t2−t1)dgi(t1)(x, y) (3.8.8)

for any 0 < t1 ≤ t2 ≤ T and any x, y ∈ Mi, where K depends on n, v0, α0. The curvature
decay for all positive times provides a uniform bound on the curvature which allows us
to apply Hamilton’s compactness theorem. We can pass to a subsequence in i so that
(Mi, gi(t), xi) → (M, g(t), x∞) in the Cheeger-Gromov sense, where (M, g(t)) is a complete
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Ricci flow defined over (0, T ]. (M, g(t)) inherits the estimates for curvatures and distance:
Rmg(t) + Cα0I ∈ C
V olg(t)Bg(t)(x, 1) ≥ v > 0

|Rm|g(t) ≤
C

t

(3.8.9)

and
dg(t1)(x, y)− β

√
C(
√
t2 −
√
t1) ≤ dg(t2)(x, y) ≤ eK(t2−t1)dg(t1)(x, y) (3.8.10)

for any 0 < t1 ≤ t2 ≤ T , and any x, y ∈ M . The inequality (3.8.10) tells us that dg(t)
converges locally uniformly to some metric d0 as t↘ 0. Also, the inequality (3.8.8) tells us
that dgi(t) converges locally uniformly to dgi . So we have (Mi, dgi , xi) → (M,d0, x∞) in the
pointed Gromov-Hausdorff sense.

By Lemma 2.3.4 we have

γd0(x, y)1+2(n−1)C ≤ dg(t)(x, y) ≤ eKtd0(x, y), (3.8.11)

where γ depends on n, v0 and also on α0 via T . Then the claim of bi-Hölder homeomorphism
follows immediately from this.
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Chapter 4

3d Ricci flow with non-negative Ricci
curvature

4.1 Introduction and main results

In this chapter, we first introduce a new weak solution of Ricci flow that we call a generalized
singular Ricci flow, which allows the initial manifold to be a complete manifold with possibly
unbounded curvature. We have the following existence theorem.

Theorem 4.1.1. For any 3d complete Riemannian manifold (M, g), there is a generalized
singular Ricci flow starting from (M, g).

The generalized singular Ricci flow has many properties similar to those of a singular
Ricci flow. In particular, it satisfies the canonical neighborhood assumption in a distance-
dependent way. The precise definition of a generalized singular Ricci flow will be given in
Definition 4.6.3.

The existence is obtained from a compactness result for singular Ricci flows, which states
that a sequence of singular Ricci flows converges to a generalized singular Ricci flow starting
from a complete manifold (M, g), if the sequence of their initial manifolds converges to
(M, g):

Theorem 4.1.2. Let Mi be a sequence of singular Ricci flows starting from compact man-
ifolds Mi, xi ∈ Mi. Suppose (Mi, xi) converges smoothly to a 3d complete manifold (M,x0)
as i → ∞. Then by passing to a subsequence, (Mi, xi) converges smoothly to a generalized
singular Ricci flow starting from M .

Theorem 4.1.2 can be compared to the convergence of a sequence of singular Ricci flows,
when the sequence of their initial time-slices converges to a compact manifold, see [44, Prop
5.39]. In that result, the initial time-slices have uniformly bounded curvature and injectivity
radius. So the local geometry in each singular Ricci flow is uniformly controlled by its scalar
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curvature, which guarantees their convergence to a singular Ricci flow. However, in our case,
the initial time-slices may not have uniformly bounded geometry. Instead, we will show that
the scalar curvature controls the local geometry in a uniform distance-dependent way, which
ensures the convergence in Theorem 4.1.2.

Before stating our next main result, we recall some results of the existence theory of
Ricci flow with non-compact initial conditions. Much less is known about it compared to the
compact case. In [61], Shi showed that if (M, g) is an n-dimensional complete Riemannian
manifold with bounded curvature, then there exists a complete Ricci flow with bounded
curvature for a short time. Since then, many efforts have been made to relax the bounded-
curvature assumption, in order to obtain a Ricci flow starting from a complete non-compact
manifold.

In [13], Cabezas-Rivas and Wilking proved that a smooth complete Ricci flow exists on
a complete n-dimensional manifold with non-negative complex sectional curvature, which in
dimension 3 is the same as non-negative sectional curvature. Recently, Simon and Topping
[64] showed that a complete Ricci flow exists on a complete 3d Riemannian manifold, if its
Ricci curvature has a negative lower bound and the volume is globally non-collapsed (i.e.
there is a uniform positive lower bound on the volume of every unit ball). In [2], Bamler,
Cebazas-Rivas and Wilking proved that the same thing holds in dimension n, assuming a cer-
tain curvature is bounded below, and the volume is non-collapsed. In [48], by a combination
of methods in [64] and [2], the author generalized both works.

The volume non-collapsing assumption should be necessary in the above works [64][2][48],
where the curvature is allowed to be negative somewhere. Without the non-collapsing as-
sumption, Topping gave a conjectural counter-example: for any arbitrarily small ε > 0 we
can construct a complete 3-manifold with Ric ≥ −ε, by connecting countably many three-
spheres by necks that become longer and thinner. So the necks would want to pinch in a
time that converges to zero [65, Example 2.4].

This leads to an open question: whether a smooth complete Ricci flow exists for a 3
dimensional complete manifold with non-negative Ricci curvature, see e.g. [65, Section 7,
Conjecture 2]. Our next main result gives a partial affirmative answer to this question:

Theorem 4.1.3. Let (M, g) be a 3d complete Riemannian manifold with Ric ≥ 0. There
exist T > 0 and a smooth Ricci flow (M, g(t)) on [0, T ), with g(0) = g and Ric(g(t)) ≥ 0.
Moreover, if T <∞, then lim supt↗T |Rm|(x, t) =∞ for all x ∈M .

We remark that the completeness of this flow is not guaranteed in this chapter. Instead,
we show that it can be embedded in a smooth Ricci flow spacetime with complete time-slices.
Also, it is possible for the maximal existence time to be finite, such as the standard solution
and the cylindrical solutions.

A common strategy to produce a smooth Ricci flow with a complete non-compact initial
condition is by a limiting argument: first construct a sequence of local Ricci flows starting
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from larger and larger balls in M , and then try to get a uniform lower bound on the existence
times, as well as an upper bound on the curvature norms. Then by Hamilton’s compactness
theorem for Ricci flow, we obtain a smooth limit Ricci flow starting from M . This argument
typically works when there is a non-collapsing assumption [64, 2, 48], or the curvature
condition is relatively strong [13].

However, it seems hard to apply the limiting argument to prove Theorem 4.1.3, for
Ric ≥ 0 is a relatively weak curvature assumption, and there is no uniform lower bound
on the volume of all unit balls on certain manifolds, as shown by examples in [29]. In this
chapter, we produce a smooth Ricci flow by showing that a generalized singular Ricci flow
starting from a complete manifold with Ric ≥ 0 is actually smooth. The existence of the
generalized singular Ricci flow is guaranteed by Theorem 4.1.1.

This chapter is organized as follows. In Section 4.2 we prove some technical lemmas.
In Section 4.3, we generalize Perelman’s no local collapsing and canonical neighborhood
theorem to singular Ricci flows. It provides a distance-dependent lower bound on the non-
collapsing scale and canonical neighborhood scale, assuming the geometry is bounded in a
parabolic neighborhood of the base point.

In Section 4.4, we define a heat kernel H for a singular Ricci flow M. For any point
(x0, t0) ∈M, H(x0, t0; ·, ·) is a positive solution to the conjugate heat equation onM, which
is a δ-function around (x0, t0). We show that the heat kernel decays polynomially fast to
zero as the curvature blows up. With this estimate we show that the overall amount of
heat is a constant, i.e. the integral of H(x0, t0; ·, t) at all times t prior to t0 is equal to one.
Note that for the ordinary heat kernel of a compact smooth Ricci flow, the constancy of
the integral is easily shown by a computation using integration by part. Moreover, with
the decay estimate, we can establish some standard properties of the heat kernel as of the
ordinary ones for compact Ricci flows. For example, we obtain the symmetry between the
heat and adjoint heat kernels, and a semigroup property of them. As an application of
the heat kernel, we generalize Perelman’s pseudolocality theorem to singular Ricci flow in
Section 4.5.

In Section 4.6, we define the generalized singular Ricci flow, and prove Theorem 4.1.1 and
4.1.2. The proofs depend on a compactness theorem, which states that assuming there is
a uniform distance-dependent canonical neighborhood assumption in a sequence of pointed
singular Ricci flows, then a subsequence converges smoothly to a semi-generalized singular
Ricci flow, which satisfies most properties of the generalized singular Ricci flow. The com-
pactness theorem can be proved by first taking a Gromov-Hausdorff limit, and showing that
the convergence is smooth on the subset of points which are limits of points with bounded
curvature. This induces a semi-generalized singular Ricci flow. To prove Theorem 4.1.2, by
applying the compactness theorem, we get a semi-generalized singular Ricci flow in which
the base point x0 survives until its curvature goes unbounded. Then a generalized singu-
lar Ricci flow is obtained by varying the base points and gluing up all the corresponding
semi-generalized singular Ricci flows.
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In Section 4.7 we prove Theorem 4.1.3. First, by a maximum principle argument, we show
in Lemma 4.7.2 that the generalized singular Ricci flow M preserves the non-negativity of
Ricci curvature. Suppose the curvature blows up in a ball of finite radius. Then by the
canonical neighborhood assumption, we can show that the curvature blow-up is due to the
asymptotic formation of a cone-like point. Doing a further rescaling at this cone-like point,
we obtain a Ricci flow solution whose final time-slice is a part of a non-flat metric cone, which
is impossible. SoM is in fact a non-singular Ricci flow spacetime with complete time-slices.
Restricting the spacetime on M , we obtain a smooth Ricci flow.

4.2 Preparatory results

In this section we prove some technical lemmas that will be used later. First, in Lemma
4.2.1-4.2.3, we study manifolds that are 0-complete and satisfy a canonical neighborhood
assumption at scales depending on the distance to a base point x0. We show for such
manifolds that any metric ball of a fixed radius centered at x0 is uniformly totally bounded
(Lemma 4.2.1), and for any point x ∈ M , there exists a minimizing geodesic from x0 to x
(Lemma 4.2.2).

Second, we show in Lemma 4.2.4 that for a Ricci flow spacetime with some appropriate
canonical neighborhood assumption, the closeness of a time-slice to a κ-solution implies
the closeness in a parabolic region. As a consequence, Lemma 4.2.5 shows that a blow-up
sequence in a singular Ricci flow converges to a κ-solution defined from −∞ to its maximal
existence time.

Lemma 4.2.1. (Metric balls are uniformly totally bounded) Let (M, g, x0) be a 3 dimensional
connected Riemannian manifold, x0 ∈M . Suppose M is 0-complete and 1-positive. Suppose
for any A, εcan > 0, there are r(A, εcan), κ(A) > 0 such that the εcan-canonical neighborhood
assumption and the κ(A)-non-collapsing assumption hold at scales less than r(A, εcan) on
Bg(x0, A).

Then for any given A, ε > 0, there exist V (A), N(A, ε) > 0 such that vol(Bg(x0, A)) ≤
V (A), and the number of elements in any ε-separating subset of Bg(x0, A) is bounded above
by N(A, ε).

Proof. Fix some small δ > 0 and let εcan(δ), C0(δ) > 0 be from Lemma 2.2.6. Let η > 0 be
from Lemma 2.2.5. Let r0 = 1

7η
·min{r(A+ 1, εcan), 1

6
}.

We claim that there exists a universal constant C1 > 0 such that vol(Bg(x, 3r0)) ≤ C1

for all x ∈ Bg(x0, A). In fact, suppose first that ρ(x) < 4ηr0, then by Lemma 2.2.5 we get
ρ < 7ηr0 on Bg(x, 3r0). By the assumption of r0, we see that Bg(x, 3r0) is contained in some
δ-tube or capped δ-tube with diameter less than 1, which has volume less than C1. So the
claim holds. Next, suppose ρ(x) ≥ 4ηr0, then by Lemma 2.2.5 we get ρ ≥ ηr0 on Bg(x, 3r0).
So the claim follows from the Bishop-Gromov volume comparison.



CHAPTER 4. 3D RICCI FLOW WITH NON-NEGATIVE RICCI CURVATURE 54

Now suppose by induction that for some k ∈ N with kr0 ≤ A, there exist Ck(A) > 0 and
Nk(A, ε) ∈ N+ such that the following holds:

A(k): vol(Bg(x0, kr0)) ≤ Ck;

B(k): For any ε ≤ r0, an ε-separating subset in Bg(x0, (k − 1)r0) has at most Nk elements.

To show A(k + 1), consider a maximal r0-separating subset {yj} in Bg(x0, (k − 1)r0). Then
Bg(x0, (k − 1)r0) is covered by the union of all Bg(yj, r0), and by the triangle inequality we
get

Bg(x0, (k + 1)r0) ⊂
⋃
j

Bg(yj, 3r0). (4.2.1)

So A(k+1) follows from the above claim and B(k). It remains to establish B(k + 1).

Let {xj}mj=1 be an ε-separating set in Bg(x0, kr0). First, by the non-collapsing assumption
and A(k+ 1) we see that the number of xj with ρ(xj) ≥ (2C0)−1ε is bounded above in terms
of A, ε. So we may assume ρ(xj) < (2C0)−1ε for all j. Then by A(k + 1) and Lemma
2.2.8, we may further assume that all xj are contained in a single δ-tube or capped δ-tube
V ⊂ Bg(x0, (k + 1)r0).

Pick a point y ∈ ∂V , we can arrange the order of {xj}mj=1 in a way such that dV (y, xj+1) ≥
dV (y, xj) for each j ≤ m − 1. Here dV denotes the length metric in V induced by g. We
claim that each xj, j ≤ m−1, is the center of a δ-neck. Otherwise, xj is the center of a δ-cap
C ⊂ V . By Lemma 2.2.6 we have diam(C) ≤ C0ρ(xj) ≤ ε/2. Since dV (xj, xj+1) ≥ ε, we get
xj+1 ∈ V − C, and xj+1 is the center of a δ-neck. Connecting y with xj by a minimizing
geodesic, then it must intersect the central sphere at xj+1, which has diameter less than
10(2C0)−1ε < ε/2. So it is easy to see dV (y, xj+1) < dV (y, xj), a contradiction.

So by the triangle inequality we get

dV (y, xj+1) ≥ dV (y, xj) + ε− 2 · 10 · (2C0)−1ε ≥ dV (y, xj) + ε/2, (4.2.2)

for all j ≤ m− 1. In particular, this implies

(m− 1)ε/2 ≤ dV (xm, y) ≤ diam(V ) ≤ 2(k + 1)r0, (4.2.3)

and hence m ≤ 4(k + 1)r0ε
−1 + 1. This established B(k + 1).

Lemma 4.2.2. Under the same assumptions as Lemma 4.2.1. Then for any x ∈ M , there
exists a minimizing geodesic connecting x to x0.

Proof. By Lemma 4.2.1 we have vol(Bg(x0, A)) is bounded above, so by Lemma 2.2.5 it is

easy to see that |Rm| is a proper function restricted on Bg(x0, A) for all A > 0. Suppose
d = dg(x0, x) > 0. Fix a sufficiently small number δ > 0, and let εcan = εcan(δ), C0 = C0(δ)
be from Lemma 2.2.6. Let r0 = min{C−1

0 ρ(x0), C−1
0 ρ(x), r(d + 2, εcan), 1}. Then by Lemma
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2.2.8 and Lemma 4.2.1, all points in Bg(x0, d+ 1) with ρ ≤ r0 are contained in the union of
a finite collection S of disjoint δ-tubes and capped δ-tubes in Bg(x0, d+ 2).

For each i ∈ N, let γi : [0, d] → M be a smooth curve joining x0 and x with constant
speed, such that the length of γi satisfies L(γi) < d+ 1

i
. So γi ⊂ Bg(x0, d+1). We claim that

the curvature on γi is uniformly bounded for all i. Suppose not, we may assume there is a
sequence of points xi ∈ γi such that ρ(xi)→ 0 as i→∞. By the finiteness of S we may also
assume there is some T ∈ S that contains all xi. Then T must be a δ-tube with curvature
blowing up in one end. Taking a point y ∈ T such that ρ(y) < 1

2
min{ρ(x0), ρ(x)}. Then for

all large i, γi passes through the δ-neck centered at y at least twice, which contradicts the
almost minimality of γi. So the claim holds. Therefore, by the properness of |Rm|, there is
a compact set K ⊂M such that γi ⊂ K for all i.

Since |γ′i| = L(γi)
d
→ 1, it follows that γi’s are uniformly Lipschiz-continuous on [0, d].

Since γi’s are equicontinuous and map into a compact set of M , the Arzela-Ascoli Lemma
applies. So by passing to a subsequence, we may assume that γi uniformly converges to

some continuous curve γ∞ : [0, d] → M . Since
∫ d

0
|γ′i|2 dt = L(γi)

2

d
≤ 4d, we can apply weak

compactness to the sequence {γi}. By passing to a subsequence, we may assume γi weakly
converges to γ∞ in W 1,2.

Let E(γ) =
∫ d

0
|γ′(t)|2 dt be the energy function on all W 1,2-path connecting x0 and x.

Then by Cauchy-Schwarz inequality we have

E(γ) =

∫ d

0

|γ′(t)|2 dt ≥
(
∫ d

0
|γ′|)2

d
=
L(γ)2

d
≥ d. (4.2.4)

By the weak semi-continuity of the E-energy, it follows that the W 1,2-path γ∞ has energy
E(γ∞) ≤ d. So γ∞ minimizes the energy E in W 1,2. Therefore, γ∞ is a smooth solution to
the geodesic equation, and hence it is a minimizing geodesic.

The next lemma says that if a ball is scathed, then we can find a minimizing geodesic in
the ball along which the curvature blows up, and it is covered by δ-necks.

Lemma 4.2.3. (Minimal geodesic covered by δ-necks) Under the same assumptions as
Lemma 4.2.1. Let δ > 0. Suppose infBg(x0,A) ρ = 0 for some A > 0. Then there exists
a minimizing geodesic γ : [0, 1) → Bg(x0, A) such that R(γ(s)) → ∞ as s → 1, and γ(s) is
the center of a δ-neck for all s close to 1.

Proof. Let xi ∈ Bg(x0, A) be a sequence of points such that R(xi) → ∞ as i → ∞. Since
by Lemma 4.2.1 the ball Bg(x0, A) is totally bounded, we may assume by passing to a
subsequence that {xi} is Cauchy. So there is a δ-tube T , which blows up at one end,
that contains xi for all large i. By Lemma 4.2.2, there exists γi : [0, 1] → M , which is
the minimizing geodesic connecting x0 and xi. Noting that γi passes through any δ-neck
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in T at most once, after passing to a subsequence, γi converges to a minimizing geodesic
γ : [0, 1) → M . Moreover, by the minimality of γ, γ(s) is the center of a δ-neck for s close
enough to 1.

The following lemma shows that for a Ricci flow spacetime satisfying some appropriate
canonical neighborhood assumption, suppose a time-slice is close enough to that of a κ-
solution, then a parabolic region of a certain size is close to that in the κ-solution.

Lemma 4.2.4. (Time-slice closeness implies spacetime closeness) Let (M∞, g∞(t), x∞) be a
κ-solution, t ∈ (−∞, Tmax), where Tmax is the maximal existence time. For any δ > 0, there
exists ε > 0 such that the following holds:

Let (M, g(t)) be a Ricci flow spacetime, x0 ∈M, t0 := t(x0) > 0, ρ(x0) = 1. Suppose the
ε-canonical neighborhood assumption holds at scales (0, 2

√
ηδ−1), where η is from Lemma

2.2.5. Suppose also that (Mt0 , x0) is ε-close to (M∞, g∞(0), x∞). Then (M, g(t+ t0), x0) is
δ-close to (M∞, g∞(t), x∞) on the time interval [−δ−1,min{δ−1, Tmax − δ}].

Proof. Suppose the assertion does not hold, then there is a sequence of spacetimes (Mi, gi(t)),
x0i ∈ Mi, t(x0i) = t0i > 0, and a sequence εi > 0 with limi→∞ εi = 0, such that the
assumptions are satisfied for each i, but the conclusion fails.

Let −a∗, b∗ be the infimum and supremum of s1, s2 ∈ [−2δ−1,min{2δ−1, Tmax − δ/2}],
respectively, such that there exists C (may depend on s1, s2) such that |Rm| ≤ C in⋃
t∈[t0i−s1,t0i+s2](Bt0i(x0i, d))(t) for all d > 0 and sufficiently large i. Then by the gradient esti-

mates we have a∗, b∗ > 0. So by passing to a subsequence, we may assume (Mi, gi(t+t0i), x0i)

converges to a smooth complete Ricci flow (M̂, ĝ(t), x̂), t ∈ (−a∗, b∗), which has bounded
curvature in any compact subinterval in (−a∗, b∗).

Note that (M̂, ĝ(0), x̂) is isometric to (M∞, g∞(0), x∞), and each time-slice of (M̂, ĝ(t))

is a time-slice of a κ-solution, it is easy to see that the flow (M̂, ĝ(t), x̂) is isometric to
(M∞, g∞(t), x∞) for all t ∈ (−a∗, b∗).

In particular, (M̂, ĝ(t), x̂) extends to a complete Ricci flow with bounded curvature on
[−a∗, b∗]. Applying the gradient estimates in (Mi, gi(t + t0i), x0i) at times t close to −a∗
and b∗ we get a∗ = 2δ−1 and b∗ = min{2δ−1, Tmax − δ/2}. So (Mi, gi(t + t0i), x0i) is δ-
close to (M∞, g∞(t), x∞) on [−δ−1,min{δ−1, Tmax − δ}] for sufficiently large i, which is a
contradiction.

Lemma 4.2.5. (Blow-up sequence converges to a κ-solution) Let (Mi, gi(t)) be a sequence
of singular Ricci flows with normalized initial condition, xi ∈ Mi, with supi t(xi) < ∞ and
limi→∞ ρ(xi) = 0. Let g̃i(t) := ρ−2(xi)g(ρ2(xi)t+t(xi)). Then a subsequence (Mik , g̃ik(t), xik)
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converges to a κ-solution on (−∞, Tmax), where Tmax ∈ (0,∞] is the maximal existence time
of the κ-solution.

Proof. Let T = supi t(xi). Since limi→∞ ρ(xi) = 0, there are sequences εi, δi > 0 such that

limi→∞ εi = limi→∞ δi = 0, such that 2
√
ηδ−1

i ρ(xi) < rεi(T + 1), where rεi : [0,∞)→ [0,∞)
is the function in Lemma 2.2.10.

In particular, the εi-canonical neighborhood assumption holds at xi. By passing to a
subsequence we may assume that (Mi, gi(t), xi) is εi-close to the time-0-slice of some κ-
solution (M∞, g∞(t), x∞). So we can apply Lemma 4.2.4 and deduce that (M, gi(t), xi) is
δi-close to (M∞, g∞(t), x∞) on the interval [−δ−1

i ,min{δ−1
i , Tmax − δi}]. So the conclusion

follows by letting i→∞.

4.3 Canonical neighborhood theorem

The main results in this section are a canonical neighborhood theorem (Proposition 4.3.1)
for singular Ricci flows, and a bounded curvature at bounded distance theorem by reduced
volume (Theorem 4.3.2).

Recall that Perelman proved a canonical neighborhood theorem for compact smooth Ricci
flows [43, Theorem 26.2], which says that assuming the Ricci flow has normalized initial
condition, then for any T > 0 there exists r(T ) ≥ 0 such that the canonical neighborhood
assumption holds in Mt≤T at scales less than r(T ).

He also proved a local version of the theorem [43, Proposition 85.1], in which he assumed
the curvature is bounded in a backward parabolic neighborhood of a point x0, t(x0) = t0,
and showed that for all A > 0 there exists r(A) > 0, such that the canonical neighborhood
assumption holds in Bt0(x0, A) at scales less than r(A).

The following proposition extends the local theorem to singular Ricci flows.

Proposition 4.3.1. (Canonical neighborhood theorem) For any A > 0, ε > 0, there are
constants κ(A), r(A, ε), r(A), K(A) > 0, such that the following holds: Let M be a singular
Ricci flow, x0 ∈ M, t(x0) = t0 > 0. Suppose for some r0 > 0 with 2r2

0 < t0 the following
holds:

1. M is unscathed on a parabolic neighborhood P (x0, r0,−r2
0).

2. |Rm| ≤ r−2
0 on P (x0, r0,−r2

0).

3. vol(Bt0(x0, r0)) ≥ A−1r3
0.

Then

(a) The solution is κ-non-collapsed at scales less than r0 in Bt0(x0, Ar0).
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(b) The ε-canonical neighborhood assumption holds in Bt0(x0, Ar0) at scales less than rr0.

(c) If r0 ≤ r
√
t0 then |Rm| ≤ Kr−2

0 in Bt0(x0, Ar0).

As an application of Proposition 4.3.1, as well as other results by Perelman, we can
generalize his bounded curvature at bounded distance theorem by using the reduced volume:

Theorem 4.3.2. (Bounded curvature at bounded distance by reduced volume) For any A, κ >
0, there exist ϕ(A, κ), K(A, κ) > 0 such that the following holds: Let M be a singular Ricci
flow, x0 ∈ M, t0 := t(x0). Suppose the reduced volume Ṽx0(1) ≥ κ, and Mt≥t0−1 is ϕ-
positive.

If |Rm|(x0) ≤ 1, then |Rm| ≤ K in Bt0(x0, A).

In the theorem, Ṽx0(1) is the reduced volume at τ = 1, for the base point x0. It is defined
by

Ṽx0(τ) =

∫
Mt0−τ

τ−
3
2 e−`x0 (x) dt0−τx. (4.3.1)

To prove Proposition 4.3.1 and Theorem 4.3.2, we first prove some results in L-geometry
for singular Ricci flows.

Definition 4.3.3. The L+-length of an admissible curve γ : [t0 − τ, t0]→M is

L+(γ) =

∫ t0

t0−τ

√
t0 − t(R+(γ(t)) + |γ′(t)|2) dt. (4.3.2)

Lemma 4.3.4. Given constants T,E and Λ > 0, there exists r = r(Λ, T, E) such that the
following holds. Let M be a singular Ricci flow with normalized initial condition. Suppose
γ : [a, b]→M is a smooth admissible curve with b ≤ T . Suppose b−a ≥ E, and ρ(γ(a)) ≤ r.

Then
∫ b
a
R+(γ(t)) + |γ′(t)|2 dt > Λ.

