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Software Defined Network Inference with
Evolutionary Optimal Observation Matrices

Mehdi Malboubi, Yanlei Gong, Zijun Yang, Xiong Wang, Chen-Nee Chuah, Puneet Sharma,

Abstract—A key requirement for network management is the
accurate and reliable monitoring of relevant network charac-
teristics. In today’s large-scale networks, this is a challenging
task due to the scarcity of network measurement resources and
the hard constraints that this imposes. This paper proposes a
new framework, called SNIPER, which leverages the flexibility
provided by Software-Defined Networking (SDN) to design the
optimal observation or measurement matrix that can leads to
the best achievable estimation accuracy using Matrix Completion
(MC) techniques. To cope with the complexity of designing large-
scale optimal observation matrices, we use the Evolutionary
Optimization Algorithms (EOA) which directly target the ulti-
mate estimation accuracy as the optimization objective function.
We evaluate the performance of SNIPER using both synthetic
and real network measurement traces from different network
topologies and by considering two main applications for per-flow
size and delay estimations. Our results show that SNIPER can be
applied to a variety of network performance measurements under
hard resource constraints. For example, by measuring only 8.8%
of all per-flow path delays in Harvard network [1], congested
paths can be detected with probability of 0.94. To demonstrate
the feasibility of our framework, we also have implemented a
prototype of SNIPER in Mininet.

Keywords—Passive and Active Network Measurement, Network
Inference, Matrix Completion, Software Defined Networking.

I. INTRODUCTION

In large scale networks, the direct measurement of network’s
Internal Attributes of Interest (IAI), such as the per-flow
size, delay, or packet loss is infeasible due to the complexity
and high overhead of measurement process, and the limited
availability of network measurement resources. In large-scale
networks, the measurement resources, including the Ternary
Content Addressable Memory (TCAM) entries, processing
power, storage capacity and available bandwidth, are very
limited, and hence, per-flow direct measurements are infea-
sible. To cope with scalability issues, Network Inference (NI)
techniques can be leveraged to estimate various IAI based
on partial passive and/or active measurements. However, NI
problems are mainly formulated as Under-Determined Linear
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Inverse (UDLI) problems which are naturally ill-posed in the
sense that the number of measurements are not sufficient
to uniquely and accurately determine the solution. Hence,
side (supplementary) information from different sources and
perspectives must be incorporated into the problem formulation
to improve the estimation accuracy [2] [3] [4].

Software-Defined Networking (SDN) provides data plane
and control plane separation enabling capability to dynamically
control and re-program network switches. Most current re-
search has focused on leveraging SDN flexibility to implement
complex network management and control applications, such
as enhanced route control [5] [6]. However, SDN can also
enable adaptive and efficient implementation of passive and
active network monitoring applications that can be controlled
dynamically at run-time [7] [8] [9] [10]. This is important for
many network management and security applications.

Network inference techniques can utilize the real-time pro-
grammability provided by the SDN to optimize and facilitate
the process of collecting the required direct measurements
and/or side information. In fact, the capabilities of SDN
have been utilized in a variety of passive and active network
monitoring applications. Most SDN based passive measure-
ment studies are related to traffic monitoring and network
security applications, such as, network traffic measurement or
identifying Heavy Hitters (HH) and Hierarchical Heavy Hitters
(HHH). In [7], [8] and [11], SDN reconfigurable measurement
architectures are proposed where a variety of sketches for
different direct measurement tasks can be defined and installed
by the operator. In [12], OpenTM directly measures a traffic
matrix by keeping track of statistics for each flow. Recently, in
[9], an intelligent SDN based traffic measurement framework
(called iSTAMP) with the ability of adaptive and accurate
fine-grained flow estimation is proposed. For active network
measurement under SDN paradigm, the very recent work [10]
establishes a general framework (called Opennetmon) where
accurate measurements of per-flow throughput, packet loss and
delay can be directly conducted.

However, these state of the art SDN-enabled network mea-
surement and inference methods suffer from the following
challenges. First, pure SDN passive and active measurement
systems (e.g. [12] and [10]) can not provide per-flow measure-
ments of all IAI, due to the hard constraint of measurement re-
sources. Second, passive SDN-based network inference meth-
ods, such as [7], [8], [11] and [9], are not generally applicable
to a variety of network performance measurement purposes;
in fact, their applications are mainly limited to network traffic
size estimation. Among these, the main focus in [7], [8] and
[11] is on the network sub-population size estimation; in fact,
they can not provide the complete visibility of the all flows



over long time-horizon and they do not directly optimize
the usage of available measurement resources (e.g. flow-table
entries). On the other hand, [9] addresses these two later issues
and it is also able to provide fine-grained estimation of all
network flows using compressive sensing inference techniques
with optimal aggregated measurements under hard resource
constraints of TCAM entries. However, it might suffer from
aggregation feasibility, that is, constructing required optimal
aggregated measurements may not be always feasible (due to
switch constraints such as longest prefix matching forwarding
scheme). Also, due to the complexity of the process, it does
not directly optimize the ultimate estimation accuracy in the
process of providing the optimal aggregated measurements,
which can lead to the degradation of performance.

Matrix Completion (MC) techniques have been used as
powerful network inference tools that involve completing a
matrix of IAI from the direct measurement of a sub-set of its
independent entries [13] [14] [15] [16] [17]. In the theory of
matrix completion, the matrix of IAI can be completely re-
constructed from a sub-set of randomly observed or measured
entries if the number of randomly chosen observations is high
enough [18] [19]. In networking applications, examples of the
matrix of IAI include a matrix where each entry is the size
of an Origin-Destination Flow (ODF) at different times [13],
or per-flow delay/packet-loss between different nodes of the
network [15] [16] [17]. Since a variety of resources are often
shared across different layers in communication networks,
the entries of the matrices of IAI are largely correlated, and
accordingly, the matrices of IAI are low-rank matrices with
spatio-temporal redundancies. Therefore, not all of its entries
are needed to represent it. Consequently, the matrix of IAI can
be reconstructed and its non-observed entries can be estimated
from a sub-set of randomly measured entries [13] [15] [14]
[18] [16] [17].