Proof. Suppose for some Λ, T, E > 0, the conclusion does not hold, then we can find a
sequence of singular Ricci flows (Mk, gk(t)) and a sequence of smooth curves γk : [ak, bk]→
Mk satisfying the assumptions in the theorem. In particular, we have ρ(γk(ak)) ≤ rk, and
rk → 0 as k →∞, but ∫ bk

ak

(R+(γk(t)) + |γ′k(t)|2) dt ≤ Λ. (4.3.3)

We rescale each (Mk, gk(t), γk(ak)) by ρ−2
k := ρ−2(γk(ak)) and then shift time ak to 0,

to obtain a sequence of Ricci flow spacetimes (M̃k, g̃k(t), γk(ak)) defined on [0,∞). Then
γk : [0, (bk−ak)ρ−2

k ]→ M̃k is an admissible curve and (bk−ak)ρ−2
k →∞ as k →∞. Note that

(4.3.3) is invariant under rescaling. Applying Lemma 4.2.5 and passing to a subsequence we
may assume that (M̃k, g̃k(t), γk(ak)) converges to a κ-solution (M∞, g∞(t), x∞) on [0, Tmax),
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where Tmax ∈ (0,∞] is the maximal existence time. So by [8], (M∞, g∞(t)) is either a Bryant
soliton [8], or has finite extinction time.

Suppose first that (M∞, g∞(t)) is a Bryant soliton. LetM∞ denote the Ricci flow space-
time associated to it. Fix a large A > 0 and let PA :=

⋃
t∈[0,A3/2] Bt(x∞, A). Then for large

k, there exists a time-preserving diffeomorphism φk : Uk → Vk, with φk(x∞) = γk(ak), where
Uk and Vk are open subsets ofM∞ and M̃k respectively, such that given any compact subset
K ⊂ M∞ and δ > 0, we have K ⊂ Uk for all large k, and ‖φ∗kGk − G∞‖C[δ−1](K,G∞), where

Gk and G∞ are spacetime metrics of M̃k andM∞ respectively. So we have PA ⊂ Uk for all
large k. Let γ̂k ⊂ Uk be the image of γk|Vk under φ−1

k .

Since (bk − ak)ρ
−2
k → ∞ as k → ∞, we see that γk must exit φk(PA) at some time

Tk ∈ [0, A3/2], and accordingly γ̂k exits PA at the time T̂k ∈ [0, A3/2]. Then for sufficiently
large k, we have ∫ Tk

0

|γ′k(t)|2dt ≥
1

2

∫ T̂k

0

|γ̂′k(t)|2dt,∫ Tk

0

R(γk(t))dt ≥
1

2

∫ T̂k

0

R(γ̂k(t))dt.

(4.3.4)

Suppose Tk < A3/2. Since Ric ≥ 0, we have ∂
∂t
g∞(t) ≤ 0 for all t ≥ 0. So |γ̂′k(t)|g∞(t) ≥

|γ̂′k(t)|g∞(Tk) for all t ∈ [0, Tk], and hence∫ Tk

0

|γ̂′k(t)|2 dt ≥
∫ Tk

0

|γ̂′k(t)|2Tk dt ≥
d2
Tk

(γ̂k(0), γ̂k(Tk))

Tk
≥ A1/2. (4.3.5)

Otherwise, we have Tk = A3/2, and γ̂k(t) ∈ Bt((γ̂k(0))(t), A) for all t ∈ [0, A3/2]. Since
(M∞, g∞(t)) is a Bryant soliton, we have R(γ̂k(t)) ≥ C

A
, where C is a constant depending

only on the curvature of the tip. So we have∫ A3/2

0

R(γ̂k(t)) dt ≥
∫ A3/2

0

C

A
dt = CA1/2. (4.3.6)

In both cases, taking A sufficiently large, it follows by (4.3.4) that∫ Tk

0

(R(γk(t)) + |γ′k|2) dt > Λ, (4.3.7)

a contradiction to (4.3.3).

Now suppose (M∞, g∞(t)) has a finite extinction time T∞ < ∞. Let θ ∈ (0, T∞) and

consider PA :=
⋃θ
t=0Bt(x∞, A). Let Tk and T̂k be defined as above. Then if T̂k < θ, then

(4.3.5) holds. Otherwise, since the scalar curvature blows up at the rate of (T∞− t)−1 when
the time goes up to T∞, we have∫ θ

0

R(γ̂k(t))dt ≥
∫ θ

0

C

T∞ − t
dt = −C log(T − θ). (4.3.8)
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By taking θ sufficiently close to T∞ and A sufficiently large, we get a contradiction.

The following lemma says that an admissible curve that contains a point of large curvature
must have large L+-length.

Lemma 4.3.5. For all Λ <∞, r, T > 0, there is a constant δ = δ(Λ, r, T ) with the following
property:

Let M be a singular Ricci flow with normalized initial condition, and x0 ∈Mt0 with 0 <
t0 ≤ T . Suppose r0 ≥ r, and P (x0, r0,−r2

0) is unscathed, and |Rm| ≤ r−2
0 on P (x0, r0,−r2

0).
Suppose also γ : [t1, t0] → M is an admissible curve ending at (x0, t0), and there exists
t ∈ [t1, t0] such that ρ(γ(t)) < δ.

Then L+(γ) > Λ.

Proof. First, let ∆t = 1
4
10−4r4Λ−2. By taking δ < r, we see that γ must exit P (x0, r0,−r2

0)
at some time t̃. First, suppose t̃ > t0 −∆t. Then by the Schwarz inequality we get∫ t0

t̃

√
t0 − s|γ′(s)|2 ds ≥

(∫ t0

t̃

|γ′(s)| ds
)2(∫ t0

t̃

(t0 − s)−1/2 ds

)−1

≥ 1

2
10−2r2

0(∆t)−1/2 > Λ,

(4.3.9)

where the factor 10−2 comes from the distance distortion on P (x0, r0,−r2
0).

So now we may assume that γ exits P (x0, r0,−r2
0) at a time t̃ ≤ t0 − ∆t. Then the

conclusion follows immediately from Lemma 4.3.4.

Proof of Proposition 4.3.1. Under a suitable rescaling, we may assume without loss of gen-
erality thatM has normalized initial condition. Note by Lemma 4.3.5 and the properness of
scalar curvature from [44, Theorem 1.3], a minimizing sequence of admissible curves between
any two points converges to a smooth minimizing L-geodesic. Now the rest of proof for part
(a) is the same as [43, Proposition 85.1(a)].

For part (b), suppose that for some A > 0 the claim is not true. Then there is a
sequence of singular Ricci flows Mk which provide a counterexample. In particular, there
exists xk ∈ Bt0k(x0k, Ar0k) with ρ(xk) ≤ rkr0k but at which the ε-canonical neighborhood
assumption does not hold, where rk → 0 as k →∞.

Omitting the subscripts for a moment, by Lemma 4.2.5 we can apply a point-picking
and find points x ∈ Bt(x0, 2Ar0), t ∈ [t0 − r2

0/2, t0] with ρ := ρ(x, t) ≤ rr0 satisfying the
following: the ε-canonical neighborhood assumption does not hold at (x, t), but it holds at
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all points in P with ρ ≤ ρ/2, where

P = {x ∈Mt : dt(x0(t), x) ≤ dt(x0(t), x) + r−1ρ, t ∈ [t− 1

4
r−2ρ2, t]}. (4.3.10)

The rest of proof is the same as [43, Prop 85.1(b)], in which we can extract a convergent
subsequence of (P k, gk(t), xk) that converges to a κ-solution. Then this contradicts the
assumption of xk for large k, and thus proves part (b).

Part (c) follows from (b) in the same way as [43, Prop 85.1(c)].

The following lemma is a corollary of Proposition 4.3.1(c). Given the curvature and
reduced volume bound at a single point, it provides curvature bound in a backward parabolic
neighborhood of this point.

Lemma 4.3.6. For any κ > 0, there exists r(κ) > 0 such that the following holds: Let M
be a singular Ricci flow, x0 ∈ M, t(x0) = t0. Suppose the reduced volume Ṽx0(1) ≥ κ, and
Mt≥t0−1 is 1-positive.

If |Rm|(x0) ≤ 1, then |Rm|(x) ≤ r−2 for all x ∈ P (x0, r,−r2).

Proof. We will first show that |Rm|(x) ≤ r−2 for all x ∈ Bt0(x0, r). Then the assertion in
the theorem follows immediately from this by [43, Theorem 54.2], which gives upper bound
on curvature at earlier smaller balls, assuming lower bounds for the volume and curvature
in a ball.

For any x ∈ M, put ρ(x) = sup{r > 0 : |Rm|(y) ≤ r−2 for all y ∈ Bt(x)(x, r)}. Suppose
the assertion is not true. Then there is a sequence of singular Ricci flows Mi and points
x0i ∈Mi, t(x0i) = t0i, that satisfy the assumptions, but limi→∞ ρ(x0i) = 0.

By the reduced volume comparison theorem (see e.g. [43, Lem 78.11]), Ṽx0(1) ≥ κ
implies that there exists κ′(κ) > 0 such thatMi is κ′-non-collapsed at x0i at scales less than
1. Rescale and do a time-shifting to the flows (Mi, x0i) to get a sequence of new flows, which
are still denoted by (Mi, x0i), such that in the new flows we have ρ(x0i) = 1 and t(x0i) = 0.
So vol(B0(x0i, 1)) ≥ κ′ > 0 for all i.

By [43, Theorem 54.2], we can find C(κ) > 0 such that |Rm| ≤ C in P (x0i, C
−1/2,−C−1).

So by applying Proposition 4.3.1(c) and some distance distortion estimates, we can find a
smooth Ricci flow (U, g∞(t), x∞) (possibly incomplete), t ∈ [−c, 0], for some c > 0, such
that there are diffeomorphisms φi : U →Mi such that φi(x∞) = x0i and limi→∞ ‖φ∗i gi(t)−
g∞(t)‖Ck(U) = 0 for all k ∈ N and t ∈ [−c, 0], and B0(x∞, 2) is relatively compact in U .

By the 1-positive pinching assumption, we see that Rm(x, t) ≥ 0 for all x ∈ U and
t ∈ [−c, 0]. Also, we have |Rm|(x∞, 0) = 0, ρ(x∞, 0) = 1, and hence |Rm|(y, 0) = 1 for some
y ∈ U . However, this contradicts with the strong maximum principle, see e.g. [55, Theorem
4.18].
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Theorem 4.3.2 is a immediate consequence of combining Lemma 4.3.6 and Proposition
4.3.1(c).

4.4 heat kernel for singular Ricci flow

Let M be a singular Ricci flow. We find a heat kernel H of M (Theorem 4.4.1), such that
for any x0 ∈M, t(x0) = t0 > 0, H(x0, ·) is a smooth solution to the conjugate heat equation
(− ∂

∂t
− ∆ + R)H(x0, ·) = 0 on Mt<t0 and it is a δ-function at x0. We also find an adjoint

heat kernel H∗ with similar properties.

A key estimate is in Theorem 4.4.6, where we show that for any integer m ≥ 1,

H(x0, x)Rm(x) ≤ Cm (4.4.1)

holds for all x outside of a parabolic neighborhood around x0, where Cm > 0 depends on m.
This indicates that H(x0, ·) is sufficiently small at points where the curvature is sufficiently
large. With this estimate we are able to show that the heat kernel of singular Ricci flow
shares many standard properties as the ordinary heat kernel for compact smooth Ricci flows.

For a compact Ricci flow, it is easy to see by an integration by parts computation that the
integral of its heat kernel in each time-slice is equal to 1, we show in Corollary 4.4.7 that this
is also true for H. Moreover, by applying (4.4.1) we show in Corollary 4.4.9 the symmetry
between the heat and adjoint heat kernel, that is, H(x, y) = H∗(y, x) for all x, y ∈ M,
t(x) > t(y).

4.4.1 Construction of the heat kernel

Theorem 4.4.1. Let M be a singular Ricci flow. For any x0 ∈ M, t0 := t(x0) > 0, there
exists a function H(x0, ·) : Mt<t0 → R which is a smooth solution to the conjugate heat
equation (− ∂

∂t
−∆ +R)H(x0, ·) = 0 and

1. H(x0, x) > 0 for all x ∈ M(x0), and H(x0, x) = 0 otherwise, where M(x0) is the
subset of all points that are accessible to x0.

2. limt↗t0 H(x0, ·) = δx0, in the sense that

lim
t↗t0

∫
Mt

H(x0, x)h(x)dtx = h(x0) (4.4.2)

for all h ∈ C0
c (M).
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3. Suppose M has normalized initial condition, and for some r0, T > 0 we have |Rm| ≤
r−2

0 on P0 := P (x0, r0,−r2
0), and t0 < T . Then there exists C0(r0, T ) > 0 such that

H(x0, ·) ≤ C0 on Mt<t0 − P0.

We say H is the heat kernel of M. The next theorem gives the existence of the adjoint
heat kernel H∗. With some decay estimates of H at high curvature regions in next subsection,
we will show in Corollary 4.4.9 that H is symmetric to H∗ in the sense that H(x, y) =
H∗(y, x) for all x, y ∈M with t(x) > t(y).

Theorem 4.4.2. Let M be a singular Ricci flow. For any x0 ∈ M, t(x0) = t0 ≥ 0, there
exists a function H∗(x0, ·) : Mt>t0 → R which is a smooth solution to the heat equation
( ∂
∂t
−∆)H∗(x0, ·) = 0 and

1. H∗(x0, x) > 0 for all x ∈Mt>t0 that is accessible to x0, and H∗(x0, x) = 0 otherwise.

2. limt↘t0 H
∗(x0, ·) = δx0, in the sense that

lim
t↘t0

∫
Mt

H∗(x0, x)h(x)dtx = h(x0) (4.4.3)

for all h ∈ C0
c (M).

3. Suppose M has normalized initial condition, and for some r0, T > 0 we have |Rm| ≤
r−2

0 on P0 := P (x0, r0, r
2
0), and t0 < T . Then there exists C0(r0, T ) > 0 such that

H∗(x0, ·) ≤ C0 on Mt>t0 − P0.

For simplicity, we use the following variant of Perelman’s Ricci flow with surgery, in
which the surgeries are done slightly before singular times (the times where curvature blows
up), instead of exactly at them. This Ricci flow with surgery can be obtained with little
modification to that of Perelman’s. It is also constructed for complete manifold with bounded
geometry in [6].

Definition 4.4.3 (Ricci flow with surgery). A Ricci flow with surgery is given by

1. A collection of Ricci flows {(Mk×[t−k , t
+
k ], gk(·))}1≤k≤N , where N ≤ ∞, Mk is a compact

(possibly empty) manifold, t+k = t−k+1 for all 1 ≤ k ≤ N .

2. A collection of isometric embeddings {ψk : Y +
k → Y −k+1}1≤k≤N where Y +

k ⊂ Mk and
Y −k+1 ⊂ Mk+1, 1 ≤ k < N , are compact 3 dimensional submanifold with boundary.
The Y ±k ’s are the subsets which survive the transition from one flow to the next, and
the ψk’s give the identification between them.
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We call each final time t+k a surgery time. Let X+
k and X−k+1 denote the interior of Y +

k

and Y −k+1 respectively for 1 ≤ k < N . We can associate a Ricci flow spacetime M to the
Ricci flow with surgery by taking M to be the disjoint union of

(Mk × [t−k , t
+
k )) ∪ (X+

k × {t
+
k }) (4.4.4)

for 1 ≤ k ≤ N , and removing the following subset

(Mk+1 −X−k+1)× {t−k+1} (4.4.5)

for all 1 ≤ k < N (making identifications using the ψk’s as gluing maps).

Proof of Theorem 4.4.1. Let Mi be a sequence Ricci flow with surgery spacetimes starting
from (M, g), with the surgery scale δi → 0 as i → ∞. Then Mi have the local control
required for the application of the spacetime compactness theorem in [44, Theorem 2.20],
and henceMi converges to the singular Ricci flowM as i→∞. Assume x0i ∈Mi converges
to x0 when i→∞. We shall construct smooth non-negative solutions to the conjugate heat
equation on each Mi starting from x0i, and then take a limit of them to obtain the desired
heat kernel on M.

Let Mi be fixed below, and assume the compact Ricci flows that form Mi are {(Mk ×
[t−k , t

+
k ], gk(·))}1≤k≤N , where t+N = t0i = t(x0i). We shall define ui on each of these Ricci flows

and then restrict it to Mi to get a smooth function.

First, on MN × [t−N , t
+
N), let ui be the ordinary heat kernel of (MN , gN(t)) which starts

from (x0i, t0i). Note that ui vanishes at (x, t) if x are not in the same component with x0i.
Then suppose by induction that ui has been defined on Mj× [t−j , t

+
j ) for all j = k, ..., N such

that the following holds:

1. ui ≥ 0 is a smooth solution to the conjugate heat equation on Mi, t≥t−k
.

2. ui vanishes at points that are not accessible to x0i ∈Mi.

3.
∫
Mj
ui(x, t)dtx ≤ 1 for all t ∈ [t−j , t

+
j ), and j = k, ..., N .

Then we define ui on Mk−1 × {t+k−1} by letting ui(x, t
+
k−1) = ui(x, t

−
k ) if x ∈ X+

k−1, and
ui(x, t

+
k−1) = 0 if x ∈Mk−1 −X+

k−1. Then for any (x, t) ∈Mk−1 × [t−k−1, t
+
k−1), set

ui(x, t) =

∫
X+
k−1

ui(y, t
+
k−1)H(y, t+k−1;x, t) dt+k−1

y, (4.4.6)

whereH(·, ·; ·, ·) is the ordinary heat kernel for the smooth compact Ricci flow (Mk−1, gk−1(t)),
t ∈ [t−k−1, t

+
k−1]. So ui is a smooth solution to the conjugate heat equation on Mk−1 ×
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[t−k−1, t
+
k−1) ∪ X+

k−1 × {t
+
k−1}, and hence it is smooth on Mi, t≥t−k−1

. Moreover, by (4.4.6) we

get for all t ∈ [t−k−1, t
+
k−1) that∫

Mk−1

ui(x, t)dtx ≤
∫
Mk−1

∫
X+
k−1

ui(y, t
+
k−1)H(y, t+k−1;x, t) dt+k−1

y dtx

=

∫
X+
k−1

ui(y, t
+
k−1) dt+k−1

y ≤ 1.

(4.4.7)

It is clear that assumptions (1) and (2) also hold for j = k − 1. So by induction, we obtain
a smooth non-negative solution ui on Mi which satisfies

∫
Mi(t)

ui(x, t)dtx ≤ 1, and ui ≡ 0

on Mi −Mi(x0i).

Next, suppose r0, T are the constants in assertion (3). Then since (Mi, x0i) converges to
(M, x0), we have |Rm| ≤ 2r−2

0 on P0i := P (x0i, r0,−r2
0) for all large i. Since Mi has the

normalized initial condition, the scalar curvature satisfies R ≥ −6 anywhere onMi, see [43,
Lemma 79.11]. So ũi := uie

−6(t0−t) satisfies

(− ∂

∂t
−∆)ũi ≤ 0. (4.4.8)

Let Γ be the parabolic boundary of P0i, i.e.

Γ =

 ⋃
t∈[t0i−r20 ,t0i)

∂Bt0i(x0i, r0)(t)

 ∪Bt0i(x0i, r0)(t0i − r2
0). (4.4.9)

Then since
∫
ui dtx ≤ 1, we can apply the parabolic mean value inequality (see e.g. [28,

Theorem 25.2]) at any points in Γ, and hence find a constant C1(r0) > 0 such that ũi ≤ C1

on Γ.

Suppose by induction that ũi ≤ C1 on Mi,[t−k ,t0) − P0i for some k ≤ N . Without loss of

generality, we may assume that t0i − r2
0 is a surgery time. Then if Mk−1 × [t−k−1, t

+
k−1) does

not intersect P0i, by the inductive assumption we can apply the maximum principle and get
ũi ≤ C1 on Mi,[t−k−1,t

+
k−1). Otherwise, apply the maximum principle on

⋃
t∈[t−k−1,t

+
k−1)(Mk(t) \

Bt0i(x0i, r0)(t)), whose boundary is contained in Γ. Then by inductive assumption and ũi ≤
C1 on Γ, we get ũi ≤ C1 on Mi,[t−k−1,t

+
k−1). So by induction, ũi ≤ C1 holds on Mi,t<t0i − P0i.

Let C0 = C1e
6T , then ui ≤ C0 on Mi,t<t0i − P0i.

Then applying the interior Hölder estimate, we can bound the derivatives of ui in terms
of its C0-norm and the curvature norm nearby. So by passing to a subsequence, we may
assume that ui converges smoothly to a non-negative smooth solution u to the conjugate
heat equation on M. It follows immediately that

u(x) ≤ C0 (4.4.10)
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for all x ∈M−P0, which proves assertion (3) in the theorem.

Now we establish the properties claimed in Theorem 4.4.1. First, we show that u is
a δ-function at x0. For large i, let φi be a cut-off function whose support is contained in
Bt0i(x0i, r0), φi ≡ 1 on Bt0i(x0i,

r0
2

), and |∇φi| and |∆φi| are bounded above in terms of r0.
Here the derivatives and norms are considered with respect to g(t0i). By the choice of r0,
there exists a universal constant c > 0 such that 1

2
g(t) ≤ g(t0i) ≤ 2g(t) for all t ∈ [t0i−cr2

0, t0i]
on Bt0i(x0i, r0). So for all t ∈ [t0i − cr2

0, t0i), a direct computation using integration by parts
shows that there is a constant C = C(r0) > 0 such that

∂

∂t

∫
Bt0i (x0i,r0)

uiφi dtx =

∫
Bt0i (x0i,r0)

−ui∆g(t)φi dtx ≤ |∆g(t)φi| ≤ C, (4.4.11)

where we also used
∫
Mi,t

ui(x, t) dtx ≤ 1. Integrating this we get for all t ∈ [t0i − cr2
0, t0i)

that
∫
Bt0i (x0i,r0)

ui(x, t) dtx ≥ 1− C(t0i − t). Passing to the limit this implies∫
(Bt0 (x0,r0))(t)

u(x) dtx ≥ 1− C(t0 − t). (4.4.12)

Letting t↗ t0, we get

lim
t↗t0

∫
Mt

u(x) dtx = 1. (4.4.13)

By a same argument we can show that limt↗t0
∫
Mt

u(x)h(x) dtx = h(x0), for all smooth
function h that has compact support. So u is a δ-function at x0, which verifies assertion (2)
in Theorem 4.4.1.

Now we verify assertion (1) in Theorem 4.4.1. First, the positivity of u on M(x0) is an
easy consequence of the Harnack inequality for parabolic equations. So it remains to show
that u vanishes on M−M(x0).

To show this, let y ∈M−M(x0), t(y) = t ∈ [0, t0). Since by [45, Theorem 6.3] the non-
singular times, at which the time-slices have bounded curvature, are dense, we may assume
without loss of generality that t is a non-singular time. Otherwise, we can find a sequence
of non-singular times sk > t that converges to t as k →∞, and y(sk) ∈M−M(x0). SoMt

has finitely many connected components which are closed manifolds. Since y ∈M−M(x0),
it is easy to see that x0(t) and y are in different connected components in Mt.

Then by [44, Theorem 1.3], there is a sequence of time-preserving diffeomorphisms {φi :
Ui →Mi}, where Ui are open subsets of M such that given any t, R > 0, if i is sufficiently
large then

Ui ⊃ {x ∈M : t(x) ≤ t and R(x) ≤ R}, (4.4.14)

and {φ∗i gi} converges smoothly on compact subsets ofM to g. SoMt is contained in Ui for
all large i and φi(Mt) is a finite union of closed manifolds. In particular, φi(x0(t)) and φi(y)
are in different connected components in φi(Mt), which implies φi(y) ∈ Mi −M(x0i). So
ui vanishes at φi(y). Letting i→∞ we get u(y) = 0.
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The proof of Theorem 4.4.2 follows along the same line as Theorem 4.4.1.

4.4.2 Further properties of the heat kernel

In this subsection we investigate more properties of the heat kernel in Theorem 4.4.1. The
first main result is Theorem 4.4.5, which is a semi-local maximum principle for the heat
kernel. Then in Theorem 4.4.6 we derive from Theorem 4.4.5 a polynomial decay estimate
of the heat kernel. Corollary 4.4.7 and 4.4.8 are applications of Theorem 4.4.6.

The main ingredient in the proof of the semi-local maximum principle is the following
vanishing theorem of the Bryant soliton:

Proposition 4.4.4. (Vanishing theorem on Bryant soliton) Let (M, g(t)), t ∈ R be a Bryant
soliton with tip x0 ∈M , R(x0, 0) = 1, and u(x, t) : M×[0,∞)→ R be a smooth non-negative
solution to the conjugate heat equation. Suppose there are constants C > 0 and m ∈ N+

such that u(x, t)Rm(x, t) ≤ C for all x ∈M and t ∈ [0,∞).

Then u ≡ 0.

Proof. Let C denote all the constants that depend only on the constants C and m in the
assumption. Without loss of generality, it suffices to show u(x, 0) = 0 for all x ∈M .

Let H(y, t; z, s), t > s be the heat kernel of (M, g(t)). Then the following holds for all
t > 0

u(x, 0) =

∫
H(y, t;x, 0)u(y, t) dty

=

∫
dt(y,x0)≤1

H(y, t;x, 0)u(y, t) dty +

∫
dt(y,x0)>1

H(y, t;x, 0)u(y, t) dty

= I(t) + J (t).

(4.4.15)

We shall show that I(t) and J (t) converge to 0 as t → ∞. First, to estimate I(t) we
note that dt(y, x0) ≤ 1 implies R(y, t) > C−1. So it follows from the assumption uRm ≤ C
and the Bishop-Gromov volume comparison that

I(t) ≤ C

∫
dt(y,x0)≤1

H(y, t;x, 0) dty ≤ C sup
dt(y,x0)≤1

H(y, t;x, 0). (4.4.16)

By the Gaussian bound for heat kernel of a Ricci flow with bounded curvature in [16, Theorem
3.1], we have limt→∞H(y, t;x, 0) = 0 uniformly for all y ∈M . So I(t)→ 0, as t→∞.

Next we estimate J (t). Since dt(y, x0) ≥ 1, it follows that C−1dt(y, x0)−1 ≤ R(y, t) ≤
Cdt(y, x0)−1, which together with uRm ≤ C implies

J (t) ≤ C

∫
dt(y,x0)>1

H(y, t;x, 0)dmt (y, x0) dty. (4.4.17)
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We claim that the following estimate holds for all (y, t) such that t is sufficiently large and
dt(y, x0) ≥ 1:

H(y, t;x, 0) ≤ C exp

(
−d

2
0(x, y)

Ct

)
. (4.4.18)

Assume for a moment that the claim is true, and we use it to prove the proposition. For
any (y, t) such that t is sufficiently large and dt(y, x0) ≥ 1, we have ds(y, x0) ≥ 1 for all
s ∈ [0, t] because of Ric ≥ 0. Since R ≥ C−1 on Bs(x0, 1) for any s ∈ R, by the distance
distortion estimate we get

∂−

∂s
ds(x0, y) ≤ −

∫ ds(x0,y)

0

Ric(σ′(r), σ′(r)) dr ≤ −
∫ 1

0

Ric(σ′(r), σ′(r)) dr ≤ −C−1, (4.4.19)

where σ(r) is a minimizing geodesic from x0 to y with respect to g(s). So this implies

ds(x0, y) ≥ C−1(t− s) (4.4.20)

for all s ∈ [0, t]. In particular, we have d0(x0, y) ≥ C−1t, and for all t ≥ 2Cd0(x0, x) and
y ∈M such that dt(x0, y) ≥ 1 we have

d0(x, y) ≥ d0(x0, y)− d0(x, x0) ≥ d0(x0, y)(1− d0(x, x0)

C−1t
) ≥ 1

2
d0(x0, y), (4.4.21)

substituting which into (4.4.18) we get

H(y, t;x, 0) ≤ C exp

(
−d

2
0(x0, y)

Ct

)
. (4.4.22)

Putting this into (4.4.17) and using the Bishop-Gromov volume comparison theorem we get

J (t) ≤
∫
d0(y,x0)>C−1t

C exp

(
−d

2
0(x0, y)

Ct

)
dm0 (x0, y) d0y ≤ Ce−

t
C . (4.4.23)

Hence J (t)→ 0 as t→∞. Therefore, by letting t→∞, we obtain u(x, 0) = 0.

Now we establish (4.4.18) to finish the proof. Fix a pair (y, t) where t is sufficiently
large and dt(y, x0) ≥ 1. The value of C will be determined later. For any s ∈ [0, 1] and
z ∈ Bs(y, 1), let `(z, s) be the reduced length from (z, s) to (y, t), and let γ : [s, t]→M be a
curve such that γ|[2,t] ≡ y and γ|[s,2] is a minimal geodesic connecting y and z with respect
to g(0).

For τ ∈ [0, t− s], we have R(y, t− τ) ≤ Cd−1
t−τ (y, x0) and dt−τ (y, x0) ≥ C−1τ , and hence

R(y, t− τ) ≤ C
τ

. For τ ∈ [t− 2, t− s], we have R(γ(t− τ), t− τ) ≤ C and |γ′|(t− τ) ≤ C.
Putting these together we can estimate the L-length of γ:

L(γ) =

∫ t−2

0

√
τR(y, τ) dτ +

∫ t−s

t−2

√
τ(R(γ(t− τ), t− τ) + |γ′|2) dτ

≤
∫ t−2

0

√
τ
C

τ
dτ +

∫ t−s

t−2

C
√
τ dτ ≤ C

√
t,

(4.4.24)
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and hence

`(z, s) =
L(z, s)

2
√
t− s

≤ L(γ)

2
√
t− s

≤ C. (4.4.25)

Recall the heat kernel lower bound by Perelman in [58, Corollary 9.5] we get:

H(y, t; z, s) ≥ 1

4π(t− s)3/2
e−`(z,s) ≥ C

t
3
2

, (4.4.26)

for all s ∈ [0, 1] and z ∈ Bs(y, 1). So by the Bishop-Gromov volume comparison we get∫
Bs(y,1)

H(y, t; z, s) dsz ≥
C

t3/2
≥ C

d0(x, y)3/2
, (4.4.27)

for all s ∈ [0, 1].

Note by the multiplication inequality for the heat kernel in [40, Theorem 1.30] we have(∫
Bs(y,1)

H(y, t; z, s) dsz

)(∫
Bs(x,1)

H(y, t; z, s) dsz

)
≤ C exp

(
−(ds(x, y)− 2)2

4C(t− s)

)
.

(4.4.28)
So by substituting (4.4.27) into (4.4.28) we get(∫

Bs(x,1)

H(y, t; z, s) dsz

)
≤ C d0(x, y)

3
2 exp

(
− d0(x, y)2

4C(t− s)

)
≤ C exp

(
− d0(x, y)2

4C(t− s)

)
,

(4.4.29)
where we also used d0(x, y) ≥ C−1t ≥ 4C0 for very large t, and hence

ds(x, y)− 2 ≥ C−1d0(x, y)− 2 ≥ (2C)−1d0(x, y). (4.4.30)

Integrating this for all s ∈ [0, 1], and then applying the parabolic mean value inequality (see
e.g. [28]) to H(y, t; ·, ·) at (x, 0), we obtain

H(y, t;x, 0) ≤ C exp

(
−d

2
0(x, y)

4Ct

)
, (4.4.31)

which confirms claim (4.4.18) and hence completes the proof.

Proposition 4.4.5. (A semi-local Maximum Principle) Given r0, T > 0, r2
0 < T and m ∈ N,

there exist ε = ε(r0, T,m) > 0 and r = r(r0, T,m) > 0 such that for any t0 ∈ (r2
0, T ) the

following holds:

Let M be a singular Ricci flow with normalized initial condition, H be the heat kernel.
Let x0 ∈ M, t(x0) = t0 > 0, and |Rm| ≤ r−2

0 on P0 := P (x0, r0,−r2
0). Then for any

x ∈Mt<t0 − P0 with R(x) > r−2, there exists y ∈Mt<t0 − P0 with t(y) ≥ t(x) such that{
H(x0, y) ≥ (1 + ε)H(x0, x) and

H(x0, y)Rm(y) ≥ (1 + ε)H(x0, x)Rm(x).
(4.4.32)
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Proof. Suppose the conclusion is not true, then there are sequences {εk} and {rk} both
converging to zero, and a sequence of Ricci flow spacetimes (Mk, gk(t)), x0k ∈ Mk, t0k =
t(x0k), along with the heat kernels Hk, which together contradict the lemma at points xk ∈
Mk,t<t0k −P0k, t(xk) = tk. This means that ρ(xk) < rk, and for any y ∈Mk,t<t0k −P0k with
t(y) ≥ tk, we have either

uk(y) < (1 + εk)uk(xk), (4.4.33)

where uk = Hk(x0k, ·), or

(ukR
m)(y) < (1 + εk)(ukR

m)(xk). (4.4.34)

This implies u(xk) > 0, and by item (1) in Theorem 4.4.1 we get xk ∈Mk(x0k).

Let ρ0 = min{1
2
r0, rεcan(T + 1)}, where rεcan(t) is the canonical neighborhood scale func-

tion for singular Ricci flow with normalized initial condition in Lemma 2.2.10, and εcan > 0

is sufficiently small. Let Pk = P (xk,
ρ0
4η
,
ρ20
4η

) ⊂Mk, where η > 0 is from Lemma 2.2.5. Then
by Lemma 2.2.5 we have ρ < r0 on Pk for all large k. Seeing that ρ ≥ r0 on P0k, it implies
that Pk ⊂ Mk,t<t0k − P0k. Now rescaling the spacetimes in Pk by R(xk) and shifting the
times tk to 0, we get a sequence of Ricci flow spacetimes (P̃k, g̃k(s)s≥0, (xk, 0)), where g̃k(s)
denotes the horizontal Riemannian metric. Since rk → 0 as k → ∞, by Lemma 4.2.5 we
may assume by passing to a subsequence that (P̃k, g̃k(s)s≥0, (xk, 0)) converges to a κ-solution
(M∞, g∞(s)s≥0, (x∞, 0)).

Let ũk(y) = uk(y)
uk(xk)

for all y ∈ P̃k. Then for all y ∈ P̃k we have either

ũk(y) < 1 + εk, (4.4.35)

or
(ũkR

m)(y) < 1 + εk. (4.4.36)

Then since R > 0 on (M∞, g∞(s), x∞), we deduce that ũk has locally bounded C0-norm. By
Hölder estimate this implies that the Ck-norm of ũk is locally bounded bound for any k ∈ N.
So by passing to a subsequence we may assume that ũk converges smoothly to a smooth
non-negative solution ũ to the conjugate heat equation of the flow (M∞, g∞(s)s≥0, x∞), and
ũ(x∞, 0) = 1. Since εk → 0 as k → ∞, we have that for all y ∈ M∞ and s ≥ 0 one of the
following holds

ũ(y, s) ≤ 1, (4.4.37)

or
(ũRm)(y, s) ≤ 1. (4.4.38)

We claim that (M∞, g∞(s)) is either a cylindrical solution (the standard solution on
S2×R, or its quotient by the map that is a reflection on R and an antipodal map on S2), or
the Bryant soliton. Using the classification result of non-compact κ-solutions [8], it suffices
to show that M∞ is not compact.
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Suppose this is not true. On the one hand, by the compactness of M∞, for large k there
exists a diffeomorphism φk : M∞ → Uk such that φk(x∞) = xk, where Uk = φk(M∞) is a
connected component in Mk, tk and xk ∈ Uk. Also, for any given δ > 0, the following holds:

‖r−2
k φ∗k(gk(tk))− g∞(0)‖C[δ−1](M∞,g∞(0)) ≤ δ. (4.4.39)

On the other hand, since uk(xk) > 0 and by item (1) in Theorem 4.4.1 we see that
xk ∈ Mk(x0k). By the component stability theorem, [44, Proposition 5.32], for any t < t0k,
the time-t-slice ofMk(x0k) is the connected component ofMk,t that contains x0k(t). So we
deduce that Uk is equal to Mk(x0k)(tk), which is the time-tk-slice of Mk(x0k).

Since infM∞ R(·, 0) ≥ c for some c > 0, by (4.4.39) we get

inf
Mk(x0k)(tk)

R ≥ 1

2
cr−2
k , (4.4.40)

for all large k. Then by the maximum principle for scalar curvature we get

R(x0k) ≥ inf
Mk(x0k)(t≥tk)

R ≥ 1

2
cr−2
k . (4.4.41)

For sufficiently large k, this contradicts the assumption R(x0k) ≤ r−2
0 . So M∞ must be

non-compact.

So first we suppose (M∞, g∞(s)), s ∈ [0,∞) is the Bryant soliton. Since the curvature is
uniformly bounded everywhere, if ũ(y, s) ≤ 1 for some (y, s) ∈M∞ × [0,∞), then

ũ(y, s)Rm(y, s) ≤ C, (4.4.42)

where C depends only on the curvature at the tip of (M∞, g∞(0)). Combining with (4.4.38),
we see that (4.4.42) holds at all (y, s) ∈M∞× [0,∞). By the vanishing theorem, Proposition
4.4.4, we get ũ(x∞, 0) = 0, contradiction.

Next, suppose (M∞, g∞(s)), is a cylindrical solution with R(x∞, 0) = 1. Then the flow
exists on [0, 3

2
), and R(y, s) ≥ 1 for all y ∈ M∞ and s ∈ [0, 3

2
). So (4.4.38) implies (4.4.37),

and hence ũ(y, s) ≤ 1 for all (y, s) ∈ M∞ × [0, 3
2
). Noting ũ(x∞, 0) = 1, we can apply the

maximum principle at (x∞, 0) and get

(− ∂

∂t
−∆)ũ ≥ 0, at (x∞, 0). (4.4.43)

This is impossible seeing that (− ∂
∂t
−∆ +R)ũ = 0 and ũ(x∞, 0)R(x∞, 0) > 0.

Theorem 4.4.6. Given r0, T > 0, r2
0 < T , m ∈ N, and K > 0, there exist Cm =

C(r0, T,m,K) > 0 such that for any t0 ∈ (r2
0, T ) the following holds:

Let M be a singular Ricci flow, and H be the heat kernel. Let x0 ∈ M, t(x0) = t0 > 0,
and |Rm| ≤ r−2

0 on P0 := P (x0, r0,−r2
0). Suppose (M, Kg(K−1t)) has normalized initial

condition. Then the following holds for all x ∈Mt<t0 − P0:

H(x0, x)Rm(x) ≤ Cm. (4.4.44)
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Proof. Let Cm = C0r
−2m, where C0 = C0(r0, T ) is from item (3) in Theorem 4.4.1, and

r = r(r0, T,m) > 0 is from Theorem 4.4.5. Let u = H(x0, ·). It is clear that uRm ≤ Cm
for all the points in Mt<t0 − P0 that satisfy R ≤ r−2. We shall show that uRm ≤ Cm holds
everywhere onMt<t0−P0. Suppose by contradiction that this is not true. Then there exists
x1 ∈Mt<t0 − P0 such that uRm(x1) > Cm and R(x1) > r−2.

Suppose by induction that there are {xk} ⊂ Mt<t0 −P0, tk = t(xk), k = 1, 2, ..., N , such
that tk ≥ tk−1, and the following holds for all k:{

uRm(xk) ≥ (1 + ε)uRm(xk−1), and

u(xk) ≥ (1 + ε)u(xk−1),
(4.4.45)

where ε = ε(r0, T,m) > 0 is from Theorem 4.4.5. Since uRm(xN) ≥ uRm(x1) > Cm, it
follows from the definition of Cm that R(xN) > r−2. This allows us to apply Proposition
4.4.5 and get a point xN+1 ∈ Mt<t0 − P0, t(xN+1) = tN+1 ≥ tN which together with xN
satisfies (3.2.16). So by induction we get an infinite sequence {xk}∞k=1 which satisfies (3.2.16).
Then we can deduce from the second inequality in (3.2.16) that u(xk)→∞ as k →∞, which
contradicts item (3) in Theorem 4.4.1.

Corollary 4.4.7. Let M be a singular Ricci flow, and H be the heat kernel. Let x0 ∈ M,
t(x0) = t0 > 0. Then ∫

Mt

H(x0, x) dtx = 1, (4.4.46)

for all t ∈ [0, t0).

Proof. Without loss of generality we may assumeM has normalized initial condition. After
proper rescaling we may assume the assumptions in Proposition 4.4.5 holds. It suffices to
show the claim for t = 0. First, we fix some small δ# > 0 and ε < εcan(δ#) from Lemma
2.2.6. Let η be from Lemma 2.2.5. Let m ∈ N be greater than 1. We use C to denote all
the constants depending on δ#, r0, T,m and vol(M0).

Let δ > 0, whose value will be determined in the course of the proof. Choose a division
of [0, t0] by 0 = t1 < t2 < ... < tN = t0, such that ti+1 − ti ≤ δ2 for all i = 1, ..., N − 1, and
N ≤ (t0 + 1)δ−2 ≤ (T + 1)δ−2.

Let λ = λ(δ#),Λ = Λ(δ#) > 0 be from Lemma 2.2.8, and assume δ sufficiently small

such that r0 :=
2
√
ηδ

λ
< 1

Λ
rε(T ), where rε(t) is the function from Lemma 2.2.10. Then we can

apply Lemma 2.2.8 to Mt2i+1
and find a collection of central spheres {Σk}N0

k=1 of δ#-necks

of curvature scale r0, an open domain Ω ⊂ Mt2i+1
whose boundary is a union of {Σk}N0

k=1

such that N0 ≤ C, ρ ≥ λr0 = 2
√
ηδ on Ω, and ρ ≤ Λr0 ≤ Cδ on Mt2i+1

− Ω. So we have
Areat2i+1

(∂Ω) ≤ Cδ2. Moreover, by Lemma 2.2.5 we see that
√
ηδ ≤ ρ(x(t)) ≤ Cδ for all

x ∈ Ω and t ∈ [t2i, t2i+1]. So Ω survives until time t2i, and Areat(∂Ω(t)) ≤ Cδ2.
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Let u(x) = H(x0, x). Applying Theorem 4.4.6 on ∂Ω(t) and using the interior Hölder
estimate, we get |∇u| ≤ Cδ2m−1 on ∂Ω(t). Let t ∈ [t2i, t2i+1], then

∂

∂t

∫
Ω(t)

u(x) dtx =

∫
Ω(t)

−∆u(x) dtx =

∫
∂Ω(t)

∂u

∂~n
dtS ≤ C · δ2m−2, (4.4.47)

where ~n is the inwards unit normal vector field on ∂Ω(t). Integrating this on [t2i, t2i+1], we
get ∫

Ω(t2i)

u(x) dt2ix ≥
∫

Ω

u(x) dt2i+1
x− Cδ2m. (4.4.48)

Also, applying Theorem 4.4.6 on Mt2i+1
− Ω and using vol(Mt2i+1

) ≤ C, we get∫
Mt2i+1−Ω

u(x) dt2i+1
x ≤ Cδ2m, (4.4.49)

which combining with (4.4.48) gives∫
Mt2i

u(x) dt2ix ≥
∫
Mt2i+1

u(x) dt2i+1
x− Cδ2m. (4.4.50)

Note limt↗t0 u(x) dtx = 1, by induction we have∫
M0

u(x) d0x ≥ 1− CNδ2m ≥ 1− C(T + 1)δ2m−2. (4.4.51)

Letting δ → 0, the conclusion follows immediately.

Corollary 4.4.8. LetM be a singular Ricci flow, and H be the heat kernel. For any x0 ∈M,
t(x0) > 0, let f be a smooth function on M(x0) such that H(x0, x) = (4π(t0 − t))−3/2e−f(x)

for all x ∈M(x0), where t = t(x). Then

v = [(t0 − t)(2∆f − |∇f |2 + R) + f − n]H(x0, ·) ≤ 0. (4.4.52)

Proof. Since H(x0, x) > 0 for all x ∈ M(x0), we see that f is well defined. Suppose the
assertion does not hold. Then without loss of generality we may assume that there exists
x1 ∈ M0 such that v(x1) > 0. Let h0 ≥ 0 be a smooth function on M0 which is supported
in a neighborhood of x1 in which v > 0, and h0(x1) > 0. Then

∫
M0

h0v d0x > 0. In the
same way we constructed u, we can find a smooth and bounded function h ≥ 0 on M with
h(x) = h0(x) for all x ∈M0, which solves the heat equation ( ∂

∂t
−∆)h = 0.

Since (− ∂
∂t
−∆ + R)v ≤ 0, see e.g. [43, Prop 29.5], for any open domain Ω ⊂ Mt with

smooth boundary, we have

∂

∂t

∫
Ω

−hv dtV ≤
∫
∂Ω

(
∂h

∂~n
v − ∂v

∂~n
h

)
dtS. (4.4.53)
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Applying Theorem 4.4.6 in the same way as Corollary 4.4.7, we get∫
Mt

hv dtx ≤ lim
s↗t0

∫
Ms

hv dsx (4.4.54)

for all t ∈ [0, t0). It was shown in [57] that
∫
Mt

hv dtx approaches to zero as t goes up to t0.

So (4.4.54) implies
∫
M0

hv d0x ≤ 0, a contradiction.

As another corollary of Theorem 4.4.6, we establish the symmetry between heat kernel
and adjoint heat kernels on singular Ricci flow, as well as a semigroup property of the heat
kernel.

Corollary 4.4.9. (Symmetry and semigroup property of the heat kernel) LetM be a singular
Ricci flow and H,H∗ be the heat kernel and adjoint heat kernel in Theorem 4.4.1 and 4.4.2.
Then for any x, y ∈M with t(x) > t(y) we have

H(x, y) = H∗(y, x), (4.4.55)

and for all t ∈ (t(y), t(x)) we have

H(x, y) =

∫
Mt

H(x, z)H(z, y) dtz. (4.4.56)

Proof. Note that for any open domain Ω ⊂Mt with smooth boundary we get by computation

∂

∂t

∫
Ω

H(x, z)H∗(y, z) dtz =

∫
Ω

(−H∗∆zH +H∆zH
∗) dtz =

∫
∂Ω

(
H∗

∂H

∂~n
−H∂H∗

∂~n

)
dtS.

(4.4.57)

Hence, applying Theorem 4.4.6 as in Corollary 4.4.7, we get that
∫
Mt

H(x, z)H∗(y, z) dtz is
constant in t. Using (4.4.2) and (4.4.3), we see that H∗(y, x) and H(x, y) are the limits of∫
Mt

H(x, z)H∗(y, z) dtz as t↗ t(x) and t↘ t(y). So we have

H∗(y, x) = H(x, y), (4.4.58)

from which (4.4.56) follows immediately.

4.5 Pseudolocality theorem on singular Ricci flow

In this section, we generalize Perelman’s pseudolocality theorem for compact Ricci flows
to singular Ricci flows. The main ingredient is the heat kernel in Section 4.4, especially
Corollary 4.4.7 and 4.4.8.
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Theorem 4.5.1. (Pseudolocality theorem) For every α > 0 there exists δ, ε > 0 with the fol-
lowing property. Let (M, g(t)) be a singular Ricci flow and x0 ∈Mt0 for some t0 ≥ 0. Sup-
pose R ≥ −1 on Bt0(x0, 2), and for any Ω ⊂ Bt0(x0, 2) we have vol(∂Ω)3 ≥ (1− δ)c3vol(Ω)2,
where c3 is the Euclidean isoperimetric constant at dimension 3. Then

⋃
t∈[t0,t0+ε2] Bt(x0(t), ε)

is unscathed, and |Rm|(x) < α
t(x)−t0 + ε−2 holds for all x ∈

⋃
t∈[t0,t0+ε2] Bt(x0(t), ε).

Corollary 4.5.2. Under the same assumption as in Theorem 4.5.1. Assume furthermore
that |Rm| ≤ 1 on Bt0(x0, 2). Then there is r0 > 0 such that P (x0, r0, r

2
0) is unscathed and

|Rm| ≤ r−2
0 on P (x0, r0, r

2
0).

Proof of Corollary 4.5.2. The corollary follows immediately from Theorem 4.5.1 and a local
curvature estimate, see e.g. [20, Theorem 3.1].

As the proof has a lot in common with that of Perelman’s pseudolocality theorem, we
will focus on the differences, especially the places where the generalized heat kernel comes
into play, see [43, Section 30-34] for details of the parts which we are brief about.

Proof. Without loss of generality, we assume t0 = 0, and α < 1
300

. Suppose the assertion is
not true. Then there are sequences εk → 0 and δk → 0, and pointed singular Ricci flows
(Mk, (x0k, 0), gk(·)) which satisfy the hypotheses of the theorem but for which there is a
point xk in the unscathed set

⋃
t∈[0,ε2k] Bt(x0k(t), εk) with |Rm|(xk) ≥ αt−1

k +ε−2
k . By reducing

εk if needed, we may also assume that

|Rm|(x) < αt−1
k + 2ε−2

k , (4.5.1)

for all x ∈
⋃
t∈[0,ε2k] Bt(x0k(t), εk). We abbreviate dt(x0k(t), x) as d(x, t).

Let Ak = 1
300εk

. We say a point y is an α-large point if |Rm|(y) ≥ α
t(y)

. First, suppose

Pk :=
⋃
t∈[0,ε2k] Bt(x0k(t), (2Ak + 1)εk) is unscathed. Then by a point-picking we can find an

α-large point xk ∈ Pk, t(xk) = tk, such that

|Rm|(y) ≤ 4|Rm|(xk) := 4Qk, (4.5.2)

holds for all α-large points y, t(y) = s, with s ∈ (0, tk] and d(y, s) ≤ d(xk, tk)+AkQ
−1/2
k . By a

distance distortion estimate we can show that (4.5.2) also holds on P (xk,
1
10
AkQ

−1/2
k ,−1

2
αQ
−1/2
k ).

Next, suppose Pk is scathed. They by Lemma 4.2.5, we can also find an α-large point
xk ∈ Pk so that for large k, (4.5.2) holds on P (xk,

1
10
AkQ

−1/2
k ,−1

2
αQ
−1/2
k ).

Let Hk be the heat kernel of Mk, whose existence is given by Theorem 4.4.1. Let
uk = Hk(xk, ·) and fk be such that uk = (4π(tk − t))−n/2e−fk , and vk be defined by (4.4.52).
The following lemma says that a local integral of vk has a negative upper bound at some
time earlier than tk.
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Lemma 4.5.3. ([43, Lemma 33.4]) There is some β > 0 so that for all sufficiently large
k, there is some t̃k ∈ [tk − 1

2
αQ−1

k , tk) with
∫
Bk
vk dVk ≤ −β, where Bk is the time-t̃k ball of

radius
√
tk − t̃k centered at xk(t̃k).

We drop the subscript k for a moment and consider a fixed Mk for k large. Let φ be
a smooth non-increasing function on R such that: φ is 1 on (−∞, 1] and 0 on [2,∞), and

φ′′ ≥ −10φ and (φ′)2 ≤ 10φ. Put h(y) = φ

(
d(y,t(y))+600

√
t(y)

10Aε

)
on Mt≤ε2 . Then

(
∂

∂t
−∆)h =

1

10Aε

(
dt −∆d+

300√
t

)
φ′ − 1

(10Aε)2
φ′′. (4.5.3)

By (4.5.1) and Lemma 2.3.1, we get

dt −∆d+
300√
t
≥ 0, (4.5.4)

for all points y, t = t(y), such that d(y, t) > ε ≥
√
t. In particular, if φ′

(
d(y,t)+600

√
t

10Aε

)
6= 0,

then 9Aε < d(y, t) < 20Aε, and hence (4.5.4) holds at the point. So we have

(
∂

∂t
−∆)h ≤ −φ′′

(10Aε)2
≤ 10φ

(10Aε)2
. (4.5.5)

First, for any open domain Ω ⊂Mt with smooth boundary, we can compute that

∂

∂t

∫
Ω

hu dtV =

∫
Ω

(
∂

∂t
h−∆h)u dtV +

∫
∂Ω

(
−∂h
∂~n
u+

∂u

∂~n
h

)
dtS, (4.5.6)

where ~n is the inwards unit normal vector field on ∂Ω. By (4.5.5), h ≤ 1, |∇h| ≤ φ′

10Aε
, and

a same argument as in Corollary 4.4.7 using Theorem 4.4.6, we get∫
hu dtV

∣∣∣∣
t=0

≥
∫
hu dtV

∣∣∣∣
t=t

− t

(Aε)2
≥ 1− A−2. (4.5.7)

Similarly, by using (−∂t −∆ +R)v ≤ 0 we get

∂

∂t

∫
Ω

−hv dtV ≤
∫
∂Ω

(
∂h

∂~n
v − ∂v

∂~n
h

)
dtS. (4.5.8)

Suppose t is not a singular time, this implies

∂

∂t

∫
−hv dtV ≤

10

(10Aε)2

∫
−hv dtV, (4.5.9)
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and hence∫
−hv dtV

∣∣∣∣
t=0

≥ exp

(
−t̃

10(Aε)2

) ∫
−hv dtV

∣∣∣∣
t=t̃

≥ (1− A−2)

∫
−hv dtV

∣∣∣∣
t=t̃

. (4.5.10)

Also, replacing the function h by h(y) = φ

(
d(y,t(y))+600

√
t(y)

5Aε

)
, we can show for some constant

C > 0, ∫
B0(x0,10Aε)

u dV ≥ 1− CA−2. (4.5.11)

By some distance distortion estimates and Lemma (4.5.1) we can establish the following
inclusion

Bt̃(x(t̃),
√
t− t̃) ⊂ Bt̃(x0(t̃), 9Aε). (4.5.12)

Since h(·, t̃) = 1 on Bt̃(x0(t̃), 9Aε) and v ≤ 0, Lemma 4.5.3 implies
∫
−hv dtV

∣∣
t=t̃
≥ β.

Hence by (4.5.10) we get ∫
−hv dtV

∣∣∣∣
t=0

≥ β(1− A−2). (4.5.13)

Let ũ(x) = h(x)u(x) for all x ∈ M0, and define f̃(x) by ũ = (2π)−
n
2 e−f̃ . Then a direct

computation shows∫
M0

−hv d0V =

∫
M0

(−t|∇f̃ |2 − f̃ + 3)ũ d0V +

∫
M0

(
t

(
|∇h|2

h
−Rh

)
− h log h

)
u d0V.