In this paper, we investigate applying the matrix completion
techniques to NI applications with a set of optimal mea-
sured entries which leads to the best estimation accuracy.
Accordingly, we propose a novel approach to combine SDN
programmability with MC techniques where: 1) under hard
constraint of measurement resources, we directly measure a
sub-set of independent entries of the matrix of IAI without any
aggregation feasibility constraints; 2) we use MC techniques
to estimate unobserved entries of IAI. Accordingly, we can
address the challenges in SDN-enabled network monitoring
systems, in [12] [10] [7] [8] [11] and [9], where fine-grained
estimation of all IAI, under resource constraint and without
aggregation feasibility constraint, is not possible. To intelli-
gently design such an efficient and scalable framework, which
can be used for a variety of passive/active network monitoring
applications in large-scale dynamic environments, we pose
and answer the following question: Given limited network
measurement resources, how we can use the SDN capabilities
to directly measure a sub-set of independent entries of the
matrix of IAI and thus design the Optimal Observation Matrix
(OOM) leading to the best possible estimation accuracy using
matrix completion techniques? However, the direct design
of OOM for maximizing the performance of NI methods is
prohibitive due to the complexity of the process [9] [20].

The underlying difficulty lies in the fact that formulating the
inference process or algorithm as a function of the observation
matrix into a closed-form and well-defined optimization prob-
lem that can be solved efficiently is extremely complicated and
computationally complex.

Therefore, in this paper, we propose a new approach in
designing the optimal observation matrix for network inference
problems where we directly optimize the ultimate estimation
accuracy of network monitoring applications. However, to
cope with the inherent complexity of designing large-scale
observation matrices, we use the Evolutionary Optimization
Algorithms (EOA) that are suitable for the optimization prob-
lems where the main objective function can not be formulated
as a well-defined mathematical function. In this framework, the
evolutionary optimization algorithm precisely determines the
optimal (i.e. the most informative) entries of the matrix of IAI
that must be measured to achieve the best estimation accuracy
using matrix completion techniques. We refer to our pro-
posed framework as Software defined Network Inference with
Passive/active Evolutionary-optimal pRobing (SNIPER). This
framework has low computational and communication over-
heads that can be easily deployed on commodity OpenFlow-
enabled routers/switches in a centralized or distributed manner.
To improve the scalability of SNIPER, the OOM is designed
using EOAs in both supervised and un-supervised settings,
respectively with and without training data-sets. In addition,
SNIPER can easily incorporate side information from other
sources into the matrix completion formulation to improve the
estimation accuracy.

Our main contribution in this paper is developing a novel
framework to design the OOM, leading to the best possible
estimation accuracy using matrix completion techniques. We
effectively model this problem so that it can be efficiently
solved using EOAs, where the ultimate network inference
performance is the main objective function to be optimized.
We show that under hard constraint of measurement resources
the optimal design of the observation matrix provides more
accurate estimates, compared with random observation matri-
ces that are usually used in MC techniques [18] [15] [13].
To demonstrate the effectiveness of SNIPER, its performance
is evaluated using synthetic and real network measurement
traces from different network topologies and for two main
applications: network per-flow size and delay estimations. In
addition, a prototype of SNIPER is implemented in Mininet.

The rest of this paper is organized as follows. Section II
provides an overview of SNIPER framework and the matrix
completion techniques that we have used as our main NI meth-
ods. In Section III, we describe our OOM design procedure
using EOAs. Then, in Section IV, we explain our methodology
for evaluating the performance of SNIPER. In Section V, we
evaluate the performance of SNIPER considering two main
applications including per-flow size and delay estimations.
Section VI summarizes our most important results, and ad-
dresses possible future works.

II. SNIPER: SYSTEM DESCRIPTION

In this section we describe various components of our
proposed SNIPER framework. Figure 1 shows the general



block diagram of SNIPER framework where the controller in-
teracts with Software Defined Measurement Network (SDMN)
using Network Measurement Controlling (NMC) messages
to dynamically program/re-configure the SDMN and poll the
required measurements and statistics. The SDMN consists of:
1) a set of Probing Agents (PA), for example hosts, which
can inject probing packets into the network, and 2) a sub-set
of OpenFlow Switches (OFS) in the operating network which
can efficiently route the probing packets and measure the IAI.
Without loss of generality, we assume that SDMN guarantees
all required IAI are observable and measurable. The NMC
messages include passive and active network measurement
control messages that indicate which IAI must be accurately
measured at different times and/or locations and setups ap-
propriate flow-table entries and probe requests in the SDMN,
accordingly. In SNIPER framework, the network measurement
process consists of two stages, namely the learning and mea-
surement epochs, as it is shown in Figure 2. In the supervised
learning stage the optimal (i.e. the most informative) IAI that
must be directly measured are computed using an evolutionary
optimization algorithm and a training data-set. Then, in the
online measurement epoch, the SDN flexibility is used to
reconfigure the SDMN and to collect the measurements of
corresponding optimal IAI. By decreasing and removing the
dependency of SNIPER on the initial training data-set, the scal-
ability of this framework is remarkably improved for network
monitoring applications in dynamic environments (please refer
to Section V-E).

In SNIPER, side information from other sources can also be
incorporated into the matrix completion formulation to further
improve the accuracy of estimation. Without loss of generality,
in Section V-F, we specifically show how to incorporate
link-loads into the traffic matrix completion formulation in
SNIPER. In a network, link loads are readily and reliably mea-
sured using Simple Network Management Protocol (SNMP)
[21] which is widely supported by network’s devices, and they
are known as SNMP link-loads. Accordingly, the SNIPER
controller can appropriately poll link-loads from the SNMP
agents of network’s switches/routers, distributed among the
operating network.

The controller of SNIPER can both pre-configure or adap-
tively reconfigure the flow-tables of the OFSs in SDMN. For
passive per-flow size measurement, NMC messages (defined as
passive probes, here) reconfigure the OFSs of the SDMN by
installing required OpenFlow rules with appropriate forward-
ing actions in the flow tables for the incoming packets. The
controller also requests and collects per-flow counter statistics
to measure and reconstruct the matrix of per-flow sizes. On
the other hand, for active network performance measurements
(e.g. per-flow delay/loss/throughput), appropriate paths are
first determined (for all required entries of the matrix of
IAI). Then, NMC messages are used to actively probe the
operating network by: 1) adaptively configuring the flow-tables
of the SDMN and their actions for forwarding probing packets
generated by a set of probing agents; 2) interacting with the
probing packets injected into the network at the origin of the
paths, and 3) collecting required measurements at destinations.
Accordingly, SNIPER can compute the required IAI and

Fig. 1. SNIPER network measurement framework: a general perspective.