(4.5.14)

By (4.5.11) and −h log h ≤ 1 when h ≤ 1, we have∫
M0

−uh log h d0V =

∫
B0(x0,20Aε)−B0(x0,10Aε)

−uh log h d0V ≤
∫
M0−B0(x0,10Aε)

u d0V

≤ 1−
∫
B0(x0,10Aε)

u d0V ≤ CA−2.

(4.5.15)

Seeing also that |∇h|
2

h
≤ 10

(10Aε)2
, and R ≥ −1 on B0(x0, 20Aε), we can bound the second

integral in (4.5.14) above by (1 + C)A−2 + ε2. This combining with (4.5.13) implies

β(1− A−2) ≤
∫
M0

(−t|∇f̃ |2 − f̃ + 3)ũ dV + (1 + C)A−2 + ε2. (4.5.16)

Put ĝ = 1
2t
g(0), û = (2t)

n
2 ũ, and define f̂ by û = (2π)−

n
2 e−f̂ . Restoring the subscript k,

then ûk are supported in B0(x0k, 2), and by (4.5.7) we get

lim
k→∞

∫
B0(x0k,2)

ûk dV̂k = 1. (4.5.17)
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Moreover, (4.5.16) implies the following for large k,

1

2
β ≤

∫
B0(x0k,2)

(
−1

2
|∇f̂k|2 − f̂k + 3

)
ûk dV̂k. (4.5.18)

This contradicts with the isoperimetric inequality in the assumption.

4.6 Generalized singular Ricci flow

4.6.1 Generalized singular Ricci flow: the definition and
properties

In this subsection, we give the definition and some properties of the generalized singular
Ricci flow.

Definition 4.6.1. Let (M, g) be a Riemannian manifold. For any x ∈M , let

ρ(x) = sup{r > 0 : Bg(x, r) is relatively compact and |Rm| ≤ r−2 on Bg(x, r)}.

Recall ρ = R
−1/2
+ , it’s clear that c0ρ ≤ ρ for some universal constant c0 > 0.

Definition 4.6.2. We say a Ricci flow spacetimeM is backward (resp. forward) 0-complete
if each time-slice of M is 0-complete (see Definition 2.1.10), and for any smooth curve
γ : [0, s0)→M, which is the integral curve of−∂t (resp. ∂t), and satisfies inf [0,s0) ρ(γ(s)) > 0.
Then lims→s0 γ(s) exists.

Definition 4.6.3. A generalized singular Ricci flow is a Ricci flow spacetime (M, g(t)),
which satisfies:

1. M0 = M is a complete orientable manifold.

2. g(t) satisfies the Hamilton-Ivey pinching condition (2.1.4) with ϕ =∞.

3. M is forward 0-complete, and weakly backward 0-complete.

4. For any x0 ∈ M, there exist N ∈ N and a sequence of points {xj}Nj=0 with t(xj) = tj,
such that t0 ≥ t1 ≥ · · · ≥ tN = 0, xj survives until tj+1, and xj(tj+1), xj+1 are in the
same connected component in Mtj+1

.

5. For any x0 ∈ M surviving on [t1, t0] for some t1 < t0, and any A, εcan > 0, there is
r > 0 such that the εcan-canonical neighborhood assumption holds at scales less than
r on Bt(x0(t), A) for all t ∈ [t1, t0].
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Definition 4.6.4. A semi-generalized singular Ricci flow is a Ricci flow spacetime (M, g(t), x0)
with t(M) = [0, t0) for some t0 ∈ [0,∞], and x0 ∈M0, which satisfies the following proper-
ties:

1. x0 survives until t for all t ∈ [0, t0), .

2. g(t) satisfies the Hamilton-Ivey pinching condition (2.1.4) with ϕ =∞.

3. M is weakly backward 0-complete.

4. Mt is connected for each t ∈ [0, t0).

5. For any t1 ∈ [0, t0), and any A, εcan > 0 there is r > 0 such that the εcan-canonical
neighborhood assumption holds at scales less than r on Bt(x0(t), A) for all t ∈ [0, t1].

For a singular Ricci flow, it’s obvious that it satisfies property (1)(2)(3)(5) in Definition
4.6.3. It also satisfies property (4) there, because by [44, Theorem 7.1] there are at most
countably many points in each time-slice that can not flow back to initial manifold. So a
singular Ricci flow is a generalized singular Ricci flow.

Moreover, let M be a singular Ricci flow, x0 ∈ M0. Suppose x0 survives on [0, t0) for
some t0 ∈ [0,∞], and let Mx0 =

⋃
[0,t0)

⋃
A>0Bt(x0(t), A). By the component stability [44,

Prop 5.17], the connected components are preserved when going backwards in time, it is
clear that Mx0 is a semi-generalized singular Ricci flow.

The following properties can be derived directly from the definition of the semi-generalized
singular Ricci flow.

Lemma 4.6.5. Let (M, g(t), x0) be a semi-generalized singular Ricci flow on [0, t0). Let
t ∈ (0, t0), then

(i) For any A > 0, the scalar curvature is proper on Bt(x0(t), A).

(ii) For any A > 0, there exist Q,C > 0 such that for any x ∈ Bt(x0(t), A), letting
Q = max{Q,R(x)}, then R ≤ CQ in P (x, (CQ)−1/2,−(CQ)−1), which is contained in⋃
s∈[0,t] Bs(x0(s), 2A).

Proof. For any C > 0, consider the subset K := Bt(x0(t), A) ∩ {y ∈ M : R(y) ≤ C},
equipped with the metric induced by the length metric on Bt(x0(t), A). On the one hand,
Lemma 4.2.1 implies that Bt(x0(t), A) is totally bounded. So K is totally bounded. On the
other hand, by the gradient estimate there exists c > 0 such that for any x ∈ K, the ball
Bt(x, c) is unscathed and R ≤ 2C in Bt(x, c). From this it is easy see that K is complete as
a metric space. So K is compact, which established (i).

For any A > 0, by the gradient estimate, and the distance distortion estimate, and
seeing that M is weakly backward 0-complete, we can find Q,C > 0 such that (CQ)−1 <
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t/2, and the following holds: For any x ∈ Bt(x0(t), A), Q = max{Q,R(x)}, x survives on
[t− (CQ)−1, t], and R ≤ CQ in Bs(x(s), (CQ)−1/2), which is contained in Bs(x0(s), 2A). By
another distance distortion estimate this implies assertion (ii).

The next proposition says that the connected components of a Ricci flow spacetime
are preserved when going backwards in time, assuming the spacetime is weakly backward
0-complete and satisfies a distance-dependent canonical neighborhood assumption. In par-
ticular, this component stability holds for generalized singular Ricci flows.

Proposition 4.6.6. (Component stability when going backwards in time) Let M be a Ricci
flow spacetime, x0, x1 ∈ Mt1 for some t1 > 0. Suppose that M is weakly backward 0-
complete. Suppose both x0, x1 survive until some t2 < t1. Suppose also for any A, εcan > 0
there exists r > 0 such that the εcan-canonical neighborhood assumption holds in Bt(x0(t), A)
at scales less than r for all t ∈ [t2, t1].

Suppose x0, x1 are in the same connected component of Mt1. Then x0(t2), x1(t2) are in
the same connected component of Mt2.

Proof. Without loss of generality we may assume that x0(t), x1(t) are in the same connected
component of Mt for all t ∈ (t2, t1]. Put

ρ0 = min{ inf
[t2,t1]

ρ(x0(t)), inf
[t2,t1]

ρ(x1(t)), 1} > 0. (4.6.1)

So by the distance distortion estimate we can find A > 0 such that dt(x0(t), x1(t)) ≤ A for
all t ∈ (t2, t1]. Fix a small δ > 0 and let C0(δ) > 0 and εcan(δ) > 0 be from Lemma 2.2.6.
Choose some r ∈ (0, C−1

0 ρ0) such that the εcan-canonical neighborhood assumption holds in
Bt(x0(t), 6A) at scales less than 4r for all t ∈ [t2, t1]. We may also assume t1 − t2 < c for
some c(r, A) > 0 whose value will be determined in the course of the proof.

By Lemma 4.2.2, there exists a minimizing geodesic σ : [0, 1]→Mt1 between x0 and x1.
Choose a division of [0, 1] by 0 = α0 ≤ α1 ≤ ... ≤ αm = 1 such that one of the following two
cases holds for each i = 0, 1, ...,m− 1:

1. ρ(x) ≥ r for all x ∈ σi := σ([αi, αi+1]);

2. ρ(x) ≤ 2r for all x ∈ σ([αi, αi+1]), and ρ(σ(αi)) = ρ(σ(αi+1)) = 2r.

Next, suppose by induction that for σi−1, i ≥ 1, the following assumptions hold:

(a) σi−1 survives backwards until t2.

(b) σi−1(t) ⊂ Bt(x0(t), 6A) for all t ∈ [t2, t1].
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Suppose σi satisfies case (1) and assume c sufficiently small. Then by the gradient estimate,
the distance distortion estimate, and the weakly backward 0-completeness of M, we get
that (a)(b) hold for σi. In particular, (a)(b) hold for σ0. So we can assume σi satisfies case
(2), i ≥ 1. Let t3 be the infimum of all times t ∈ [t2, t1] such that σi survives until t, and
σi(s) ⊂ Bs(x0(s), 6A) for all s ∈ [t, t1].

First, since r < C−1
0 ρ0 and σ is a minimizing geodesic, it follows from Lemma 2.2.6 that

y1 := σ(αi) and y2 := σ(αi+1) are both centers of δ-necks. Taking c small, then by the
gradient estimate we have for all t ∈ (t3, t1] that ρ(y1(t)), ρ(y2(t)) ∈ [r, 4r], and ρ(x(t)) ≤ 4r
for all x ∈ σi. Since the εcan-canonical neighborhood assumption holds in Bt(x0(t), 6A) at
scales less than 4r, by Lemma 4.2.4 that y1(t), y2(t) are centers of 2δ-necks when c is taken
sufficiently small. Moreover, by [55, Proposition 19.21] we know that σi(t) is contained in a
2δ-tube or a capped 2δ-tube. Since y1(t), y2(t) are the centers of 2δ-necks, it is easy to see
that σi(t) is contained in a 2δ-tube. Then the evolution equation of scalar curvature implies
∂tR(x(t)) > 0 for all x ∈ σi and t ∈ (t3, t1]. Therefore, σi survives until t3.

Next, for any t ∈ [t3, t1], let Tt ⊂Mt be a 2δ-tube that contains the 100r-neighborhood of

σi(t), and let d̂t denote the length metric induced by g(t) in Tt. Then for any z1, z2 ∈ σi(t),
d̂t(z1, z2) is realized by a smooth geodesic in Tt. Let γt be such a minimizing geodesic
connecting y1(t) and y2(t). Then all the second variations along γt are non-negative since it
has the minimal length among all smooth curves in a neighborhood around it. So a distance
distortion estimate as Lemma 2.3.1 shows

∂td̂t(y1(t), y2(t)) ≥ −Cr−1, (4.6.2)

for some universal constant C > 0. Integrating this and taking c sufficiently small, we get

d̂t(y1(t), y2(t)) ≤ d̂t1(y1, y2) + Cr−1(t1 − t) ≤ 2A. (4.6.3)

Moreover, since ρ(x) ≤ 4r for all x ∈ σi(t), by the triangle inequality we get

d̂t(y1(t), x) ≤ d̂t(y1(t), y2(t)) + 10 · 2 · 4r ≤ 3A. (4.6.4)

By the distance distortion estimate we get dt(x0(t), y1(t)) ≤ 2A and

dt(x, x0(t)) ≤ dt(x0(t), y1(t)) + dt(y1(t), x) ≤ 2A+ d̂t(y1(t), x) ≤ 5A. (4.6.5)

So σi(t) ⊂ Bt(x0(t), 6A) for all t ∈ [t3, t1]. By the infimum assumption of t3, we get t3 = t2.
Hence (a)(b) hold for σi. So by induction the entire σ survives backwards until t2. It follows
that x0(t2), x1(t2) are in the same connected component of Mt2 .

The following corollary of Proposition 4.6.6 gives the relation between a semi-generalized
singular Ricci flow and a generalized singular Ricci flow.
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Corollary 4.6.7. A Ricci flow spacetime (M, g(t)) is a generalized singular Ricci flow if and
only if it satisfies property (1)(2)(3)(4) in Definition 4.6.3, and for any x0 ∈M, which sur-
vives on [t1, t0), let Mx0 =

⋃
t∈[t1,t0)

⋃
A>0Bt(x0(t), A), then (Mx0 , x0) is a semi-generalized

singular Ricci flow.

Proof. The ‘if’ part is obvious by the definitions. For the ‘only if’ part, we need to show
Mx0 is a semi-generalized singular Ricci flow. It suffices to show Mx0 is weakly backward
0-complete. Let x ∈ Mx0 be an arbitrary point. Suppose t(x) = t1, x survives on (t2, t1] in
Mx0 for some t2 < t1, and inft∈(t2,t1] ρ(x(t)) > 0. Since M is weakly backward 0-complete,
x(t2) = limt↘t2 x(t) exists. By Proposition 4.6.6, x(t2) ∈ Mx0 . So Mx0 is weakly backward
0-complete.

4.6.2 Compactness and existence theorems

First, we show a compactness theorem which gives a criterion for a sequence of singular Ricci
flows to have a subsequence that converges to a semi-generalized singular Ricci flow. Then
we apply the compactness theorem to show the existence of generalized singular Ricci flows.

Definition 4.6.8. (Partial convergence) We say a sequence of Ricci flow spacetimes (Mi, Gi)
partially converges to a Ricci flow spacetime (M, G) if the following holds: There is a
sequence of diffeomorphisms φi : Ui → Vi ⊂ Mi, where Ui and Vi are open domains in M
and Mi respectively, such that given any compact subset K ⊂ M, k ∈ N and ε > 0, we
have K ⊂ Ui for all large i, and ‖φ∗iGi −G‖Ck(K,G) ≤ ε.

Let x0 ∈M and x0i ∈Mi. We say the sequence of pointed spacetimes (Mi, x0i) partially
converges to (M, x0), if x0 ∈ Ui, x0i ∈ Vi, and φi(x0) = x0i.

Theorem 4.6.9 (Compactness theorem). Let {(Mi, x0i)}∞i=1 be a sequence of singular Ricci
flows, x0i ∈Mi, t(x0i) = t0i. Suppose

(a) For some r0 > 0, x0i survives until t0i + r2
0, and |Rm| ≤ r−2

0 on P (x0i, r0, r
2
0).

(b) For any εcan > 0 and A > 0, there exist r(A, εcan) and κ(A) such that the εcan-
canonical neighborhood assumption and the κ(A)-non-collapsedness hold at scales less
than r(A, εcan) in Bt(x0i(t), A) for all t ∈ [t0i, t0i + r2

0].

(c) For any A > 0, there is C(A) > 0 such that for all m ∈ N and m ≤ A, we have
|∇mRm|(x) ≤ C(A) for all x ∈ Bt0i(x0i, Ar0).

Then there exists a semi-generalized singular Ricci flow (M, x0) on [0, r2
0), x0 ∈ M0,

such that a subsequence of (Mi,t≥t0i , x0i) partially converges to (M, x0).
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Proof to Theorem 4.6.9. We may assume t0i = 0 and r0 ≤ 1 without loss of generality. Let
dGi be the length metric onMi induced by the spacetime metric Gi. For any A > 0, restrict
the metric dGi on the subset

Pi(A) =
⋃

t∈[0,r20)

Bt(x0i(t), A) ∩ {x ∈Mi : |Rm|(x) ≤ A2}. (4.6.6)

Then the diameter of every (Pi(A), dGi) is bounded above by 2(A + r2
0). Moreover, the

following lemma shows that they are uniformly totally bounded.

Lemma 4.6.10. For any A, ε > 0, there exists N = N(A, ε) ∈ N such that for all i, any
ε-separating subset in (Pi(A), dGi) has at most N elements.

Proof. On the one hand, by a combination of assumption (b), the gradient estimate and the
distance distortion estimate, we may assume that ε is sufficiently small (depending on A)
so that the following holds: First, for any x ∈ Pi(A), t(x) ≥ ε/8, the backward parabolic
neighborhood P (x, ε/8,−(ε/8)2) is unscathed and contained in Pi(2A). Second, for any
x ∈ Pi(A) with t(x) ≤ ε/8, x survives until 0, and x(0) ∈ Pi(2A). Furthermore, there exists
c(A, ε) > 0 such that

volGi
(
P
(
x, ε/8,− (ε/8)2)) ≥ c(A, ε). (4.6.7)

On the other hand, assumption (b) allows us to apply Lemma 4.2.1 on each time-slice
Mi,t, and deduce that Bt(x0i(t), 2A) is uniformly totally bounded, and there is a constant
v(A) > 0 such that

volgi(t)Bt(x0i(t), 2A) ≤ v(A) (4.6.8)

for all i and t ∈ [0, r2
0). Integrating this we get

volGi(Pi(2A)) ≤
∫ r20

0

volgi(t)Bt(x0i(t), 2A) dt ≤ v(A). (4.6.9)

Now suppose {xk}Nik=1 is an ε-separating subset of (Pi(A), dGi), and tk = t(xk). Let
{xkj}

Ji
j=1 be all xk with tk < ε/8, then each xkj survives backwards until 0 and xkj(0) ∈

B0(x0i, 2A). Since dGi(xkj , xkl) > ε for any j 6= l, by the triangle inequality, {xkj(0)}Jij=1

is an 3ε/4-separating subset of B0(x0i, 2A). Since B0(x0i, 2A) is uniformly totally bounded,
there is C(A, ε) > 0 such that Ji ≤ C. Therefore, in order to bound Ni we may assume that
tk ≥ ε/8 for all k.

Then each P (xk, ε/8,− (ε/8)2) is unscathed, and dGi(xk, y) ≤ ε/8 + (ε/8)2 < ε/4 for all
y ∈ P (xk, ε/8,−(ε/8)2). Since dGi(xk, xj) > ε for any k 6= j, by the triangle inequality,
we see that P (xk, ε/8,−(ε/8)2), k = 1, 2, ..., Ni, are pairwise disjoint. Therefore, combining
(4.6.7) and (4.6.9), we conclude that there is N(A, ε) > 0 such that Ni ≤ N(A, ε) for all i.
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Now since (Pi(A), dGi) have uniformly bounded diameter and are uniformly totally bounded
for all i, by Gromov’s compactness theorem [59, Proposition 44], we may assume (Pi(A), dGi , x0i)
converges to a metric space (X(A), dA, x0) in the pointed Gromov-Hausdorff sense. Since
for any A1 ≥ A2, (Pi(A2), dGi , x0i) isometrically embeds into (Pi(A1), dGi , x0i), we get
(X(A2), dA2 , x0) isometrically embeds into (X(A1), dA1 , x0). Let (X, d) =

⋃
A>0(X(A), dA),

and Ni =
⋃
A>0Pi(A) ⊂ Mi, then (Ni, dGi , x0i) converges to (X, d, x0) in the pointed

Gromov-Hausdorff sense as i→∞.

Let x ∈ X, and suppose x ∈ X(A) for some A > 0. We say x is a smooth point if there
are a δ > 0, and a sequence of points xik ∈ Pik(A) with |Rm|(xik) ≤ δ−2 converging to x
(modulo the Gromov-Hausdorff approximations). By Lemma 2.3.1, the canonical neigbor-
hood assumption in Pik(A), and the gradient estimate, we can find δ = δ(δ, A) such that

|Rm| ≤ δ
−2

in P (xik , δ,−δ
2
) ∩ t−1([t0ik , t0ik + r2

0]). Moreover, by the non-collapsing assump-

tion in Pik(A) and Corollary 4.5.2 of the Pseudolocality theorem 4.5.1, we get |Rm| ≤ δ
−2

in P (xik , δ, δ
2
) with a possibly smaller δ. Let U(xik , δ) = P (xik ,

1
2
δ,−1

4
δ

2
)∪P (xik ,

1
2
δ, 1

4
δ

2
)∩

t−1([t0ik , t0ik + r2
0]), then by Shi’s derivative estimate and assumption (c), we get uniform

bounds on the derivatives of Rm in U(xik , δ). So we obtain a smooth limit of U(xik , δ) in
the Cheeger-Gromov sense by passing to a subsequence. This defines a Ricci flow spacetime
metric in a neighborhood of x in X, which is isometric to that on X by the uniqueness of
the Gromov-Hausdorff limit.

Let X0 ⊂ X be the set of all smooth points. Then we obtain a global Ricci flow spacetime
metric on X0, denoted by G∞ = dt2 + g(t). In particular, P (x0i, r0, r

2
0) converges smoothly

to P (x0, r0, r
2
0) ⊂ X0. Moreover, by a standard gluing argument (see e.g. [59, Theorem 72])

we get a sequence of diffeomorphisms under which a subsequence of Mi partially converges
to X0, in the sense of Definition 4.6.8.

It implies that for any εcan, A > 0, there exists r(A, εcan) > 0 such that the εcan-canonical
neighborhood assumption holds at scales less than r in X(A) ∩ X0. Furthermore, for any
A,C > 0, there exists c = c(A,C) > 0 such that for all x ∈ Bt(x0i(t), A) ⊂ Ni with
|Rm|(x) ≤ C, the backward parabolic neighborhood P (x, c,−c2) in Ni is unscathed. So for
all x ∈ X(A) ∩X0 with |Rm|(x) ≤ C, the region P (x, c,−c2) in X0 is unscathed. From this
it is easy to see that X0 is weakly backward 0-complete.

Let M =
⋃
t∈[0,r20)

⋃
A>0Bt(x0(t), A) be a subset in X0. Then M is a smooth Ricci flow

spacetime with connected time-slices, and a subsequence of Mi partially converge to M.
It is clear that M satisfies property (1)(2)(4)(5) in Definition 4.6.4. Moreover, applying
Proposition 4.6.6 to X0, we see that M is also weakly backward 0-complete and hence
satisfies property (3). This proved Theorem 4.6.9.

The next lemma shows that the convergence of the initial manifolds implies the conver-
gence of the singular Ricci flows to some semi-generalized singular Ricci flow.
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Lemma 4.6.11. Let (Mi, gi(t)) be a sequence of singular Ricci flows. Suppose for some
t1 ≥ 0 and x0i ∈ Mi,t1, the sequence of time-slices (Mi,t1 , gi(t1), x0i) smoothly converges to
a 0-complete manifold (M, g, x0). Then there exists a semi-generalized singular Ricci flow
(M, g(t), x0) on [0, t0) for some t0 > 0, such thatM0 = M and a subsequence of (Mi,t≥t1 , x0i)
partially converges to (M, x0). Moreover, t0 can be chosen to be equal to ∞, or such that
inf [0,t0) ρ(x0(t)) = 0, i.e. lim supt↗t0 |Rm|(x0(t)) =∞.

Proof. Without loss of generality we may assume t1 = 0. On the one hand, by Corollary
4.5.2 of the pseudolocality theorem 4.5.1, there exist r0, t0 > 0 such that for all large i the
domain P (x0i, r0, t0) ⊂Mi is unscathed and |Rm| ≤ r−2

0 holds there. Moreover, for any fixed
A > 0, there exists tA ∈ (0, t0) such that the geometry P (x0i, 2A, tA) ⊂ Mi is uniformly
bounded for all large i. By a distance distortion estimate this implies the uniformly bounded
geometry on

⋃
t∈[0,tA] Bt(x0i(t), A) ⊂Mi for a possibly smaller tA.

On the other hand, for any t ∈ (tA, t0), by Proposition 4.3.1 there are constants r, κ > 0,
such that the εcan-canonical neighborhood assumption and the κ-non-collapsing assumption
hold at scales less than r in Bt(x0i(t), A). So by Theorem 4.6.9 there is a subsequence of
(Mi, x0i) which partially converges to (M, x0).

If inf [0,t0) ρ(x0(t)) > 0, then by Lemma 4.3.6 we have inf [0,t0) ρ(x0(t)) > 0. So there exist
κ′, r′ > 0 such that M is κ′-non-collapsed at x0(t) at scales less than r′ for all t ∈ [0, t0).
Repeating the above argument at t sufficiently close to t0, we can extend t(M) to [0, t1) with
t1 > t0. So we may assume inf [0,t0) ρ(x0(t)) = 0 or t0 =∞.

Theorem 4.6.12. (Existence of a semi-generalized singular Ricci flow) Let (M, g) be a 3d
orientable complete Riemannian manifold, x0 ∈ M . Then there exists a semi-generalized
singular Ricci flow (M, g(t), x0) on [0, t0) for some t0 > 0 with M0 = M .

Moreover, if M is the double cover of a non-orientable manifold, and σ : M → M is
the corresponding deck transformation which acts as an isometry. Then there is a semi-
generalized singular Ricci flow M with M0 = M such that σ extends to an isometry on M,
which acts free on the open domain {x ∈M : x survives until t = 0}.

Proof. Let (Mi, gi, xi) be a sequence of compact manifolds which smoothly converges to
(M, g, x0), and (Mi, gi(t), xi) be a sequence of singular Ricci flows starting from (Mi, gi, xi).
Then the first assertion follows from applying Lemma 4.6.11 to (Mi, gi(t), xi). It only remains
to establish the assertion about the Z2-symmetry. For this we assume (M, g, x0) is the
double cover of a non-orientable manifold (N, g), and σ : M → M is the non-trivial deck
transformation in Z2, which acts as an isometry. Let Ni ⊂ N be a compact 3 dimensional
submanifold with smooth boundary that contains Bg(π(x0), i). Take i > dg(x0, σ(x0)), then
π−1(Ni) is a compact connected orientable manifold which has smooth orientable boundary
π−1(∂Ni), and Bg(x0, i) ∪ Bg(σ(x0), i) ⊂ π−1(Ni). First, we extend π−1(Ni) and the metric
past a collar of its boundary, and assume the new metric gi is isometric to the product of
a metric on π−1(∂Ni) with an interval. Next, since π−1(∂Ni) is σ-invariant, we can extend



CHAPTER 4. 3D RICCI FLOW WITH NON-NEGATIVE RICCI CURVATURE 86

the action of σ to the collar neighborhood π−1(∂Ni) × [0, 1] such that σ(x, s) = σ(x, 0) for
all x ∈ π−1(∂Ni) and s ∈ [0, 1]. Then by replacing gi with 1

2
(gi + σ∗gi), we may assume gi is

σ-invariant, and it is still a product metric near the new boundary. Therefore, by doubling
the extended manifold, we get a closed, connected and orientable manifold (Mi, gi, x0) with
a deck transformation σi which is an isometry, and gi = g, σi = σ on Bgi(x0, i).

Let (Mi, gi(t), x0) be a sequence of singular Ricci flows starting from (Mi, gi, x0). Then
by Lemma 4.6.11 there is t0 > 0 such that {(Mi, gi(t), x0)} converges to a semi-generalized
singular Ricci flow (M, x0) on [0, t0). Moreover, by the uniqueness of singular Ricci flow in
[4], each σi : Mi → Mi can be uniquely extended to an isometry σi : Mi → Mi. So for
any x1, x2 ∈Mi, if σi(x1) = x2 and x1 survives until t > 0, then x2 also survives until t and
σi(x1(t)) = σi(x2(t)). Therefore, σi converges to an isometry σ : M→M, which acts free
on {x ∈M : x survives back to M0 = M}

The next lemma shows that for two Ricci flow spacetimes (Nj, xj), j = 1, 2, which have
connected time-slices, suppose they are limits of a same sequence of Ricci flow spacetimes
Mi under the partial convergence. Then they are isometric if the preimages of x1, x2 under
the diffeomorphisms are contained in a parabolic region in Mi.

Lemma 4.6.13. Let Mi be a sequence of Ricci flow spacetimes, x1,i, x2,i ∈ Mi,0. Suppose
(Mi, xj,i) partially converges to a Ricci flow spacetime (Nj, xj) on [0, T ), for some T > 0,
xj ∈ Nj,0, and each time-slice Nj,t is connected, j = 1, 2. Suppose also there is D > 0 such
that x2,i ∈ B0(x1,i, D) for all i, and P (x1, D, T − δ) ⊂ N1 is unscathed for any δ > 0. Then
N1 is isometric to N2.

Proof. Let Hi be the spacetime metric of Mi, and Gj the spacetime metric of Nj, j = 1, 2.
Let φj,i : Nj ⊃ Uj,i → Vj,i ⊂ Mi be the two corresponding diffeomorphism sequences such

that ∪∞i=1Uj,i = Nj and ‖φ∗j,iHi − Gj‖ ≤ εi → 0. Let Pj,k =
⋃
t∈[0,T−k−1] Bt(xj, k) ∩ {x :

ρ(x) ≥ k−1}, then ∪∞k=1Pj,k = Nj. By the assumption of x1,i and x2,i, for a given k there
exists `(k,D) ∈ N such that for all large i, we have φ1,i(P1,k) ⊂ φ2,i(P2,`). So the maps
φ−1

2,i ◦φ1,i : N1 ⊃ P1,k → N2 are well-defined, and ‖(φ−1
2,i ◦φ1,i)

∗G2−G1‖ ≤ δi → 0. Moreover,

φ−1
2,i ◦ φ1,i(P1,k) form an exhaustion of N2 as i, k →∞. So N1 is isometric to N2.

Theorem 4.6.14. (Theorem 4.1.1 and 4.1.2, Existence of generalized singular Ricci flow)
Let (M, g) be a 3d orientable complete Riemannian manifold, x0 ∈ M . Let (Mi, gi(t), x0i)
be a sequence of singular Ricci flows with (Mi,0, gi(0), x0i) smoothly converging to (M, g, x0).
Then there exists a generalized singular Ricci flow M with M0 = M , such that (Mi, x0i)
partially converges to (M, x0).

Moreover, if M is the double cover of a non-orientable manifold, then the same conclusion
as Theorem 4.6.12 holds.
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Proof. Let x0 ∈M , by Lemma 4.6.11 there exist t0 ∈ (0,∞] and a semi-generalized singular
Ricci flow (M1, x0) on [0, t0) such that (Mi, Gi, x0) partially converges to (M1, x0), and
inf [0,t0) ρ(x0(t)) = 0 if t0 <∞.

Suppose by induction that there is a sequence of Ricci flow spacetimes {Mj}k−1
j=1 such

that Mj−1 ⊂Mj and the followings hold for all j = 2, ..., k − 1:

1. A subsequence of Mi partially converges to Mj.

2. Mj is weakly backward 0-complete.

3. For any x ∈Mj−1, let a be the supremum of all times t until which x survives until in
Mj. Then inf [t(x),a) ρ(x(t)) = 0.

4. For any x ∈ Mj−1, suppose x survives until some t > t(x). Let Mx ⊂ Mj be the
subset

⋃
s∈[t(x),t)

⋃
A>0Bs(x(s), A), then (Mx, x) is a semi-generalized singular Ricci

flow on [t(x), t).

Let {xj}∞j=1 be a dense subset in Mk−1. For each xj, by Lemma 4.6.11 there is a sub-
sequence of {(Mi, xj,i)}∞i=1 that partially converges to a semi-generalized singular Ricci flow
(Nj, xj), such that xj survives in Nj until R(xj(t)) goes unbounded. So by a diagonal
argument we may assume that {(Mi, xj,i)}∞i=1 converges to (Nj, xj) for all xj.

For any y1, y2 ∈Mk−1t
∐∞

j=1Nj, we say y1 ∼ y2 if there is a sequence of points wi ∈Mi

such that modulo the diffeomorphism maps we have wi → y1 and wi → y2 as i → ∞. This
defines an equivalent relation in Mk−1 t

∐∞
j=1Nj. If y1 ∼ y2, then by the uniqueness of the

smooth limit, there is δ > 0 such that the neighborhoods of P (yi, δ, δ
2)∪P (yi, δ,−δ2), i = 1, 2,

are unscathed and the spacetime metrics on them are isometric. So there is a well-defined

smooth Ricci flow spacetime metric on the quotient space Mk :=
(
Mk−1 t

∐∞
j=1Nj

)
/ ∼.

So (1) holds for j = k.

Since each connected component of Mk
t is isometric to either Mk−1

t or some Nj,t, we
get that Mk

t is 0-complete. For any x ∈ Mk, t(x) = t0, suppose x survives on (t1, t0] and
limt→t1 ρ(x(t)) > 0. Assume x ∈ Mk−1, then since Mk−1 is weakly backward 0-complete, it
follows that x(t) ∈Mk−1 and limt→t1 x(t) exists. Otherwise, assume x ∈ Nj for some j ∈ N,
and let t2 ∈ (t1, t0] be the infimum of time t such that x(t) ∈ Nj. Then x(t2) = limt→t2 x(t)
exists becauseNj is weakly backward 0-complete. If t2 > t1, then we have x(t2) ∈ Nj∩Mk−1,
and the existence of limt→t1 x(t) exists by the weakly backward 0-completeness ofMk−1. So
Mk is weakly backward 0-complete, and hence (2) holds.

It is clear that (3)(4) hold for each xj. We claim that (3)(4) hold for every point inMk−1.
To verify (3), let x ∈Mk−1 be an arbitrary point, t(x) = t1. Let t2 > t1 be the supremum of
all times until which x survives in Mk. Suppose by contradiction that inf [t1,t2) ρ(x(t)) > 0.
Let xi ∈Mi be a sequence of points that converge to x modulo the diffeomorphisms. Then
by Lemma 4.6.11 there is δ > 0 such that by passing to a subsequence, (Mi, xi) partially
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converges to a semi-generalized singular Ricci flow N on [t1, t2 + δ2), and P (x, δ, t2− t1 + δ2)
is unscathed. By the density of {xj}∞j=1, there exists xj ∈ P (x, δ, δ2) ⊂ Mk−1. Then xj
survives on [t(xj), t2 + δ2) in Nj. So it follows from Lemma 4.6.13 that Nj is isometric to N
on [t1 + δ2, t2 + δ2). In particular, x ∈ Nj ⊂Mk survives until t2 + δ2/2, contradicting with
the supremum assumption of t2. This verifies (3).

To verify (4), let x ∈ Mk−1 be an arbitrary point, t(x) = t1, and assume x survives
until some t2 > t1, and Mx is defined as in (4). Choose δ > 0 such that P (x, δ, t2 − t1) is
unscathed, and pick some xj ∈ P (x, δ, δ2) by the density of {xj}∞j=1. Then by Lemma 4.6.13,
Mx is isometric to Nj on [t1 + δ2, t2), and hence (Mx, x) is a semi-generalized singular Ricci
flow on [t1 + δ2, t2). Letting δ → 0, it implies that Mx is a semi-generalized singular Ricci
flow on [t1, t2). This verifies (4).

So by induction we obtain an infinite sequence of spacetimes {Mk}∞k=1 with Mk−1 ⊂
Mk, which satisfies all inductive assumptions. Let M =

⋃∞
k=1Mk, then by passing to a

subsequenceMi partially converges toM. By the ‘if’ part of Corollary 4.6.7, it is clear that
M is a generalized singular Ricci flow. The assertion about the Z2-symmetry follows in the
same way as Theorem 4.6.12.

4.7 Ricci flows with non-negative Ricci curvature

In this section, we prove Theorem 4.1.3. First, by adapting the maximum principle argument
in [21] and [22] to a generalized singular Ricci flow, we show in Lemma 4.7.1 and 4.7.2 that
it preserves the non-negativity of scalar curvature and Ricci curvature.

Then we prove Lemma 4.7.3, which is the last ingredient needed to prove Theorem 4.1.3.
It says that in a 3-dimensional manifold with Ric ≥ 0, no singularity can form within finite
distance along a minimizing geodesic covered by final time-slices of strong δ-necks.

Lemma 4.7.1. Let (M, g) be a 3 dimensional complete Riemannian manifold with R ≥ 0.
Let (M, g(t)) be a generalized singular Ricci flow starting from (M, g). Then R ≥ 0 on M.

Proof. By property (4) in Definition 4.6.3 and Corollary 4.6.7, it suffices to prove the lemma
for a semi-generalized singular Ricci flow (M, g(t), x0) on [0, t0), x0 ∈ M0 = M . We may
assume that there is r0 > 0 such that

⋃
t∈[0,t0) Bt(x0(t), r0) is unscathed and Ric(x) ≤ r−2

0

there. Then by Lemma 2.3.1, we have

(∂t −∆)dt(x0(t), x) ≥ −10

3
r−1

0 , (4.7.1)

for all x ∈Mt with dt(x, x0(t)) > r0.
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Let A ≥ 80
3
r−2

0 t0 + 2 and define the following function on M

u(x) = ϕ

(
dt(x0(t), x) + 10

3
r−1

0 t

Ar0

)
R(x), (4.7.2)

for all x ∈ Mt, t ∈ [0, t0), where we choose ϕ to be a smooth non-negative non-increasing

function such that ϕ = 1 on (−∞, 7
8
], ϕ = 0 on [1,∞) and

∣∣∣2ϕ′2ϕ − ϕ′′∣∣∣ ≤ C
√
ϕ. Then with

the choice of A, we have u(x) = R(x) for all x ∈ Bt(x0(t), 3
4
Ar0), and u(x) = 0 for all

x ∈Mt \Bt(x0(t), Ar0).

Let umin(t) := min{infMt u(·), 0}, t ∈ [0, t0). If umin(t) < 0, we claim that infMt u(·) can
be achieved. Suppose not, then there exists a sequence of points xi ∈ Bt(x0(t), Ar0) such
that u(xi) → umin(t) as i → ∞. By Lemma 4.6.5, the properness of scalar curvature, we
may assume that R(xi)→∞. So u(xi) ≥ 0 for all large i, a contradiction.

Then we claim the following holds for all t ∈ (0, t0):

umin(t) ≤ lim inf
s↘t

umin(s). (4.7.3)

Suppose this is not true at some t ∈ (0, t0). Then there exist some ε > 0 and a sequence
of times si > t which converges to t as i→∞ such that

umin(t) > umin(si) + ε, (4.7.4)

for all i. Let xi ∈ Bsi(x0(si), Ar0) be a point such that

u(xi) ≤ umin(si) +
ε

2
< umin(t)− ε

2
. (4.7.5)

If R(xi) is not uniformly bounded, then u(xi) ≥ 0 for large i, which implies umin(t) ≥ ε >
0, a contradiction. So we may assume R(xi) is uniformly bounded, and hence by Lemma
4.6.5 there is a δ > 0 such that R ≤ δ−2 in P (xi, δ,−δ2) ⊂⊂

⋃
t∈[0,t0) Bt(x0(t), 2Ar0). So u is

uniformly continuous on
⋃
i P (xi, δ,−δ2). Since si − t→ 0, this implies u(xi(t)) ≤ u(xi) + ε

2

for all large i. So

umin(t) ≤ u(xi(t)) ≤ u(xi) +
ε

2
, (4.7.6)

which contradicts with (4.7.5). So claim (4.7.3) is true.

Now we argue by maximum principle that the following holds for all times:

umin(t) ≥ − 2C0

(Ar0)2
, (4.7.7)

where C0 > 0 will be specified below. Suppose not and let T be the supremum of all times t
such that (4.7.7) is true on [0, t]. Then T > 0 and there exists a sequence ti > T converging
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to T as i → ∞ such that umin(ti) < − 2C0

(Ar0)2
. Using inequality (4.7.3) at T , we have that

umin(T ) ≤ − 2C0

(Ar0)2
< 0.

Since umin(T ) < 0, there exists xT ∈MT such that umin(T ) = u(xT ). Then by the choice
of T it is easy to see the followings hold at xT : ∇u = 0, ∆u ≥ 0, and ∂

∂t
u ≤ 0. By a direct

computation we get the following at xT ,

R∇ϕ+ ϕ∇R = 0,

2∇ϕ · ∇R = −2
|∇ϕ|2

ϕ
R = −2

ϕ′2

ϕ

1

(Ar0)2
R.

(4.7.8)

By the evolution equation ( ∂
∂t
−∆)R = 2|Ric|2, we get

(
∂

∂t
−∆)u =ϕ′R

1

Ar0

[(
∂

∂t
−∆)dt(x0(t), x) +

10

3
r−1

0 ]

− ϕ′′ 1

(Ar0)2
R + 2ϕ|Ric|2 − 2∇ϕ∇R,

(4.7.9)

restricting which at xT and using (4.7.1), (4.7.8) and 3|Ric|2 ≥ R2, we obtain the following

0 ≥ (
∂

∂t
−∆)u ≥ 2

3
ϕR2 − ϕ′′ 1

(Ar0)2
R + 2

ϕ′2

ϕ

1

(Ar0)2
R

≥ 2

3
ϕR2 − C

(Ar0)2

√
ϕR

≥ 1

3
(u2

min(T )− C2
0

(Ar0)4
),

(4.7.10)

where C0 = 3C
2

, and we have used |2ϕ′2
ϕ
− ϕ′′| ≤ C

√
ϕ, and Cauchy inequality C

(Ar0)2
√
ϕR ≤

1
3
ϕR2 +

C2
0

3(Ar0)4
. Since umin(T ) < 0, (4.7.10) implies umin(T ) ≥ −C0

(Ar0)2
, a contradiction. So

umin(t) ≥ −2C0

(Ar0)2
for all t ∈ [0, t0), and in particular it implies

R(x) ≥ − 2C

(Ar0)2
, (4.7.11)

for all x ∈ Bt(x0(t), 3
4
Ar0), t ∈ [0, t0). Letting A go to infinity, we get R(x) ≥ 0, for all

x ∈M.

Lemma 4.7.2. Let (M, g) be a 3 dimensional complete Riemannian manifold with Ric ≥ 0.
Let (M, g(t)) be a generalized singular Ricci flow starting from (M, g). Then Ric ≥ 0 on
M.

Proof. For the same reason as in Lemma 4.7.1, it suffices to prove the lemma for a semi-
generalized singular Ricci flow (M, g(t), x0) on [0, t0), x0 ∈ M . We may assume that there
is r0 > 0 such that

⋃
t∈[0,t0)Bt(x0(t), r0) is unscathed and Ric(x) ≤ r−2

0 there.
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Let λ ≥ µ ≥ ν be the three eigenvalues of the curvature operator. Then it suffices to
show that the following inequality holds on M for any a ≥ 0,

R + a(µ+ ν) ≥ 0 (4.7.12)

In fact, if this is true, then we have R+ ε−1(µ+ ν) ≥ 0 for any ε > 0. Multiplying both sides
by ε and letting ε go to zero we get µ+ ν ≥ 0, i.e. Ric ≥ 0.

Now suppose by contradiction that (4.7.12) does not hold for all a ≥ 0, then we can find
a, a′ ≥ 0 with a < a′ < a+ 1

100
such that (4.7.12) holds for a but not for a′.

By Lemma 2.3.1 we have

(
∂

∂t
−∆)dt(x0(t), x) ≥ −10

3
r−1

0 , (4.7.13)

whenever dt(x0(t), x) > r0. Choose ϕ : R → R to be a smooth non-negative non-increasing

function such that ϕ = 1 on (−∞, 7
8
], ϕ = 0 on [1,∞) and 2|ϕ′|2

ϕ
+ |ϕ′′| ≤ C0.

Let u :M→ R be defined by

u(x) = ϕ

(
dt(x0(t), x) + 10

3
r−1

0 t

Ar0

)
(R + a′(µ+ ν)), (4.7.14)

and umin(t) = min{infMt u(·), 0}.
By the same reasoning as Lemma 4.7.1 we can show the following inequality for all

t ∈ (0, t0):
umin(t) ≤ lim inf

s↘t
umin(s). (4.7.15)

Let T be the supremum of all t such that u(s) ≥ − 2C1

(Ar0)2
for all s ∈ [0, t], where C1 will

be specified later. Then T > 0 and by (4.7.15) we get

umin(T ) ≤ − 2C1

(Ar0)2
. (4.7.16)

Since umin(T ) < 0, the minimum of u is obtained at some point xT ∈ BT (x0(T ), Ar0). Let
V1,V2,V3 be the orthonormal eigenvectors of Rm corresponding to eigenvalues λ ≥ µ ≥ ν
at the tangent space of xT . We extend them smoothly to a neighborhood P around xT in
the following way: first extend them to a neighborhood of xT inMT by parallel translation
along radial geodesic emanating from xT using ∇g(T ), and then extend them in time to make
them constant in time in the sense that ∇tVi = 0, i = 1, 2, 3, where ∇t is the natural
space-time extension of ∇g(t) such that it is compatible with the metric, i.e. ∂

∂t
〈X,X〉g(t) =

2〈∇tX,X〉g(t). Then V1,V2,V3 is an orthonormal basis on P , and ∆Vi = 0 at xT , i = 1, 2, 3.

Let ũ(x) = [Rm(V1,V1) + Rm(V2,V2) + Rm(V3,V3) + a′(Rm(V2,V2) + Rm(V3,V3))] ·
ϕ
(
dt(x0(t),x)+ 10

3
r−1
0 t

Ar0

)
for all x ∈ P . Then it is easy to see that ũ(x) ≥ u(x) in P , and the

equality is achieved at xT .
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We can compute that

(
∂

∂t
−∆)ũ = −2∇ϕ∇(

ũ

ϕ
) + ϕ · ( ∂

∂t
−∆)[Rm(V1,V1) + (a′ + 1)(Rm(V2,V2) + Rm(V3,V3))]

+ [Rm(V1,V1) + (a′ + 1)(Rm(V2,V2) + Rm(V3,V3))] · ( ∂
∂t
−∆)ϕ

= −2∇ϕ∇(
ũ

ϕ
) + ϕ · I + J · ( ∂

∂t
−∆)ϕ.

(4.7.17)

We estimate each term in (4.7.17) at xT . First, recall that Rm evolves by (∇t−∆)Rm =
Rm2 + Rm# under Ricci flow, see [55, Proposition 3.19], where

M2 +M# =

λ2 + µν 0 0
0 µ2 + λν 0
0 0 ν2 + λµ

 , for any matrix M =

λ 0 0
0 µ 0
0 0 ν

 . (4.7.18)

So by ∇Vi = ∆Vi = ∂
∂t
Vi = 0 at xT we get

(
∂

∂t
−∆)(Rm(Vi,Vi)) = ((∇t −∆)Rm)(Vi,Vi) = (Rm2 + Rm#)(Vi,Vi) (4.7.19)

at xT , i = 1, 2, 3, and hence

I(xT ) = (λ2 + µν) + (a′ + 1)(µ2 + λν + ν2 + λµ)

≥ λ[λ+ (a+ 1)(µ+ ν)] + (a′ + 1)(µ2 + ν2) + (a′ − a)λ(µ+ ν)

≥ (a′ + 1)(µ2 + ν2) + (a′ − a)λ(µ+ ν),

(4.7.20)

where we used λ + (a + 1)(µ + ν) ≥ 0. Since u(xT ) < 0, we have λ < (a′ + 1)|µ + ν| at xT
and hence

|(a′ − a)λ(µ+ ν)| ≤ (a′ − a)(a′ + 1)(µ+ ν)2 ≤ a′ + 1

100
(µ+ ν)2 ≤ a′ + 1

50
(µ2 + ν2). (4.7.21)

Substituting this into (4.7.20) and using λ < (a′ + 1)|µ+ ν| at xT again we get

I(xT ) ≥ 49

50
(a′ + 1)(µ2 + ν2) ≥ 49

100
(a′ + 1)(µ+ ν)2

≥ 49

200(a′ + 1)
{[(a′ + 1)(µ+ ν)]2 + λ2}

≥ 49

400(a′ + 1)
[(a′ + 1)(µ+ ν) + λ]2

=
49

400(a′ + 1)ϕ2
u2

min(T ).

(4.7.22)
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Then we estimate J · ( ∂
∂t
− ∆)ϕ at xT by using (4.7.13), ϕ′ ≤ 0, 0 < ϕ ≤ 1 at xT , and

umin(T ) < 0 as below

(J · ( ∂
∂t
−∆)ϕ)(xT ) = [λ+ (a′ + 1)(µ+ ν)](

∂

∂t
−∆)ϕ

=
1

Ar0

[
ϕ′
(

(
∂

∂t
−∆)dt(x0(t), x) +

10

3
r−1

0

)
− ϕ′′ 1

Ar0

]
umin(T )

≥ 1

(Ar0)2ϕ
|ϕ′′|umin(T ).

(4.7.23)

Next, since ũ obtains its minimum on P at xT and ũ(xT ) = u(xT ) = umin(T ), we get(
−2∇ϕ∇(

ũ

ϕ
)

)
(xT ) = 2

|∇ϕ|2

ϕ2
umin(T ) = 2

|ϕ′|2

ϕ2

1

(Ar0)2
umin(T ). (4.7.24)

Now applying the maximum principle at xT and using (4.7.22), (4.7.23) and (4.7.24), we
get

0 ≥ (
∂

∂t
−∆)ũ(xT ) ≥ 49

400(a′ + 1)ϕ
u2

min(T ) +
1

(Ar0)2ϕ
|ϕ′′|umin(T ) + 2

|ϕ′|2

(Ar0)2ϕ2
umin(T )

≥ 49

400(a′ + 1)ϕ

[
u2

min(T ) +
400(a′ + 1)

49(Ar0)2

(
2|ϕ′|2

ϕ
+ |ϕ′′|

)
umin(T )

]
≥ 49

400(a′ + 1)ϕ

[
u2

min(T ) +
400(a′ + 1)C0

49(Ar0)2
umin(T )

]
,

(4.7.25)

where we have used 2|ϕ′|2
ϕ

+ |ϕ′′| ≤ C0. Since umin(T ) < 0, (4.7.25) implies immediately

umin(T ) ≥ − C1

(Ar0)2
, where C1 = 400(a′+1)C0

49
. This contradicts with (4.7.16). So umin(t) ≥

− 2C0

(Ar0)2
for all t ∈ [0, t0). Letting A→∞ we get R+ a′(µ+ ν) ≥ 0 onM, which contradicts

the assumption of a′. So (4.7.12) holds for all a ≥ 0, and hence by the argument at beginning
the conclusion of the Lemma follows.

The next lemma says that in a 3-dimensional manifold with Ric ≥ 0, no singularity can
form within finite distance along a minimizing geodesic covered by final time-slices of strong
δ-necks. We prove it by a contradiction argument, suppose the assertion does not hold, then
by the condition of Ric ≥ 0, we can show that the blow-up limit of the ‘singularity’ is a
smooth cone, and there is a Ricci flow whose final time-slice is in the smooth part of the
cone, which is impossible.
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Lemma 4.7.3. For any sufficiently small δ > 0 the following holds: Let (M, g) be a 3
dimensional Riemannian manifold with Ric ≥ 0. Let γ : [0, s0)→M (where s0 ∈ R+∪{∞})
be a unit speed minimizing geodesic such that R(γ(s)) does not stay bounded for s→ s0, and
assume there are constants c, ϕ > 0 such that all points on γ are centers of strong δ-necks
on the time interval [−c, 0], and the strong δ-necks have ϕ-positive curvature.

Then s0 =∞.

Proof. Suppose by contradiction that s0 <∞. Let η be from Lemma 2.2.5.

Since every point on γ is the center of some strong δ-neck, we get that γ lies inside
some open subset N ⊂ M that is diffeomorphic to S2 × (0, 1) and which is covered by final
time-slices of strong δ-necks. Consider the length metric induced by the Riemannian metric
on N , and then N ′ be the completion of N . Then N ′ is a disjoint union of N and a single
point p.

Consider the rescalings iN ′ for all i ∈ N. Then by the Bishop-Gromov volume comparison
we can deduce that for any d > 0, the d-balls BiN ′(p, d) in iN ′ are uniformly totally bounded.
Therefore, by Gromov’s compactness theorem, we have the following Gromov-Hausdorff
convergence by passing to a subsequence {ikN ′}:

(ikN
′, p)

k→∞−−−→ (X, p∞) (4.7.26)

We shall show that X is a smooth metric cone with cone point p∞, and the convergence is
actually smooth on X0 = X − {p∞}.

Let x ∈ B(p, s0)− {p} ⊂ N ′, then by Lemma 2.2.5 we get

R−1/2(x) ≤ η d(p, x) on B(p, s0)− {p}. (4.7.27)

We claim that there exists C > 0 such that

R−1/2(x) ≥ C−1d(p, x) on B(p, s0)− {p}. (4.7.28)

Suppose not, then there exists a sequence {xk} ⊂ B(p, s0)− {p} such that

R−1/2(xk) ≤ C−1
k d(p, xk), (4.7.29)

where Ck →∞ as k →∞. We abbreviate d(p, xk) as dk and R(xk) as Rk.

Since xk is the center of a δ-neck, there is a diffeomorphism onto its image φk : (−δ−1, δ−1)×
S2 → N ′ under which (N ′, xk) is δ-close to (−δ−1, δ−1) × S2 at scale R

−1/2
k . Let Uk =

φk((−100, 100)× S2), then Uk separates N ′ into two components.

Suppose x ∈ B(p, s0)− {p} is not in Uk, then it is easy to see either

d(x, p) > dk + 10R
−1/2
k , or d(x, p) < dk − 10R

−1/2
k . (4.7.30)
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In other words, we have

B(p, dk + 10R
−1/2
k )−B(p, dk − 10R

−1/2
k ) ⊂ Uk. (4.7.31)

Applying the Bishop-Gromov volume comparison on N ′, we have r−2vol(∂B(p, r)) is non-
increasing for all r ∈ (0, s0). In particular, let v0 = s−2

0 vol(∂B(p, s0)), then r−2vol(∂B(p, r)) ≥
v0 for all 0 < r < s0. So by (4.7.31) we can estimate the volume of Uk from below:

vol(Uk) ≥
∫ dk+10R

−1/2
k

dk−10R
−1/2
k

vol(∂B(p, r)) dr ≥
∫ dk+10R

−1/2
k

dk−10R
−1/2
k

v0r
2 dr

≥ 9

16

∫ dk+10R
−1/2
k

dk−10R
−1/2
k

v0d
2
k dr =

45

4
v0d

2
kR
−1/2
k ,

(4.7.32)

where in the third inequality we used (4.7.29), which implies dk −R−1/2
k ≥ 3

4
dk for large k.