Fig. 2. Evolutionary optimal network measurement and inference process.

obtain information of active flows and monitor the end-to-
end network performance measurements. These measurements
are transmitted to the controller of SNIPER where matrix
completion techniques are used as the main NI algorithm to
estimate all unknown IAI.

SNIPER uses the capability of OpenFlow switches to easily
and adaptively provide the set of partial observations of per-
flow measurements. For per-flow sizes [9], SNIPER installs
the flow ID prefixes in the flow tables and polls flow statistics
from switches. For per-flow delay [10], SNIPER can assign a
specific path to each flow and regularly inject packets into the
first switch and having the last switch send them back to the
controller where the difference between the packet’s departure
and arrival times are computed by subtracting the estimated
latency from the switch-to-controller delays.

In addition, unlike direct measurement techniques where all
IAIs are measured [10], SNIPER directly measures a set of



partial measurements and uses matrix completion techniques
to infer the others. This is of particular importance for network
monitoring under hard resource constraints where the amount
of network measurement resources, such as flow-table/TCAM
entries and required probing bandwidth, are limited. Moreover,
in SNIPER, since MC techniques only need partial measure-
ments, the communication overhead between switches and
controller is decreased. Furthermore, since the processes of
measuring individual IAI are independent in SNIPER, the set
of partial per-flow measurements can be easily provided with-
out aggregation feasibility comparing with [9] where optimal
aggregated measurements are not always feasibly measurable.

In this paper, to showcase the capability of SNIPER frame-
work, the performance of SNIPER is evaluated in two main
applications including per-flow size and delay estimations.
However, without loss of generality, the application of SNIPER
framework can be easily extended for estimating other network
performance metrics, such as per-flow throughput and per-flow
packet loss [10].

A. SNIPER: Problem Statement
The operating network is modeled as a connected undirected

graph G(V,E) where |V | = N , and |E| = m. Accordingly,
there are m links, and n = N(N − 1) flows in the network.
As mentioned in the introduction, we model the NI problem
as a Matrix Completion (MC) problem where the goal is to
complete the matrix of IAI (denoted by X) from the direct
measurement of a sub-set of its entries assuming that X is a
low-rank matrix which contains redundancies and thus not all
of its entries are needed to represent it. Here, X is an n× T0

matrix with rank r << T0 and T0 < n where K entries of X
are directly measured.

The theory of matrix completion [18] shows that a low-rank
matrix X , with rank r, can be accurately recovered from a set
of sufficient randomly observed entries. In fact, the low-rank
property of a matrix indicates that the entries of the matrix
contain strong correlations and spatio-temporal structure [13]
[15] [14] [16] [17]. In practice, X is often full rank but with
rank-r dominant components, that is, X has only r significant
singular values σ1,..., σr (where σ1 ≤ ... ≤ σr) and the
others are negligible. In such cases, by minimizing the rank,
a matrix of rank r (denoted by X̂) can still be found that
approximates X with high accuracy [15] [18] [22]. Since
direct minimization of the rank of a matrix is difficult, MC
problems is often formulated as a convex optimization problem
as shown in Eq.(1) where Ω is the set of observed (i.e. directly
measured) entries, PΩ is a sampling function that preserves
entries of X in Ω (i.e. [PΩ(X)]ij = xij) and turns the others
into zero, and L(X, X̂) :=

∑
i,j(xij − x̂ij)2. Corresponding

to the sampling function PΩ, a Binary Observation Matrix
SΩ is also defined where [SΩ(X)]ij = 1. Accordingly, the
MC searches for a low-rank matrix X̂ that approximates X
with sufficient accuracy at the observed entries in Ω. The
unobserved or missing entries in X (indicated by Ω̄ as the
complement of Ω) are predicted by the corresponding entries
in X̂ . The MC problem can also be reformulated as a matrix
factorization problem in Eq.(2) where X̂ (with rank(X̂) ≤ r)

Notation Description
t Notation used to denote time
N Number of nodes in the network
n Number of flows in the network (n ≤ N(N − 1))
m Number of links in the network
T0 The duration of traffic in data set
tp Traffic data set is divided into tp parts of length T0

X Matrix of IAI of size n× T0

T0 Number of columns of X , defined as T0 :=
⌈
T0
tp

⌉
X(:, t) The tth column of X
Y t The tth vector of SNMP link-loads
K Number of directly measured entries of X
r Number of significant singular values of X
H Routing Matrix of size m× n

PΩ(X) Sampling function of X
SΩ(X) Binary observation matrix
s Sampling ratio or rate defined as s := K

nT0

TABLE I. THE MOST COMMONLY USED NOTATIONS.

is factorized as X̂ = Un×rV
T
r×T0

where T denotes the
transpose operator, and λ is the regularization coefficient that
controls the extent of regularization. Here, the Frobenius norm
of a matrix Z is defined as ‖Z‖2F =

∑
i,j |zij |

2. In addition,
Table I summarizes the most important parameters.

minimize Trace
(
X̂
)

=
∑
i

σi

s.t. L
(
PΩ(X), PΩ(X̂)

)
≤ δ

(1)

minimize
U,V

L
(
PΩ(X), PΩ(X̂)

)
+ λ(‖U‖2F + ‖V ‖2F ) (2)

The optimization problem Eq.(2) can be solved using dif-
ferent methods. In this paper, we adopt two different meth-
ods from recently proposed MC procedures used in network
monitoring applications to solve Eq.(2) and compute U and
V matrices where X̂ = UV T . The first one is the Sparsity
Regularized Singular Value Decomposition (SRSVD) method
[13] that uses an alternating least squares procedure to solve
Eq.(2). The second one is the Decentralized Matrix Fac-
torization algorithm [15], denoted by DMFSGD, that uses
the Stochastic Gradient Descent (SGD) technique to solve
Eq.(2). Both methods rely on the fact that the matrices of IAI
in network monitoring applications contain temporal and/or
spatial redundancies that can be used to estimate non-observed
or missed entries. SNIPER is a flexible framework and it
allows other more advanced MC algorithms to be leveraged
for the further improving of its performance.