By the closeness of the metric on Uk with the standard cylindrical metric at scale R
−1/2
k ,

we get an upper bound on the volume of Uk:

vol(Uk) ≤ 2 ·R−3/2
k · 200 · 8π = 3200πR

−3/2
k < 3200πC−2

k d2
kR
−1/2
k , (4.7.33)

where we used (4.7.29) in the last inequality. Combining (4.7.32) with (4.7.33) we get
C2
k ≤ 12800π

45v0
, which is impossible for large k. Thus there exists C > 0 such that (4.7.28)

holds.

Therefore, by (4.7.28) we see that the convergence on X0 is smooth. So there is v1 >
0 such that d−2vol(∂BX(p∞, d)) = v1 for all d ∈ (0,∞). So by the rigidity of volume
comparison, we see that any Jacobi field along any geodesic emanating from p∞ ∈ X has
linear growth, which implies that X is a smooth metric cone. By (4.7.27), X0 is nowhere
flat.

All points in a neighborhood of p are centers of strong δ-necks on [−c, 0], which has
ϕ-positive curvature. So under the blow-up rescalings this implies that any point x ∈ X0 is
the center of a strong 2δ-neck on [−1

2
c, 0], which has non-negative sectional curvature. This

contradicts the fact that open pieces in non-flat cones cannot arise as the result of Ricci flow
with non-negative curvature [55, Prop 4.22].

Theorem 4.7.4. (Theorem 4.1.3) Let (M, g) be a 3d complete Riemannian manifold with
Ric ≥ 0. There exist T ∈ (0,∞] and a smooth Ricci flow (M, g(t)) with g(0) = g defined on
[0, T ). Moreover, if T <∞, then lim supt↗T |Rm|(x, t) =∞ for all x ∈M .

Proof. First we assume M is orientable. By Theorem 4.6.14 there is a generalized singular
Ricci flow (M, g(t)) starting from (M, g), and by Lemma 4.7.2, M has non-negative Ricci
curvature.
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Let x0 ∈ M . Suppose x0 survives until t0 > 0 in M. We claim that the component of
Mt that contains x0(t) is complete for all t ∈ (0, t0]. Suppose not, then supBt(x0(t),A) R =∞
for some A > 0 and t ∈ (0, t0]. By Lemma 4.2.3 and 4.2.4, we can find a minimizing geodesic
γ : [0, 1) → Mt such that lims→1R(γ(s)) = ∞, and there exist c, ϕ > 0 such that for all
s close to 1, γ(s) are centers of strong δ-necks on [−c, 0], which have ϕ-positive curvature.
This contradicts Lemma 4.7.3.

Since Ric ≥ 0, for any A > 0, the parabolic neighborhood P (x0, A, t0) is contained in⋃
t∈[0,t0] Bt(x0(t), A), which is relatively compact. So every point in M survives until t0.

Let T ∈ (0,∞] be the supremum of all times until which x0 survives. Then T is also the
supremum of the survival times of points in M . Suppose T < ∞, since M is forward 0-
complete, we have lim supt↗T |Rm|(x(t)) =∞ for all x ∈M . So the spacetime restricted on
the subset

⋃
t∈[0,T ) M(t) is the desired smooth Ricci flow.

Now suppose M is not orientable. Let M̂ → M be the 2-fold orientation covering. By
Theorem 4.6.14, there are a generalized singular Ricci flow (M̂, g(t)) starting from M̂ , and an

isometry σ : M̂ → M̂ that acts free on the subset of points that can survive back to M̂ . As
before, there exists T ∈ (0,∞] such that M̂ survives on [0, T ), and lim supt↗T |Rm|(x(t)) =

∞ for all x ∈ M̂ if T <∞. The smooth Ricci flow claimed in the theorem is the quotient of⋃
t∈[0,T ) M̂(t) by the free action of σ.
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Chapter 5

Steady gradient Ricci solitons with
positive curvature operator

5.1 Introduction and main results

Ricci solitons are self-similar solutions of the Ricci flow equation, and they often arise as
singularity models of Ricci flows. In particular, a steady gradient soliton is a smooth complete
Riemannian manifold (M, g) satisfying

Ric = ∇2f (5.1.1)

for some smooth function f on M , which is called a potential function. The soliton generates
a Ricci flow for all time by g(t) = φ∗t (g), where {φt}t∈(−∞,∞) is the one-parameter group of
diffeomorphisms generated by −∇f with φ0 the identity.

In dimension 2, the only non-flat rotationally symmetric steady gradient soliton is Hamil-
ton’s cigar soliton [37]. In any dimension n ≥ 3, the only non-flat rotationally symmetric
steady gradient soliton is the Bryant soliton, which is constructed by Bryant [11]. It is an
open problem whether there are any 3d steady gradient solitons other than the 3d Bryant
soliton and quotients of R× Cigar, see e.g. [14, 17, 24, 31].

Hamilton conjectured that there exists a 3d flying wing, which is a Z2×O(2)-symmetric
3d steady gradient soliton asymptotic to a sector with angle α ∈ (0, π). The term flying
wing is also used by Hamilton to describe certain translating solutions in mean curvature
flow. A lot of important progress has been made for the mean curvature flow flying wings
in the past two decades. For example, the flying wings in R3 are completely classified by
the works of X.J. Wang [67] and Hoffman-Ilmanen-Martin-White [42]. Moreover, higher
dimensional examples were constructed independently by Bourni-Langford-Tinaglia [7] and
Hoffman-Ilmanen-Martin-White [42].

Despite many analogies between the Ricci flow and mean curvature flow, Hamilton’s
flying wing conjecture remains open. A proposed approach is to obtain the flying wings
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as limits of solutions of elliptic boundary value problems. This is how the flying wings in
mean curvature flow are constructed, where the solutions can be parametrized as graphs [67].
However, it seems hard to choose such a parametrization in Ricci flow to get a strictly elliptic
equation. In this chapter, we confirm Hamilton’s conjecture by using a different approach.

Our first theorem finds a family of non-rotationally symmetric n-dimensional steady gra-
dient solitons with prescribed Ricci curvature at a point in all dimensions n ≥ 3. This gives
an affirmative answer to the open problem by Cao whether there exists a non-rotationally
symmetric steady Ricci soliton in dimensions n ≥ 4 [15]. Throughout this section, the
quadruple (M, g, f, p) denotes a steady gradient soliton, where f is the potential function
and p is a critical point of f .

Theorem 5.1.1. Given any α ∈ (0, 1), there exists an n-dimensional Z2 × O(n − 1)-
symmetric steady gradient soliton (M, g, f, p) with positive curvature operator, such that
λ1 = αλ2 = · · · = αλn, where λ1, . . . , λn are eigenvalues of the Ricci curvature at p.

The 3d steady gradient solitons from Theorem 5.1.1 are collapsed, which is an easy
consequence of its asymptotic geometry. This also follows from the uniqueness of the Bryant
soliton among 3d non-collapsed steady gradient solitons by Brendle [9]. Moreover, we show
that the n-dimensional steady gradient solitons from Theorem 5.1.1 are non-collapsed for
all n ≥ 4. They are analogous to the non-collapsed translators in mean curvature flow
constructed by Hoffman-Ilmanen-Martin-White [42].

Our second theorem says that a Z2×O(2)-symmetric 3d steady gradient soliton must be
a Bryant soliton if the asymptotic cone is a ray. So the family of 3d steady gradient solitons
from Theorem 5.1.1 are all flying wings, which confirms Hamilton’s conjecture. Figure 1 is
the picture of a 3d flying wing.

Figure 5.1: A 3d flying wing
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Theorem 5.1.2. Let (M, g, f, p) be a Z2×O(2)-symmetric 3d steady gradient soliton. Sup-
pose its asymptotic cone is a ray. Then it is isometric to the Bryant soliton.

Corollary 5.1.3. A Z2×O(2)-symmetric but non-rotationally symmetric 3d steady gradient
soliton with positive curvature operator is a flying wing. In particular, the 3d steady gradient
solitons from Theorem 5.1.1 are all flying wings.

It has been wondered whether the scalar curvature vanishes at infinity in all 3d steady
gradient solitons. By Theorem 5.1.4 we see that this fails in 3d flying wings. More precisely,
Theorem 5.1.4 shows that the scalar curvature has a positive limit along the edges of the
wing, and there is a quantitative relation between this limit and the angle of the asymptotic
cone.

Theorem 5.1.4. Let (M, g, f, p) be a Z2×O(2)-symmetric 3d steady gradient soliton, whose
asymptotic cone is a metric cone over the interval [−α

2
, α

2
] for some α ∈ [0, π]. Let Γ :

(−∞,∞)→M be the complete geodesic fixed by the O(2)-action, then

lim
s→∞

R(Γ(s)) = R(p) sin2 α

2
. (5.1.2)

We prove in the following corollary that the asymptotic geometry of a 3d flying wing
is uniquely determined by the angle of the asymptotic cone. In particular, it converges to
R × Cigar along the edges. This is analogous to mean curvature flow flying wings, where
the asymptotic geometry is uniquely determined by the width of the slab that contains the
wing [7].

Corollary 5.1.5. Let (M, g, f, p) be a 3d flying wing, whose asymptotic cone is a sector with
angle α ∈ (0, π). Then for any sequence of points qi ∈ Γ going to infinity, the sequence of
pointed Riemannian manifolds (M, g, qi) smoothly converges to R × Cigar, where the scalar
curvature at the tip of the cigar is R(p) sin2 α

2
.

As an application of Theorem 5.1.2 and 5.1.4, we construct a sequence of 3d flying wings
whose asymptotic cones have arbitrarily small angles.

Corollary 5.1.6. There exists a sequence of 3d flying wings {(Mi, gi)}∞i=1, whose asymptotic
cone is a sector with angle αi ∈ (0, π) such that limi→∞ αi = 0.

The concept of flying wing can be naturally generalized to all dimensions n ≥ 3. We say
an n-dimensional O(n−2)×O(2)-symmetric steady gradient soliton with positive curvature
operator is a flying wing if its asymptotic cone is a metric cone over a geodesic ball of radius
r ∈ (0, π

2
) in Sn−2. Then we have

Theorem 5.1.7. In dimension n ≥ 3, there exists an n-dimensional flying wing.
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Moreover, similar conclusions in Corollary 5.1.5 and 5.1.6 also hold for all higher dimen-
sional flying wings.

The structure of this chapter is as follows. In Section 5.2, we prove Theorem 5.1.1 by
obtaining the steady gradient solitons as limits of appropriate expanding gradient solitons,
whose construction is based on Deruelle’s results [32]. More specifically, we choose a sequence
of expanding gradient solitons whose asymptotic volume ratio goes to zero, and prove that
by passing to a subsequence they converge to a steady gradient soliton. In dimension 3, the
sequence of expanding gradient solitons is between two sequences converging respectively to
the 3d Bryant soliton and R× Cigar.

In Section 5.3, we study the asymptotic geometry of Z2 × O(2)-symmetric 3d steady
gradient solitons that are not Bryant solitons. We prove a dimension reduction theorem
which shows that the soliton smoothly converges to R×Cigar at infinity. We also show that
the higher dimensional solitons from Theorem 5.1.1 are non-collapsed.

In Section 5.4, we first prove Theorem 5.1.4 and then use it to prove Theorem 5.1.2 and
all the corollaries. To prove Theorem 5.1.4, we study the variations of ∇f along certain
minimizing geodesics. By the soliton equation this amounts to computing the integral of the
Ricci curvature along the geodesics. Then Theorem 5.1.4 follows by estimating this integral.
Our main tools are the dimension reduction theorem, curvature comparison arguments, and
Perelman’s curvature estimates for Ricci flows with non-negative curvature operator.

Theorem 5.1.2 is proved by a bootstrap argument. Suppose the soliton is not a Bryant
soliton. So the dimension reduction theorem applies. By the Z2 × O(2)-symmetry, the
soliton away from the edges is a warped-product metric with S1-fibers. First, by using the
dimension reduction theorem and some computations we obtain an estimate on the length
of the S1-fibers, which shows that it increases slower than the square root of the distance to
the critical point.

Second, by using the estimate from the first step and similar computations we obtain
a better estimate, which shows that the length function stays bounded at infinity. Since
the length function is concave by the non-negativity of the curvature, this implies that the
scalar curvature does not vanish along the edges. This by Theorem 5.1.4 contradicts the
assumption that the asymptotic cone is a ray, hence proves Theorem 5.1.2.

5.2 A family of non-rotaionally symmetric steady

gradient solitons

The main result in this section is Theorem 5.1.1. The outline of the proof is as fol-
lows. We first construct a sequence of smooth families of expanding gradient solitons
{(Mi,µ, gi,µ, pi,µ), µ ∈ [0, 1]}∞i=0 with positive curvature operator, such that (Mi,0, gi,0, pi,0)
converges to a Bryant soliton, and (Mi,1, gi,1, pi,1) converges to the product of R and an (n-
1)-dimensional Bryant soliton if n ≥ 4, or a cigar soliton if n = 3. Moreover, we require that
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the asymptotic volume ratio of each expanding gradient solitons tends to zero uniformly as
i→∞.

Let αi(µ) be the quotients of the smallest and largest eigenvalues of the Ricci curvature
at pi,µ in (Mi,µ, gi,µ, pi,µ), then αi(µ) is a smooth function in µ for each fixed i. Then for any
α ∈ (0, 1), there is some µi ∈ (0, 1) such that αi(µi) = α. Since the asymptotic volume ratio
of (Mi,µi , gi,µi , pi,µi) goes to zero, we can show that it subconverges to an n-dimensional steady
gradient soliton (M, g, p) with positive curvature operator. In particular, the quotients of
the smallest and largest eigenvalues of the Ricci curvature at p in (M, g, p) is equal to α.

To construct the expanding gradient solitons we use Deruelle’s work [32]. He showed
that for any (n − 1)-dimensional smooth simply connected Riemannian manifold (X1, gX1)
with Rm > 1, there exists a unique expanding gradient soliton (M1, g1, p1) with positive
curvature operator that is asymptotic to the cone (C(X1), dr2 + r2gX1). Moreover, there
is a one-parameter smooth family of expanding gradient solitons connecting (M1, g1, p1) to
an expanding gradient soliton (M0, g0, p0), whose asymptotic cone is rotationally symmetric.
By Chodosh’s work the soliton (M0, g0, p0) is rotationally symmetric, and hence is a Bryant
expanding soliton [23].

5.2.1 Preliminaries

In this subsection we fix some notions that will be frequently used. First, we recall some
standard notions and facts from Alexandrov geometry: Let (M, g) be a non-negatively
curved Riemannian manifold, then for any triple of points o, p, q ∈ M , the comparison
angle ]̃poq is the corresponding angle formed by minimizing geodesics with lengths equal to
d(o, p), d(o, q), d(p, q) in Euclidean space. Let op, oq be two minimizing geodesics in M be-

tween o, p and o, q, and ]poq be the angle between them at o, then ]poq ≥ ]̃poq. Moreover,
for any p′ ∈ op and q′ ∈ oq, the monotonicity of angle comparison implies ]̃p′oq′ ≥ ]̃poq.

For a non-negatively curved Riemannian manifold (M, g, p) and two rays γ1, γ2 with unit

speed starting from p, the limit limr→∞ ]̃γ1(r)pγ2(r) exists and we say it is the angle at
infinity between γ1 and γ2. Moreover, the space (X, dX) of equivalent classes of rays is
a compact length space, where two rays are equivalent if and only if the angle at infinity
between them is zero, and the distance between two rays is the limit of the angle at infinity
between them. The asymptotic cone is a metric cone over the space of equivalent classes of
rays, and it is isometric to the Gromov-Hausdorff limit of any blow-down sequence of the
manifold, see e.g. [43].

Next, we define what we mean by a Riemannian manifold to be Z2×O(n−1)-symmetric.
First, we define an O(n − 1)-action on the Euclidean space Rn = {(x1, ..., xn) : xi ∈ R}, by
extending the standard O(n − 1)-action on Rn−1 = {xn = 0} ⊂ Rn in the way such that it
fixes the xn-axis. Then we define a Z2 × O(n − 1)-action on Rn by futhermore defining a
Z2-action to be generated by a reflection that fixes the hypersurface {xn = 0}.

Let Γ0 = {x1 = · · · = xn−1 = 0}, N0 = {x1 = · · · = xn−2 = 0, xn−1 > 0} and
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Σ0 = {xn = 0}. Then Γ0 is the fixed point set of the O(n− 1)-action, Σ0 is the fixed point
set of the Z2-action, and N0 is one of the two connected components of the fixed point set
of a subgroup isomorphic to O(n− 2).

Definition 5.2.1. We say that an n-dimensional Riemannian manifold (Mn, g) is Z2 ×
O(n− 1)-symmetric if there exist an isometric Z2 ×O(n− 1)-action, and a diffeomorphism
Φ : Mn → Rn such that Φ is equivariant with the two actions, where the action on Rn is
defined as above.

Let Γ = Φ−1(Γ0), Σ = Φ−1(Σ0), and N = Φ−1(N0). Then it is easy to see that

1. Γ is a geodesic that goes to infinity at both ends.

2. Σ is a rotationally symmetric (n− 1)-dimensional totally geodesic submanifold.

3. N is a totally geodesic surface diffeomorphic to R2.

4. Φ−1(0) is the unique fixed point of the Z2 × O(n − 1)-action, at which Γ intersects
orthogonally with Σ.

Moreover, consider the projection π : M → N , which maps a point x ∈ M to a point
y ∈ N , which is the image of x under some action in O(n − 1). Equip N with the induced
metric gN , then π is a Riemannian submersion, and N is an integral surface of the horizontal
distribution. So there is a smooth positive function ϕ : N → R such that g = gN + ϕ2gSn−2

on M \ Γ, where gSn−2 is the standard round metric on Sn−2.

In this chapter, we study n-dimensional expanding or steady gradient soliton (Mn, g)
with non-negative curvature operator, whose potential function f has a critical point p. We
denote it by a quadruple (Mn, g, f, p) (and sometimes a triple (Mn, g, p)). In the case of a
steady gradient soliton, R attains its maximum at p by the identity R+ |∇f |2 = const., and
p is the unique critical point of f if Rm > 0. In the case of an expanding gradient soliton,
by the soliton equation ∇2f = Ric + cg, c > 0, and Rm ≥ 0, it follows that ∇2f ≥ cg and
hence p is the unique critical point of f , and f attains its minimum at p. Then by using the
identity ∇f(R) = −2Ric(∇f,∇f) we see that R is non-increasing along any integral curve
of ∇f . So R attains its maximum at p.

We assume (Mn, g, f, p) is Z2 ×O(n− 1)-symmetric, and fix the notions Γ, N, ϕ,Σ from
above, and assume Γ : (−∞,∞)→M has unit speed and Γ(0) = p. Assume Rm > 0. Then
it is easy to see that p is the unique point fixed by the Z2 × O(n − 1)-action. Moreover,
by the soliton equation ∇2f = Ric + cg, c ≥ 0, it follows that the potential function f is
invariant under the actions. So the geodesic Γ, and all the unit speed geodesics in Σ starting
from p are integral curves of ∇f|∇f | .

Moreover, use i, j, k, l for indices on N , and α, β and gαβ for indices and metric compo-
nents on Sn−2 with the standard round metric with radius one. Then by a computation the
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nonzero components of the curvature tensor of (M \ Γ, g) are

RM
ijkl = RN

ijkl, RM
iαβj = −gαβ(ϕ∇2

i,jϕ), RM
αββα = (1− |∇ϕ|2)ϕ2(gααgββ − g2

αβ). (5.2.1)

So by Rm ≥ 0 and the second equation we have ∇2ϕ ≤ 0 and ϕ is concave.

5.2.2 Proof of Theorem 5.1.1

To prove Theorem 5.1.1, we will take a limit of a sequence of expanding gradient solitons
with R(p) = 1, where p is the critical point of the potential function. To do this, we need
an injectivity radius lower bound and a uniform curvature bound. The curvature bounds
follows directly from Rmax = R(p) = 1. Since the curvature is positive, by a well-known fact
of Gromoll and Meyer (see [18]), we always have an injectivity radius estimate

inf
x∈M

injg(x) ≥ π√
Rmax

. (5.2.2)

Recall that if (Mn, g, f, p) is an expanding gradient soliton satisfying

Ric + λg = ∇2f (5.2.3)

for some λ > 0. Then it generates a Ricci flow g(t) := (2λt)φ∗
t− 1

2λ

g, t ∈ (0,∞), where

{φs}s∈(− 1
2λ
,∞) is the one-parameter diffeomorphisms generated by the time-dependent vector

field −1
1+2λs

∇f with φ0 the identity. Moreover, g(t) is an expanding gradient soliton satisfying

Ric(g(t)) +
1

2t
g(t) = ∇2ft, (5.2.4)

where ft = φ∗
t− 1

2λ

f .

Let (Mn
i , gi, fi, pi) be a sequence of Z2×O(n− 1)-symmetric expanding gradient solitons

with positive curvature operator, which satisfies R(pi) = 1 and the asymptotic volume ratio
AVR(gi) → 0 as i → ∞. Let Ci > 0 be the constant such that (Mn

i , gi, fi, pi) satisfies the
soliton equation

Ric(gi) +
1

2Ci
gi = ∇2fi. (5.2.5)

Then the following lemma shows Ci → ∞ as i → ∞, and hence there is a subsequence of
(Mn

i , gi, fi, pi) smoothly converging to a steady gradient soliton.

Lemma 5.2.2. Let (Mn
i , gi, fi, pi) be a sequence of Z2 × O(n − 1)-symmetric expanding

gradient solitons with positive curvature operator. Suppose Rgi(pi) = 1 and AVR(gi) → 0
as i → ∞. Then a subsequence of (Mi, gi, fi, pi) smoothly converges to an n-dimensional
Z2 ×O(n− 1)-symmetric steady gradient soliton (M, g, f, p).
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Proof. Suppose (Mn
i , gi, fi, pi) satisfies

Ric(gi) +
1

2Ci
gi = ∇2fi (5.2.6)

for some constant Ci > 0. Let (Mi, g̃i(t), fi,t, pi), t ∈ (0,∞), be the Ricci flow generated by
(Mi, gi, fi, pi), where g̃i(t) = t

Ci
φ∗i,t−Cigi, fi,t = φ∗i,t−Cifi, and {φi,s}s∈(−Ci,∞) is the family of

diffeomorphisms generated by −s
s+Ci
∇fi with φ0 the identity. By a direct computation we can

show

Ric(g̃i(t)) +
1

2t
g̃i(t) = ∇2fi,t, (5.2.7)

for all positive time t. In particular, we have g̃i(Ci) = gi and Rg̃i(1)(pi) = Ci.

We claim that Ci → ∞ as i → ∞: Suppose this is not true. Then by passing to a
subsequence we may assume Ci ≤ C for some constant C > 0 and all i. We shall use C to
denote all positive constant that is independent of i.

First, by (5.2.2) we have injg̃i(1)(pi) ≥ C−1 and

Rg̃i(t)(x) ≤ Rg̃i(t)(pi) ≤
C

t
, (5.2.8)

for all x ∈ Mi and t ∈ (0,∞). So by Hamilton’s compactness for Ricci flow we may
assume after passing to a subsequence that (Mi, g̃i(t), pi), t ∈ (0,∞), converges to a smooth
Ricci flow (M∞, g∞(t), p∞) on (0,∞). Assume fi,1(pi) = 0, then by |∇fi,1|(pi) = 0 and
Ricg̃i(1) + 1

2
g̃i(1) = ∇2fi.1, we can apply Shi’s derivative estimates to get bounds for higher

derivatives of curvatures, and thus bounds for higher derivatives of fi,1. So we may assume
fi,1 converges to a smooth function f∞ satisfying Ricg∞(1) + 1

2
g∞(1) = ∇2f∞, which makes

(M∞, g∞(t), p∞) an expanding gradient soliton. Since Rg̃i(t) ≤ C
t
, it follows that Rg∞(t) ≤ C

t
.

This curvature condition combined with Hamilton’s distance distortion estimate gives
us a uniform double side control on dg̃i(t) and dg∞(t), which implies the following pointed
Gromov-Hausdorff convergences

(Mi, g̃i(t), pi)
pGH−−→
t↘0

(C(Xi), oi), (M∞, g∞(t), p∞)
pGH−−→
t↘0

(C(X), o), (5.2.9)

where Xi, X are some compact length spaces, and oi, o are the cone points of the metric
cones C(Xi), C(X). In particular, the first convergence is uniform for all i, which implies

(C(Xi), oi)
pGH−−−→
i→∞

(C(X), o).

Let Hn(·) denote the n-dimensional Hausdorff measure. Then since it is weakly continu-
ous under the Gromov-Hausdorff convergence [12], we have

Hn(B(o, 1)) = lim
i→∞

vol(B(oi, 1)) = lim
i→∞

AVR(C(Xi)) = lim
i→∞

AVR(gi) = 0. (5.2.10)
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However, since (M∞, g∞) is an expanding gradient soliton with Ric ≥ 0, it must have positive
asymptotic volume ratio by a result of Hamilton [26, Prop 9.46]. So by volume comparison
we have

Hn(B(o, 1)) = lim
t↘0
Hn(Bt(p∞, 1)) ≥ AVR(g∞(t)) > 0, (5.2.11)

a contradiction. This proves the claim at beginning that Ci →∞ when i→∞.

Let ĝi(t) = g̃i(t+ Ci), t ∈ (−Ci,∞), then ĝi(0) = gi, Rĝi(0)(pi) = 1, and

Rĝi(t)(x) = Rg̃i(t+Ci)(x) ≤ Ci
t+ Ci

≤ 2, (5.2.12)

for all x ∈ Mi and t ∈ (−Ci
2
,∞). This together with the injectivity radius estimate (5.2.2)

there is a subsequence of (Mi, ĝi(t), pi) which smoothly converges to a Ricci flow (M, g(t), p),
t ∈ (−∞,∞). Moreover, by the equation (5.2.6) and Shi’s derivative estimates we obtain
uniform bounds for all higher derivatives of fi. Since Ci →∞ as i→∞, we may assume by
passing to a subsequence that fi smoothly converges to a function f on M which satisfies
Ric(g) = ∇2f . So (M, g(0), f, p) is a steady gradient soliton. The Z2 × O(n− 1)-symmetry
is an easy consequence of the smooth convergence.

Now we prove Theorem 5.1.1.