Under hard constraints of measurement resources, it is
crucial to design the OOM, which leads to the best achievable
estimation accuracy using matrix completion techniques. To
show the importance of such a design, consider a 3×3 matrix
X consisting of three spatial-independent processes in each
row where x1(t) = 1

2 (x1(t − 1) + x1(t + 1)), x2(t) =
2x2(t−1)+3 and x3(t) = 1

2x3(t+1)−10. Using the temporal
structure in these processes, the OOM can be designed as
SOptΩ (X) = [1, 0, 1; 1, 0, 0; 0, 0, 1] where there is at least one



"1" in each row. Therefore, by measuring IAI indicated by "1"
in this matrix, unknown IAI (indicated by "0") can be perfectly
estimated. This OOM is not guaranteed to be obtained using a
random sampling strategy which leads to inaccurate estimation
of unknown IAIs.

To maximize the performance of MC algorithms with mini-
mum number of required measurements, the process of design-
ing OOM must directly target the ultimate estimation accuracy
in the network monitoring applications as defined in Eq.(6).
However, it is extremely complicated, if it is not impossible, to
formulate the MC process and target the ultimate performance
criterion using a closed-form and well-defined mathematical
optimization problem as a function of the observation matrix.
In addition, since the observation matrix in our case is a
binary matrix, it is computationally expensive and intractable
to use integer optimization techniques in such a design process
for large-scale networks [9]. Therefore, in this paper, we use
evolutionary optimization algorithms to cope with the inherent
complexity of design process.

III. OPTIMAL OBSERVATION MATRIX (OOM) DESIGN

Evolutionary algorithms are heuristic optimization methods
for solving NP-hard optimization problems where the main
objective function may not be formulated as a well-defined
mathematical function [23]. Hence, when regular mathemat-
ical optimization techniques can not model and/or solve the
problem, a well-designed evolutionary optimization algorithm
can appropriately cope with the inherent complexity of the
optimization problem to obtain an optimal or a near-optimal
solution. For example, evolutionary algorithms have been used
in [24], [25] and [26] for solving traveling salesman problem,
graceful network state migration problem and TM estimation
problem, respectively.

A. Evolutionary Algorithms: A General Description
In this section, a general description of evolutionary algo-

rithms, mainly from [27] and [28], is summarized and re-
represented. The evolutionary algorithms, generally, consist
of three main processes (as it is shown in Figure 3). The
first process is the initialization process where the initial
population of individuals (i.e. representations of solution) is
randomly generated. In the second process, the fitness value
of each individual is evaluated and a sub-set of the best
individuals is selected. In the third process, a new population
is generated by the perturbation of current solutions. The
algorithm continues until a stopping criterion is met. Here, two
EOAs are used, namely, Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO).

The genetic algorithm, mimics the natural selection mech-
anism where the fittest solutions are survived. The candidate
solutions in GA are modeled as chromosomes and the fitness
values of chromosomes are evaluated and ranked based on
their fitness values. The process to produce new solutions in
GA is accomplished through three genetic operators as selec-
tion, crossover, and mutation. First, chromosomes with better
fitness values are selected as parents, with higher probabilities,
to generate new offspring (new chromosomes). The parent

Fig. 3. The general flowchart of evolutionary optimization algorithms
[27].

chromosomes are then combined using the crossover operator
to produce new offspring. The mutation operator is then
performed on the chromosomes to increase the diversity of the
population and to avoid stagnation in the process of evolution.
To successfully apply the GA, the solution representation
(i.e. chromosome model) must be designed carefully. Also,
the parent selection process, and the probability of crossover
and mutation are important parameters that must be precisely
chosen [27].

In PSO, each candidate solution is modeled as a particle
and a set of particles is called a swarm of particles. The
PSO process is initialized by assigning a random position
and velocity to each particle. Each particle is evaluated for
a fitness value and the fitness values of particles are compared
against the previous best fitness value of the particle and the
previous best fitness value of the whole swarm. Based on
this, the personal best and global best positions are updated,
appropriately; otherwise, if a stopping criterion is not satisfied,
the velocity and position are updated to generate a new swarm.
The positions and velocities of particles are updated based on
both the personal best and global best positions and the old
velocities. The PSO has a significant computational advantage
over GA (especially when the population size is large) since
the PSO algorithm does not require sorting of fitness values
of solutions in any process [27] [28].

B. Evolutionary Design of Optimal Observation Matrices

In applying evolutionary algorithms, modeling and/or repre-
senting a solution is of particular importance. Here, to effec-
tively apply the GA, a chromosome (representing a solution)
is defined as a binary observation matrix C with size n× T0

and where 0 and 1 respectively represent unobserved and
directly measured entries. The number of measurements paths
(i.e. samples) for each chromosome is denoted by K (i.e. the
number of one’s in each chromosome, see Section. IV). To



successfully apply the MC technique, the sampling matrix C
is constrained to have at least one 1 in each row and column.
The GA is started by generating Np chromosomes/solutions in
the initialization step and estimating all unknown IAI in the set
Ω̄ using MC algorithm. Then, the fitness of each chromosome
is evaluated using the cost function represented in Eq.(6).
Accordingly, the best chromosomes, with lowest fitness values,
are selected and the crossover operation, with probability pc,
is applied on each pair of parents to generate new children
(offsprings). Eq.(3) defines the crossover operation where rc
denotes a randomly chosen row from set {1, ..., n}. In this
equation, operator ":" is the colon operator in MATLAB;
hence, considering two arbitrary integer numbers r1

c and r2
c and

as an example, C1

(
r1
c : r2

c , :
)

denotes a sub-matrix of matrix
C1 from row r1

c to row r2
c with all columns. The offsprings

generated by Eq.(3) form part of the new chromosomes of the
next generation. To increase the diversity of the population,
the mutation operation is performed on each child where the
mutation operator changes an entry of sampling matrix C from
zero-to-one or vice-versa with probability pm. The GA process
is continued over Ni iterations and the best chromosome in
each iteration remains unchanged. In most cases throughout
this paper, the GA parameters are set as: Ni = 60, Np=1500,
pc = 0.3, and pm = 0.01. These parameter values were
determined using a trial and error method.

OffSpring1 = C1(1 : rc, :) + C2(rc + 1 : n, :)

OffSpring2 = C2(1 : rc, :) + C1(rc + 1 : n, :)
(3)

Likewise, the PSO is started by generating Np particles
and estimating all unknown IAI in the set Ω̄ using the MC
algorithm. The ith particle is identified by its position P ki and
its velocity V ki at iteration k. Here, P ki is an n × T0 binary
matrix, representing the measurement/observation matrix, and
V ki is also an n × T0 matrix. In the initialization stage all
position and velocity matrices are zero matrices. The best
position of ith particle obtained until iteration k is denoted
by BP ki and the best position among all particles in the
swarm until iteration k is called global best position and it
is denoted by GP k. The best particles here are determined by
evaluating the fitness of each particle and choosing the one
with the minimum error value (as defined in Eq.(6)) among
all iterations (for one particle) or among all particles. The
velocity V ki is updated according to Eq.(4) where β1 and β2 are
acceleration constants, which here they setup to β1 = β2 = 2,
and α1 and α2 are standard uniform random variables in
interval [0, 1]. The positive inertia weight ω is computed as
ω = ωmax − (ωmax − ωmin) k

Ni
where ωmin and ωmax are

respectively minimum and maximum inertia weights which
here we set to ωmin = 0.3, ωmax = 0.9 and Ni = 2000.
The particle positions is updated (by re-determining new IAI)
using two methods: 1) a deterministic approach where a sub-
set of the entries of P ki with the highest velocities is set to
one, and 2) a probabilistic approach where a sub-set of the
entries of P ki is set to one with probability sigmoid(vij),
where sigmoid(x) := 1

1+e−x , otherwise it is set to zero. The
PSO process is continued for Ni iterations.

V k
i = ωV k−1

i + α1β1(BP
k
i − Pk−1

i ) + α2β2(GP
k − Pk−1

i ) (4)

In both GA and PSO evolutionary algorithms, simple ma-
nipulations are applied at the end of each iteration of the
algorithm. First, it is assured that there is at least an one
in each row and column of the observation matrix (that is,
solution representations which are also called chromosomes, or
particles). Second, it is insured that the number of observed IAI
remains constant for each sampling rate, and if it is required,
chromosomes/particles are remained symmetric (e.g., in the
case of delay measurement).

IV. PERFORMANCE EVALUATION METHODOLOGY

The performance of SNIPER is evaluated in two main
applications, namely per-flow size and delay estimations. For
this purpose three network topologies, including Abilene,
Geant and Harvard networks, and both synthetic and real
network traces are considered. For per-flow size estimation,
we use real traffic traces from Abilene [29] and GEANT
[30] networks; the characteristics of these traffic traces are
presented in Table II. For per-flow path delay estimation,
we first use the Abilene and Geant network topologies to
generate the required synthetic data-set where it is assumed
that the path delay for the flow between node i and node j
is modeled as Eq.(5). In this model, dpij is the propagation
delay between ith and jth nodes, and qij is the queuing delay
that is modeled as qij ∼ exp(λ) [31] [32]. Since the average
propagation delay in both Abilene and Geant networks is
approximately 3.5 ms, thus, the range of the variation of λ
is chosen in 0 ≤ λ ≤ 10 which includes both low and high
noise scenarios. In addition, we use real per-flow delay from
Harvard study [1] which contains 2,492,546 measurements of
application-level RTTs, with timestamps, between 226 Azureus
clients collected in 4 hours [15]. Figure 4 shows the first 10
normalized singular values for the real network measurements
that we have used, including the matrix of flow-sizes for
Geant and Abilene networks, and the matrix of per-flow delays
from Harvard study. The fast decrease in the singular values
indicates the low-rank property and the existence of strong
correlation between entries of these matrices which enables
their completion using matrix factorization techniques.

dij = dpij + qij (5)

In our supervised learning scheme, each data-set is divided
into tp parts. The first part, called learning epoch, with size
n × T0 (where T0 is the duration of the traffic in Table II
and T0 =

⌈
T0
tp

⌉
) is utilized to design the OOM using the

GA and PSO evolutionary algorithms. The matrix with the
best fitness value in the last population of the learning stage
determines the OOM and its estimation performance is denoted
by subscript T0 in our results. Then, the same OOM is used
over other tp − 1 parts of the data-set (called measurement
epochs) and the average of the performance over multiple parts
is computed and is denoted by subscript Avg in our results. In
the un-supervised learning scheme, the procedure is the same;
however, the OOM is designed by minimizing the norm of



Fig. 4. The plot of the first 10 normalized singular values of three data sets
in Table II.

the observation matrix using GA and without training data-set
(see Section V-E). The number of directly measured IAIs (i.e.
measurement paths), denoted by K, plays an important role in
improving the estimation accuracy. This parameter is defined
as K = s · (n ·T0) where s is the Sampling Ratio or Sampling
Rate (SR) and 0 ≤ s ≤ 1. Thus, given sampling ratio s and
having n and T0, consequently, K (i.e. the number of required
measurements) and the amount of required resources can be
computed. Here, low values of the sampling ratio s (i.e. smaller
Ks) indicates the hard-resource constraint regime. Note that,
the higher the K is, the better the estimation accuracy is.

The performance of NI methods in SNIPER framework, that
is, the estimation accuracy of the completion of the matrix
of IAI is evaluated using the following two criteria in Eq.(6)
where NMAE denotes Normalized Mean Absolute Error and
NMSE denotes Normalized Mean Square Error. The status of
the IAI are also classified into two different classes. In the
case of classifying per-flow delays, the flow delay estimates are
compared with a threshold θ which is set as the average delay
in the data-set. On the other hand, in the case of classifying
per-flow sizes, the flow size estimates are compared with a
threshold θ which is set as a fraction of the link capacity Cl;
here, Cl is set to the maximum flow size in the available data-
set. Accordingly, the performance of the detection of congested
paths (i.e. flows with delay longer than the threshold) and
heavy hitters (i.e. flows larger than the threshold) are computed
by the probability of detection P d and probability of false
alarm P fa in Eq.(7). Here, different subscripts are used to
distinguish between different applications where CP denotes
Congested Paths and HH denotes Heavy Hitters, respectively.
Note that, a reliable detection is achieved by a high probability
of detection and a low probability of false alarm.