Proof of Theorem 5.1.1. We claim that there is a sequence of smooth families of Z2×O(n−1)-
symmetric Riemannian manifolds {Xi,µ, µ ∈ [0, 1]}∞i=0 diffeomorphic to Sn−1, satisfying the
following:

1. Xi,0 is a rescaled round (n-1)-sphere;

2. diam(Xi,1)→ π as i→∞;

3. K(Xi,µ) > 1, where K denotes the sectional curvature;

4. limi→∞ supµ∈[0,1] vol(Xi,µ) = 0.

We say Xi,µ is Z2 × O(n − 1)-symmetric if it is rotationally symmetric, and there is a
Z2-isometry that maps the two centers of rotations to each other. We prove the claim in
dimension n = 3 below, and the case for n > 3 follows in the same way.

First, we construct a sequence of smooth Z2 × O(2)-symmetric surfaces {Xi,1}∞i=1 with
K(Xi,1) > 1, diam(Xi,1)→ π and vol(Xi,1)→ 0 as i→∞. For each large i ∈ N, let gi be the
metric of the surface of revolution (i−1 sin r cos θ, i−1 sin r sin θ, r), r ∈ [0, π] and θ ∈ [0, 2π].
Then by a direct computation we see that Kmin(gi) = (i−2 + 1)−2. Then by some standard
smoothing arguments and suitable rescalings, we obtain the desired sequence {Xi,1}∞i=1.
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Second, for each large i, let hi(t) be the Ricci flow with hi(0) = Xi,1, and assume its
curvature blows up at Ti > 0. Let Ki(t) be the minimum of K(hi(t)), and Vi(t) be the
volume with respect to hi(t). Then we can find a smooth function ri : [0, Ti] → R+ such

that ri(0) = 1, ri(t) ≤ min{
√

Ki(t)
Ki(0)

,
√

Vi(0)
Vi(t)
} for all t ∈ [0, Ti], and ri(t) =

√
Vi(0)
Vi(t)

when

t is close to Ti (note
√

Vi(0)
Vi(t)

<
√

Ki(t)
Ki(0)

when i is sufficiently large since limi→∞ Vi(0) = 0

and lim supi→∞Ki(0) ≤ 1). Then the rescaled Ricci flow r2
i (t)hi(t) converges to a smooth

round 2-sphere when t → Ti. Moreover, by letting Xi,µ = r2
i (Ti(1 − µ))hi(Ti(1 − µ)), u ∈

[0, 1], we obtain a smooth family of Z2 ×O(2)-symmetric surfaces {Xi,u} with K(Xi,µ) > 1,
vol(Xi,µ) ≤ vol(Xi,1), and Xi,0 is a round 2-sphere. So the claim holds.

Therefore, for each fixed i, by applying Deruelle’s result [32, Theorem 1.4] to Xi,µ, µ ∈
[0, 1], we obtain a smooth family of n-dimensional expanding gradient solitons (Mi,µ, gi,µ, pi,µ), µ ∈
[0, 1], with positive curvature operator, and asymptotic to C(Xi,µ). Moreover, by [32, The-
orem 1.3], the Ricci flow generated by an expanding gradient soliton coming out of C(Xi,µ)
is unique. So any isometry of C(Xi,µ) is an isometry at any positive time of the Ricci flow.
In particular, it implies that (Mi,µ, gi,µ, pi,µ) is Z2 ×O(n− 1)-symmetric and (Mi,0, gi,0, pi,0)
is rotationally symmetric.

By some suitable rescalings we may assume R(pi,µ) = 1, and by item (4) we have
limi→∞ supµ∈[0,1] AVR(gi,µ) = limi→∞ supµ∈[0,1] AVR(C(Xi,µ)) = 0. So we can apply Lemma
5.2.2 and by passing to a subsequence, we may assume (Mi,0, gi,0, pi,0) and (Mi,1, gi,1, pi,1)
smoothly converge to two steady gradient solitons (M∞,0, g∞,0, p∞,0) and (M∞,1, g∞,1, p∞,1)
respectively. On the one hand, since (Mi,0, gi,0, pi,0) is rotationally symmetric, it follows that
(M∞,0, g∞,0, p∞,0) is rotationally symmetric, and hence is a Bryant soliton, see e.g. [26].

On the other hand, since diam(Xi,1) → π when i → ∞, the asymptotic cone for each
(Mi,1, gi,1, pi,1) converges to a half-plane, or equivalently a cone over the interval [0, π]. So for
each j ∈ N and all sufficiently large i, we can find points qi,j, ri,j ∈Mi,1 such that d(qi,j, pi,1) =

d(ri,j, pi,1) = j and ]̃qi,jpi,1ri,j ≥ π− j−1. Passing to the limit we obtain points qj, rj ∈M∞,1
with d(qj, p∞,1) = d(rj, p∞,1) = j and ]̃qjp∞,1rj ≥ π− j−1. Then letting j →∞ and passing
to a subsequence, the geodesics p∞,1qj, p∞,1rj converge to two rays which together form a
line passing through p∞,1. Then by the strong maximum principle of Ricci flow, (M∞,1, g∞,1)
is the product of R and an (n-1)-dimensional rotationally symmetric steady gradient soliton
with positive curvature operator, which is an (n-1)-dimensional Bryant soliton if n > 3, and
a cigar soliton if n = 3, see e.g. [26].

For a Z2 ×O(n− 1)-symmetric expanding or steady gradient soliton (M, g, p) with non-
negative curvature operator, we write λ1(g), λ2(g) = · · · = λn(g) to be the n eigenvalues of
the Ricci curvature at p in the directions of Γ′(0) and its orthogonal complement subspace
TpΣ = (Γ′(0))⊥. For any α ∈ (0, 1), since λ1

λ2
(g∞,0) = 1 and λ1

λ2
(g∞,1) = 0, we have λ1

λ2
(gi,0) > α

and λ1
λ2

(gi,1) < α when i is sufficiently large. Since λ1
λ2

(gi,µ) is a continuous function of µ for

each fixed i, there is some µi ∈ (0, 1) such that λ1
λ2

(gi,µi) = α. Applying Lemma 5.2.2 to the
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sequence (Mi,µi , gi,µi , pi,µi) and taking a limit, we obtain an n-dimensional Z2 × O(n − 1)-
symmetric steady gradient soliton (M, g, p) with λ1

λ2
(g) = α. This proves Theorem 5.1.1.

By a similar argument we obtain a family of n-dimensional O(n − 2) × O(2)-symmetric
steady gradient solitons with positive curvature operator.

Proposition 5.2.3. Given any α ∈ (0, 1), there exists an n-dimensional O(n − 2) × O(2)-
symmetric steady gradient soliton (M, g, f, p) with positive curvature operator, such that
λ1 = · · · = λn−2 = αλn−1 = αλn, where λ1, . . . , λn are eigenvalues of the Ricci curvature at
p.

Proof. The proof follows the same line as that of Theorem 5.1.1. First, we can construct a
sequence of smooth families of O(n− 2)×O(2)-symmetric Riemannian manifolds {Xi,µ, µ ∈
[0, 1]}∞i=0 diffeomorphic to Sn−1, satisfying the four conditions as in the proof of Theorem
5.1.1. We say Xi,µ is O(n− 2)×O(2)-symmetric if away from a closed geodesic fixed by the
O(2)-action, the metric has the form g = dr2 + ϕ2

1(r)dθ2
1 + ϕ2

2(r)dθ2
2, θj ∈ (0, 2π), j = 1, 2.

Then this gives a sequence of smooth families of O(n− 2)× O(2)-symmetric expanding
gradient solitons with positive curvature operator (Mi,µ, gi,µ, pi,µ) and R(pi,µ) = 1, which is
asymptotic to C(Xi,µ). In particular, (Mi,0, gi,0, pi,0) is rotationally symmetric.

By passing to a subsequence, we may assume (Mi,0, gi,0, pi,0) and (Mi,1, gi,1, pi,1) smoothly
converge to two steady gradient solitons (M∞,0, g∞,0, p∞,0) and (M∞,1, g∞,1, p∞,1) respec-
tively. Then (M∞,0, g∞,0, p∞,0) is a Bryant soliton, and (M∞,1, g∞,1, p∞,1) is the product of
Rn−2 and a cigar soliton. Now the conclusion follows by a continuity argument.

5.3 Asymptotic geometry of steady gradient solitons

In this section, we study the asymptotic geometry of n-dimensional Z2×O(n−1)-symmetric
steady gradient solitons. We show that such a soliton strongly dimension reduces along an
edge to an (n − 1)-dimensional ancient Ricci flow (see below for definitions). In particular,
when n = 3, the 2d ancient Ricci flow is the cigar soliton, assuming in additional that
the scalar curvature does not vanish at infinity. See also [25] for discussions of dimension
reductions of 4d non-collapsed steady gradient solitons.

Definition 5.3.1. Let (Mn, g, p) be an n-dimensional Z2 × O(n − 1)-symmetric steady
gradient soliton. We say that it strongly dimension reduces along Γ to an (n − 1)-
dimensional ancient Ricci flow (N, g(t)), if for any sequence si → ∞, a subsequence of
(M,Kig(K−1

i t),Γ(si)), t ∈ (−∞, 0], where Ki = R(Γ(si)), smoothly converges to the product
of R and (N, g(t)).

We also say an (n−1)-dimensional ancient Ricci flow (N, h(t)) is a dimension reduction
of (Mn, g, p) along Γ, if there exists si → ∞ such that (M,Kig(K−1

i t),Γ(si)), t ∈ (−∞, 0],
where Ki = R(Γ(si)), smoothly converges to the product of R and (N, h(t), p∞).
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First we prove a lemma about the relations between the potential function and distance
function.

Lemma 5.3.2. Let (Mn, g, f, p) be an n-dimensional steady gradient soliton with positive
curvature operator. Suppose γ : (0,∞)→M is an integral curve of ∇f|∇f | , and lims→0 γ(s) = p.
Then for any ε > 0, there exists s0 > 0 such that for any s1 > s2 > s0 we have

(1− ε)(s2 − s1) ≤ d(γ(s1), γ(s2)) ≤ (s2 − s1). (5.3.1)

In particular, we have (1 − ε)s ≤ d(p, γ(s)) ≤ s for all s ≥ s0. Moreover, let σ be a unit
speed minimizing geodesic between p and σ(0) := γ(s). Then

](σ′(0),∇f) ≤ ε. (5.3.2)

Proof. Without loss of generality, we may assume f(p) = 0 and lims→∞ |∇f |(γ(s)) = 1 after
a suitable rescaling. We use ε = ε(s) to denote all functions such that lims→∞ ε(s) = 0.

On the one hand, for any s2 > s1 ≥ 0, let σ : [0, D]→M be a minimizing geodesic from
γ(s1) to γ(s2), where D = d(γ(s1), γ(s2)). Since d

dr
〈∇f, σ′(r)〉 = ∇2f(σ′(r), σ′(r)) ≥ 0, we

obtain

f(γ(s2))− f(γ(s1)) =

∫ D

0

〈∇f, σ′(r)〉 dr ≤ D 〈∇f, σ′(D)〉, (5.3.3)

which by |∇f | ≤ 1 implies

f(γ(s2))− f(γ(s1)) ≤ d(γ(s1), γ(s2)). (5.3.4)

On the other hand, since lims→∞ |∇f |(γ(s)) = 1, there is s0 > 0 such that |∇f |(γ(s)) >
1− ε for all s ≥ s0. Therefore, for all s2 > s1 ≥ s0 we have

f(γ(s2))− f(γ(s1)) =

∫ s2

s1

〈∇f, γ′(r)〉 dr =

∫ s2

s1

|∇f |(γ(r)) dr ≥ (1− ε)(s2 − s1), (5.3.5)

which together with (5.3.3) proves the first inequality in (5.3.1), where the second inequality
is an easy consequence of |γ′(s)| = 1. The inequality of d(p, γ(s)) follows (5.3.1) and a
triangle inequality.

Now let σ : [0, d(p, γ(s))] → M be a minimizing geodesic from p to γ(s). Then (5.3.3)
implies

f(γ(s)) ≤ d(p, γ(s)) 〈∇f, σ′(d(p, γ(s)))〉. (5.3.6)

Moreover, by (5.3.5) and lims→∞ f(γ(s)) =∞ we have

d(γ(s0), γ(s)) ≤ s− s0 ≤ (1 + ε)(f(γ(s))− f(γ(s0))) ≤ (1 + ε)f(γ(s)) (5.3.7)

for all s sufficiently large, which by triangle inequality and lims→∞ d(p, γ(s)) =∞ implies

d(p, γ(s)) ≤ d(p, γ(s0)) + d(γ(s0), γ(s)) ≤ (1 + ε)d(γ(s0), γ(s)) ≤ (1 + ε)f(γ(s)). (5.3.8)
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This combining with (5.3.6) and |∇f | ≤ 1 yields〈
∇f
|∇f |

, σ′(d(p, γ(s)))

〉
≥ f(γ(s))

d(p, γ(s)) |∇f |
≥ 1− ε, (5.3.9)

which proves (5.3.2).

The following lemma shows that all dilation sequence along Γ smoothly converges to
a limit after passing to a subsequence. The limits are all products of a line and some
rotationally symmetric ancient solution.

Our main tool is Perelman’s curvature estimate for Ricci flows with non-negative curva-
ture operator, see for example [43, Corollary 45.1(b)], or a more general result in [1, Propo-
sition 3.2]. It implies that for a Ricci flow with non-negative curvature operator (M, g(t)),
t ∈ [−1, 0], assume Bg(0)(x0, 1) ≥ κ > 0 for some x0 ∈ M , then there is C(κ) > 0 such that
R(x0, 0) ≤ C.

Lemma 5.3.3. Let (Mn, g, p) be a non-flat Z2 ×O(n− 1)-symmetric n-dimensional steady
gradient soliton. Then there is C > 0 such that the following holds:

For any si → +∞, a subsequence of (M,Kig(K−1
i t),Γ(si)), t ∈ (−∞, 0], Ki = R(Γ(si)),

smoothly converges to an ancient Ricci flow (R × g∞(t), p∞), where g∞(t) is an (n − 1)-
dimensional ancient Ricci flow with positive curvature operator and R ≤ C. Moreover,
R−1/2(Γ(si))Γ

′(si) smoothly converges to a unit vector in the R-direction of R × g∞(t), and
g∞(t) is rotationally symmetric around p∞.

Proof. If Rm > 0 does not hold, then by the strong maximum principle the soliton is
R × Bryant for n ≥ 4, or R × Cigar for n = 3. The conclusion clearly holds in these cases,
so we may assume Rm > 0.

Let r(s) = sup{ρ > 0 : vol(B(Γ(s), ρ)) ≥ ω
2
ρn} where ω is the volume of the unit ball in

the Euclidean space Rn. Since the asymptotic volume ratio of any non-flat ancient Ricci flow
with non-negative curvature operator is zero by [43, Corollary 45.1(b)], we have r(s) < ∞
for each s, and lims→∞

r(s)
s

= 0. Moreover, by the choice of r(s) we have vol(B(Γ(s), r(s))) =
ω
2
rn(s).

For any D > 0 and any x ∈ B(Γ(s), Dr(s)), by the volume comparison we have
vol(B(x, r(s))) ≥ C−1

1 rn(s) for some C1(D) > 0. Therefore, by [43, Corollary 45.1(b)]
we can find constants C2(D) > 0 such that R ≤ C2r

−2(s) in B(Γ(s), Dr(s)). By Hamilton’s
Harnack inequality d

dt
R(·, t) ≥ 0 for ancient complete Ricci flow with non-negative curvature

operator [36], this implies R(x, t) ≤ C2r
−2(s) for all x ∈ B(Γ(s), Dr(s)) and t ∈ (−∞, 0]. In

particular, there is C0 > 0 such that C−1
0 r(s) ≤ R−1/2(Γ(s)), and injg(Γ(s)) ≥ C−1

0 r(s) by
the volume bound.

Therefore, for any si → ∞, by Shi’s derivative estimates and Hamilton’s compactness
theorem for Ricci flow, a subsequence of (M, r−2(si)g(r2(si)t),Γ(si)), t ∈ (−∞, 0], converges
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to an ancient solution h∞(t). Let Γi(s) = Γ(r(si)s + si), s ∈ (−∞,∞). Suppose Γi con-
verges to the geodesic Γ∞ in h∞(0) as i→∞, modulo the diffeomorphisms. We claim that

Γ∞ is a line: Since lims→∞
r(s)
s
→ 0, we have si − Dr(si) → ∞, by which we can apply

Lemma 5.3.2 and deduce that for any D > 0 that ]̃Γi(−D)Γi(0)Γi(D) → π as i → ∞. So
d(Γ∞(−D),Γ∞(D)) = 2D. Letting D →∞, this implies Γ∞ is a line.

Next we claim that there is some C3 > 0 such that R−1/2(Γ(s)) ≤ C3r(s) for all large
s. Suppose by contradiction this does not hold, then there is a sequence si → ∞ such

that limi→∞
R−1/2(Γ(si))

r(si)
= 0. Then by taking a subsequence we may assume (r−2(si)g,Γ(si))

converges to (R× g∞(t), p∞), where g∞(t) is some (n− 1)-dimensional ancient solution.

On the one hand, as a consequence of taking the limit, we have vol(B(p∞, 1)) = ω
2

and R(p∞) = 0, which by the strong maximum principle implies that g∞(t) is flat. On
the other hand, since Γi converges to a line, we can find a sequence Di → ∞ such that
Σi := expΓ(si)

(Γ′(si)
⊥)∩B(Γ(si), Dir(si)) with the metric gΣi induced by g is a smooth surface

which is rotationally symmetric around Γ(si), and (r−2(si)gΣi ,Γ(si)) smoothly converges to
(g∞(0), p∞). So g∞(0) is rotationally symmetric around p∞. Since g∞(0) is flat, it must be
isometric to Rn−1, which implies vol(B(p∞, 1)) = ω > ω

2
, a contradiction.

Then it follows from C−1
0 r(s) ≤ R−1/2(Γ(s)) ≤ C3r(s) that (M,Kig(K−1

i t),Γ(si)), t ∈
(−∞, 0], Ki = R(Γ(si)), smoothly converges to an ancient Ricci flow (R × g∞(t), p∞) as
claimed. Since g∞(t) is rotationally symmetric and has positive curvature, the uniform
curvature bound R ≤ C follows easily by applying [43, Corollary 45.1(b)].

As a corollary of Lemma 5.3.3, we show that the n-dimensional steady gradient solitons
from Theorem 5.1.1 are all non-collapsed if n ≥ 4.

Definition 5.3.4. A Riemannian manifold (Mn, g) is non-collapsed if there exists a constant
κ > 0 such that for any x ∈ M and r > 0, if |Rm| ≤ r−2 in the ball Bg(x, r), then
volg(Bg(x, r)) ≥ κrn. Otherwise we say (M, g) is collapsed.

Corollary 5.3.5. For any n ≥ 4, let (Mn, g, p) be an n-dimensional non-flat Z2×O(n− 1)-
symmetric steady gradient soliton. Then it is non-collapsed.

Proof. Let ω be the volume of the unit ball in Rn. Suppose the conclusion is not true, then
there is a sequence of points xi ∈ M such that ri

ri
→ ∞ as i → ∞, where ri = sup{ρ >

0 : volg(Bg(xi, ρ)) ≥ ω
2
ρn}, and ri = sup{ρ > 0 : |Rm| ≤ ρ−2 in Bg(xi, ρ)}. Then by the

same limiting argument as Lemma 5.3.3, we may assume by passing to a subsequence that
(M, r−2

i g, xi) smoothly converges to a manifold (M∞, g∞, x∞), which is flat and satisfies
vol(B(x∞, 1)) = ω

2
.

Let gi = r−2
i g. We first assume that there are a constant C > 0 and yi ∈ Γ such that

dgi(xi, yi) ≤ C for all i. Then a subsequence of (M, gi, yi) converges to (M∞, g∞, y∞) for
some y∞ ∈ M∞. By Lemma 5.3.3, (M∞, g∞) is a product of R and an (n − 1)-dimensional
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rotationally symmetric manifold. Since (M∞, g∞) is flat, it must be isometric to Rn, which
contradicts the choice of ω.

Next, assume limi→∞ dgi(xi,Γ) = ∞. Let hi be the metric induced by gi on the totally
geodesic surface N , and assume xi ∈ N . Then gi = hi + ϕ2

i gSn−2 on Bgi(xi,
1
2
dgi(xi,Γ)),

where ϕi = r−1
i ϕ. So it follows easily that volhi(Bhi(xi, 1)) ≥ c(ω) for some c(ω) > 0. Since

Bhi(xi,
1
2
dgi(xi,Γ)) is relatively compact in N , it follows by the same curvature estimates as

Lemma 5.3.3 that a subsequence of (N, hi, xi) smoothly converges to a complete manifold
(N∞, h∞, x∞), which is diffeomorphic to R2. Since (N∞, h∞) is totally geodesic in (M∞, g∞),
it is isometric to R2.

If ϕi(xi) → ∞ as i → ∞, it is easy to see that (M∞, g∞) is isometric to Rn, a contra-
diction. Otherwise, there is C > 0 such that ϕi(xi) ≤ C for all i. Then by the curvature
estimates and (5.2.1), a subsequence of ϕi smoothly converges to a positive function ϕ∞,
such that g∞ = gR2 + ϕ2

∞gSn−2 . Since n ≥ 4, this contradicts the fact that (M∞, g∞) is flat,
hence proves the corollary.

To rephrase the statement of Lemma 5.3.3 and use it to prove a more accurate dimension
reduction theorem in dimension 3, we introduce the definition of ε-closeness between two
Ricci flows.

Definition 5.3.6. For any ε > 0, we say a pointed Ricci flow (M1, g1(t), p1), t ∈ [−T, 0], is
ε-close to a pointed Ricci flow (M2, g2(t), p2), t ∈ [−T, 0], if there is a diffeomorphism onto
its image φ : Bg2(0)(p2, ε

−1)→M1, such that φ(p2) = p1 and ‖φ∗g1(t)− g2(t)‖C[ε−1](U) < ε for

all t ∈ [−min{T, ε−1}, 0], where the norms and derivatives are taken with respect to g2(0).

By this definition, Lemma 5.3.3 shows that (R(Γ(s))g(R−1(Γ(s))t),Γ(s)) is ε-close to the
product of R and a dimension reduction for all sufficiently large s. Moreover, a dimension
reduction (M∞, g∞(t), p∞) is an (n−1)-dimensional ancient solution with positive curvature
operator and it is rotationally symmetric around p∞.

In dimension 3, the next theorem shows that M∞ is non-compact, if the original soliton is
not a Bryant soliton. Moreover, if lims→∞R(Γ(s)) > 0, then the soliton strongly dimension
reduces along Γ to a cigar soliton.

Theorem 5.3.7. (Dimension Reduction) Let (M, g, f, p) be a non-flat 3d Z2×O(2)-symmetric
steady gradient soliton, which is not a Bryant soliton. Then any dimension reduction of
(M, g, p) along Γ is non-compact. In particular, if lims→∞R(Γ(s)) > 0, then (M, g, p)
strongly dimension reduces along Γ to a cigar soliton (M∞, g∞(t), p∞), t ∈ (−∞, 0], with
R(p∞, 0) = 1.

Proof. Let ε > 0 be sufficiently small. We denote by ε# all positive constants that depend
on ε such that ε# → 0 as ε→ 0.
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For each sufficiently large s, by Lemma 5.3.3 there is a dimension reduction (hs(t), ps)
of (M, g, p) along Γ, such that (R(Γ(s))g(R−1(Γ(s))t),Γ(s)) is ε-close to (R× hs(t), ps). By
Lemma 5.3.3, (hs(t), ps) is a 2d ancient Ricci flow rotationally symmetric around ps and
R(ps, 0) = 1. Note the choice of hs(t) may not be unique for a fixed s, but any two such
solutions are ε#-close to each other. Let

F (s) = diam(hs(0)) ∈ (0,∞]. (5.3.10)

First, if lim sups→∞ F (s) < 1
100ε

, then there is κ = κ(ε) > 0 such that all hs(0) is κ-
non-collapsed. This implies easily that (M, g, p) is κ-non-collapsed, and hence is a Bryant
soliton, as a consequence of the uniqueness of the Bryant soliton among 3d non-collapsed
steady gradient solitons [9], or among 3d κ-solutions [3, 8]. This is a contradiction. So
lim sups→∞ F (s) ≥ 1

100ε
> 100π.

Next, we claim that F (s) ≥ D := 1
1000ε

for all large s: First, choose s0 such that
F (s0) ≥ 3D, and let

s1 = sup{s ≥ s0 | F (µ) ≥ 2D for all µ ∈ [s, s0]}. (5.3.11)

Then F (s1) ∈ [2(1− ε#)D, 2(1 + ε#)D] and (hs1(t), ps1) is a Rosenau solution by the classifi-
cation of compact ancient 2d Ricci flows [30]. Moreover, assume ε is sufficiently small, then
1− ε# ≤ R(ps1 , t) ≤ 1 for all t ≤ 0, see e.g. [26, Chap 4.4], and

diam(hs1(t))R
1/2(ps1 , t) ≥ (1− ε#)F (s1) ≥ 2(1− ε#)D (5.3.12)

for all t ≤ 0. Moreover, by a distance distortion estimate, see e.g. [43, Lem 27.8], we can
find a t1 ∈ [−ε−1, 0) such that

diam(hs1(t1))R1/2(ps1 , t1) = 4D. (5.3.13)

Since g(t) = φ∗t (g), where {φt}t∈(−∞,∞) is the flow of −∇f with φ0 the identity. We see

that (g(t),Γ(s)) is isometric to (g, φt(Γ(s))), and since Γ is the integral curve of ∇f
|∇f | , by a

direct computation we obtain

φt(Γ(s)) = Γ

(
s−

∫ t

0

|∇f |(φµ(Γ(s))) dµ

)
. (5.3.14)

Let s2 = s1 −
∫ T1

0
|∇f |(φµ(Γ(s1))) dµ, where T1 = t1R

−1(Γ(s1)) < 0. Then s2 > s1,
φT1(Γ(s1)) = Γ(s2), and (g(T1),Γ(s1)) is isometric to (g,Γ(s2)). The conditions (5.3.12)(5.3.13)
imply F (s) ≥ 2(1− ε#)D ≥ D for all s ∈ [s1, s2], and F (s2) ≥ 4(1− ε#)D ≥ 3D. In partic-
ular, this implies s2 − s1 ≥ R−1/2(Γ(s1)) ≥ R−1/2(p).

Therefore, by induction we find a sequence {s2k}∞k=0, such that s2k − s2(k−1) ≥ R−1/2(p)
for all k ≥ 1 and

F (s) ≥ D for all s ∈ [s2(k−1), s2k], F (s2k) ≥ 3D. (5.3.15)
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This implies F (s) ≥ D = 1
1000ε

for all large s. Letting ε → 0, it follows that any dimension
reduction along Γ is non-compact.