NMAE =

∑
ij∈Ω̄ |xij − x̂ij |∑

ij∈Ω̄ |xij |

NMSE =

√∑
ij∈Ω̄ (xij − x̂ij)2√∑

ij∈Ω̄ (xij)
2

(6)

Network Date Duration Resolution TM Size (n× T0)
Abilene [29] 2004-05-01 1 week 5 min. 144 × 2016
GEANT [30] 2005-01-08 1 week 15 min. 529 × 672

TABLE II. REAL DATASETS UNDER STUDY.

P d =
1∣∣Ω̄∣∣ ∑

ij∈Ω̄

Pr (x̂ij ≥ θ|xij ≥ θ)

P fa =
1∣∣Ω̄∣∣ ∑

ij∈Ω̄

Pr (x̂ij ≥ θ|xij < θ)
(7)

V. THE APPLICATIONS OF SNIPER FRAMEWORK

In this section, we showcase the effectiveness of SNIPER
for two main applications, namely per-flow delay and per-
flow size estimations, and under different configurations. Each
configuration determines the network under study, the matrix
completion technique, the length of learning period T0, and
the sampling ratio s. Here, T0 is set to T0 = 100; however, s
mainly varies in the range of small values to indicate a case
of hard constraint of network measurement resources. Other
parameters, such as the number of directly measured IAIs
(e.g. per-flow sizes and delays) K and the number of parts
in the data-set tp can be determined, accordingly. The type of
sampling strategies are denoted by RS, GA and PSO which
respectively identify the OOM designed by Random Sampling
(RS) and evolutionary algorithms GA or PSO. Note that, the
performance of RS strategy is evaluated using Monte-Carlo
simulation with 100 iterations.

A. Optimal Observation Matrix Design using SNIPER
The optimal design of large-scale binary observation matri-

ces, using mathematical optimization techniques are extremely
complicated or computationally expensive. As it is known
in such a case, the capability of an evolutionary optimiza-
tion process in achieving the optimal solution is usually
shown on a small-scale problem [25]. Accordingly here, to
show the effectiveness of our evolutionary OOM design, we
consider a small ring network consisting of 4 nodes with
different per-flow path delays where we can compute all
possible observation matrices at a specific sampling ratio.
Then, we estimate the unobserved entries and compute the
corresponding NMSE for all possible observation matrices.
Using this process we realized that our GA is able to obtain
the OOM, that is, the OOM with minimum NMSE among
all possible observation matrices. As an example, if X =
[0, 5.05, 9.01, 9.645; 5.05, 0, 3.96, 9.645; 9.01, 3.96, 0, 5.23;
4.595, 9.645, 5.23, 0] (in ms) and s = 0.25, then the optimal
observation matrix SOptΩ (X) with NMSE = 0.4734 is
SOptΩ (X) = [0, 0, 1, 0; 0, 0, 0, 1; 1, 0, 0, 0; 0, 1, 0, 0] which is
also obtained by our GA in SNIPER framework.

Note that, for large-scale networks, it is impossible to guar-
antee the computing of OOM using evolutionary optimization
algorithms. Hence, here, the term OOM is interchangeably
used to emphasize the convergence of EOAs to a near-
optimal solution, representing the most possible informative
observation matrix.



SR 0.0177 0.0354 0.0531 0.0708 0.0885
PdCP 0.6080 0.7534 0.8358 0.9061 0.9377
P faCP 0.1620 0.1262 0.0750 0.0530 0.0398

TABLE III. AVERAGE P d
CP AND P fa

CP FOR HARVARD NETWORK.

B. Per-Flow Delay Estimation using SNIPER

Figures 5 and 6 show the performance of SNIPER in the
estimation of per-flow delay on Abilene and Geant networks
using synthesis data generated using the model in Eq.(5)
where the MC technique is DMFSGD as in [15]. Here, the
OOM is designed using the GA and only by considering the
propagation delay in Eq.(5) in the learning epoch. Then, this
OOM is used to evaluate the performance of the MC technique
in measurement epochs, based on the NMSEAvg , where
queuing delay is added to the propagation delay according to
Eq.(5) that models the network paths delay [31]. These figures
show that at low sampling ratios, indicating the hard resource
constraint regime, the optimal observation matrix designed by
the GA can obtain a better estimation accuracy, with more
robust performance against noise.

Figure 7 also shows the performance of SNIPER framework
on real per-flow delay estimation in Harvard network [1]. This
figure also shows that at low sampling ratios, indicating the
hard resource constraint regime, the optimal observation matrix
designed by the GA can obtain a better estimation accuracy.
In this application, a lower sampling ratio indicates the case
where a lower number of active-probing packets (i.e. a smaller
fraction of network bandwidth) is required for measuring a
sub-set of per-flow delays.

In addition, Table III indicates the capability of SNIPER
framework in the reliable detection of congested paths with
high probability of detection P dCP and low probability of
false alarm P faCP . It is clear that, by increasing sampling ratio
the accuracy of estimation is improved. However, at lower
sampling ratios and comparing with random sampling strategy
in [15], SNIPER can obtain a better estimation accuracy and
more reliable detection performance, due to the intelligent
design of the OOM. For example, by measuring 8.8% of
per-flow path delays, congested paths can be detected with
probability 0.94 in Harvard network. This is an important
factor in active network performance measurement where the
network monitoring bandwidth is very limited.

It should be noted that, in Figure 7, and throughout this
paper, the blue squares represent the minimum and maximum
of NMSE (or NMAE) for each sampling ratio using our
EOA based sampling strategy. Also, in low sampling ratios
and in all measurement epochs a better estimation accuracy is
obtained using SNIPER framework.

C. Per-Flow Size Estimation using SNIPER

Figure 8 shows the performance of SNIPER in the estima-
tion of per-flow sizes on both Abilene and Geant networks
using real traffic traces (see Table II) where the MC technique
is the SRSVD-base as in [13]. Again, it is clear that, comparing
with random sampling strategy originally proposed in [13], the

Fig. 5. The NMSE vs. SR & noise for Abilene network.

Fig. 6. The NMSE vs. SR & noise for Geant network.

Fig. 7. The NMSE for Harvard network in different sampling ratios.



Fig. 8. NMAE vs. sampling ratio for Abilene and Geant networks.

SR = 0.2 SR = 0.3 SR = 0.4 SR = 0.5

PdHH Abilene (RS) 0.6256 0.7544 0.8426 0.8851
PdHH Abilene (GA) 0.6550 0.7693 0.8380 0.8901
P faHH Abilene (RS) 0.0353 0.0202 0.0144 0.0116
P faHH Abilene (GA) 0.0325 0.0192 0.0142 0.0119
PdHH Geant (RS) 0.7606 0.8935 0.9354 0.9489
PdHH Geant (GA) 0.7804 0.9096 0.9375 0.9502
P faHH Geant (RS) 0.0106 0.0061 0.0043 0.0035
P faHH Geant (GA) 0.0095 0.0058 0.0041 0.0034

TABLE IV. COMPARING THE AVERAGE P d
HH AND P fa

HH BETWEEN RS
AND GA SAMPLING STRATEGIES FOR ABILENE AND GEANT NETWORKS

WHERE θ = 0.05Cl AND θ = 0.1Cl , RESPECTIVELY.

performance of the matrix completion in SNIPER framework
is improved by the design of the optimal (i.e. the most infor-
mative) observation matrix. Note that, although the estimation
accuracy is improved by increasing the sampling ratio, the
performance of SNIPER is better at low sampling ratios, which
indicates the case of hard resource constraint of TCAM entries
as the main resource for per-flow size measurement. Also, a
better estimation accuracy is obtained almost for all sampling
ratios and in all measurement epochs.

Table IV also shows the average performance of SNIPER
framework in the reliable detection of heavy hitters under low
sampling ratios. For example, by measuring 20% of all the per-
flow sizes, HHs can be detected with probability 0.65 and 0.78
in Abilene and Geant networks, respectively. This has a great
implication in applications, such as, network traffic engineering
and security where heavy flows must be effectively routed for
providing a better performance, or HHs must be identified for
indicating the presence of the Denial of Service (DoS) attack.

Fig. 9. NMAE vs. sampling ratio for Abilene and Geant networks.

D. Scalability of SNIPER
As it was shown, SNIPER can improve the estimation accu-

racy under hard resource constraint regimes. To reduce the high
computational complexity of the GA in designing the OOM in
large-scale networks and increase the scalability of SNIPER
framework, here, we use the PSO evolutionary optimization
algorithm which is much faster than the GA [23] [27] and it can
reduce the computational complexity and processing power of
SNIPER. Figure 9 shows the performance of SNIPER for per-
flow size estimation, representing the fact that in low sampling
rates the intelligent design of the observation matrix using
PSO algorithm results in a better estimation accuracy. The
reduction in the computational time using the PSO algorithm
is quantified using the notion of Processing Gain (PG) defined
as:

PG% = 100× PTGA − PTPSO
PTGA

(8)

where PTGA and PTPSO respectively denote the processing
times for running GA and PSO algorithms. The processing
gains for Abilene and Geant networks are PG=56% and
PG=65%, respectively.

E. Unsupervised SNIPER
In the case of supervised learning, SNIPER framework

computes the optimal sampling matrix using the training data,
available in the initial learning stage. The training data-sets
can be obtained by directly measuring the required IAI in
the beginning, or by using already available data-sets (e.g.
NetFlow records in the case of TM completion). In the lack
of training data-set, it is important to decrease or remove the
dependency of SNIPER on the initial training data-set.



Net./Prm. SR GAAvg GAσAvg PG%
Abilene 0.3 0.5561 0.5464 93 %
GEANT 0.2 0.6014 0.6646 88 %

TABLE V. NMAE FOR FITNESS FUNCTIONS NMAE AND σ1(SΩ)
(DENOTED BY σ).

During the course of this study, we observed that there is
a strong correlation between: 1) the ultimate performance of
the MC technique, using the best observation matrix designed
by the GA in each iteration (denoted by SΩ), and 2) the
norm of that observation matrix (i.e. the maximum singular
value of SΩ denoted by σ1(SΩ)). In fact, we observed a same
decreasing behavior between the ultimate estimation accuracy
(represented by NMAE) and σ1(SΩ). This fact has been
shown in Figure 10 and Figure 11 where NMAE decreases as
the norm of the observation matrix decreases. To quantify this
correlation for each sampling rate, we compute the Correlation
Coefficient (denoted by ρ) between NMAE and the norm
of observation matrix where for any two vectors a and b,
correlation coefficient ρ is defined as ρ = Cov(a,b)√

V ar(a)V ar(b)
.

Accordingly, the average correlation coefficient over different
sampling rates for both Abilene and Geant networks are
ρAvg =0.89 and ρAvg =0.92, respectively.

Therefore here, instead of minimizing the ultimate estima-
tion accuracy, the norm of the observation matrix (i.e. σ1(SΩ))
is considered as the fitness function and it is minimized using
our GA. In this way, we can cope with the complexity of
the formulating and designing of binary observation matrices
with minimum norm; moreover, the dependency of SNIPER
framework on the training data set is removed. Table V shows
the performance of this method in TM completion indicating
two important facts which are of crucial importance for MC
in large-scale networks, and they can remarkably improve the
scalability of SNIPER framework. First, in the absence of
training data, minimizing σ1(SΩ) is almost as effective as
directly minimizing NMAE using training data-set. Second,
the computational complexity of the GA with fitness function
σ1(SΩ) is much less than directly minimizing the NMAE
where processing gain is re-defined as:

PG% = 100× PTNMAE − PTσ
PTNMAE

(9)

In this equation, PTNMAE and PTσ respectively denote
the processing times for running GA with fitness functions
NMAE and σ1(SΩ). Note that, the processing gain can be
further improved by designing the OOM using PSO with
fitness function σ1(SΩ).

F. SNIPER with Side Information
In SNIPER, side information from different sources can

be incorporated into the matrix completion formulation to
improve the accuracy of network inference. A rich and in-
formative source of side information for flow-size inference
is SNMP link-loads which are readily and reliably available
in many networks [21]. SNMP link-loads measure the sum
of the contribution of the size of flows on network links.

Fig. 10. NMAE vs. σ1(SΩ) for Abilene network.

Fig. 11. NMAE vs. σ1(SΩ) for Geant network.