Now assume lims→∞R(Γ(s)) > 0. Suppose (g∞(t), p∞) is a dimension reduction, and
(M,R(Γ(si))g(R−1(Γ(si))t),Γ(si)) smoothly converges to (M∞,R×g∞(t), p∞) for a sequence
si → ∞. Let fi = f − f(Γ(si)). Then fi smoothly converges to a function f∞ on M∞
satisfying Ric = ∇2f∞ with respect to the metric R × g∞(0). So g∞(0) is a 2d non-flat
steady gradient soliton, which must be a cigar soliton [37].

5.4 Existence of 3d flying wings

In this section, we prove Theorem 5.1.2, 5.1.4 and all the corollaries. The asymptotic cone
of a 3d Z2 × O(2)-symmetric steady gradient soliton is a metric cone over [−α

2
, α

2
] for some

α ∈ [0, π] (see Lemma 5.4.2). Theorem 5.1.2 shows that the soliton must be a Bryant soliton,
if the asymptotic cone is a ray. So the family of 3d steady gradient solitons from Theorem
5.1.1 are all flying wings, which confirms Hamilton’s conjecture.

Throughout this section we assume (M, g, p) is a non-flat Z2×O(2)-symmetric 3d steady
gradient soliton, and Γ and Σ are the fixed point sets of the O(2) and Z2-action respectively.

The next lemma shows that the integral of scalar curvature in metric balls increases at
least linearly in radius. We remark that this is also a consequence of [17], which shows that
the only 3d steady gradient solitons satisfying lim infs→∞

1
s

∫
B(p,s)

RdvolM = 0 are quotients

of R3 and R×Cigar. The proof below is self-contained and more direct under the symmetric
assumption.

Lemma 5.4.1. There exists C > 0 such that
∫
B(p,s)

R dvolM ≥ C−1s for sufficiently large s.

Proof. Fix some small ε > 0 and let s0 > 0 be large enough such that Lemma 5.3.2 holds
for ε. Consider the covering of Γ([s0, s]) by {Γ([µ − R−1/2(Γ(µ)), µ + R−1/2(Γ(µ))])}µ∈[s0,s].
Let {Γ([µi−R−1/2(Γ(µi)), µi +R−1/2(Γ(µi))])}mi=1 be a Vitali covering of it, which is disjoint
from each other and Γ([s0, s]) is covered by {Γ([µi− 5R−1/2(Γ(µi)), µi + 5R−1/2(Γ(µi))])}mi=1.
So for any µi < µj,

µj − µi ≥ R−1/2(Γ(µi)) +R−1/2(Γ(µj)) ≥ R−1/2(Γ(µj)), (5.4.1)

and

s− s0 ≤
m∑
i=1

10R−1/2(Γ(µi)). (5.4.2)

Let c = 1−ε
4

, we claim that B(Γ(µi), cR
−1/2(Γ(µi))) and B(Γ(µj), cR

−1/2(Γ(µj))) are
disjoint: Suppose not, then d(Γ(µi),Γ(µj)) < 2cR−1/2(Γ(µj)), and by Lemma 5.3.2 we get

µj − µi ≤ (1− ε)−1d(Γ(µi),Γ(µj)) ≤ 2(1− ε)−1cR−1/2(Γ(µj)) < R−1/2(Γ(µj)), (5.4.3)
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which contradicts (5.4.1).

By Theorem 5.3.7 and Shi’s derivative estimates, there is some C1 > 0 such that∫
B(Γ(s),cR−1/2(Γ(s)))

RdvolM ≥ C−1
1 R−1/2(Γ(s)). (5.4.4)

Since lims→∞
R−1/2(Γ(s))

s
= 0, which can be seen from the proof of Lemma 5.3.3, we have

B(Γ(µi), cR
−1/2(Γ(µi))) ⊂ B(p, 2s) for all i. Therefore, by (5.4.2) and (5.4.4) we obtain∫

B(p,2s)

RdvolM ≥
m∑
i=1

∫
B(Γ(µi),cR−1/2(Γ(µi)))

RdvolM ≥ C−1
2 s (5.4.5)

for some C2 > 0.

The next lemma shows that for any non-flat Z2 × O(2)-symmetric 3d steady gradient
soliton (M, g, p), the space of equivalent classes of rays is an interval [−α

2
, α

2
], where α ∈ [0, π].

So the asymptotic cone is a sector with angle α ∈ [0, π]. Moreover, the minimizing geodesics
between p and points going to infinity along Γ and Σ converge to a ray in the class ±α

2
and

0 respectively.

Lemma 5.4.2. The asymptotic cone of (M, g, p) is a metric cone C(X) over the interval
X = [−α

2
, α

2
] for some α ∈ [0, π], and

1. For any sequence si → +∞, the geodesics between p and Γ(si) converge to the equivalent
class α

2
∈ X.

2. For any sequence qi ∈ Σ and qi → ∞, the geodesics between p and qi converge to the
equivalent class 0 ∈ X.

3. For any qi ∈ Σ, qi → ∞, and oi = Γ(si), si → ∞, with C−1 d(p, oi) ≤ d(p, qi) ≤
C d(p, oi), we have limi→∞ ]̃qipoi = α

2
.

Proof. The conclusion clearly holds for R × Cigar with α = π, so we may assume (M, g, p)
has positive sectional curvature. For any si → ∞, let pi = Γ(si) and pi = Γ(−si). Assume
after passing to a subsequence that the minimizing geodesics ppi, ppi converge to rays γ1, γ1

respectively. Let (X, dX) be the space of the equivalent classes of rays, and γ2, γ2 ∈ X. We
claim that dX(γ1, γ1) > dX(γ2, γ2) unless {γ1, γ1} = {γ2, γ2}. If the claim holds, it follows
that X = [−α

2
, α

2
] for some α ∈ [0, π].

Let γi be a minimizing geodesic connecting pi and pi, then d(p, γi) → ∞ as i → ∞,
because otherwise γi would converge to a line, which contradicts with Rm > 0. So for large
i, the two rays γ2, γ2 intersect with σ at qi, qi 6= p respectively. Assume d(pi, qi) ≤ d(pi, qi)
by passing to a subsequence if necessary. Then it is easy to see

]̃pippi ≥ ]̃pipqi + ]̃qipqi + ]̃pipqi, (5.4.6)
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which implies the following when i→∞

dX(γ1, γ1) ≥ dX(γ1, γ2) + dX(γ2, γ2) + dX(γ1, γ2) ≥ dX(γ2, γ2). (5.4.7)

In particular, the equalities hold if and only if dX(γ1, γ2) = dX(γ1, γ2) = 0, which proves the
claim.

Assertion (2) follows immediately from the fact that Σ is the fixed point set of the Z2-
action. Assertion (3) is a consequence of (1) and (2) and the fact that C(X) is isometric to
the Gromov-Hausdorff limit of (M,λig, p) for any sequence λi → 0.

From now on we fix a minimizing geodesic γ : [0,∞) → Σ starting from p such that
γ((0,∞)) ⊂ N , and two functions h1(s) = d(γ(s),Γ) and h2(s) = ϕ(γ(s)) that can be
thought of as “dimensions” of the soliton. For example, we have h1(s) ≈ s1/2, h2(s) ≈ s1/2 in
a Bryant soliton, and h1(s) ≈ s, lims→∞ h2(s) < ∞ in R× Cigar. We establish inequalities
between these two functions and R(γ(s)) in the following three lemmas, when s is sufficiently
large.

For convenience, in the rest proofs we shall often use ε(s) to denote all functions such
that lims→∞ ε(s) = 0, and use C to denote all positive constants.

Lemma 5.4.3. There exists C > 0 such that h2
1(s)R(γ(s)) ≤ C for all large s.

Proof. Without loss of generality we may assume α < π, because otherwise (M, g, p) is
R× Cigar, where the assertion follows from the exponential decay of the scalar curvature.

Let p1 = γ(s) and p2 = Γ(s cos α
2
). On the one hand, since α < π, we have Γ(s cos α

2
)→

∞ as s→∞, which allows us to apply Lemma 5.3.2 and deduce
∣∣∣d(p,p1)

s
− 1
∣∣∣+∣∣∣d(p,p2)

s
− cos α

2

∣∣∣ <
ε(s). Moreover, since |]̃p1pp2−α

2
| < ε(s) by Lemma 5.4.2, it follows that

∣∣∣]̃pp1p2 − (π
2
− α

2
)
∣∣∣ ≤

ε(s). Choose p′, p′2 in the minimizing geodesics between p, p1 and p1, p2 such that d(p1, p
′
2) =

d(p1, p
′) = h1(s). Then by angle comparison ]̃p′p1p

′
2 ≥ ]̃pp1p2 ≥ π

2
− α

2
− ε(s), and hence

∂BN(p1, h1(s)) ≥ d(p′, p′2) ≥ C−1h1(s). So by volume comparison we get

vol(BN(p1, h1(s))) ≥ C−1 h2
1(s). (5.4.8)

On the other hand, let M̃0 −→M0 := M\Γ be the universal covering, and (M̃0, g̃(t), p̃1) be
the pull-back Ricci flow of (M0, g(t), p1), t ∈ (−∞, 0], where g(t) is the Ricci flow associated
to (M, g, p) with g(0) = g. Then g̃(0) = gN + ϕ2dθ2, θ ∈ (−∞,∞), and by using (5.4.8) we
get

vol(Bg̃(0)(p̃1, h1(s))) ≥ 1

2
h1(s) vol(BN(p1,

1

2
h1(s))) ≥ C−1 h3

1(s). (5.4.9)

So by applying Corollary 45.1(b) in [43], we obtain R(p1) = R(p̃1) ≤ C h−2
1 (s).

Lemma 5.4.4. Suppose (M, g, p) is not a Bryant soliton. Then h2(s)
h1(s)

→ 0 as s→∞.



CHAPTER 5. STEADY GRADIENT RICCI SOLITONS WITH POSITIVE
CURVATURE OPERATOR 116

Proof. Suppose by contradiction that there is a sequence si →∞ such that h2(si)
h1(si)

≥ C−1 > 0

for some C > 0 and all i. Let σi be a minimizing geodesic from γ(si) to some qi ∈ Γ such
that h1(si) = d(γ(si), qi). Then σi intersects with Γ orthogonally at qi. Let Σi = φ−1(σi),
where φ : (M \ Γ, g) → (N, gN) is the Riemannian submersion. Then (Σi, gi) is a smooth
rotationally symmetric surface with non-negative curvature, where gi is the metric induced
by g. Then by Theorem 5.3.7, (Σi, R(Γ(si))gi) smoothly converges to the time-0-slice of a
non-compact ancient Ricci flow g∞(t).

Moreover, by Theorem 5.3.7 we know that any blow-down limit along Γ is a product of R
and a non-compact ancient Ricci flow, from which it follows that lims→∞ h1(s)R1/2(Γ(s)) =

∞. This combining with h2(si)
h1(si)

≥ C−1 and a volume comparison implies that the asymptotic

volume ratio of g∞(0) is positive, and hence g∞(t) is flat, a contradiction.

Lemma 5.4.5. Suppose the asymptotic cone of (M, g, p) is a ray. Then there is some C > 0
such that h1(s)h2(s) ≥ C−1s for all large s.

Proof. The assertion clearly holds when (M, g, p) is a Bryant soliton, so we may assume
below that (M, g, p) is not a Bryant soliton.

On the one hand, since h1(s) = d(γ(s),Γ), we have d(q, γ(s)) = h1(s) for some q ∈ Γ.
Let q be the image of q under the Z2-action, and σ : [−1

2
d(q, q), 1

2
d(q, q)] be a minimizing

geodesic from q to q. Then by the Z2-symmetry it follows that σ intersects orthogonally
with Σ at σ(0) and

d(q, σ(0)) = d(q,Σ) =
1

2
d(q, q). (5.4.10)

Moreover, by replacing σ with its image under some O(2)-action, we may assume σ(0) ∈ γ.
So we have

1

2
d(q, q) = d(q, γ) ≤ d(q, γ(s)) = h1(s). (5.4.11)

Since the asymptotic cone is a ray, by Lemma 5.4.2 and h1(s) = d(γ(s),Γ) ≤ d(γ(s),Γ(s)),
we see h1(s) ≤ ε(s)s. So by Lemma 5.3.2 and using triangle inequality we obtain

d(p, σ(0)) ≤ d(p, γ(s)) + d(γ(s), q) + d(q, σ(0)) ≤ d(p, γ(s)) + 2h1(s) ≤ (1 + ε(s))s.
(5.4.12)

Suppose σ(0) = γ(s′) for some s′ > 0, then by Lemma 5.3.2 this implies s′ ≤ (1 + ε(s))s,
which by the concavity of h2 yields

h2(s) ≥ (1− ε(s))h2(s′) ≥ 1

2
h2(s′). (5.4.13)

On the other hand, let Ω(s) ⊂ M be the domain bounded by φ−1(σ), where φ : (M \
Γ, g)→ (N, gN) is the Riemannian submersion, then

d(∂Ω(s), p) ≥ d(p, σ(0))− d(q, σ(0)) ≥ (1− ε(s))s− h1(s) ≥ (1− ε(s))s, (5.4.14)
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which implies Ω(s) ⊃ B(p, 1
2
s), So by Stokes’ theorem, R = ∆f , and Lemma 5.4.1 we obtain

Area(∂Ω(s)) ≥
∫
∂Ω(s)

〈∇f, ~n〉 =

∫
Ω(s)

∆f dvolM ≥
∫
B(p, 1

2
s)

RdvolM ≥ C−1 s. (5.4.15)

By the Z2-symmetry we have d
dr
|r=0 ϕ(σ(r)) = 0, which combining with the concavity of

the warping function ϕ implies ϕ(σ(r)) ≤ ϕ(σ(0)) = h2(s′) for all r ∈ [−1
2
d(p, p), 1

2
d(p, p)].

So

Area(∂Ω(s)) =

∫ 2π

0

∫ 1
2
d(q,q)

− 1
2
d(q,q)

ϕ(σ(r)) dr dθ ≤ 2π d(q, q)h2(s′) ≤ Ch1(s)h2(s), (5.4.16)

where we used (5.4.11) and (5.4.13) in the last inequality. This together with (5.4.15) proves
the lemma.

Lemma 5.4.6. Suppose the asymptotic cone is a ray, and lims→∞ h2(s) < ∞. Then
lims→∞R(Γ(s)) > 0.

Proof. Suppose s is sufficiently large, and assume limr→∞ ϕ(γ(r)) = limr→∞ h2(r) = C for
some C > 0. Let p1 = Γ(s), p2 = Γ(−s), and σ : [0, d(p1, p2)]→M be a minimizing geodesic
from p1 to p2. Let pp1, pp2, p1p2 = σ be minimizing geodesics between these points. Then
since ]̃p1pp2 ≤ ε(s), we have ]pp1p2 ≥ ]̃pp1p2 ≥ π

2
− ε(s).

For some s′ >> s, take q = γ(s′), and let qp1, qp2 be minimizing geodesics between these
point. By replacing σ = p1p2 and pp1 with their image under suitable O(2)-actions, we may

assume that ]pp1p2 + ]qp1p2 ≤ π. Since by angle comparison ]p2p1q ≥ ]̃p2p1q ≥ π
2
− ε(s),

it follows that
∣∣]pp1p2 − π

2

∣∣ ≤ ε(s). Note by Lemma 5.3.2 we have ](∇f(p1), pp1) ≤ ε(s),
so by triangle inequality we obtain

|〈∇f, σ′(r)〉(0)|+ |〈∇f, σ′(r)〉(d(p2, p1))| ≤ ε(s). (5.4.17)

By the dimension reduction Theorem 5.3.7 we have R−1/2(Γ(s)) < 1
2
d(p1, p2) and

ϕ(σ(R−1/2(Γ(s)))) ≥ C−1R−1/2(Γ(s)). (5.4.18)

By the Z2-symmetry it follows that σ intersects with Σ orthogonally at σ
(

1
2
d(p1, p2)

)
, and

d
dr

∣∣
r= 1

2
d(p1,p2)

ϕ(σ(r)) = 0. So by the concavity of ϕ we get

ϕ(σ(R−1/2(Γ(s)))) ≤ ϕ

(
σ

(
1

2
d(p1, p2)

))
≤ lim

r→∞
ϕ(γ(r)) = C, (5.4.19)

which together with (5.4.18) implies the lemma.
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Now we prove Theorem 5.1.4 of the equation lims→∞R(Γ(s)) = sin2 α
2
.

Proof of Theorem 5.1.4. Without loss of generality we may assume Rm > 0, and (M, g, f, p)
is not a Bryant soliton, since the theorem clearly holds for R×Cigar and the Bryant soliton.
We may also assume R(p) = 1.

For each fixed s sufficiently large, let σ : [0, d(p1, p2)] → M be a minimizing geodesic
from p1 = Γ(s) to p2 = Γ(−s). By the soliton equation ∇2f = Ric and by integration by
parts we obtain

〈∇f, σ′(r)〉 |d(p2,p1)
0 =

∫ d(p2,p1)

0

Ric(σ′(r), σ′(r)) dr. (5.4.20)

First, we claim ∣∣∣〈∇f, σ′(r)〉 |d(p2,p1)
0 −2|∇f |(Γ(s)) sin

α

2

∣∣∣ ≤ ε(s). (5.4.21)

If α = 0, the claim holds by Lemma 5.4.6. So we may assume α > 0.

Let p3 = Γ(2s), and pp2, pp1, p1p2, p1p3, p2p3 be minimizing geodesics between these
points, where p1p2 = σ in particular. On the one hand, by replacing geodesics pp1, p1p3 with
their images under suitable O(2)-actions (note p, p1, p3 ∈ Γ are fixed under O(2)-actions),
we may assume ]pp1p2 + ]p2p1p3 ≤ π. On the other hand, by Lemma 5.3.2 and Lemma
5.4.2 we obtain∣∣∣∣d(p, p1)

s
− 1

∣∣∣∣+∣∣∣∣d(p, p3)

s
− 2

∣∣∣∣+∣∣∣∣d(p1, p2)

s
−
√

2− 2 cosα

∣∣∣∣+∣∣∣∣d(p2, p3)

s
−
√

5− 4 cosα

∣∣∣∣ ≤ ε(s).

Since α > 0, we have
√

2− 2 cosα > 0. So by the cosine formula we obtain∣∣∣∣]̃pp1p2 −
π − α

2

∣∣∣∣+

∣∣∣∣]̃p2p1p3 −
π + α

2

∣∣∣∣ ≤ ε(s). (5.4.22)

Then by the angle comparison it follows that ]pp1p2 ≥ π−α
2

+ε(s) and ]p2p1p3 ≥ π+α
2

+ε(s),
which combining with ]pp1p2 + ]p2p1p3 ≤ π implies∣∣∣∣]pp1p2 −

(
π − α

2

)∣∣∣∣ ≤ ε(s). (5.4.23)

Note by Lemma 5.3.2 the angle between ∇f and the tangent vector of pp1 at p1 is smaller
than ε(s), this implies claim (5.4.21).

Next, by the Dimension Reduction Theorem 5.3.7, (M,R(Γ(s))g,Γ(s)) is ε(s)-close to
R×Cigar, so we can findD(s) < min{1

2
d(p2, p1), 1

2
ε(s)−1} such that lims→∞D(s)R1/2(Γ(s)) =

∞. So it follows that d(σ(D(s)),Γ) ≥ 1
2
D(s) cos α

2
. Then by the same argument as in Lemma

5.4.3 we get R ≤ C(D(s))−2 in the two metric balls of radius 1
2

cos α
2
D(s) which are centered

at σ(D(s)) and σ(d(p2, p1)−D(s)). This implies by the second variation formula that∫ d(p2,p1)−D(s)

D(s)

Ric(σ′(r), σ′(r)) dr ≤ C

D(s)
≤ ε(s)R1/2(Γ(s)). (5.4.24)
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If lims→∞R(Γ(s)) = 0, by the uniform curvature bound for all dimension reductions we
have

R−1/2(Γ(s))

∫
I

Ric(σ′(r), σ′(r)) dr ≤ C, (5.4.25)

where C > 0 is a constant independent of s, and I = [0, D(s)] ∪ [d(p1, p2) −D(s), d(p1, p2)]
This combining with (5.4.21)(5.4.24) and (5.4.20) implies α = 0. So the theorem holds in
this case.

If lims→∞R(Γ(s)) > 0, the dimension reduction is a cigar soliton with scalar curvature
equal to 1 at the tip, and it follows that∣∣∣∣(R−1/2(Γ(s))

∫
I

Ric(σ′(r), σ′(r)) dr

)
− 2 cos

α

2

∣∣∣∣ ≤ ε(s), (5.4.26)

where we used the fact that for a cigar soliton with the sectional curvature K equal to 1
2

at the
tip, the integral of K along a geodesic emanating from p is

∫∞
0
K dr =

∫∞
0

1
2
sech2(1

2
r) dr = 1.

This combining with (5.4.24) implies∣∣∣∣∣
∫ d(p2,p1)

0

Ric(σ′(r), σ′(r)) dr − 2R1/2(Γ(s)) cos
α

2

∣∣∣∣∣ ≤ ε(s). (5.4.27)

Combining (5.4.21)(5.4.27) in (5.4.20) and letting s→∞ we obtain

lim
s→∞
|∇f |(Γ(s)) sin

α

2
= lim

s→∞
R1/2(Γ(s)) cos

α

2
. (5.4.28)

By the identityR+|∇f |2 = R(p) = 1, this implies lims→∞R
1/2(Γ(s)) = sin α

2
and lims→∞ |∇f |(Γ(s)) =

cos α
2
, which proves the theorem.

Corollary 5.1.5 follows immediately from Theorem 5.1.4 and Theorem 5.3.7.

Now we prove Theorem 5.1.2 by a bootstrap argument: First, since g = gN + ϕ2dθ2 on
M \Γ, the vector field ∂

∂θ
is a killing field. Then by the killing equation we can establish the

following relation between the Ricci curvature and the warping function ϕ, when they are
restricted on γ ⊂ Σ:

Ric

(
∂

∂θ
,
∂

∂θ

)
= |∇f |(γ(s))h2(s)h′2(s). (5.4.29)

Recall we define h2(s) = ϕ(γ(s)).

Suppose that the soliton is not a Bryant soliton, then by combining the estimates from
Lemma 5.4.3-5.4.5 in the equation (5.4.29), we obtain that h2(s) << s1/2. Replacing Lemma
5.4.4 with this new upper bound, then the same argument shows that h2(s) ≤ C. This implies
lims→∞R(Γ(s)) > 0, and by Theorem 5.1.4 we obtain a contradiction.
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Proof of Theorem 5.1.2. Let ε(s) be constants that converge to 0 as s → ∞, and let C
denote all constants that are uniform for all large s. Suppose by contradiction that M is not
a Bryant soliton. We shall use the notations in Lemma 5.4.3-5.4.5. Since g = gN +ϕ2dθ2 on
M \ Γ, it follows that X := ∂

∂θ
is a killing field. So by the identity of killing field we have

〈∇XX,∇f〉+ 〈∇∇fX,X〉 = 0. (5.4.30)

Note that 〈X,∇f〉 = 0 and ∇2f = Ric, this gives the identity

Ric

(
X

|X|
,
X

|X|

)
=
∇f(|X|)
|X|

. (5.4.31)

Restrict the LHS of (5.4.31) on γ(s) and abbreviate it by R̃(s). Then by the relations
among h1(s), h2(s) and R(γ(s)) from Lemma 5.4.5, 5.4.4, and 5.4.3 we obtain

s R̃(s) ≤ sR(γ(s)) ≤ Ch1(s)h2(s)R(γ(s)) ≤ ε(s)h1(s)2R(γ(s)) ≤ ε(s), (5.4.32)

which by (5.4.31), lims→∞ |∇f |(γ(s)) = C > 0, and h′2(s) ≥ 0 implies

h′2(s)

h2(s)
≤ ∇f(h2(s))

|∇f | · h2(s)
=

2R̃(s)

|∇f |
<
ε(s)

Cs
<
ε0
s
, (5.4.33)

for all large s and some ε0 ∈ (0, 1
2
). So h2(s) < Csε0 for all large s.

Next, by using h2(s) < Csε0 and applying Lemma 5.4.5 again we obtain h1(s) ≥ C−1s1−ε0 ,
which combining with Lemma 5.4.3 again gives

R̃(s) ≤ R(γ(s)) ≤ Cs−2+2ε0 . (5.4.34)

Now substituting this into equation (5.4.31) we obtain

h′2(s)

h2(s)
< Cs−2+2ε0 , (5.4.35)

which implies h2(s) < Ce−Cs
−1+2ε0 , and hence lims→∞ h2(s) < ∞. This by Lemma 5.4.6

implies lims→∞R(Γ(s)) > 0, which by Theorem 5.1.4 yields a contradiction.

Corollary 5.1.3 follows directly from Theorem 5.1.2. It is easy to see that the conclusions
in Theorem 5.1.3 and Theorem 5.1.4 also hold for n-dimensional O(n− 2)×O(2)-symmetric
steady gradient solitons with positive curvature operator. So Theorem 5.1.7 follows from
Proposition 5.2.3. It remains to prove Corollary 5.1.6.

Proof of Corollary 5.1.6. First, by the proof of Theorem 5.1.1 and Theorem 5.1.2 there exists
a sequence of Z2 × O(2)-symmetric 3d expanding gradient solitons with positive curvature
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operator {(M1k, g1k, p1k)}∞k=1, which smoothly converges to a 3d flying wing (M1, g1, p1). We
may assume Rg1k(p1k) = Rg1(p1) = 1, and the asymptotic cone of (M1, g1, p1) is a sector with
angle α1 ∈ (0, π). This by Theorem 5.1.4 implies lims→∞Rg1(Γ(s)) = sin2 α1

2
.

Let (M0, g0, p0) be a Bryant soliton with Rg0(p0) = 1, since lims→∞Rg0(Γ(s)) = 0, we can

find s1 > 0 such that Rg0(Γ(s1)) < 1
2

sin2 α1

2
. Choose a constant R̂ ∈ (Rg0(Γ(s1)), 1

2
sin2 α1

2
).

Then by the convergence to (M1, g1, p1) and the continuity argument in Theorem 5.1.1, we
can find a sequence of Z2×O(2)-symmetric expanding gradient solitons (M2k, g2k, p2k) with
positive curvature operator, which smoothly converges to a 3d flying wing (M2, g2, p2), with

Rg2(p2) = Rg2k(p2k) = 1 and Rg2(Γ(s1)) = R̂. Assume the asymptotic cone of (M2, g2, p2) is
a sector with angle α2 ∈ [0, π]. Then α ∈ (0, π) by Theorem 5.1.2. Moreover, by Theorem
5.1.4 we have

sin2 α2

2
= lim

s→∞
Rg2(Γ(s)) ≤ R̂ <

1

2
sin2 α1

2
. (5.4.36)

Therefore, by induction we obtain a sequence of 3d flying wings (Mi, gi, pi) whose asymp-
totic cone is a sector with angle αi satisfying sin2 αi+1

2
< 1

2
sin2 αi

2
for all i. So αi → 0 as

i→∞.
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