Each link-load vector Y t (at time t for t ∈ 1, 2, ..., T0) is
modeled as Y t = HX(:, t) where H is the routing matrix,
and X(:, t) denotes the tth column of matrix X (i.e. the vector
representation of traffic matrix at time t where each entry of
this vector is the size of a flow).

To incorporate the SNMP link-loads into the matrix com-
pletion formulation in Eq.(2), the base Sparsity Regularized
SVD (SRSVD) method [13] that used in previous sections for
flow-size estimation is modified as follows [3]:

X̂ = min
U,V

∥∥B −A(UV T )
∥∥2

F
+ λ

(
‖U‖2F + ‖V ‖2F

)
(10)

where X̂ = UV T , and B and A are linear operators satisfying
measurement equation A(UV T ) = B. The operator A is
defined as At = [diag(StΩ(X);H] where StΩ(X) denotes
the tth column of SΩ(X), and H is the routing matrix.
In addition, the tth column of operator B is defined as
bt = [X(:, t). ∗ StΩ(X);Yt] where StΩ(X) is the tth column
of SΩ(X) and .∗ denotes an element-wise product. In our
implementation, StΩ(X) is replaced with the optimal observa-
tion matrix designed by GA and PSO algorithms. Accordingly,
1) A is formed by blockdiagonal concatenation of matrix At
for T0 times as it can be defined in MATLAB notation by
running A = blockdiag(A, At) for t = 1 : 1 : T0, and 2) B is
formed by columnwise concatenation of vector bt for T0 times
as defined in MATLAB notation by B = [b1; ...; bT0

].
Table VI shows the performance of the above matrix com-

pletion technique for both OOM designed by GA and PSO
on both Abilene and Geant networks. Comparing with our
results in Figures 8 and 9, it is clear that incorporating SNMP



SR 0.2 0.3 0.4 0.5
NMAE Abilene (GA) 0.1595 0.1114 0.1035 0.0984
NMAE Abilene (PSO) 0.1598 0.1128 0.1016 0.0988
NMAE Geant (GA) 0.1841 0.1643 0.1406 0.1216
NMAE Geant (PSO) 0.1866 0.1608 0.1445 0.1255

TABLE VI. AVERAGE NMAE WITH SNMP LINK-LOAD SIDE
INFORMATION FOR ABILINE AND GEANT NETWORKS.

link-loads can significantly improve the estimation accuracy of
flow-size estimates; in fact, the gain in estimation accuracy by
incorporating side information is 70%, in average. Moreover,
as Table VI shows, the improvement in the estimation accuracy
does not significantly change by increasing the number of
direct flow measurements (i.e. by increasing sampling ratio).

This is of particular importance in flow-size estimation
under hard resource constraint of limited TCAM sizes because:
1) link-loads are reliable measurements which are easily pro-
vided using Simple Network Management Protocol (SNMP)
in many networks; 2) TM estimation using only SNMP link-
loads has a poor performance [33] and side-information from
other sources must be utilized to improve the performance of
TM estimation [2]; and 3) using matrix completion techniques,
with small percentage of direct per-flow measurements that are
provided without any flow-aggregation feasibility constraints,
the accuracy of flow size estimation can be significantly
improved. The estimation accuracy provided in Table VI is
high and it is effective for different traffic engineering and
network management/security applications. It should also be
noted that using more effective matrix completion techniques
the estimation accuracy can be further improved.

G. Feasibility of SNIPER
To show the feasibility and effectiveness of SNIPER, we

have implemented a prototype of SNIPER for per-flow size
estimation in Mininet which is a network testbed for de-
veloping OpenFlow and SDN experiments [34]. Figure 12
shows the block diagram of this prototype where we create
a centralized configuration of Geant Network in mininet in-
cluding 23 nodes, with distinct IP addresses, connected to a
single SDN enabled switch (i.e. Open vSwitch). These nodes
send IP packets into the network (using scapy package in
python) to re-produce the exact real Geant traffic, according
to Table II. The controller, which has been implemented using
POX and it has been located on the same machine, runs the
SNIPER algorithm. The SNIPER controller accepts the pre-
computed optimal observation matrix as an input, constructs
measurement rules and convert them to flow rules. Then,
it interacts with the switch to install flow routing rules on
the flow-table entries (equivalently TCAM entries) of Open
vSwitch. In this implementation, a flow is defined as 3-tuple
〈source IP, destination IP, protocol〉 and incoming packets are
matched against TCAM rules and forwarded to a specific
output port determined by the action field of each rule. Per-flow
statistics are then measured and transmitted to the SNIPER
controller where matrix completion algorithm is applied and
the accuracy of flow-size estimation is evaluated. Table VII
shows the implementation results of SNIPER framework in

Fig. 12. SNIPER prototype: an implementation in mininet.

SR 0.2 0.3 0.4 0.5
GAT0 0.7739 0.6646 0.5380 0.4341
RST0 0.8354 0.6667 0.5561 0.4518
GAAvg 0.7946 0.6422 0.5172 0.4272
RSAvg 0.8612 0.6587 0.5323 0.4377

TABLE VII. NMAE FOR GEANT NETWORK IN MININET.

Mininet (using OOM designed by GA), demonstrating the
feasibility and effectiveness of the implementation of SNIPER
framework in production environments.

VI. CONCLUSION

In this paper, we introduced SNIPER, an intelligent network
measurement framework, where the flexibility provided by
SDN and the capability of EOAs are used to optimally design
the observation matrix which leads to the best possible esti-
mation accuracy via applying matrix completion techniques.
We showed that, under hard resource constraints, SNIPER is
an efficient and scalable framework that can be used in a
wide range of network monitoring applications in large-scale
networks and without aggregation feasibility constraints.

A. Future Work
Among multiple directions for the future work, here we

only discuss two possible directions which are more important.
First, in dynamic environments where the behavior of IAI
may change, the optimal observation matrix designed in the
learning phase can be appropriately modified. In this case, it
is important to apply adaptive matrix completion techniques
with on-line sampling mechanism [35] [36] to enhance the es-
timation accuracy in dynamic environments. Second, to further
improve the performance, the optimal observation matrix can
be designed by considering the presence of side-information.
In this case, the same evolutionary algorithms can be applied in



the learning phase to target the ultimate performance criterion
(e.g. minimizing NMAE or NMSE); however, the side-
information (e.g. SNMP link-loads) can be incorporated into
the matrix completion techniques.
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